
Introduction to Machine Learning
Convolutional Networks

Andres Mendez-Vazquez

August 22, 2020

1 / 115

Outline
1 Introduction

Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

2 / 115

Outline
1 Introduction

Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

3 / 115

Digital Images as pixels in a digitized matrix [1]

4 / 115

Further [1]

Pixel values typically represent
Gray levels, colors, heights, opacities etc

Something Notable
Remember digitization implies that a digital image is an
approximation of a real scene

5 / 115

Further [1]

Pixel values typically represent
Gray levels, colors, heights, opacities etc

Something Notable
Remember digitization implies that a digital image is an
approximation of a real scene

5 / 115

Images

Common image formats include
On sample/pixel per point (B&W or Grayscale)
Three samples/pixel per point (Red, Green, and Blue)
Four samples/pixel per point (Red, Green, Blue, and “Alpha”)

6 / 115

Therefore, we have the following process

Low Level Process
Input Processes Output

Noise
Image Removal Improved

Image Image
Sharpening

7 / 115

Example

Edge Detection

8 / 115

Example

Edge Detection

8 / 115

Then

Mid Level Process
Input Processes Output

Object
Image Recognition Attributes

Segmentation

9 / 115

Example

Object Recognition

10 / 115

Example

Object Recognition

10 / 115

Therefore

It would be nice to automatize all these processes
We would solve a lot of headaches when setting up such process

Why not to use the data sets
By using a Neural Networks that replicates the process.

11 / 115

Therefore

It would be nice to automatize all these processes
We would solve a lot of headaches when setting up such process

Why not to use the data sets
By using a Neural Networks that replicates the process.

11 / 115

Outline
1 Introduction

Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

12 / 115

Multilayer Neural Network Classification

We have the following classification [2]

13 / 115

Outline
1 Introduction

Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

14 / 115

Drawbacks of previous neural networks

The number of trainable parameters becomes extremely large

Large N

A

Z

15 / 115

Drawbacks of previous neural networks
In addition, little or no invariance to shifting, scaling, and other forms
of distortion

Large N

A

Z

16 / 115

Drawbacks of previous neural networks
In addition, little or no invariance to shifting, scaling, and other forms
of distortion

Large N

A

Z

Shift to the Left

17 / 115

Drawbacks of previous neural networks

The topology of the input data is completely ignored

18 / 115

For Example

We have
Black and white patterns: 232×32 = 21024

Gray scale patterns: 25632×32 = 2561024

19 / 115

For Example

If we have an element that the network has never seen

20 / 115

Possible Solution

We can minimize this drawbacks by getting
Fully connected network of sufficient size can produce outputs that are
invariant with respect to such variations.

Problem!!!
Training time
Network size
Free parameters

21 / 115

Possible Solution

We can minimize this drawbacks by getting
Fully connected network of sufficient size can produce outputs that are
invariant with respect to such variations.

Problem!!!
Training time
Network size
Free parameters

21 / 115

Outline
1 Introduction

Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

22 / 115

Hubel/Wiesel Architecture

Something Notable [3]
D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981)

They commented
The visual cortex consists of a hierarchy of simple, complex, and
hyper-complex cells

23 / 115

Hubel/Wiesel Architecture

Something Notable [3]
D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981)

They commented
The visual cortex consists of a hierarchy of simple, complex, and
hyper-complex cells

23 / 115

Something Like

We have
Feature Hierarchy

Simple cells

Complex cells

Hyper-complex cells

24 / 115

History
Convolutional Neural Networks (CNN) were invented by [4]
In 1989, Yann LeCun and Yoshua Bengio introduced the concept of
Convolutional Neural networks.

25 / 115

About CNN’s

Something Notable
CNN’s Were neurobiologically motivated by the findings of locally sensitive
and orientation-selective nerve cells in the visual cortex.

In addition
They designed a network structure that implicitly extracts relevant
features.

Properties
Convolutional Neural Networks are a special kind of multilayer neural
networks.

26 / 115

About CNN’s

Something Notable
CNN’s Were neurobiologically motivated by the findings of locally sensitive
and orientation-selective nerve cells in the visual cortex.

In addition
They designed a network structure that implicitly extracts relevant
features.

Properties
Convolutional Neural Networks are a special kind of multilayer neural
networks.

26 / 115

About CNN’s

Something Notable
CNN’s Were neurobiologically motivated by the findings of locally sensitive
and orientation-selective nerve cells in the visual cortex.

In addition
They designed a network structure that implicitly extracts relevant
features.

Properties
Convolutional Neural Networks are a special kind of multilayer neural
networks.

26 / 115

About CNN’s

In addition
CNN is a feed-forward network that can extract topological properties
from an image.
Like almost every other neural networks they are trained with a
version of the back-propagation algorithm.
Convolutional Neural Networks are designed to recognize visual
patterns directly from pixel images with minimal preprocessing.
They can recognize patterns with extreme variability.

27 / 115

About CNN’s

In addition
CNN is a feed-forward network that can extract topological properties
from an image.
Like almost every other neural networks they are trained with a
version of the back-propagation algorithm.
Convolutional Neural Networks are designed to recognize visual
patterns directly from pixel images with minimal preprocessing.
They can recognize patterns with extreme variability.

27 / 115

About CNN’s

In addition
CNN is a feed-forward network that can extract topological properties
from an image.
Like almost every other neural networks they are trained with a
version of the back-propagation algorithm.
Convolutional Neural Networks are designed to recognize visual
patterns directly from pixel images with minimal preprocessing.
They can recognize patterns with extreme variability.

27 / 115

About CNN’s

In addition
CNN is a feed-forward network that can extract topological properties
from an image.
Like almost every other neural networks they are trained with a
version of the back-propagation algorithm.
Convolutional Neural Networks are designed to recognize visual
patterns directly from pixel images with minimal preprocessing.
They can recognize patterns with extreme variability.

27 / 115

Outline
1 Introduction

Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

28 / 115

Local Connectivity

We have the following idea [5]
Instead of using a full connectivity...

Input Image

We would have something like this

yi = f

(
n∑
i=1

wixi

)
(1)

29 / 115

Local Connectivity

We have the following idea [5]
Instead of using a full connectivity...

Input Image

We would have something like this

yi = f

(
n∑
i=1

wixi

)
(1)

29 / 115

Local Connectivity

We decide only to connect the neurons in a local way
Each hidden unit is connected only to a subregion (patch) of the
input image.
It is connected to all channels:

I 1 if gray scale
I 3 in the RGB case

30 / 115

Local Connectivity

We decide only to connect the neurons in a local way
Each hidden unit is connected only to a subregion (patch) of the
input image.
It is connected to all channels:

I 1 if gray scale
I 3 in the RGB case

30 / 115

Local Connectivity

We decide only to connect the neurons in a local way
Each hidden unit is connected only to a subregion (patch) of the
input image.
It is connected to all channels:

I 1 if gray scale
I 3 in the RGB case

30 / 115

Local Connectivity

We decide only to connect the neurons in a local way
Each hidden unit is connected only to a subregion (patch) of the
input image.
It is connected to all channels:

I 1 if gray scale
I 3 in the RGB case

30 / 115

Local Connectivity

We decide only to connect the neurons in a local way
Each hidden unit is connected only to a subregion (patch) of the
input image.
It is connected to all channels:

I 1 if gray scale
I 3 in the RGB case

30 / 115

Example

For gray scale, we get something like this

Input Image

Then, our formula changes

yi = f

∑
i∈Lp

wixi

 (2)

31 / 115

Example

For gray scale, we get something like this

Input Image

Then, our formula changes

yi = f

∑
i∈Lp

wixi

 (2)

31 / 115

Example

In the case of the 3 channels

Input Image

Thus

yi = f

 ∑
i∈Lp,c

wix
c
i

 (3)

32 / 115

Example

In the case of the 3 channels

Input Image

Thus

yi = f

 ∑
i∈Lp,c

wix
c
i

 (3)

32 / 115

Solving the following problems...

First
Fully connected hidden layer would have an unmanageable number of
parameters

Second
Computing the linear activation of the hidden units would have been
quite expensive

33 / 115

Solving the following problems...

First
Fully connected hidden layer would have an unmanageable number of
parameters

Second
Computing the linear activation of the hidden units would have been
quite expensive

33 / 115

How this looks in the image...

We have

Receptive Field

34 / 115

Outline
1 Introduction

Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

35 / 115

Parameter Sharing

Second Idea
Share matrix of parameters across certain units.

These units are organized into
The same feature “map”

I Where the units share same parameters (For example, the same mask)

36 / 115

Parameter Sharing

Second Idea
Share matrix of parameters across certain units.

These units are organized into
The same feature “map”

I Where the units share same parameters (For example, the same mask)

36 / 115

Example

We have something like this
Feature Map 1 Feature Map 2 Feature Map 3

37 / 115

Example

We have something like this
Feature Map 1 Feature Map 2 Feature Map 3

37 / 115

Now, in our notation

We have a collection of matrices representing this connectivity
Wij is the connection matrix the ith input channel with the jth
feature map.
In each cell of these matrices is the weight to be multiplied with the
local input to the local neuron.

An now why the name of convolution
Yes!!! The definition is coming now.

38 / 115

Now, in our notation

We have a collection of matrices representing this connectivity
Wij is the connection matrix the ith input channel with the jth
feature map.
In each cell of these matrices is the weight to be multiplied with the
local input to the local neuron.

An now why the name of convolution
Yes!!! The definition is coming now.

38 / 115

Outline
1 Introduction

Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

39 / 115

Digital Images

In computer vision [1, 6]
We usually operate on digital (discrete) images:

Sample the 2D space on a regular grid.
Quantize each sample (round to nearest integer).

The image can now be represented as a matrix of integer values,
f : [a, b]× [c, d]→ I

i ↓

j−→
79 5 6 90 12 34 2 1
8 90 12 34 26 78 34 5
8 1 3 90 12 34 11 61
77 90 12 34 200 2 9 45
1 3 90 12 20 1 6 23

40 / 115

Digital Images

In computer vision [1, 6]
We usually operate on digital (discrete) images:

Sample the 2D space on a regular grid.
Quantize each sample (round to nearest integer).

The image can now be represented as a matrix of integer values,
f : [a, b]× [c, d]→ I

i ↓

j−→
79 5 6 90 12 34 2 1
8 90 12 34 26 78 34 5
8 1 3 90 12 34 11 61
77 90 12 34 200 2 9 45
1 3 90 12 20 1 6 23

40 / 115

Digital Images

In computer vision [1, 6]
We usually operate on digital (discrete) images:

Sample the 2D space on a regular grid.
Quantize each sample (round to nearest integer).

The image can now be represented as a matrix of integer values,
f : [a, b]× [c, d]→ I

i ↓

j−→
79 5 6 90 12 34 2 1
8 90 12 34 26 78 34 5
8 1 3 90 12 34 11 61
77 90 12 34 200 2 9 45
1 3 90 12 20 1 6 23

40 / 115

Digital Images

In computer vision [1, 6]
We usually operate on digital (discrete) images:

Sample the 2D space on a regular grid.
Quantize each sample (round to nearest integer).

The image can now be represented as a matrix of integer values,
f : [a, b]× [c, d]→ I

i ↓

j−→
79 5 6 90 12 34 2 1
8 90 12 34 26 78 34 5
8 1 3 90 12 34 11 61
77 90 12 34 200 2 9 45
1 3 90 12 20 1 6 23

40 / 115

We can see the coordinate of f as follows

We have the following

f =

f−n,−n f−n,−n+1 · · · f−n,(n−1) f−n,n
...

. . .
... . .

. ...
... · · · f0,0 · · ·

...
... . .

. ...
. . .

...
fn×−n fn×−n+1 · · · fn×(n−1) fn,n

(4)

41 / 115

Many times we want to eliminate noise in a image
By using for example a moving average

This last moving average can be seen as

(f ∗ g) (i) =
n∑

j=−n

f (j) g (i− j) = 1
N

−m∑
j=m

f (j) (5)

With f (j) representing the value of the pixel at position i,

g (h) =
{ 1

N
if h ∈ {−m,−m + 1, ..., 1, 0, 1, ..., m− 1, m}

0 else
with 0 < m < n.

42 / 115

Many times we want to eliminate noise in a image
By using for example a moving average

This last moving average can be seen as

(f ∗ g) (i) =
n∑

j=−n

f (j) g (i− j) = 1
N

−m∑
j=m

f (j) (5)

With f (j) representing the value of the pixel at position i,

g (h) =
{ 1

N
if h ∈ {−m,−m + 1, ..., 1, 0, 1, ..., m− 1, m}

0 else
with 0 < m < n.

42 / 115

This can be generalized into the 2D images

Left f and Right f ∗ g

43 / 115

This can be generalized into the 2D images

Left f and Right f ∗ g

44 / 115

This can be generalized into the 2D images

Left f and Right f ∗ g

45 / 115

This can be generalized into the 2D images

Left f and Right f ∗ g

46 / 115

Moving average in 2D

Basically in 2D
We have that we can define different types of filter using the idea of
weighted average

(f ∗ g) (i, j) =
−n∑
k=n

n∑
l=−n

f (k, l)× g (i− k, j − l) (6)

What is this weight matrix also called a kernel of 3× 3 moving
average

1
9

 1 1 1
1 1 1
1 1 1

 "The Box Filter" (7)

47 / 115

Moving average in 2D

Basically in 2D
We have that we can define different types of filter using the idea of
weighted average

(f ∗ g) (i, j) =
−n∑
k=n

n∑
l=−n

f (k, l)× g (i− k, j − l) (6)

What is this weight matrix also called a kernel of 3× 3 moving
average

1
9

 1 1 1
1 1 1
1 1 1

 "The Box Filter" (7)

47 / 115

Outline
1 Introduction

Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

48 / 115

Convolution

Definition
Let f : [a, b]× [c, d]→ I be the image and g : [e, f]× [h, i]→ V be the
kernel. The output of convolving f with g, denoted f ∗ g is

(f ∗ g) [x, y] =
n∑

k=−n

n∑
l=−n

f (k, l) g (x− k, y − l) (8)

The Flipped Kernel

49 / 115

Back on the Convolutional Architecture

We have then something like this
Feature Maps

50 / 115

Thus

Each Feature Map forms a 2D grid of features
That can be computed with a discrete convolution (*) of a kernel matrix
kij which is the hidden weights matrix Wij with rows and columns with its
rows and columns flipped.

In addition
xi is the ith channel of input.
kij is the convolution kernel.
yj is the hidden layer output.

Thus the total output

yj =
∑
i

kij ∗ xi (9)

51 / 115

Thus

Each Feature Map forms a 2D grid of features
That can be computed with a discrete convolution (*) of a kernel matrix
kij which is the hidden weights matrix Wij with rows and columns with its
rows and columns flipped.

In addition
xi is the ith channel of input.
kij is the convolution kernel.
yj is the hidden layer output.

Thus the total output

yj =
∑
i

kij ∗ xi (9)

51 / 115

Thus

Each Feature Map forms a 2D grid of features
That can be computed with a discrete convolution (*) of a kernel matrix
kij which is the hidden weights matrix Wij with rows and columns with its
rows and columns flipped.

In addition
xi is the ith channel of input.
kij is the convolution kernel.
yj is the hidden layer output.

Thus the total output

yj =
∑
i

kij ∗ xi (9)

51 / 115

Thus

Each Feature Map forms a 2D grid of features
That can be computed with a discrete convolution (*) of a kernel matrix
kij which is the hidden weights matrix Wij with rows and columns with its
rows and columns flipped.

In addition
xi is the ith channel of input.
kij is the convolution kernel.
yj is the hidden layer output.

Thus the total output

yj =
∑
i

kij ∗ xi (9)

51 / 115

Thus

Each Feature Map forms a 2D grid of features
That can be computed with a discrete convolution (*) of a kernel matrix
kij which is the hidden weights matrix Wij with rows and columns with its
rows and columns flipped.

In addition
xi is the ith channel of input.
kij is the convolution kernel.
yj is the hidden layer output.

Thus the total output

yj =
∑
i

kij ∗ xi (9)

51 / 115

Furthermore

Let layer l be a Convolutional Layer
Then, the input of layer l comprises m(l−1)

1 feature maps from the previous
layer.

Each input layer has a size of m
(l−1)
2 ×m

(l−1)
3

In the case where l = 1, the input is a single image I consisting of one or
more channels.

Thus
The output of layer l consists of m(l)

1 feature maps of size m(l−1)
2 ×m(l−1)

3 .

52 / 115

Furthermore

Let layer l be a Convolutional Layer
Then, the input of layer l comprises m(l−1)

1 feature maps from the previous
layer.

Each input layer has a size of m
(l−1)
2 ×m

(l−1)
3

In the case where l = 1, the input is a single image I consisting of one or
more channels.

Thus
The output of layer l consists of m(l)

1 feature maps of size m(l−1)
2 ×m(l−1)

3 .

52 / 115

Furthermore

Let layer l be a Convolutional Layer
Then, the input of layer l comprises m(l−1)

1 feature maps from the previous
layer.

Each input layer has a size of m
(l−1)
2 ×m

(l−1)
3

In the case where l = 1, the input is a single image I consisting of one or
more channels.

Thus
The output of layer l consists of m(l)

1 feature maps of size m(l−1)
2 ×m(l−1)

3 .

52 / 115

Remark

We have that
A Convolutional Neural Network (CNN) directly accepts raw images
as input.

Thus, their importance when training discrete filters
Instead of assuming a certain comprehension of Computer Vision, one
could think this is as a Silver Bullet.

However, you still
You still need to be aware of :

I The need of great quantities of data.
I And there is not an understanding why this work.

53 / 115

Remark

We have that
A Convolutional Neural Network (CNN) directly accepts raw images
as input.

Thus, their importance when training discrete filters
Instead of assuming a certain comprehension of Computer Vision, one
could think this is as a Silver Bullet.

However, you still
You still need to be aware of :

I The need of great quantities of data.
I And there is not an understanding why this work.

53 / 115

Remark

We have that
A Convolutional Neural Network (CNN) directly accepts raw images
as input.

Thus, their importance when training discrete filters
Instead of assuming a certain comprehension of Computer Vision, one
could think this is as a Silver Bullet.

However, you still
You still need to be aware of :

I The need of great quantities of data.
I And there is not an understanding why this work.

53 / 115

Another Remark

We have the following
Y

(l)
j is a matrix representing the l layer and jth feature map.

Therefore
We can see the convolutional as a fusion of information from different
feature maps.

m
(l−1)
1∑
j=1

K
(l)
ij ∗ Y

(l−1)
j

54 / 115

Another Remark

We have the following
Y

(l)
j is a matrix representing the l layer and jth feature map.

Therefore
We can see the convolutional as a fusion of information from different
feature maps.

m
(l−1)
1∑
j=1

K
(l)
ij ∗ Y

(l−1)
j

54 / 115

Thus
Given a specific layer l, we have that ith feature map in such layer
equal to

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑
j=1

K
(l)
ij ∗ Y

(l−1)
j (10)

Where
Y

(l)
i is the ith feature map in layer l.
B

(l)
i is the bias matrix for output j.

K
(l)
ij is the filter of size

[
2h(l)

1 + 1
]
×
[
2h(l)

2 + 1
]
.

Thus
The input of layer l comprises m(l−1)

1 feature maps from the previous
layer, each of size m(l−1)

2 ×m(l−1)
3

55 / 115

Thus
Given a specific layer l, we have that ith feature map in such layer
equal to

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑
j=1

K
(l)
ij ∗ Y

(l−1)
j (10)

Where
Y

(l)
i is the ith feature map in layer l.
B

(l)
i is the bias matrix for output j.

K
(l)
ij is the filter of size

[
2h(l)

1 + 1
]
×
[
2h(l)

2 + 1
]
.

Thus
The input of layer l comprises m(l−1)

1 feature maps from the previous
layer, each of size m(l−1)

2 ×m(l−1)
3

55 / 115

Thus
Given a specific layer l, we have that ith feature map in such layer
equal to

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑
j=1

K
(l)
ij ∗ Y

(l−1)
j (10)

Where
Y

(l)
i is the ith feature map in layer l.
B

(l)
i is the bias matrix for output j.

K
(l)
ij is the filter of size

[
2h(l)

1 + 1
]
×
[
2h(l)

2 + 1
]
.

Thus
The input of layer l comprises m(l−1)

1 feature maps from the previous
layer, each of size m(l−1)

2 ×m(l−1)
3

55 / 115

Thus
Given a specific layer l, we have that ith feature map in such layer
equal to

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑
j=1

K
(l)
ij ∗ Y

(l−1)
j (10)

Where
Y

(l)
i is the ith feature map in layer l.
B

(l)
i is the bias matrix for output j.

K
(l)
ij is the filter of size

[
2h(l)

1 + 1
]
×
[
2h(l)

2 + 1
]
.

Thus
The input of layer l comprises m(l−1)

1 feature maps from the previous
layer, each of size m(l−1)

2 ×m(l−1)
3

55 / 115

Therefore

Thew output of layer l

It consists m(l)
1 feature maps of size m(l)

2 ×m
(l)
3

Something Notable
m

(l)
2 and m(l)

3 are influenced by border effects.
Therefore, the output feature maps when the convolutional sum is
defined properly have size

m
(l)
2 = m

(l−1)
2 − 2h(l)

1

m
(l)
3 = m

(l−1)
3 − 2h(l)

2

56 / 115

Therefore

Thew output of layer l

It consists m(l)
1 feature maps of size m(l)

2 ×m
(l)
3

Something Notable
m

(l)
2 and m(l)

3 are influenced by border effects.
Therefore, the output feature maps when the convolutional sum is
defined properly have size

m
(l)
2 = m

(l−1)
2 − 2h(l)

1

m
(l)
3 = m

(l−1)
3 − 2h(l)

2

56 / 115

Why?

Example
Convolutional Maps

57 / 115

Special Case

When l = 1
The input is a single image I consisting of one or more channels.

58 / 115

Thus

We have
Each feature map Y (l)

i in layer l consists of m(l)
1 ·m

(l)
2 units arranged in a

two dimensional array.

Thus, the unit at position (r, s) computes

(
Y

(l)
i

)
r,s

=
(
B

(l)
i

)
r,s

+
m

(l−1)
1∑
j=1

(
K

(l)
ij ∗ Y

(l−1)
j

)
r,s

=
(
B

(l)
i

)
r,s

+
m

(l−1)
1∑
j=1

h
(l)
1∑

k=−h(l)
1

h
(l)
2∑

t=−h(l)
2

(
K

(l)
ij

)
k,t

(
Y

(l−1)
j

)
r+k,s+t

59 / 115

Thus

We have
Each feature map Y (l)

i in layer l consists of m(l)
1 ·m

(l)
2 units arranged in a

two dimensional array.

Thus, the unit at position (r, s) computes

(
Y

(l)
i

)
r,s

=
(
B

(l)
i

)
r,s

+
m

(l−1)
1∑
j=1

(
K

(l)
ij ∗ Y

(l−1)
j

)
r,s

=
(
B

(l)
i

)
r,s

+
m

(l−1)
1∑
j=1

h
(l)
1∑

k=−h(l)
1

h
(l)
2∑

t=−h(l)
2

(
K

(l)
ij

)
k,t

(
Y

(l−1)
j

)
r+k,s+t

59 / 115

Example

A Convolutional Layer against a RGB Image using three masks/filters

Layered Image

Convolutional Masks

60 / 115

Outline
1 Introduction

Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

61 / 115

As in Multilayer Perceptron
We use a non-linearity

However, there is a drawback when using Back-Propagation under a
sigmoid function

s (x) = 1
1 + e−x

Because if we imagine a Convolutional Network as a series of layer
functions fi

y (A) = ft ◦ ft−1 ◦ · · · ◦ f2 ◦ f1 (A)

With ft is the last layer.

Therefore, we finish with a sequence of derivatives
∂y (A)
∂w1i

= ∂ft (ft−1)
∂ft−1

· ∂ft−1 (ft−2)
∂ft−2

· · · · · ∂f2 (f1)
∂f2

· ∂f1 (A)
∂w1i

62 / 115

As in Multilayer Perceptron
We use a non-linearity

However, there is a drawback when using Back-Propagation under a
sigmoid function

s (x) = 1
1 + e−x

Because if we imagine a Convolutional Network as a series of layer
functions fi

y (A) = ft ◦ ft−1 ◦ · · · ◦ f2 ◦ f1 (A)

With ft is the last layer.

Therefore, we finish with a sequence of derivatives
∂y (A)
∂w1i

= ∂ft (ft−1)
∂ft−1

· ∂ft−1 (ft−2)
∂ft−2

· · · · · ∂f2 (f1)
∂f2

· ∂f1 (A)
∂w1i

62 / 115

As in Multilayer Perceptron
We use a non-linearity

However, there is a drawback when using Back-Propagation under a
sigmoid function

s (x) = 1
1 + e−x

Because if we imagine a Convolutional Network as a series of layer
functions fi

y (A) = ft ◦ ft−1 ◦ · · · ◦ f2 ◦ f1 (A)

With ft is the last layer.

Therefore, we finish with a sequence of derivatives
∂y (A)
∂w1i

= ∂ft (ft−1)
∂ft−1

· ∂ft−1 (ft−2)
∂ft−2

· · · · · ∂f2 (f1)
∂f2

· ∂f1 (A)
∂w1i

62 / 115

Therefore

Given the commutativity of the product
You could put together the derivative of the sigmoid’s

f (x) = ds (x)
dx

= e−x

(1 + e−x)2

Therefore, deriving again
df (x)
dx

= − e−x

(1 + e−x)2 + 2 (e−x)2

(1 + e−x)3

After making df(x)
dx

= 0
We have the maximum is at x = 0

63 / 115

Therefore

Given the commutativity of the product
You could put together the derivative of the sigmoid’s

f (x) = ds (x)
dx

= e−x

(1 + e−x)2

Therefore, deriving again
df (x)
dx

= − e−x

(1 + e−x)2 + 2 (e−x)2

(1 + e−x)3

After making df(x)
dx

= 0
We have the maximum is at x = 0

63 / 115

Therefore

Given the commutativity of the product
You could put together the derivative of the sigmoid’s

f (x) = ds (x)
dx

= e−x

(1 + e−x)2

Therefore, deriving again
df (x)
dx

= − e−x

(1 + e−x)2 + 2 (e−x)2

(1 + e−x)3

After making df(x)
dx

= 0
We have the maximum is at x = 0

63 / 115

Therefore

The maximum for the derivative of the sigmoid
f (0) = 0.25

Therefore, Given a Deep Convolutional Network
We could finish with

lim
k→∞

(
ds (x)
dx

)k
= lim

k→∞
(0.25)k → 0

A vanishing derivative
Making quite difficult to do train a deeper network using this
activation function

64 / 115

Therefore

The maximum for the derivative of the sigmoid
f (0) = 0.25

Therefore, Given a Deep Convolutional Network
We could finish with

lim
k→∞

(
ds (x)
dx

)k
= lim

k→∞
(0.25)k → 0

A vanishing derivative
Making quite difficult to do train a deeper network using this
activation function

64 / 115

Therefore

The maximum for the derivative of the sigmoid
f (0) = 0.25

Therefore, Given a Deep Convolutional Network
We could finish with

lim
k→∞

(
ds (x)
dx

)k
= lim

k→∞
(0.25)k → 0

A vanishing derivative
Making quite difficult to do train a deeper network using this
activation function

64 / 115

Thus

The need to introduce a new function

f (x) = x+ = max (0, x)

It is called ReLu or Rectifier
With a smooth approximation (Softplus function)

f (x) =
ln
(
1 + ekx

)
k

65 / 115

Thus

The need to introduce a new function

f (x) = x+ = max (0, x)

It is called ReLu or Rectifier
With a smooth approximation (Softplus function)

f (x) =
ln
(
1 + ekx

)
k

65 / 115

Therefore, we have

When k = 1

+0.4 +1.0 +1.6 +2.2 +2.8−0.4−1.0−1.6−2.2−2.8
−0.5

+0.5

+1.0

+1.5

+2.0

+2.5

+3.0

+3.5Softplus

ReLu

66 / 115

Increase k

When k = 104

+0.0006 +0.0012 +0.0018 +0.0024−0.0004−0.001−0.0016−0.0022

−0.001

+0.001

+0.002

+0.003

+0.004

Softplus

ReLu

67 / 115

Non-Linearity Layer

If layer l is a non-linearity layer
Its input is given by m(l)

1 feature maps.

What about the output
Its output comprises again m(l)

1 = m
(l−1)
1 feature maps

Each of them of size

m
(l−1)
2 ×m(l−1)

3 (11)

With m(l)
2 = m

(l−1)
2 and m(l)

3 = m
(l−1)
3 .

68 / 115

Non-Linearity Layer

If layer l is a non-linearity layer
Its input is given by m(l)

1 feature maps.

What about the output
Its output comprises again m(l)

1 = m
(l−1)
1 feature maps

Each of them of size

m
(l−1)
2 ×m(l−1)

3 (11)

With m(l)
2 = m

(l−1)
2 and m(l)

3 = m
(l−1)
3 .

68 / 115

Non-Linearity Layer

If layer l is a non-linearity layer
Its input is given by m(l)

1 feature maps.

What about the output
Its output comprises again m(l)

1 = m
(l−1)
1 feature maps

Each of them of size

m
(l−1)
2 ×m(l−1)

3 (11)

With m(l)
2 = m

(l−1)
2 and m(l)

3 = m
(l−1)
3 .

68 / 115

Thus

With the final output

Y
(l)
i = f

(
Y

(l−1)
i

)
(12)

Where
f is the activation function used in layer l and operates point wise.

You can also add a gain

Y
(l)
i = gif

(
Y

(l−1)
i

)
(13)

69 / 115

Thus

With the final output

Y
(l)
i = f

(
Y

(l−1)
i

)
(12)

Where
f is the activation function used in layer l and operates point wise.

You can also add a gain

Y
(l)
i = gif

(
Y

(l−1)
i

)
(13)

69 / 115

Thus

With the final output

Y
(l)
i = f

(
Y

(l−1)
i

)
(12)

Where
f is the activation function used in layer l and operates point wise.

You can also add a gain

Y
(l)
i = gif

(
Y

(l−1)
i

)
(13)

69 / 115

Outline
1 Introduction

Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

70 / 115

Rectification Layer, Rabs

Now a rectification layer
Then its input comprises m(l)

1 feature maps of size m(l−1)
2 ×m(l−1)

3 .

Then, the absolute value for each component of the feature maps is
computed

Y
(l)
i =

∣∣∣Y (l)
i

∣∣∣ (14)

Where the absolute value
It is computed point wise such that the output consists of m(l)

1 = m
(l−1)
1

feature maps unchanged in size.

71 / 115

Rectification Layer, Rabs

Now a rectification layer
Then its input comprises m(l)

1 feature maps of size m(l−1)
2 ×m(l−1)

3 .

Then, the absolute value for each component of the feature maps is
computed

Y
(l)
i =

∣∣∣Y (l)
i

∣∣∣ (14)

Where the absolute value
It is computed point wise such that the output consists of m(l)

1 = m
(l−1)
1

feature maps unchanged in size.

71 / 115

Rectification Layer, Rabs

Now a rectification layer
Then its input comprises m(l)

1 feature maps of size m(l−1)
2 ×m(l−1)

3 .

Then, the absolute value for each component of the feature maps is
computed

Y
(l)
i =

∣∣∣Y (l)
i

∣∣∣ (14)

Where the absolute value
It is computed point wise such that the output consists of m(l)

1 = m
(l−1)
1

feature maps unchanged in size.

71 / 115

Thus

f (x) =
ln
(
1 + ekx

)
k

We have that
Experiments show that rectification plays a central role in achieving good
performance.

You can find this in
K. Jarrett, K. Kavukcuogl, M. Ranzato, and Y. LeCun. What is the best
multi-stage architecture for object recognition? In Computer Vision,
International Conference on, pages 2146–2153, 2009.

Remark
Rectification could be included in the non-linearity layer.
But also it can be seen as an independent layer.

72 / 115

Thus

f (x) =
ln
(
1 + ekx

)
k

We have that
Experiments show that rectification plays a central role in achieving good
performance.

You can find this in
K. Jarrett, K. Kavukcuogl, M. Ranzato, and Y. LeCun. What is the best
multi-stage architecture for object recognition? In Computer Vision,
International Conference on, pages 2146–2153, 2009.

Remark
Rectification could be included in the non-linearity layer.
But also it can be seen as an independent layer.

72 / 115

Thus

f (x) =
ln
(
1 + ekx

)
k

We have that
Experiments show that rectification plays a central role in achieving good
performance.

You can find this in
K. Jarrett, K. Kavukcuogl, M. Ranzato, and Y. LeCun. What is the best
multi-stage architecture for object recognition? In Computer Vision,
International Conference on, pages 2146–2153, 2009.

Remark
Rectification could be included in the non-linearity layer.
But also it can be seen as an independent layer.

72 / 115

Thus

f (x) =
ln
(
1 + ekx

)
k

We have that
Experiments show that rectification plays a central role in achieving good
performance.

You can find this in
K. Jarrett, K. Kavukcuogl, M. Ranzato, and Y. LeCun. What is the best
multi-stage architecture for object recognition? In Computer Vision,
International Conference on, pages 2146–2153, 2009.

Remark
Rectification could be included in the non-linearity layer.
But also it can be seen as an independent layer.

72 / 115

Given that we are using Backpropagation

We need a soft approximation to f (x) = |x|
For this, we have

∂f

∂x
= sgn (x)

When x 6= 0. Why?

We can use the following approximation

sgn (x) = 2
(exp {kx}

1 + exp {kx}

)
− 1

Therefore, we have by integration and working the C

f (x) = 2
k

ln (1 + exp {kx})− x− 2
k

ln (2)

73 / 115

Given that we are using Backpropagation

We need a soft approximation to f (x) = |x|
For this, we have

∂f

∂x
= sgn (x)

When x 6= 0. Why?

We can use the following approximation

sgn (x) = 2
(exp {kx}

1 + exp {kx}

)
− 1

Therefore, we have by integration and working the C

f (x) = 2
k

ln (1 + exp {kx})− x− 2
k

ln (2)

73 / 115

Given that we are using Backpropagation

We need a soft approximation to f (x) = |x|
For this, we have

∂f

∂x
= sgn (x)

When x 6= 0. Why?

We can use the following approximation

sgn (x) = 2
(exp {kx}

1 + exp {kx}

)
− 1

Therefore, we have by integration and working the C

f (x) = 2
k

ln (1 + exp {kx})− x− 2
k

ln (2)

73 / 115

We get the following situation

Something Notable

+0.0001 +0.00025 +0.0004−0.0001−0.00025−0.0004

−0 0001

+0.0001

+0.0002

+0.0003

+0.0004

+0.0005

+0.0006

+0.0007

74 / 115

Outline
1 Introduction

Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

75 / 115

Normalizing

Contrast normalization layer
The task of a local contrast normalization layer:

To enforce local competitiveness between adjacent units within a
feature map.
To enforce competitiveness units at the same spatial location.

We have two types of operations
Subtractive Normalization.
Brightness Normalization.

76 / 115

Normalizing

Contrast normalization layer
The task of a local contrast normalization layer:

To enforce local competitiveness between adjacent units within a
feature map.
To enforce competitiveness units at the same spatial location.

We have two types of operations
Subtractive Normalization.
Brightness Normalization.

76 / 115

Normalizing

Contrast normalization layer
The task of a local contrast normalization layer:

To enforce local competitiveness between adjacent units within a
feature map.
To enforce competitiveness units at the same spatial location.

We have two types of operations
Subtractive Normalization.
Brightness Normalization.

76 / 115

Normalizing

Contrast normalization layer
The task of a local contrast normalization layer:

To enforce local competitiveness between adjacent units within a
feature map.
To enforce competitiveness units at the same spatial location.

We have two types of operations
Subtractive Normalization.
Brightness Normalization.

76 / 115

Normalizing

Contrast normalization layer
The task of a local contrast normalization layer:

To enforce local competitiveness between adjacent units within a
feature map.
To enforce competitiveness units at the same spatial location.

We have two types of operations
Subtractive Normalization.
Brightness Normalization.

76 / 115

Subtractive Normalization

Given m
(l−1)
1 feature maps of size m

(l−1)
2 ×m

(l−1)
3

The output of layer l comprises m(l)
1 = m

(l−1)
1 feature maps unchanged in

size.

With the operation

Y
(l)
i = Y

(l−1)
i −

m
(l−1)
1∑
j=1

KG(σ) ∗ Y
(l−1)
j (15)

With (
KG(σ)

)
r,s

= 1√
2πσ2 exp

{
r2 + s2

2σ2

}
(16)

77 / 115

Subtractive Normalization

Given m
(l−1)
1 feature maps of size m

(l−1)
2 ×m

(l−1)
3

The output of layer l comprises m(l)
1 = m

(l−1)
1 feature maps unchanged in

size.

With the operation

Y
(l)
i = Y

(l−1)
i −

m
(l−1)
1∑
j=1

KG(σ) ∗ Y
(l−1)
j (15)

With (
KG(σ)

)
r,s

= 1√
2πσ2 exp

{
r2 + s2

2σ2

}
(16)

77 / 115

Subtractive Normalization

Given m
(l−1)
1 feature maps of size m

(l−1)
2 ×m

(l−1)
3

The output of layer l comprises m(l)
1 = m

(l−1)
1 feature maps unchanged in

size.

With the operation

Y
(l)
i = Y

(l−1)
i −

m
(l−1)
1∑
j=1

KG(σ) ∗ Y
(l−1)
j (15)

With (
KG(σ)

)
r,s

= 1√
2πσ2 exp

{
r2 + s2

2σ2

}
(16)

77 / 115

Brightness Normalization

An alternative is to normalize the brightness in combination with the
rectified linear units

(
Y

(l)
i

)
r,s

=

(
Y

(l−1)
i

)
r,s(

κ+ λ
∑m

(l−1)
1

j=1

(
Y

(l−1)
j

)2

r,s

)µ (17)

Where
κ, µ and λ are hyperparameters which can be set using a

f (x) =
ln
(
1 + ekx

)
k

validation set.

78 / 115

Brightness Normalization

An alternative is to normalize the brightness in combination with the
rectified linear units

(
Y

(l)
i

)
r,s

=

(
Y

(l−1)
i

)
r,s(

κ+ λ
∑m

(l−1)
1

j=1

(
Y

(l−1)
j

)2

r,s

)µ (17)

Where
κ, µ and λ are hyperparameters which can be set using a

f (x) =
ln
(
1 + ekx

)
k

validation set.

78 / 115

Outline
1 Introduction

Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

79 / 115

Subsampling Layer

Motivation
The motivation of subsampling the feature maps obtained by previous
layers is robustness to noise and distortions.

How?
Normally, in traditional Convolutional Networks subsampling this is
done by applying skipping factors!!!
However, it is possible to combine subsampling with pooling and do it
in a separate laye

80 / 115

Subsampling Layer

Motivation
The motivation of subsampling the feature maps obtained by previous
layers is robustness to noise and distortions.

How?
Normally, in traditional Convolutional Networks subsampling this is
done by applying skipping factors!!!
However, it is possible to combine subsampling with pooling and do it
in a separate laye

80 / 115

Sub-sampling

The subsampling layer
It seems to be acting as the well know sub-sampling pyramid

81 / 115

How is subsampling implemented?

We know that Image Pyramids
They were designed to find:

1 filter-based representations to decompose images into information at
multiple scales,

2 To extract features/structures of interest,
3 To attenuate noise.

Example of usage of this filters
The SURF and SIFT filters

82 / 115

How is subsampling implemented?

We know that Image Pyramids
They were designed to find:

1 filter-based representations to decompose images into information at
multiple scales,

2 To extract features/structures of interest,
3 To attenuate noise.

Example of usage of this filters
The SURF and SIFT filters

82 / 115

How is subsampling implemented?

We know that Image Pyramids
They were designed to find:

1 filter-based representations to decompose images into information at
multiple scales,

2 To extract features/structures of interest,
3 To attenuate noise.

Example of usage of this filters
The SURF and SIFT filters

82 / 115

How is subsampling implemented?

We know that Image Pyramids
They were designed to find:

1 filter-based representations to decompose images into information at
multiple scales,

2 To extract features/structures of interest,
3 To attenuate noise.

Example of usage of this filters
The SURF and SIFT filters

82 / 115

How is subsampling implemented?

We know that Image Pyramids
They were designed to find:

1 filter-based representations to decompose images into information at
multiple scales,

2 To extract features/structures of interest,
3 To attenuate noise.

Example of usage of this filters
The SURF and SIFT filters

82 / 115

Projection Vectors

Let I ∈ RN an image
And a projection transformation such that

a = PI

Where

a =
[

a0 a1 · · · aM−1
]
∈ RM

The transformation coefficients...

Additionally, we have the projection vectors in P

P =
[

p0 p1 · · · pM−1

]

83 / 115

Projection Vectors

Let I ∈ RN an image
And a projection transformation such that

a = PI

Where

a =
[

a0 a1 · · · aM−1
]
∈ RM

The transformation coefficients...

Additionally, we have the projection vectors in P

P =
[

p0 p1 · · · pM−1

]

83 / 115

Projection Vectors

Let I ∈ RN an image
And a projection transformation such that

a = PI

Where

a =
[

a0 a1 · · · aM−1
]
∈ RM

The transformation coefficients...

Additionally, we have the projection vectors in P

P =
[

p0 p1 · · · pM−1

]

83 / 115

Thus, we have the following cases

When M = N

Thus, the projection P is to be critically sampled (Relation with the
rank of P)

When N < M

Over-sampled

When M < N

Under-sampled

84 / 115

Thus, we have the following cases

When M = N

Thus, the projection P is to be critically sampled (Relation with the
rank of P)

When N < M

Over-sampled

When M < N

Under-sampled

84 / 115

Thus, we have the following cases

When M = N

Thus, the projection P is to be critically sampled (Relation with the
rank of P)

When N < M

Over-sampled

When M < N

Under-sampled

84 / 115

Therefore

We have that we can build a series of subsampled images{
I0 I1 · · · IT

}
Usually constructed with a separable 1D kernel h

Ik+1 = PIk =

1 0 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

︸ ︷︷ ︸

down-sampling

. . .

− h −
− h −
− h −

. . .

Ik

︸ ︷︷ ︸
conv toplitz matrix

85 / 115

Therefore

We have that we can build a series of subsampled images{
I0 I1 · · · IT

}
Usually constructed with a separable 1D kernel h

Ik+1 = PIk =

1 0 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

︸ ︷︷ ︸

down-sampling

. . .

− h −
− h −
− h −

. . .

Ik

︸ ︷︷ ︸
conv toplitz matrix

85 / 115

There are also other ways of doing this

subsampling can be done using so called skipping factors

s
(l)
1 and s(l)

2

The basic idea is to skip a fixed number of pixels
Therefore the size of the output feature map is given by

m
(l)
2 = m

(l−1)
2 − 2h(l)

1

s
(l)
1 + 1

and m(l)
3 = m

(l−1)
3 − 2h(l)

2

s
(l)
2 + 1

86 / 115

There are also other ways of doing this

subsampling can be done using so called skipping factors

s
(l)
1 and s(l)

2

The basic idea is to skip a fixed number of pixels
Therefore the size of the output feature map is given by

m
(l)
2 = m

(l−1)
2 − 2h(l)

1

s
(l)
1 + 1

and m(l)
3 = m

(l−1)
3 − 2h(l)

2

s
(l)
2 + 1

86 / 115

What is Pooling?

Pooling
Spatial pooling is way to compute image representation based
on encoded local features.

87 / 115

Pooling

Let l be a pooling layer
Its output comprises m(l)

1 = m
(l−1)
1 feature maps of reduced size.

Pooling Operation
It operates by placing windows at non-overlapping positions in each
feature map and keeping one value per window such that the feature maps
are subsampled.

88 / 115

Pooling

Let l be a pooling layer
Its output comprises m(l)

1 = m
(l−1)
1 feature maps of reduced size.

Pooling Operation
It operates by placing windows at non-overlapping positions in each
feature map and keeping one value per window such that the feature maps
are subsampled.

88 / 115

Example

If layer l is a pooling and subsampling layer and given m
(l−1)
1 = 4

feature maps

89 / 115

Thus

In the previous example
All feature maps are pooled and subsampled individually.

Each unit
In one of the m(l)

1 = 4 output feature maps represents the average or the
maximum within a fixed window of the corresponding feature map in layer
(l − 1).

90 / 115

Thus

In the previous example
All feature maps are pooled and subsampled individually.

Each unit
In one of the m(l)

1 = 4 output feature maps represents the average or the
maximum within a fixed window of the corresponding feature map in layer
(l − 1).

90 / 115

We distinguish two types of pooling

Average pooling
When using a boxcar filter, the operation is called average pooling and the
layer denoted by PA.

4 5
2 6

1 1

2 6
5 7 3

2 11

3

9

4.5 5

9 6.5

91 / 115

We distinguish two types of pooling

Max pooling
For max pooling, the maximum value of each window is taken. The layer
is denoted by PM .

4 5
2 6

1 1

2 6
5 7 3

2 11

3

9

5

9 7

6

92 / 115

Outline
1 Introduction

Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

93 / 115

Fully Connected Layer

If a layer l is a fully connected layer
If layer (l − 1) is a fully connected layer, use the equation to compute the
output of ith unit at layer l:

z
(l)
i =

m(l)∑
k=0

w
(l)
i,ky

(l)
k thus y(l)

i = f
(
z

(l)
i

)

Otherwise
Layer l expects m(l−1)

1 feature maps of size m(l−1)
2 ×m(l−1)

3 as input.

94 / 115

Fully Connected Layer

If a layer l is a fully connected layer
If layer (l − 1) is a fully connected layer, use the equation to compute the
output of ith unit at layer l:

z
(l)
i =

m(l)∑
k=0

w
(l)
i,ky

(l)
k thus y(l)

i = f
(
z

(l)
i

)

Otherwise
Layer l expects m(l−1)

1 feature maps of size m(l−1)
2 ×m(l−1)

3 as input.

94 / 115

Then

Thus, the ith unit in layer l computes

y
(l)
i =f

(
z

(l)
i

)
z

(l)
i =

m
(l−1)
1∑
j=1

m
(l−1)
2∑
r=1

m
(l−1)
3∑
s=1

w
(l)
i,j,r,s

(
Y

(l−1)
j

)
r,s

95 / 115

Here

Where w
(l)
i,j,r,s

It denotes the weight connecting the unit at position (r, s) in the jth
feature map of layer (l − 1) and the ith unit in layer l.

Something Notable
In practice, Convolutional Layers are used to learn a feature hierarchy
and one or more fully connected layers are used for classification
purposes based on the computed features.

96 / 115

Here

Where w
(l)
i,j,r,s

It denotes the weight connecting the unit at position (r, s) in the jth
feature map of layer (l − 1) and the ith unit in layer l.

Something Notable
In practice, Convolutional Layers are used to learn a feature hierarchy
and one or more fully connected layers are used for classification
purposes based on the computed features.

96 / 115

Basically

We can use a loss function at the output of such layer

L (W) =
N∑
n=1

En (W) =
N∑
n=1

K∑
k=1

(
y

(l)
nk − tnk

)2
(Sum of Squared Error)

L (W) =
N∑
n=1

En (W) =
N∑
n=1

K∑
k=1

tnk log
(
y

(l)
nk

)
(Cross-Entropy Error)

Assuming W the tensor used to represent all the possible weights
We can use the Backpropagation idea as long we can apply the
corresponding derivatives.

97 / 115

Basically

We can use a loss function at the output of such layer

L (W) =
N∑
n=1

En (W) =
N∑
n=1

K∑
k=1

(
y

(l)
nk − tnk

)2
(Sum of Squared Error)

L (W) =
N∑
n=1

En (W) =
N∑
n=1

K∑
k=1

tnk log
(
y

(l)
nk

)
(Cross-Entropy Error)

Assuming W the tensor used to represent all the possible weights
We can use the Backpropagation idea as long we can apply the
corresponding derivatives.

97 / 115

Outline
1 Introduction

Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

98 / 115

We have the following Architecture

Simplified Architecture by Jean LeCun “Backpropagation applied to
handwritten zip code recognition”

99 / 115

Therefore, we have

Layer l = 1
This Layer is using a Softplus f with 1 channels j = 1 Black and
White

f

[(
Y

(1)
1

)
r,s

]
= f

(B(l)
1

)
r,s

+
h

(1)
1∑

k=−h(1)
1

h
(1)
2∑

t=−h(1)
2

(
K

(1)
ij

)
k,t

(
Y

(0)
1

)
r+k,s+t

100 / 115

Now

We have the l = 2 subsampling for each coordinate

Y
(3)

1 =

1 0 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

 f
[(
Y

(1)
1

)]

1 0 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

T

101 / 115

Then, you repeat the previous

Thus we obtain a reduced convoluted version Y
(6)

1 of the Y
(4)

1
convolution and subsampling

Thus, we use those as inputs for the fully connected layer of input.

Now assuming a single k = 1 neuron

y
(7)
1 =f

(
z

(7)
1

)
z

(7)
1 =

m
(6)
2∑

r=1

m
(6)
3∑

s=1
w(7)
r,s

(
Y

(6)
1

)
r,s

102 / 115

Then, you repeat the previous

Thus we obtain a reduced convoluted version Y
(6)

1 of the Y
(4)

1
convolution and subsampling

Thus, we use those as inputs for the fully connected layer of input.

Now assuming a single k = 1 neuron

y
(7)
1 =f

(
z

(7)
1

)
z

(7)
1 =

m
(6)
2∑

r=1

m
(6)
3∑

s=1
w(7)
r,s

(
Y

(6)
1

)
r,s

102 / 115

We have

That our final cost function is equal to

L (t) = 1
2
(
y

(7)
1 − t

(7)
1

)2

103 / 115

Outline
1 Introduction

Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

104 / 115

After collecting all input/output

Therefore
We have using sum of squared errors (loss function):

min
W

H (W) = 1
2
(
y

(7)
1 − t

(7)
1

)2

Therefore, we can obtain

∂H (W)
∂w

(7)
1,r,s

= 1
2 ×

∂
(
y

(7)
1 − t

(7)
1

)2

∂w
(7)
1,r,s

105 / 115

After collecting all input/output

Therefore
We have using sum of squared errors (loss function):

min
W

H (W) = 1
2
(
y

(7)
1 − t

(7)
1

)2

Therefore, we can obtain

∂H (W)
∂w

(7)
1,r,s

= 1
2 ×

∂
(
y

(7)
1 − t

(7)
1

)2

∂w
(7)
1,r,s

105 / 115

Therefore

We get in the first part of the equation

∂
(
t1 − y(7)

1

)2

∂w
(7)
1,r,s

=
(
y

(7)
1 − t

(7)
1

) ∂y
(7)
1

∂w
(7)
1,r,s

With

y
(7)
1 = f

(
z

(7)
1

)
=

ln
(

1 + ekz
(7)
k

)
k

106 / 115

Therefore

We get in the first part of the equation

∂
(
t1 − y(7)

1

)2

∂w
(7)
1,r,s

=
(
y

(7)
1 − t

(7)
1

) ∂y
(7)
1

∂w
(7)
1,r,s

With

y
(7)
1 = f

(
z

(7)
1

)
=

ln
(

1 + ekz
(7)
k

)
k

106 / 115

Therefore

We have

∂y
(7)
1

∂w
(7)
1,r,s

=
∂f
(
z

(7)
1

)
∂z

(7)
1

× ∂z
(7)
1

∂w
(7)
1,r,s

Therefore
∂f
(
z

(7)
1

)
∂z

(7)
1

= ekz
(7)
1(

1 + ekz
(7)
1
)

Finally

∂z
(7)
1

∂w
(7)
1,r,s

=
(
Y

(6)
1

)
r,s

107 / 115

Therefore

We have

∂y
(7)
1

∂w
(7)
1,r,s

=
∂f
(
z

(7)
1

)
∂z

(7)
1

× ∂z
(7)
1

∂w
(7)
1,r,s

Therefore
∂f
(
z

(7)
1

)
∂z

(7)
1

= ekz
(7)
1(

1 + ekz
(7)
1
)

Finally

∂z
(7)
1

∂w
(7)
1,r,s

=
(
Y

(6)
1

)
r,s

107 / 115

Therefore

We have

∂y
(7)
1

∂w
(7)
1,r,s

=
∂f
(
z

(7)
1

)
∂z

(7)
1

× ∂z
(7)
1

∂w
(7)
1,r,s

Therefore
∂f
(
z

(7)
1

)
∂z

(7)
1

= ekz
(7)
1(

1 + ekz
(7)
1
)

Finally

∂z
(7)
1

∂w
(7)
1,r,s

=
(
Y

(6)
1

)
r,s

107 / 115

Now

Given the pooling

Y
(6)

1 = Sf
[(
Y

(4)
1

)]
ST

We have that

(
Y

(4)
1

)
r,s

=
(
B

(4)
1

)
r,s

+
h

(l)
1∑

k=−h(l)
1

h
(l)
2∑

t=−h(l)
2

(
K

(4)
11

)
k,t

(
Y (3)

)
r+k,s+t

108 / 115

Now

Given the pooling

Y
(6)

1 = Sf
[(
Y

(4)
1

)]
ST

We have that

(
Y

(4)
1

)
r,s

=
(
B

(4)
1

)
r,s

+
h

(l)
1∑

k=−h(l)
1

h
(l)
2∑

t=−h(l)
2

(
K

(4)
11

)
k,t

(
Y (3)

)
r+k,s+t

108 / 115

Therefore

We have then

∂H (W)
∂
(
K

(4)
11

)
k,t

= 1
2 ×

∂
(
y

(7)
1 − t1

)2

∂
(
K

(4)
11

)
k,t

We have the following chain of derivations

∂H (W)
∂
(
K

(4)
11

)
k,t

=
(
y

(l)
i − ti

) ∂f (z(7)
i

)
∂z

(7)
i

× ∂z
(7)
i

∂
(
Y

(6)
1

)
r,s

×
∂
(
Y

(6)
1

)
r,s

∂
(
K

(4)
11

)
k,t

109 / 115

Therefore

We have then

∂H (W)
∂
(
K

(4)
11

)
k,t

= 1
2 ×

∂
(
y

(7)
1 − t1

)2

∂
(
K

(4)
11

)
k,t

We have the following chain of derivations

∂H (W)
∂
(
K

(4)
11

)
k,t

=
(
y

(l)
i − ti

) ∂f (z(7)
i

)
∂z

(7)
i

× ∂z
(7)
i

∂
(
Y

(6)
1

)
r,s

×
∂
(
Y

(6)
1

)
r,s

∂
(
K

(4)
11

)
k,t

109 / 115

Therefore

We have
∂z

(7)
i

∂
(
Y

(6)
1

)
r,s

= w(7)
r,s

The final convolution is assuming that

∂
(
Y

(6)
1

)
r,s

∂
(
K

(4)
11

)
k,t

=
∂f

[(
Y

(4)
1

)
2(r−1),2(s−1)

]
∂
(
K

(4)
11

)
k,t

110 / 115

Therefore

We have
∂z

(7)
i

∂
(
Y

(6)
1

)
r,s

= w(7)
r,s

The final convolution is assuming that

∂
(
Y

(6)
1

)
r,s

∂
(
K

(4)
11

)
k,t

=
∂f

[(
Y

(4)
1

)
2(r−1),2(s−1)

]
∂
(
K

(4)
11

)
k,t

110 / 115

Therefore

We have

∂f

[(
Y

(4)
1

)
2(r−1),2(s−1)

]
∂
(
K

(4)
11

)
k,t

=
∂f

[(
Y

(4)
1

)
2(r−1),2(s−1)

]
∂
(
Y

(4)
1

)
2(r−1),2(s−1)

×
∂
(
Y

(4)
1

)
2(r−1),2(s−1)

∂
(
K

(4)
11

)
k,t

Then

∂f

[(
Y

(4)
1

)
2(r−1),2(s−1)

]
∂
(
Y

(4)
1

)
2(r−1),2(s−1)

= f ′
[(
Y

(4)
1

)
2(r−1),2(s−1)

]

111 / 115

Therefore

We have

∂f

[(
Y

(4)
1

)
2(r−1),2(s−1)

]
∂
(
K

(4)
11

)
k,t

=
∂f

[(
Y

(4)
1

)
2(r−1),2(s−1)

]
∂
(
Y

(4)
1

)
2(r−1),2(s−1)

×
∂
(
Y

(4)
1

)
2(r−1),2(s−1)

∂
(
K

(4)
11

)
k,t

Then

∂f

[(
Y

(4)
1

)
2(r−1),2(s−1)

]
∂
(
Y

(4)
1

)
2(r−1),2(s−1)

= f ′
[(
Y

(4)
1

)
2(r−1),2(s−1)

]

111 / 115

Finally, we have

The equation

∂
(
Y

(4)
1

)
2(r−1),2(s−1)

∂
(
K

(4)
11

)
k,t

=
(
Y (3)

)
2(r−1)+k,2(s−1)+t

112 / 115

The Other Equations

I will leave you to devise them
They are a repetitive procedure.

113 / 115

R. Szeliski, Computer Vision: Algorithms and Applications.
Berlin, Heidelberg: Springer-Verlag, 1st ed., 2010.

S. Haykin, Neural Networks and Learning Machines.
No. v. 10 in Neural networks and learning machines, Prentice Hall,
2009.
D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex,” The Journal of
physiology, vol. 160, no. 1, p. 106, 1962.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

W. Zhang, K. Itoh, J. Tanida, and Y. Ichioka, “Parallel distributed
processing model with local space-invariant interconnections and its
optical architecture,” Appl. Opt., vol. 29, pp. 4790–4797, Nov 1990.

114 / 115

J. J. Weng, N. Ahuja, and T. S. Huang, “Learning recognition and
segmentation of 3-d objects from 2-d images,” in 1993 (4th)
International Conference on Computer Vision, pp. 121–128, IEEE,
1993.

115 / 115

	Introduction
	Image Processing
	Multilayer Neural Network Classification
	Drawbacks

	Convolutional Networks
	History
	Local Connectivity
	Sharing Parameters

	Layers
	Convolutional Layer
	Definition of Convolution
	Non-Linearity Layer
	Rectification Layer
	Local Contrast Normalization Layer
	Feature Pooling and Subsampling Layer
	Finally, The Fully Connected Layer

	An Example of CNN
	The Proposed Architecture
	Backpropagation

