
Introduction to Neural Networks and Deep Learning
Regularization

Andres Mendez-Vazquez

August 24, 2020

1 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

2 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

3 / 160

Images/cinvestav-1.jpg

Introduction

What did we see until now?
The design of learning machines from two main points:

Statistical Point of View
Linear Algebra and Optimization Point of View

Going back to the probability models
We might think in the machine to be learned as a function g (x|D)....

Something as curve fitting...

Under a data set

D = {(xi, yi) |i = 1, 2, ..., N} (1)

Remark: Where the xi ∼ p (x|Θ)!!!

4 / 160

Images/cinvestav-1.jpg

Introduction

What did we see until now?
The design of learning machines from two main points:

Statistical Point of View
Linear Algebra and Optimization Point of View

Going back to the probability models
We might think in the machine to be learned as a function g (x|D)....

Something as curve fitting...

Under a data set

D = {(xi, yi) |i = 1, 2, ..., N} (1)

Remark: Where the xi ∼ p (x|Θ)!!!

4 / 160

Images/cinvestav-1.jpg

Introduction

What did we see until now?
The design of learning machines from two main points:

Statistical Point of View
Linear Algebra and Optimization Point of View

Going back to the probability models
We might think in the machine to be learned as a function g (x|D)....

Something as curve fitting...

Under a data set

D = {(xi, yi) |i = 1, 2, ..., N} (1)

Remark: Where the xi ∼ p (x|Θ)!!!

4 / 160

Images/cinvestav-1.jpg

Introduction

What did we see until now?
The design of learning machines from two main points:

Statistical Point of View
Linear Algebra and Optimization Point of View

Going back to the probability models
We might think in the machine to be learned as a function g (x|D)....

Something as curve fitting...

Under a data set

D = {(xi, yi) |i = 1, 2, ..., N} (1)

Remark: Where the xi ∼ p (x|Θ)!!!

4 / 160

Images/cinvestav-1.jpg

Introduction

What did we see until now?
The design of learning machines from two main points:

Statistical Point of View
Linear Algebra and Optimization Point of View

Going back to the probability models
We might think in the machine to be learned as a function g (x|D)....

Something as curve fitting...

Under a data set

D = {(xi, yi) |i = 1, 2, ..., N} (1)

Remark: Where the xi ∼ p (x|Θ)!!!

4 / 160

Images/cinvestav-1.jpg

Introduction

What did we see until now?
The design of learning machines from two main points:

Statistical Point of View
Linear Algebra and Optimization Point of View

Going back to the probability models
We might think in the machine to be learned as a function g (x|D)....

Something as curve fitting...

Under a data set

D = {(xi, yi) |i = 1, 2, ..., N} (1)

Remark: Where the xi ∼ p (x|Θ)!!!

4 / 160

Images/cinvestav-1.jpg

Introduction

What did we see until now?
The design of learning machines from two main points:

Statistical Point of View
Linear Algebra and Optimization Point of View

Going back to the probability models
We might think in the machine to be learned as a function g (x|D)....

Something as curve fitting...

Under a data set

D = {(xi, yi) |i = 1, 2, ..., N} (1)

Remark: Where the xi ∼ p (x|Θ)!!!

4 / 160

Images/cinvestav-1.jpg

Thus, we have that

Two main functions
A function g (x|D) obtained using some algorithm!!!
E [y|x] the optimal regression...

Important
The key factor here is the dependence of the approximation on D.

Why?
The approximation may be very good for a specific training data set but
very bad for another.

This is the reason of studying fusion of information at decision level...

5 / 160

Images/cinvestav-1.jpg

Thus, we have that

Two main functions
A function g (x|D) obtained using some algorithm!!!
E [y|x] the optimal regression...

Important
The key factor here is the dependence of the approximation on D.

Why?
The approximation may be very good for a specific training data set but
very bad for another.

This is the reason of studying fusion of information at decision level...

5 / 160

Images/cinvestav-1.jpg

Thus, we have that

Two main functions
A function g (x|D) obtained using some algorithm!!!
E [y|x] the optimal regression...

Important
The key factor here is the dependence of the approximation on D.

Why?
The approximation may be very good for a specific training data set but
very bad for another.

This is the reason of studying fusion of information at decision level...

5 / 160

Images/cinvestav-1.jpg

Thus, we have that

Two main functions
A function g (x|D) obtained using some algorithm!!!
E [y|x] the optimal regression...

Important
The key factor here is the dependence of the approximation on D.

Why?
The approximation may be very good for a specific training data set but
very bad for another.

This is the reason of studying fusion of information at decision level...

5 / 160

Images/cinvestav-1.jpg

Thus, we have that

Two main functions
A function g (x|D) obtained using some algorithm!!!
E [y|x] the optimal regression...

Important
The key factor here is the dependence of the approximation on D.

Why?
The approximation may be very good for a specific training data set but
very bad for another.

This is the reason of studying fusion of information at decision level...

5 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

6 / 160

Images/cinvestav-1.jpg

How do we measure the difference? [1]

We have that

V ar(X) = E((X − µ)2)

We can do that for our data

V arD (g (x|D)) = ED
(
(g (x|D)− E [y|x])2

)

Now, if we add and subtract

ED [g (x|D)] (2)

Remark: The expected output of the machine g (x|D)

7 / 160

Images/cinvestav-1.jpg

How do we measure the difference? [1]

We have that

V ar(X) = E((X − µ)2)

We can do that for our data

V arD (g (x|D)) = ED
(
(g (x|D)− E [y|x])2

)

Now, if we add and subtract

ED [g (x|D)] (2)

Remark: The expected output of the machine g (x|D)

7 / 160

Images/cinvestav-1.jpg

How do we measure the difference? [1]

We have that

V ar(X) = E((X − µ)2)

We can do that for our data

V arD (g (x|D)) = ED
(
(g (x|D)− E [y|x])2

)

Now, if we add and subtract

ED [g (x|D)] (2)

Remark: The expected output of the machine g (x|D)

7 / 160

Images/cinvestav-1.jpg

How do we measure the difference? [1]

We have that

V ar(X) = E((X − µ)2)

We can do that for our data

V arD (g (x|D)) = ED
(
(g (x|D)− E [y|x])2

)

Now, if we add and subtract

ED [g (x|D)] (2)

Remark: The expected output of the machine g (x|D)

7 / 160

Images/cinvestav-1.jpg

Thus, we have that

Or Original variance

V arD (g (x|D)) = ED
(
(g (x|D)− E [y|x])2)

= ED
(
(g (x|D)− ED [g (x|D)] + ED [g (x|D)]− E [y|x])2)

= ED
(
(g (x|D)− ED [g (x|D)])2 + ...

...2 ((g (x|D)− ED [g (x|D)])) (ED [g (x|D)]− E [y|x]) + ...

... (ED [g (x|D)]− E [y|x])2)
Finally

ED (((g (x|D)− ED [g (x|D)])) (ED [g (x|D)]− E [y|x])) =? (3)

8 / 160

Images/cinvestav-1.jpg

Thus, we have that

Or Original variance

V arD (g (x|D)) = ED
(
(g (x|D)− E [y|x])2)

= ED
(
(g (x|D)− ED [g (x|D)] + ED [g (x|D)]− E [y|x])2)

= ED
(
(g (x|D)− ED [g (x|D)])2 + ...

...2 ((g (x|D)− ED [g (x|D)])) (ED [g (x|D)]− E [y|x]) + ...

... (ED [g (x|D)]− E [y|x])2)
Finally

ED (((g (x|D)− ED [g (x|D)])) (ED [g (x|D)]− E [y|x])) =? (3)

8 / 160

Images/cinvestav-1.jpg

Thus, we have that

Or Original variance

V arD (g (x|D)) = ED
(
(g (x|D)− E [y|x])2)

= ED
(
(g (x|D)− ED [g (x|D)] + ED [g (x|D)]− E [y|x])2)

= ED
(
(g (x|D)− ED [g (x|D)])2 + ...

...2 ((g (x|D)− ED [g (x|D)])) (ED [g (x|D)]− E [y|x]) + ...

... (ED [g (x|D)]− E [y|x])2)
Finally

ED (((g (x|D)− ED [g (x|D)])) (ED [g (x|D)]− E [y|x])) =? (3)

8 / 160

Images/cinvestav-1.jpg

Thus, we have that

Or Original variance

V arD (g (x|D)) = ED
(
(g (x|D)− E [y|x])2)

= ED
(
(g (x|D)− ED [g (x|D)] + ED [g (x|D)]− E [y|x])2)

= ED
(
(g (x|D)− ED [g (x|D)])2 + ...

...2 ((g (x|D)− ED [g (x|D)])) (ED [g (x|D)]− E [y|x]) + ...

... (ED [g (x|D)]− E [y|x])2)
Finally

ED (((g (x|D)− ED [g (x|D)])) (ED [g (x|D)]− E [y|x])) =? (3)

8 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

9 / 160

Images/cinvestav-1.jpg

We have the Bias-Variance

Our Final Equation

ED
(
(g (x|D)− E [y|x])2) = ED

(
(g (x|D)− ED [g (x|D)])2)︸ ︷︷ ︸

V ARIANCE

+ (ED [g (x|D)]− E [y|x])2︸ ︷︷ ︸
BIAS

Where the variance
It represents the measure of the error between our machine g (x|D) and
the expected output of the machine under xi ∼ p (x|Θ).

Where the bias
It represents the quadratic error between the expected output of the
machine under xi ∼ p (x|Θ) and the expected output of the optimal
regression.

10 / 160

Images/cinvestav-1.jpg

We have the Bias-Variance

Our Final Equation

ED
(
(g (x|D)− E [y|x])2) = ED

(
(g (x|D)− ED [g (x|D)])2)︸ ︷︷ ︸

V ARIANCE

+ (ED [g (x|D)]− E [y|x])2︸ ︷︷ ︸
BIAS

Where the variance
It represents the measure of the error between our machine g (x|D) and
the expected output of the machine under xi ∼ p (x|Θ).

Where the bias
It represents the quadratic error between the expected output of the
machine under xi ∼ p (x|Θ) and the expected output of the optimal
regression.

10 / 160

Images/cinvestav-1.jpg

We have the Bias-Variance

Our Final Equation

ED
(
(g (x|D)− E [y|x])2) = ED

(
(g (x|D)− ED [g (x|D)])2)︸ ︷︷ ︸

V ARIANCE

+ (ED [g (x|D)]− E [y|x])2︸ ︷︷ ︸
BIAS

Where the variance
It represents the measure of the error between our machine g (x|D) and
the expected output of the machine under xi ∼ p (x|Θ).

Where the bias
It represents the quadratic error between the expected output of the
machine under xi ∼ p (x|Θ) and the expected output of the optimal
regression.

10 / 160

Images/cinvestav-1.jpg

We have the Bias-Variance

Our Final Equation

ED
(
(g (x|D)− E [y|x])2) = ED

(
(g (x|D)− ED [g (x|D)])2)︸ ︷︷ ︸

V ARIANCE

+ (ED [g (x|D)]− E [y|x])2︸ ︷︷ ︸
BIAS

Where the variance
It represents the measure of the error between our machine g (x|D) and
the expected output of the machine under xi ∼ p (x|Θ).

Where the bias
It represents the quadratic error between the expected output of the
machine under xi ∼ p (x|Θ) and the expected output of the optimal
regression.

10 / 160

Images/cinvestav-1.jpg

Remarks

We have then
Even if the estimator is unbiased, it can still result in a large mean square
error due to a large variance term.

The situation is more dire in a finite set of data D
We have then a trade-off:

1 Increasing the bias decreases the variance and vice versa.
2 This is known as the bias–variance dilemma.

11 / 160

Images/cinvestav-1.jpg

Remarks

We have then
Even if the estimator is unbiased, it can still result in a large mean square
error due to a large variance term.

The situation is more dire in a finite set of data D
We have then a trade-off:

1 Increasing the bias decreases the variance and vice versa.
2 This is known as the bias–variance dilemma.

11 / 160

Images/cinvestav-1.jpg

Remarks

We have then
Even if the estimator is unbiased, it can still result in a large mean square
error due to a large variance term.

The situation is more dire in a finite set of data D
We have then a trade-off:

1 Increasing the bias decreases the variance and vice versa.
2 This is known as the bias–variance dilemma.

11 / 160

Images/cinvestav-1.jpg

Remarks

We have then
Even if the estimator is unbiased, it can still result in a large mean square
error due to a large variance term.

The situation is more dire in a finite set of data D
We have then a trade-off:

1 Increasing the bias decreases the variance and vice versa.
2 This is known as the bias–variance dilemma.

11 / 160

Images/cinvestav-1.jpg

Similar to...

Curve Fitting
If, for example, the adopted model is complex (many parameters involved)
with respect to the number N , the model will fit the idiosyncrasies of the
specific data set.

Thus
Thus, it will result in low bias but will yield high variance, as we change
from one data set to another data set.

Furthermore
If N grows we can have a more complex model to be fitted which reduces
bias and ensures low variance.

However, N is always finite!!!

12 / 160

Images/cinvestav-1.jpg

Similar to...

Curve Fitting
If, for example, the adopted model is complex (many parameters involved)
with respect to the number N , the model will fit the idiosyncrasies of the
specific data set.

Thus
Thus, it will result in low bias but will yield high variance, as we change
from one data set to another data set.

Furthermore
If N grows we can have a more complex model to be fitted which reduces
bias and ensures low variance.

However, N is always finite!!!

12 / 160

Images/cinvestav-1.jpg

Similar to...

Curve Fitting
If, for example, the adopted model is complex (many parameters involved)
with respect to the number N , the model will fit the idiosyncrasies of the
specific data set.

Thus
Thus, it will result in low bias but will yield high variance, as we change
from one data set to another data set.

Furthermore
If N grows we can have a more complex model to be fitted which reduces
bias and ensures low variance.

However, N is always finite!!!

12 / 160

Images/cinvestav-1.jpg

Similar to...

Curve Fitting
If, for example, the adopted model is complex (many parameters involved)
with respect to the number N , the model will fit the idiosyncrasies of the
specific data set.

Thus
Thus, it will result in low bias but will yield high variance, as we change
from one data set to another data set.

Furthermore
If N grows we can have a more complex model to be fitted which reduces
bias and ensures low variance.

However, N is always finite!!!

12 / 160

Images/cinvestav-1.jpg

Thus

You always need to compromise
However, you always have some a priori knowledge about the data

Allowing you to impose restrictions
Lowering the bias and the variance

Nevertheless
We have the following example to grasp better the bothersome
bias–variance dilemma.

13 / 160

Images/cinvestav-1.jpg

Thus

You always need to compromise
However, you always have some a priori knowledge about the data

Allowing you to impose restrictions
Lowering the bias and the variance

Nevertheless
We have the following example to grasp better the bothersome
bias–variance dilemma.

13 / 160

Images/cinvestav-1.jpg

Thus

You always need to compromise
However, you always have some a priori knowledge about the data

Allowing you to impose restrictions
Lowering the bias and the variance

Nevertheless
We have the following example to grasp better the bothersome
bias–variance dilemma.

13 / 160

Images/cinvestav-1.jpg

For this

Assume
The data is generated by the following function

y =f (x) + ε,

ε ∼N
(
0, σ2

ε

)
We know that
The optimum regressor is E [y|x] = f (x)

Furthermore
Assume that the randomness in the different training sets, D, is due to the
yi’s (Affected by noise), while the respective points, xi, are fixed.

14 / 160

Images/cinvestav-1.jpg

For this

Assume
The data is generated by the following function

y =f (x) + ε,

ε ∼N
(
0, σ2

ε

)
We know that
The optimum regressor is E [y|x] = f (x)

Furthermore
Assume that the randomness in the different training sets, D, is due to the
yi’s (Affected by noise), while the respective points, xi, are fixed.

14 / 160

Images/cinvestav-1.jpg

For this

Assume
The data is generated by the following function

y =f (x) + ε,

ε ∼N
(
0, σ2

ε

)
We know that
The optimum regressor is E [y|x] = f (x)

Furthermore
Assume that the randomness in the different training sets, D, is due to the
yi’s (Affected by noise), while the respective points, xi, are fixed.

14 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

15 / 160

Images/cinvestav-1.jpg

Sampling the Space [2]

Imagine that D ⊂ [x1, x2] in which x lies
For example, you can choose xi = x1 + x2−x1

N−1 (i− 1) with i = 1, 2, ..., N

16 / 160

Images/cinvestav-1.jpg

Case 1

Choose the estimate of f (x), g (x|D), to be independent of D
For example, g (x) = w1x+ w0

For example, the points are spread around (x, f (x))

17 / 160

Images/cinvestav-1.jpg

Case 1
Choose the estimate of f (x), g (x|D), to be independent of D
For example, g (x) = w1x+ w0

For example, the points are spread around (x, f (x))

0

Data Points

17 / 160

Images/cinvestav-1.jpg

Case 1

Since g (x) is fixed

ED [g (x|D)] = g (x|D) ≡ g (x) (4)

With

V arD [g (x|D)] = 0 (5)

On the other hand
Because g (x) was chosen arbitrarily the expected bias must be large.

(ED [g (x|D)]− E [y|x])2︸ ︷︷ ︸
BIAS

(6)

18 / 160

Images/cinvestav-1.jpg

Case 1

Since g (x) is fixed

ED [g (x|D)] = g (x|D) ≡ g (x) (4)

With

V arD [g (x|D)] = 0 (5)

On the other hand
Because g (x) was chosen arbitrarily the expected bias must be large.

(ED [g (x|D)]− E [y|x])2︸ ︷︷ ︸
BIAS

(6)

18 / 160

Images/cinvestav-1.jpg

Case 1

Since g (x) is fixed

ED [g (x|D)] = g (x|D) ≡ g (x) (4)

With

V arD [g (x|D)] = 0 (5)

On the other hand
Because g (x) was chosen arbitrarily the expected bias must be large.

(ED [g (x|D)]− E [y|x])2︸ ︷︷ ︸
BIAS

(6)

18 / 160

Images/cinvestav-1.jpg

Case 2

In the other hand
Now, g1 (x) corresponds to a polynomial of high degree so it can pass
through each training point in D.

Example of g1 (x)

19 / 160

Images/cinvestav-1.jpg

Case 2
In the other hand
Now, g1 (x) corresponds to a polynomial of high degree so it can pass
through each training point in D.

Example of g1 (x)

0

Data Points

19 / 160

Images/cinvestav-1.jpg

Case 2

Due to the zero mean of the noise source

ED [g1 (x|D)] = f (x) = E [y|x] for any x = xi (7)

Remark: At the training points the bias is zero.

However the variance increases

ED
[
(g1 (x|D)− ED [g1 (x|D)])2

]
= ED

[
(f (x) + ε− f (x))2

]
= σ2

ε , for x = xi, i = 1, 2, ..., N

In other words
The bias becomes zero (or approximately zero) but the variance is now
equal to the variance of the noise source.

20 / 160

Images/cinvestav-1.jpg

Case 2

Due to the zero mean of the noise source

ED [g1 (x|D)] = f (x) = E [y|x] for any x = xi (7)

Remark: At the training points the bias is zero.

However the variance increases

ED
[
(g1 (x|D)− ED [g1 (x|D)])2

]
= ED

[
(f (x) + ε− f (x))2

]
= σ2

ε , for x = xi, i = 1, 2, ..., N

In other words
The bias becomes zero (or approximately zero) but the variance is now
equal to the variance of the noise source.

20 / 160

Images/cinvestav-1.jpg

Case 2

Due to the zero mean of the noise source

ED [g1 (x|D)] = f (x) = E [y|x] for any x = xi (7)

Remark: At the training points the bias is zero.

However the variance increases

ED
[
(g1 (x|D)− ED [g1 (x|D)])2

]
= ED

[
(f (x) + ε− f (x))2

]
= σ2

ε , for x = xi, i = 1, 2, ..., N

In other words
The bias becomes zero (or approximately zero) but the variance is now
equal to the variance of the noise source.

20 / 160

Images/cinvestav-1.jpg

Observations

First
Everything that has been said so far applies to both the regression and the
classification tasks.

However
Mean squared error is not the best way to measure the power of a
classifier.

Think about
A classifier that sends everything far away of the hyperplane!!! Away from
the values +− 1!!!

21 / 160

Images/cinvestav-1.jpg

Observations

First
Everything that has been said so far applies to both the regression and the
classification tasks.

However
Mean squared error is not the best way to measure the power of a
classifier.

Think about
A classifier that sends everything far away of the hyperplane!!! Away from
the values +− 1!!!

21 / 160

Images/cinvestav-1.jpg

Observations

First
Everything that has been said so far applies to both the regression and the
classification tasks.

However
Mean squared error is not the best way to measure the power of a
classifier.

Think about
A classifier that sends everything far away of the hyperplane!!! Away from
the values +− 1!!!

21 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

22 / 160

Images/cinvestav-1.jpg

The house example (From Andrew Ng Course)

Imagine the following data set

23 / 160

Images/cinvestav-1.jpg

Now assume that we use a regressor

For the fitting

1
2

N∑
i=1

(hθ (xi)− yi)2

We can then run one of our machine to see what minimize better the
previous equation
Question: Did you notice that I did not impose any structure to hw (x)?

24 / 160

Images/cinvestav-1.jpg

Now assume that we use a regressor

For the fitting

1
2

N∑
i=1

(hθ (xi)− yi)2

We can then run one of our machine to see what minimize better the
previous equation
Question: Did you notice that I did not impose any structure to hw (x)?

24 / 160

Images/cinvestav-1.jpg

Then, First fitting

What about using h1 (x) = θ0 + θ1x+ θ2x
2?

25 / 160

Images/cinvestav-1.jpg

Second fitting

What about using h2 (x) = θ0 + θ1x+ θ2x
2 + θ3x

3 + θ4x
4 + θ5x

5?

26 / 160

Images/cinvestav-1.jpg

Therefore, we have a problem

We get weird over fitting effects!!!
What do we do? What about minimizing the influence of θ3, θ4, θ5?

How do we do that?

min
θ

1
2

N∑
i=1

(hθ (xi)− yi)2

What about integrating those values to the cost function? Ideas

27 / 160

Images/cinvestav-1.jpg

Therefore, we have a problem

We get weird over fitting effects!!!
What do we do? What about minimizing the influence of θ3, θ4, θ5?

How do we do that?

min
θ

1
2

N∑
i=1

(hθ (xi)− yi)2

What about integrating those values to the cost function? Ideas

27 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

28 / 160

Images/cinvestav-1.jpg

We have

Regularization intuition is as follow
Small values for parameters θ0, θ1, θ2, ..., θn

It implies
1 ”Simpler” function
2 Less prone to overfitting

29 / 160

Images/cinvestav-1.jpg

We have

Regularization intuition is as follow
Small values for parameters θ0, θ1, θ2, ..., θn

It implies
1 ”Simpler” function
2 Less prone to overfitting

29 / 160

Images/cinvestav-1.jpg

We can do the previous idea for the other parameters

We can do the same for the other parameters

min
θ

1
2

N∑
i=1

(hθ (xi)− yi)2 +
d∑
i=1

λiθ
2
i (8)

However handling such many parameters can be so difficult
Combinatorial problem in reality!!!

30 / 160

Images/cinvestav-1.jpg

We can do the previous idea for the other parameters

We can do the same for the other parameters

min
θ

1
2

N∑
i=1

(hθ (xi)− yi)2 +
d∑
i=1

λiθ
2
i (8)

However handling such many parameters can be so difficult
Combinatorial problem in reality!!!

30 / 160

Images/cinvestav-1.jpg

Better, we can

We better use the following

min
θ

1
2

N∑
i=1

(hθ (xi)− yi)2 + λ
d∑
i=1

θ2
i (9)

31 / 160

Images/cinvestav-1.jpg

Graphically

Geometrically Equivalent to send our function to something quadratic

32 / 160

Images/cinvestav-1.jpg

An interesting Observation, when using linear estimators

The function ∑N
i=1

(
θTxi − yi

)2

It is a convex function...

And also ∑d
i=1 θi

It is also a convex function...

Therefore the final Lagrangian is a Convex function
Here, Regularization basically remove dimensions that could not be
useful in the minimization of the linear estimator.

33 / 160

Images/cinvestav-1.jpg

An interesting Observation, when using linear estimators

The function ∑N
i=1

(
θTxi − yi

)2

It is a convex function...

And also ∑d
i=1 θi

It is also a convex function...

Therefore the final Lagrangian is a Convex function
Here, Regularization basically remove dimensions that could not be
useful in the minimization of the linear estimator.

33 / 160

Images/cinvestav-1.jpg

An interesting Observation, when using linear estimators

The function ∑N
i=1

(
θTxi − yi

)2

It is a convex function...

And also ∑d
i=1 θi

It is also a convex function...

Therefore the final Lagrangian is a Convex function
Here, Regularization basically remove dimensions that could not be
useful in the minimization of the linear estimator.

33 / 160

Images/cinvestav-1.jpg

However

The game changes a lot
When the estimator is a complex non-convex function

In our case
Deep Learners

34 / 160

Images/cinvestav-1.jpg

However

The game changes a lot
When the estimator is a complex non-convex function

In our case
Deep Learners

34 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

35 / 160

Images/cinvestav-1.jpg

Ridge Regression

Equation

θ̂ = arg min
w


N∑
i=1

yi − θ0 −
d∑
j−1

xijθj

2

+ λ
d∑
j=1

θ2
j


Here

λ ≥ 0 is a complexity parameter that controls the amount of
shrinkage

The Larger λ ≥ 0
The coefficients are shrunk toward zero (and each other).

36 / 160

Images/cinvestav-1.jpg

Ridge Regression

Equation

θ̂ = arg min
w


N∑
i=1

yi − θ0 −
d∑
j−1

xijθj

2

+ λ
d∑
j=1

θ2
j


Here

λ ≥ 0 is a complexity parameter that controls the amount of
shrinkage

The Larger λ ≥ 0
The coefficients are shrunk toward zero (and each other).

36 / 160

Images/cinvestav-1.jpg

This is also can be written

Optimization Solution

arg min
θ

N∑
i=1

yi − θ0 −
d∑
j−1

xijθj

2

subject to
d∑
j=1

θ2
j < t

37 / 160

Images/cinvestav-1.jpg

Graphically

Geometrically Equivalent to

38 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

39 / 160

Images/cinvestav-1.jpg

Least Absolute Shrinkage and Selection Operator (LASSO)
It was introduced by Robert Tibshirani in 1996 based on Leo
Breiman’s nonnegative garrote

θ̂
garrote = arg min

θ

N∑
i=1

yi − θ0 −
d∑
j=1

xijθj

2

+Nλ
d∑
j=1

θj

s.t. θj > 0 ∀j

This is quite derivable
However, Tibshirani realized that you could get a more flexible model by
using the absolute value at the constraint!!!

Robert Tibshirani proposed the use of the L1 norm

‖θ‖1 =
d∑
i=1
|θi|

40 / 160

Images/cinvestav-1.jpg

Least Absolute Shrinkage and Selection Operator (LASSO)
It was introduced by Robert Tibshirani in 1996 based on Leo
Breiman’s nonnegative garrote

θ̂
garrote = arg min

θ

N∑
i=1

yi − θ0 −
d∑
j=1

xijθj

2

+Nλ
d∑
j=1

θj

s.t. θj > 0 ∀j

This is quite derivable
However, Tibshirani realized that you could get a more flexible model by
using the absolute value at the constraint!!!

Robert Tibshirani proposed the use of the L1 norm

‖θ‖1 =
d∑
i=1
|θi|

40 / 160

Images/cinvestav-1.jpg

Least Absolute Shrinkage and Selection Operator (LASSO)
It was introduced by Robert Tibshirani in 1996 based on Leo
Breiman’s nonnegative garrote

θ̂
garrote = arg min

θ

N∑
i=1

yi − θ0 −
d∑
j=1

xijθj

2

+Nλ
d∑
j=1

θj

s.t. θj > 0 ∀j

This is quite derivable
However, Tibshirani realized that you could get a more flexible model by
using the absolute value at the constraint!!!

Robert Tibshirani proposed the use of the L1 norm

‖θ‖1 =
d∑
i=1
|θi|

40 / 160

Images/cinvestav-1.jpg

The Final Optimization Problem

LASSO

θ̂
LASSO = arg min

θ

N∑
i=1

yi − θ0 −
d∑
j=1

xijθj

2

s.t.
d∑
i=1
|θi| ≤ t

This is not derivable
More advanced methods are necessary to solve this problem!!!

41 / 160

Images/cinvestav-1.jpg

The Final Optimization Problem

LASSO

θ̂
LASSO = arg min

θ

N∑
i=1

yi − θ0 −
d∑
j=1

xijθj

2

s.t.
d∑
i=1
|θi| ≤ t

This is not derivable
More advanced methods are necessary to solve this problem!!!

41 / 160

Images/cinvestav-1.jpg

The Lagrangian Version

The Lagrangian

θ̂
LASSO = arg min

θ

{
N∑
i=1

(
yi − xTθ

)2
+ λ

d∑
i=1
|θi|
}

However

You have other regularizations as ‖θ‖2 =
√∑d

i=1 |θi|
2

42 / 160

Images/cinvestav-1.jpg

The Lagrangian Version

The Lagrangian

θ̂
LASSO = arg min

θ

{
N∑
i=1

(
yi − xTθ

)2
+ λ

d∑
i=1
|θi|
}

However

You have other regularizations as ‖θ‖2 =
√∑d

i=1 |θi|
2

42 / 160

Images/cinvestav-1.jpg

Graphically

Yes the circle defined as ‖θ‖2 =
√∑d

i=1 |θi|
2

43 / 160

Images/cinvestav-1.jpg

For Example

In the Case of X is a Orthogonal Matrix, we have
θ̂i = sgn

(
XTy

)
i

((
XTy

)
i
− σ2α

)
+

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

44 / 160

Images/cinvestav-1.jpg

The seminal paper by Robert Tibshirani

An initial study of this regularization can be seen in
“Regression Shrinkage and Selection via the LASSO” by Robert Tibshirani

- 1996

45 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

46 / 160

Images/cinvestav-1.jpg

Furthermore

We can generalize ridge regression and the lasso, and view them as
Bayes estimates

θ̂
LASSO = arg min

w

{
N∑
i=1

(yi − L (xi,θ))2 + λ
d∑
i=1
|θi|q

}
with q ≥ 0

47 / 160

Images/cinvestav-1.jpg

For Example

We have when d = 2

Here, when q > 1
You are having a derivable Lagrangian, but you lose the LASSO
properties

48 / 160

Images/cinvestav-1.jpg

For Example

We have when d = 2

Here, when q > 1
You are having a derivable Lagrangian, but you lose the LASSO
properties

48 / 160

Images/cinvestav-1.jpg

Therefore

Zou and Hastie (2005) introduced the elastic-net penalty [3]

λ
d∑
i=1

{
αθ2

i + (1− α) |θi|
}

This is Basically
A Compromise Between the Ridge and LASSO.

49 / 160

Images/cinvestav-1.jpg

Therefore

Zou and Hastie (2005) introduced the elastic-net penalty [3]

λ
d∑
i=1

{
αθ2

i + (1− α) |θi|
}

This is Basically
A Compromise Between the Ridge and LASSO.

49 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

50 / 160

Images/cinvestav-1.jpg

What can be done?

Remember that our optimization Landscape is highly variable

51 / 160

Images/cinvestav-1.jpg

Over-fitting?

Basically (Intuition)

(yi − L (xi, θ))2 = 0 for i ∈ Training
(yj − L (xi, θ))2 � 0 for i ∈ V alidation

A the other side, you have BIAS==Simplification
Then, Regularization is an operator moving the model toward a bias

52 / 160

Images/cinvestav-1.jpg

Over-fitting?

Basically (Intuition)

(yi − L (xi, θ))2 = 0 for i ∈ Training
(yj − L (xi, θ))2 � 0 for i ∈ V alidation

A the other side, you have BIAS==Simplification
Then, Regularization is an operator moving the model toward a bias

52 / 160

Images/cinvestav-1.jpg

However, we do not want too much simplification

Look at this, the worst case Bias toward Red

53 / 160

Images/cinvestav-1.jpg

Basically this simplification is due to the constrained
optimization landscape

Basically our constraint is too Euclidean for Optimization Landscape

54 / 160

Images/cinvestav-1.jpg

Well-Posed Problem

Definition by Hadamard (Circa 1902)
Models of physical phenomenas should have the following properties

1 A solution exists,
2 The solution is unique,
3 The solution’s behavior changes continuously with the initial conditions.

Any other problem that fails in any of this conditions
It is considered an Ill-Posed Problem.

55 / 160

Images/cinvestav-1.jpg

Well-Posed Problem

Definition by Hadamard (Circa 1902)
Models of physical phenomenas should have the following properties

1 A solution exists,
2 The solution is unique,
3 The solution’s behavior changes continuously with the initial conditions.

Any other problem that fails in any of this conditions
It is considered an Ill-Posed Problem.

55 / 160

Images/cinvestav-1.jpg

It seems to be that

The Deep Learners are highly ill-posed problems
Ridge and LASSO have two possible effects

Too much simplification
The Deep Learners losses power of representation.

I Weights are eliminated

The constraints forces the θ′s
They are forced to live in a too smooth optimization landscape

56 / 160

Images/cinvestav-1.jpg

It seems to be that

The Deep Learners are highly ill-posed problems
Ridge and LASSO have two possible effects

Too much simplification
The Deep Learners losses power of representation.

I Weights are eliminated

The constraints forces the θ′s
They are forced to live in a too smooth optimization landscape

56 / 160

Images/cinvestav-1.jpg

It seems to be that

The Deep Learners are highly ill-posed problems
Ridge and LASSO have two possible effects

Too much simplification
The Deep Learners losses power of representation.

I Weights are eliminated

The constraints forces the θ′s
They are forced to live in a too smooth optimization landscape

56 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

57 / 160

Images/cinvestav-1.jpg

DeVris and Taylor [5]

For many years
Dataset augmentation has been a standard regularization technique
used to reduce overfitting while training supervised learning models

For Example, LeCun et al. [4] when training the LeNet5
They applied a series of transformations to the input images in order
to improve the robustness of the model.

Unfortunately
Dataset augmentation is not as straightforward to apply in all
domains as it is for images.

58 / 160

Images/cinvestav-1.jpg

DeVris and Taylor [5]

For many years
Dataset augmentation has been a standard regularization technique
used to reduce overfitting while training supervised learning models

For Example, LeCun et al. [4] when training the LeNet5
They applied a series of transformations to the input images in order
to improve the robustness of the model.

Unfortunately
Dataset augmentation is not as straightforward to apply in all
domains as it is for images.

58 / 160

Images/cinvestav-1.jpg

DeVris and Taylor [5]

For many years
Dataset augmentation has been a standard regularization technique
used to reduce overfitting while training supervised learning models

For Example, LeCun et al. [4] when training the LeNet5
They applied a series of transformations to the input images in order
to improve the robustness of the model.

Unfortunately
Dataset augmentation is not as straightforward to apply in all
domains as it is for images.

58 / 160

Images/cinvestav-1.jpg

For Example

In voice detection, adding
1 Gaussian noise to the input,
2 Shifting the pitch of the audio signal,
3 Time stretching,
4 Varying the loudness of the audio signal,
5 Applying random frequency filters,
6 Interpolating between samples in input space.

Actually, only the following techniques worked out
Pitch shifting and random frequency filtering

59 / 160

Images/cinvestav-1.jpg

For Example

In voice detection, adding
1 Gaussian noise to the input,
2 Shifting the pitch of the audio signal,
3 Time stretching,
4 Varying the loudness of the audio signal,
5 Applying random frequency filters,
6 Interpolating between samples in input space.

Actually, only the following techniques worked out
Pitch shifting and random frequency filtering

59 / 160

Images/cinvestav-1.jpg

For Example

In voice detection, adding
1 Gaussian noise to the input,
2 Shifting the pitch of the audio signal,
3 Time stretching,
4 Varying the loudness of the audio signal,
5 Applying random frequency filters,
6 Interpolating between samples in input space.

Actually, only the following techniques worked out
Pitch shifting and random frequency filtering

59 / 160

Images/cinvestav-1.jpg

For Example

In voice detection, adding
1 Gaussian noise to the input,
2 Shifting the pitch of the audio signal,
3 Time stretching,
4 Varying the loudness of the audio signal,
5 Applying random frequency filters,
6 Interpolating between samples in input space.

Actually, only the following techniques worked out
Pitch shifting and random frequency filtering

59 / 160

Images/cinvestav-1.jpg

For Example

In voice detection, adding
1 Gaussian noise to the input,
2 Shifting the pitch of the audio signal,
3 Time stretching,
4 Varying the loudness of the audio signal,
5 Applying random frequency filters,
6 Interpolating between samples in input space.

Actually, only the following techniques worked out
Pitch shifting and random frequency filtering

59 / 160

Images/cinvestav-1.jpg

For Example

In voice detection, adding
1 Gaussian noise to the input,
2 Shifting the pitch of the audio signal,
3 Time stretching,
4 Varying the loudness of the audio signal,
5 Applying random frequency filters,
6 Interpolating between samples in input space.

Actually, only the following techniques worked out
Pitch shifting and random frequency filtering

59 / 160

Images/cinvestav-1.jpg

For Example

In voice detection, adding
1 Gaussian noise to the input,
2 Shifting the pitch of the audio signal,
3 Time stretching,
4 Varying the loudness of the audio signal,
5 Applying random frequency filters,
6 Interpolating between samples in input space.

Actually, only the following techniques worked out
Pitch shifting and random frequency filtering

59 / 160

Images/cinvestav-1.jpg

DeVris and Taylor [5]

They did something different
First learning a data representation
Then applying transformations to samples mapped to that
representation.

They hypothesized
Due to manifold unfolding in feature space, simple transformations
applied to encoded rather than raw inputs

I They will result in more plausible synthetic data.

60 / 160

Images/cinvestav-1.jpg

DeVris and Taylor [5]

They did something different
First learning a data representation
Then applying transformations to samples mapped to that
representation.

They hypothesized
Due to manifold unfolding in feature space, simple transformations
applied to encoded rather than raw inputs

I They will result in more plausible synthetic data.

60 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

61 / 160

Images/cinvestav-1.jpg

Decoder/Encoder Part

We have a Decoder and Encoder Architecture

62 / 160

Images/cinvestav-1.jpg

Basically

They used a context C to pass information between the encoder and
decoder

Here is where the authors performed the augmentation

Basically
At the context, something like the embeddings at document level.

63 / 160

Images/cinvestav-1.jpg

Basically

They used a context C to pass information between the encoder and
decoder

Here is where the authors performed the augmentation

Basically
At the context, something like the embeddings at document level.

63 / 160

Images/cinvestav-1.jpg

Here

We have a K-coding symbol set
The Encoder and Decoder are based in a novel hidden unit.

We have the following configuration per row element j

rj = σ
(
[W rx]j + [U rht−1]j

)
← Reset Gate

σ a sigmoid function

The Update gate

zj = σ
(
[W zx]j + [U zht−1]j

)

64 / 160

Images/cinvestav-1.jpg

Here

We have a K-coding symbol set
The Encoder and Decoder are based in a novel hidden unit.

We have the following configuration per row element j

rj = σ
(
[W rx]j + [U rht−1]j

)
← Reset Gate

σ a sigmoid function

The Update gate

zj = σ
(
[W zx]j + [U zht−1]j

)

64 / 160

Images/cinvestav-1.jpg

Here

We have a K-coding symbol set
The Encoder and Decoder are based in a novel hidden unit.

We have the following configuration per row element j

rj = σ
(
[W rx]j + [U rht−1]j

)
← Reset Gate

σ a sigmoid function

The Update gate

zj = σ
(
[W zx]j + [U zht−1]j

)

64 / 160

Images/cinvestav-1.jpg

Where

The Activation Gate update

htj = zjh
t−1
j + (1− zj) h̃tj

Where h̃tj = φ
(
[W x]j + [U (r � ht−1)]j

)
In this formulation

When the reset gate is close to 0, the hidden state is forced to ignore
the previous hidden state!!!

65 / 160

Images/cinvestav-1.jpg

Where

The Activation Gate update

htj = zjh
t−1
j + (1− zj) h̃tj

Where h̃tj = φ
(
[W x]j + [U (r � ht−1)]j

)
In this formulation

When the reset gate is close to 0, the hidden state is forced to ignore
the previous hidden state!!!

65 / 160

Images/cinvestav-1.jpg

Finally, at output

We have a probability of producing a symbol of a set of at the
Decoder

p (yt|yt−1, ..., y1, c) = exp (Woht + Uoyt−1 + ct−1)∑K
j=1 exp (Wjht + Uoyt−1 + ct−1)

Then, at the Encoder
The encoder learns to predict the next symbol xt based in the
previous xt−1, xt−2, ..., x1 by using the maximization

max
θ

1
N

N∑
n=1

p (yn|xn)

66 / 160

Images/cinvestav-1.jpg

Finally, at output

We have a probability of producing a symbol of a set of at the
Decoder

p (yt|yt−1, ..., y1, c) = exp (Woht + Uoyt−1 + ct−1)∑K
j=1 exp (Wjht + Uoyt−1 + ct−1)

Then, at the Encoder
The encoder learns to predict the next symbol xt based in the
previous xt−1, xt−2, ..., x1 by using the maximization

max
θ

1
N

N∑
n=1

p (yn|xn)

66 / 160

Images/cinvestav-1.jpg

Here, the Noise

Generate noise by drawing from
A Gaussian distribution with zero mean and per-element standard
deviation calculated across all context vectors in the dataset

c′i = ci + γX, X ∼ N
(
0, σ2

i

)
We can generate this using a more direct approach

For each sample in the dataset, we find its K nearest neighbors in
feature space, then

c′ = (ck − cj)λ+ cj

λ = 0.5

67 / 160

Images/cinvestav-1.jpg

Here, the Noise

Generate noise by drawing from
A Gaussian distribution with zero mean and per-element standard
deviation calculated across all context vectors in the dataset

c′i = ci + γX, X ∼ N
(
0, σ2

i

)
We can generate this using a more direct approach

For each sample in the dataset, we find its K nearest neighbors in
feature space, then

c′ = (ck − cj)λ+ cj

λ = 0.5

67 / 160

Images/cinvestav-1.jpg

Then

Once this new augmented context vectors with noise are ready
As input for a learning task,
They can be decoded to generate new sequences

68 / 160

Images/cinvestav-1.jpg

Finally, we have

The following architecture where two symbols are encoded

69 / 160

Images/cinvestav-1.jpg

Results

Not so much improvement
Test Error

Image Size Description Test Error (Reconstructions of

original data)

32× 32 Original dataset 8.59 ± 0.24 -
24× 24 Center crop 11.28 ± 0.25 18.54 ± 0.38
24× 24 Center crop + extrapolation 13.90 ± 0.22 17.69 ± 0.39
24× 24 Simple data augmentation 7.33 ± 0.17 13.60 ± 0.17
24× 24 Simple data augmentation + 8.80 ± 0.24 12.00 ± 0.23

extrapolation

70 / 160

Images/cinvestav-1.jpg

Why is this happening?

It is the same problem at the exit point
We are regularizing at the encoded input space... but the architecture
is still there...

Therefore
It is necessary to do something quite different...

71 / 160

Images/cinvestav-1.jpg

Why is this happening?

It is the same problem at the exit point
We are regularizing at the encoded input space... but the architecture
is still there...

Therefore
It is necessary to do something quite different...

71 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

72 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

73 / 160

Images/cinvestav-1.jpg

Regularization in Deep Forward

In Layers of a Deep Forward
We want to find and estimation xrt to an input at x0 ∈ Rd in layer t
satisfying

σ (Artxt) = yt+1

74 / 160

Images/cinvestav-1.jpg

Regularization in Deep Forward

In Layers of a Deep Forward
We want to find and estimation xrt to an input at x0 ∈ Rd in layer t
satisfying

σ (Artxt) = yt+1

74 / 160

Images/cinvestav-1.jpg

We can see this

A flow of information
Forward Flow of Infromation

75 / 160

Images/cinvestav-1.jpg

In all such situations

The vector xt is generated by yt+1 using back-propagation

Art = Ar−1
t − η

∂L
(
Ar−1
T , ..., Ar−1

0 , x0
)

∂Ar−1
t

It is usually a meaningless bad approximation
to x∗ optimal at layer t for all possible inputs x′0s.

76 / 160

Images/cinvestav-1.jpg

In all such situations

The vector xt is generated by yt+1 using back-propagation

Art = Ar−1
t − η

∂L
(
Ar−1
T , ..., Ar−1

0 , x0
)

∂Ar−1
t

It is usually a meaningless bad approximation
to x∗ optimal at layer t for all possible inputs x′0s.

76 / 160

Images/cinvestav-1.jpg

Then

We can see the Deep Forward Network as

yT = σ (ATσ (AT−1σ (AT−2 (...σ (A0x0)))))

Here
The σ is applied to the generated vectors point wise...

77 / 160

Images/cinvestav-1.jpg

Then

We can see the Deep Forward Network as

yT = σ (ATσ (AT−1σ (AT−2 (...σ (A0x0)))))

Here
The σ is applied to the generated vectors point wise...

77 / 160

Images/cinvestav-1.jpg

The Jacobian of the Gradient Descent

Here, we assume a Least Squared Error cost function

∂L
(
Ar−1

T
, ..., Ar−1

0 , xi
0

)
∂Ar−1

t

= −
(
z

i − yT

)
×σ′
(
A

r
T−1xT−1

)
×
∂Ar

T−1xT−1

∂xT−1
× ...×σ′

(
A

r
t xt

)
×
∂Ar

t xt

∂xt

Where

σ′
(
Arkxk

)
=


σ′
(
ar1kxk

)
0 · · · 0

0 σ′
(
ar2kxk

)
· · · 0

...
...

. . .
...

0 0 · · · σ′
(
arMkxk

)


78 / 160

Images/cinvestav-1.jpg

The Jacobian of the Gradient Descent

Here, we assume a Least Squared Error cost function

∂L
(
Ar−1

T
, ..., Ar−1

0 , xi
0

)
∂Ar−1

t

= −
(
z

i − yT

)
×σ′
(
A

r
T−1xT−1

)
×
∂Ar

T−1xT−1

∂xT−1
× ...×σ′

(
A

r
t xt

)
×
∂Ar

t xt

∂xt

Where

σ′
(
Arkxk

)
=


σ′
(
ar1kxk

)
0 · · · 0

0 σ′
(
ar2kxk

)
· · · 0

...
...

. . .
...

0 0 · · · σ′
(
arMkxk

)


78 / 160

Images/cinvestav-1.jpg

What will happen in the following situation?

Imagine that A′ks are diagonal matrix

Ark =


a1k 0 · · · 0
0 a2k · · · 0
...

...
. . .

...
0 0 · · · aMk


Therefore, we have

σ′ (Arkxk) =


σ′ (ar1kx1k) 0 · · · 0

0 σ′ (ar2kx2k) · · · 0
...

...
. . .

...
0 0 · · · σ′ (arMkx2k)



79 / 160

Images/cinvestav-1.jpg

What will happen in the following situation?

Imagine that A′ks are diagonal matrix

Ark =


a1k 0 · · · 0
0 a2k · · · 0
...

...
. . .

...
0 0 · · · aMk


Therefore, we have

σ′ (Arkxk) =


σ′ (ar1kx1k) 0 · · · 0

0 σ′ (ar2kx2k) · · · 0
...

...
. . .

...
0 0 · · · σ′ (arMkx2k)



79 / 160

Images/cinvestav-1.jpg

Then, we have that

First

σ′
(
ArT−1xT−1

)
×
∂ArT−1xT−1

∂xT−1
× ...× σ′ (Artxt)×

∂Artxt

∂xt
= ∗

Then, we have that

∗ =


∏t

k=T−1 σ
′
(
ar1kx1k

)
a1k · · · 0

...
. . .

...
0 · · ·

∏t

k=T−1 σ
′
(
arMkx2k

)
a2k



80 / 160

Images/cinvestav-1.jpg

Then, we have that

First

σ′
(
ArT−1xT−1

)
×
∂ArT−1xT−1

∂xT−1
× ...× σ′ (Artxt)×

∂Artxt

∂xt
= ∗

Then, we have that

∗ =


∏t

k=T−1 σ
′
(
ar1kx1k

)
a1k · · · 0

...
. . .

...
0 · · ·

∏t

k=T−1 σ
′
(
arMkx2k

)
a2k



80 / 160

Images/cinvestav-1.jpg

Actually

Choosing Matrices in such way
It is like a heavy simplification of the Deep Forward Network

81 / 160

Images/cinvestav-1.jpg

Something happens with the LASSO and Ridge

At the top of the Optimization Cost Function
We do not know how such shallow regularization can affect the
Neural Network

So heavy regularization
It can not be a so good idea...

We need a new way of doing stuff
For example, we could do the following...

82 / 160

Images/cinvestav-1.jpg

Something happens with the LASSO and Ridge

At the top of the Optimization Cost Function
We do not know how such shallow regularization can affect the
Neural Network

So heavy regularization
It can not be a so good idea...

We need a new way of doing stuff
For example, we could do the following...

82 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

83 / 160

Images/cinvestav-1.jpg

Dropout

It was introduced by Hinton and Google [6]
To avoid the problem of over-fitting

You can see it as a regularization
From [7] “Dropout training as adaptive regularization” by Wager et al.

84 / 160

Images/cinvestav-1.jpg

Dropout

It was introduced by Hinton and Google [6]
To avoid the problem of over-fitting

You can see it as a regularization
From [7] “Dropout training as adaptive regularization” by Wager et al.

84 / 160

Images/cinvestav-1.jpg

Srivastava et al.

He comments that with unlimited computations
“the best way to “regularize” a fixed-sized model is to average the
predictions of all possible settings of the parameters”

Something like Boosting [1]
By Using simpler and smaller models

85 / 160

Images/cinvestav-1.jpg

Srivastava et al.

He comments that with unlimited computations
“the best way to “regularize” a fixed-sized model is to average the
predictions of all possible settings of the parameters”

Something like Boosting [1]
By Using simpler and smaller models

85 / 160

Images/cinvestav-1.jpg

Problem

We have Deep Architectures with thousands of parameters and
hyperparameters

Therefore, we have a problem!!! We need to solve this in some way!!!

What if we fix our architecture

86 / 160

Images/cinvestav-1.jpg

Problem

We have Deep Architectures with thousands of parameters and
hyperparameters

Therefore, we have a problem!!! We need to solve this in some way!!!

What if we fix our architecture

86 / 160

Images/cinvestav-1.jpg

How it works?

You have forward layers

zl+1
i = W l+1

i xl + bl+1
i

xl+1
i = σ

(
zl+1
i

)
With dropout, the feed-forward operation becomes

rlj ∼ Bernoulli (p)
x̃l = rl � xl

zl+1
i = W l+1

i x̃l + bl+1
i

xl+1
i = σ

(
zl+1
i

)

87 / 160

Images/cinvestav-1.jpg

How it works?

You have forward layers

zl+1
i = W l+1

i xl + bl+1
i

xl+1
i = σ

(
zl+1
i

)
With dropout, the feed-forward operation becomes

rlj ∼ Bernoulli (p)
x̃l = rl � xl

zl+1
i = W l+1

i x̃l + bl+1
i

xl+1
i = σ

(
zl+1
i

)

87 / 160

Images/cinvestav-1.jpg

The Network

It looks like a series of gates

88 / 160

Images/cinvestav-1.jpg

Therefore

We have that sampling is done in a Bernoulli to generate the rl, a
vector of Bernoulli random variables

Then, the layers are thinned by the wise multiplication with the nodes
at each layer

89 / 160

Images/cinvestav-1.jpg

Then, we erase randomly connections through the network

We generate sparser version with input layer such that p1
1j → 1.0

Active

Inactive

90 / 160

Images/cinvestav-1.jpg

Then assuming a Multilayer Perceptron
We have the following Architecture without bias to simplify with a
single output

min 1
N

N∑
i=1

(zi − ti)2

zi = σ1 (Wohyi)
yi = σ2 (Whixi)

Then, we get the following network after the sampling

L (Woh,WhI) = (t− z)2

z = σ1
(
Woh

(
r2 � y

))
y = σ2

(
WhI

(
r1 � x

))
91 / 160

Images/cinvestav-1.jpg

Then assuming a Multilayer Perceptron
We have the following Architecture without bias to simplify with a
single output

min 1
N

N∑
i=1

(zi − ti)2

zi = σ1 (Wohyi)
yi = σ2 (Whixi)

Then, we get the following network after the sampling

L (Woh,WhI) = (t− z)2

z = σ1
(
Woh

(
r2 � y

))
y = σ2

(
WhI

(
r1 � x

))
91 / 160

Images/cinvestav-1.jpg

Then, we have that

The Backpropagation at hidden weights

∂L

∂Woh
= −2 (t− z)× ∂σ′1 (netoh)

∂netoh
×
(
r2 � y

)

Basically
(
W t+1
oh

)
j

=


(
W t
oh

)
j + η2 (t− z)× ∂σ′1(netoh)

∂netoh
(y)j if rj = 1(

W t
oh

)
j if rj = 0

92 / 160

Images/cinvestav-1.jpg

Then, we have that

The Backpropagation at hidden weights

∂L

∂Woh
= −2 (t− z)× ∂σ′1 (netoh)

∂netoh
×
(
r2 � y

)

Basically
(
W t+1
oh

)
j

=


(
W t
oh

)
j + η2 (t− z)× ∂σ′1(netoh)

∂netoh
(y)j if rj = 1(

W t
oh

)
j if rj = 0

92 / 160

Images/cinvestav-1.jpg

However, At Testing
There are a exponential number of possible sparse networks

A neural net with n units, can be seen as a collection of 2n possible
thinned neural networks.

Assuming
These networks all share weights so that the total number of
parameters is still O(n2) given that you this many connections

n (n− 1)
2 = O

(
n2
)

Problem, we cannot average such amount of sub-networks
We average over the different passes to obtain a p for each node in
the network

I Meaning the probability of being active in the network.

pik = #of subnets wehre node ik was active
#Of total subnets

93 / 160

Images/cinvestav-1.jpg

However, At Testing
There are a exponential number of possible sparse networks

A neural net with n units, can be seen as a collection of 2n possible
thinned neural networks.

Assuming
These networks all share weights so that the total number of
parameters is still O(n2) given that you this many connections

n (n− 1)
2 = O

(
n2
)

Problem, we cannot average such amount of sub-networks
We average over the different passes to obtain a p for each node in
the network

I Meaning the probability of being active in the network.

pik = #of subnets wehre node ik was active
#Of total subnets

93 / 160

Images/cinvestav-1.jpg

However, At Testing
There are a exponential number of possible sparse networks

A neural net with n units, can be seen as a collection of 2n possible
thinned neural networks.

Assuming
These networks all share weights so that the total number of
parameters is still O(n2) given that you this many connections

n (n− 1)
2 = O

(
n2
)

Problem, we cannot average such amount of sub-networks
We average over the different passes to obtain a p for each node in
the network

I Meaning the probability of being active in the network.

pik = #of subnets wehre node ik was active
#Of total subnets

93 / 160

Images/cinvestav-1.jpg

Then, we have

At Training

94 / 160

Images/cinvestav-1.jpg

The mixture of the models

We know that

E (wik) =
M∑
m=1

wmikp (wmik |BackPropM ,X)

Clearly, we need to get p (wmik |BackPropM ,X)
A simple solution, we can use

pik = #of subnets wehre node ik was active
#Of total subnets

95 / 160

Images/cinvestav-1.jpg

The mixture of the models

We know that

E (wik) =
M∑
m=1

wmikp (wmik |BackPropM ,X)

Clearly, we need to get p (wmik |BackPropM ,X)
A simple solution, we can use

pik = #of subnets wehre node ik was active
#Of total subnets

95 / 160

Images/cinvestav-1.jpg

Therefore, Using the fact that Forward has a Flow of
Information

Add flow of information between all the different generated trained
networks

Flow of Information

96 / 160

Images/cinvestav-1.jpg

Mathematically

We have the following ideas
Each node has associated matrices for exit weights

Wout =


∑m
i=1w

m
i1k∑m

i=1w
m
i2k

...∑m
i=1w

m
iJk


Then use the probability p to get the new final weights

pikWout =


∑m
i=1w

m
i1kpik∑m

i=1w
m
i2kpik

...∑m
i=1w

m
iJkpik


97 / 160

Images/cinvestav-1.jpg

Mathematically

We have the following ideas
Each node has associated matrices for exit weights

Wout =


∑m
i=1w

m
i1k∑m

i=1w
m
i2k

...∑m
i=1w

m
iJk


Then use the probability p to get the new final weights

pikWout =


∑m
i=1w

m
i1kpik∑m

i=1w
m
i2kpik

...∑m
i=1w

m
iJkpik


97 / 160

Images/cinvestav-1.jpg

Then

We have the following structure where thiner lines represent smaller
weights

The Original Structure At Testing

98 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

99 / 160

Images/cinvestav-1.jpg

Why dropout?

Srivastava et al. [6]
A motivation for dropout comes from the theory of evolution!!!

I Yes a original network and after a mutated one!!!

The most accepted interpretation of dropout
It is implicitly bagging at test time a large number of neural networks
which share parameters.

100 / 160

Images/cinvestav-1.jpg

Why dropout?

Srivastava et al. [6]
A motivation for dropout comes from the theory of evolution!!!

I Yes a original network and after a mutated one!!!

The most accepted interpretation of dropout
It is implicitly bagging at test time a large number of neural networks
which share parameters.

100 / 160

Images/cinvestav-1.jpg

Bagging/Bootstrap Aggregation

Schematic of the Bootstrap Aggregation process [1]

Bootstrap
Samples

Bootstrap
Replications

Training
Samples

101 / 160

Images/cinvestav-1.jpg

Thus

Use each of them to train a copy yb (x) of a predictive regression
model to predict a single continuous variable

ycom (x) = 1
B

B∑
b=1

yb (x)

102 / 160

Images/cinvestav-1.jpg

Results

We have that
Method CIFAR-10 Error CIFAR-100 Error

CNN+max pooling (hand tuned) 15.60% 43.48%
CNN+stochastic pooling (Zeiler and Fergus, 2013) 15.13% 42.51%

CNN+max pooling (Snoek et al., 2012) 14.98% -
CNN+max pooling + dropout fully connected layers 14.32% 41.26%

CNN+max pooling + dropout in all layers 12.61% 37.20%
CNN+maxout (Goodfellow et al., 2013) 11.68% 38.57%

103 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

104 / 160

Images/cinvestav-1.jpg

Given the previous ideas

Why not to use the Data Flow for Sparsity?
Basically, we can assume that a pattern exist in the data you are
looking at

I The shifts on the weights are not so great...

pik is to broad because it does not represents the real
p (wmik |BackPropM ,X)

Actually, you should use the min-batch values, xt and yt+1, to
generate the real distribution

105 / 160

Images/cinvestav-1.jpg

Given the previous ideas

Why not to use the Data Flow for Sparsity?
Basically, we can assume that a pattern exist in the data you are
looking at

I The shifts on the weights are not so great...

pik is to broad because it does not represents the real
p (wmik |BackPropM ,X)

Actually, you should use the min-batch values, xt and yt+1, to
generate the real distribution

105 / 160

Images/cinvestav-1.jpg

Based in the paper

"How does batch normalization help optimization?", in Advances in
Neural Information Processing Systems (2018), pp. 2483--2493.

106 / 160

Images/cinvestav-1.jpg

Then, we can use a Gaussian Distribution to model this

Actually, the paper is telling us that, given the noise that is injected
at each time step t

µt ∼ U (−nµ, nµ)
σt ∼ U (1, n)

Something Notable

Properties

107 / 160

Images/cinvestav-1.jpg

Then, we can use a Gaussian Distribution to model this

Actually, the paper is telling us that, given the noise that is injected
at each time step t

µt ∼ U (−nµ, nµ)
σt ∼ U (1, n)

Something Notable

Properties

107 / 160

Images/cinvestav-1.jpg

Then, we can use a Gaussian Distribution to model this

Actually, the paper is telling us that, given the noise that is injected
at each time step t

µt ∼ U (−nµ, nµ)
σt ∼ U (1, n)

Something Notable

Properties

107 / 160

Images/cinvestav-1.jpg

Why not use for the Data for enforcing Sparsity?

We have

p
(
yl+1|xl,W

)
= N

(
σ
(
Wxl

)
, σ2I

)
p
(
σ2
)
∝ ”constant”

p
(
W l|τ

)
=

d∏
i=1
N
(
wlj |0, τ lj

)
= N

(
W l|0, (Υ (τ))−1

)

p (τ |γ) =
(
γ

2

)d d∏
i=1

exp
{
−γ2 τi

}

With Υ (τ) = diag
(
τ−1

1 , ..., τ−1
d

)
is the diagonal matrix with the

inverse variances of all the wi’s.

108 / 160

Images/cinvestav-1.jpg

Why not use for the Data for enforcing Sparsity?

We have

p
(
yl+1|xl,W

)
= N

(
σ
(
Wxl

)
, σ2I

)
p
(
σ2
)
∝ ”constant”

p
(
W l|τ

)
=

d∏
i=1
N
(
wlj |0, τ lj

)
= N

(
W l|0, (Υ (τ))−1

)

p (τ |γ) =
(
γ

2

)d d∏
i=1

exp
{
−γ2 τi

}

With Υ (τ) = diag
(
τ−1

1 , ..., τ−1
d

)
is the diagonal matrix with the

inverse variances of all the wi’s.

108 / 160

Images/cinvestav-1.jpg

Why not use for the Data for enforcing Sparsity?

We have

p
(
yl+1|xl,W

)
= N

(
σ
(
Wxl

)
, σ2I

)
p
(
σ2
)
∝ ”constant”

p
(
W l|τ

)
=

d∏
i=1
N
(
wlj |0, τ lj

)
= N

(
W l|0, (Υ (τ))−1

)

p (τ |γ) =
(
γ

2

)d d∏
i=1

exp
{
−γ2 τi

}

With Υ (τ) = diag
(
τ−1

1 , ..., τ−1
d

)
is the diagonal matrix with the

inverse variances of all the wi’s.

108 / 160

Images/cinvestav-1.jpg

Why not use for the Data for enforcing Sparsity?

We have

p
(
yl+1|xl,W

)
= N

(
σ
(
Wxl

)
, σ2I

)
p
(
σ2
)
∝ ”constant”

p
(
W l|τ

)
=

d∏
i=1
N
(
wlj |0, τ lj

)
= N

(
W l|0, (Υ (τ))−1

)

p (τ |γ) =
(
γ

2

)d d∏
i=1

exp
{
−γ2 τi

}

With Υ (τ) = diag
(
τ−1

1 , ..., τ−1
d

)
is the diagonal matrix with the

inverse variances of all the wi’s.

108 / 160

Images/cinvestav-1.jpg

How do we build such distribution

Given that each wi has a zero-mean Gaussian prior

p (wi|τi) = N (wi|0, τi) (10)

Where τi has the following exponential hyper-prior

p (τi|γ) = γ

2 exp
{
−γ2 τi

}
for τi ≥ 0 (11)

Then, we have

wi ∼ p (wi|γ) =
∫ ∞

0
p (wi|τi) p (τi|γ) dτi =

√
γ

2 exp {−√γ |wi|} (12)

109 / 160

Images/cinvestav-1.jpg

How do we build such distribution

Given that each wi has a zero-mean Gaussian prior

p (wi|τi) = N (wi|0, τi) (10)

Where τi has the following exponential hyper-prior

p (τi|γ) = γ

2 exp
{
−γ2 τi

}
for τi ≥ 0 (11)

Then, we have

wi ∼ p (wi|γ) =
∫ ∞

0
p (wi|τi) p (τi|γ) dτi =

√
γ

2 exp {−√γ |wi|} (12)

109 / 160

Images/cinvestav-1.jpg

How do we build such distribution

Given that each wi has a zero-mean Gaussian prior

p (wi|τi) = N (wi|0, τi) (10)

Where τi has the following exponential hyper-prior

p (τi|γ) = γ

2 exp
{
−γ2 τi

}
for τi ≥ 0 (11)

Then, we have

wi ∼ p (wi|γ) =
∫ ∞

0
p (wi|τi) p (τi|γ) dτi =

√
γ

2 exp {−√γ |wi|} (12)

109 / 160

Images/cinvestav-1.jpg

Example

The double exponential

110 / 160

Images/cinvestav-1.jpg

Then using the Monte Carlo Method

We have

E
[
W t|f

(
W tl
b xb

)
, σ2I

]
=
p
(
σ2)
B

B∑
b=1

N
(
f
(
W tl
b xb

)
, σ2I

)
p
(
W tl
b |τi

)
p (τi|γ)

Then, we use the mini batch per epoch to decide if we drop a weight
Basically, the previous

111 / 160

Images/cinvestav-1.jpg

Then using the Monte Carlo Method

We have

E
[
W t|f

(
W tl
b xb

)
, σ2I

]
=
p
(
σ2)
B

B∑
b=1

N
(
f
(
W tl
b xb

)
, σ2I

)
p
(
W tl
b |τi

)
p (τi|γ)

Then, we use the mini batch per epoch to decide if we drop a weight
Basically, the previous

111 / 160

Images/cinvestav-1.jpg

We are using the following idea
Basically, we are using the fact that

0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

0.25

ORDERED

VANISHING
GRADIENT CHAOTIC

EXPLODING
GRADIENT

112 / 160

Images/cinvestav-1.jpg

Thus, we have that

The layer output can be bounded by

N
(
f
(
W tl
b xb

)
, σ2I

)
The other part of the equation is the sparsity part

p
(
W tl
b |τi

)
p (τi|γ)

113 / 160

Images/cinvestav-1.jpg

Thus, we have that

The layer output can be bounded by

N
(
f
(
W tl
b xb

)
, σ2I

)
The other part of the equation is the sparsity part

p
(
W tl
b |τi

)
p (τi|γ)

113 / 160

Images/cinvestav-1.jpg

As the process progress

Once the weights fall below certain level we shutdown the weight

The Original Structure After Some Epochs More Epochs

114 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

115 / 160

Images/cinvestav-1.jpg

Bouthillier et al.[8]

The main goal when using dropout
It is to regularize the neural network we are training

Those random modifications of the network’s stucture
They are believed to avoid co-adaptation of neurons by making it
impossible for two subsequent neurons to rely solely on each other [6]

116 / 160

Images/cinvestav-1.jpg

Bouthillier et al.[8]

The main goal when using dropout
It is to regularize the neural network we are training

Those random modifications of the network’s stucture
They are believed to avoid co-adaptation of neurons by making it
impossible for two subsequent neurons to rely solely on each other [6]

116 / 160

Images/cinvestav-1.jpg

Therefore

We have a function that projects from a dimensional space to another

h (x) = Wx+ b

Then, given the noisy version of an activation function where
M ∼ B (ph)

f̃ (h) = M � rect (h) (Training)

Where f (h) = rect (h) (Testing)

Actually Srivastava et al. [6]
He mentions to use

pijk = #of subnets wehre node ijk was active
#Of total subnets

117 / 160

Images/cinvestav-1.jpg

Therefore

We have a function that projects from a dimensional space to another

h (x) = Wx+ b

Then, given the noisy version of an activation function where
M ∼ B (ph)

f̃ (h) = M � rect (h) (Training)

Where f (h) = rect (h) (Testing)

Actually Srivastava et al. [6]
He mentions to use

pijk = #of subnets wehre node ijk was active
#Of total subnets

117 / 160

Images/cinvestav-1.jpg

Therefore

We have a function that projects from a dimensional space to another

h (x) = Wx+ b

Then, given the noisy version of an activation function where
M ∼ B (ph)

f̃ (h) = M � rect (h) (Training)

Where f (h) = rect (h) (Testing)

Actually Srivastava et al. [6]
He mentions to use

pijk = #of subnets wehre node ijk was active
#Of total subnets

117 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

118 / 160

Images/cinvestav-1.jpg

Data Augmentation

In many previous works [5, 4]
It has been shown that augmenting data by using domain specific
transformations helps in learning better models

Therefore, the main idea
It is to map input data to output labels

One way to learn such a mapping function
It is to augment the data using noise:

I Hypothesis!!! Noise based regularization techniques seems to be
increasing training data coverage as augmentation

119 / 160

Images/cinvestav-1.jpg

Data Augmentation

In many previous works [5, 4]
It has been shown that augmenting data by using domain specific
transformations helps in learning better models

Therefore, the main idea
It is to map input data to output labels

One way to learn such a mapping function
It is to augment the data using noise:

I Hypothesis!!! Noise based regularization techniques seems to be
increasing training data coverage as augmentation

119 / 160

Images/cinvestav-1.jpg

Data Augmentation

In many previous works [5, 4]
It has been shown that augmenting data by using domain specific
transformations helps in learning better models

Therefore, the main idea
It is to map input data to output labels

One way to learn such a mapping function
It is to augment the data using noise:

I Hypothesis!!! Noise based regularization techniques seems to be
increasing training data coverage as augmentation

119 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

120 / 160

Images/cinvestav-1.jpg

Augmenting by Noise [8]

We assume that for a given f̃ (h), there is an optimal x∗

(f ◦ h) (x∗) = rect (h (x∗)) :≈M � rect (h) =
(
f̃ ◦ h

)
(x∗)

This x∗ can be found by minimizing by stochastic gradient descent

L (x,x∗) =
[
(f ◦ h) (x∗)−

(
f̃ ◦ h

)
(x∗)

]2

121 / 160

Images/cinvestav-1.jpg

Augmenting by Noise [8]

We assume that for a given f̃ (h), there is an optimal x∗

(f ◦ h) (x∗) = rect (h (x∗)) :≈M � rect (h) =
(
f̃ ◦ h

)
(x∗)

This x∗ can be found by minimizing by stochastic gradient descent

L (x,x∗) =
[
(f ◦ h) (x∗)−

(
f̃ ◦ h

)
(x∗)

]2

121 / 160

Images/cinvestav-1.jpg

Extending to n layers

For this, we define

g̃(i) (x) =
[
f̃ (i) ◦ h(i) ◦ · · · ◦ f̃ (1) ◦ h(1)

]
(x)

g(i) (x∗) =
[
f (i) ◦ h(i) ◦ · · · ◦ f (1) ◦ h(1)

]
(x∗)

Then, it is possible to compute the back propagation projection
corresponding to all hidden layer activations at once

L
(
x,x(1)∗ , . . . ,x(n)∗

)
=

n∑
i=1

λi

[
g(i)
(
x(i)∗

)
− g̃(i) (x)

]2

122 / 160

Images/cinvestav-1.jpg

Extending to n layers

For this, we define

g̃(i) (x) =
[
f̃ (i) ◦ h(i) ◦ · · · ◦ f̃ (1) ◦ h(1)

]
(x)

g(i) (x∗) =
[
f (i) ◦ h(i) ◦ · · · ◦ f (1) ◦ h(1)

]
(x∗)

Then, it is possible to compute the back propagation projection
corresponding to all hidden layer activations at once

L
(
x,x(1)∗ , . . . ,x(n)∗

)
=

n∑
i=1

λi

[
g(i)
(
x(i)∗

)
− g̃(i) (x)

]2

122 / 160

Images/cinvestav-1.jpg

However

Small Problem
It is possible to show by contradiction that one is unlikely to find a
single x∗ = x(1)∗ = · · · = x(n)∗

I Such that you can significantly reduce L

123 / 160

Images/cinvestav-1.jpg

Proof of the unlikeness of x∗ = x(1)∗
= · · · = x(n)∗

By the associative property of function composition

g(i) (x∗) =
(
f (i) ◦ h(i)

) (
g(i−1) (x∗)

)

Suppose there exist x∗ = x(1)∗ = · · · = x(n)∗ an such that

(
f (i) ◦ h(i)

) (
g(i−1) (x∗)

)
=
(
f̃ (i) ◦ h(i)

) (
g̃(i−1) (x)

)
(
f (i−1) ◦ h(i−1)

) (
g(i−2) (x∗)

)
=
(
f̃ (i−1) ◦ h(i−1)

) (
g̃(i−2) (x)

)

124 / 160

Images/cinvestav-1.jpg

Proof of the unlikeness of x∗ = x(1)∗
= · · · = x(n)∗

By the associative property of function composition

g(i) (x∗) =
(
f (i) ◦ h(i)

) (
g(i−1) (x∗)

)

Suppose there exist x∗ = x(1)∗ = · · · = x(n)∗ an such that

(
f (i) ◦ h(i)

) (
g(i−1) (x∗)

)
=
(
f̃ (i) ◦ h(i)

) (
g̃(i−1) (x)

)
(
f (i−1) ◦ h(i−1)

) (
g(i−2) (x∗)

)
=
(
f̃ (i−1) ◦ h(i−1)

) (
g̃(i−2) (x)

)

124 / 160

Images/cinvestav-1.jpg

Then

Based on the previous equations

g(i−1) (x∗) = g̃(i−1) (x)

Then, we get(
f (i) ◦ h(i)

) (
g(i−1) (x∗)

)
=
(
f̃ (i) ◦ h(i)

) (
g̃(i−1) (x)

)
Finally

rect
(
h(i)

(
g(i−1) (x∗)

))
= M (i) � rect

(
h(i)

(
g(i−1) (x∗)

))

125 / 160

Images/cinvestav-1.jpg

Then

Based on the previous equations

g(i−1) (x∗) = g̃(i−1) (x)

Then, we get(
f (i) ◦ h(i)

) (
g(i−1) (x∗)

)
=
(
f̃ (i) ◦ h(i)

) (
g̃(i−1) (x)

)
Finally

rect
(
h(i)

(
g(i−1) (x∗)

))
= M (i) � rect

(
h(i)

(
g(i−1) (x∗)

))

125 / 160

Images/cinvestav-1.jpg

Then

Based on the previous equations

g(i−1) (x∗) = g̃(i−1) (x)

Then, we get(
f (i) ◦ h(i)

) (
g(i−1) (x∗)

)
=
(
f̃ (i) ◦ h(i)

) (
g̃(i−1) (x)

)
Finally

rect
(
h(i)

(
g(i−1) (x∗)

))
= M (i) � rect

(
h(i)

(
g(i−1) (x∗)

))

125 / 160

Images/cinvestav-1.jpg

Therefore

This is only true if M (i) = 1
When rectj

(
h(i)

(
g(i−1) (x∗)

))
> 0

This only happens with a probability pd(i)s(i)
(i)

Where:
I p(i) is the Bernoulli success probability.
I d(i) is the number of of hidden units.
I s(i) is the mean sparsity level at i (Mean percentage of active hidden

units).

126 / 160

Images/cinvestav-1.jpg

Therefore

This is only true if M (i) = 1
When rectj

(
h(i)

(
g(i−1) (x∗)

))
> 0

This only happens with a probability pd(i)s(i)
(i)

Where:
I p(i) is the Bernoulli success probability.
I d(i) is the number of of hidden units.
I s(i) is the mean sparsity level at i (Mean percentage of active hidden

units).

126 / 160

Images/cinvestav-1.jpg

Which is quite low!!!

This probability is very low for standard hyper-parameters values
With p(i) = 0.5, d(i) = 1000 and s(i) = 0.15

p
d(i)s(i)
(i) = 10−47

127 / 160

Images/cinvestav-1.jpg

However

Fortunately
It is easy to find a different x∗ for each hidden layer

by providing multiple inputs(
x,x(1)∗ ,x(2)∗ , ...,x(n)∗

)
However

This raises the question whether we can train the network
deterministically on the x(i)∗ instead of using dropout

128 / 160

Images/cinvestav-1.jpg

However

Fortunately
It is easy to find a different x∗ for each hidden layer

by providing multiple inputs(
x,x(1)∗ ,x(2)∗ , ...,x(n)∗

)
However

This raises the question whether we can train the network
deterministically on the x(i)∗ instead of using dropout

128 / 160

Images/cinvestav-1.jpg

However

Fortunately
It is easy to find a different x∗ for each hidden layer

by providing multiple inputs(
x,x(1)∗ ,x(2)∗ , ...,x(n)∗

)
However

This raises the question whether we can train the network
deterministically on the x(i)∗ instead of using dropout

128 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

129 / 160

Images/cinvestav-1.jpg

Co-adaptation/Overfitting

Definition
Co-adaptation is the accumulation of interacting genes in the gene
pool of a population by selection.

I Selection pressures on one of the genes will affect its interacting
proteins, after which compensatory changes occur.

In Neural Networks
In neural network, co-adaptation means that some neurons are highly
dependent on others:

I Getting into over-fitting!!!

130 / 160

Images/cinvestav-1.jpg

Co-adaptation/Overfitting

Definition
Co-adaptation is the accumulation of interacting genes in the gene
pool of a population by selection.

I Selection pressures on one of the genes will affect its interacting
proteins, after which compensatory changes occur.

In Neural Networks
In neural network, co-adaptation means that some neurons are highly
dependent on others:

I Getting into over-fitting!!!

130 / 160

Images/cinvestav-1.jpg

Question

We have that
Question: Can we train the network deterministically on x(i)∗?

This is not trivial given that
Dropout is not effectively applied to every layer at the same time
when using (

x,x(1)∗ ,x(2)∗ , ...,x(n)∗
)

The gradients of the linear projections will differ greatly, different
from dropout!!!

131 / 160

Images/cinvestav-1.jpg

Question

We have that
Question: Can we train the network deterministically on x(i)∗?

This is not trivial given that
Dropout is not effectively applied to every layer at the same time
when using (

x,x(1)∗ ,x(2)∗ , ...,x(n)∗
)

The gradients of the linear projections will differ greatly, different
from dropout!!!

131 / 160

Images/cinvestav-1.jpg

Question

We have that
Question: Can we train the network deterministically on x(i)∗?

This is not trivial given that
Dropout is not effectively applied to every layer at the same time
when using (

x,x(1)∗ ,x(2)∗ , ...,x(n)∗
)

The gradients of the linear projections will differ greatly, different
from dropout!!!

131 / 160

Images/cinvestav-1.jpg

Therefore

We can then
Modifying the probability distribution is the most straightforward way
to improve the set of transformations.

For example
A simple way to vary the transformation magnitude randomly is to
replace phij by a random variable!!!

132 / 160

Images/cinvestav-1.jpg

Therefore

We can then
Modifying the probability distribution is the most straightforward way
to improve the set of transformations.

For example
A simple way to vary the transformation magnitude randomly is to
replace phij by a random variable!!!

132 / 160

Images/cinvestav-1.jpg

Therefore

Define

Mhij ∼ B (ρh) (Bernoulli)
ρh ∼ U (0, ph) (Uniform)

where h defines the layer, i the sample, and j the layer’s neuron.

Here, the authors use the same ρ for all the layers of the neurons, then

f̃ (h) = 1
1− ρM � rect (h)

133 / 160

Images/cinvestav-1.jpg

Therefore

Define

Mhij ∼ B (ρh) (Bernoulli)
ρh ∼ U (0, ph) (Uniform)

where h defines the layer, i the sample, and j the layer’s neuron.

Here, the authors use the same ρ for all the layers of the neurons, then

f̃ (h) = 1
1− ρM � rect (h)

133 / 160

Images/cinvestav-1.jpg

Results

Something Notable
 Using dropout with varying input noise

and fixed hidden noise of 0.5.
 Using dropout with varying input noise

and fixed hidden noise of 0.2.

Using Random-dropout with varying
noise range [0, x] used at hidden
and input layers

134 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

135 / 160

Images/cinvestav-1.jpg

Here, the people at Google [9] around 2015

They commented in the “Internal Covariate Shift Phenomena”
Due to the change in the distribution of each layer’s input

They claim
The min-batch forces to have those changes which impact on the
learning capabilities of the network.

In Neural Networks, they define this
Internal Covariate Shift as the change in the distribution of network
activations due to the change in network parameters during training.

136 / 160

Images/cinvestav-1.jpg

Here, the people at Google [9] around 2015

They commented in the “Internal Covariate Shift Phenomena”
Due to the change in the distribution of each layer’s input

They claim
The min-batch forces to have those changes which impact on the
learning capabilities of the network.

In Neural Networks, they define this
Internal Covariate Shift as the change in the distribution of network
activations due to the change in network parameters during training.

136 / 160

Images/cinvestav-1.jpg

Here, the people at Google [9] around 2015

They commented in the “Internal Covariate Shift Phenomena”
Due to the change in the distribution of each layer’s input

They claim
The min-batch forces to have those changes which impact on the
learning capabilities of the network.

In Neural Networks, they define this
Internal Covariate Shift as the change in the distribution of network
activations due to the change in network parameters during training.

136 / 160

Images/cinvestav-1.jpg

Transformation

Batch Normalizing Transform
Input: Values of x over a mini-batch: B = {x1...m}, Parameters to

be learned: γ, β
Output: {yi = BNγ,β (xi)}

1 µB = 1
m

∑m
i=1 xi

2 σ2
B = 1

m

∑m
i=1 (xi − µB)2

3 x̂ = xi−µB√
σ2
B+ε

4 yi = γ(k)x̂i + β = BNγ,β (xi)

137 / 160

Images/cinvestav-1.jpg

Transformation

Batch Normalizing Transform
Input: Values of x over a mini-batch: B = {x1...m}, Parameters to

be learned: γ, β
Output: {yi = BNγ,β (xi)}

1 µB = 1
m

∑m
i=1 xi

2 σ2
B = 1

m

∑m
i=1 (xi − µB)2

3 x̂ = xi−µB√
σ2
B+ε

4 yi = γ(k)x̂i + β = BNγ,β (xi)

137 / 160

Images/cinvestav-1.jpg

Transformation

Batch Normalizing Transform
Input: Values of x over a mini-batch: B = {x1...m}, Parameters to

be learned: γ, β
Output: {yi = BNγ,β (xi)}

1 µB = 1
m

∑m
i=1 xi

2 σ2
B = 1

m

∑m
i=1 (xi − µB)2

3 x̂ = xi−µB√
σ2
B+ε

4 yi = γ(k)x̂i + β = BNγ,β (xi)

137 / 160

Images/cinvestav-1.jpg

Transformation

Batch Normalizing Transform
Input: Values of x over a mini-batch: B = {x1...m}, Parameters to

be learned: γ, β
Output: {yi = BNγ,β (xi)}

1 µB = 1
m

∑m
i=1 xi

2 σ2
B = 1

m

∑m
i=1 (xi − µB)2

3 x̂ = xi−µB√
σ2
B+ε

4 yi = γ(k)x̂i + β = BNγ,β (xi)

137 / 160

Images/cinvestav-1.jpg

Transformation

Batch Normalizing Transform
Input: Values of x over a mini-batch: B = {x1...m}, Parameters to

be learned: γ, β
Output: {yi = BNγ,β (xi)}

1 µB = 1
m

∑m
i=1 xi

2 σ2
B = 1

m

∑m
i=1 (xi − µB)2

3 x̂ = xi−µB√
σ2
B+ε

4 yi = γ(k)x̂i + β = BNγ,β (xi)

137 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

138 / 160

Images/cinvestav-1.jpg

Remember

Using Min-Batch inputs, we have

µB = 1
m

m∑
i=1
xi

And Variance

σ2
B = 1

m

m∑
i=1

(xi − µB)2

139 / 160

Images/cinvestav-1.jpg

Remember

Using Min-Batch inputs, we have

µB = 1
m

m∑
i=1
xi

And Variance

σ2
B = 1

m

m∑
i=1

(xi − µB)2

139 / 160

Images/cinvestav-1.jpg

Therefore, Ba et al. [10]

We get the mean over the output of the layer l with H number of
hidden units

µl = 1
H

H∑
i=1

yli

Basically, do the forward process then add over the output yli = wlTi h
l

where hl+1
i = f

(
yli + bli

)
Then the standard deviation layer l

σl =

√√√√ 1
H

H∑
i=1

(
yli − µl

)2

140 / 160

Images/cinvestav-1.jpg

Therefore, Ba et al. [10]

We get the mean over the output of the layer l with H number of
hidden units

µl = 1
H

H∑
i=1

yli

Basically, do the forward process then add over the output yli = wlTi h
l

where hl+1
i = f

(
yli + bli

)
Then the standard deviation layer l

σl =

√√√√ 1
H

H∑
i=1

(
yli − µl

)2

140 / 160

Images/cinvestav-1.jpg

Remarks

We have that
All the hidden units in a layer share the same normalization terms µ
and σ

I but different training cases have different normalization terms.

Layer normalization does not impose any constraint
On the size of a mini-batch and it can be used in the pure on-line
regime with batch size 1.

141 / 160

Images/cinvestav-1.jpg

Remarks

We have that
All the hidden units in a layer share the same normalization terms µ
and σ

I but different training cases have different normalization terms.

Layer normalization does not impose any constraint
On the size of a mini-batch and it can be used in the pure on-line
regime with batch size 1.

141 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

142 / 160

Images/cinvestav-1.jpg

The Flow of Information through time

First, the new ht with a gain vector g

ht = f

[
g

σt
�
(
yt − µt

)
+ b

]

The Temporal Layer Mean Normalization

µt = 1
H

H∑
i=1

yti

The Temporal Layer STD Normalization

σt =

√√√√ 1
H

H∑
i=1

(yti − µt)
2

143 / 160

Images/cinvestav-1.jpg

The Flow of Information through time

First, the new ht with a gain vector g

ht = f

[
g

σt
�
(
yt − µt

)
+ b

]

The Temporal Layer Mean Normalization

µt = 1
H

H∑
i=1

yti

The Temporal Layer STD Normalization

σt =

√√√√ 1
H

H∑
i=1

(yti − µt)
2

143 / 160

Images/cinvestav-1.jpg

The Flow of Information through time

First, the new ht with a gain vector g

ht = f

[
g

σt
�
(
yt − µt

)
+ b

]

The Temporal Layer Mean Normalization

µt = 1
H

H∑
i=1

yti

The Temporal Layer STD Normalization

σt =

√√√√ 1
H

H∑
i=1

(yti − µt)
2

143 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

144 / 160

Images/cinvestav-1.jpg

Weight re-scaling and re-centering

Observe that under batch normalization and weight normalization
Any re-scaling to the incoming weights wi of a single neuron has no
effect on the normalized summed inputs to a neuron.

Meaning
If the weight vector is scaled by δi the two scalars µ and σ will also
be scaled by δ

Properties
The batch and weight normalization are invariant to the re-scaling of
the weights.

145 / 160

Images/cinvestav-1.jpg

Weight re-scaling and re-centering

Observe that under batch normalization and weight normalization
Any re-scaling to the incoming weights wi of a single neuron has no
effect on the normalized summed inputs to a neuron.

Meaning
If the weight vector is scaled by δi the two scalars µ and σ will also
be scaled by δ

Properties
The batch and weight normalization are invariant to the re-scaling of
the weights.

145 / 160

Images/cinvestav-1.jpg

Weight re-scaling and re-centering

Observe that under batch normalization and weight normalization
Any re-scaling to the incoming weights wi of a single neuron has no
effect on the normalized summed inputs to a neuron.

Meaning
If the weight vector is scaled by δi the two scalars µ and σ will also
be scaled by δ

Properties
The batch and weight normalization are invariant to the re-scaling of
the weights.

145 / 160

Images/cinvestav-1.jpg

In the other hand

Layer normalization
It is not invariant to the individual scaling of the single weight vectors.

However
Layer normalization is invariant to scaling of the entire weight matrix.
Also it is invariant to a shift to all of the incoming weights in the
weight matrix.

146 / 160

Images/cinvestav-1.jpg

In the other hand

Layer normalization
It is not invariant to the individual scaling of the single weight vectors.

However
Layer normalization is invariant to scaling of the entire weight matrix.
Also it is invariant to a shift to all of the incoming weights in the
weight matrix.

146 / 160

Images/cinvestav-1.jpg

In the other hand

Layer normalization
It is not invariant to the individual scaling of the single weight vectors.

However
Layer normalization is invariant to scaling of the entire weight matrix.
Also it is invariant to a shift to all of the incoming weights in the
weight matrix.

146 / 160

Images/cinvestav-1.jpg

How?

Imagine the following
Let there be two sets of model parameters θ, θ′ with weigh matrices

W ′ = δW + 1γT

147 / 160

Images/cinvestav-1.jpg

We have

Given that yli = wlTi x
l

y
′l
i =

(
δW + 1γT

)
i
xl

Then, we have

µ
′l = δ

H

H∑
i=1

Wix
l + 1

H

H∑
i=1

(
1γT
)
i
xl = δµ+

(
1γT
)
i
xl

148 / 160

Images/cinvestav-1.jpg

We have

Given that yli = wlTi x
l

y
′l
i =

(
δW + 1γT

)
i
xl

Then, we have

µ
′l = δ

H

H∑
i=1

Wix
l + 1

H

H∑
i=1

(
1γT
)
i
xl = δµ+

(
1γT
)
i
xl

148 / 160

Images/cinvestav-1.jpg

Now

Standard Deviation

σ
′ =

√√√√ 1
H

H∑
i=1

(
y
′l
i − µ

′)2 = δ

√√√√ 1
H

H∑
i=1

(
yli − µ

)2

Finally, Under Layer Normalization, we have the same output

h′ =f
[
g

σ′
(
W ′x− µ′

)
+ b

]
=f

[
g

σ′

([
δW + 1γT

]
x− µ′

)
+ b

]
=f

[
g

σ
(Wx− µ) + b

]
= h

149 / 160

Images/cinvestav-1.jpg

Now

Standard Deviation

σ
′ =

√√√√ 1
H

H∑
i=1

(
y
′l
i − µ

′)2 = δ

√√√√ 1
H

H∑
i=1

(
yli − µ

)2

Finally, Under Layer Normalization, we have the same output

h′ =f
[
g

σ′
(
W ′x− µ′

)
+ b

]
=f

[
g

σ′

([
δW + 1γT

]
x− µ′

)
+ b

]
=f

[
g

σ
(Wx− µ) + b

]
= h

149 / 160

Images/cinvestav-1.jpg

Remarks

Something Notable
if normalization is only applied to the input before the weights, the
model will not be invariant to re-scaling and re-centering of the
weights.

150 / 160

Images/cinvestav-1.jpg

Data re-scaling and re-centering

We can show
All the normalization methods are invariant to re-scaling the dataset

Layer normalization is invariant to re-scaling of individual training
cases

h′i = f

[
gi
σ′

(
wTi x

′ − µ′
)

+ bi

]
= f

[
gi
δσ

(
δwTi x− δµ

)
+ bi

]
= hi

151 / 160

Images/cinvestav-1.jpg

Data re-scaling and re-centering

We can show
All the normalization methods are invariant to re-scaling the dataset

Layer normalization is invariant to re-scaling of individual training
cases

h′i = f

[
gi
σ′

(
wTi x

′ − µ′
)

+ bi

]
= f

[
gi
δσ

(
δwTi x− δµ

)
+ bi

]
= hi

151 / 160

Images/cinvestav-1.jpg

Additionally

Layer Normalization has a relation with the Fisher Information Matrix

F (θ) = Ex∼P (x),y∼P (y|x)

[
∂ logP (y|x)

∂θ

(
∂ logP (y|x)

∂θ

)T]

Basically, we can write the generalized linear model as

logP (y|x, w, b) = (a+ b) y − η (a+ b)
Φ + c (y,Φ)

E [y|x] = f (a+ b) = f
(
wTx+ b

)
V ar [y|x] = Φf ′ (a+ b)

152 / 160

Images/cinvestav-1.jpg

Additionally

Layer Normalization has a relation with the Fisher Information Matrix

F (θ) = Ex∼P (x),y∼P (y|x)

[
∂ logP (y|x)

∂θ

(
∂ logP (y|x)

∂θ

)T]

Basically, we can write the generalized linear model as

logP (y|x, w, b) = (a+ b) y − η (a+ b)
Φ + c (y,Φ)

E [y|x] = f (a+ b) = f
(
wTx+ b

)
V ar [y|x] = Φf ′ (a+ b)

152 / 160

Images/cinvestav-1.jpg

The curvature of a Riemannian manifold

It is entirely captured by its Riemannian metric

ds2 ≈ 1
2δ

TF (θ) δ

where, δ is a small change to the parameters.

Then, under Layer Normalization, we have

F (θ) =
1

Φ2Ex∼P (x)

 Cov (y1, y2|x) (a1−µ)2

σ2 · · · Cov (y1, yH |x) (a1−µ)(aH−µ)
σ2

...
. . .

...
Cov (yH , y1|x) (a1−µ)(aH−µ)

σ2 · · · Cov (yH , yH |x) (aH−µ)2

σ2



153 / 160

Images/cinvestav-1.jpg

The curvature of a Riemannian manifold

It is entirely captured by its Riemannian metric

ds2 ≈ 1
2δ

TF (θ) δ

where, δ is a small change to the parameters.

Then, under Layer Normalization, we have

F (θ) =
1

Φ2Ex∼P (x)

 Cov (y1, y2|x) (a1−µ)2

σ2 · · · Cov (y1, yH |x) (a1−µ)(aH−µ)
σ2

...
. . .

...
Cov (yH , y1|x) (a1−µ)(aH−µ)

σ2 · · · Cov (yH , yH |x) (aH−µ)2

σ2



153 / 160

Images/cinvestav-1.jpg

Where

We have that ai = wTi x

We project the gradient updates to the gain parameter δgi of the ith
neuron to its weight vector as

δgiδgj
2Φ2 Ex∼P (x)

[
Cov (yi, yj |x) (a1 − µ) (aH − µ)

σ2

]

Basically
We have that the normalization layer is more robust to the scaling of
the input and parameters

154 / 160

Images/cinvestav-1.jpg

Where

We have that ai = wTi x

We project the gradient updates to the gain parameter δgi of the ith
neuron to its weight vector as

δgiδgj
2Φ2 Ex∼P (x)

[
Cov (yi, yj |x) (a1 − µ) (aH − µ)

σ2

]

Basically
We have that the normalization layer is more robust to the scaling of
the input and parameters

154 / 160

Images/cinvestav-1.jpg

Results

In a LSTM

155 / 160

Images/cinvestav-1.jpg

Outline
1 Bias-Variance Dilemma

Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 The Problem with Overfitting
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
The LASSO
Generalization
What can be done?

3 Methods of Regularization for Deep Networks
Gaussian Noise on Hidden Units for Regularization
Application into a Decoder/Encoder

Dropout as Regularization
Introduction
Dropout Process
Dropout as Bagging/Bootstrap Aggregation
Beyond an Empirical Probabilities, LASSO and Data Flow

Random dropout probability
Projecting Noise into Input Space
Augmenting by Noise
Co-adaptation/Overfitting

Batch normalization
Improving the Google Layer Normalization
Layer Normalization in RNN
Invariance Under Weights and Data Transformations

For More in Normalization

156 / 160

Images/cinvestav-1.jpg

We have the following paper

Please Take a Look
Kukačka, J., Golkov, V., & Cremers, D. (2017). Regularization for
deep learning: A taxonomy. arXiv preprint arXiv:1710.10686.

157 / 160

Images/cinvestav-1.jpg

Conclusions

There is still a lot to understand on the Deep Learning Architectures
The Last 10 years have shown us a lot on the need of regularization...

Therefore
When connecting with the paper

I “How Does Batch Normalization Help Optimization?” by Santurkar,
Tsipras, Ilyas and Madry

We have the if we were able to connect these normalizations
With the building of the Jacobian on the Gradient Descent, we could
improve

I The speed of optimization + The regularization properties of such
Gradient Descent

158 / 160

Images/cinvestav-1.jpg

Conclusions

There is still a lot to understand on the Deep Learning Architectures
The Last 10 years have shown us a lot on the need of regularization...

Therefore
When connecting with the paper

I “How Does Batch Normalization Help Optimization?” by Santurkar,
Tsipras, Ilyas and Madry

We have the if we were able to connect these normalizations
With the building of the Jacobian on the Gradient Descent, we could
improve

I The speed of optimization + The regularization properties of such
Gradient Descent

158 / 160

Images/cinvestav-1.jpg

Conclusions

There is still a lot to understand on the Deep Learning Architectures
The Last 10 years have shown us a lot on the need of regularization...

Therefore
When connecting with the paper

I “How Does Batch Normalization Help Optimization?” by Santurkar,
Tsipras, Ilyas and Madry

We have the if we were able to connect these normalizations
With the building of the Jacobian on the Gradient Descent, we could
improve

I The speed of optimization + The regularization properties of such
Gradient Descent

158 / 160

Images/cinvestav-1.jpg

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition.
Springer Series in Statistics, Springer New York, 2009.

S. Theodoridis, Machine Learning: A Bayesian and Optimization
Perspective.
Academic Press, 1st ed., 2015.
H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component
analysis,” Journal of computational and graphical statistics, vol. 15,
no. 2, pp. 265–286, 2006.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

T. DeVries and G. W. Taylor, “Dataset augmentation in feature
space,” arXiv preprint arXiv:1702.05538, 2017.

159 / 160

Images/cinvestav-1.jpg

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” The journal of machine learning research, vol. 15,
no. 1, pp. 1929–1958, 2014.

S. Wager, S. Wang, and P. S. Liang, “Dropout training as adaptive
regularization,” in Advances in neural information processing systems,
pp. 351–359, 2013.

X. Bouthillier, K. Konda, P. Vincent, and R. Memisevic, “Dropout as
data augmentation,” arXiv preprint arXiv:1506.08700, 2015.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.
J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

160 / 160

	Bias-Variance Dilemma
	Introduction
	Measuring the difference between optimal and learned
	The Bias-Variance
	``Extreme'' Example

	The Problem with Overfitting
	Intuition from Overfitting
	The Idea of Regularization
	Ridge Regression
	The LASSO
	Generalization
	What can be done?

	Methods of Regularization for Deep Networks
	Gaussian Noise on Hidden Units for Regularization
	Dropout as Regularization
	Random dropout probability
	Batch normalization
	For More in Normalization

