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A Remarkable Revenant

This algorithm has been used by many communities
Discovered and rediscovered, until 1985 it reached the AI community
[1]

Basically
The Basis of the modern neural networks
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One Big Problem, a lot of Local Minimums

A Lot of Them!!!

Local Minimas
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This is due to the fact that

Yes, we have a convex function
1
2 (zi − ti)2

With an intermediate non-linear activation function

zi = f

 d∑
j=1

wijyj


Making the surface to be searched for the optimum

A non linear function map from Rd to Rm
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Recall The Learning Problem

Neural Networks
You can see the network as a computational graph...

I Transmitting information from node to node...

Therefore, the network
It is a particular implementation of a composite function from input
space to output space.
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Extended Network

The computation of the error by the network [2]

NETWORK
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Thus

The network can calculate the total error

E =
N∑
i=1

Ei

Therefore, the network can be updated using

∇E =
(
∂E

∂w1
,
∂E

∂w2
, ...,

∂E

∂wl

)
∆wi = −γ ∂E

∂w1
for i = 1, ..., l
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Now, if we forget everything about learning

Given that the network is a complex composition of functions

E = f1 ◦ f2 ◦ · · · ◦ fK

Now, each node has a left and right side
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Furthermore

Separation of integration and activation function

Then, we can use this notation to build the forward/backward steps
Actually the basis for automatic differentiation
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First, we have

The sequence of derivatives

Then, we can do the forward step getting the function compositions
Function Composition
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Now, Backpropagation

Here the interesting part, you can collect such information
Backpropagation

1

Now, what else?
The aggregation of functions toward the activation functions!!!
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We add an extra caveat to the graph representation

A weight into the graph
Feed-Forward

We have the backward process

1

Backpropagation
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Function Addition
We have the forward step

Function Composition
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Then
At the Backward Step, we have

Backward

1
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Backpropagation Algorithm

Consider a network with a single input and a network function F
The Derivative F ′ (x) is computed in two phases.

1 Feed-forward:
F The input x is fed into the network.
F The primitive functions at the nodes and their derivatives are evaluated

at each node.
F The derivatives are stored at the left side of the node.

2 Backpropagation:
F The constant 1 is fed into the output unit and the network is run

backwards.
F Incoming information to a node is added and the result is multiplied by

the value stored in the left part of the unit.
F The result is transmitted to the left of the unit.
F The result collected at the input unit is the derivative of the network

function with respect to x.
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Proof of Correctness about the derivatives

Proposition
The Backpropagation algorithm computes the derivative of the
network function F with respect to the input x correctly.

Proof
By induction assume that the algorithm works with n or fewer nodes
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Consider

The following network with n+ 1 nodes

NETWORK
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Thus

We have that

F (x) = φ (w1F1 (x) + w2F2 (x) + · · ·+ wmFm (x))

We have that the derivative

F ′ (x) = φ′ (s)
[
w1F

′
1 (x) + w2F

′
2 (x) + · · ·+ wmF

′
m (x)

]
With s = w1F1 (x) + w2F2 (x) + · · ·+ wmFm (x)
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Now, we use induction

The subgraph of the main graph which contains all the nodes to
F1 (x)

Thus, by induction, we can calculate the derivative of F1 (x) by
introducing a 1 into the last unit and doing backpropagation

The same happens to all the other units
Now if instead of multiplying by 1 we introduce φ′ (s)and multiply by
wj , we get

wjF
′
j (x)φ′ (s)

This can be accomplished by
Introducing a 1 into the output unit, multiplying by the stored value
φ′ (s) and distributing the result to the m units through edge weight
nodes.
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Basically, we get the derivative

We get then

φ′ (s)
[
w1F

′
1 (x) + w2F

′
2 (x) + · · ·+ wmF

′
m (x)

]
Basically the networks is run backward

F ′ (x) = φ′ (s)
[
w1F

′
1 (x) + w2F

′
2 (x) + · · ·+ wmF

′
m (x)

]
The algorithms works for n+ 1

QED
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Why not using matrices to process all the individual parts?

Imagine the following, a simple idea

X =


xT1
xT2
...

xTN


We know the fields are created in input to hidden as

g (X) = XW =


xT1
xT2
...

xTN


(

w1 w2 · · · wd

)
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Where

We have these construct gij
(
xT
i

)
= xT

i wj

g (X) =


g11

(
xT1

)
g12

(
xT1

)
· · · g1d

(
xT1

)
g21

(
xT2

)
g21

(
xT2

)
· · · g2d

(
xT2

)
...

... . . . ...
gN1

(
xTN

)
gN2

(
xTN

)
· · · gNd

(
xTN

)
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Then

We have that the fij (x) = 1
1+exp{−x}

f (g (X)) =


f11

(
g11

(
xT1

))
f
(
g12

(
xT1

))
· · · f

(
g1d

(
xT1

))
f
(
g21

(
xT2

))
f
(
g21

(
xT2

))
· · · f

(
g2d

(
xT2

))
...

... . . . ...
f
(
gN1

(
xTN

))
f
(
gN2

(
xTN

))
· · · f

(
gNd

(
xTN

))
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Finally, we can do the following modification when forward

Then the matrix can be extended

g′ (X) |g (X) =


dg11(xT

1 )
dw1

|xT1 w1
dg12(xT

1 )
dw2

|xT1 w2 · · · dg1d(xT
1 )

dwd
|xT1 wh

dg21(xT
2 )

dw1
|xT2 w1

dg22(xT
2 )

dw2
|xT2 w2 · · · dg2d(xT

2 )
dwd

|xT2 wh

...
...

. . .
...

dgN1(xT
N )

dw1
|xTNw1

dgN2(xT
N )

dw2
|xT2 w2 · · · dgNd(xT

N )
dwd

|xTNwh
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Finally, we have

The next function f ′ (g (X)) |f (g (X)) =
df11(x)

dx

(
g11
(

xT
1

))
|f11
(
g11
(

xT
1

))
· · · df1d(x)

dx

(
g1d

(
xT

1

))
|f
(
g1h

(
xT

1

))
df21(x)

dx

(
g21
(

xT
1

))
|f
(
g21
(

xT
2

))
· · · df2d(x)

dx

(
g2d

(
xT

1

))
|f
(
g2h

(
xT

2

))
...

. . .
...

dfN1(x)
dx

(
gN1
(

xT
1

))
|f
(
gN1
(

xT
N

))
· · · dfNd(x)

dx

(
gNd

(
xT

1

))
|f
(
gNh

(
xT

N

))
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Using the Hadamard Product

We have for the backpropagation

f ′ (g (X)) ◦ g′ (X)

In particular for a position ij

dgij
(
xTi

)
dwj

× dfij (x)
dx

(
gij
(
xTi

))
= dfij (x)

dx

(
gij
(
xTi

))
×


x1i
x2i
...
xdi
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Then using a vertical sum

We get the change that is imposed into the possible vector wj

sum
(
f ′ (g (X)) ◦ g′ (X) , axis =0

)
=

{
N∑
i=1

dgij
(

xTi

)
dwj

×
dfij (x)
dx

(
gij
(

xTi
))}h

j=1
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Now a Historical Perspective

The idea of a Graph Structure was proposed by Raul Rojas
“Neural Networks - A Systematic Introduction” by Raul Rojas in
1996...

TensorFlow was initially released in November 9, 2015
Originally an inception of the project “Google Brain” (Circa 2011)
So TensorFlow started around 2012-2013 with internal development
and DNNResearch’s code (Hinton’s Company)

However, the graph idea was introduced in 2002 in torch, the basis of
Pytorch (Circa 2016)

One of the creators, Samy Bengio, is the brother of Joshua Bengio [3]
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Backpropagation a little brother of Automatic
Differentiation (AD)

We have a crude way to obtain derivatives [4, 5, 6][7]

D+hf (x) ≈
f (x+ h)− f (x)

2h
or D∓hf (x) ≈

f (x+ h)− f (x− h)
2h

Huge Problems
If h is small, then cancellation error reduces the number of significant
figures in D+hf (x).
if h is not small, then truncation errors (terms such as h2f ′′′ (x))
become significant.
Even if h is optimally chosen, the values of D+hf (x) and D∓hf (x)
will be accurate to only about 1

2 or 2
3 of the significant digits of f .
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Avoiding Truncation Errors

We have that
Algorithmic differentiation does not incur truncation errors.

For example

f (x) =
n∑
i=1

x2
i at xi = i for i = 1...n

Then for e1 ∈ Rn

f (x+ he1)− f (x)
h

= ∂f (x)
∂x1

+ h = 2x1 + h = 2 + h
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Floating Points

Given that the quantity needs floating point number representation in
machine accuracy of 64 bits

Roundoff error = f (x+ he1) ε ≈ n3 ε

3 with ε = 2−54 ≈ 10−16

For h =
√
ε,as often is recommended

The difference quotient has a rounding error of size

1
3n

3√ε ≈ 1
3n

310−8
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Now, Imagine n = 1000

Then Rounding Error
1
310003√ε ≈ 1

31000000000× 10−8 = 1
3100 ≈ 33.333...

Ouch
We cannot even get the sign correctly!!!

f (x+ he1)− f (x)
h
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In contrast Automatic Differentiation

It yields
2xi in both its forward and reverse modes

You could assume that the derivatives are generated symbolically
Actually is true in some sense, but 2xi will be never be generated by
Symbolic Differentiation

In Symbolic Differentiation
The numerical value of xi is multiplied by 2 then returned as the
gradient value.
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Example using Forward Differentiation

We will see the forward procedure later on

f (xx) =
n∑
i=1

x2
i with xi = i for i = 1, ..., n

AD Initializes (Do not worry we will see this in more detail)

vi−n =i for i = 1, ..., n
v̇i−n =0, but v̇1−n = 1
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Then, we have that

Apply the compositions
φ Functions Derivatives
v1 = 12 v̇1 = ∂v1

∂v1−n
v̇1−n = 2× (1)× 1 = 2

...
...

vn = n2 0

Therefore, we have at the end
∂f

∂x
(x) = (2, 0, ..., 0)
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Quite different from

Using a numerical difference, we have
f (x + e1h)− f (x)

h
− 2 < 0

Then for n = 10j and h = 10−k

10k
[
(h+ 1)2 − 1

]
< 2

Finally, we have

k > − log10 3
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Therefore

It is possible to get into underflow
by getting a k > − log10 3

Therefore, we have that
Automatic Differentiation allows to obtain the correct answer!!!
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For example
You have the following equation

f (x) =
n∏
i=1

xi

Then, the gradient

∇f (x) =
(
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xn

)
=

∏
j 6=i

xj


i=1...n

= (x2 × x3 × ...× xi × xi+1 × ...× xn−1 × xn,
...............................................................

x1 × x2 × ...× xi−1 × xi+1 × ...× xn−1 × xn,
...............................................................

x1 × x2 × ...× xi−1 × xi × ...× xn−2 × xn−1, )
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Actually

Symbolic Differentiation will consume a lot of memory
Instead AD will reuse the common expressions to improve
performance and memory.

However, Symbolic and Automatic Differentiation
They make use of the chain rule to achieve their results

However, the chain rules in AD
It is used not into the symbolic expressions but the actual numerical
values.
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The User Insight

Difference quotients may sometimes be useful too
f (x+ he1)− f (x)

h

Computer Algebra packages
They have really neat ways to simplify expressions.

In contrast, current AD packages assume that
That the given program calculates the underlying function efficiently
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There

AD can automatize the gradient generation
The best results will be obtained when AD takes advantage

I the user’s insight into the structure underlying the program
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RNN Example
When you look at the recurrent neural network Elman [8]

ht = σh (Wsdxt + Ushht−1 + bh)
yt = σy (Vosht)

L = 1
2 (yt − zt)2

Here if you do blind AD sooner or later you have
∂ht
∂ht−1

× ∂ht−1
∂ht−2

× ∂ht−2
∂ht−3

× ...× ∂hk+1
∂hk

This is known as Back Propagation Through Time (BPTT)

This is a problem given
The Vanishing Gradient or Exploding Gradient
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Here, you can modify the architecture

Using an intermediate layer using the Hadamard product ◦ we have

L = 1
2 (yt − zt)2

yt = σy (Wodxt + Uohht−1 + bo)
st = σs (Vhoyt +Dhdxt + bh)
ht = (1− yt) ◦ ht−1 + yt ◦ st
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Therefore

You have multiple paths of derivatives

-1

-1
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One of them

It can be seen
That one of the paths can take you to BPTT
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The Other One

The other gets you into a more Markovian Property
This allows to to get a Backpropagation that does not require the
BPTT

How? For example, the derivative of L with respect to Dhd

∂L

∂Dhd
= ∂L

∂yt
× ∂yt
∂nety

× ∂nety
∂ht−1

× ∂ht−1
∂st−2

× ∂st−2
nets

× nets
∂Dhd
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Therefore

You do not have
The Backpropagation through time... you can avoid it all together!!!

Because Backpropagation Through Time
Makes the process of obtaining the gradients unstable...
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Thus

A great simplifying step
Here resound trues the phrase

I “AD taking advantage of the user’s insight”
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A Simple Example

Here, we have the following ideas
Some of the floating point values, generated by the AD, will be stored
in variables of the program,
Other operations will be held until overwritten or discarded.

Thus, we will introduce the concept
Evaluation Trace which is basically a record of a particular run of a
given program.

This Evaluation Trace stores
Input variables,
Sequence of floating point generated by the CPU
Operations that are used for it
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Example

A simple example

y = f (x1, x2) =
[
sin
(
x1
x2

)
+ x1
x2
− exp (x2)

]
×
[
x1
x2
− exp (x2)

]

We wish to calculate y = f (x1, x2)
With x1 = 1.5, x2 = 0.5
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Evaluation Trace/Forward Procedure

We have the table for the evaluation of the function
v−1 = x1 = 1.5
v0 = x2 = 0.5

v1 = v−1
v0

= 1.5
0.5 = 3.0

v2 = sin (v1) = sin (3.0) = 0.1411
v3 = exp (v0) = exp (0.5) = 1.6487
v4 = v1 − v3 = 3.0− 1.6487 = 1.3513

v5 = v2 + v4 = 0.1411 + 1.3413 = 1.4924
v6 = v5 × v4 = 1.4924× 1.3513 = 2.0167

y = v6 = 2.0167
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A Cautionary Note

Normally
Programmers will try to rearrange this execution trace to improve
performance through parallelism.

Thus
Subexpressions will be algorithmically exploited by the AD to improve
performance.

It is usually more convenient to use
The so called “computational graph”
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Computational Graph

A Simpler Version
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Please take a look at section in Chapter 2 A Framework for
Evaluating Functions

At the book [7]
I Andreas Griewank and Andrea Walther, Evaluating derivatives:
principles and techniques of algorithmic differentiation vol. 105,
(Siam, 2008).
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A Little Bit of Notation

In general, we assume quantities vi such

v1−n, ..., v0︸ ︷︷ ︸
x

v1, ..., vl−m−1vl−m+1, ..., vl︸ ︷︷ ︸
y

Then, we have
1 v1−n, ..., v0 are the initial input variables
2 vl−m+1, ..., vl the output variables
3 v1, ..., vl−m−1 the intermediate functions
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Additionally

Where each value vi with i > 0 is obtained by applying an elemental
function φ

vi = φi (vj)j≺i

j ≺ i vi depends directly on vj
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Then, for the application of the chain rule

It is useful to associate with each elemental function φi the state
transformation

vi = Φi (vi−1) with Φi : Rn+l → Rn+l

where

vi = (v1−n, ..., vi, 0, ..., 0)T

In other words
Φi sets of vi to φi (vj)j≺i and keeps all other components vj for j 6= i
unchanged.
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Basically the Computational Graph

A Simpler Version

71 / 158



Images/cinvestav.jpg

Example of the Forward Mode

Suppose we want to differentiate y = f (x1, x2) with respect to x1

We consider x1 as an independent variable and y as a dependent
variable.

We can work the numerical value of the y = f (x1, x2)
By getting the numerical derivative of each of its components

Something like

v̇i = ∂vi
∂x1
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Therefore, we get

We have the Procedure
v−1 = x1 = 1.5 v̇−1 = 1.0
v0 = x2 = 0.5 v̇1 = 0.0

v1 = v−1
v0

= 1.5
0.5 = 3.0 v̇1 = ∂v1

∂v−1
v̇−1 + ∂v1

∂v0
v̇0 = 2.0

v2 = sin (v1) = sin (3.0) = 0.1411 v̇2 = cos (v1) v̇1 = −1.98
v3 = exp (v0) = exp (0.5) = 1.6487 v̇3 = v3×̇v1 = 0.0

v4 = v1 − v3 = 3.0− 1.6487 = 1.3513 v̇4 = v̇1 − v̇3 = 2.0
v5 = v2 + v4 = 0.1411 + 1.3413 = 1.4924 v̇5 = v̇2 + v̇4 = 0.02
v6 = v5 × v4 = 1.4924× 1.3513 = 2.0167 v̇6 = v̇5 × v4 + v5 × v̇4 = 3.0118

y = v6 = 2.0167 ẏ = 3.0118
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The first Column of this process

It can be seen as an automatic procedure
vi−n i = 1...n

vi = ϕi (vj)j≺i i = 1...l
ym−i = vl−i i = m− 1...0
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In a similar way

We can obtain ∂f(x1,x2)
∂x2

However, it can be more efficient to redefine the v̇i as vectors for
efficiency!!!
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Forward propagation of Tangents

Remarks
As you can see the second column of the evaluation procedure is done
in a mechanical way

This increase the size
Basically, twice the size of the original simple evaluation.
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We have the following

We have the chain rule

ẏ (t) = ∂F (x (t))
∂t

= F ′ (x (t)) ẋ (t)

Where
F ′ (x) ∈ Rm×n is the Jacobian Matrix

Here, we will be tempted to calculate ẏ (t)
By evaluating the full Jacobian F ′ (x) then multiplying by ẋ (t)
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However

Such approach is quite uneconomically
Unless many tangents need to be calculated as in the Newton Step.

A simpler version, differentiate the first column of the table
vi−n = xi i = 1, ..., n

vi = φi (vj)j≺i i = 1, ..., l
ym−i = vl−i i = m− 1, ..., 0

j ≺ i vi depends directly vj (The graph propagation of the
dependencies)
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Which can be seen as Forward Propagation of Tangents

Basically, we can think of the forward mode as a propagation of
tangents
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The Automatic Procedure

Therefore, we have the following automatic procedure
j ≺ i vi depends directly on vj and ui = (vj)j≺i ∈ R

ni

vi−n ≡ xi i = 1...n
v̇i−n ≡ ẋi

vi ≡ φi (vj)j≺i i = 1...l
i = 1...l

v̇i ≡
∑
j≺i

∂φi(uj)
∂vj

v̇j

ym−i ≡ vl−i i = m− 1...0
ẏm−i ≡ v̇l−i

81 / 158



Images/cinvestav.jpg

Therefore

Each element assignment vi = φi (ui)
You have the corresponding

v̇i =
∑
j≺i

∂φi (uj)
∂vj

× v̇j =
∑
j≺i

cij × v̇j

Abbreviating u̇i = (v̇j)j≺i

v̇i = φ̇i (ui, u̇i) = φ′i (ui) u̇i

Where φ̇i = R2ni → R
It is called the tangent function associated with the elemental φi.
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Now

Question
What is the correct order of evaluation?
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Why the question?

Until now, we have always placed the tangent statement yielding v̇i
after the underlying value vi

This order of calculation seems natural and certainly yields correct
results as long as there is no overwriting.

Then the order of 2l statements in the middle part of Table does not
matter

vi−n ≡ xi i = 1...n
v̇i−n ≡ ẋi

vi ≡ φi (vj)j≺i i = 1...l
i = 1...l

v̇i ≡
∑
j≺i

∂φi(uj)
∂vj

v̇j

ym−i ≡ vl−i i = m− 1...0
ẏm−i ≡ v̇l−i
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Here, we have a big problem in Cache

Imagine that we have a single block of memory to hold
For vi and its arguments vj live in the same memory cell on the cache
memory

CPU

Register

Register

Register

Register

C
A

C
H

E

M
a
in

 M
e
m

o
ry
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This is known as Cache Aliasing

Definition
Cache aliasing occurs when multiple mappings to a physical page of
memory have conflicting caching states, such as cached and
uncached.

I the same physical address can be mapped to multiple virtual addresses.

On ARMv4 and ARMv5 processors, cache is organized as a
virtual-indexed, virtual-tagged (VIVT)

Cache lookups are faster because the translation look-aside buffer
(TLB) is not involved in matching cache lines for a virtual address.

However
This caching method does require more frequent cache flushing
because of cache aliasing.
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Then

The value of v̇i = φ̇i (ui, u̇i) it will incorrect
Once we update vi = φi (ui)

ADIFOR and Tapenade [9, 5]
They put the derivative statement ahead of the original assignment
and update before the erasing the original statement.

On the other hand
For most univariate functions v = φ (u) is better to obtain the
undifferentiated value first

I Then to use it into the tangent function φ̇
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In this presentation

We will list ϕ and ϕ̇
Side by side in a common bracket to indicate that they should be
evaluated simultaneously

Then
sharing results is immediate.
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Classic Tangent Operations

We have a series of improvements on the tangent equations

φ
[
φ, φ̇

]
v = c v = c, v̇ = 0

v = v ± w v = v ± w
v̇ = v̇ ± ẇ

v = u× w v̇ = u̇× w + u× ẇ
v = u× w

v = 1/u v = 1/u
v̇ = −v × (v × u̇)

φ
[
φ, φ̇

]
v = uc v = u̇

u ; v = uc

v̇ = v × (v × u̇)
v =
√
u v =

√
u

v = 0.5× u̇
v

v = exp (u) v = exp (u)
v̇ = v ∗ u̇

v = log (u) v̇ = u̇/u
v = log (u)

v = sin (u) v̇ = cos (u)× u̇
v = sin (u)
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Now Imagine the following network

Something simple for our sake
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Forward mode to get gradient of x1

v−11 = w11, ..., v−6 = w16, v−5 = w21, ..., v−2 = w24, v−1 = v31, v−1 = w41

v̇−11 = 1, v̇−10 = 0, ..., v̇0 = 0

v1 =
∑3

i=1 w1ixi , v̇1 = x1

v2 =
∑3

i=1 w2ixi , v̇2 = 0

v3 = 1
1+exp(−v1) , v̇3 = v3 [1− v3]x11

v4 = 1
1+exp(−v2) , v̇4 = 0

v5 =
∑3

i=1 w3ivi, v̇5 = w31 × v̇3

v6 =
∑3

i=1 w4ivi, v̇6 = w41 × v̇3

v7 = 1
1+exp(−v5) , v̇7 = v7 [1− v7]× v̇5

v8 = 1
1+exp(−v6) , v̇8 = v8 [1− v8]× v̇6

v9 =
∑2

i=1 w5ivi, v̇9 = w51 × v̇7 + w32 × v̇8

v10 = 1
1+exp(−v9) , v̇10 = v10 [1− v10]× v̇9
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Complexity of the Procedure

Time Complexity

TIME
{
F (x) , F ′ (x) ẋ

}
≤ wtanTIME {F (x)}

Where wtan ∈
[
2, 5

2

]
Space Complexity

SPACE
{
F (x) , F ′ (x) ẋ

}
≤ 2SPACE {F (x)}
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Here, an essential observation

The cost of evaluating derivatives by propagating them forward
it increases linearly with number of directions ẋ along which we want
to differentiate.

It looks inevitable
But it is possible to avoid these complexity by

I Observing that the gradient of a single dependent variable could be
obtained for a fixed multiple of the cost of evaluating the underlying
scalar-valued function.
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We choose instead an output variable

We use the term “reverse mode” for this technique
Because the label “backward differentiation” is well established
[10, 11].

Therefore, for an output f (x1, x2)
We have for each variable v1

vi = ∂y

∂vi
(Adjoint Variable)
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Actually

This is an abuse of notation
We mean a new independent variable δi

vi = ∂y

∂δi
(Adjoint Variable)

Which can be thought as adding a small numerical value δi to vi
vi + δi → f (x1, x2) + viδi

As a perturbation in variational calculus
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Actually, you propagate the Normal vectors

Actually, y and vi are normals or cotangents
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Then, we have

The following sought mapping

x = ∇
[
yTF (x)

]
= yTF ′ (x)

Observation
Here, y is a fixed vector that plays a dual role to the domain direction
ẋ.

In the Forward Procedure, you compute

ẏ = F ′ (x) ẋ = Ḟ (x, ẋ)
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Instead

In the Reverse Procedure, you compute

xT = yTF ′ (x) ≡ F (x, y)

Where we solve F and F are evaluated together
Thus, we have a dual process
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Dual Process

Here, we have that the hyperplane yTy = c in the range of F has
inverse image

{
x|yTF (x) = c

}
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The implicit function theorem

Theorem
Let F : Rn+m → Rm be a continuously differentiable function, and a
point

(
x0

1, x
0
2, ..., x

0
m+n

)
so F

(
x0

1, x
0
2, ..., x

0
m+n

)
= c. If

∂F(x0
1,x

0
2,...,x

0
m+n)

∂xm+n
6= 0, then there exist a neighborhood of(

x0
1, x

0
2, ..., x

0
m+n

)
so whatever (x1, ..., xn+m−1) is close enough to(

x0
1, ..., x

0
m+n−1

)
, there is a unique z so that

F (x1, ..., xn+m−1, z) = c. Furthermore, z = g (x1, ..., xn+m−1) a
continuous function of (x1, ..., xn+m−1).
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Therefore

The set
{
x|yTF (x) = c

}
It is a smooth hyper-surface with the normal

xT = yTF ′ (x)

at x provided that x does not vanishes.
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The Process

Here, we have that the hyperplane yTy = c in the range of F has
inverse image

{
x|yTF (x) = c

}
Forward Procedure

Reverse Procedure
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Therefore

When m = 1, then F = f is scaler-valued
We obtain y = 1 ∈ R the familiar gradient ∇f (x) = yTF ′ (x).

Something Notable
We will look only at the main procedure of Incremental Adjoint
Recursion

Please take a look at section in Derivation by Matrix-Product
Reversal

At the book [7]
I Andreas Griewank and Andrea Walther, Evaluating derivatives:
principles and techniques of algorithmic differentiation vol. 105,
(Siam, 2008).
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The derivation of the reversal mode

For this, we will use
vi−n ≡ xi i = 1...n
v̇i−n ≡ ẋi

vi ≡ φi (vj)j≺i i = 1...l
i = 1...l

v̇i ≡
∑
j≺i

∂φi(uj)
∂vj

v̇j

ym−i ≡ vl−i i = m− 1...0
ẏm−i ≡ v̇l−i

And the identity

yT ẏ = xT ẋ
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Now, using the state transformation Φ

We map from x to y = F (x) as the composition

y = QmΦl ◦ Φl−1 ◦ · · · ◦ Φ2 ◦ Φ1
(
P Tn x

)
Where Pn ≡ [I, 0, ..., 0] ∈ Rn×(n+l) and Qm ≡ [0, 0, ..., I] ∈ Rm×(n+l)

They are matrices that project an arbitrary (n+ l)-vector
Onto its first n and last m components.
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Where

The cij’s represent partial differential

cij ≡ cij (ui) ≡
∂φi
∂vj

for 1− n ≤ i, j ≤ l
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Labelin the elemental partials as cij

We get the state Jacobian

Ai ≡ Φ′i ≡



1 0 . . . 0 . . . . . . 0
0 1 . . . 0 . . . . . . 0
...

... . . . ... . . . . . .
0 0 . . . 1 . . . . . . 0

ci1−n ci2−n . . . cii−n . . . . . . 0
0 0 . . . 0 1 . . . 0
...

...
...

...
...

...
...

0 0 . . . . . . . . . . . . 1


∈ R(n+l)×(n+l)

where the cij occur in the (n+ i)th row of Ai.
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Remarks

The square matrices Ai are lower triangular
It may also be written as rank-one perturbations of the identity,

Ai = I + en+i [∇φi (ui)− en+i]T

I Where ej denotes the jth Cartesian basis vector in Rn+l

The differentiating the composition of functions

ẏ = QmAlAl−1 · · ·A2A1P
T
n ẋ
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Embeddings

The multiplication by P T
n ∈ R(n+l)×n

It embeds ẋ into Rn+l

Meaning
corresponding to the first part of the tangent recursion

The subsequent multiplications by the Ai
It generates ine component v̇i at a time, according to the middle part
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Finally

Qm extracts the last m components as ẏ corresponding to the third
part of the table

vi−n ≡ xi i = 1...n
v̇i−n ≡ ẋi

vi ≡ φi (vj)j≺i i = 1...l
i = 1...l

v̇i ≡
∑
j≺i

∂φi(uj)
∂vj

v̇j

ym−i ≡ vl−i i = m− 1...0
ẏm−i ≡ v̇l−i
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Now

By comparison with

ẏ (t) = ∂F (x (t))
∂t

= F ′ (x (t)) ẋ (t)

We have in fact a product representation of the full Jacobian

F ′ (x) = QmAlAl−1 · · ·A2A1P
T
n ∈ Rm×n
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Then

By transposing the product we obtain the adjoint relation

x = PnA
T
1 A

T
2 · · ·ATl−1A

T
l y

Given that

ATi = I + [∇φi (ui)− en+i] eTn+i
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Therefore

The transformation of any vector (vj)1−n≤j≤l

By multiplication with ATi representing an incremental operation.
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In detail, one obtains for i = l, ..., 1 the operations

For all j with i 6= j ⊀ i

vj is left unchanged

For all j with i 6= j ≺ i

vi is augmented by vicij

cij ≡ cij (ui) ≡
∂φi
∂vj

for 1− n ≤ i, j ≤ l

Subsequently
vi is set to zero.
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Some Remarks

Using the C-style abbreviation
a+ ≡ b for a ≡ a+ b

I We may rewrite the matrix- vector product as the adjoint evaluation
procedure in the following table
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Incremental Adjoint Recursion

We have the following procedure (ui = (vj)j≺i ∈ Rni)

vi ≡ 0 i = 1− n...l
vi−n ≡ xi i = 1...n

vi ≡ φi (vj)j≺i i = m− 1...l
ym−i ≡ vl−i i = 0...m− 1
vl−i ≡ ym−i i = 0...m− 1

vj+ ≡ vi ∂φi(ui)∂vj
for j ≺ i i = l...1

xi ≡ vi−n i = n...1
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Explanation

It is assumed as a precondition that the adjoint quantities
vi for 1 ≤ i ≤ l have been initialized to zero

As indicated by the range specification i = l, ..., 1
we think of the incremental assignments as being executed in reverse
order, i.e., for i = l, l − 1, l − 2, ..., 1.

Only then is it guaranteed
Each vi will reach its full value before it occurs on the right-hand side.
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Furthermore

We can combine the incremental operations
Affected by the adjoint of φi to

ui+ = vi · ∇φi (ui) where ui ≡ (uj)j≺i ∈ R
ni

Something Remarkable
We can do something different

I one can directly compute the value of the adjoint quantity vj by
collecting all contributions to it as a sum ranging over all successors
i � j.

This no-incremental
Requires global information that is not easy to come by.
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Complexity

Something Notable

TIME
{
F (x) , yTF ′ (x)

}
≤ wgradTIME {F (x)}

Where wgrad ∈ [3, 4] (The cheap gradient principle)
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Remember

Time Complexity

TIME
{
F (x) , F ′ (x) ẋ

}
≤ wtanTIME {F (x)}

Where wtan ∈
[
2, 5

2

]
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Example a single layer perceptron

We have

y = σ

( 3∑
i=1

wixi

)
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First Phase

Forward Step
Forward Step

v−2 = w1

v−1 = w2

v0 = w3

v1 = x1v−2

v2 = x2v−1

v3 = x3v0

v4 = v1 + v2 + v3

v5 = σ (v4)

y1 = v5
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Second Phase

Incremental Return

Forward Step

v−2 = w1

v−1 = w2

v0 = w3

v1 = x1v−2

v2 = x2v−1

v3 = x3v0

v4 = v1 + v2 + v3

v5 = σ (v4)

y1 = v5

Incremental Return

v5 = y1 = 1

v4 = ∂v5
∂v4

y1 = σ′ (v4)

v3+ = ∂v4
∂v3

v4 = 1× σ′ (v4)

v0 = ∂v3
∂v0

v3 = x3 × σ′ (v4)

v2+ = ∂v4
∂v2

v4 = 1× σ′ (v4)

v−1 = ∂v2
∂v−1

v2 = x2 × σ′ (v4)

v1+ = ∂v4
∂v1

v4 = 1× σ′ (v4)

v−2 = ∂v1
∂v−2

v1 = x1 × σ′ (v4)

w3 = x3 × σ′ (v4)

w2 = x2 × σ′ (v4)

w1 = x1 × σ′ (v4)
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How does it compares with the Forward Mode?
We noticed that you do the following for each gradient variable

Forward Step; Gradient of Forward Step

v−2 = w1; v̇−2 = ẇ1 = 0

v−1 = w2; v̇−1 = ẇ2 = 0

v0 = w3; v̇0 = ẇ2 = 1

v1 = x1v−2

v̇1 = x1v̇−2 = 0

v2 = x2v−1

v̇2 = x2v̇−1 = 0

v3 = w3v0

v̇3 = x3v̇0 = x3

v4 = v1 + v2 + v3

v̇4 = v̇1 + v̇2 + v̇3 = x3

v5 = σ (v4)

v̇5 = v̇4 = x3 × σ′ (v4)

y1 = v5; ẏ1 = v̇5
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Let us to look at the following example

We have the following system of equations

y1 = σ (w1x)
y2 = σ (w2x)
y3 = σ (w2x)
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With the following graph

Notice the difference with a neural network
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The Forward mode looks like

We have that
v0 = x; v̇0 = ẋ = 1

v1 = w1v0

v̇1 = w1v̇−2 = w1

v2 = w2v0

v̇2 = w1v̇0 = w2

v3 = w3v0

v̇3 = w1v̇0 = w3

v4 = σ (v1)

v̇4 = σ′ (v1)× v̇1 = w1 × σ′ (v1)

v5 = σ (v2)

v̇5 = σ′ (v2)× v̇2 = w2 × σ′ (v2)

v6 = σ (v3)

v̇6 = σ′ (v3)× v̇3 = w3 × σ′ (v3)

=⇒

y1 = v4; ẏ1 = v̇4

y2 = v5; ẏ2 = v̇5

y3 = v6; ẏ3 = v̇6
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Now you can see it

Forward and Reverse Mode
They depend on the input and output size!!!

A More Formal Definition
For a function f : Rn → Rm, suppose we wish to compute all the
elements of the m× n Jacobian matrix

Ignoring the overhead of building the expression graph
Under this situation Reverse Mode requires m sweeps performs better
when n > m.

135 / 158



Images/cinvestav.jpg

Consequences for Deep Learning

With a relatively small overhead
The performance of reverse-mode AD is superior when n� m, that
is when we have many inputs and few outputs.

As we saw it in the previous examples
If n ≤ m forward mode performs better
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Special Cases

Nevertheless when we have a comparable number of outputs and
inputs

Forward mode can be more efficient,
I less overhead associated with storing the expression graph in memory

in forward mode.

For Example
If you have f : Rn → R, when n = 1 forward mode is more efficient,
but the result flips as n increases.
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Be Aware

Be Careful
A computationally naive implementation of AD can result in slow
code and excess use of memory.

Additionally
There exists no standard set of problems spanning the diversity of AD
applications.
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Source Transformation in Fortran and C

First
We start with the source code of a computer program that
implements our target function.

Second
A preprocessor then applies differentiation rules to the code
generating new source code which calculates derivatives.

I Remember our basic tables
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Example on how source code transformation could work

We could have the following pipeline

AD Tool C compiler

function.c diff_function.c diff_function.o
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Limitations of Source Transformation

Severe limitations with source transformation
it can only use information avail- able at compile time

I It cannot handle more sophisticated programming statements, such as
while loops, C++ templates, and other object-oriented features

For this, it is better to use operator overloading
Operator overloading is the appropriate technology.
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Operator overloading

The key idea is to introduce a new class of objects
Containing the value of a variable on the expression graph and a
differential component.

Not all variables on the expression graph will belong to this class
But the root variables, which require sensitivities, and all the
intermediate variables.

In a forward mode framework
The differential component is the derivative with respect to one input.
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Furthermore

In a reverse mode framework
it is the adjoint with respect to one output.

Something Notable
Operators and math functions are overloaded to handle these new
types.
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Basically

The operators are overloaded
So it is possible to handle the dual numbers under their new
arithmetic (Forward Mode)
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Building a Computational Graph

Parse the equations

y1 = σ (w1x)
y2 = σ (w2x)
y3 = σ (w2x)

Generate variables for intermediate values
v0 = x Then V = V ∪ {v0}

Generate edges between the intermediate values
If v1 = w1x Then E = E ∪ {〈v0, v1〉}
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Topological sort for Evaluation

Run the topological sort, then you get the order of evaluation
Using the graph built in the previous step
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For the Reversal Mode

We could use a stack
When assignments occur at the Forward Mode of the process

vi ≡ 0 i = 1− n...l
vi−n ≡ xi i = 1...n

vi ≡ φi (vj)j≺i i = m− 1...l
ym−i ≡ vl−i i = 0...m− 1

Then we pop the necessary elements
At the reversal process
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Nevertheless

There are many techniques to improve the efficiency and avoid
aliasing problems of these modes [12]

1 Taping for adjoint recursion
2 Caching
3 Checkpoints
4 Expression Templates
5 etc

You are invited to read more about them
Given that these techniques are already being implemented in
languages as swift...

I “First-Class Automatic Differentiation in Swift: A Manifesto”
https://gist.github.com/rxwei/30ba75ce092ab3b0dce4bde1fc2c9f1d

152 / 158



Images/cinvestav.jpg

Between Two Extremes

Something Notable
Forward and reverse accumulation are just two (extreme) ways of
traversing the chain rule.

The problem of computing a full Jacobian of f : Rn → Rm with a
minimum number of arithmetic operations

It is known as the Optimal Jacobian Accumulation (OJA) problem,
which is NP-complete [13].
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Finally

Using all the previous ideas
The Graph Structure Proposed in [2]
The Computational Graph of AD
The Forward and Reversal Methods

It has been possible to develop the Deep Learning Frameworks
TensorFlow
Torch
Pytorch
Keras
etc...
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