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The Basis of Bayesian Inference

A Basic setup
Let f(x|θ) be a conditional distribution for X given the unknown
parameter θ.

For the observed data, X = x, the function `(θ) = f(x|θ)
It is called the likelihood function!!!

The name likelihood implies that, given x, the value of θ
It is more likely to be the true parameter than θ′, if

f (x|θ) > f
(
x|θ′

)
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Basically

We are talking about optimization functions
Where optimal’s are being looked upon...

Definition
An optimal solution to an optimization problems is the feasible
solution with the largest objective function value (for a maximization
problem).
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Likelihood Principle

Remarks
In the inference about θ, after x is observed, all relevant
experimental information is contained in the likelihood function
for the observed x.

There is an interesting example quoted by Lindley and Phillips in
1976 [1]

Originally by Leonard Savage

Leonard Savage
Leonard Jimmie Savage (born Leonard Ogashevitz; 20 November
1917 – 1 November 1971) was an American mathematician and
statistician.

I Economist Milton Friedman said Savage was "one of the few people I
have met whom I would unhesitatingly call a genius.

6 / 117



Likelihood Principle

Remarks
In the inference about θ, after x is observed, all relevant
experimental information is contained in the likelihood function
for the observed x.

There is an interesting example quoted by Lindley and Phillips in
1976 [1]

Originally by Leonard Savage

Leonard Savage
Leonard Jimmie Savage (born Leonard Ogashevitz; 20 November
1917 – 1 November 1971) was an American mathematician and
statistician.

I Economist Milton Friedman said Savage was "one of the few people I
have met whom I would unhesitatingly call a genius.

6 / 117



Likelihood Principle

Remarks
In the inference about θ, after x is observed, all relevant
experimental information is contained in the likelihood function
for the observed x.

There is an interesting example quoted by Lindley and Phillips in
1976 [1]

Originally by Leonard Savage

Leonard Savage
Leonard Jimmie Savage (born Leonard Ogashevitz; 20 November
1917 – 1 November 1971) was an American mathematician and
statistician.

I Economist Milton Friedman said Savage was "one of the few people I
have met whom I would unhesitatingly call a genius.

6 / 117



History

Something Notable
The likelihood principle was first identified by that name in print in
1962 (Barnard et al., Birnbaum, and Savage et al.),

However Fisher
It was already using a version of it in 1920’s.

However, versions of it can be tracked to
To the mid-1700s

I It seems to have become a commonplace among natural philosophers
that problems of observational error were susceptible to mathematical
description.
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Testing Fairness

Basic Setup
Suppose we are interested in testing θ, the unknown probability of
heads for possibly biased coin.

Suppose the following Hypothesis

H0 : θ = 1/2 v.s. H1 : θ > 1/2

Then
An experiment is conducted and 9 heads and 3 tails are observed.

I Not enough information to fully specify f (x|θ)
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Scenario 1

Based on rashomonian analysis
The classic Akira Kurosawa film Rashomon has become a shorthand
for the lie of objective truth—what you see, basically, depends on
where you stand.

Number of flips, n = 12 is predetermined
Then number of heads X is binomial B(n, θ), with probability mass
function:

Pθ (X = x) = f (x|θ) =
(
n
x

)
θx (1− θ)n−x
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Therefore

We have

Pθ (X = x) =
(

12
9

)
θ9 (1− θ)3

Thus
We can use the p− value for testing the hypothesis.
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Then if we use the following p− value analysis

Definition [2, 3]
The p-value is defined as the probability, under the null hypothesis H0
about the unknown distribution F of the random variable X.

Very Unlike
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Therefore

For a frequentist, the p− value of the test is

P (X ≥ 9|H0) =
12∑
x=9

(
12
x

)(1
2

)x (1
2

)12−x
= 0.073

Given an α = 0.05
Then, H0 is not rejected...
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Scenario 2

Number of tails (successes) 3 is predetermined
i.e, the flipping is continued until 3 tails are observed.

Then you have a Negative Binomial with r the number of failures

f (x|θ) =
(
k + r − 1
k − 1

)
(1− θ)k θr

Thus, we have

f (x|θ) =
(

3 + 9− 1
3− 1

)
(1− θ)3 θ9 = 55 (1− θ)3 θ9
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In a similar way

We have

P (X ≥ 9|H0) =
∞∑
x=9

(
3 + x− 1

3− 1

)(1
2

)x (1
2

)3
= 0.0327

Thus, the hypothesis H0 is rejected
But this change in decision is not caused by observations.

However, all relevant information is in the likelihood!!!

` (θ) ∝ θ9 (1− θ)3

15 / 117



In a similar way

We have

P (X ≥ 9|H0) =
∞∑
x=9

(
3 + x− 1

3− 1

)(1
2

)x (1
2

)3
= 0.0327

Thus, the hypothesis H0 is rejected
But this change in decision is not caused by observations.

However, all relevant information is in the likelihood!!!

` (θ) ∝ θ9 (1− θ)3

15 / 117



In a similar way

We have

P (X ≥ 9|H0) =
∞∑
x=9

(
3 + x− 1

3− 1

)(1
2

)x (1
2

)3
= 0.0327

Thus, the hypothesis H0 is rejected
But this change in decision is not caused by observations.

However, all relevant information is in the likelihood!!!

` (θ) ∝ θ9 (1− θ)3

15 / 117



Remark

Edwards, Lindman, and Savage remarked
The likelihood principle emphasized in Bayesian statistics implies,
among other things, that the rules governing when data collection
stops are irrelevant to data interpretation.

Therefore
It is entirely appropriate to collect data until a point has been proven
or disproven, or until the data collector runs out of time, money, or
patience.
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Thus

Likelihood Principle [4]
The Likelihood principle (LP) asserts that for inference on an
unknown quantity θ, all of the evidence from any observation X = x
with distribution X ∼ f (x|θ) lies in the likelihood function

L (θ|x) ∝ f (x|θ) , θ ∈ Θ
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Thus

Something Notable
The interpretation of LP hinges on the rather subtle point of allowing
any observable X to draw conclusions about θ.

Therefore
If there two ways to gather infromation about \theta, wither
X ∼ f (x|θ) or with Y ∼ g (x|θ)

I with X = x and Y = y then

L (θ|x) = η × L (θ|y) , ∀θ ∈ Θ
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In the case of Learning

Yes, we use the principle, but we add the idea of independence
A trick to assume a set of samples x1, x2, ..., xN such that
xi ∼ f (X|θ)

Then, as we have seen it

L (θ) = f (x1, x2, ..., xN |θ) =
N∏
i=1

f (xi|θ)
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Example, p (x|ωj) ∼ N
(
µj,Σj

)
L (θj) = log∏n

j=1 p (xj|θj)
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The Basics

Sufficiency Principle
An statistic is sufficient with respect to a statistical model and its
associated unknown parameter if

I "no other statistic that can be calculated from the same sample
provides any additional information as to the value of the parameter"[5]

However, as always
We want a definition to build upon it... as always
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A Basic Definition

Definition
A statistic t = T (X) is sufficient for underlying parameter θ precisely
if the conditional probability distribution of the data X, given the
statistic t = T (X), does not depend on the parameter θ [6].

Something Notable
This agreement is non-philosophical, it is rather a consequence of
mathematics (measure theoretic considerations).
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Fisher’s Factorization Theorem

Theorem
Let f (x|θ) be the density or mass function for the random vector x,
parametrized by the vector \theta. The statistic t = T (x) is sufficient
for θ if and only if there exist functions a (x) (not depending on θ)
and b (t|θ) such that ()

f (x|θ) = a (x) b (t, θ)

for all possible values of x.
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Proof

First ⇒ (We will look only to the discrete case [7])
Suppose t = T (x) is sufficient for θ. Then, by definition

f (x|θ, T (x) = t) is independient of θ

Let f (x, t|θ) denote the joint density function or mass function for
(X,T (X))

Observe f (x|θ) = f (x, t|θ) then we have

f (x|θ) = f (x, t|θ)
= f (x|θ, t) f (t|θ) Bayesian
= a (x)︷ ︸︸ ︷
f (x|t)

b (t, θ)︷ ︸︸ ︷
f (t|θ)

Independence
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Now, for the case ⇐

Suppose the probability mass function for x can be written

f (x|θ) = a (x) b (x|θ) where t = T (x)

The probability mass function for t is obtained by summing fθ (x, t)
over all x such that T (x) = t

f (t|θ) =
∑

T (x)=t
f (x, t|θ)

=
∑

T (x)=t
f (x|θ) ← independence over t

=
∑

T (x)=t
a (x) bθ (x)
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Therefore, we have that

The conditional mass function of x given t

f (x|θ, t) = f (x, t|θ)
f (t|θ)

= f (x|θ)
f (t|θ)

= a (x) bθ (x)∑
T (x)=t a (x) bθ (x) = a (x)∑

T (x)=t a (x)

This last expression does not depend on θ
t is a sufficient statistic for θ.
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Using the Bernoulli Distribution

xn ∼Bernoulli(θ) are i.d.d. ∀n = 1, ..., N

f (x1, .., xN |θ) =
N∏
n=1

θxn (1− θ)1−xn

= θk (1− θ)N−k

k =
∑N
n=1 xn

Now, if we have the following choices

a (x) = 1 and bθ (k) = θk (1− θ)N−k
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Therefore

Then choosing
T (x1, .., xN ) =

∑N
n=1 xn = k

By the Fisher-Neyman Factorization Theorem
k is sufficient for θ

32 / 117
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Something Quite Interesting

The Fisher-Neyman factorization lemma states
The likelihood can be represented as

` (θ) = f (x|θ) = a (x) bθ (T (x))

34 / 117



If the likelihood principle is adopted

All inference about θ should depend on sufficient statistics

Since ` (θ) ∝ bθ (T (x))

Sufficiency Principle
Let the two different observations x and y have the same values
T (x) = T (y), of a statistics sufficient for family f (·|θ). Then the
inferences about θ based on x and y should be the same.
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Conditional Perspective

We have that
Conditional perspective concerns reporting data specific measures
of accuracy.

In contrast to the frequentist approach
Performance of statistical procedures are judged looking at the
observed data.
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Example

Consider estimating θ in the model

P (X = θ − 1|θ) = P (X = θ + 1|θ) with θ ∈ R

on basis of two observations, X1 and X2 .

The procedure suggested is

δ (X) =
{
X1+X2

2 if X1 6= X2

X1 − 1 if X1 = X2
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Therefore

To a frequentist, this procedure has confidence
To a frequentist, this procedure has confidence of 75% for all θ, i.e.,
P (δ (X) = θ) = 0.75.

The conditionalist would report the confidence
100% if observed data in hand are different
50% if the observations coincide
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Then

Conditionality Principle
If an experiment concerning the inference about θ is chosen from a
collection of possible experiments, independently of θ, then any
experiment not chosen is irrelevant to the inference.
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Not a good idea to integrate with respect to sample space

What?
A perfectly valid hypothesis can be rejected because the
test failed to account for unlikely data that had not been
observed...
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The Lindley Paradox

Suppose y|θ ∼ N
(
θ, 1

n

)
We wish to test H0 : θ = 0 vs the two sided alternative.

Suppose a Bayesian puts the prior P (θ = 0) = P (θ 6= 0) = 1
2

The 1
2 is uniformly spread over the interval [−M/2,M/2].

Suppose n = 40, 000 and y = 0.01 are observed
So,
√
ny = 2
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Therefore

Classical statistician
She/he rejects H0 at level α = 0.05

Posterior odds in favor of H0 are 11 if M = 1
We will look at this... no worries, but Bayesian Statistician will
choose H0
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Using our likelihood

We have our function

` (θ) = f (x|θ)

Here
The parameter θ is supported by the parameter space Θ and
considered a random variable.

I The random variable θ has a distribution π (θ) that is called the prior.
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Not only that

We have the following
We can play a hierarchy game

θ ∼ π (θ|τ) where τ is called a hyperparameter

This give us an idea about the marginals

m (x) =
∫

Θ
f (x, θ) =

∫
Θ
f (x|θ)π (θ) dθ
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What about the posterior?

We have the following

f (θ|x) = f (x, θ)
m (x)

= f (x|θ)π (θ)
m (x)

= f (x|θ)π (θ)∫
Θ f (x|θ)π (θ) dθ
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An interesting case

Suppose that the observations are coming from N (θ, σ2
1)

Assume prior on θ is N (σ2, σ2)

Then, under this setup
the normal/normal model, the posterior is f (θ|X1, ..., Xn) = f

(
θ|X

)
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The connection

Lemma
Suppose the sufficient statistics T = T (X1, ..., Xn) exist. Then
f (θ|X1, ..., Xn) = f (θ|T ) .
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Proof

Factorization theorem for sufficient statistics is

f (x|θ) = bθ (t) a (x)

Where
t = T (x) and a (x) do not depend on θ.
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Furhtermore

Thus

π (θ|x) = f (x|θ)π (θ)∫
Θ f (x|θ)π (θ) dθ

= bθ (t) a (x)π (θ)∫
Θ bθ (t) a (x)π (θ) dθ

= bθ (t)π (θ)∫
Θ bθ (t)π (θ) dθ
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The

Multiply and divide by φ (t)

= bθ (t)π (θ)φ (t)∫
Θ bθ (t)π (θ)φ (t) dθ

= bθ (t)π (θ)φ (t)∫
Θ bθ (t)π (θ)φ (t) dθ

= π (θ) f (t|θ)∫
Θ π (θ) f (t|θ) dθ = π (θ|t)
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Here, we have

The following equations

f (t|θ) =
∫
x:T (x)=t

f (x|θ) dx =
∫
x:T (x)=t

bθ (t) a (x) dx

Then ∫
x:T (x)=t

bθ (t) a (x) dx = bθ (t)
∫
x:T (x)=t

a (x) dx = bθ (t)φ (t)
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Then

We have the following definition
Definition

The statistics T = T (X) is sufficient (in the Bayesian sense) if for
any prior the resulting posterior satisfies

π (θ|X) = π (θ|T )

This is equivalent to the classic definition on sufficient statistics
Theorem

T is sufficient in the Bayesian sense if and only if it is sufficient in the
usual sense.
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Something quite important

Something Notable
The posterior is the ultimate experimental summary for a Bayesian.

Not only that
The location measures (especially the mean) of the posterior are of
importance.

There is an important idea
The posterior mode and median are also Bayes estimators under
different loss functions!!!
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Furthermore

Generalized Maximum Likelihood Estimator AKA MAP (Maximum
Aposteriori)

The generalized MLE is the largest mode of the π (θ|x).
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What can we do?

We can specify a distribution
Then, learn the parameters

Remember the Bayesian Rule

p (Θ|X ) = p (X|Θ) p (Θ)
p (X ) (1)

We seek that value for Θ, called Θ̂MAP

It allows to maximize the posterior p (Θ|X )
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Therefore

We can use this idea of maximizing the posterior
To obtain the distribution through the Maximum a Posteriori
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Development of the solution

We look to maximize Θ̂MAP

Θ̂MAP = argmax
Θ

p (Θ|X )

= argmax
Θ

p (X|Θ) p (Θ)
P (X )

≈ argmax
Θ

p (X|Θ) p (Θ)

= argmax
Θ

∏
xi∈X

p (xi|Θ) p (Θ)

P (X ) can be removed because it has no functional relation with Θ.
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We can make this easier

Use logarithms

Θ̂MAP = argmax
Θ

 ∑
xi∈X

log p (xi|Θ) + log p (Θ)

 (2)
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What Does the MAP Estimate Get?

Something Notable
The MAP estimate allows us to inject into the estimation calculation our
prior beliefs regarding the parameters values in Θ.

For example
Let’s conduct N independent trials of the following Bernoulli experiment
with q parameter:

We will ask each individual we run into in the hallway whether they
will vote PRI or PAN in the next presidential election.

With probability q to vote PRI
Where the values of xi is either PRI or PAN.
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First the Maximum Likelihood Estimate
Samples

X =
{
xi =

{
PAN

PRI
i = 1, ..., N

}
(3)

The log likelihood function

log p (X|q) =
N∑
i=1

log p (xi|q)

=
∑
i

log p (xi = PRI|q) + ...∑
i

log p (xi = PAN |1− q)

=nPRI log (q) + (N − nPRI) log (1− q)

Where nPRI are the numbers of individuals who are planning to vote PRI
this fall 68 / 117



First the Maximum Likelihood Estimate
Samples

X =
{
xi =

{
PAN

PRI
i = 1, ..., N

}
(3)

The log likelihood function

log p (X|q) =
N∑
i=1

log p (xi|q)

=
∑
i

log p (xi = PRI|q) + ...∑
i

log p (xi = PAN |1− q)

=nPRI log (q) + (N − nPRI) log (1− q)

Where nPRI are the numbers of individuals who are planning to vote PRI
this fall 68 / 117



First the Maximum Likelihood Estimate
Samples

X =
{
xi =

{
PAN

PRI
i = 1, ..., N

}
(3)

The log likelihood function

log p (X|q) =
N∑
i=1

log p (xi|q)

=
∑
i

log p (xi = PRI|q) + ...∑
i

log p (xi = PAN |1− q)

=nPRI log (q) + (N − nPRI) log (1− q)

Where nPRI are the numbers of individuals who are planning to vote PRI
this fall 68 / 117



First the Maximum Likelihood Estimate
Samples

X =
{
xi =

{
PAN

PRI
i = 1, ..., N

}
(3)

The log likelihood function

log p (X|q) =
N∑
i=1

log p (xi|q)

=
∑
i

log p (xi = PRI|q) + ...∑
i

log p (xi = PAN |1− q)

=nPRI log (q) + (N − nPRI) log (1− q)

Where nPRI are the numbers of individuals who are planning to vote PRI
this fall 68 / 117



First the Maximum Likelihood Estimate
Samples

X =
{
xi =

{
PAN

PRI
i = 1, ..., N

}
(3)

The log likelihood function

log p (X|q) =
N∑
i=1

log p (xi|q)

=
∑
i

log p (xi = PRI|q) + ...∑
i

log p (xi = PAN |1− q)

=nPRI log (q) + (N − nPRI) log (1− q)

Where nPRI are the numbers of individuals who are planning to vote PRI
this fall 68 / 117



We use our classic tricks

By setting

L = log p (X|q) (4)

We have that
∂L
∂q

= 0 (5)

Thus
nPRI
q
− (N − nPRI)

(1− q) = 0 (6)
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Final Solution of ML

We get

q̂PRI = nPRI
N

(7)

Thus
If we say that N = 20 and if 12 are going to vote PRI, we get q̂PRI = 0.6.

70 / 117



Final Solution of ML

We get

q̂PRI = nPRI
N

(7)

Thus
If we say that N = 20 and if 12 are going to vote PRI, we get q̂PRI = 0.6.

70 / 117



Building the MAP estimate

Obviously we need a prior belief distribution
We have the following constraints:

The prior for q must be zero outside the [0, 1] interval.
Within the [0, 1] interval, we are free to specify our beliefs in any way
we wish.
In most cases, we would want to choose a distribution for the prior
beliefs that peaks somewhere in the [0, 1] interval.

We assume the following
The state of Colima has traditionally voted PRI in presidential
elections.
However, on account of the prevailing economic conditions, the voters
are more likely to vote PAN in the election in question.
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What prior distribution can we use?
We could use a Beta distribution being parametrized by two values α
and β

p (q) = 1
B (α, β)q

α−1 (1− q)β−1 . (8)

Where
We have B (α, β) = Γ(α)Γ(β)

Γ(α+β) is the beta function where Γ is the
generalization of the notion of factorial in the case of the real numbers.

Properties
When both the α, β > 0 then the beta distribution has its mode
(Maximum value) at

α− 1
α+ β − 2 . (9)
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We then do the following

We do the following
We can choose α = β so the beta prior peaks at 0.5.

As a further expression of our belief
We make the following choice α = β = 5.

Why? Look at the variance of the beta distribution
αβ

(α+ β)2 (α+ β + 1)
. (10)
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Thus, we have the following nice properties

We have a variance with α = β = 5
V ar (q) ≈ 0.025

Thus, the standard deviation
sd ≈ 0.16 which is a nice dispersion at the peak point!!!
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Now, our MAP estimate for p̂MAP ...

We have then

p̂MAP = argmax
Θ

 ∑
xi∈X

log p (xi|q) + log p (q)

 (11)

Plugging back the ML

p̂MAP = argmax
Θ

[nPRI log q + (N − nPRI) log (1− q) + log p (q)] (12)

Where

log p (q) = log
( 1
B (α, β)q

α−1 (1− q)β−1
)

(13)
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The log of p (q)

We have that

log p (q) = (α− 1) log q + (β − 1) log (1− q)− logB (α, β) (14)

Now taking the derivative with respect to q, we get
nPRI
q
− (N − nPRI)

(1− q) − β − 1
1− q + α− 1

q
= 0 (15)

Thus

q̂MAP = nPRI + α− 1
N + α+ β − 2 (16)
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Now

With N = 20 with nPRI = 12 and α = β = 5

q̂MAP = 0.571
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Another Example

Let X1, ..., Xn given θ are Poisson P (θ) with probability
f (xi|θ) = θxi

xi! e
−θ

Assume θ ∼ Γ (α, β) given by π (θ) ∝ θα−1e−βθ

The MAP is equal to

π (θ|X1, X2, ..., Xn) = π
(
θ|
∑

Xi

)
∝ θ

∑
Xi+α−1e−(n+β)θ

Basically Γ (
∑
Xi + α− 1, n+ β)

The mean is

E [θ|X] =
∑
Xi + α

n+ β
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Now, given the mean of the Γ

We can rewrite the mean as

E [θ|X] = n

n+ β
×
∑
Xi

n
+ β

β + n
×
α

β

Given that the means are

Mean of MLE
∑
Xi

n

Mean of the prior α
β
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Remarks

Something Notable
The standard MLE maximizes π (θ|x), while the generalized MLE
maximizes π(θ) ` (θ).

I Quite funny we call that Maximum Aposteriori (MAP) estimator!!!

The MAP estimator is since it is often simpler to calculate given that

arg max
θ
π (θ|x) = arg max

θ
f (x|θ)π (θ)

Given that the normalization factor is a constant
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Properties

First
MAP estimation “pulls” the estimate toward the prior.

Second
The more focused our prior belief, the larger the pull toward the prior.

Example
If α = β =equal to large value

I It will make the MAP estimate to move closer to the prior.
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Properties

Third
In the expression we derived for q̂MAP , the parameters α and β play a
“smoothing” role vis-a-vis the measurement nPRI .

Fourth
Since we referred to q as the parameter to be estimated, we can refer
to α and β as the hyper-parameters in the estimation calculations.
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Beyond simple derivation

In the previous technique
We took an logarithm of the likelihood × the prior to obtain a
function that can be derived in order to obtain each of the parameters
to be estimated.

What if we cannot derive?
For example when we have something like |θi|.

We can try the following
Expectation Maximization + MAP to be able to estimate the sought
parameters.
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Imagine an action space and a ∈ A

For example
In estimation problems, A is the set of real numbers and a is a
number, say a = 2 is adopted as an estimator of θ ∈ Θ.

Another One
In testing problems, the action space is A = {accept, reject}
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Everytime you make a decision you have a Loss

Actually
Statisticians are pessimistic creatures that replaced nicely coined term
utility to a more somber term loss!!!

How do we denote such losses?
A classic one L (θ, a)

I representing the payoff by a decision maker (statistician) if he takes
any action a ∈ A in certina state of nature θ
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Examples

Squared Error Loss

L (θ, a) = (θ − a)2

Absolute Loss

L (θ, a) = |θ − a|

0-1 Loss example

L (θ, a) = I [|θ − a| > m]
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Clearly the easiest mathematically SEL

Additionally, it is linked with

EX|θ [θ − δ (X)]2 = V ar (δ (X)) + [bias (δ (X))]2

Where bias (δ (X)) = EX|θ [δ (X)]− θ
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In another example

The median, m, of random variable X is defined as

P (X ≥ m) ≥ 1
2 ,

P (X ≤ m) ≤ 1
2

Assuming the absolute loss

ϕ (a) =Eθ|X [|θ − a|]

=
∫
θ≥a

(θ − a)π (θ|X) dθ +
∫
θ≤a

(a− θ)π (θ|X) dθ

=
∫ ∞
a

(θ − a)π (θ|X) dθ +
∫ a

∞
(a− θ)π (θ|X) dθ
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Then

Using the following equivalence

∂

∂x

[∫ g(x)

f(x)
φ (x, t) dt

]
=
∫ g(x)

f(x)

∂

∂x
φ (x, t) dt+ φ (x, g (x)) ∂g (x)

∂x
− ...

φ (x, f (x)) ∂f (x)
∂x

Then
∂ϕ (a)
∂a

= −
∫ ∞
a

π (θ|X) dθ + 0− 0 +
∫ a

∞
π (θ|X) dθ + 0− 0
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Therefore

We have then
∂ϕ (a)
∂a

= −Pθ|X (θ ≥ a) + Pθ|X (θ ≤ a) = 0

The value of a for which Pθ|X (θ ≥ a) = Pθ|X (θ ≤ a) is the median

Since ∂2ϕ(a)
∂a2 = 2π (a|X) > 0 by the Fundamental theorem of calculus
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Finally

The Median Minimize

ϕ (a)

94 / 117



Outline
1 Introduction

Likelihood Principle
Example, Testing Fairness
Independence from Influence

Sufficiency
Fisher-Neyman Characterization
Example

Sufficiency Principle
Conditional Perspective
Example

Sins of Being non-Bayesian

2 Bayesian Inference
Introduction
Connection with Sufficient Statistics
Generalized Maximum Likelihood Estimator
The Maximum A Posteriori (MAP)
Maximum Likelihood Vs Maximum A Posteriori

Properties of the MAP

3 Loss, Posterior Risk, Bayes Action
Bayes Principle in the Frequentist Decision Theoretic Setup
Examples of Loss Functions
Bayesian Expected Loss Principle
Example

The Empirical Risk
The Fubini’s Theorem

95 / 117



Bayesian Expected Loss

Definition
Bayesian expected loss is the expectation of the loss function with
respect to posterior measure,

ρ (a, π) = Eθ|X [L (a, θ)] =
∫

Θ
L (θ, a)π (θ|x) dθ

Here, we have an important principle
Referring to the less possible loss!!!
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The Expected Loss Principle

Definition
In comparing two actions a1 = δ1(X) and a2 = δ2(X), after data X
had been observed, preferred action is the one for which the posterior
expected loss is smaller.

Therefore
An action a∗ that minimizes the posterior expected loss is called
Bayes action.
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Example

If the loss is squared error
The Bayes action a∗ is found by minimizing

ϕ (a) = Eθ|X (θ − a)2 = a2 − 2Eθ|X [θ] a+ Eθ|Xθ
2

Then, we want ϕ′ (a) = 0
Solving for it, we have a = Eθ|X [θ]

Additionally
ϕ′′ (a) < 0 then a∗ = Eθ|X [θ] is a Bayesian Action.

99 / 117



Example

If the loss is squared error
The Bayes action a∗ is found by minimizing

ϕ (a) = Eθ|X (θ − a)2 = a2 − 2Eθ|X [θ] a+ Eθ|Xθ
2

Then, we want ϕ′ (a) = 0
Solving for it, we have a = Eθ|X [θ]

Additionally
ϕ′′ (a) < 0 then a∗ = Eθ|X [θ] is a Bayesian Action.

99 / 117



Example

If the loss is squared error
The Bayes action a∗ is found by minimizing

ϕ (a) = Eθ|X (θ − a)2 = a2 − 2Eθ|X [θ] a+ Eθ|Xθ
2

Then, we want ϕ′ (a) = 0
Solving for it, we have a = Eθ|X [θ]

Additionally
ϕ′′ (a) < 0 then a∗ = Eθ|X [θ] is a Bayesian Action.

99 / 117



Outline
1 Introduction

Likelihood Principle
Example, Testing Fairness
Independence from Influence

Sufficiency
Fisher-Neyman Characterization
Example

Sufficiency Principle
Conditional Perspective
Example

Sins of Being non-Bayesian

2 Bayesian Inference
Introduction
Connection with Sufficient Statistics
Generalized Maximum Likelihood Estimator
The Maximum A Posteriori (MAP)
Maximum Likelihood Vs Maximum A Posteriori

Properties of the MAP

3 Loss, Posterior Risk, Bayes Action
Bayes Principle in the Frequentist Decision Theoretic Setup
Examples of Loss Functions
Bayesian Expected Loss Principle
Example

The Empirical Risk
The Fubini’s Theorem

100 / 117



Given X ∈ {Pθ, θ ∈ Θ}

A family which is indexed by a parameter (random variable) θ
Here, we change our Bayesian hat to the frequentist one

This allows to make inferences about θ
A solution is a decision procedure (decision rule) δ (x), that identifies
particular inference for each value of x that can be observed.

101 / 117



Given X ∈ {Pθ, θ ∈ Θ}

A family which is indexed by a parameter (random variable) θ
Here, we change our Bayesian hat to the frequentist one

This allows to make inferences about θ
A solution is a decision procedure (decision rule) δ (x), that identifies
particular inference for each value of x that can be observed.

101 / 117



A be the class of all possible realizations of δ(x), i.e.
actions

The Loss function L (θ, a) maps Θ×A −→ R
Defining a cost to the statistician when he takes the action a and the
true value of the parameter is θ.

Then we can define a decision function called Risk

R (θ, δ) = EX|θ [L (θ|δ (X))] =
∫
X
L (θ|δ (X)) f (x|θ) dx

A frequentist risk on the performance of δ.
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Therefore

Since the risk function is defined as an average loss with respect to a
sample space

it is called the frequentist risk.

Let D be the collection of all measurable decision rules
There are several ways for assigning the preference among the rules in
D.
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Furthermore

Some of them are
The Minimax Principle
Γ-minimax Principle
Minimax Principle
etc

The one we are interested is
The Bayes principle
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Under the Bayes principle

Bayes risk

r (π, δ) =
∫
R (θ, δ)π (dθ) = EθR (θ, δ)

Where there is a δπ , called Bayes rule, minimizing the risk

δπ = arg inf
δ∈D

r (π, δ)

Bayes risk of the prior distribution π (Bayes envelope function) is

r (π) = r (π, δπ)
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Bayes Envelope Function Definition

Definition
The Bayes Envelope is the maximal reward rate a player could achieve
had he known in advance the relative frequencies of the other players.

In particular, we define the following function as

r (π, δ) = Eθ
[
EX|θ [L (θ, δ (X))]

]
Therefore the Bayes action as Bayes Rules looks like

δ∗ (x) = arg min
δ∈D

r (π, δ)
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Actually

A classic Bayes Rule
The Naive Bayes Rules for classification using Gaussian’s for
classification
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The Fubini’s Theorem (Informal Version)

Theorem
Suppose X and Y are σ-finite measure spaces, and suppose that
X × Y is given the product measure:

(µ× ν) (E) = inf


∞∑
j=1

µ (Aj) ν (Bj) |E ⊂ ∪∞j=1Aj ×Bj


With any non-negative µ× ν-measurable function f, then∫

X×Y
f (x, y) d (µ× ν) (x, y) =

∫
Y

(∫
X
f (x, y) dµ (x)

)
dν (y)
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Implications with the Expected Value

We have by the Fubini’s Theorem

r (π, δ) = Eθ
[
EX|θ [L (θ, δ (X))]

]
= EX

[
Eθ|X [L (θ, δ (X))]

]
Where the posterior expected loss

ρ (π, δ) = Eθ|X [L (θ, δ (X))]
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Therefore

r (π, δ) is minimized for any fixed x
When ρ (π, δ) is minimized, for any fixed x, δB (x) = a∗ (x) where *
represent the optimal action.

Basically
This result links the conditional Bayesian and decision theoretic
frequentist inference:

I The frequentist Bayes rule conditional on X is the Bayes action.
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What happens when we have the Squared Loss?

The Bayes rule is the posterior expectation

δB (x) =
∫

Θ θf (x|θ)π (θ) dθ∫
Θ f (x|θ)π (θ) dθ

Not only that, in the case of

L (θ, a) = w (θ) (θ − a)2
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We have

The following Bayes Rule

δB (x) =
∫

Θw (θ) θf (x|θ)π (θ) dθ∫
Θw (θ) f (x|θ)π (θ) dθ
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Furthermore

According to a Bayes principle
A rule δ1 (X) is preferred to δ2 (X) if r (π, δ1) < r (π, δ2)

The frequentists use Bayes principle
to compare frequentist risks of the rules R (θ, δ1) and R (θ, δ2).
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Analysis of frequentist risk

It leads to various concepts as
1 minimaxity,
2 admissibility,
3 unbiasedness,
4 equivariance,
5 etc.
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