Introduction to Neural Networks and Deep Learning Regularization

Andres Mendez-Vazquez

August 24, 2020

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
- Dropout as Regularization
- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data Flow
- Random dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/Overfitting
- Batch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data Transformations
- For More in Normalization

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example

2) The Problem with Overfitting

- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
- Dropout as Regularization
- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

Introduction

What did we see until now?

The design of learning machines from two main points:

Introduction

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View

Introduction

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View
- Linear Algebra and Optimization Point of View

Introduction

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View
- Linear Algebra and Optimization Point of View

Going back to the probability models

We might think in the machine to be learned as a function $g(\boldsymbol{x} \mid \mathcal{D}) \ldots$.

Introduction

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View
- Linear Algebra and Optimization Point of View

Going back to the probability models

We might think in the machine to be learned as a function $g(\boldsymbol{x} \mid \mathcal{D}) \ldots$.

- Something as curve fitting...

Introduction

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View
- Linear Algebra and Optimization Point of View

Going back to the probability models

We might think in the machine to be learned as a function $g(\boldsymbol{x} \mid \mathcal{D}) \ldots$

- Something as curve fitting...

Under a data set

$$
\begin{equation*}
\mathcal{D}=\left\{\left(\boldsymbol{x}_{i}, y_{i}\right) \mid i=1,2, \ldots, N\right\} \tag{1}
\end{equation*}
$$

Introduction

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View
- Linear Algebra and Optimization Point of View

Going back to the probability models

We might think in the machine to be learned as a function $g(\boldsymbol{x} \mid \mathcal{D}) \ldots$

- Something as curve fitting...

Under a data set

$$
\begin{equation*}
\mathcal{D}=\left\{\left(\boldsymbol{x}_{i}, y_{i}\right) \mid i=1,2, \ldots, N\right\} \tag{1}
\end{equation*}
$$

Remark: Where the $\boldsymbol{x}_{i} \sim p(\boldsymbol{x} \mid \Theta)!!!$

Thus, we have that

Two main functions

- A function $g(x \mid \mathcal{D})$ obtained using some algorithm!!!

Thus, we have that

Two main functions

- A function $g(\boldsymbol{x} \mid \mathcal{D})$ obtained using some algorithm!!!
- $E[y \mid \boldsymbol{x}]$ the optimal regression...

Thus, we have that

Two main functions

- A function $g(x \mid \mathcal{D})$ obtained using some algorithm!!!
- $E[y \mid \boldsymbol{x}]$ the optimal regression...

Important

The key factor here is the dependence of the approximation on \mathcal{D}.

Thus, we have that

Two main functions

- A function $g(x \mid \mathcal{D})$ obtained using some algorithm!!!
- $E[y \mid \boldsymbol{x}]$ the optimal regression...

Important

The key factor here is the dependence of the approximation on \mathcal{D}.

Why?

The approximation may be very good for a specific training data set but very bad for another.

Thus, we have that

Two main functions

- A function $g(\boldsymbol{x} \mid \mathcal{D})$ obtained using some algorithm!!!
- $E[y \mid \boldsymbol{x}]$ the optimal regression...

Important

The key factor here is the dependence of the approximation on \mathcal{D}.

Why?

The approximation may be very good for a specific training data set but very bad for another.

- This is the reason of studying fusion of information at decision level...

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
- Dropout as Regularization
- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data Flow
-

Random dropout probability

- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

How do we measure the difference? [1]
We have that

$$
\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)
$$

How do we measure the difference? [1]
We have that

$$
\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)
$$

We can do that for our data

$$
\operatorname{Var}_{\mathcal{D}}(g(\boldsymbol{x} \mid \mathcal{D}))=E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right)
$$

How do we measure the difference? [1]
We have that

$$
\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)
$$

We can do that for our data

$$
\operatorname{Var}_{\mathcal{D}}(g(\boldsymbol{x} \mid \mathcal{D}))=E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right)
$$

Now, if we add and subtract

$$
\begin{equation*}
E_{D}[g(\boldsymbol{x} \mid \mathcal{D})] \tag{2}
\end{equation*}
$$

How do we measure the difference? [1]

We have that

$$
\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)
$$

We can do that for our data

$$
\operatorname{Var}_{\mathcal{D}}(g(\boldsymbol{x} \mid \mathcal{D}))=E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right)
$$

Now, if we add and subtract

$$
\begin{equation*}
E_{D}[g(\boldsymbol{x} \mid \mathcal{D})] \tag{2}
\end{equation*}
$$

Remark: The expected output of the machine $g(\boldsymbol{x} \mid \mathcal{D})$

Thus, we have that

Or Original variance

$\operatorname{Var}_{\mathcal{D}}(g(x \mid \mathcal{D}))=E_{D}\left((g(x \mid \mathcal{D})-E[y \mid x])^{2}\right)$

Thus, we have that

Or Original variance

$$
\begin{aligned}
\operatorname{Var}_{\mathcal{D}}(g(\boldsymbol{x} \mid \mathcal{D})) & =E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right) \\
& =E_{D}\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]+E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}\right)
\end{aligned}
$$

Thus, we have that

Or Original variance

$$
\begin{aligned}
\operatorname{Var}_{\mathcal{D}}(g(\boldsymbol{x} \mid \mathcal{D})) & =E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right) \\
& =E_{D}\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]+E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}\right) \\
& =E_{D}\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]\right)^{2}+\ldots\right. \\
& \ldots 2\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]\right)\right)\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)+\ldots \\
& \left.\ldots\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}\right)
\end{aligned}
$$

Finally

Thus, we have that

Or Original variance

$$
\begin{aligned}
\operatorname{Var}_{\mathcal{D}}(g(\boldsymbol{x} \mid \mathcal{D})) & =E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right) \\
& =E_{D}\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]+E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}\right) \\
& =E_{D}\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]\right)^{2}+\ldots\right. \\
& \ldots 2\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]\right)\right)\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)+\ldots \\
& \left.\ldots\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}\right)
\end{aligned}
$$

Finally

$$
\begin{equation*}
E_{D}\left(\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]\right)\right)\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)\right)=? \tag{3}
\end{equation*}
$$

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
- Dropout as Regularization
- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

We have the Bias-Variance

Our Final Equation

$$
E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right)=\underbrace{E_{D}\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]\right)^{2}\right)}_{\text {VARIANCE }}+\underbrace{\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}}_{\text {BIAS }}
$$

We have the Bias-Variance

Our Final Equation

$$
E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right)=\underbrace{E_{D}\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]\right)^{2}\right)}_{\text {VARIANCE }}+\underbrace{\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}}_{\text {BIAS }}
$$

Where the variance

It represents the measure of the error between our machine $g(\boldsymbol{x} \mid \mathcal{D})$ and the expected output of the machine under $\boldsymbol{x}_{i} \sim p(\boldsymbol{x} \mid \Theta)$.

We have the Bias-Variance

Our Final Equation

$$
E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right)=\underbrace{E_{D}\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]\right)^{2}\right)}_{\text {VARIANCE }}+\underbrace{\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}}_{\text {BIAS }}
$$

Where the variance

It represents the measure of the error between our machine $g(\boldsymbol{x} \mid \mathcal{D})$ and the expected output of the machine under $\boldsymbol{x}_{i} \sim p(\boldsymbol{x} \mid \Theta)$.

Where the bias

It represents the quadratic error between the expected output of the machine under $\boldsymbol{x}_{i} \sim p(\boldsymbol{x} \mid \Theta)$ and the expected output of the optimal regression.

We have the Bias-Variance

Our Final Equation

$$
E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right)=\underbrace{E_{D}\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]\right)^{2}\right)}_{V A R I A N C E}+\underbrace{\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}}_{B I A S}
$$

Where the variance

It represents the measure of the error between our machine $g(\boldsymbol{x} \mid \mathcal{D})$ and the expected output of the machine under $\boldsymbol{x}_{i} \sim p(\boldsymbol{x} \mid \Theta)$.

Where the bias

It represents the quadratic error between the expected output of the machine under $\boldsymbol{x}_{i} \sim p(\boldsymbol{x} \mid \Theta)$ and the expected output of the optimal regression.

Remarks

We have then

Even if the estimator is unbiased, it can still result in a large mean square error due to a large variance term.

Remarks

We have then

Even if the estimator is unbiased, it can still result in a large mean square error due to a large variance term.

The situation is more dire in a finite set of data \mathcal{D}
We have then a trade-off:

Remarks

We have then

Even if the estimator is unbiased, it can still result in a large mean square error due to a large variance term.

The situation is more dire in a finite set of data \mathcal{D}
We have then a trade-off:
(1) Increasing the bias decreases the variance and vice versa.

Remarks

We have then

Even if the estimator is unbiased, it can still result in a large mean square error due to a large variance term.

The situation is more dire in a finite set of data \mathcal{D}
We have then a trade-off:
(1) Increasing the bias decreases the variance and vice versa.
(2) This is known as the bias-variance dilemma.

Similar to...

Curve Fitting

If, for example, the adopted model is complex (many parameters involved) with respect to the number N, the model will fit the idiosyncrasies of the specific data set.

Similar to...

Curve Fitting

If, for example, the adopted model is complex (many parameters involved) with respect to the number N, the model will fit the idiosyncrasies of the specific data set.

Thus

Thus, it will result in low bias but will yield high variance, as we change from one data set to another data set.

Similar to...

Curve Fitting

If, for example, the adopted model is complex (many parameters involved) with respect to the number N, the model will fit the idiosyncrasies of the specific data set.

Thus

Thus, it will result in low bias but will yield high variance, as we change from one data set to another data set.

Furthermore

If N grows we can have a more complex model to be fitted which reduces bias and ensures low variance.

Similar to...

Curve Fitting

If, for example, the adopted model is complex (many parameters involved) with respect to the number N, the model will fit the idiosyncrasies of the specific data set.

Thus

Thus, it will result in low bias but will yield high variance, as we change from one data set to another data set.

Furthermore

If N grows we can have a more complex model to be fitted which reduces bias and ensures low variance.

- However, N is always finite!!!

Thus

You always need to compromise

However, you always have some a priori knowledge about the data

Thus

You always need to compromise

However, you always have some a priori knowledge about the data

Allowing you to impose restrictions
 Lowering the bias and the variance

Thus

You always need to compromise

However, you always have some a priori knowledge about the data

Allowing you to impose restrictions
 Lowering the bias and the variance

Nevertheless
We have the following example to grasp better the bothersome bias-variance dilemma.

For this

Assume

The data is generated by the following function

$$
\begin{aligned}
& y=f(x)+\epsilon \\
& \epsilon \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right)
\end{aligned}
$$

For this

Assume

The data is generated by the following function

$$
\begin{aligned}
& y=f(x)+\epsilon \\
& \epsilon \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right)
\end{aligned}
$$

We know that

The optimum regressor is $E[y \mid x]=f(x)$

For this

Assume

The data is generated by the following function

$$
\begin{aligned}
& y=f(x)+\epsilon, \\
& \epsilon \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right)
\end{aligned}
$$

We know that

The optimum regressor is $E[y \mid x]=f(x)$

Furthermore

Assume that the randomness in the different training sets, \mathcal{D}, is due to the y_{i} 's (Affected by noise), while the respective points, x_{i}, are fixed.

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
- Dropout as Regularization
- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

Sampling the Space [2]

Imagine that $\mathcal{D} \subset\left[x_{1}, x_{2}\right]$ in which x lies
For example, you can choose $x_{i}=x_{1}+\frac{x_{2}-x_{1}}{N-1}(i-1)$ with $i=1,2, \ldots, N$

Case 1

Choose the estimate of $f(x), g(x \mid \mathcal{D})$, to be independent of \mathcal{D}
For example, $g(x)=w_{1} x+w_{0}$

Case 1

Choose the estimate of $f(x), g(x \mid \mathcal{D})$, to be independent of \mathcal{D}
For example, $g(x)=w_{1} x+w_{0}$

For example, the points are spread around $(x, f(x))$

Case 1

Since $g(x)$ is fixed

$$
\begin{equation*}
E_{\mathcal{D}}[g(x \mid \mathcal{D})]=g(x \mid \mathcal{D}) \equiv g(x) \tag{4}
\end{equation*}
$$

Case 1

Since $g(x)$ is fixed

$$
\begin{equation*}
E_{\mathcal{D}}[g(x \mid \mathcal{D})]=g(x \mid \mathcal{D}) \equiv g(x) \tag{4}
\end{equation*}
$$

With

$$
\begin{equation*}
\operatorname{Var}_{\mathcal{D}}[g(x \mid \mathcal{D})]=0 \tag{5}
\end{equation*}
$$

Case 1

Since $g(x)$ is fixed

$$
\begin{equation*}
E_{\mathcal{D}}[g(x \mid \mathcal{D})]=g(x \mid \mathcal{D}) \equiv g(x) \tag{4}
\end{equation*}
$$

With

$$
\begin{equation*}
\operatorname{Var}_{\mathcal{D}}[g(x \mid \mathcal{D})]=0 \tag{5}
\end{equation*}
$$

On the other hand

Because $g(x)$ was chosen arbitrarily the expected bias must be large.

$$
\begin{equation*}
\underbrace{\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}}_{B I A S} \tag{6}
\end{equation*}
$$

Case 2

In the other hand

Now, $g_{1}(x)$ corresponds to a polynomial of high degree so it can pass through each training point in \mathcal{D}.

Case 2

In the other hand

Now, $g_{1}(x)$ corresponds to a polynomial of high degree so it can pass through each training point in \mathcal{D}.

Example of $g_{1}(x)$

Case 2

Due to the zero mean of the noise source

$$
\begin{equation*}
E_{D}\left[g_{1}(\boldsymbol{x} \mid \mathcal{D})\right]=f(x)=E[y \mid x] \text { for any } x=x_{i} \tag{7}
\end{equation*}
$$

Remark: At the training points the bias is zero.

Case 2

Due to the zero mean of the noise source

$$
\begin{equation*}
E_{D}\left[g_{1}(\boldsymbol{x} \mid \mathcal{D})\right]=f(x)=E[y \mid x] \text { for any } x=x_{i} \tag{7}
\end{equation*}
$$

Remark: At the training points the bias is zero.

However the variance increases

$$
\begin{aligned}
E_{D}\left[\left(g_{1}(\boldsymbol{x} \mid \mathcal{D})-E_{D}\left[g_{1}(\boldsymbol{x} \mid \mathcal{D})\right]\right)^{2}\right] & =E_{D}\left[(f(x)+\epsilon-f(x))^{2}\right] \\
& =\sigma_{\epsilon}^{2}, \text { for } x=x_{i}, i=1,2, \ldots, N
\end{aligned}
$$

Case 2

Due to the zero mean of the noise source

$$
\begin{equation*}
E_{D}\left[g_{1}(\boldsymbol{x} \mid \mathcal{D})\right]=f(x)=E[y \mid x] \text { for any } x=x_{i} \tag{7}
\end{equation*}
$$

Remark: At the training points the bias is zero.

However the variance increases

$$
\begin{aligned}
E_{D}\left[\left(g_{1}(\boldsymbol{x} \mid \mathcal{D})-E_{D}\left[g_{1}(\boldsymbol{x} \mid \mathcal{D})\right]\right)^{2}\right] & =E_{D}\left[(f(x)+\epsilon-f(x))^{2}\right] \\
& =\sigma_{\epsilon}^{2}, \text { for } x=x_{i}, i=1,2, \ldots, N
\end{aligned}
$$

In other words

The bias becomes zero (or approximately zero) but the variance is now equal to the variance of the noise source.

Observations

First

Everything that has been said so far applies to both the regression and the classification tasks.

Observations

First

Everything that has been said so far applies to both the regression and the classification tasks.

However

Mean squared error is not the best way to measure the power of a classifier.

Observations

First

Everything that has been said so far applies to both the regression and the classification tasks.

However

Mean squared error is not the best way to measure the power of a classifier.

```
Think about
A classifier that sends everything far away of the hyperplane!!! Away from
the values + - 1!!!
```


Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example

(2) The Problem with Overfitting

- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
- Dropout as Regularization
- Introduction
- Dropout Proces
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

The house example (From Andrew Ng Course)

Imagine the following data set

Now assume that we use a regressor

For the fitting

$$
\frac{1}{2} \sum_{i=1}^{N}\left(h_{\boldsymbol{\theta}}\left(x_{i}\right)-y_{i}\right)^{2}
$$

Now assume that we use a regressor

For the fitting

$$
\frac{1}{2} \sum_{i=1}^{N}\left(h_{\boldsymbol{\theta}}\left(x_{i}\right)-y_{i}\right)^{2}
$$

We can then run one of our machine to see what minimize better the previous equation
Question: Did you notice that I did not impose any structure to $h_{\boldsymbol{w}}(x)$?

Then, First fitting

What about using $h_{1}(x)=\theta_{0}+\theta_{1} x+\theta_{2} x^{2}$?

Second fitting

What about using $h_{2}(x)=\theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\theta_{3} x^{3}+\theta_{4} x^{4}+\theta_{5} x^{5}$?

Size of House

Therefore, we have a problem

We get weird over fitting effects!!!
What do we do? What about minimizing the influence of $\theta_{3}, \theta_{4}, \theta_{5}$?

Therefore, we have a problem

We get weird over fitting effects!!!
What do we do? What about minimizing the influence of $\theta_{3}, \theta_{4}, \theta_{5}$?

How do we do that?

$$
\min _{\boldsymbol{\theta}} \frac{1}{2} \sum_{i=1}^{N}\left(h_{\boldsymbol{\theta}}\left(x_{i}\right)-y_{i}\right)^{2}
$$

What about integrating those values to the cost function? Ideas

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example

(2) The Problem with Overfitting

- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
- Dropout as Regularization
- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data Flow
-
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
O Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

We have

Regularization intuition is as follow Small values for parameters $\theta_{0}, \theta_{1}, \theta_{2}, \ldots, \theta_{n}$

We have

Regularization intuition is as follow
Small values for parameters $\theta_{0}, \theta_{1}, \theta_{2}, \ldots, \theta_{n}$

It implies

(1) "Simpler" function
© Less prone to overfitting

We can do the previous idea for the other parameters

We can do the same for the other parameters

$$
\begin{equation*}
\min _{\boldsymbol{\theta}} \frac{1}{2} \sum_{i=1}^{N}\left(h_{\boldsymbol{\theta}}\left(x_{i}\right)-y_{i}\right)^{2}+\sum_{i=1}^{d} \lambda_{i} \theta_{i}^{2} \tag{8}
\end{equation*}
$$

We can do the previous idea for the other parameters

We can do the same for the other parameters

$$
\begin{equation*}
\min _{\boldsymbol{\theta}} \frac{1}{2} \sum_{i=1}^{N}\left(h_{\boldsymbol{\theta}}\left(x_{i}\right)-y_{i}\right)^{2}+\sum_{i=1}^{d} \lambda_{i} \theta_{i}^{2} \tag{8}
\end{equation*}
$$

However handling such many parameters can be so difficult
Combinatorial problem in reality!!!

Better, we can

We better use the following

$$
\begin{equation*}
\min _{\boldsymbol{\theta}} \frac{1}{2} \sum_{i=1}^{N}\left(h_{\boldsymbol{\theta}}\left(x_{i}\right)-y_{i}\right)^{2}+\lambda \sum_{i=1}^{d} \theta_{i}^{2} \tag{9}
\end{equation*}
$$

Graphically

Geometrically Equivalent to send our function to something quadratic

$$
\frac{1}{2} \sum_{i=1}^{N}\left(h_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}+\lambda \sum_{i=1}^{d} \theta_{i}^{2}
$$

An interesting Observation, when using linear estimators

The function $\sum_{i=1}^{N}\left(\theta^{T} x_{i}-y_{i}\right)^{2}$

- It is a convex function...

An interesting Observation, when using linear estimators

The function $\sum_{i=1}^{N}\left(\theta^{T} x_{i}-y_{i}\right)^{2}$

- It is a convex function...

And also $\sum_{i=1}^{d} \theta_{i}$

- It is also a convex function...

An interesting Observation, when using linear estimators

The function $\sum_{i=1}^{N}\left(\theta^{T} x_{i}-y_{i}\right)^{2}$

- It is a convex function...

And also $\sum_{i=1}^{d} \theta_{i}$

- It is also a convex function...

Therefore the final Lagrangian is a Convex function

- Here, Regularization basically remove dimensions that could not be useful in the minimization of the linear estimator.

However

The game changes a lot

- When the estimator is a complex non-convex function

However

The game changes a lot

- When the estimator is a complex non-convex function

In our case

- Deep Learners

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example

(2) The Problem with Overfitting

- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
- Dropout as Regularization
- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

Ridge Regression

Equation

$$
\widehat{\boldsymbol{\theta}}=\arg \min _{\boldsymbol{w}}\left\{\sum_{i=1}^{N}\left(y_{i}-\theta_{0}-\sum_{j=1}^{d} x_{i j} \theta_{j}\right)^{2}+\lambda \sum_{j=1}^{d} \theta_{j}^{2}\right\}
$$

The Larger $\lambda \geq 0$

- The coefficients are shrunk toward zero (and each other).

Ridge Regression

Equation

$$
\widehat{\boldsymbol{\theta}}=\arg \min _{\boldsymbol{w}}\left\{\sum_{i=1}^{N}\left(y_{i}-\theta_{0}-\sum_{j-1}^{d} x_{i j} \theta_{j}\right)^{2}+\lambda \sum_{j=1}^{d} \theta_{j}^{2}\right\}
$$

Here

- $\lambda \geq 0$ is a complexity parameter that controls the amount of shrinkage

The Larger $\lambda \geq 0$

- The coefficients are shrunk toward zero (and each other).

This is also can be written

Optimization Solution

$$
\begin{aligned}
\quad \arg \min _{\boldsymbol{\theta}} & \sum_{i=1}^{N}\left(y_{i}-\theta_{0}-\sum_{j-1}^{d} x_{i j} \theta_{j}\right)^{2} \\
\text { subject to } & \sum_{j=1}^{d} \theta_{j}^{2}<t
\end{aligned}
$$

Graphically

Geometrically Equivalent to

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example

(2) The Problem with Overfitting

- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
- Dropout as Regularization
- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

Least Absolute Shrinkage and Selection Operator (LASSO)
It was introduced by Robert Tibshirani in 1996 based on Leo
Breiman's nonnegative garrote

$$
\widehat{\boldsymbol{\theta}}^{\text {garrote }}=\arg \min _{\boldsymbol{\theta}} \sum_{i=1}^{N}\left(y_{i}-\theta_{0}-\sum_{j=1}^{d} x_{i j} \theta_{j}\right)^{2}+N \lambda \sum_{j=1}^{d} \theta_{j}
$$

$$
\text { s.t. } \theta_{j}>0 \forall j
$$

Least Absolute Shrinkage and Selection Operator (LASSO)
It was introduced by Robert Tibshirani in 1996 based on Leo
Breiman's nonnegative garrote

$$
\widehat{\boldsymbol{\theta}}^{\text {garrote }}=\arg \min _{\boldsymbol{\theta}} \sum_{i=1}^{N}\left(y_{i}-\theta_{0}-\sum_{j=1}^{d} x_{i j} \theta_{j}\right)^{2}+N \lambda \sum_{j=1}^{d} \theta_{j}
$$

s.t. $\theta_{j}>0 \forall j$

This is quite derivable
However, Tibshirani realized that you could get a more flexible model by using the absolute value at the constraint!!!

Least Absolute Shrinkage and Selection Operator (LASSO)

It was introduced by Robert Tibshirani in 1996 based on Leo
Breiman's nonnegative garrote

$$
\widehat{\boldsymbol{\theta}}^{\text {garrote }}=\arg \min _{\boldsymbol{\theta}} \sum_{i=1}^{N}\left(y_{i}-\theta_{0}-\sum_{j=1}^{d} x_{i j} \theta_{j}\right)^{2}+N \lambda \sum_{j=1}^{d} \theta_{j}
$$

s.t. $\theta_{j}>0 \forall j$

This is quite derivable
However, Tibshirani realized that you could get a more flexible model by using the absolute value at the constraint!!!

Robert Tibshirani proposed the use of the L_{1} norm

$$
\|\boldsymbol{\theta}\|_{1}=\sum_{i=1}^{d}\left|\theta_{i}\right|
$$

The Final Optimization Problem

LASSO

$$
\begin{aligned}
\widehat{\boldsymbol{\theta}}^{L A S S O} & =\arg \min _{\boldsymbol{\theta}} \sum_{i=1}^{N}\left(y_{i}-\theta_{0}-\sum_{j=1}^{d} x_{i j} \theta_{j}\right)^{2} \\
\text { s.t. } & \sum_{i=1}^{d}\left|\theta_{i}\right| \leq t
\end{aligned}
$$

The Final Optimization Problem

LASSO

$$
\begin{aligned}
\widehat{\boldsymbol{\theta}}^{\text {LASSO }}= & \arg \min _{\boldsymbol{\theta}} \sum_{i=1}^{N}\left(y_{i}-\theta_{0}-\sum_{j=1}^{d} x_{i j} \theta_{j}\right)^{2} \\
\text { s.t. } & \sum_{i=1}^{d}\left|\theta_{i}\right| \leq t
\end{aligned}
$$

This is not derivable

More advanced methods are necessary to solve this problem!!!

The Lagrangian Version

The Lagrangian

$$
\widehat{\boldsymbol{\theta}}^{\text {LASSO }}=\arg \min _{\boldsymbol{\theta}}\left\{\sum_{i=1}^{N}\left(y_{i}-\boldsymbol{x}^{T} \boldsymbol{\theta}\right)^{2}+\lambda \sum_{i=1}^{d}\left|\theta_{i}\right|\right\}
$$

The Lagrangian Version

The Lagrangian

$$
\widehat{\boldsymbol{\theta}}^{\text {LASSO }}=\arg \min _{\boldsymbol{\theta}}\left\{\sum_{i=1}^{N}\left(y_{i}-\boldsymbol{x}^{T} \boldsymbol{\theta}\right)^{2}+\lambda \sum_{i=1}^{d}\left|\theta_{i}\right|\right\}
$$

However

You have other regularizations as $\|\boldsymbol{\theta}\|_{2}=\sqrt{\sum_{i=1}^{d}\left|\theta_{i}\right|^{2}}$

Graphically

Yes the circle defined as $\|\boldsymbol{\theta}\|_{2}=\sqrt{\sum_{i=1}^{d}\left|\theta_{i}\right|^{2}}$

For Example

$$
\begin{aligned}
& \text { In the Case of } X \text { is a Orthogonal Matrix, we have } \\
& \widehat{\theta}_{i}=\operatorname{sgn}\left(X^{T} y\right)_{i}\left(\left(X^{T} y\right)_{i}-\sigma^{2} \alpha\right)_{+}
\end{aligned}
$$

Hard-threshold By
Subset Selection
LASSO
Least.....
Least Squared Error
Ridge

The seminal paper by Robert Tibshirani

An initial study of this regularization can be seen in
"Regression Shrinkage and Selection via the LASSO" by Robert Tibshirani
- 1996

Outline

(I) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example

(2) The Problem with Overfitting

O Intuition from Overfitting

- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
- Dropout as Regularization
- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

Furthermore

We can generalize ridge regression and the lasso, and view them as Bayes estimates

$$
\widehat{\boldsymbol{\theta}}^{L A S S O}=\arg \min _{\boldsymbol{w}}\left\{\sum_{i=1}^{N}\left(y_{i}-L\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right)\right)^{2}+\lambda \sum_{i=1}^{d}\left|\theta_{i}\right|^{q}\right\} \text { with } q \geq 0
$$

For Example

We have when $d=2$

For Example

We have when $d=2$

Here, when $q>1$

- You are having a derivable Lagrangian, but you lose the LASSO properties

Therefore

Zou and Hastie (2005) introduced the elastic-net penalty [3]

$$
\lambda \sum_{i=1}^{d}\left\{\alpha \theta_{i}^{2}+(1-\alpha)\left|\theta_{i}\right|\right\}
$$

Therefore

Zou and Hastie (2005) introduced the elastic-net penalty [3]

$$
\lambda \sum_{i=1}^{d}\left\{\alpha \theta_{i}^{2}+(1-\alpha)\left|\theta_{i}\right|\right\}
$$

This is Basically

- A Compromise Between the Ridge and LASSO.

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example

(2) The Problem with Overfitting

- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
- Dropout as Regularization
- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

What can be done?

Remember that our optimization Landscape is highly variable

Over-fitting?

Basically (Intuition)

$$
\begin{aligned}
& \left(y_{i}-L\left(\boldsymbol{x}_{i}, \theta\right)\right)^{2}=0 \text { for } i \in \text { Training } \\
& \left(y_{j}-L\left(\boldsymbol{x}_{i}, \theta\right)\right)^{2} \gg 0 \text { for } i \in \text { Validation }
\end{aligned}
$$

Over-fitting?

Basically (Intuition)

$$
\begin{aligned}
& \left(y_{i}-L\left(\boldsymbol{x}_{i}, \theta\right)\right)^{2}=0 \text { for } i \in \text { Training } \\
& \left(y_{j}-L\left(\boldsymbol{x}_{i}, \theta\right)\right)^{2} \gg 0 \text { for } i \in \text { Validation }
\end{aligned}
$$

A the other side, you have BIAS==Simplification

- Then, Regularization is an operator moving the model toward a bias

However, we do not want too much simplification

Look at this, the worst case Bias toward Red

Basically this simplification is due to the constrained optimization landscape

Basically our constraint is too Euclidean for Optimization Landscape

Well-Posed Problem

Definition by Hadamard (Circa 1902)

- Models of physical phenomenas should have the following properties
(1) A solution exists,
(2) The solution is unique,
(3) The solution's behavior changes continuously with the initial conditions.

Well-Posed Problem

Definition by Hadamard (Circa 1902)

- Models of physical phenomenas should have the following properties
(1) A solution exists,
(2) The solution is unique,
(3) The solution's behavior changes continuously with the initial conditions.

Any other problem that fails in any of this conditions

- It is considered an III-Posed Problem.

It seems to be that

The Deep Learners are highly ill-posed problems

- Ridge and LASSO have two possible effects

It seems to be that

The Deep Learners are highly ill-posed problems

- Ridge and LASSO have two possible effects

Too much simplification

- The Deep Learners losses power of representation.
- Weights are eliminated

It seems to be that

The Deep Learners are highly ill-posed problems

- Ridge and LASSO have two possible effects

Too much simplification

- The Deep Learners losses power of representation.
- Weights are eliminated

The constraints forces the $\theta^{\prime} s$

- They are forced to live in a too smooth optimization landscape

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/EncoderDropout as Regularization
- Introduction
- Dropout ProcessDropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

DeVris and Taylor [5]

For many years

- Dataset augmentation has been a standard regularization technique used to reduce overfitting while training supervised learning models

DeVris and Taylor [5]

For many years

- Dataset augmentation has been a standard regularization technique used to reduce overfitting while training supervised learning models

For Example, LeCun et al. [4] when training the LeNet5

- They applied a series of transformations to the input images in order to improve the robustness of the model.

DeVris and Taylor [5]

For many years

- Dataset augmentation has been a standard regularization technique used to reduce overfitting while training supervised learning models

For Example, LeCun et al. [4] when training the LeNet5

- They applied a series of transformations to the input images in order to improve the robustness of the model.

Unfortunately

- Dataset augmentation is not as straightforward to apply in all domains as it is for images.

For Example

In voice detection, adding
(1) Gaussian noise to the input,

For Example

In voice detection, adding
(1) Gaussian noise to the input,
(2) Shifting the pitch of the audio signal,

For Example

In voice detection, adding
(1) Gaussian noise to the input,
(2) Shifting the pitch of the audio signal,
(3) Time stretching,

For Example

In voice detection, adding

(1) Gaussian noise to the input,
(2) Shifting the pitch of the audio signal,
(3) Time stretching,
(9) Varying the loudness of the audio signal,

For Example

In voice detection, adding

(1) Gaussian noise to the input,
(2) Shifting the pitch of the audio signal,
(3) Time stretching,
(9) Varying the loudness of the audio signal,
(0) Applying random frequency filters,

For Example

In voice detection, adding

(1) Gaussian noise to the input,
(2) Shifting the pitch of the audio signal,
(3) Time stretching,
(9) Varying the loudness of the audio signal,
(5) Applying random frequency filters,
(0) Interpolating between samples in input space.

For Example

In voice detection, adding

(1) Gaussian noise to the input,
(2) Shifting the pitch of the audio signal,
(3) Time stretching,
(9) Varying the loudness of the audio signal,
(3) Applying random frequency filters,
(0) Interpolating between samples in input space.

Actually, only the following techniques worked out

- Pitch shifting and random frequency filtering

DeVris and Taylor [5]

They did something different

- First learning a data representation
- Then applying transformations to samples mapped to that representation.

DeVris and Taylor [5]

They did something different

- First learning a data representation
- Then applying transformations to samples mapped to that representation.

They hypothesized

- Due to manifold unfolding in feature space, simple transformations applied to encoded rather than raw inputs
- They will result in more plausible synthetic data.

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder

Dropout as Regularization

- Introduction
- Dropout ProcessDropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

Decoder/Encoder Part

We have a Decoder and Encoder Architecture

Basically

They used a context C to pass information between the encoder and decoder

- Here is where the authors performed the augmentation

Basically

They used a context C to pass information between the encoder and decoder

- Here is where the authors performed the augmentation

Basically

- At the context, something like the embeddings at document level.

Here

We have a K-coding symbol set

- The Encoder and Decoder are based in a novel hidden unit.

Here

We have a K-coding symbol set

- The Encoder and Decoder are based in a novel hidden unit.

We have the following configuration per row element j

$$
r_{j}=\sigma\left(\left[\boldsymbol{W}_{r} \mathrm{x}\right]_{j}+\left[\boldsymbol{U}_{r} \mathrm{~h}_{\mathrm{t}-1}\right]_{j}\right) \leftarrow \text { Reset Gate }
$$

- σ a sigmoid function

Here

We have a K-coding symbol set

- The Encoder and Decoder are based in a novel hidden unit.

We have the following configuration per row element j

$$
r_{j}=\sigma\left(\left[\boldsymbol{W}_{r} \mathrm{x}\right]_{j}+\left[\boldsymbol{U}_{r} \mathrm{~h}_{\mathrm{t}-1}\right]_{j}\right) \leftarrow \text { Reset Gate }
$$

- σ a sigmoid function

The Update gate

$$
z_{j}=\sigma\left(\left[\boldsymbol{W}_{z} \mathrm{x}\right]_{j}+\left[\boldsymbol{U}_{z} \mathrm{~h}_{\mathrm{t}-1}\right]_{j}\right)
$$

Where

The Activation Gate update

$$
h_{j}^{t}=z_{j} h_{j}^{t-1}+\left(1-z_{j}\right) \widetilde{h}_{j}^{t}
$$

- Where $\widetilde{h}_{j}^{t}=\phi\left([\boldsymbol{W} \mathrm{x}]_{j}+\left[\boldsymbol{U}\left(\boldsymbol{r} \odot \boldsymbol{h}_{t-1}\right)\right]_{j}\right)$

Where

The Activation Gate update

$$
h_{j}^{t}=z_{j} h_{j}^{t-1}+\left(1-z_{j}\right) \widetilde{h}_{j}^{t}
$$

- Where $\widetilde{h}_{j}^{t}=\phi\left([\boldsymbol{W} \mathbf{x}]_{j}+\left[\boldsymbol{U}\left(\boldsymbol{r} \odot \boldsymbol{h}_{t-1}\right)\right]_{j}\right)$

In this formulation

- When the reset gate is close to 0 , the hidden state is forced to ignore the previous hidden state!!!

Finally, at output

We have a probability of producing a symbol of a set of at the Decoder

$$
p\left(y_{t} \mid y_{t-1}, \ldots, y_{1}, \boldsymbol{c}\right)=\frac{\exp \left(W_{o} \boldsymbol{h}_{t}+U_{o} y_{t-1}+\boldsymbol{c}_{t-1}\right)}{\sum_{j=1}^{K} \exp \left(W_{j} \boldsymbol{h}_{t}+U_{o} y_{t-1}+\boldsymbol{c}_{t-1}\right)}
$$

Finally, at output

We have a probability of producing a symbol of a set of at the Decoder

$$
p\left(y_{t} \mid y_{t-1}, \ldots, y_{1}, \boldsymbol{c}\right)=\frac{\exp \left(W_{o} \boldsymbol{h}_{t}+U_{o} y_{t-1}+\boldsymbol{c}_{t-1}\right)}{\sum_{j=1}^{K} \exp \left(W_{j} \boldsymbol{h}_{t}+U_{o} y_{t-1}+\boldsymbol{c}_{t-1}\right)}
$$

Then, at the Encoder

- The encoder learns to predict the next symbol x_{t} based in the previous $x_{t-1}, x_{t-2}, \ldots, x_{1}$ by using the maximization

$$
\max _{\theta} \frac{1}{N} \sum_{n=1}^{N} p\left(\boldsymbol{y}_{n} \mid \boldsymbol{x}_{n}\right)
$$

Here, the Noise

Generate noise by drawing from

- A Gaussian distribution with zero mean and per-element standard deviation calculated across all context vectors in the dataset

$$
c_{i}^{\prime}=c_{i}+\gamma X, X \sim N\left(0, \sigma_{i}^{2}\right)
$$

Here, the Noise

Generate noise by drawing from

- A Gaussian distribution with zero mean and per-element standard deviation calculated across all context vectors in the dataset

$$
c_{i}^{\prime}=c_{i}+\gamma X, X \sim N\left(0, \sigma_{i}^{2}\right)
$$

We can generate this using a more direct approach

- For each sample in the dataset, we find its K nearest neighbors in feature space, then

$$
\boldsymbol{c}^{\prime}=\left(\boldsymbol{c}_{k}-\boldsymbol{c}_{j}\right) \lambda+\boldsymbol{c}_{j}
$$

- $\lambda=0.5$

Then

Once this new augmented context vectors with noise are ready

- As input for a learning task,
- They can be decoded to generate new sequences

Finally, we have

The following architecture where two symbols are encoded

Results

Not so much improvement

Image Size	Description	Test Error	Test Error (Reconstructions of original data)
32×32	Original dataset	8.59 ± 0.24	-
24×24	Center crop	11.28 ± 0.25	18.54 ± 0.38
24×24	Center crop + extrapolation	13.90 ± 0.22	17.69 ± 0.39
24×24	Simple data augmentation	$\mathbf{7 . 3 3} \pm \mathbf{0 . 1 7}$	13.60 ± 0.17
24×24	Simple data augmentation + extrapolation	8.80 ± 0.24	$\mathbf{1 2 . 0 0} \pm \mathbf{0 . 2 3}$

Why is this happening?

It is the same problem at the exit point

- We are regularizing at the encoded input space... but the architecture is still there...

Why is this happening?

It is the same problem at the exit point

- We are regularizing at the encoded input space... but the architecture is still there...

Therefore

- It is necessary to do something quite different...

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks

Gaussian Noise on Hidden Units for Regularization

- Application into a Decoder/Encoder
- Dropout as Regularization
- Introduction
- Dropout ProcessDropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks

Gaussian Noise on Hidden Units for Regularization

- Application into a Decoder/Encoder
- Dropout as Regularization
- Introduction
- Dropout ProcessDropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

Regularization in Deep Forward

In Layers of a Deep Forward

- We want to find and estimation \boldsymbol{x}_{t}^{r} to an input at $\boldsymbol{x}_{0} \in \mathbb{R}^{d}$ in layer t satisfying

Regularization in Deep Forward

In Layers of a Deep Forward

- We want to find and estimation \boldsymbol{x}_{t}^{r} to an input at $\boldsymbol{x}_{0} \in \mathbb{R}^{d}$ in layer t satisfying

$$
\sigma\left(A_{t}^{r} \boldsymbol{x}_{t}\right)=\boldsymbol{y}_{t+1}
$$

We can see this

A flow of information

Forward Flow of Infromation

In all such situations

The vector \boldsymbol{x}_{t} is generated by \boldsymbol{y}_{t+1} using back-propagation

$$
A_{t}^{r}=A_{t}^{r-1}-\eta \frac{\partial L\left(A_{T}^{r-1}, \ldots, A_{0}^{r-1}, x_{0}\right)}{\partial A_{t}^{r-1}}
$$

In all such situations

The vector \boldsymbol{x}_{t} is generated by \boldsymbol{y}_{t+1} using back-propagation

$$
A_{t}^{r}=A_{t}^{r-1}-\eta \frac{\partial L\left(A_{T}^{r-1}, \ldots, A_{0}^{r-1}, x_{0}\right)}{\partial A_{t}^{r-1}}
$$

It is usually a meaningless bad approximation

- to \boldsymbol{x}^{*} optimal at layer t for all possible inputs $\boldsymbol{x}_{0}^{\prime} s$.

We can see the Deep Forward Network as

$$
y_{T}=\sigma\left(A_{T} \sigma\left(A_{T-1} \sigma\left(A_{T-2}\left(\ldots \sigma\left(A_{0} x_{0}\right)\right)\right)\right)\right)
$$

We can see the Deep Forward Network as

$$
y_{T}=\sigma\left(A_{T} \sigma\left(A_{T-1} \sigma\left(A_{T-2}\left(\ldots \sigma\left(A_{0} x_{0}\right)\right)\right)\right)\right)
$$

Here

- The σ is applied to the generated vectors point wise...

The Jacobian of the Gradient Descent

Here, we assume a Least Squared Error cost function

$$
\frac{\partial L\left(A_{T}^{r-1}, \ldots, A_{0}^{r-1}, x_{0}^{i}\right)}{\partial A_{t}^{r-1}}=-\left(z^{i}-y_{T}\right) \times \sigma^{\prime}\left(A_{T-1}^{r} \boldsymbol{x}_{T-1}\right) \times \frac{\partial A_{T-1}^{r} \boldsymbol{x}_{T-1}}{\partial \boldsymbol{x}_{T-1}} \times \ldots \times \sigma^{\prime}\left(A_{t}^{r} \boldsymbol{x}_{t}\right) \times \frac{\partial A_{t}^{r} \boldsymbol{x}_{t}}{\partial \boldsymbol{x}_{t}}
$$

The Jacobian of the Gradient Descent

Here, we assume a Least Squared Error cost function

$$
\frac{\partial L\left(A_{T}^{r-1}, \ldots, A_{0}^{r-1}, x_{0}^{i}\right)}{\partial A_{t}^{r-1}}=-\left(z^{i}-y_{T}\right) \times \sigma^{\prime}\left(A_{T-1}^{r} \boldsymbol{x}_{T-1}\right) \times \frac{\partial A_{T-1}^{r} \boldsymbol{x}_{T-1}}{\partial \boldsymbol{x}_{T-1}} \times \ldots \times \sigma^{\prime}\left(A_{t}^{r} \boldsymbol{x}_{t}\right) \times \frac{\partial A_{t}^{r} \boldsymbol{x}_{t}}{\partial \boldsymbol{x}_{t}}
$$

Where

$$
\sigma^{\prime}\left(A_{k}^{r} \boldsymbol{x}_{k}\right)=\left(\begin{array}{cccc}
\sigma^{\prime}\left(\boldsymbol{a}_{1 k}^{r} \boldsymbol{x}_{k}\right) & 0 & \cdots & 0 \\
0 & \sigma^{\prime}\left(\boldsymbol{a}_{2 k}^{r} \boldsymbol{x}_{k}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma^{\prime}\left(\boldsymbol{a}_{M k}^{r} \boldsymbol{x}_{k}\right)
\end{array}\right)
$$

What will happen in the following situation?

Imagine that $A_{k}^{\prime} s$ are diagonal matrix

$$
A_{k}^{r}=\left(\begin{array}{cccc}
a_{1 k} & 0 & \cdots & 0 \\
0 & a_{2 k} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{M k}
\end{array}\right)
$$

What will happen in the following situation?

Imagine that $A_{k}^{\prime} s$ are diagonal matrix

$$
A_{k}^{r}=\left(\begin{array}{cccc}
a_{1 k} & 0 & \cdots & 0 \\
0 & a_{2 k} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{M k}
\end{array}\right)
$$

Therefore, we have

$$
\sigma^{\prime}\left(A_{k}^{r} \boldsymbol{x}_{k}\right)=\left(\begin{array}{cccc}
\sigma^{\prime}\left(a_{1 k}^{r} x_{1 k}\right) & 0 & \cdots & 0 \\
0 & \sigma^{\prime}\left(a_{2 k}^{r} x_{2 k}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma^{\prime}\left(a_{M k}^{r} x_{2 k}\right)
\end{array}\right)
$$

Then, we have that

First

$$
\sigma^{\prime}\left(A_{T-1}^{r} \boldsymbol{x}_{T-1}\right) \times \frac{\partial A_{T-1}^{r} \boldsymbol{x}_{T-1}}{\partial \boldsymbol{x}_{T-1}} \times \ldots \times \sigma^{\prime}\left(A_{t}^{r} \boldsymbol{x}_{t}\right) \times \frac{\partial A_{t}^{r} \boldsymbol{x}_{t}}{\partial \boldsymbol{x}_{t}}=*
$$

Then, we have that

First

$$
\sigma^{\prime}\left(A_{T-1}^{r} \boldsymbol{x}_{T-1}\right) \times \frac{\partial A_{T-1}^{r} \boldsymbol{x}_{T-1}}{\partial \boldsymbol{x}_{T-1}} \times \ldots \times \sigma^{\prime}\left(A_{t}^{r} \boldsymbol{x}_{t}\right) \times \frac{\partial A_{t}^{r} \boldsymbol{x}_{t}}{\partial \boldsymbol{x}_{t}}=*
$$

Then, we have that

$$
*=\left(\begin{array}{ccc}
\prod_{k=T-1}^{t} \sigma^{\prime}\left(a_{1 k}^{r} x_{1 k}\right) a_{1 k} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \prod_{k=T-1}^{t} \sigma^{\prime}\left(a_{M k}^{r} x_{2 k}\right) a_{2 k}
\end{array}\right)
$$

Actually

Choosing Matrices in such way

- It is like a heavy simplification of the Deep Forward Network

Something happens with the LASSO and Ridge

At the top of the Optimization Cost Function

- We do not know how such shallow regularization can affect the Neural Network

So heavy regularization

- It can not be a so good idea...

Something happens with the LASSO and Ridge

At the top of the Optimization Cost Function

- We do not know how such shallow regularization can affect the Neural Network

So heavy regularization

- It can not be a so good idea...

We need a new way of doing stuff

- For example, we could do the following...

Outline

1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks

Gaussian Noise on Hidden Units for Regularization

- Application into a Decoder/Encoder
- Dropout as Regularization
- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

Dropout

It was introduced by Hinton and Google [6]

- To avoid the problem of over-fitting

Dropout

It was introduced by Hinton and Google [6]

- To avoid the problem of over-fitting

You can see it as a regularization

- From [7] "Dropout training as adaptive regularization" by Wager et al.

Srivastava et al.

He comments that with unlimited computations

- "the best way to "regularize" a fixed-sized model is to average the predictions of all possible settings of the parameters"

Srivastava et al.

He comments that with unlimited computations

- "the best way to "regularize" a fixed-sized model is to average the predictions of all possible settings of the parameters"

Something like Boosting [1]

- By Using simpler and smaller models

Problem

We have Deep Architectures with thousands of parameters and hyperparameters

- Therefore, we have a problem!!! We need to solve this in some way!!!

Problem

We have Deep Architectures with thousands of parameters and hyperparameters

- Therefore, we have a problem!!! We need to solve this in some way!!!

What if we fix our architecture

How it works?

You have forward layers

$$
\begin{aligned}
z_{i}^{l+1} & =W_{i}^{l+1} \boldsymbol{x}^{l}+b_{i}^{l+1} \\
x_{i}^{l+1} & =\sigma\left(z_{i}^{l+1}\right)
\end{aligned}
$$

How it works?

You have forward layers

$$
\begin{aligned}
& z_{i}^{l+1}=W_{i}^{l+1} \boldsymbol{x}^{l}+b_{i}^{l+1} \\
& x_{i}^{l+1}=\sigma\left(z_{i}^{l+1}\right)
\end{aligned}
$$

With dropout, the feed-forward operation becomes

$$
\begin{aligned}
r_{j}^{l} & \sim \text { Bernoulli }(p) \\
\widetilde{\boldsymbol{x}}^{l} & =\boldsymbol{r}^{l} \odot \boldsymbol{x}^{l} \\
z_{i}^{l+1} & =W_{i}^{l+1} \widetilde{\boldsymbol{x}}^{l}+b_{i}^{l+1} \\
x_{i}^{l+1} & =\sigma\left(z_{i}^{l+1}\right)
\end{aligned}
$$

The Network

It looks like a series of gates

Therefore

We have that sampling is done in a Bernoulli to generate the \boldsymbol{r}^{l}, a vector of Bernoulli random variables

- Then, the layers are thinned by the wise multiplication with the nodes at each layer

Then, we erase randomly connections through the network

We generate sparser version with input layer such that $p_{1 j}^{1} \rightarrow 1.0$

Then assuming a Multilayer Perceptron

We have the following Architecture without bias to simplify with a single output

$$
\begin{aligned}
\min & \frac{1}{N} \sum_{i=1}^{N}\left(z_{i}-t_{i}\right)^{2} \\
z_{i} & =\sigma_{1}\left(W_{o h} \boldsymbol{y}_{i}\right) \\
\boldsymbol{y}_{i} & =\sigma_{2}\left(W_{h i} \boldsymbol{x}_{i}\right)
\end{aligned}
$$

Then assuming a Multilayer Perceptron

We have the following Architecture without bias to simplify with a single output

$$
\begin{aligned}
\min & \frac{1}{N} \sum_{i=1}^{N}\left(z_{i}-t_{i}\right)^{2} \\
z_{i} & =\sigma_{1}\left(W_{o h} \boldsymbol{y}_{i}\right) \\
\boldsymbol{y}_{i} & =\sigma_{2}\left(W_{h i} \boldsymbol{x}_{i}\right)
\end{aligned}
$$

Then, we get the following network after the sampling

$$
\begin{aligned}
L\left(W_{o h}, W_{h I}\right) & =(t-z)^{2} \\
z & =\sigma_{1}\left(W_{o h}\left(\boldsymbol{r}^{2} \odot \boldsymbol{y}\right)\right) \\
\boldsymbol{y} & =\sigma_{2}\left(W_{h I}\left(\boldsymbol{r}^{1} \odot \boldsymbol{x}\right)\right)
\end{aligned}
$$

Then, we have that

The Backpropagation at hidden weights

$$
\frac{\partial L}{\partial W_{o h}}=-2(t-z) \times \frac{\partial \sigma_{1}^{\prime}\left(\text { net }_{o h}\right)}{\partial n e t_{o h}} \times\left(\boldsymbol{r}^{2} \odot \boldsymbol{y}\right)
$$

Then, we have that

The Backpropagation at hidden weights

$$
\frac{\partial L}{\partial W_{o h}}=-2(t-z) \times \frac{\partial \sigma_{1}^{\prime}\left(\text { net }_{o h}\right)}{\partial n e t_{o h}} \times\left(\boldsymbol{r}^{2} \odot \boldsymbol{y}\right)
$$

Basically

$$
\left(W_{o h}^{t+1}\right)_{j}= \begin{cases}\left(W_{o h}^{t}\right)_{j}+\eta 2(t-z) \times \frac{\partial \sigma_{1}^{\prime}\left(\text { net }_{o h}\right)}{\partial n e t_{o h}}(\boldsymbol{y})_{j} & \text { if } r_{j}=1 \\ \left(W_{o h}^{t}\right)_{j} & \text { if } r_{j}=0\end{cases}
$$

However, At Testing

There are a exponential number of possible sparse networks

- A neural net with n units, can be seen as a collection of 2^{n} possible thinned neural networks.

However, At Testing

There are a exponential number of possible sparse networks

- A neural net with n units, can be seen as a collection of 2^{n} possible thinned neural networks.

Assuming

- These networks all share weights so that the total number of parameters is still $O\left(n^{2}\right)$ given that you this many connections

$$
\frac{n(n-1)}{2}=O\left(n^{2}\right)
$$

However, At Testing

There are a exponential number of possible sparse networks

- A neural net with n units, can be seen as a collection of 2^{n} possible thinned neural networks.

Assuming

- These networks all share weights so that the total number of parameters is still $O\left(n^{2}\right)$ given that you this many connections

$$
\frac{n(n-1)}{2}=O\left(n^{2}\right)
$$

Problem, we cannot average such amount of sub-networks

- We average over the different passes to obtain a p for each node in the network
- Meaning the probability of being active in the network.

$$
p_{i k}=\frac{\# \text { of subnets wehre node } i k \text { was active }}{\# \text { Of total subnets }}
$$

Then, we have

At Training

The mixture of the models

We know that

$$
E\left(w_{i k}\right)=\sum_{m=1}^{M} w_{i k}^{m} p\left(w_{i k}^{m} \mid \operatorname{BackProp}_{M}, \boldsymbol{X}\right)
$$

The mixture of the models

We know that

$$
E\left(w_{i k}\right)=\sum_{m=1}^{M} w_{i k}^{m} p\left(w_{i k}^{m} \mid \operatorname{BackProp}_{M}, \boldsymbol{X}\right)
$$

Clearly, we need to get $p\left(w_{i k}^{m} \mid\right.$ BackProp $\left._{M}, \boldsymbol{X}\right)$

- A simple solution, we can use

$$
p_{i k}=\frac{\# \text { of subnets wehre node } i k \text { was active }}{\# \text { Of total subnets }}
$$

Therefore, Using the fact that Forward has a Flow of Information

Add flow of information between all the different generated trained networks

Mathematically

We have the following ideas

- Each node has associated matrices for exit weights

$$
W_{o u t}=\left(\begin{array}{c}
\sum_{i=1}^{m} w_{i 1 k}^{m} \\
\sum_{i=1}^{m} w_{i 2 k}^{m} \\
\vdots \\
\sum_{i=1}^{m} w_{i J k}^{m}
\end{array}\right)
$$

Mathematically

We have the following ideas

- Each node has associated matrices for exit weights

$$
W_{o u t}=\left(\begin{array}{c}
\sum_{i=1}^{m} w_{i 1 k}^{m} \\
\sum_{i=1}^{m} w_{i 2 k}^{m} \\
\vdots \\
\sum_{i=1}^{m} w_{i J k}^{m}
\end{array}\right)
$$

Then use the probability \boldsymbol{p} to get the new final weights

$$
p_{i k} W_{\text {out }}=\left(\begin{array}{c}
\sum_{i=1}^{m} w_{i 11}^{m} p_{i k} \\
\sum_{i=1}^{m} w_{i 2 k}^{m} p_{i k} \\
\vdots \\
\sum_{i=1}^{m} w_{i J k}^{m} p_{i k}
\end{array}\right)
$$

Then

We have the following structure where thiner lines represent smaller weights

The Original Structure

At Testing

Outline

1. Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks

Gaussian Noise on Hidden Units for Regularization

- Application into a Decoder/Encoder
- Dropout as Regularization
- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

Why dropout?

Srivastava et al. [6]

- A motivation for dropout comes from the theory of evolution!!!
- Yes a original network and after a mutated one!!!

Why dropout?

Srivastava et al. [6]

- A motivation for dropout comes from the theory of evolution!!!
- Yes a original network and after a mutated one!!!

The most accepted interpretation of dropout

- It is implicitly bagging at test time a large number of neural networks which share parameters.

Bagging/Bootstrap Aggregation

Schematic of the Bootstrap Aggregation process [1]

Thus

Use each of them to train a copy $y_{b}(\boldsymbol{x})$ of a predictive regression model to predict a single continuous variable

$$
y_{c o m}(\boldsymbol{x})=\frac{1}{B} \sum_{b=1}^{B} y_{b}(\boldsymbol{x})
$$

Results

We have that

Method	CIFAR-10 Error	CIFAR-100 Error
CNN+max pooling (hand tuned)	15.60%	43.48%
CNN+stochastic pooling (Zeiler and Fergus, 2013)	15.13%	42.51%
CNN+max pooling (Snoek et al., 2012)	14.98%	-
CNN+max pooling + dropout fully connected layers	14.32%	41.26%
CNN+max pooling + dropout in all layers	12.61%	37.20%
CNN+maxout (Goodfellow et al., 2013)	11.68%	38.57%

Outline

1. Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks

Gaussian Noise on Hidden Units for Regularization

- Application into a Decoder/Encoder
- Dropout as Regularization
- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

Given the previous ideas

Why not to use the Data Flow for Sparsity?

- Basically, we can assume that a pattern exist in the data you are looking at
- The shifts on the weights are not so great...

Given the previous ideas

Why not to use the Data Flow for Sparsity?

- Basically, we can assume that a pattern exist in the data you are looking at
- The shifts on the weights are not so great...

```
\(p_{i k}\) is to broad because it does not represents the real \(p\left(w_{i k}^{m} \mid\right.\) BackProp \(\left._{M}, \boldsymbol{X}\right)\)
```

- Actually, you should use the min-batch values, \boldsymbol{x}_{t} and \boldsymbol{y}_{t+1}, to generate the real distribution

Based in the paper

"How does batch normalization help optimization?", in Advances in Neural Information Processing Systems (2018), pp. 2483--2493.

Then, we can use a Gaussian Distribution to model this

Actually, the paper is telling us that, given the noise that is injected at each time step t

$$
\begin{aligned}
\mu^{t} & \sim U\left(-n_{\mu}, n_{\mu}\right) \\
\sigma^{t} & \sim U(1, n)
\end{aligned}
$$

Then, we can use a Gaussian Distribution to model this

Actually, the paper is telling us that, given the noise that is injected at each time step t

$$
\begin{aligned}
& \mu^{t} \sim U\left(-n_{\mu}, n_{\mu}\right) \\
& \sigma^{t} \sim U(1, n)
\end{aligned}
$$

Something Notable

Then, we can use a Gaussian Distribution to model this

Actually, the paper is telling us that, given the noise that is injected at each time step t

$$
\begin{aligned}
& \mu^{t} \sim U\left(-n_{\mu}, n_{\mu}\right) \\
& \sigma^{t} \sim U(1, n)
\end{aligned}
$$

Something Notable

Properties

Why not use for the Data for enforcing Sparsity?

We have

$$
p\left(\boldsymbol{y}^{l+1} \mid \boldsymbol{x}^{l}, W\right)=\mathcal{N}\left(\sigma\left(W \boldsymbol{x}^{l}\right), \sigma^{2} I\right)
$$

Why not use for the Data for enforcing Sparsity?

We have

$$
\begin{aligned}
p\left(\boldsymbol{y}^{l+1} \mid \boldsymbol{x}^{l}, W\right) & =\mathcal{N}\left(\sigma\left(W \boldsymbol{x}^{l}\right), \sigma^{2} I\right) \\
p\left(\sigma^{2}\right) & \propto " \text { constant } "
\end{aligned}
$$

Why not use for the Data for enforcing Sparsity?

We have

$$
\begin{aligned}
p\left(\boldsymbol{y}^{l+1} \mid \boldsymbol{x}^{l}, W\right) & =\mathcal{N}\left(\sigma\left(W \boldsymbol{x}^{l}\right), \sigma^{2} I\right) \\
p\left(\sigma^{2}\right) & \propto " \text { constant" } \\
p\left(W^{l} \mid \tau\right) & =\prod_{i=1}^{d} \mathcal{N}\left(w_{j}^{l} \mid 0, \tau_{j}^{l}\right)=\mathcal{N}\left(W^{l} \mid 0,(\Upsilon(\boldsymbol{\tau}))^{-1}\right)
\end{aligned}
$$

Why not use for the Data for enforcing Sparsity?

We have

$$
\begin{aligned}
p\left(\boldsymbol{y}^{l+1} \mid \boldsymbol{x}^{l}, W\right) & =\mathcal{N}\left(\sigma\left(W \boldsymbol{x}^{l}\right), \sigma^{2} I\right) \\
p\left(\sigma^{2}\right) & \propto " \text { constant" } \\
p\left(W^{l} \mid \tau\right) & =\prod_{i=1}^{d} \mathcal{N}\left(w_{j}^{l} \mid 0, \tau_{j}^{l}\right)=\mathcal{N}\left(W^{l} \mid 0,(\Upsilon(\boldsymbol{\tau}))^{-1}\right) \\
p(\boldsymbol{\tau} \mid \gamma) & =\left(\frac{\gamma}{2}\right)^{d} \prod_{i=1}^{d} \exp \left\{-\frac{\gamma}{2} \tau_{i}\right\}
\end{aligned}
$$

- With $\Upsilon(\boldsymbol{\tau})=\operatorname{diag}\left(\tau_{1}^{-1}, \ldots, \tau_{d}^{-1}\right)$ is the diagonal matrix with the inverse variances of all the w_{i} 's.

How do we build such distribution

Given that each w_{i} has a zero-mean Gaussian prior

$$
\begin{equation*}
p\left(w_{i} \mid \tau_{i}\right)=\mathcal{N}\left(w_{i} \mid 0, \tau_{i}\right) \tag{10}
\end{equation*}
$$

How do we build such distribution

Given that each w_{i} has a zero-mean Gaussian prior

$$
\begin{equation*}
p\left(w_{i} \mid \tau_{i}\right)=\mathcal{N}\left(w_{i} \mid 0, \tau_{i}\right) \tag{10}
\end{equation*}
$$

Where τ_{i} has the following exponential hyper-prior

$$
\begin{equation*}
p\left(\tau_{i} \mid \gamma\right)=\frac{\gamma}{2} \exp \left\{-\frac{\gamma}{2} \tau_{i}\right\} \text { for } \tau_{i} \geq 0 \tag{11}
\end{equation*}
$$

How do we build such distribution

Given that each w_{i} has a zero-mean Gaussian prior

$$
\begin{equation*}
p\left(w_{i} \mid \tau_{i}\right)=\mathcal{N}\left(w_{i} \mid 0, \tau_{i}\right) \tag{10}
\end{equation*}
$$

Where τ_{i} has the following exponential hyper-prior

$$
\begin{equation*}
p\left(\tau_{i} \mid \gamma\right)=\frac{\gamma}{2} \exp \left\{-\frac{\gamma}{2} \tau_{i}\right\} \text { for } \tau_{i} \geq 0 \tag{11}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
w_{i} \sim p\left(w_{i} \mid \gamma\right)=\int_{0}^{\infty} p\left(w_{i} \mid \tau_{i}\right) p\left(\tau_{i} \mid \gamma\right) d \tau_{i}=\frac{\sqrt{\gamma}}{2} \exp \left\{-\sqrt{\gamma}\left|w_{i}\right|\right\} \tag{12}
\end{equation*}
$$

Example

The double exponential

Then using the Monte Carlo Method

We have

$$
E\left[W^{t} \mid f\left(W_{b}^{t l} \boldsymbol{x}_{b}\right), \sigma^{2} I\right]=\frac{p\left(\sigma^{2}\right)}{B} \sum_{b=1}^{B} \mathcal{N}\left(f\left(W_{b}^{t l} \boldsymbol{x}_{b}\right), \sigma^{2} I\right) p\left(W_{b}^{t l} \mid \tau_{i}\right) p\left(\tau_{i} \mid \gamma\right)
$$

Then using the Monte Carlo Method

We have

$$
E\left[W^{t} \mid f\left(W_{b}^{t l} \boldsymbol{x}_{b}\right), \sigma^{2} I\right]=\frac{p\left(\sigma^{2}\right)}{B} \sum_{b=1}^{B} \mathcal{N}\left(f\left(W_{b}^{t l} \boldsymbol{x}_{b}\right), \sigma^{2} I\right) p\left(W_{b}^{t l} \mid \tau_{i}\right) p\left(\tau_{i} \mid \gamma\right)
$$

Then, we use the mini batch per epoch to decide if we drop a weight

- Basically, the previous

We are using the following idea
Basically, we are using the fact that

Thus, we have that

The layer output can be bounded by

$$
\mathcal{N}\left(f\left(W_{b}^{t l} \boldsymbol{x}_{b}\right), \sigma^{2} I\right)
$$

Thus, we have that

The layer output can be bounded by

$$
\mathcal{N}\left(f\left(W_{b}^{t l} \boldsymbol{x}_{b}\right), \sigma^{2} I\right)
$$

The other part of the equation is the sparsity part

$$
p\left(W_{b}^{t l} \mid \tau_{i}\right) p\left(\tau_{i} \mid \gamma\right)
$$

As the process progress

Once the weights fall below certain level we shutdown the weight

The Original Structure

After Some Epochs

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
-

Dropout as Regularization

- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation

Beyond an Empirical Probabilities, LASSO and Data Flow

- Random dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/OverfittingBatch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

Bouthillier et al.[8]

The main goal when using dropout

- It is to regularize the neural network we are training

Bouthillier et al.[8]

The main goal when using dropout

- It is to regularize the neural network we are training

Those random modifications of the network's stucture

- They are believed to avoid co-adaptation of neurons by making it impossible for two subsequent neurons to rely solely on each other [6]

Therefore

We have a function that projects from a dimensional space to another

$$
h(\boldsymbol{x})=W \boldsymbol{x}+\boldsymbol{b}
$$

Therefore

We have a function that projects from a dimensional space to another

$$
h(\boldsymbol{x})=W \boldsymbol{x}+\boldsymbol{b}
$$

Then, given the noisy version of an activation function where $M \sim \mathcal{B}\left(p_{h}\right)$

$$
\tilde{f}(h)=M \odot \operatorname{rect}(h)(\text { Training })
$$

- Where $f(h)=\operatorname{rect}(h)$ (Testing)

Therefore

We have a function that projects from a dimensional space to another

$$
h(\boldsymbol{x})=W \boldsymbol{x}+\boldsymbol{b}
$$

Then, given the noisy version of an activation function where $M \sim \mathcal{B}\left(p_{h}\right)$

$$
\tilde{f}(h)=M \odot \operatorname{rect}(h) \quad \text { Training })
$$

- Where $f(h)=\operatorname{rect}(h)$ (Testing)

Actually Srivastava et al. [6]

- He mentions to use

$$
p_{i j k}=\frac{\# \text { of subnets wehre node } i j k \text { was active }}{\# \text { Of total subnets }}
$$

Outline

1. Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
-

Dropout as Regularization

- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data Flow
- Random dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/Overfitting
- Batch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

Data Augmentation

In many previous works [5, 4]

- It has been shown that augmenting data by using domain specific transformations helps in learning better models

Data Augmentation

In many previous works [5, 4]

- It has been shown that augmenting data by using domain specific transformations helps in learning better models

Therefore, the main idea

- It is to map input data to output labels

Data Augmentation

In many previous works [5, 4]

- It has been shown that augmenting data by using domain specific transformations helps in learning better models

Therefore, the main idea

- It is to map input data to output labels

One way to learn such a mapping function

- It is to augment the data using noise:
- Hypothesis!!! Noise based regularization techniques seems to be increasing training data coverage as augmentation

Outline

1. Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
-

Dropout as Regularization

- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data Flow
- Random dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/Overfitting
- Batch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

Augmenting by Noise [8]

We assume that for a given $\tilde{f}(h)$, there is an optimal \boldsymbol{x}^{*}

$$
(f \circ h)\left(\boldsymbol{x}^{*}\right)=\operatorname{rect}\left(h\left(\boldsymbol{x}^{*}\right)\right): \approx M \odot \operatorname{rect}(h)=(\tilde{f} \circ h)\left(\boldsymbol{x}^{*}\right)
$$

Augmenting by Noise [8]

We assume that for a given $\tilde{f}(h)$, there is an optimal x^{*}

$$
(f \circ h)\left(\boldsymbol{x}^{*}\right)=\operatorname{rect}\left(h\left(\boldsymbol{x}^{*}\right)\right): \approx M \odot \operatorname{rect}(h)=(\tilde{f} \circ h)\left(\boldsymbol{x}^{*}\right)
$$

This x^{*} can be found by minimizing by stochastic gradient descent

$$
L\left(\boldsymbol{x}, \boldsymbol{x}^{*}\right)=\left[(f \circ h)\left(\boldsymbol{x}^{*}\right)-(\tilde{f} \circ h)\left(\boldsymbol{x}^{*}\right)\right]^{2}
$$

Extending to n layers

For this, we define

$$
\begin{aligned}
\widetilde{g}^{(i)}(\boldsymbol{x}) & =\left[\widetilde{f}^{(i)} \circ h^{(i)} \circ \cdots \circ \widetilde{f}^{(1)} \circ h^{(1)}\right](\boldsymbol{x}) \\
g^{(i)}\left(\boldsymbol{x}^{*}\right) & =\left[f^{(i)} \circ h^{(i)} \circ \cdots \circ f^{(1)} \circ h^{(1)}\right]\left(\boldsymbol{x}^{*}\right)
\end{aligned}
$$

Extending to n layers

For this, we define

$$
\begin{aligned}
\widetilde{g}^{(i)}(\boldsymbol{x}) & =\left[\tilde{f}^{(i)} \circ h^{(i)} \circ \cdots \circ \tilde{f}^{(1)} \circ h^{(1)}\right](\boldsymbol{x}) \\
g^{(i)}\left(\boldsymbol{x}^{*}\right) & =\left[f^{(i)} \circ h^{(i)} \circ \cdots \circ f^{(1)} \circ h^{(1)}\right]\left(\boldsymbol{x}^{*}\right)
\end{aligned}
$$

Then, it is possible to compute the back propagation projection corresponding to all hidden layer activations at once

$$
L\left(\boldsymbol{x}, \boldsymbol{x}^{(1)^{*}}, \ldots, \boldsymbol{x}^{(n)^{*}}\right)=\sum_{i=1}^{n} \lambda_{i}\left[g^{(i)}\left(\boldsymbol{x}^{(i)^{*}}\right)-\widetilde{g}^{(i)}(\boldsymbol{x})\right]^{2}
$$

However

Small Problem

- It is possible to show by contradiction that one is unlikely to find a single $\boldsymbol{x}^{*}=\boldsymbol{x}^{(1)^{*}}=\cdots=\boldsymbol{x}^{(n)^{*}}$
- Such that you can significantly reduce L

Proof of the unlikeness of $\boldsymbol{x}^{*}=\boldsymbol{x}^{(1)^{*}}=\cdots=\boldsymbol{x}^{(n)^{*}}$

By the associative property of function composition

$$
g^{(i)}\left(\boldsymbol{x}^{*}\right)=\left(f^{(i)} \circ h^{(i)}\right)\left(g^{(i-1)}\left(\boldsymbol{x}^{*}\right)\right)
$$

Proof of the unlikeness of $\boldsymbol{x}^{*}=\boldsymbol{x}^{(1)^{*}}=\cdots=\boldsymbol{x}^{(n)^{*}}$

By the associative property of function composition

$$
g^{(i)}\left(\boldsymbol{x}^{*}\right)=\left(f^{(i)} \circ h^{(i)}\right)\left(g^{(i-1)}\left(\boldsymbol{x}^{*}\right)\right)
$$

Suppose there exist $\boldsymbol{x}^{*}=\boldsymbol{x}^{(1)^{*}}=\cdots=\boldsymbol{x}^{(n)^{*}}$ an such that

$$
\begin{aligned}
\left(f^{(i)} \circ h^{(i)}\right)\left(g^{(i-1)}\left(\boldsymbol{x}^{*}\right)\right) & =\left(\tilde{f}^{(i)} \circ h^{(i)}\right)\left(\widetilde{g}^{(i-1)}(\boldsymbol{x})\right) \\
\left(f^{(i-1)} \circ h^{(i-1)}\right)\left(g^{(i-2)}\left(\boldsymbol{x}^{*}\right)\right) & =\left(\widetilde{f}^{(i-1)} \circ h^{(i-1)}\right)\left(\widetilde{g}^{(i-2)}(\boldsymbol{x})\right)
\end{aligned}
$$

Then

Based on the previous equations

$$
g^{(i-1)}\left(\boldsymbol{x}^{*}\right)=\widetilde{g}^{(i-1)}(\boldsymbol{x})
$$

Then

Based on the previous equations

$$
g^{(i-1)}\left(\boldsymbol{x}^{*}\right)=\widetilde{g}^{(i-1)}(\boldsymbol{x})
$$

Then, we get

$$
\left(f^{(i)} \circ h^{(i)}\right)\left(g^{(i-1)}\left(\boldsymbol{x}^{*}\right)\right)=\left(\widetilde{f}^{(i)} \circ h^{(i)}\right)\left(\widetilde{g}^{(i-1)}(\boldsymbol{x})\right)
$$

Based on the previous equations

$$
g^{(i-1)}\left(\boldsymbol{x}^{*}\right)=\widetilde{g}^{(i-1)}(\boldsymbol{x})
$$

Then, we get

$$
\left(f^{(i)} \circ h^{(i)}\right)\left(g^{(i-1)}\left(\boldsymbol{x}^{*}\right)\right)=\left(\widetilde{f}^{(i)} \circ h^{(i)}\right)\left(\widetilde{g}^{(i-1)}(\boldsymbol{x})\right)
$$

Finally

$$
\operatorname{rect}\left(h^{(i)}\left(g^{(i-1)}\left(\boldsymbol{x}^{*}\right)\right)\right)=M^{(i)} \odot \operatorname{rect}\left(h^{(i)}\left(g^{(i-1)}\left(\boldsymbol{x}^{*}\right)\right)\right)
$$

Therefore

This is only true if $M^{(i)}=1$

- When $\operatorname{rect}_{j}\left(h^{(i)}\left(g^{(i-1)}\left(\boldsymbol{x}^{*}\right)\right)\right)>0$

Therefore

This is only true if $M^{(i)}=1$

- When $\operatorname{rect}_{j}\left(h^{(i)}\left(g^{(i-1)}\left(\boldsymbol{x}^{*}\right)\right)\right)>0$

This only happens with a probability $p_{(i)}^{d_{(i)} s_{(i)}}$

- Where:
- $p_{(i)}$ is the Bernoulli success probability.
- $d_{(i)}$ is the number of of hidden units.
- $s_{(i)}$ is the mean sparsity level at i (Mean percentage of active hidden units).

Which is quite low!!!

This probability is very low for standard hyper-parameters values

- With $p_{(i)}=0.5, d_{(i)}=1000$ and $s_{(i)}=0.15$

$$
p_{(i)}^{d_{(i)}^{s_{(i)}}}=10^{-47}
$$

However

Fortunately

- It is easy to find a different \boldsymbol{x}^{*} for each hidden layer

However

Fortunately

- It is easy to find a different \boldsymbol{x}^{*} for each hidden layer
by providing multiple inputs

$$
\left(\boldsymbol{x}, \boldsymbol{x}^{(1)^{*}}, \boldsymbol{x}^{(2)^{*}}, \ldots, \boldsymbol{x}^{(n)^{*}}\right)
$$

However

Fortunately

- It is easy to find a different \boldsymbol{x}^{*} for each hidden layer
by providing multiple inputs

$$
\left(\boldsymbol{x}, \boldsymbol{x}^{(1)^{*}}, \boldsymbol{x}^{(2)^{*}}, \ldots, \boldsymbol{x}^{(n)^{*}}\right)
$$

However

- This raises the question whether we can train the network deterministically on the $\boldsymbol{x}^{(i)^{*}}$ instead of using dropout

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
-

Dropout as Regularization

- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data Flow
- Random dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/Overfitting
- Batch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN

O Invariance Under Weights and Data TransformationsFor More in Normalization

Co-adaptation/Overfitting

Definition

- Co-adaptation is the accumulation of interacting genes in the gene pool of a population by selection.
- Selection pressures on one of the genes will affect its interacting proteins, after which compensatory changes occur.

Co-adaptation/Overfitting

Definition

- Co-adaptation is the accumulation of interacting genes in the gene pool of a population by selection.
- Selection pressures on one of the genes will affect its interacting proteins, after which compensatory changes occur.

In Neural Networks

- In neural network, co-adaptation means that some neurons are highly dependent on others:
- Getting into over-fitting!!!

Question

We have that

- Question: Can we train the network deterministically on $\boldsymbol{x}^{(i)^{*}}$?

Question

We have that

- Question: Can we train the network deterministically on $\boldsymbol{x}^{(i)^{*}}$?

This is not trivial given that

- Dropout is not effectively applied to every layer at the same time when using

$$
\left(\boldsymbol{x}, \boldsymbol{x}^{(1)^{*}}, \boldsymbol{x}^{(2)^{*}}, \ldots, \boldsymbol{x}^{(n)^{*}}\right)
$$

Question

We have that

- Question: Can we train the network deterministically on $\boldsymbol{x}^{(i)^{*}}$?

This is not trivial given that

- Dropout is not effectively applied to every layer at the same time when using

$$
\left(\boldsymbol{x}, \boldsymbol{x}^{(1)^{*}}, \boldsymbol{x}^{(2)^{*}}, \ldots, \boldsymbol{x}^{(n)^{*}}\right)
$$

- The gradients of the linear projections will differ greatly, different from dropout!!!

Therefore

We can then

- Modifying the probability distribution is the most straightforward way to improve the set of transformations.

Therefore

We can then

- Modifying the probability distribution is the most straightforward way to improve the set of transformations.

For example

- A simple way to vary the transformation magnitude randomly is to replace $p_{h i j}$ by a random variable!!!

Therefore

Define

$$
\begin{aligned}
M_{h i j} & \sim \mathcal{B}\left(\rho_{h}\right) \quad \text { (Bernoulli) } \\
\rho_{h} & \left.\sim U\left(0, p_{h}\right) \quad \text { (Uniform }\right)
\end{aligned}
$$

- where h defines the layer, i the sample, and j the layer's neuron.

Therefore

Define

$$
\begin{aligned}
M_{h i j} & \sim \mathcal{B}\left(\rho_{h}\right) \quad(\text { Bernoulli }) \\
\rho_{h} & \left.\sim U\left(0, p_{h}\right) \quad \text { (Uniform }\right)
\end{aligned}
$$

- where h defines the layer, i the sample, and j the layer's neuron.

Here, the authors use the same ρ for all the layers of the neurons, then

$$
\tilde{f}(h)=\frac{1}{1-\rho} M \odot \operatorname{rect}(h)
$$

Results

Something Notable

Using dropout with varying input noise
AND FIXED HIDDEN NOISE OF 0.5 .

Using dropout with varying input noise

$$
\text { AND FIXED HIDDEN NOISE OF } 0.2
$$

Using Random-dropout with varying NOISE RANGE $[0, x]$ USED AT HIDDEN

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
-

Dropout as Regularization

- Introduction
- Dropout Process
- Dropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/Overfitting
- Batch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

Here, the people at Google [9] around 2015

They commented in the "Internal Covariate Shift Phenomena"

- Due to the change in the distribution of each layer's input

Here, the people at Google [9] around 2015

They commented in the "Internal Covariate Shift Phenomena"

- Due to the change in the distribution of each layer's input

They claim

- The min-batch forces to have those changes which impact on the learning capabilities of the network.

Here, the people at Google [9] around 2015

They commented in the "Internal Covariate Shift Phenomena"

- Due to the change in the distribution of each layer's input

They claim

- The min-batch forces to have those changes which impact on the learning capabilities of the network.

In Neural Networks, they define this

- Internal Covariate Shift as the change in the distribution of network activations due to the change in network parameters during training.

Transformation

Batch Normalizing Transform

Input: Values of \boldsymbol{x} over a mini-batch: $\mathcal{B}=\left\{\boldsymbol{x}_{1 \ldots m}\right\}$, Parameters to be learned: γ, β
Output: $\left\{y_{i}=B N_{\gamma, \beta}\left(\boldsymbol{x}_{i}\right)\right\}$

Transformation

Batch Normalizing Transform

Input: Values of \boldsymbol{x} over a mini-batch: $\mathcal{B}=\left\{\boldsymbol{x}_{1 \ldots m}\right\}$, Parameters to be learned: γ, β
Output: $\left\{y_{i}=B N_{\gamma, \beta}\left(\boldsymbol{x}_{i}\right)\right\}$
(1) $\mu_{\mathcal{B}}=\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i}$

Transformation

Batch Normalizing Transform

Input: Values of \boldsymbol{x} over a mini-batch: $\mathcal{B}=\left\{\boldsymbol{x}_{1 \ldots m}\right\}$, Parameters to be learned: γ, β
Output: $\left\{y_{i}=B N_{\gamma, \beta}\left(\boldsymbol{x}_{i}\right)\right\}$
(1) $\mu_{\mathcal{B}}=\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i}$
(2) $\sigma_{\mathcal{B}}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{x}_{i}-\mu_{\mathcal{B}}\right)^{2}$

Transformation

Batch Normalizing Transform

Input: Values of \boldsymbol{x} over a mini-batch: $\mathcal{B}=\left\{\boldsymbol{x}_{1 \ldots m}\right\}$, Parameters to be learned: γ, β
Output: $\left\{y_{i}=B N_{\gamma, \beta}\left(\boldsymbol{x}_{i}\right)\right\}$
(1) $\mu_{\mathcal{B}}=\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i}$
(2) $\sigma_{\mathcal{B}}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{x}_{i}-\mu_{\mathcal{B}}\right)^{2}$
(3) $\hat{\boldsymbol{x}}=\frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}$

Transformation

Batch Normalizing Transform

Input: Values of \boldsymbol{x} over a mini-batch: $\mathcal{B}=\left\{\boldsymbol{x}_{1 \ldots m}\right\}$, Parameters to be learned: γ, β
Output: $\left\{y_{i}=B N_{\gamma, \beta}\left(\boldsymbol{x}_{i}\right)\right\}$
(1) $\mu_{\mathcal{B}}=\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i}$
(2) $\sigma_{\mathcal{B}}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{x}_{i}-\mu_{\mathcal{B}}\right)^{2}$
(3) $\widehat{x}=\frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}$
(9) $\boldsymbol{y}_{i}=\gamma^{(k)} \widehat{\boldsymbol{x}}_{i}+\beta=B N_{\gamma, \beta}\left(\boldsymbol{x}_{i}\right)$

Outline

1. Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/EncoderDropout as Regularization
- Introduction
- Dropout ProcessDropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/Overfitting
- Batch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data TransformationsFor More in Normalization

Remember

Using Min-Batch inputs, we have

$$
\mu_{\mathcal{B}}=\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i}
$$

Remember

Using Min-Batch inputs, we have

$$
\mu_{\mathcal{B}}=\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i}
$$

And Variance

$$
\sigma_{\mathcal{B}}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{x}_{i}-\mu_{\mathcal{B}}\right)^{2}
$$

Therefore, Ba et al. [10]

We get the mean over the output of the layer l with H number of hidden units

$$
\mu^{l}=\frac{1}{H} \sum_{i=1}^{H} y_{i}^{l}
$$

- Basically, do the forward process then add over the output $y_{i}^{l}=w_{i}^{l T} h^{l}$ where $h_{i}^{l+1}=f\left(y_{i}^{l}+b_{i}^{l}\right)$

Therefore, Ba et al. [10]

We get the mean over the output of the layer l with H number of hidden units

$$
\mu^{l}=\frac{1}{H} \sum_{i=1}^{H} y_{i}^{l}
$$

- Basically, do the forward process then add over the output $y_{i}^{l}=w_{i}^{l T} h^{l}$ where $h_{i}^{l+1}=f\left(y_{i}^{l}+b_{i}^{l}\right)$

Then the standard deviation layer l

$$
\sigma^{l}=\sqrt{\frac{1}{H} \sum_{i=1}^{H}\left(y_{i}^{l}-\mu^{l}\right)^{2}}
$$

Remarks

We have that

- All the hidden units in a layer share the same normalization terms μ and σ
- but different training cases have different normalization terms.

Remarks

We have that

- All the hidden units in a layer share the same normalization terms μ and σ
- but different training cases have different normalization terms.

Layer normalization does not impose any constraint

- On the size of a mini-batch and it can be used in the pure on-line regime with batch size 1.

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/EncoderDropout as Regularization
- Introduction
- Dropout ProcessDropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/Overfitting
- Batch normalization
- Improving the Google Layer Normalization
- Layer Normalization in RNN

O Invariance Under Weights and Data TransformationsFor More in Normalization

The Flow of Information through time

First, the new \boldsymbol{h}^{t} with a gain vector \boldsymbol{g}

$$
\boldsymbol{h}^{t}=f\left[\frac{\boldsymbol{g}}{\sigma^{t}} \odot\left(\boldsymbol{y}^{t}-\mu^{t}\right)+b\right]
$$

The Flow of Information through time

First, the new \boldsymbol{h}^{t} with a gain vector \boldsymbol{g}

$$
\boldsymbol{h}^{t}=f\left[\frac{\boldsymbol{g}}{\sigma^{t}} \odot\left(\boldsymbol{y}^{t}-\mu^{t}\right)+b\right]
$$

The Temporal Layer Mean Normalization

$$
\mu^{t}=\frac{1}{H} \sum_{i=1}^{H} y_{i}^{t}
$$

The Flow of Information through time

First, the new \boldsymbol{h}^{t} with a gain vector \boldsymbol{g}

$$
\boldsymbol{h}^{t}=f\left[\frac{\boldsymbol{g}}{\sigma^{t}} \odot\left(\boldsymbol{y}^{t}-\mu^{t}\right)+b\right]
$$

The Temporal Layer Mean Normalization

$$
\mu^{t}=\frac{1}{H} \sum_{i=1}^{H} y_{i}^{t}
$$

The Temporal Layer STD Normalization

$$
\sigma^{t}=\sqrt{\frac{1}{H} \sum_{i=1}^{H}\left(y_{i}^{t}-\mu^{t}\right)^{2}}
$$

Outline

1. Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/EncoderDropout as Regularization
- Introduction
- Dropout ProcessDropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise

Co-adaptation/Overfitting

- Batch normalization

Olmproving the Google Layer Normalization

- Layer Normalization in RNN

O Invariance Under Weights and Data Transformations
For More in Normalization

Weight re-scaling and re-centering

Observe that under batch normalization and weight normalization

- Any re-scaling to the incoming weights w_{i} of a single neuron has no effect on the normalized summed inputs to a neuron.

Weight re-scaling and re-centering

Observe that under batch normalization and weight normalization

- Any re-scaling to the incoming weights w_{i} of a single neuron has no effect on the normalized summed inputs to a neuron.

Meaning

- If the weight vector is scaled by δ_{i} the two scalars μ and σ will also be scaled by δ

Weight re-scaling and re-centering

Observe that under batch normalization and weight normalization

- Any re-scaling to the incoming weights w_{i} of a single neuron has no effect on the normalized summed inputs to a neuron.

Meaning

- If the weight vector is scaled by δ_{i} the two scalars μ and σ will also be scaled by δ

Properties

- The batch and weight normalization are invariant to the re-scaling of the weights.

In the other hand

Layer normalization

- It is not invariant to the individual scaling of the single weight vectors.

In the other hand

Layer normalization

- It is not invariant to the individual scaling of the single weight vectors.

However

- Layer normalization is invariant to scaling of the entire weight matrix.

In the other hand

Layer normalization

- It is not invariant to the individual scaling of the single weight vectors.

However

- Layer normalization is invariant to scaling of the entire weight matrix.
- Also it is invariant to a shift to all of the incoming weights in the weight matrix.

How?

Imagine the following

- Let there be two sets of model parameters θ, θ^{\prime} with weigh matrices

$$
W^{\prime}=\delta W+1 \gamma^{T}
$$

We have

Given that $y_{i}^{l}=w_{i}^{l T} x^{l}$

$$
y_{i}^{\prime l}=\left(\delta W+1 \gamma^{T}\right)_{i} x^{l}
$$

We have

Given that $y_{i}^{l}=w_{i}^{l T} \boldsymbol{x}^{l}$

$$
y_{i}^{\prime l}=\left(\delta W+1 \gamma^{T}\right)_{i} \boldsymbol{x}^{l}
$$

Then, we have

$$
\mu^{\prime l}=\frac{\delta}{H} \sum_{i=1}^{H} W_{i} \boldsymbol{x}^{l}+\frac{1}{H} \sum_{i=1}^{H}\left(1 \gamma^{T}\right)_{i} \boldsymbol{x}^{l}=\delta \mu+\left(1 \gamma^{T}\right)_{i} \boldsymbol{x}^{l}
$$

Now

Standard Deviation

$$
\sigma^{\prime}=\sqrt{\frac{1}{H} \sum_{i=1}^{H}\left(y_{i}^{\prime l}-\mu^{\prime}\right)^{2}}=\delta \sqrt{\frac{1}{H} \sum_{i=1}^{H}\left(y_{i}^{l}-\mu\right)^{2}}
$$

Now

Standard Deviation

$$
\sigma^{\prime}=\sqrt{\frac{1}{H} \sum_{i=1}^{H}\left(y_{i}^{\prime l}-\mu^{\prime}\right)^{2}}=\delta \sqrt{\frac{1}{H} \sum_{i=1}^{H}\left(y_{i}^{l}-\mu\right)^{2}}
$$

Finally, Under Layer Normalization, we have the same output

$$
\begin{aligned}
\boldsymbol{h}^{\prime} & =f\left[\frac{\boldsymbol{g}}{\sigma^{\prime}}\left(W^{\prime} \boldsymbol{x}-\mu^{\prime}\right)+\boldsymbol{b}\right] \\
& =f\left[\frac{\boldsymbol{g}}{\sigma^{\prime}}\left(\left[\delta W+1 \gamma^{T}\right] \boldsymbol{x}-\mu^{\prime}\right)+\boldsymbol{b}\right] \\
& =f\left[\frac{\boldsymbol{g}}{\sigma}(W \boldsymbol{x}-\mu)+\boldsymbol{b}\right]=\boldsymbol{h}
\end{aligned}
$$

Remarks

Something Notable

- if normalization is only applied to the input before the weights, the model will not be invariant to re-scaling and re-centering of the weights.

Data re-scaling and re-centering

We can show

- All the normalization methods are invariant to re-scaling the dataset

Data re-scaling and re-centering

We can show

- All the normalization methods are invariant to re-scaling the dataset

Layer normalization is invariant to re-scaling of individual training cases

$$
h_{i}^{\prime}=f\left[\frac{g_{i}}{\sigma^{\prime}}\left(w_{i}^{T} \boldsymbol{x}^{\prime}-\mu^{\prime}\right)+b_{i}\right]=f\left[\frac{g_{i}}{\delta \sigma}\left(\delta w_{i}^{T} \boldsymbol{x}-\delta \mu\right)+b_{i}\right]=h_{i}
$$

Additionally

Layer Normalization has a relation with the Fisher Information Matrix

$$
F(\theta)=E_{\boldsymbol{x} \sim P(x), y \sim P(y \mid x)}\left[\frac{\partial \log P(y \mid \boldsymbol{x})}{\partial \theta}\left(\frac{\partial \log P(y \mid \boldsymbol{x})}{\partial \theta}\right)^{T}\right]
$$

Additionally

Layer Normalization has a relation with the Fisher Information Matrix

$$
F(\theta)=E_{\boldsymbol{x} \sim P(\boldsymbol{x}), y \sim P(y \mid x)}\left[\frac{\partial \log P(y \mid \boldsymbol{x})}{\partial \theta}\left(\frac{\partial \log P(y \mid \boldsymbol{x})}{\partial \theta}\right)^{T}\right]
$$

Basically, we can write the generalized linear model as

$$
\begin{aligned}
\log P(y \mid \boldsymbol{x}, w, b) & =\frac{(a+b) y-\eta(a+b)}{\Phi}+c(y, \Phi) \\
E[y \mid \boldsymbol{x}] & =f(a+b)=f\left(w^{T} \boldsymbol{x}+b\right) \\
\operatorname{Var}[y \mid \boldsymbol{x}] & =\Phi f^{\prime}(a+b)
\end{aligned}
$$

The curvature of a Riemannian manifold

It is entirely captured by its Riemannian metric

$$
d s^{2} \approx \frac{1}{2} \delta^{T} F(\theta) \delta
$$

- where, δ is a small change to the parameters.

The curvature of a Riemannian manifold

It is entirely captured by its Riemannian metric

$$
d s^{2} \approx \frac{1}{2} \delta^{T} F(\theta) \delta
$$

- where, δ is a small change to the parameters.

Then, under Layer Normalization, we have

$$
F(\theta)=\frac{1}{\Phi^{2}} E_{x \sim P(\boldsymbol{x})}\left[\begin{array}{ccc}
\operatorname{Cov}\left(y_{1}, y_{2} \mid \boldsymbol{x}\right) \frac{\left(a_{1}-\mu\right)^{2}}{\sigma^{2}} & \cdots & \operatorname{Cov}\left(y_{1}, y_{H} \mid \boldsymbol{x}\right) \frac{\left(a_{1}-\mu\right)\left(a_{H}-\mu\right)}{\sigma^{2}} \\
\vdots & \ddots & \vdots \\
\operatorname{Cov}\left(y_{H}, y_{1} \mid \boldsymbol{x}\right) \frac{\left(a_{1}-\mu\right)\left(a_{H}-\mu\right)}{\sigma^{2}} & \cdots & \operatorname{Cov}\left(y_{H}, y_{H} \mid \boldsymbol{x}\right) \frac{\left(a_{H}-\mu\right)^{2}}{\sigma^{2}}
\end{array}\right.
$$

Where

We have that $a_{i}=w_{i}^{T} \boldsymbol{x}$

- We project the gradient updates to the gain parameter $\delta_{g i}$ of the $i^{t h}$ neuron to its weight vector as

$$
\frac{\delta_{g i} \delta_{g j}}{2 \Phi^{2}} E_{x \sim P(x)}\left[\operatorname{Cov}\left(y_{i}, y_{j} \mid \boldsymbol{x}\right) \frac{\left(a_{1}-\mu\right)\left(a_{H}-\mu\right)}{\sigma^{2}}\right]
$$

Where

We have that $a_{i}=w_{i}^{T} \boldsymbol{x}$

- We project the gradient updates to the gain parameter $\delta_{g i}$ of the $i^{t h}$ neuron to its weight vector as

$$
\frac{\delta_{g i} \delta_{g j}}{2 \Phi^{2}} E_{x \sim P(x)}\left[\operatorname{Cov}\left(y_{i}, y_{j} \mid \boldsymbol{x}\right) \frac{\left(a_{1}-\mu\right)\left(a_{H}-\mu\right)}{\sigma^{2}}\right]
$$

Basically

- We have that the normalization layer is more robust to the scaling of the input and parameters

Results

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) The Problem with Overfitting
- Intuition from Overfitting
- The Idea of Regularization
- Ridge Regression
- The LASSO
- Generalization
- What can be done?
(3) Methods of Regularization for Deep Networks
- Gaussian Noise on Hidden Units for Regularization
- Application into a Decoder/Encoder
-

Dropout as Regularization

- Introduction
- Dropout ProcessDropout as Bagging/Bootstrap Aggregation
- Beyond an Empirical Probabilities, LASSO and Data FlowRandom dropout probability
- Projecting Noise into Input Space
- Augmenting by Noise
- Co-adaptation/Overfitting
-

Batch normalization

- Improving the Google Layer Normalization
- Layer Normalization in RNN
- Invariance Under Weights and Data Transformations
- For More in Normalization

We have the following paper

Please Take a Look

- Kukačka, J., Golkov, V., \& Cremers, D. (2017). Regularization for deep learning: A taxonomy. arXiv preprint arXiv:1710.10686.

Conclusions

There is still a lot to understand on the Deep Learning Architectures

- The Last 10 years have shown us a lot on the need of regularization...

Conclusions

There is still a lot to understand on the Deep Learning Architectures

- The Last 10 years have shown us a lot on the need of regularization...

Therefore

- When connecting with the paper
- "How Does Batch Normalization Help Optimization?" by Santurkar, Tsipras, Ilyas and Madry

Conclusions

There is still a lot to understand on the Deep Learning Architectures

- The Last 10 years have shown us a lot on the need of regularization...

Therefore

- When connecting with the paper
- "How Does Batch Normalization Help Optimization?" by Santurkar, Tsipras, Ilyas and Madry

We have the if we were able to connect these normalizations

- With the building of the Jacobian on the Gradient Descent, we could improve
- The speed of optimization + The regularization properties of such Gradient Descent

直 T．Hastie，R．Tibshirani，and J．Friedman，The Elements of Statistical Learning：Data Mining，Inference，and Prediction，Second Edition． Springer Series in Statistics，Springer New York， 2009.
S．Theodoridis，Machine Learning：A Bayesian and Optimization Perspective．
Academic Press，1st ed．， 2015.
圊 H．Zou，T．Hastie，and R．Tibshirani，＂Sparse principal component analysis，＂Journal of computational and graphical statistics，vol．15， no．2，pp．265－286， 2006.

嗇 Y．LeCun，L．Bottou，Y．Bengio，P．Haffner，et al．，＂Gradient－based learning applied to document recognition，＂Proceedings of the IEEE， vol．86，no．11，pp．2278－2324， 1998.
T．DeVries and G．W．Taylor，＂Dataset augmentation in feature space，＂arXiv preprint arXiv：1702．05538， 2017.

图 N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting," The journal of machine learning research, vol. 15, no. 1, pp. 1929-1958, 2014.
S. Wager, S. Wang, and P. S. Liang, "Dropout training as adaptive regularization," in Advances in neural information processing systems, pp. 351-359, 2013.
R. Bouthillier, K. Konda, P. Vincent, and R. Memisevic, "Dropout as data augmentation," arXiv preprint arXiv:1506.08700, 2015.

嗇 S. loffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," arXiv preprint arXiv:1502.03167, 2015.
(1. J. Ba, J. R. Kiros, and G. E. Hinton, "Layer normalization," arXiv preprint arXiv:1607.06450, 2016.

