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In 1987 Robinson and Fallside [2]

At Cambridge University Engineering Department
They proposed a new type of neural network based on Linear Control
Theory

They took the work of Jacobs, 1974 on dynamic nets [1]

st+1 = Ast +Bxt

yt = Cst
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Furthermore
Jordan Proposed a simple recurrent network

ht = σh (Wsdxt + Ussht−1 + bh)
yt = σs (Vosht + bo)

Where
1 xt is an input of dimension d.
2 ht is a hidden state layer of dimension h.
3 yt is the output vector of dimension s.
4 W , U, V parameter matrices.
5 bh and bo bias for the linear part.
6 σh and σs are activation functions.
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Graphically

We have
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What were they used for?

Robinson and Fallside
As with Hidden Markov Models, they were proposed for Speech
Coding

They proposed the following architecture
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Based on the State-Space Model

Basically, a linear system
Based in a state-determined system model

Definition
A mathematical description of the system in terms of a minimum set
of variables xi(t), i = 1, ..., n, together with knowledge of those
variables at an initial time t0 and the system inputs for time t ≥ t0,
are sufficient to predict the future system state and outputs for all
time t > t0.
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Therefore

We have a system as a block

System Described
by State Variables

This can be expressed as a state equations

ṡ1 = f1 (x, s, t)
ṡ2 = f2 (x, s, t)
· · · = · · ·
ṡn = fn (x, s, t)
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ṡn = fn (x, s, t)

11 / 144



Images/cinvestav.jpg

Using Vector Notation

Assuming that we have a linear system and time invariant
Time-Invariant ./ x (t+ δ) directly equates y (t+ δ), for example

αx (t+ δ) + β = y (t+ δ)

Therefore, using this idea

ṡi = ai1x1 (t) + ...+ aidxd (t) + b11s1 (t) + ...+ b1nsn (t)

Or in Matrix form

y (t) = Ax (t) +Bs (t)
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We introduce an update for the state part

y (t) = Ax (t) +Bs (t)
ṡ (t) = Cs (t)

Or our discrete step equitations

y (t) = Ax (t) +Bs (t)
s (t+ 1) = Cs (t)
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ṡ (t) = Cs (t)

Or our discrete step equitations

y (t) = Ax (t) +Bs (t)
s (t+ 1) = Cs (t)

13 / 144



Images/cinvestav.jpg

Outline
1 Introduction

History
State-Space Model
Back to the RNN Equations
Introducing the Cost Function
Other Cost Functions

2 Training a Vanilla RNN Model
The Final RNN Model
Back-Propagation Through Time (BPTT)
Deriving ∂L(t)

∂Vos

Vanishing and Exploding Gradients
Fixing the Problem, ReLu function
The Analysis of the Exploding and Vanishing Gradient
The Stability Frontier

Truncated BPTT
Initialization

Hidden State

3 Modern Recurrent Architectures
Now, Long Short Term Memory (LSTM)
What about Gated Recurrent Units (GRU) units?

4 Deeper Architectures with RNN’s
Introduction
Deep Architectures for Better Learning
Deep Input-to-Hidden Function
Deep Transition Architectures
Conclusions

14 / 144



Images/cinvestav.jpg

The Elman Network

In Elman’s Equations

ht = σh (Wsdxt + Ussht−1 + bh)
yt = σy (Vosht + by)

We noticed something different from the linear recurrent system
The use of activation functions to introduce the concept of
non-linearity
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Explanation

We have the following
1 The input xt is coded by Wsd

Wsdxt

2 An state is generated by using the codified version of the input plus a
previous state ht−1

ht = σh (Wsdxt + Ussht−1 + bh)

3 The output is generated using the new state ht

yt = σy (Vosht + by)
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We need to introduce the concept of cost function

Which as always
It needs to comply with two properties

The cost function L must be able to be written as an average

L = 1
N

∑
x∈X

Cx

over the cost individual cost functions Cx

This allow to apply different optimization techniques as
Minbatch
Stochastic Gradient Descent
etc
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Furthermore

Non dependency
The cost function L must not be dependent on any activation values
of a neural network besides the output values.

If we cannot assure this
If not Backpropagation becomes too unstable or too complex to
solve. For example

L = 1
N

N∑
t=0

[yt + ht − zt]2

I This gives two entry points to the network.
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A List of Cost Functions

The Average Quadratic Cost

L = 1
N

N∑
t=0

[yt − zt]2

Where yt is the output of the network and zt is the ground truth of
the output.

Here, we are interpolating functions
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Cross-Entropy cost

First, the Loss Function

L = −
C∑

i=1
zi log (yi)

Where yi is the output and zi is the ground truth for the class
estimation.

Why yi log (zi)?
We can imagine a sequence of class probabilities y1, y2, ..., ym and the
likelihood of the data and the model

P [data|model] = yk1
1 yk2

2 · · · y
kn
m
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Then

Taking the logarithm and multiplying by -1

− logP [data|model] = −
C∑

i=1
ki log yi

Then, dividing by the total number of samples

− 1
N

logP [data|model] = −
C∑

i=1

ki

N
log yi = −

C∑
i=1

zi log yi
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Then

In information theory, The Kraft–McMillan theorem
It establishes that any directly decodable coding scheme for coding a
message to identify one value xi ∈ {x1, x2, ..., xn}

It can be seen as representing an implicit probability distribution over
{x1, x2, ..., xn}

q (xi) =
(1

2

)li

Where li is the length of the code for xi
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Now

We have that
Cross entropy can be interpreted as the expected message-length per
datum when a wrong distribution q is assumed while the data actually
follows a distribution p.

The expected message-length under the true distribution p is

Ep [l] = −Ep

[ ln q (x)
ln 2

]
= −Ep [log2 q (x)]
= −

∑
xi

p (xi) log2 q (x)

= H (p, q)
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Special Case

A special case is the binary class problem, C = 2
Based on the fact that z1 + z2 = 1 and y1 + y2 = 1

L = −
2∑

i=1
zi log (yi) = −z1 log (y1)− (1− z1) log (1− y1)

A problem of this
It could be possible to have a y1 = 0
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Dealing with this problem

We can use an activation function in front of it

SIGMOID CROSS ENTROPY LOSS
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Another Interpretation

The Loss can be expressed as

L =
{
− log (f (y1)) if z1 = 1
− log (1− f (y1)) if z1 = 1

Where z1 = 1
It means that the class C1 = Ci is positive for this sample.
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The Gradient of the Binary Cross Entropy

We make a derivative with respect to yi

∂L

∂y1
= z1 (f (y1)− 1) + (1− z1) f (y1)
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In the case of the Multiclass Problem

We use two things, a softmax

f (yi) = exp {yi}∑C
j=1 exp {yj}

As in the multiclass for the Linear Models
The labels are one-hot, so only the positive class Cp keeps its term in
the loss.

Therefore
There is only one element of the Target vector z that is not zero,
zi = zp.

29 / 144



Images/cinvestav.jpg

In the case of the Multiclass Problem

We use two things, a softmax

f (yi) = exp {yi}∑C
j=1 exp {yj}

As in the multiclass for the Linear Models
The labels are one-hot, so only the positive class Cp keeps its term in
the loss.

Therefore
There is only one element of the Target vector z that is not zero,
zi = zp.

29 / 144



Images/cinvestav.jpg

In the case of the Multiclass Problem

We use two things, a softmax

f (yi) = exp {yi}∑C
j=1 exp {yj}

As in the multiclass for the Linear Models
The labels are one-hot, so only the positive class Cp keeps its term in
the loss.

Therefore
There is only one element of the Target vector z that is not zero,
zi = zp.

29 / 144



Images/cinvestav.jpg

We can then simplify

The cost function becomes

L = −
C∑

i=1
zi log (f (yi)) = −log

(
exp {yp}∑C

j=1 exp {yp}

)
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Other Cost Functions

Exponential Cost with hyper-parameter τ

L = τ exp
[

1
τ

N∑
i=1

(yi − zi)2
]

Hellinger Distance

L = 1
2

N∑
i=1

(√yi −
√
zi)2

Here the values need to be at the interval [0, 1] .
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Other Cost Functions

Given Kullback-Leibler Divergence

DKL (P ‖ Q) =
∑

i

P (i) ln P (i)
Q (i)

The Final Cost function

L =
∑

j

ŷj log ŷj

ypred
j
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We have the following

Architecture with Quadratic Error

ht = σh (Wsdxt + Ussht−1 + bh)
yt = σy (Vosht + by)

L = 1
2

N∑
t=0

[yt − zt]2

Something Notable
How do we train something with a recurrence forcing a dependence
over time?
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Now, given the dependency over time

We can use the classic unfolding of the network [3, 4] by assuming
W , U, V, bh and bo do not change under the unfolding

Unfolding?
Assume that there are not bias correcting terms, only, W,U and V .
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Then

Given an observation sequence x = {x1, x2, ..., xT}
where xi ∈ R, and their corresponding label y = {y1, y2, ..., yT }

We remove the bias to simplify our derivations

ht = σh (Wsdxt + Ussht−1)
yt = σy (Vosht)

L = 1
2

T∑
t=0

[zt − yt]2
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We have

The following dynamic

ht = σh (st) , st = Wsdxt + Ussht−1 + bh

Then, we have the following Jacobian

J = ∂hT

∂h0
=

L∏
t=1

DtUSS

Where as we saw it Dt is a diagonal matrix
This Jacobian J is a matrix of dimension s× s therefore, if it is well
conditioned you are not sending the projection to lower dimensionality.
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Remember the structure of the layer

The following dynamic

ht = σh (st) , st = Wsdxt + Ussht−1 + bh

Therefore, we have that

sit =
∑

j

Wijx
t
j +

∑
k

Uikh
t−1
k + bi

We assume the following about the temporal layer weights

[Uss,Wsd] ∼ N
(

0, ρ
2
w

N

)
, bh ∼ N

(
0, ρ2

b

)
Here N = s the state dimension.

67 / 144



Images/cinvestav.jpg

Remember the structure of the layer

The following dynamic

ht = σh (st) , st = Wsdxt + Ussht−1 + bh

Therefore, we have that

sit =
∑

j

Wijx
t
j +

∑
k

Uikh
t−1
k + bi

We assume the following about the temporal layer weights

[Uss,Wsd] ∼ N
(

0, ρ
2
w

N

)
, bh ∼ N

(
0, ρ2

b

)
Here N = s the state dimension.

67 / 144



Images/cinvestav.jpg

Remember the structure of the layer

The following dynamic

ht = σh (st) , st = Wsdxt + Ussht−1 + bh

Therefore, we have that

sit =
∑

j

Wijx
t
j +

∑
k

Uikh
t−1
k + bi

We assume the following about the temporal layer weights

[Uss,Wsd] ∼ N
(

0, ρ
2
w

N

)
, bh ∼ N

(
0, ρ2

b

)
Here N = s the state dimension.

67 / 144



Images/cinvestav.jpg

Outline
1 Introduction

History
State-Space Model
Back to the RNN Equations
Introducing the Cost Function
Other Cost Functions

2 Training a Vanilla RNN Model
The Final RNN Model
Back-Propagation Through Time (BPTT)
Deriving ∂L(t)

∂Vos

Vanishing and Exploding Gradients
Fixing the Problem, ReLu function
The Analysis of the Exploding and Vanishing Gradient
The Stability Frontier

Truncated BPTT
Initialization

Hidden State

3 Modern Recurrent Architectures
Now, Long Short Term Memory (LSTM)
What about Gated Recurrent Units (GRU) units?

4 Deeper Architectures with RNN’s
Introduction
Deep Architectures for Better Learning
Deep Input-to-Hidden Function
Deep Transition Architectures
Conclusions

68 / 144



Images/cinvestav.jpg

Now, assume that

Now, consider the evolution of a single input through the network xit

Since the weights and biases are independent with zero mean
E [sit] = 0

The second moment of the Gaussian random variable

E [sitsjt] = qtδij
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Where the second moment

Of a Gaussian Distribution is∫ ∞
−∞

s2 1√
2πσ

exp
{
−(s− µ)

2σ2

}
ds
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Here we have

Here q is the variance of the pre-activations in the tth layer due to an
input xt

qt = ρ2
w√
2π

∫
σ2

h

(√
qt−1sit−1

)
exp

{
−1

2s2
it

}
dsit + ρ2

b

They describe the pass through the recursion of the RNN
For any choice of ρ2

w and ρ2
b and a bounded φ the previous equation

converges to a specific fix point.

This recursion has a fixed point

q∗ = ρ2
w√
2π

∫
σ2

h

(√
q∗sit−1

)
exp

{
−1

2s2
it

}
dsit + ρ2

b

71 / 144



Images/cinvestav.jpg

Here we have

Here q is the variance of the pre-activations in the tth layer due to an
input xt

qt = ρ2
w√
2π

∫
σ2

h

(√
qt−1sit−1

)
exp

{
−1

2s2
it

}
dsit + ρ2

b

They describe the pass through the recursion of the RNN
For any choice of ρ2

w and ρ2
b and a bounded φ the previous equation

converges to a specific fix point.

This recursion has a fixed point

q∗ = ρ2
w√
2π

∫
σ2

h

(√
q∗sit−1

)
exp

{
−1

2s2
it

}
dsit + ρ2

b

71 / 144



Images/cinvestav.jpg

Here we have

Here q is the variance of the pre-activations in the tth layer due to an
input xt

qt = ρ2
w√
2π

∫
σ2

h

(√
qt−1sit−1

)
exp

{
−1

2s2
it

}
dsit + ρ2

b

They describe the pass through the recursion of the RNN
For any choice of ρ2

w and ρ2
b and a bounded φ the previous equation

converges to a specific fix point.

This recursion has a fixed point

q∗ = ρ2
w√
2π

∫
σ2

h

(√
q∗sit−1

)
exp

{
−1

2s2
it

}
dsit + ρ2

b

71 / 144



Images/cinvestav.jpg

A Fixed Point

Definition
In mathematics, a fixed point of a function is an element of the
function’s domain that is mapped to itself by the function.

Example
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Therefore

We have that
It the input x0 is chosen so that q1 = q∗ the dynamics start at the
fixed point and the distribution of Dt is independent of t.

Not only that
q1 6= q∗ a few layers is often sufficient to approximately converge to a
fixed point.

So when t is large
So it is a good approximation to assume qt = q∗.
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Additionally
The independence of the weights and biases implies

The covariance between different pre-activations in the same layer will
be given by

E [zit;azjt;b] = qtabδij

Therefore

qtab = ρ2
w

∫
σh (u1)σh (u2)Dz1Dz2 + ρ2

b

Where Dz = 1√
2π

∫
exp

{
− 1

2s
2} ds

u1 =
√
qt−1
aa

u2 =
√
qt−1
bb

[
ct−1
ab s1 +

√
1−
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)2
z2

]
ctab = qt

ab√
qt
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t
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Therefore

Therefore, we can look at the variance of the Jacobian Matrix
elements

χ = 1
N

〈
Tr
[
(DtUSS)T DtUSS

]〉
= σ2

w

∫ [
σ′h
(√
q∗sit

)]2 exp
{
−1

2s2
it

}
dsit
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Then

χ (ρw, ρb)
It separates (ρw, ρb) plane into two regions.

When χ > 1
Forward signal propagation expands and folds space in a chaotic
manner and gradients explode

When χ < 1
Forward signal propagation contracts in an ordered manner and
gradients exponentially vanishes
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This Regions establish the stability of the network
We have the following
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Therefore

It is clear that
When we choose same ρb = ρw we have a convergence of the network

Having other values
It requires a careful choosing of the values

78 / 144



Images/cinvestav.jpg

Therefore

It is clear that
When we choose same ρb = ρw we have a convergence of the network

Having other values
It requires a careful choosing of the values

78 / 144



Images/cinvestav.jpg

Outline
1 Introduction

History
State-Space Model
Back to the RNN Equations
Introducing the Cost Function
Other Cost Functions

2 Training a Vanilla RNN Model
The Final RNN Model
Back-Propagation Through Time (BPTT)
Deriving ∂L(t)

∂Vos

Vanishing and Exploding Gradients
Fixing the Problem, ReLu function
The Analysis of the Exploding and Vanishing Gradient
The Stability Frontier

Truncated BPTT
Initialization

Hidden State

3 Modern Recurrent Architectures
Now, Long Short Term Memory (LSTM)
What about Gated Recurrent Units (GRU) units?

4 Deeper Architectures with RNN’s
Introduction
Deep Architectures for Better Learning
Deep Input-to-Hidden Function
Deep Transition Architectures
Conclusions

79 / 144



Images/cinvestav.jpg

Another Problem

Although, the Vanishing and Exploding Gradients
They are a problem for the RNN’s

If we use the full BPTT
We confront limitations on the amount of Memory and Hardware
available

Thus a popular strategy
It is the Truncated BPTT [7, 8]
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Therefore

They proposed using a truncation on the BPTT
To solve the problem with the Vanishing and Exploding Gradient

What is Truncated BPTT?
In general, this should be regarded as a heuristic technique for
simplifying the computation.

I Which it is a good approximation true gradient
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The Algorithm

Truncated BPTT
1 for t = 1 to T do:
2 Run the RNN for one step, computing ht and yt

3 if t divides k1 then
4 Run BPTT from t to t− k2

Something Notable
1 It was first used by Elman [9]
2 Also Mikolov et al. [10] used the TBPTT to train RNN on word-level

language modeling.
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Initialization of the Hidden State

This is the classic problem in RNN
How to initialize the hs hidden state?

There are two main mehtods
1 Initialize hs to the zero vector.
2 Adaptive noisy initialization of hs

3 Find the steady state
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The Simplest One

We can simply initialize hs

To a zero state

Quite simple and easy to apply
However do we have something better?

86 / 144



Images/cinvestav.jpg

The Simplest One

We can simply initialize hs

To a zero state

Quite simple and easy to apply
However do we have something better?

86 / 144



Images/cinvestav.jpg

Adaptive noisy initialization

It is proposed by Zimmermann et al. [11]
They proposed to use the residual error once the back-propagation
was done for h0

This is done
By disturbing h0 with a noise term Θ which follows the distribution
of the residual error.
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Adaptive Noise

The network tries to stabilize the output

0 + Noise
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Example of this initializations

Source https://r2rt.com/non-zero-initial-states-for-recurrent-neural-
networks.html
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What about the Weight Parameters?

We could simply initialize them to zero
Denger Will Robinson!!!

A simple example with the following feed-forward architecture

w = σ1 (Whix)
y = σ2 (Wohw)

L = 1
2 [y − z]2
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Therefore

We have by back-propagation

∆Who =
[
σ′2 (Wohσ1 (Whix1))− z

]
σ′2 (Wohσ1 (Whix))Wohσ

′
1 (Whix) x

Therefore

∆Who = 0

91 / 144



Images/cinvestav.jpg

Therefore

We have by back-propagation

∆Who =
[
σ′2 (Wohσ1 (Whix1))− z

]
σ′2 (Wohσ1 (Whix))Wohσ

′
1 (Whix) x

Therefore

∆Who = 0

91 / 144



Images/cinvestav.jpg

Therefore

Not a good idea
What else we can do?

We have heuristics as the Gaussian initialization

wij ∼ N
(
0, σ2

)
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Do you remember?
We have the following
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Furthermore

We have heuristics
For Relu — We multiply the randomly generated values of W by:√

2
sizel−1

For tanh — The heuristic is called Xavier initialization√
2

sizel−1

Other common one √
2

sizel−1 + sizel
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History of LSTM

They were introduced by
LSTM was proposed in 1997 by Sepp Hochreiter and Jürgen
Schmidhuber [12]

An attempt to deal with the vanishing and exploding gradient
By introducing Constant Error Carousel (CEC) units

Properties
In 1999, Felix Gers and his advisor Jürgen Schmidhuber and Fred
Cummins introduced the forget gate (also called “keep gate”) into
LSTM architecture.

I It enables the LSTM to reset its own state
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Long Short Term Memory (LSTM)

We have the following Architecture (Component wise product �)

f t =σ [Wf [ht−1,xt] + bf ] (Forget Gate)
it =σ [Wi [ht−1,xt] + bi] (Input/Update Gate)
ot =σ [Wo [ht−1,xt] + bo] (Output Gate)
ĉt = tanh [Wo [ht−1,xt] + bc] (Intermediate Cell Gate)
ct =f t � ct−1 + it � ĉt (Cell State Gate)
ht =ot � tanh (ct) (Hidden State)

Where σ is a sigmoid function.
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Graphically

We have that
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Here the interesting part

In the RNN

ht = σh (Wsdxt + Ussht−1)

But Here

ct =f t � ct−1 + it � ĉt (Cell State Gate)
ht =ot � tanh (ct)

You need the forget term, the input term ant the intermediate cell
To update the state
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You can see

Something Notable
The cell keeps track of the dependencies between the elements in the
input sequence and the state

The input gate
It is in charge of how much of the input flows into the cell gate

it = σ [Wi [ht−1,xt] + bi]
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What is the meaning?

We have that
The sigmoid layer decides what values to update

They impact the term it � ĉt

Making possible to decide how to control the cell intermediate values
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Now

The forget gate
How much of the previous cell gate time value remains in the cell at
time t

f t = σ [Wf [ht−1,xt] + bf ]

Actually
It uses previous state and input

Then the sigmoid actually can be interpreted as
Sigmoid: value 0 and 1 – “completely forget” vs. “completely keep”
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We have the update of the cell as

ct = f t � ct−1 + it � ĉt

Basically
Apply forget operation to previous internal cell state.
Add new candidate values, scaled by how much we decided to update

We can see as
Drop old information and add new information about subject’s gender.
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Thus at the output layer and update state

We have

ot =σ [Wo [ht−1,xt] + bo] (Output Gate)
ht =ot � tanh (ct) (Hidden State)

Therefore, we have that
Sigmoid layer: decide what linear combination of state/input to
output

Additionally, we have that the tanh squashes the values between -1
and 1

The output is used to filter a version of cell state!!!
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Something nice about LSTM

Quite nice
Backpropagation from ct to ct−1 requires only elementwise
multiplication!
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LSTM Remarks

First
It maintains a separate cell state from what is outputted

Second
Use gates to control the flow of information

I Forget gate tries to get rid of irrelevant information
I Selectively update cell state
I Output gate returns a filtered version of the cell state

Third
Backpropagation from ct to ct−1 requires only elementwise
multiplication!
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Achievements

LSTM achieved record results in natural language text compression
http://www.mattmahoney.net/dc/text.html#1218

Unsegmented connected handwriting recognition
Graves, A., Liwicki, M., Fernández, S., Bertolami, R.; Bunke, H.,
Schmidhuber, J. (May 2009). "A Novel Connectionist System for
Unconstrained Handwriting Recognition". IEEE Transactions on
Pattern Analysis and Machine Intelligence. 31 (5): 855–868

Finally
Won the ICDAR handwriting competition (2009)
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Right now

Something Notable
As of 2016, major technology companies including Google, Apple, and
Microsoft were using LSTM as fundamental components in new
products.
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They were proposed as a simplification of the LSTM
In 2014, Kyunghyun Cho et al. put forward a simplified variant called
Gated recurrent unit (GRU)

Something Notable
The GRU is like a long short-term memory (LSTM) with forget
gate...

I but has fewer parameters than LSTM, as it lacks an output gate

111 / 144



Images/cinvestav.jpg

History

They were proposed as a simplification of the LSTM
In 2014, Kyunghyun Cho et al. put forward a simplified variant called
Gated recurrent unit (GRU)

Something Notable
The GRU is like a long short-term memory (LSTM) with forget
gate...

I but has fewer parameters than LSTM, as it lacks an output gate

111 / 144



Images/cinvestav.jpg

Gated Recurrent Units

Architecture

zt =σ [Wz [ht−1,xt] + bz] (Update Gate)
rt =σ [Wr [ht−1,xt] + br] (Reset Gate)
ĥt = tanh [Wo [rt � ht−1,xt] + bh]
ht = (1− zt) � ht−1 + zt � ĥt
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Graphically, we have the architecture

GRU Architecture

+-1
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Main Observations

There is a gate used to combine the state ht−1,

The zt gate that basically uses the information of the input and the
previous state to decide how to update

ht = (1− zt) � ht−1 + zt � ĥt

The intermediate step ĥt

A bounded version of the possible state ht
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Next

We have that a reset gate

rt = σ [Wr [ht−1,xt] + br]

To update

ĥt = tanh [Wo [rt � ht−1,xt] + bh]
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However

It has been shown that
As shown by Gail Weiss, Yoav Goldberg, Eran Yahav, the LSTM is
"strictly stronger" than the GRU

LSTM can perform unbounded counting[13]
The GRU cannot.

I It simulates a counting machine used for theoretical CS

Denny Britz, Anna Goldie, Minh-Thang Luong, Quoc Le of Google
Brain

LSTM cells consistently outperform GRU cells in "the first large-scale
analysis of architecture variations for Neural Machine Translation.”
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What do we have in this sequences of data?

Sequences have different lengths
We need to handle variable-length sequences
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Furthermore

We need to track long-term dependencies
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Not only that

Maintain information about order
“We have a mother living in Yucatan, Mexico”

Share parameters across the sequence
Do you remember the state ht?
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However

There is a need to increase their power
Given the amounts of data we have right know

Then there is a tendency to start using the Recurrent Neural Networks
As cells to be stacked for bigger systems [14, 15]

This is based in the following idea [16]
Hypothesis, hierarchical model can be exponentially more efficient at
representing some functions than a shallow one.
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In the case of RNN’s

Certain Transitions are not Deep
They are only results of a linear projection followed by an
element-wise nonlinearity.

They are
Hidden-to-hidden ht−1 → ht

Hidden-to-output ht → yt

Input-to-hidden xt−1 → ht

Meaning
They are all shallow in the sense that there exists no intermediate,
nonlinear hidden layer.
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Bengio et al. [17]

Gave the following Hypothesis
In sampling algorithms (Markov Chains and MCMC techniques) suffer
from a fundamental problem

I Given unconnected or weakly connected regions of distributions

We have that
it is difficult for the Markov chain to jump from one mode of the
distribution to another, when these are separated by large low-density
regions

This means that we have a slow mixing of samples
In order to represent distributions
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The Main Problem

We have that
Slow mixing means that many consecutive samples tend to be
correlated

I They belong to the same mode of the mixture

Why?
Jumping around in the MCMC method is quite slow and scarce
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Implications in Learning Algorithms

Given that some form of sampling is at the core of many learning
algorithms

For example, to estimate the log-likelihood gradient

Therefore, at the beginning of learning
Mixing is therefore initially easy

However as the model improves
its corresponding distribution sharpens and mixing becomes slower
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Therefore

We need to build deeper structures to reach more capabilities
For example the vector representation of documents

Here a extra layer of representation can be used for doing
representation

For Example, Mikolov et al. [18]
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An Encoder Layer before a GRU
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The equations

They will look like

zt =σ [Wz [ht−1,xt] + bz] (Update Gate)
rt =σ [Wr [ht−1,xt] + br] (Reset Gate)
ĥt = tanh [Wo [rt � ht−1,xt] + bh]
ht = (1− zt) � ht−1 + zt � ĥt

x =σ (Wohy)
y =σ (Whiw)
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Deep Transition Architectures

In a deep transition RNN (DT-RNN)
At each time step the next state is computed by the sequential
application of multiple transition layers.

For example in Nematus system [19]
They use GRU transitions blocks under independent trainable
parameters

With a Caveat
The hidden state output is used as the input state on the next one
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For example, at the encoder phase

For the ith source word in the forward direction, we have hi = hi,Ls

hi,1 = GRU1 (x1,hi−1,Ls)
hi,k = GRUk (0,hi,k−1) for 1 < k ≤ Ls

The sequence word is reversed and you have a backward state then

C ≡
[−→

h i,Ls ,
←−
h i,Ls

]
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Then

Decoder phase uses the outputs from the previous GRU and
something called attention (We will look at this latter)

sj,1 = GRU1
(
yj−1, sj−1, Lt

)
sj,2 = GRU2 (ATT, sj−1, Lt)
sj,k = GRUk (0, Lt) for 2 < k ≤ Lt

Then, the target word state sj ≡ sj,Lt

It is used by a feed-forward neural network to predict the current
target network
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Deep Transition Decoder

We have the following depiction of the architecture

138 / 144



Images/cinvestav.jpg

Outline
1 Introduction

History
State-Space Model
Back to the RNN Equations
Introducing the Cost Function
Other Cost Functions

2 Training a Vanilla RNN Model
The Final RNN Model
Back-Propagation Through Time (BPTT)
Deriving ∂L(t)

∂Vos

Vanishing and Exploding Gradients
Fixing the Problem, ReLu function
The Analysis of the Exploding and Vanishing Gradient
The Stability Frontier

Truncated BPTT
Initialization

Hidden State

3 Modern Recurrent Architectures
Now, Long Short Term Memory (LSTM)
What about Gated Recurrent Units (GRU) units?

4 Deeper Architectures with RNN’s
Introduction
Deep Architectures for Better Learning
Deep Input-to-Hidden Function
Deep Transition Architectures
Conclusions

139 / 144



Images/cinvestav.jpg

There are many other examples

Basically
We are far from the classic methods as

1 Autoregressive integrated moving average (ARMA)
2 Auto Regressive Integrated Moving Average (ARIMA)
3 etc

These RNN architectures are taking the prediction of time series
To another level!!!
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