
Introduction to Neural Networks and Deep Learning
Loss Functions

Andres Mendez-Vazquez

October 28, 2020

1 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

2 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

3 / 134

Images/cinvestav.jpg

Why Loss Functions?

Long ago the Perceptron showed many shortcomings
The XOR problem could not be solved by the Perceptron
The loss function was simple

y (i) =
m∑
i=1

wk (i)xk (i)

We want a better function for classification
The classification case is harder because it is not obvious what loss
function to use!!!

4 / 134

Images/cinvestav.jpg

Why Loss Functions?

Long ago the Perceptron showed many shortcomings
The XOR problem could not be solved by the Perceptron
The loss function was simple

y (i) =
m∑
i=1

wk (i)xk (i)

We want a better function for classification
The classification case is harder because it is not obvious what loss
function to use!!!

4 / 134

Images/cinvestav.jpg

As we have found

Classification task started tweaking the Regression Method,∑N
i=1 L

2 (xi, yi)
Which has serious disadvantages given that you are approximating a
function where points do not exist...

5 / 134

Images/cinvestav.jpg

Serious Disadvantages

You need to have dense classes with similar number of elements
Basically, you are required to collect data under those two
characteristics.

Thus, we have a need to find better loss functions
That reflect better the task of classification

Way more explainable and adaptive
Given the structures at the Deep Learners

6 / 134

Images/cinvestav.jpg

Serious Disadvantages

You need to have dense classes with similar number of elements
Basically, you are required to collect data under those two
characteristics.

Thus, we have a need to find better loss functions
That reflect better the task of classification

Way more explainable and adaptive
Given the structures at the Deep Learners

6 / 134

Images/cinvestav.jpg

Serious Disadvantages

You need to have dense classes with similar number of elements
Basically, you are required to collect data under those two
characteristics.

Thus, we have a need to find better loss functions
That reflect better the task of classification

Way more explainable and adaptive
Given the structures at the Deep Learners

6 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

7 / 134

Images/cinvestav.jpg

Expected Risk for a function [1, 2]

We have

E [f] =
∫
X×Y

L (f (x) , y) p (x, y) dxdy

Where L is a non-negative function named loss function.

Thus, the ideal estimator or target function

f0 = min
f∈F

E [f]

Where F is the space of measurable functions for which E [f] is
well-defined.

8 / 134

Images/cinvestav.jpg

Expected Risk for a function [1, 2]

We have

E [f] =
∫
X×Y

L (f (x) , y) p (x, y) dxdy

Where L is a non-negative function named loss function.

Thus, the ideal estimator or target function

f0 = min
f∈F

E [f]

Where F is the space of measurable functions for which E [f] is
well-defined.

8 / 134

Images/cinvestav.jpg

However

In practice f0 cannot be found
Since the probability distribution p (x, y) is unknown.

That is the reason we use the empirical risk

fD = min
f∈F

Eemp [f] = min
f∈F

1
`

∑̀
i=1

L (f (x) , y)

9 / 134

Images/cinvestav.jpg

However

In practice f0 cannot be found
Since the probability distribution p (x, y) is unknown.

That is the reason we use the empirical risk

fD = min
f∈F

Eemp [f] = min
f∈F

1
`

∑̀
i=1

L (f (x) , y)

9 / 134

Images/cinvestav.jpg

Thus

This allows to restict the space to a limited hypothesis space H
This allows for a possible computation of the solution.

Therefore, we have
A central problem of statistical learning theory is to find conditions
under which fD mimics the behavior of f0.

10 / 134

Images/cinvestav.jpg

Thus

This allows to restict the space to a limited hypothesis space H
This allows for a possible computation of the solution.

Therefore, we have
A central problem of statistical learning theory is to find conditions
under which fD mimics the behavior of f0.

10 / 134

Images/cinvestav.jpg

Small Problem

The approximation of f0

From a finite set of data is an ill-posed problem [3].

However, we can use regularization on Hilbert Spaces
To solve the ill-posed problem of finding fD.

11 / 134

Images/cinvestav.jpg

Small Problem

The approximation of f0

From a finite set of data is an ill-posed problem [3].

However, we can use regularization on Hilbert Spaces
To solve the ill-posed problem of finding fD.

11 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

12 / 134

Images/cinvestav.jpg

Hilbert Space

Definition
A Hilbert Space H is a complete inner product space.

13 / 134

Images/cinvestav.jpg

Inner Product in Hilbert Spaces

The inner product satistasfies the following properties for f, g ∈ H
and α1, α2 ∈ R:

1 (Symmetry) 〈f, g〉 = 〈g, f〉
2 (Linearity) 〈α1f1 + α2f2, g〉 = α1 〈f1, g〉+ α2 〈f2, g〉
3 (Positive definiteness) 〈f, f〉 ≥ 0 with equality only if f = 0

14 / 134

Images/cinvestav.jpg

Cauchy Sequences

Definition
A metric space M is called complete (or a Cauchy space) if every
Cauchy sequence of points in M has a limit that is also in M .

A Cauchy Sequence
A metric space (X , d), a sequence x1, x2, ... is Cauchy for every
positive real number ε > 0 there is a positive integer N such that
n,m > N :

d (xm, xn) < ε

15 / 134

Images/cinvestav.jpg

Cauchy Sequences

Definition
A metric space M is called complete (or a Cauchy space) if every
Cauchy sequence of points in M has a limit that is also in M .

A Cauchy Sequence
A metric space (X , d), a sequence x1, x2, ... is Cauchy for every
positive real number ε > 0 there is a positive integer N such that
n,m > N :

d (xm, xn) < ε

15 / 134

Images/cinvestav.jpg

Example of Cauchy Sequence

We have the following cauchy sequence in yt for interval [2,+∞)

16 / 134

Images/cinvestav.jpg

Example of Hilbert Space

We have
Let Ck [a, b] the space of functions with k derivatives on [a, b]. We
define an inner product as

〈f, g〉 =
k∑
j=0

∫ b

a
f (j) (t)g(j) (t) dt

17 / 134

Images/cinvestav.jpg

Allowing to define a norm ‖·‖H

We have the following

‖f‖H =
√
〈f, f〉

This allows to define what is called a feature map
Given a Hilbert space H, a feature map ϕ : X → H takes inputs
x ∈ X to infinite feature vectors ϕ (x) ∈ H.

18 / 134

Images/cinvestav.jpg

Allowing to define a norm ‖·‖H

We have the following

‖f‖H =
√
〈f, f〉

This allows to define what is called a feature map
Given a Hilbert space H, a feature map ϕ : X → H takes inputs
x ∈ X to infinite feature vectors ϕ (x) ∈ H.

18 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

19 / 134

Images/cinvestav.jpg

Kernels

Definition
Let X be a nonempty set, sometimes referred to as the index set. A
symmetric function K : X ×X → R is called a positive-definite kernel
on X if

n∑
i=1

n∑
j=1

cicjk (xi,xj) ≥ 0

I holds for any finite set of points x1, ...,xn ∈ X and c1, ..., cn ∈ R (i.e.
positive semidefinite).

20 / 134

Images/cinvestav.jpg

Actually, Symmetry

This can be seen as a matrix product with K

(
c1 c2 · · · cn

) K (x1,x1) K (x1,x2) · · · K (x1,xn)
K (x2,x1) K (x2,x2) · · · K (x2,xn)

...
...

. . .
...

K (xn,x1) K (xn,x2) · · · K (xn,xn)

 c1
c2
...
cn

 = c
T
Kc ≥ 0

Which is the property of positive semidefinite.

Actually, it is easy to see that this comes from the study of convex
functions

What?!!!

21 / 134

Images/cinvestav.jpg

Actually, Symmetry

This can be seen as a matrix product with K

(
c1 c2 · · · cn

) K (x1,x1) K (x1,x2) · · · K (x1,xn)
K (x2,x1) K (x2,x2) · · · K (x2,xn)

...
...

. . .
...

K (xn,x1) K (xn,x2) · · · K (xn,xn)

 c1
c2
...
cn

 = c
T
Kc ≥ 0

Which is the property of positive semidefinite.

Actually, it is easy to see that this comes from the study of convex
functions

What?!!!

21 / 134

Images/cinvestav.jpg

Convex Functions

We have that when deriving convex functions as

f (x, y) = x2 + y2

We have that the Hessian function

Hf (x, y) =
(

2 0
0 2

)

Thus, we have
A positive definite matrix...

22 / 134

Images/cinvestav.jpg

Convex Functions

We have that when deriving convex functions as

f (x, y) = x2 + y2

We have that the Hessian function

Hf (x, y) =
(

2 0
0 2

)

Thus, we have
A positive definite matrix...

22 / 134

Images/cinvestav.jpg

Convex Functions

We have that when deriving convex functions as

f (x, y) = x2 + y2

We have that the Hessian function

Hf (x, y) =
(

2 0
0 2

)

Thus, we have
A positive definite matrix...

22 / 134

Images/cinvestav.jpg

In addition to the study of linear maps

Yes, in linear algebra for each matrix
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn


There is a linear function associated to it

f :Rn → Rm

f (x) = Ax

23 / 134

Images/cinvestav.jpg

In addition to the study of linear maps

Yes, in linear algebra for each matrix
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn


There is a linear function associated to it

f :Rn → Rm

f (x) = Ax

23 / 134

Images/cinvestav.jpg

Examples of Kernels

Linear kernels

k
(
x, x′

)
=
〈
x, x′

〉
Polynomial kernels

k
(
x, x′

)
=
(
1 +

〈
x, x′

〉)p
And clearly the Gaussian Ones

k
(
x, x′

)
= exp

{
−〈x− x

′, x− x′〉
2σ2

}

24 / 134

Images/cinvestav.jpg

Examples of Kernels

Linear kernels

k
(
x, x′

)
=
〈
x, x′

〉
Polynomial kernels

k
(
x, x′

)
=
(
1 +

〈
x, x′

〉)p
And clearly the Gaussian Ones

k
(
x, x′

)
= exp

{
−〈x− x

′, x− x′〉
2σ2

}

24 / 134

Images/cinvestav.jpg

Examples of Kernels

Linear kernels

k
(
x, x′

)
=
〈
x, x′

〉
Polynomial kernels

k
(
x, x′

)
=
(
1 +

〈
x, x′

〉)p
And clearly the Gaussian Ones

k
(
x, x′

)
= exp

{
−〈x− x

′, x− x′〉
2σ2

}

24 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

25 / 134

Images/cinvestav.jpg

General Case

Base case
For any function f : X → R, K (x, x′) = f (x) f (x′) is positive
semidefinite.

Proof
Imagine the kernel matrix written as

K =

(
f (x1)

...
f (xn)

)(
f (x1) , · · · , f (xn)

)
=

(
f (x1) f (x1) · · · f (x1) f (xn)

...
. . .

...
f (xn) f (x1) · · · f (xn) f (xn)

)

A symmetric matrix
Which is positive semidefinite...

26 / 134

Images/cinvestav.jpg

General Case

Base case
For any function f : X → R, K (x, x′) = f (x) f (x′) is positive
semidefinite.

Proof
Imagine the kernel matrix written as

K =

(
f (x1)

...
f (xn)

)(
f (x1) , · · · , f (xn)

)
=

(
f (x1) f (x1) · · · f (x1) f (xn)

...
. . .

...
f (xn) f (x1) · · · f (xn) f (xn)

)

A symmetric matrix
Which is positive semidefinite...

26 / 134

Images/cinvestav.jpg

General Case

Base case
For any function f : X → R, K (x, x′) = f (x) f (x′) is positive
semidefinite.

Proof
Imagine the kernel matrix written as

K =

(
f (x1)

...
f (xn)

)(
f (x1) , · · · , f (xn)

)
=

(
f (x1) f (x1) · · · f (x1) f (xn)

...
. . .

...
f (xn) f (x1) · · · f (xn) f (xn)

)

A symmetric matrix
Which is positive semidefinite...

26 / 134

Images/cinvestav.jpg

Recursive case

Given two kernels k1, k2 , we can create new kernels k
By using sums and products

Sum case
k (x, x′) = k1 (x, x′) + k2 (x, x′)

Easy, we have
Since positive semidefiniteness is closed under addition of matrices

K = K1 +K2 � 0

27 / 134

Images/cinvestav.jpg

Recursive case

Given two kernels k1, k2 , we can create new kernels k
By using sums and products

Sum case
k (x, x′) = k1 (x, x′) + k2 (x, x′)

Easy, we have
Since positive semidefiniteness is closed under addition of matrices

K = K1 +K2 � 0

27 / 134

Images/cinvestav.jpg

Recursive case

Given two kernels k1, k2 , we can create new kernels k
By using sums and products

Sum case
k (x, x′) = k1 (x, x′) + k2 (x, x′)

Easy, we have
Since positive semidefiniteness is closed under addition of matrices

K = K1 +K2 � 0

27 / 134

Images/cinvestav.jpg

Product Case

We have

k
(
x, x′

)
= k1

(
x, x′

)
k2
(
x, x′

)
Here, we have K = K1 ◦K2 pointwise product

Since K1,K2 are positive semidefinite

We have their decomposition
K1 =

∑n
i=1 λiuiu

T
i and K1 =

∑n
j=1 τizjz

T
j

28 / 134

Images/cinvestav.jpg

Product Case

We have

k
(
x, x′

)
= k1

(
x, x′

)
k2
(
x, x′

)
Here, we have K = K1 ◦K2 pointwise product

Since K1,K2 are positive semidefinite

We have their decomposition
K1 =

∑n
i=1 λiuiu

T
i and K1 =

∑n
j=1 τizjz

T
j

28 / 134

Images/cinvestav.jpg

Product Case

We have

k
(
x, x′

)
= k1

(
x, x′

)
k2
(
x, x′

)
Here, we have K = K1 ◦K2 pointwise product

Since K1,K2 are positive semidefinite

We have their decomposition
K1 =

∑n
i=1 λiuiu

T
i and K1 =

∑n
j=1 τizjz

T
j

28 / 134

Images/cinvestav.jpg

Therefore, we have

Taking the element-wise product yields the following
eigendecomposition

K =
n∑
i=1

n∑
j=1

λitj (ui ◦ zj) (ui ◦ zj)T

Which is also positive semidefinite
Using these three principles, we can show that the linear, polynomial,
and Gaussian kernels are valid.

29 / 134

Images/cinvestav.jpg

Therefore, we have

Taking the element-wise product yields the following
eigendecomposition

K =
n∑
i=1

n∑
j=1

λitj (ui ◦ zj) (ui ◦ zj)T

Which is also positive semidefinite
Using these three principles, we can show that the linear, polynomial,
and Gaussian kernels are valid.

29 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

30 / 134

Images/cinvestav.jpg

Feature Maps

Definition(Feature Maps)
Given a Hilbert space H, a feature map φ : X → H takes inputs
x ∈ X to infinite feature vectors φ (x) ∈ H.

Theorem(A Feature map defines a kernel)
Let φ : X → H be a feature mapping some input space X to a
Hilbert space H. Then, k (x, x′) = 〈φ (x) , φ (x′)〉 is a kernel.

Proof (Using the finitness of the set of points)
Let x1, ..., xn be a set of points, and let K be the kernel matrix where
Kij = 〈φ (xi) , φ (xj)〉

31 / 134

Images/cinvestav.jpg

Feature Maps

Definition(Feature Maps)
Given a Hilbert space H, a feature map φ : X → H takes inputs
x ∈ X to infinite feature vectors φ (x) ∈ H.

Theorem(A Feature map defines a kernel)
Let φ : X → H be a feature mapping some input space X to a
Hilbert space H. Then, k (x, x′) = 〈φ (x) , φ (x′)〉 is a kernel.

Proof (Using the finitness of the set of points)
Let x1, ..., xn be a set of points, and let K be the kernel matrix where
Kij = 〈φ (xi) , φ (xj)〉

31 / 134

Images/cinvestav.jpg

Feature Maps

Definition(Feature Maps)
Given a Hilbert space H, a feature map φ : X → H takes inputs
x ∈ X to infinite feature vectors φ (x) ∈ H.

Theorem(A Feature map defines a kernel)
Let φ : X → H be a feature mapping some input space X to a
Hilbert space H. Then, k (x, x′) = 〈φ (x) , φ (x′)〉 is a kernel.

Proof (Using the finitness of the set of points)
Let x1, ..., xn be a set of points, and let K be the kernel matrix where
Kij = 〈φ (xi) , φ (xj)〉

31 / 134

Images/cinvestav.jpg

Therefore

To show that K is positive semidefinite, take any α ∈ Rn

αTKα =
n∑
i=1

n∑
j=1

αiαj 〈φ (xi) , φ (xj)〉

Therefore by the linearity of

αTKα =
〈

n∑
i=1

αiφ (xi) ,
n∑
j=1

αjφ (xj)
〉
≥ 0

32 / 134

Images/cinvestav.jpg

Therefore

To show that K is positive semidefinite, take any α ∈ Rn

αTKα =
n∑
i=1

n∑
j=1

αiαj 〈φ (xi) , φ (xj)〉

Therefore by the linearity of

αTKα =
〈

n∑
i=1

αiφ (xi) ,
n∑
j=1

αjφ (xj)
〉
≥ 0

32 / 134

Images/cinvestav.jpg

Thus, we also have

Theorem
For every kernel k positive definite, there exists a Hilbert space H and
a feature map φ : X → H such that k (x, x′) = 〈φ (x) , φ (x′)〉.

The Proof can be done by using the spectral decomposition
Given k positive definite, then K = UDU∗ by spectral decomposition
of K and D is positive definite

I Then, we can define ϕ (x) = D
1
2D∗1x ... you can figure out the rest

33 / 134

Images/cinvestav.jpg

Thus, we also have

Theorem
For every kernel k positive definite, there exists a Hilbert space H and
a feature map φ : X → H such that k (x, x′) = 〈φ (x) , φ (x′)〉.

The Proof can be done by using the spectral decomposition
Given k positive definite, then K = UDU∗ by spectral decomposition
of K and D is positive definite

I Then, we can define ϕ (x) = D
1
2D∗1x ... you can figure out the rest

33 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

34 / 134

Images/cinvestav.jpg

Bounding the Hypothesis Space for Learning

Here, we need to bound the H
For this, we can use Reproducing Kernel Hilbert Spaces.

They are Hilbert Spaces
They are characterized by a symmetric positive definite function,
named Mercer kernel:

k : X × X → R

We can define a map from X to the space of functions f : X → R
[4, 5]

φ : X → RX

x 7→ k (·, x)

35 / 134

Images/cinvestav.jpg

Bounding the Hypothesis Space for Learning

Here, we need to bound the H
For this, we can use Reproducing Kernel Hilbert Spaces.

They are Hilbert Spaces
They are characterized by a symmetric positive definite function,
named Mercer kernel:

k : X × X → R

We can define a map from X to the space of functions f : X → R
[4, 5]

φ : X → RX

x 7→ k (·, x)

35 / 134

Images/cinvestav.jpg

Bounding the Hypothesis Space for Learning

Here, we need to bound the H
For this, we can use Reproducing Kernel Hilbert Spaces.

They are Hilbert Spaces
They are characterized by a symmetric positive definite function,
named Mercer kernel:

k : X × X → R

We can define a map from X to the space of functions f : X → R
[4, 5]

φ : X → RX

x 7→ k (·, x)

35 / 134

Images/cinvestav.jpg

Thus, defining the dot product

We have a set of functions that can be defined by the use of kernels

f (·) =
m∑
i=1

αik (·, xi)

with αi ∈ R (Note, we simplify this presentation but actually you
need to consider the complex field number)

Therefore, we can define the following dot product for such functions

〈f, g〉 =
n∑
i=1

m∑
j=1

αiβjk (xi, xj)

36 / 134

Images/cinvestav.jpg

Thus, defining the dot product

We have a set of functions that can be defined by the use of kernels

f (·) =
m∑
i=1

αik (·, xi)

with αi ∈ R (Note, we simplify this presentation but actually you
need to consider the complex field number)

Therefore, we can define the following dot product for such functions

〈f, g〉 =
n∑
i=1

m∑
j=1

αiβjk (xi, xj)

36 / 134

Images/cinvestav.jpg

Therefore, we have

An interesting property

〈k (·, x) , f〉 =
〈
k (·, x) ,

m∑
i=1

αik (·, xi)
〉

=
m∑
i=1

αik (x, xi) = f (x)

Basically, we can reproduce the functions by using the kernels
One of the most important results for applications in the XX century

37 / 134

Images/cinvestav.jpg

Therefore, we have

An interesting property

〈k (·, x) , f〉 =
〈
k (·, x) ,

m∑
i=1

αik (·, xi)
〉

=
m∑
i=1

αik (x, xi) = f (x)

Basically, we can reproduce the functions by using the kernels
One of the most important results for applications in the XX century

37 / 134

Images/cinvestav.jpg

Example

Gaussian Kernels (Remember Expectation Maximization)

38 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

39 / 134

Images/cinvestav.jpg

Now imagine the following spaces
Let X be a measure space

Let L2 (X) the Hilbert space of square-integrable functions
f : X → R with inner product

〈f, g〉 =
∫
f (x)g (x) dx

Let k ∈ L2 (X × X)
In addition, the corresponding Hilbert-Schmidt operator
K : L2 (X)→ L2 (X)

Kf (x) =
∫
X
k
(
x, x′

)
f
(
x′
)
dx

Given that we are asking symmetric kernels a.k.a positive semidefinite
We have the Fubini’s Theorem

40 / 134

Images/cinvestav.jpg

Now imagine the following spaces
Let X be a measure space

Let L2 (X) the Hilbert space of square-integrable functions
f : X → R with inner product

〈f, g〉 =
∫
f (x)g (x) dx

Let k ∈ L2 (X × X)
In addition, the corresponding Hilbert-Schmidt operator
K : L2 (X)→ L2 (X)

Kf (x) =
∫
X
k
(
x, x′

)
f
(
x′
)
dx

Given that we are asking symmetric kernels a.k.a positive semidefinite
We have the Fubini’s Theorem

40 / 134

Images/cinvestav.jpg

Now imagine the following spaces
Let X be a measure space

Let L2 (X) the Hilbert space of square-integrable functions
f : X → R with inner product

〈f, g〉 =
∫
f (x)g (x) dx

Let k ∈ L2 (X × X)
In addition, the corresponding Hilbert-Schmidt operator
K : L2 (X)→ L2 (X)

Kf (x) =
∫
X
k
(
x, x′

)
f
(
x′
)
dx

Given that we are asking symmetric kernels a.k.a positive semidefinite
We have the Fubini’s Theorem

40 / 134

Images/cinvestav.jpg

Fubini’s Theorem

Statement
Suppose A and B are complete measure spaces. Suppose f (x, y) is
A×B measurable (Under inverse the image is in the σ-algebra of
A×B).

If we have ∫
A×B

|f (x, y)| d (x, y) <∞

Then

∫
A×B

f (x, y) d (x, y) =
∫
A

[∫
B
f (x, y) dy

]
dx =

∫
B

[∫
A
f (x, y) dx

]
dy

41 / 134

Images/cinvestav.jpg

Fubini’s Theorem

Statement
Suppose A and B are complete measure spaces. Suppose f (x, y) is
A×B measurable (Under inverse the image is in the σ-algebra of
A×B).

If we have ∫
A×B

|f (x, y)| d (x, y) <∞

Then

∫
A×B

f (x, y) d (x, y) =
∫
A

[∫
B
f (x, y) dy

]
dx =

∫
B

[∫
A
f (x, y) dx

]
dy

41 / 134

Images/cinvestav.jpg

Fubini’s Theorem

Statement
Suppose A and B are complete measure spaces. Suppose f (x, y) is
A×B measurable (Under inverse the image is in the σ-algebra of
A×B).

If we have ∫
A×B

|f (x, y)| d (x, y) <∞

Then

∫
A×B

f (x, y) d (x, y) =
∫
A

[∫
B
f (x, y) dy

]
dx =

∫
B

[∫
A
f (x, y) dx

]
dy

41 / 134

Images/cinvestav.jpg

Therefore

We have that (Self-Adjoint Operator)

〈f,Kg〉 =
∫
X
f (x)

[∫
X
k
(
x, x′

)
g
(
x′
)
dx′
]
dx

=
∫
X

[∫
X
k
(
x, x′

)
f (x) dx

]
g
(
x′
)
dx′

= 〈Kf, g〉

42 / 134

Images/cinvestav.jpg

Additionally

We say that k satisfies Mercer’s condition if and only if∫
X×X

k
(
x, x′

)
f (x) f

(
x′
)
dxdx′ ≥ 0 for all f ∈ L2 (X) .

43 / 134

Images/cinvestav.jpg

Finally, the Mercer’s Theorem

Mercer’s Theorem
A symmetric k ∈ L2 (X × X) satisfies the Mercer’s condition if and
only if k is a kernel.

44 / 134

Images/cinvestav.jpg

Proof

First, a symmetric k ∈ L2 (X × X) is Mercer
Let K be the self-adjoint Hilbert-Schmidt operator corresponding to
k.

Theorem
Let T : H → H be a compact and self-adjoint operator on a Hilbert
Space H. Then, there is a finite or infinite sequence {λn}Nn=1 of real
eigenvalues λn 6= 0, and a corresponding orthonormal sequence
{en}Nn=1 in H such that:

1 Ten = λnen for all n
2 Null (T) = Span

[
{en}Nn=1

]⊥
3 If N =∞ then limn→∞ λn = 0

45 / 134

Images/cinvestav.jpg

Proof

First, a symmetric k ∈ L2 (X × X) is Mercer
Let K be the self-adjoint Hilbert-Schmidt operator corresponding to
k.

Theorem
Let T : H → H be a compact and self-adjoint operator on a Hilbert
Space H. Then, there is a finite or infinite sequence {λn}Nn=1 of real
eigenvalues λn 6= 0, and a corresponding orthonormal sequence
{en}Nn=1 in H such that:

1 Ten = λnen for all n
2 Null (T) = Span

[
{en}Nn=1

]⊥
3 If N =∞ then limn→∞ λn = 0

45 / 134

Images/cinvestav.jpg

Therefore
K has a countable collection of orthonormal eigenvectors (We will
assume for simplicity real valued functions)

It has a countable collection of orthonormal eigenfunctions
Ui ∈ L2 (X) with eigenvalues λi such that for all f ∈ L2 (X)

f =
∞∑
i=1

αiUi

Then applying the operator K

Kf =
n∑
i=1

αiKUi =
n∑
i=1

αiλiUi

Using the inner product of the space

〈f, Ui〉 =
〈 ∞∑
j=1

αjUj , Ui

〉
= αj 〈Ui, Ui〉 = αj

46 / 134

Images/cinvestav.jpg

Therefore
K has a countable collection of orthonormal eigenvectors (We will
assume for simplicity real valued functions)

It has a countable collection of orthonormal eigenfunctions
Ui ∈ L2 (X) with eigenvalues λi such that for all f ∈ L2 (X)

f =
∞∑
i=1

αiUi

Then applying the operator K

Kf =
n∑
i=1

αiKUi =
n∑
i=1

αiλiUi

Using the inner product of the space

〈f, Ui〉 =
〈 ∞∑
j=1

αjUj , Ui

〉
= αj 〈Ui, Ui〉 = αj

46 / 134

Images/cinvestav.jpg

Therefore
K has a countable collection of orthonormal eigenvectors (We will
assume for simplicity real valued functions)

It has a countable collection of orthonormal eigenfunctions
Ui ∈ L2 (X) with eigenvalues λi such that for all f ∈ L2 (X)

f =
∞∑
i=1

αiUi

Then applying the operator K

Kf =
n∑
i=1

αiKUi =
n∑
i=1

αiλiUi

Using the inner product of the space

〈f, Ui〉 =
〈 ∞∑
j=1

αjUj , Ui

〉
= αj 〈Ui, Ui〉 = αj

46 / 134

Images/cinvestav.jpg

Therefore

By Mercer’s Condition and Fubini’s

λi 〈Ui, Ui〉 = 〈ϕi,Kϕi〉 =
∫
X
Ui
(
x′
) [∫

k
(
x, x′

)
Ui
(
x′
)
dx′
]
dx ≥ 0

Because 〈·, ·〉 is positive
We have that λi ≥ 0

47 / 134

Images/cinvestav.jpg

Therefore

By Mercer’s Condition and Fubini’s

λi 〈Ui, Ui〉 = 〈ϕi,Kϕi〉 =
∫
X
Ui
(
x′
) [∫

k
(
x, x′

)
Ui
(
x′
)
dx′
]
dx ≥ 0

Because 〈·, ·〉 is positive
We have that λi ≥ 0

47 / 134

Images/cinvestav.jpg

Now, we have

We can define ϕi ∈ L2 (X)

x→
√
λiUi (x)

ϕi (x) =
√
λiUi (x)

Therefore, we have the following function in L2 (X)

ϕ (x) =
∞∑
i=1

√
λiUi (x)

48 / 134

Images/cinvestav.jpg

Now, we have

We can define ϕi ∈ L2 (X)

x→
√
λiUi (x)

ϕi (x) =
√
λiUi (x)

Therefore, we have the following function in L2 (X)

ϕ (x) =
∞∑
i=1

√
λiUi (x)

48 / 134

Images/cinvestav.jpg

Therefore

We have that

∫
X

〈
ϕ (x) , ϕ

(
x′
)〉
f
(
x′
)
dx′ =

∫
X

〈 ∞∑
j=1

√
λjUj ,

∞∑
i=1

√
λiUi

〉
f
(
x′
)
dx′

Therefore

∫
X

〈
ϕ (x) , ϕ

(
x′
)〉
f
(
x′
)
dx′ =

∫
X

∞∑
i=1

λi
〈
Ui (x) , Ui

(
x′
)〉
f
(
x′
)
dx′

Here, we have that with fixed x, x′

Ui (x) , Ui (x′) are real valued

49 / 134

Images/cinvestav.jpg

Therefore

We have that

∫
X

〈
ϕ (x) , ϕ

(
x′
)〉
f
(
x′
)
dx′ =

∫
X

〈 ∞∑
j=1

√
λjUj ,

∞∑
i=1

√
λiUi

〉
f
(
x′
)
dx′

Therefore

∫
X

〈
ϕ (x) , ϕ

(
x′
)〉
f
(
x′
)
dx′ =

∫
X

∞∑
i=1

λi
〈
Ui (x) , Ui

(
x′
)〉
f
(
x′
)
dx′

Here, we have that with fixed x, x′

Ui (x) , Ui (x′) are real valued

49 / 134

Images/cinvestav.jpg

Therefore

We have that

∫
X

〈
ϕ (x) , ϕ

(
x′
)〉
f
(
x′
)
dx′ =

∫
X

〈 ∞∑
j=1

√
λjUj ,

∞∑
i=1

√
λiUi

〉
f
(
x′
)
dx′

Therefore

∫
X

〈
ϕ (x) , ϕ

(
x′
)〉
f
(
x′
)
dx′ =

∫
X

∞∑
i=1

λi
〈
Ui (x) , Ui

(
x′
)〉
f
(
x′
)
dx′

Here, we have that with fixed x, x′

Ui (x) , Ui (x′) are real valued

49 / 134

Images/cinvestav.jpg

Then, we have that

An interesting fact 〈
Ui (x) , Ui

(
x′
)〉

= Ui (x)Ui
(
x′
)

Therefore

∫
X

∞∑
i=1

λi
〈
Ui (x) , Ui

(
x′
)〉
f
(
x′
)
dx′ =

∫
X

∞∑
i=1

λiUi (x)Ui
(
x′
)
f
(
x′
)
dx′

50 / 134

Images/cinvestav.jpg

Then, we have that

An interesting fact 〈
Ui (x) , Ui

(
x′
)〉

= Ui (x)Ui
(
x′
)

Therefore

∫
X

∞∑
i=1

λi
〈
Ui (x) , Ui

(
x′
)〉
f
(
x′
)
dx′ =

∫
X

∞∑
i=1

λiUi (x)Ui
(
x′
)
f
(
x′
)
dx′

50 / 134

Images/cinvestav.jpg

Therefore

We have that

∫
X

∞∑
i=1

λiUi (x)Ui
(
x′
)
f
(
x′
)
dx′ =

∞∑
i=1

λiUi (x)
∫
X
Ui
(
x′
)
f
(
x′
)
dx′

=
∞∑
i=1

λi 〈f, Ui〉Ui (x) = Kf (x)

This holds for all f and therefore

k
(
x, x′

)
=
〈
ϕ (x) , ϕ

(
x′
)〉

51 / 134

Images/cinvestav.jpg

Therefore

We have that

∫
X

∞∑
i=1

λiUi (x)Ui
(
x′
)
f
(
x′
)
dx′ =

∞∑
i=1

λiUi (x)
∫
X
Ui
(
x′
)
f
(
x′
)
dx′

=
∞∑
i=1

λi 〈f, Ui〉Ui (x) = Kf (x)

This holds for all f and therefore

k
(
x, x′

)
=
〈
ϕ (x) , ϕ

(
x′
)〉

51 / 134

Images/cinvestav.jpg

Conversely

if k is a kernel then you have symmetry and∫
X×X

k
(
x, x′

)
f (x) f

(
x′
)
dxdx′ =

∫
X×X

〈
ϕ (x) f (x) , ϕ

(
x′
)
f
(
x′
)〉
H
dxdx′

=
〈∫
X
ϕ (x) f (x) dx,

∫
X
ϕ
(
x′
)
f
(
x′
)
dx′
〉
H

≥ 0

52 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

53 / 134

Images/cinvestav.jpg

The Final Connection

When Looking at Empirical Risk, we have

fD = min
f∈F

Eemp [f] = min
f∈F

1
`

∑̀
i=1

L (f (x) , y)

Thus, the loss function can be seen as

L : R× Y → [0,+∞]

representing the price to pay by predicting f(x) in place of y.

54 / 134

Images/cinvestav.jpg

The Final Connection

When Looking at Empirical Risk, we have

fD = min
f∈F

Eemp [f] = min
f∈F

1
`

∑̀
i=1

L (f (x) , y)

Thus, the loss function can be seen as

L : R× Y → [0,+∞]

representing the price to pay by predicting f(x) in place of y.

54 / 134

Images/cinvestav.jpg

The Representer Theorem

Theorem (Nonparametric Representer Theorem) [5]
Suppose we are given a nonempty set X , a positive definite
real-valued kernel k on X × X , a training sample {(xi, yi)}mi=1 on
X × X , a strictly monotonically increasing real-valued function g on
[0,∞], an arbitrary cost function c :

(
X × R2)m → R ∪ {∞}, and a

class of functions:

F =
{
f ∈ RX |f (·) =

∞∑
i=1

βik (·, zi) , βi ∈ R, zi ∈ X , ‖f‖Hk <∞
}

thus ∥∥∥∥∥
∞∑
i=1

βik (·, zi)
∥∥∥∥∥

2

=
∞∑
i=1

∞∑
j=1

βiβjk (zi, zj)

55 / 134

Images/cinvestav.jpg

Then

We have that any f ∈ F minimizing the regularized risk functional

c ({xi, yi, f (xi)}mi=1) + g (‖f‖)

It admits a representation of the form

f (·) =
m∑
i=1

αik (·, xi)

56 / 134

Images/cinvestav.jpg

Basically

The proof of representing the real world with a finite number of
elements from it

We can learn under certain circumstances... actually regularization...

57 / 134

Images/cinvestav.jpg

Proof

As we have assumed that k maps into R, we will use

φ : X → RX , φ (x) = k (·, x)

Since k is a reproducing kernel

[φ (x)]
(
x′
)

= k
(
x, x′

)
=
〈
φ (x) , φ

(
x′
)〉
H

for all x, x′ ∈ X and 〈·, ·〉H denotes the dot product of H

58 / 134

Images/cinvestav.jpg

Proof

As we have assumed that k maps into R, we will use

φ : X → RX , φ (x) = k (·, x)

Since k is a reproducing kernel

[φ (x)]
(
x′
)

= k
(
x, x′

)
=
〈
φ (x) , φ

(
x′
)〉
H

for all x, x′ ∈ X and 〈·, ·〉H denotes the dot product of H

58 / 134

Images/cinvestav.jpg

Proof

As we have assumed that k maps into R, we will use

φ : X → RX , φ (x) = k (·, x)

Since k is a reproducing kernel

[φ (x)]
(
x′
)

= k
(
x, x′

)
=
〈
φ (x) , φ

(
x′
)〉
H

for all x, x′ ∈ X and 〈·, ·〉H denotes the dot product of H

58 / 134

Images/cinvestav.jpg

Given that F is a vectorial space

Given x1, ..., xm, we have a subspace generated by

Xφ = span {φ (x1) , ..., φ (xm)}

Then, we have a v ∈ X⊥φ such that

f =
m∑
i=1

αiφ (xi) + v

Satisfying for all xj

〈v, φ (xj)〉H = 0

59 / 134

Images/cinvestav.jpg

Given that F is a vectorial space

Given x1, ..., xm, we have a subspace generated by

Xφ = span {φ (x1) , ..., φ (xm)}

Then, we have a v ∈ X⊥φ such that

f =
m∑
i=1

αiφ (xi) + v

Satisfying for all xj

〈v, φ (xj)〉H = 0

59 / 134

Images/cinvestav.jpg

Given that F is a vectorial space

Given x1, ..., xm, we have a subspace generated by

Xφ = span {φ (x1) , ..., φ (xm)}

Then, we have a v ∈ X⊥φ such that

f =
m∑
i=1

αiφ (xi) + v

Satisfying for all xj

〈v, φ (xj)〉H = 0

59 / 134

Images/cinvestav.jpg

Therefore, we have that
Using this fact and the reproducibility of k

f (xj) = 〈f, k (·, xj)〉

=
〈

m∑
i=1

αiφ (xi) + v, φ (xj)
〉

=
m∑
i=1

αi 〈φ (xi) , φ (xj)〉

Consequently, the first term is independent of v

c
(
{xi, yi, f (xi)}m

i=1
)

+ g (‖f‖)

What about g? Take in account that v is orthogonal to ∑m
i=1 αiφ (xi)

g (‖f‖) = g

[√∥∥∥∑αiφ (xi)
∥∥∥2

+ ‖v‖2
]
≥ g

[∥∥∥∑αiφ (xi)
∥∥∥]

60 / 134

Images/cinvestav.jpg

Therefore, we have that
Using this fact and the reproducibility of k

f (xj) = 〈f, k (·, xj)〉

=
〈

m∑
i=1

αiφ (xi) + v, φ (xj)
〉

=
m∑
i=1

αi 〈φ (xi) , φ (xj)〉

Consequently, the first term is independent of v

c
(
{xi, yi, f (xi)}m

i=1
)

+ g (‖f‖)

What about g? Take in account that v is orthogonal to ∑m
i=1 αiφ (xi)

g (‖f‖) = g

[√∥∥∥∑αiφ (xi)
∥∥∥2

+ ‖v‖2
]
≥ g

[∥∥∥∑αiφ (xi)
∥∥∥]

60 / 134

Images/cinvestav.jpg

Therefore, we have that
Using this fact and the reproducibility of k

f (xj) = 〈f, k (·, xj)〉

=
〈

m∑
i=1

αiφ (xi) + v, φ (xj)
〉

=
m∑
i=1

αi 〈φ (xi) , φ (xj)〉

Consequently, the first term is independent of v

c
(
{xi, yi, f (xi)}m

i=1
)

+ g (‖f‖)

What about g? Take in account that v is orthogonal to ∑m
i=1 αiφ (xi)

g (‖f‖) = g

[√∥∥∥∑αiφ (xi)
∥∥∥2

+ ‖v‖2
]
≥ g

[∥∥∥∑αiφ (xi)
∥∥∥]

60 / 134

Images/cinvestav.jpg

Therefore

We have
with equality occurring if and only if v = 0.

Thus, setting v = 0 thus does not affect the first term of

c
(
{xi, yi, f (xi)}m

i=1
)

+ g (‖f‖)

while strictly reducing the second term.

Any minimizer must have v = 0
Any solution takes the form

f (·) =
m∑
i=1

αik (·, xi)

61 / 134

Images/cinvestav.jpg

Therefore

We have
with equality occurring if and only if v = 0.

Thus, setting v = 0 thus does not affect the first term of

c
(
{xi, yi, f (xi)}m

i=1
)

+ g (‖f‖)

while strictly reducing the second term.

Any minimizer must have v = 0
Any solution takes the form

f (·) =
m∑
i=1

αik (·, xi)

61 / 134

Images/cinvestav.jpg

Therefore

We have
with equality occurring if and only if v = 0.

Thus, setting v = 0 thus does not affect the first term of

c
(
{xi, yi, f (xi)}m

i=1
)

+ g (‖f‖)

while strictly reducing the second term.

Any minimizer must have v = 0
Any solution takes the form

f (·) =
m∑
i=1

αik (·, xi)

61 / 134

Images/cinvestav.jpg

However

Take a look at
“A Generalized Representer Theorem” by Bernhard Scholkopf, Ralf
Herbrich and Alex J. Smola

To look at the Semiparametric Representer Theorem
Where the minimizer takes a form of f̃ = f + h based in a given set
of real-valued functions {ψp}Mp=1 such that

I f ∈ F
I h ∈ span {ψp}

62 / 134

Images/cinvestav.jpg

However

Take a look at
“A Generalized Representer Theorem” by Bernhard Scholkopf, Ralf
Herbrich and Alex J. Smola

To look at the Semiparametric Representer Theorem
Where the minimizer takes a form of f̃ = f + h based in a given set
of real-valued functions {ψp}Mp=1 such that

I f ∈ F
I h ∈ span {ψp}

62 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

63 / 134

Images/cinvestav.jpg

We have

The following cost function

Eemp [f] = 1
N

N∑
i=1

(yi − f (xi))2 + λ ‖f‖2F

The representer theorem applies with C = ∑N
i=1 (yi − f (xi))2 and

g (‖f‖) = λ ‖f‖2
F

Thus, if we assume that f (·) =
∑m
i=1 αik (·, xi)

Thus, we need to solve

min
α∈RN

N∑
i=1

yi − N∑
j=1

αjk (xj , xi)

2

+ λ

∥∥∥∥∥∥
N∑
j=1

αk (·, xj)

∥∥∥∥∥∥
2

64 / 134

Images/cinvestav.jpg

We have

The following cost function

Eemp [f] = 1
N

N∑
i=1

(yi − f (xi))2 + λ ‖f‖2F

The representer theorem applies with C = ∑N
i=1 (yi − f (xi))2 and

g (‖f‖) = λ ‖f‖2
F

Thus, if we assume that f (·) =
∑m
i=1 αik (·, xi)

Thus, we need to solve

min
α∈RN

N∑
i=1

yi − N∑
j=1

αjk (xj , xi)

2

+ λ

∥∥∥∥∥∥
N∑
j=1

αk (·, xj)

∥∥∥∥∥∥
2

64 / 134

Images/cinvestav.jpg

We have

The following cost function

Eemp [f] = 1
N

N∑
i=1

(yi − f (xi))2 + λ ‖f‖2F

The representer theorem applies with C = ∑N
i=1 (yi − f (xi))2 and

g (‖f‖) = λ ‖f‖2
F

Thus, if we assume that f (·) =
∑m
i=1 αik (·, xi)

Thus, we need to solve

min
α∈RN

N∑
i=1

yi − N∑
j=1

αjk (xj , xi)

2

+ λ

∥∥∥∥∥∥
N∑
j=1

αk (·, xj)

∥∥∥∥∥∥
2

64 / 134

Images/cinvestav.jpg

Now

Denote K = [k (xi, xj)]Ni,j=1 and y = (y1, y2, ..., yN)T

J (α) = αTKα− 2yTKα+ yT y + λαTKα

This objective function is strongly convex... what?
Then, we have that for a K invertible

∂J

∂α
= 0

65 / 134

Images/cinvestav.jpg

Now

Denote K = [k (xi, xj)]Ni,j=1 and y = (y1, y2, ..., yN)T

J (α) = αTKα− 2yTKα+ yT y + λαTKα

This objective function is strongly convex... what?
Then, we have that for a K invertible

∂J

∂α
= 0

65 / 134

Images/cinvestav.jpg

Thus, we have

The following equalities

α = (K + λ)−1 y

f̂ (x) = αT


k (x, x1)
k (x, x2)

...
k (x, xN)


This similarly can be derived from ridge regression

By kernelization of the inner product...

66 / 134

Images/cinvestav.jpg

Thus, we have

The following equalities

α = (K + λ)−1 y

f̂ (x) = αT


k (x, x1)
k (x, x2)

...
k (x, xN)


This similarly can be derived from ridge regression

By kernelization of the inner product...

66 / 134

Images/cinvestav.jpg

Finally

We have that
The use of kernels allows to have a better generalizations...

However
There is an important property on the use of Loss functions, the
convexity of them...

67 / 134

Images/cinvestav.jpg

Finally

We have that
The use of kernels allows to have a better generalizations...

However
There is an important property on the use of Loss functions, the
convexity of them...

67 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

68 / 134

Images/cinvestav.jpg

Convexity Assumption

Something Notable
We first notice that the loss function is always a function of only one
variable t, if

t = w − y (Regression) and t = wy (Classification)

Thus, a classic assumption for the mapping

t 7−→ J (t)

to be convex

69 / 134

Images/cinvestav.jpg

Convexity Assumption

Something Notable
We first notice that the loss function is always a function of only one
variable t, if

t = w − y (Regression) and t = wy (Classification)

Thus, a classic assumption for the mapping

t 7−→ J (t)

to be convex

69 / 134

Images/cinvestav.jpg

Implications on Convex Assumptions

A loss function is a Lipschitz function
For every M > 0 there exists a constant LM > 0 such that

|J (w1, y)− J (w2, y)| ≤ LM |w1 − w2|

I For all w1, w2 ∈ [−M,M] for all y ∈ Y

There exists a constant C0 such that, for all y ∈ Y

J (0, y) ≤ C0

70 / 134

Images/cinvestav.jpg

Implications on Convex Assumptions

A loss function is a Lipschitz function
For every M > 0 there exists a constant LM > 0 such that

|J (w1, y)− J (w2, y)| ≤ LM |w1 − w2|

I For all w1, w2 ∈ [−M,M] for all y ∈ Y

There exists a constant C0 such that, for all y ∈ Y

J (0, y) ≤ C0

70 / 134

Images/cinvestav.jpg

Which Loss Functions

Regression
The square loss

J(w, y) = (w − y)2

The absolute value loss

J(w, y) = |w − y|

The ε-insensitive loss

J(w, y) = max {|w − y| − ε, 0}

71 / 134

Images/cinvestav.jpg

Example

Regression

72 / 134

Images/cinvestav.jpg

Classification

We have
The Square Loss

J(w, y) = (w − y)2 = (1− wy)2

The Hinge Loss
J(w, y) = max {1− wy, 0}

The Logistic Loss

J(w, y) = 1 + exp−wy

ln 2

73 / 134

Images/cinvestav.jpg

Example

Classification

74 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

75 / 134

Images/cinvestav.jpg

At [6]

Several Loss Functions for Neural Networks are studied
Here, o is the output of the last layer in the deep learner and σ is the
probability estimate

Name Equation
L1 Loss L1 = ‖y − o‖1
L2 Loss L2 = ‖y − o‖22

Expectation Loss ‖y − σ (o)‖1
Regularized expectation Loss ‖y − σ (o)‖1

Chebyshev Loss maxj
∣∣∣σ (o)(j) − y(j)

∣∣∣
Hinge Loss

∑
j max

{
0, 1

2 − ŷ
(j)o(j)

}
Log Loss (Cross Entropy) −

∑
j y

(j) log σ (o)(j)

Squared Log Loss −
∑
j

[
y(j) log σ (o)(j)

]2
76 / 134

Images/cinvestav.jpg

For example, we have the following property
We have that for yi ∈ {0, 1}

K with Lj (yi) = 1 and pi = p̂ (yi|xi)

L1 =
1
N

∑
i

∑
j

∣∣p(j)
i
− y(j)

i

∣∣
=

1
N

∑
i

∑
j

∣∣p(j)
i

+ y
(j)
i
p

(j)
i
− y(j)

i
p

(j)
i
− y(j)

i

∣∣
=

1
N

∑
i

∑
j

∣∣y(j)
i

(
p

(j)
i
− 1
)

+ p
(j)
i

(
1− y(j)

i

)∣∣
=

1
N

∑
i

∑
j

[
y

(j)
i

(
1− p(j)

i

)
+ p

(j)
i

(
1− y(j)

i

)]
=

1
N

∑
i

[∑
j

y
(j)
i
− 2
∑
j

y
(j)
i
p

(j)
i

+
∑
j

p
(j)
i

]
=

1
N

∑
i

∑
j

y
(j)
i
− 2

1
N

∑
i

∑
j

y
(j)
i
p

(j)
i

+
1
N

∑
i

∑
j

p
(j)
i

= 2− 2
1
N

∑
i

∑
j

y
(j)
i
p

(j)
i
≈ −2EP (x,y)

[
P
(̂
l = l|̂l ∼ pi, l ∼ yi

)]
77 / 134

Images/cinvestav.jpg

For example, we have the following property
We have that for yi ∈ {0, 1}

K with Lj (yi) = 1 and pi = p̂ (yi|xi)

L1 =
1
N

∑
i

∑
j

∣∣p(j)
i
− y(j)

i

∣∣
=

1
N

∑
i

∑
j

∣∣p(j)
i

+ y
(j)
i
p

(j)
i
− y(j)

i
p

(j)
i
− y(j)

i

∣∣
=

1
N

∑
i

∑
j

∣∣y(j)
i

(
p

(j)
i
− 1
)

+ p
(j)
i

(
1− y(j)

i

)∣∣
=

1
N

∑
i

∑
j

[
y

(j)
i

(
1− p(j)

i

)
+ p

(j)
i

(
1− y(j)

i

)]
=

1
N

∑
i

[∑
j

y
(j)
i
− 2
∑
j

y
(j)
i
p

(j)
i

+
∑
j

p
(j)
i

]
=

1
N

∑
i

∑
j

y
(j)
i
− 2

1
N

∑
i

∑
j

y
(j)
i
p

(j)
i

+
1
N

∑
i

∑
j

p
(j)
i

= 2− 2
1
N

∑
i

∑
j

y
(j)
i
p

(j)
i
≈ −2EP (x,y)

[
P
(̂
l = l|̂l ∼ pi, l ∼ yi

)]
77 / 134

Images/cinvestav.jpg

For example, we have the following property
We have that for yi ∈ {0, 1}

K with Lj (yi) = 1 and pi = p̂ (yi|xi)

L1 =
1
N

∑
i

∑
j

∣∣p(j)
i
− y(j)

i

∣∣
=

1
N

∑
i

∑
j

∣∣p(j)
i

+ y
(j)
i
p

(j)
i
− y(j)

i
p

(j)
i
− y(j)

i

∣∣
=

1
N

∑
i

∑
j

∣∣y(j)
i

(
p

(j)
i
− 1
)

+ p
(j)
i

(
1− y(j)

i

)∣∣
=

1
N

∑
i

∑
j

[
y

(j)
i

(
1− p(j)

i

)
+ p

(j)
i

(
1− y(j)

i

)]
=

1
N

∑
i

[∑
j

y
(j)
i
− 2
∑
j

y
(j)
i
p

(j)
i

+
∑
j

p
(j)
i

]
=

1
N

∑
i

∑
j

y
(j)
i
− 2

1
N

∑
i

∑
j

y
(j)
i
p

(j)
i

+
1
N

∑
i

∑
j

p
(j)
i

= 2− 2
1
N

∑
i

∑
j

y
(j)
i
p

(j)
i
≈ −2EP (x,y)

[
P
(̂
l = l|̂l ∼ pi, l ∼ yi

)]
77 / 134

Images/cinvestav.jpg

For example, we have the following property
We have that for yi ∈ {0, 1}

K with Lj (yi) = 1 and pi = p̂ (yi|xi)

L1 =
1
N

∑
i

∑
j

∣∣p(j)
i
− y(j)

i

∣∣
=

1
N

∑
i

∑
j

∣∣p(j)
i

+ y
(j)
i
p

(j)
i
− y(j)

i
p

(j)
i
− y(j)

i

∣∣
=

1
N

∑
i

∑
j

∣∣y(j)
i

(
p

(j)
i
− 1
)

+ p
(j)
i

(
1− y(j)

i

)∣∣
=

1
N

∑
i

∑
j

[
y

(j)
i

(
1− p(j)

i

)
+ p

(j)
i

(
1− y(j)

i

)]
=

1
N

∑
i

[∑
j

y
(j)
i
− 2
∑
j

y
(j)
i
p

(j)
i

+
∑
j

p
(j)
i

]
=

1
N

∑
i

∑
j

y
(j)
i
− 2

1
N

∑
i

∑
j

y
(j)
i
p

(j)
i

+
1
N

∑
i

∑
j

p
(j)
i

= 2− 2
1
N

∑
i

∑
j

y
(j)
i
p

(j)
i
≈ −2EP (x,y)

[
P
(̂
l = l|̂l ∼ pi, l ∼ yi

)]
77 / 134

Images/cinvestav.jpg

For example, we have the following property
We have that for yi ∈ {0, 1}

K with Lj (yi) = 1 and pi = p̂ (yi|xi)

L1 =
1
N

∑
i

∑
j

∣∣p(j)
i
− y(j)

i

∣∣
=

1
N

∑
i

∑
j

∣∣p(j)
i

+ y
(j)
i
p

(j)
i
− y(j)

i
p

(j)
i
− y(j)

i

∣∣
=

1
N

∑
i

∑
j

∣∣y(j)
i

(
p

(j)
i
− 1
)

+ p
(j)
i

(
1− y(j)

i

)∣∣
=

1
N

∑
i

∑
j

[
y

(j)
i

(
1− p(j)

i

)
+ p

(j)
i

(
1− y(j)

i

)]
=

1
N

∑
i

[∑
j

y
(j)
i
− 2
∑
j

y
(j)
i
p

(j)
i

+
∑
j

p
(j)
i

]
=

1
N

∑
i

∑
j

y
(j)
i
− 2

1
N

∑
i

∑
j

y
(j)
i
p

(j)
i

+
1
N

∑
i

∑
j

p
(j)
i

= 2− 2
1
N

∑
i

∑
j

y
(j)
i
p

(j)
i
≈ −2EP (x,y)

[
P
(̂
l = l|̂l ∼ pi, l ∼ yi

)]
77 / 134

Images/cinvestav.jpg

For example, we have the following property
We have that for yi ∈ {0, 1}

K with Lj (yi) = 1 and pi = p̂ (yi|xi)

L1 =
1
N

∑
i

∑
j

∣∣p(j)
i
− y(j)

i

∣∣
=

1
N

∑
i

∑
j

∣∣p(j)
i

+ y
(j)
i
p

(j)
i
− y(j)

i
p

(j)
i
− y(j)

i

∣∣
=

1
N

∑
i

∑
j

∣∣y(j)
i

(
p

(j)
i
− 1
)

+ p
(j)
i

(
1− y(j)

i

)∣∣
=

1
N

∑
i

∑
j

[
y

(j)
i

(
1− p(j)

i

)
+ p

(j)
i

(
1− y(j)

i

)]
=

1
N

∑
i

[∑
j

y
(j)
i
− 2
∑
j

y
(j)
i
p

(j)
i

+
∑
j

p
(j)
i

]
=

1
N

∑
i

∑
j

y
(j)
i
− 2

1
N

∑
i

∑
j

y
(j)
i
p

(j)
i

+
1
N

∑
i

∑
j

p
(j)
i

= 2− 2
1
N

∑
i

∑
j

y
(j)
i
p

(j)
i
≈ −2EP (x,y)

[
P
(̂
l = l|̂l ∼ pi, l ∼ yi

)]
77 / 134

Images/cinvestav.jpg

Therefore

We have
For this reason we refer to this loss as expectation loss

However, Why is this loss not being used?
Maybe the following proposition will answer the question

78 / 134

Images/cinvestav.jpg

Therefore

We have
For this reason we refer to this loss as expectation loss

However, Why is this loss not being used?
Maybe the following proposition will answer the question

78 / 134

Images/cinvestav.jpg

We have

Proposition
L1 and L2 losses applied to probabilities estimates coming from
sigmoid (or softmax) have non-monotonic partial derivatives w.r.t. to
the output of the final layer (and the loss is not convex nor concave
w.r.t. to last layer weights). Furthermore, they vanish in both
infinities, which slows down learning of heavily misclassified examples.

Proof
Let us denote sigmoid activation as

σ (x) = 1
1 + exp {−x}

79 / 134

Images/cinvestav.jpg

We have

Proposition
L1 and L2 losses applied to probabilities estimates coming from
sigmoid (or softmax) have non-monotonic partial derivatives w.r.t. to
the output of the final layer (and the loss is not convex nor concave
w.r.t. to last layer weights). Furthermore, they vanish in both
infinities, which slows down learning of heavily misclassified examples.

Proof
Let us denote sigmoid activation as

σ (x) = 1
1 + exp {−x}

79 / 134

Images/cinvestav.jpg

Thus, we have

Using Chain Rule

∂L1 ◦ σ
∂o

(op) =
∂
[∣∣∣1− 1

1+exp{−o}

∣∣∣] op
∂o

= − exp {−op}
1 + exp {−op}

In addition, we have that

lim
op→∞

− exp {−op}
1 + exp {−op}

= lim
op→−∞

− exp {−op}
1 + exp {−op}

= 0

80 / 134

Images/cinvestav.jpg

Thus, we have

Using Chain Rule

∂L1 ◦ σ
∂o

(op) =
∂
[∣∣∣1− 1

1+exp{−o}

∣∣∣] op
∂o

= − exp {−op}
1 + exp {−op}

In addition, we have that

lim
op→∞

− exp {−op}
1 + exp {−op}

= lim
op→−∞

− exp {−op}
1 + exp {−op}

= 0

80 / 134

Images/cinvestav.jpg

Additionally

We have that
∂L1 ◦ σ
∂o

(0)− exp {0}
1 + exp {0} = −1

4 < 0

Additionally
Lack of convexity comes from the same argument since second
derivative w.r.t. to any weight in the final layer of the model changes
sign

81 / 134

Images/cinvestav.jpg

Additionally

We have that
∂L1 ◦ σ
∂o

(0)− exp {0}
1 + exp {0} = −1

4 < 0

Additionally
Lack of convexity comes from the same argument since second
derivative w.r.t. to any weight in the final layer of the model changes
sign

81 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

82 / 134

Images/cinvestav.jpg

Therefore

We have a problem with the use of these functions
For the use on Neural Networks...

We need something different
Because even with the kernelized versions of them of the output at L2

∂Lker2 ◦ σ
∂o

(op) = ∂ ‖y −
∑m
i=1 αik (σ (o) , xi)‖22 (op)

∂o

A small problem
k (σ (o) , xi) needs to be derivable by o

83 / 134

Images/cinvestav.jpg

Therefore

We have a problem with the use of these functions
For the use on Neural Networks...

We need something different
Because even with the kernelized versions of them of the output at L2

∂Lker2 ◦ σ
∂o

(op) = ∂ ‖y −
∑m
i=1 αik (σ (o) , xi)‖22 (op)

∂o

A small problem
k (σ (o) , xi) needs to be derivable by o

83 / 134

Images/cinvestav.jpg

Therefore

We have a problem with the use of these functions
For the use on Neural Networks...

We need something different
Because even with the kernelized versions of them of the output at L2

∂Lker2 ◦ σ
∂o

(op) = ∂ ‖y −
∑m
i=1 αik (σ (o) , xi)‖22 (op)

∂o

A small problem
k (σ (o) , xi) needs to be derivable by o

83 / 134

Images/cinvestav.jpg

Not only that

This is applied to the exit of the neural network
Actually, there is a layer that acts a kernel, the convolutional layer

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑
j=1

K
(l)
ij ∗ Y

(l−1)
j

Thus, we can generalize this to a kernel layer

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑
j=1

k
(
K

(l)
ij , Y

(l−1)
j

)

And the problem
Which One? A Research Topic...

84 / 134

Images/cinvestav.jpg

Not only that

This is applied to the exit of the neural network
Actually, there is a layer that acts a kernel, the convolutional layer

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑
j=1

K
(l)
ij ∗ Y

(l−1)
j

Thus, we can generalize this to a kernel layer

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑
j=1

k
(
K

(l)
ij , Y

(l−1)
j

)

And the problem
Which One? A Research Topic...

84 / 134

Images/cinvestav.jpg

Not only that

This is applied to the exit of the neural network
Actually, there is a layer that acts a kernel, the convolutional layer

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑
j=1

K
(l)
ij ∗ Y

(l−1)
j

Thus, we can generalize this to a kernel layer

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑
j=1

k
(
K

(l)
ij , Y

(l−1)
j

)

And the problem
Which One? A Research Topic...

84 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

85 / 134

Images/cinvestav.jpg

Going back to our original cost function

Recall the binary linear classifiers with targets y ∈ {0, 1}

z = wTx + b

y =
{

1 if z ≥ 0
0 if z < 0

The Goal is to correctly classify every training example
this might be impossible if the dataset is not linearly separable.

We want to avoid
To do overfitting...

86 / 134

Images/cinvestav.jpg

Going back to our original cost function

Recall the binary linear classifiers with targets y ∈ {0, 1}

z = wTx + b

y =
{

1 if z ≥ 0
0 if z < 0

The Goal is to correctly classify every training example
this might be impossible if the dataset is not linearly separable.

We want to avoid
To do overfitting...

86 / 134

Images/cinvestav.jpg

Going back to our original cost function

Recall the binary linear classifiers with targets y ∈ {0, 1}

z = wTx + b

y =
{

1 if z ≥ 0
0 if z < 0

The Goal is to correctly classify every training example
this might be impossible if the dataset is not linearly separable.

We want to avoid
To do overfitting...

86 / 134

Images/cinvestav.jpg

How to deal with this?

One natural criterion is to minimize the number of misclassified
training examples

We can try to solve by the using 0-1 loss:

L0−1 (y, t) =
{

0 if y = t

1 otherwise

The cost function is just the loss averaged over the training examples
We try to make it small

87 / 134

Images/cinvestav.jpg

How to deal with this?

One natural criterion is to minimize the number of misclassified
training examples

We can try to solve by the using 0-1 loss:

L0−1 (y, t) =
{

0 if y = t

1 otherwise

The cost function is just the loss averaged over the training examples
We try to make it small

87 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

88 / 134

Images/cinvestav.jpg

Attempt 0-1 Loss

We have something like this

89 / 134

Images/cinvestav.jpg

Attempt 0-1 Loss

First Problem
We need to compute the partial derivatives ∂L0−1

∂wj

Basically, we need to obtain
How much does L0−1 change if you make a change to wj?

We notice something
As long we are not at the boundary, changes on wj will not have no
effect

∂L0−1
∂wj

= 0

90 / 134

Images/cinvestav.jpg

Attempt 0-1 Loss

First Problem
We need to compute the partial derivatives ∂L0−1

∂wj

Basically, we need to obtain
How much does L0−1 change if you make a change to wj?

We notice something
As long we are not at the boundary, changes on wj will not have no
effect

∂L0−1
∂wj

= 0

90 / 134

Images/cinvestav.jpg

Attempt 0-1 Loss

First Problem
We need to compute the partial derivatives ∂L0−1

∂wj

Basically, we need to obtain
How much does L0−1 change if you make a change to wj?

We notice something
As long we are not at the boundary, changes on wj will not have no
effect

∂L0−1
∂wj

= 0

90 / 134

Images/cinvestav.jpg

As in the original 0-1 Cortez and Vapnik problem

Yes... at the original problem you have a 0-1 problem (0-1 SVM with
Soft Margins)

Which falls into a combinatorial problem... forget also on using
Gradient to optimize it...

Therefore, we need something different
Ok... we need to look to another place...

91 / 134

Images/cinvestav.jpg

As in the original 0-1 Cortez and Vapnik problem

Yes... at the original problem you have a 0-1 problem (0-1 SVM with
Soft Margins)

Which falls into a combinatorial problem... forget also on using
Gradient to optimize it...

Therefore, we need something different
Ok... we need to look to another place...

91 / 134

Images/cinvestav.jpg

Attempt Linear Regression

We have the following situation

y = wTx + b

L2 = 1
2 (y − t)2

We have two solutions (Look at our slides on Machine Learning)
Closed form
Gradient Descent form

Does it make sense for classification?
One obvious problem is that the predictions are real-valued rather
than binary.

92 / 134

Images/cinvestav.jpg

Attempt Linear Regression

We have the following situation

y = wTx + b

L2 = 1
2 (y − t)2

We have two solutions (Look at our slides on Machine Learning)
Closed form
Gradient Descent form

Does it make sense for classification?
One obvious problem is that the predictions are real-valued rather
than binary.

92 / 134

Images/cinvestav.jpg

Attempt Linear Regression

We have the following situation

y = wTx + b

L2 = 1
2 (y − t)2

We have two solutions (Look at our slides on Machine Learning)
Closed form
Gradient Descent form

Does it make sense for classification?
One obvious problem is that the predictions are real-valued rather
than binary.

92 / 134

Images/cinvestav.jpg

Example

WE have the loss function y = wTx + b with t = 1.0

93 / 134

Images/cinvestav.jpg

It is possible to binarize this

By using a thrheshold
At y = 1

2

This type of relaxation
It is called surrogate loss function.

94 / 134

Images/cinvestav.jpg

It is possible to binarize this

By using a thrheshold
At y = 1

2

This type of relaxation
It is called surrogate loss function.

94 / 134

Images/cinvestav.jpg

There is still a problem
Suppose we have a positive example, t = 1

If we predict y = 1, we get a cost of 0, whereas if we make the wrong
prediction y = 0, we get a cost of 1

2 ,

L2 = 1
2 (y − t)2

However, we can trick our output
We really confident you have a positive example and we predict y = 9,

L2 = 1
2 (9− 1)2 = 32

This is far higher than the cost for y = 0
Therefore, the quadratic loss function sacrifices somethign when using
it...

95 / 134

Images/cinvestav.jpg

There is still a problem
Suppose we have a positive example, t = 1

If we predict y = 1, we get a cost of 0, whereas if we make the wrong
prediction y = 0, we get a cost of 1

2 ,

L2 = 1
2 (y − t)2

However, we can trick our output
We really confident you have a positive example and we predict y = 9,

L2 = 1
2 (9− 1)2 = 32

This is far higher than the cost for y = 0
Therefore, the quadratic loss function sacrifices somethign when using
it...

95 / 134

Images/cinvestav.jpg

There is still a problem
Suppose we have a positive example, t = 1

If we predict y = 1, we get a cost of 0, whereas if we make the wrong
prediction y = 0, we get a cost of 1

2 ,

L2 = 1
2 (y − t)2

However, we can trick our output
We really confident you have a positive example and we predict y = 9,

L2 = 1
2 (9− 1)2 = 32

This is far higher than the cost for y = 0
Therefore, the quadratic loss function sacrifices somethign when using
it...

95 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

96 / 134

Images/cinvestav.jpg

Attempt Logistic Nonlinearity

We can then filter the previous attempt by using a σ

z = wTx + b

y = σ (z)

L2 = 1
2 (y − t)2

σ (z) = 1
1 + exp {−z}

Something Notable
Notice that this model solves the problem we observed with linear
regression.

I As the predictions get more and more confident on the correct answer,
the loss continues to decrease.

97 / 134

Images/cinvestav.jpg

Attempt Logistic Nonlinearity

We can then filter the previous attempt by using a σ

z = wTx + b

y = σ (z)

L2 = 1
2 (y − t)2

σ (z) = 1
1 + exp {−z}

Something Notable
Notice that this model solves the problem we observed with linear
regression.

I As the predictions get more and more confident on the correct answer,
the loss continues to decrease.

97 / 134

Images/cinvestav.jpg

Example of this

We have the loss function L2 = 1
2 (σ (z)− t)2

98 / 134

Images/cinvestav.jpg

Therefore

The derivative is equal to
∂σ (z)
∂z

= exp {−z}
[1 + exp {−z}]2

= σ (z) [1− σ (z)]

99 / 134

Images/cinvestav.jpg

Example

We have the following situation

Slopes

100 / 134

Images/cinvestav.jpg

The nice part of this function

Something Notable
If your target is t = 1 and you are learning

You accelerate fast by the use of the Gradient Descent
Once you get near to it you decelerate... in your learning

101 / 134

Images/cinvestav.jpg

The nice part of this function

Something Notable
If your target is t = 1 and you are learning

You accelerate fast by the use of the Gradient Descent
Once you get near to it you decelerate... in your learning

101 / 134

Images/cinvestav.jpg

How does this learning looks like?

By Chain Rule

dL2
dz

= dL2
dy
× dy

dz
= (y − t) y (1− y)

Therefore, we have that
∂L2
∂wj

= dL2
dz
× ∂z

∂wj
= dL2

dz
× xj

102 / 134

Images/cinvestav.jpg

How does this learning looks like?

By Chain Rule

dL2
dz

= dL2
dy
× dy

dz
= (y − t) y (1− y)

Therefore, we have that
∂L2
∂wj

= dL2
dz
× ∂z

∂wj
= dL2

dz
× xj

102 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

103 / 134

Images/cinvestav.jpg

Relation with Automatic Differentiation

This formula can be used re-used
Actually there is a way to reuse the previous formula for the bias

We have that
∂L2
∂b

= dL2
dz
× ∂z

∂b
= dL2

dz

This re-usability
It is at the center of the Automatic Differentiation

104 / 134

Images/cinvestav.jpg

Relation with Automatic Differentiation

This formula can be used re-used
Actually there is a way to reuse the previous formula for the bias

We have that
∂L2
∂b

= dL2
dz
× ∂z

∂b
= dL2

dz

This re-usability
It is at the center of the Automatic Differentiation

104 / 134

Images/cinvestav.jpg

Relation with Automatic Differentiation

This formula can be used re-used
Actually there is a way to reuse the previous formula for the bias

We have that
∂L2
∂b

= dL2
dz
× ∂z

∂b
= dL2

dz

This re-usability
It is at the center of the Automatic Differentiation

104 / 134

Images/cinvestav.jpg

However there is a glitch!!!

If you have an incorrect classification of a sample
You can predict a negative label with z = −5 thus y ≈ 0.0067 for a
positive one.

We find that
dL2
dz

= −0.0066

This is a pretty small value, considering how big the mistake was
Therefore, we have that this gradient will not help this sample to get
out of the error

105 / 134

Images/cinvestav.jpg

However there is a glitch!!!

If you have an incorrect classification of a sample
You can predict a negative label with z = −5 thus y ≈ 0.0067 for a
positive one.

We find that
dL2
dz

= −0.0066

This is a pretty small value, considering how big the mistake was
Therefore, we have that this gradient will not help this sample to get
out of the error

105 / 134

Images/cinvestav.jpg

However there is a glitch!!!

If you have an incorrect classification of a sample
You can predict a negative label with z = −5 thus y ≈ 0.0067 for a
positive one.

We find that
dL2
dz

= −0.0066

This is a pretty small value, considering how big the mistake was
Therefore, we have that this gradient will not help this sample to get
out of the error

105 / 134

Images/cinvestav.jpg

The Problem

We have that
The problem with squared error loss in the classification setting is that
it does not distinguish bad predictions from extremely bad predictions.

We need something better for classification
Question What?

106 / 134

Images/cinvestav.jpg

The Problem

We have that
The problem with squared error loss in the classification setting is that
it does not distinguish bad predictions from extremely bad predictions.

We need something better for classification
Question What?

106 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

107 / 134

Images/cinvestav.jpg

Problem with Squared Error

It treats small values of different magnitudes equally
y = 0.01 and y = 0.00001 as nearly equivalent (for a positive
example)

What we want
We want a loss function which makes these very different!!!

108 / 134

Images/cinvestav.jpg

Problem with Squared Error

It treats small values of different magnitudes equally
y = 0.01 and y = 0.00001 as nearly equivalent (for a positive
example)

What we want
We want a loss function which makes these very different!!!

108 / 134

Images/cinvestav.jpg

Cross-Entropy(CE)

Defined as follow

LCE (y, t) =
{
− log y if t = 1
− log (1− y) if t = 0

In our previous example
LCE (0.01, 1) = 4.6
LCE (0.00001, 1) = 11.5

Therefore
cross-entropy treats the latter as much worse than the former.

109 / 134

Images/cinvestav.jpg

Cross-Entropy(CE)

Defined as follow

LCE (y, t) =
{
− log y if t = 1
− log (1− y) if t = 0

In our previous example
LCE (0.01, 1) = 4.6
LCE (0.00001, 1) = 11.5

Therefore
cross-entropy treats the latter as much worse than the former.

109 / 134

Images/cinvestav.jpg

Cross-Entropy(CE)

Defined as follow

LCE (y, t) =
{
− log y if t = 1
− log (1− y) if t = 0

In our previous example
LCE (0.01, 1) = 4.6
LCE (0.00001, 1) = 11.5

Therefore
cross-entropy treats the latter as much worse than the former.

109 / 134

Images/cinvestav.jpg

A Better Loss Function

We can collapse the previous definition to

LCE (y, t) = −t log y − (1− t) log (1− y)

We have the following example
Split the real line in two classes positive side t = 1 and negative side
t = 0

110 / 134

Images/cinvestav.jpg

A Better Loss Function

We can collapse the previous definition to

LCE (y, t) = −t log y − (1− t) log (1− y)

We have the following example
Split the real line in two classes positive side t = 1 and negative side
t = 0

110 / 134

Images/cinvestav.jpg

Example

We have the following

111 / 134

Images/cinvestav.jpg

Therefore, we have

The derivative of LCE with respect to y
dLCE
dy

= − t
y

+ 1− t
1− y

The derivative of LCE with respect to z
dLCE
dz

= dLCE
dy
× dy

dz
= dLCE

dy
× y (1− y)

The derivative of LCE with respect to wj
dLCE
dwj

= dLCE
dz
× dLCE

dz
= dLCE

dz
× xj

112 / 134

Images/cinvestav.jpg

Therefore, we have

The derivative of LCE with respect to y
dLCE
dy

= − t
y

+ 1− t
1− y

The derivative of LCE with respect to z
dLCE
dz

= dLCE
dy
× dy

dz
= dLCE

dy
× y (1− y)

The derivative of LCE with respect to wj
dLCE
dwj

= dLCE
dz
× dLCE

dz
= dLCE

dz
× xj

112 / 134

Images/cinvestav.jpg

Therefore, we have

The derivative of LCE with respect to y
dLCE
dy

= − t
y

+ 1− t
1− y

The derivative of LCE with respect to z
dLCE
dz

= dLCE
dy
× dy

dz
= dLCE

dy
× y (1− y)

The derivative of LCE with respect to wj
dLCE
dwj

= dLCE
dz
× dLCE

dz
= dLCE

dz
× xj

112 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

113 / 134

Images/cinvestav.jpg

The final touch up

There is a big problem
What happens if we have a positive example (t = 1)

I And you get y ≈ 0

This is likely to happen at the very beginning of training
But if y is small enough, it could be smaller than the smallest floating
point value

I Basically 0 or near by to 0

Then when we compute the cross-entropy
We have that dLCE

dy becomes extremely large in magnitud

114 / 134

Images/cinvestav.jpg

The final touch up

There is a big problem
What happens if we have a positive example (t = 1)

I And you get y ≈ 0

This is likely to happen at the very beginning of training
But if y is small enough, it could be smaller than the smallest floating
point value

I Basically 0 or near by to 0

Then when we compute the cross-entropy
We have that dLCE

dy becomes extremely large in magnitud

114 / 134

Images/cinvestav.jpg

The final touch up

There is a big problem
What happens if we have a positive example (t = 1)

I And you get y ≈ 0

This is likely to happen at the very beginning of training
But if y is small enough, it could be smaller than the smallest floating
point value

I Basically 0 or near by to 0

Then when we compute the cross-entropy
We have that dLCE

dy becomes extremely large in magnitud

114 / 134

Images/cinvestav.jpg

Better, we bound the output of the network

The so called Logistic-Cross Entropy
LLCE (z, t) = LCE (σ (z) , t) = t log (1 + exp {−z}) + (1− t) log (1 + exp {z})

This is unstable given the term exp {z}
We need to deal with this... for example,

I Python, numpy has np.logadddexp takes care of this
E = t∗np.logaddexp (0,−z) + (1− t) ∗np.logaddexp (0, z)

115 / 134

Images/cinvestav.jpg

Better, we bound the output of the network

The so called Logistic-Cross Entropy
LLCE (z, t) = LCE (σ (z) , t) = t log (1 + exp {−z}) + (1− t) log (1 + exp {z})

This is unstable given the term exp {z}
We need to deal with this... for example,

I Python, numpy has np.logadddexp takes care of this
E = t∗np.logaddexp (0,−z) + (1− t) ∗np.logaddexp (0, z)

115 / 134

Images/cinvestav.jpg

What about the derivative?

We have

dLLCE
dz

= d

dz
[t log (1 + exp {−z}) + (1− t) log (1 + exp {z})]

= −t× exp {−z}
1 + exp {−z} + (1− t) exp {z}

1 + exp {z}
= −t (1− y) + (1− t) y
= y − t

Wow... quite simple derivative
Observe that this is exactly the same formula dL2

dy as for in the case of
linear regression.

116 / 134

Images/cinvestav.jpg

What about the derivative?

We have

dLLCE
dz

= d

dz
[t log (1 + exp {−z}) + (1− t) log (1 + exp {z})]

= −t× exp {−z}
1 + exp {−z} + (1− t) exp {z}

1 + exp {z}
= −t (1− y) + (1− t) y
= y − t

Wow... quite simple derivative
Observe that this is exactly the same formula dL2

dy as for in the case of
linear regression.

116 / 134

Images/cinvestav.jpg

Interpretation

if y > t, you made too positive a prediction
You want to shift your prediction in the negative direction.

if y < t

You want to shift your prediction in the positive direction.

117 / 134

Images/cinvestav.jpg

Interpretation

if y > t, you made too positive a prediction
You want to shift your prediction in the negative direction.

if y < t

You want to shift your prediction in the positive direction.

117 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

118 / 134

Images/cinvestav.jpg

Yann LeCunn “Who is afraid of non-convex loss
functions?”[7]

Machine Learning theory has essentially never moved beyond convex
models

This is actually wrong

Given the previous development
Accepting non-convexity allows elegant models

Not only that
The price we pay for insisting on convexity is an unbearable increase
in the size of the model

I Actually fat shallow models vs something else...

119 / 134

Images/cinvestav.jpg

Yann LeCunn “Who is afraid of non-convex loss
functions?”[7]

Machine Learning theory has essentially never moved beyond convex
models

This is actually wrong

Given the previous development
Accepting non-convexity allows elegant models

Not only that
The price we pay for insisting on convexity is an unbearable increase
in the size of the model

I Actually fat shallow models vs something else...

119 / 134

Images/cinvestav.jpg

Yann LeCunn “Who is afraid of non-convex loss
functions?”[7]

Machine Learning theory has essentially never moved beyond convex
models

This is actually wrong

Given the previous development
Accepting non-convexity allows elegant models

Not only that
The price we pay for insisting on convexity is an unbearable increase
in the size of the model

I Actually fat shallow models vs something else...

119 / 134

Images/cinvestav.jpg

Therefore

Based on this idea
We need to look at different functions for loss

For example in [8]
They proposed a more general loss function based in a parameter
α ∈ (0,∞]

120 / 134

Images/cinvestav.jpg

Therefore

Based on this idea
We need to look at different functions for loss

For example in [8]
They proposed a more general loss function based in a parameter
α ∈ (0,∞]

120 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

121 / 134

Images/cinvestav.jpg

We have

Definition [9, 8]
Let P (Y) be the set of probability distributions over Y. For
α ∈ (0,∞], we define α-loss for α ∈ (0, 1) ∪ (1,∞), lα : Y → R+ as

lα (y, PY) = α

1− α
[
1− PY (y)1−1/α

]
and by continuous extension,

l1 (y, PY) = − logPY (y) and

l∞ (y, PY) = 1− logPY (y)

122 / 134

Images/cinvestav.jpg

Cases

For α = 1
Such a risk minimization involves minimizing the average log loss,

I refining a posterior belief over all y for a given observation x.

Furthermore, as α increases from 1 to ∞
The loss function increasingly limits the effect of the low probability
outcomes

lim
α→∞

lα (y, PY) = lim
α→∞

α

1− α × lim
α→∞

[
1− PY (y)1−1/α

]
= PY (y)− 1

123 / 134

Images/cinvestav.jpg

Cases

For α = 1
Such a risk minimization involves minimizing the average log loss,

I refining a posterior belief over all y for a given observation x.

Furthermore, as α increases from 1 to ∞
The loss function increasingly limits the effect of the low probability
outcomes

lim
α→∞

lα (y, PY) = lim
α→∞

α

1− α × lim
α→∞

[
1− PY (y)1−1/α

]
= PY (y)− 1

123 / 134

Images/cinvestav.jpg

Not only that

As α decreases from 1 towards 0
The loss function places increasingly higher weights on the low
probability outcomes

Until at α = 0

lim
α→0

α

1− α

[
1− PY (y)1−1/α

]
= lim
α→0

PY (y)1−1/α − 1 = lim
α→0

PY (y)
PY (y)1/α

− 1 =∞

124 / 134

Images/cinvestav.jpg

Not only that

As α decreases from 1 towards 0
The loss function places increasingly higher weights on the low
probability outcomes

Until at α = 0

lim
α→0

α

1− α

[
1− PY (y)1−1/α

]
= lim
α→0

PY (y)1−1/α − 1 = lim
α→0

PY (y)
PY (y)1/α

− 1 =∞

124 / 134

Images/cinvestav.jpg

Therefore

We have that
The loss function pays an infinite cost by ignoring the training data
distribution completely.

Note the following
α quantifies the level of certainty placed on the posterior distribution

Therefore
Larger α indicate increasing certainty over a smaller set of Y .
Smaller α distributes the uncertainty over more (and eventually, all)
possibles values of Y .

125 / 134

Images/cinvestav.jpg

Therefore

We have that
The loss function pays an infinite cost by ignoring the training data
distribution completely.

Note the following
α quantifies the level of certainty placed on the posterior distribution

Therefore
Larger α indicate increasing certainty over a smaller set of Y .
Smaller α distributes the uncertainty over more (and eventually, all)
possibles values of Y .

125 / 134

Images/cinvestav.jpg

Therefore

We have that
The loss function pays an infinite cost by ignoring the training data
distribution completely.

Note the following
α quantifies the level of certainty placed on the posterior distribution

Therefore
Larger α indicate increasing certainty over a smaller set of Y .
Smaller α distributes the uncertainty over more (and eventually, all)
possibles values of Y .

125 / 134

Images/cinvestav.jpg

Actually

For α =∞
The distribution becomes the hard-decoding Maximum A Posteriori
rule.

126 / 134

Images/cinvestav.jpg

Risk Minimization under this loss
Proposition

For each α ∈ (0,∞], the minimal α-risk is

min
P
Ŷ |X

EX,Y
[
lα
(
Y, P

Ŷ |X

)]
= α

α− 1

[
1− exp

{1− α
α

HA
α (Y |X)

}]

where HA
α (Y |X) = α

1−α log
∑
y (
∑
x PX,Y (x, y)α)1/α is the Arimoto

conditional entropy of order α. The resultin minimizer is the α-tilted
true posterior

P ∗
Ŷ |X (y|x) =

PY |X (y|x)α∑
y PY |X (y|x)α

Take a look at [9]
For the proof

127 / 134

Images/cinvestav.jpg

Risk Minimization under this loss
Proposition

For each α ∈ (0,∞], the minimal α-risk is

min
P
Ŷ |X

EX,Y
[
lα
(
Y, P

Ŷ |X

)]
= α

α− 1

[
1− exp

{1− α
α

HA
α (Y |X)

}]

where HA
α (Y |X) = α

1−α log
∑
y (
∑
x PX,Y (x, y)α)1/α is the Arimoto

conditional entropy of order α. The resultin minimizer is the α-tilted
true posterior

P ∗
Ŷ |X (y|x) =

PY |X (y|x)α∑
y PY |X (y|x)α

Take a look at [9]
For the proof

127 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

128 / 134

Images/cinvestav.jpg

Examples

Differentially Private Empirical Risk Minimization with Smooth
Non-Convex Loss Functions: A Non-Stationary View [10]

Here, the Differentially Private Empirical Risk Minimization is studied

From Convex to Nonconvex: a Loss Function Analysis for Binary
Classification [11]

A new smoothed version of the loss 0-1 function is proposed
I Although, it seems to be that sigmoid cross entropy is better...

An new method to compare different loss functions

Deep Neural Networks with Multi-Branch Architectures Are
Intrinsically Less Non-Convex [12]

Architectures using subnetworks as the transformers are non-convex
in nature

129 / 134

Images/cinvestav.jpg

Examples

Differentially Private Empirical Risk Minimization with Smooth
Non-Convex Loss Functions: A Non-Stationary View [10]

Here, the Differentially Private Empirical Risk Minimization is studied

From Convex to Nonconvex: a Loss Function Analysis for Binary
Classification [11]

A new smoothed version of the loss 0-1 function is proposed
I Although, it seems to be that sigmoid cross entropy is better...

An new method to compare different loss functions

Deep Neural Networks with Multi-Branch Architectures Are
Intrinsically Less Non-Convex [12]

Architectures using subnetworks as the transformers are non-convex
in nature

129 / 134

Images/cinvestav.jpg

Examples

Differentially Private Empirical Risk Minimization with Smooth
Non-Convex Loss Functions: A Non-Stationary View [10]

Here, the Differentially Private Empirical Risk Minimization is studied

From Convex to Nonconvex: a Loss Function Analysis for Binary
Classification [11]

A new smoothed version of the loss 0-1 function is proposed
I Although, it seems to be that sigmoid cross entropy is better...

An new method to compare different loss functions

Deep Neural Networks with Multi-Branch Architectures Are
Intrinsically Less Non-Convex [12]

Architectures using subnetworks as the transformers are non-convex
in nature

129 / 134

Images/cinvestav.jpg

Outline
1 Introduction

Why Loss Funtions?
Preliminary
Hilbert Spaces
Kernels
Checking Positive Semi-definiteness in Kernels

Feature Maps
Reproducing Kernel Hilbert Spaces (RKHS)
The Mercer’s Theorem

Loss Functions and the Representer Theorem
Example, Kernel Ridge Regression
Convexity Assumption

2 Cost Functions in Neural Networks
Introduction
Kernelization
Choosing a Cost Function
Minimizing Error Loss
The Nonlinearity of the Logistic
Automatic Differentiation
Cross Entropy Loss
Logistic-Cross Entropy

3 Beyond Convex Functions
Introduction
α-Loss
However, There are more attempts
Conclusions

130 / 134

Images/cinvestav.jpg

It is clear that many connections need to be done

From the Reproducing Kernels
As Layers on the Neuronal Networks

I Still a Deeper study needs to be done to finish the connections on this
regard...

To the need to explore novel non-convex loss functions
Making possible to improve upon the traditional loss functions for
Neural Networks

Therefore
This is a new frontier in the study of neural networks...

131 / 134

Images/cinvestav.jpg

It is clear that many connections need to be done

From the Reproducing Kernels
As Layers on the Neuronal Networks

I Still a Deeper study needs to be done to finish the connections on this
regard...

To the need to explore novel non-convex loss functions
Making possible to improve upon the traditional loss functions for
Neural Networks

Therefore
This is a new frontier in the study of neural networks...

131 / 134

Images/cinvestav.jpg

It is clear that many connections need to be done

From the Reproducing Kernels
As Layers on the Neuronal Networks

I Still a Deeper study needs to be done to finish the connections on this
regard...

To the need to explore novel non-convex loss functions
Making possible to improve upon the traditional loss functions for
Neural Networks

Therefore
This is a new frontier in the study of neural networks...

131 / 134

Images/cinvestav.jpg

L. Rosasco, E. D. Vito, A. Caponnetto, M. Piana, and A. Verri, “Are
loss functions all the same?,” Neural Computation, vol. 16, no. 5,
pp. 1063–1076, 2004.

V. N. Vapnik, “An overview of statistical learning theory,” IEEE
transactions on neural networks, vol. 10, no. 5, pp. 988–999, 1999.

F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural
networks architectures,” Neural computation, vol. 7, no. 2,
pp. 219–269, 1995.

N. Aronszajn, “Theory of reproducing kernels,” Transactions of the
American Mathematical Society, vol. 68, no. 3, pp. 337–404, 1950.

B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized
representer theorem,” in International conference on computational
learning theory, pp. 416–426, Springer, 2001.

K. Janocha and W. M. Czarnecki, “On loss functions for deep neural
networks in classification,” arXiv preprint arXiv:1702.05659, 2017.

132 / 134

Images/cinvestav.jpg

Y. Lecun, “Who is afraid of nonconvex loss functions?.”

T. Sypherd, M. Diaz, H. Laddha, L. Sankar, P. Kairouz, and
G. Dasarathy, “A class of parameterized loss functions for
classification: Optimization tradeoffs and robustness characteristics,”
arXiv preprint arXiv:1906.02314, 2019.

J. Liao, O. Kosut, L. Sankar, and F. P. Calmon, “A tunable measure
for information leakage,” in 2018 IEEE International Symposium on
Information Theory (ISIT), pp. 701–705, IEEE, 2018.

D. Wang and J. Xu, “Differentially private empirical risk minimization
with smooth non-convex loss functions: A non-stationary view,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 1182–1189, 2019.

L. Zhao, M. Mammadov, and J. Yearwood, “From convex to
nonconvex: a loss function analysis for binary classification,” in 2010
IEEE International Conference on Data Mining Workshops,
pp. 1281–1288, IEEE, 2010.

133 / 134

Images/cinvestav.jpg

H. Zhang, J. Shao, and R. Salakhutdinov, “Deep neural networks with
multi-branch architectures are intrinsically less non-convex,” in The
22nd International Conference on Artificial Intelligence and Statistics,
pp. 1099–1109, 2019.

134 / 134

	Introduction
	Why Loss Funtions?
	Preliminary
	Hilbert Spaces
	Kernels
	Feature Maps
	Reproducing Kernel Hilbert Spaces (RKHS)
	Loss Functions and the Representer Theorem
	Example, Kernel Ridge Regression
	Convexity Assumption

	Cost Functions in Neural Networks
	Introduction
	Kernelization
	Choosing a Cost Function

	Beyond Convex Functions
	Introduction
	-Loss
	However, There are more attempts
	Conclusions

