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For this initial analysis

We will look at the paper by Bengio
"Learning deep architectures for AI", Foundations and trends in
Machine Learning 2, 1 (2009), pp. 1--127.

And for this, we will look at Boolean functions
After Shanon pointed out the fact they are useful to represent
complex problems [1].
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Architecture

A two-layer circuit of logic gates can represent any boolean function
[2]

Any boolean function can be written as a sum of products, disjunctive
normal form:

I AND gates on the first layer with optional negation of inputs,
I And OR gate on the second layer

Example
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The Exponential Width
Here, we have a small problem

There are functions computable with a polynomial-size logic gates
circuit of depth k that require exponential size when restricted to
depth k − 1[3]

I For Example

parity : (b1, ..., bd) ∈ {0, 1}d 7→
{

1 if ∑d
i=1 bi

−1 otherwise
is even

How this impact shallow learning in Machine Learning?
Many of the results for boolean circuits can be generalized to
architectures whose computational elements are linear threshold units

f (x) = 1wx+b>0

I The fan-in of a circuit is the maximum number of inputs of a particular
element.
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Therefore

How this impact shallow learning in Machine Learning?
First, we define the concept of fk function

Definition
The function fk is a function of N2k−2 variables. It is defined by a
depth k circuit that is a tree. At the leaves of the tree there are
unnegated variable, The ith level from the bottom consists of ∧-gates
if i is even and otherwise it consists of ∨-gates.

7 / 132



Images/cinvestav.jpg

Therefore
How this impact shallow learning in Machine Learning?

First, we define the concept of fk function

Definition
The function fk is a function of N2k−2 variables. It is defined by a
depth k circuit that is a tree. At the leaves of the tree there are
unnegated variable, The ith level from the bottom consists of ∧-gates
if i is even and otherwise it consists of ∨-gates.

7 / 132



Images/cinvestav.jpg

An Important Theorem

Of particular interest is the following theorem
Monotone weighted threshold circuits (i.e. multi-layer neural networks
with linear threshold units and positive weights)

Theorem [4]
A monotone weighted threshold circuit of depth k − 1 computing a
function fk has size at least 2cN for some constant c > 0 and
N > N0.
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Meaning

This theorem does not fail any type of architecture
But the question arises, Are the depth 1, 2 and 3 architectures (many
Machine Learning algorithms) too shallow to represent efficiently
more complicated functions?

What happens in Deep Architectures
Bengio et al. argues that they can represent highly-varying functions
[5]
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Highly-varying functions

Meaning
We say that a function is highly-varying when a piecewise
approximation of that function would require a large number of pieces.

Clearly
Deeper Architectures can handle such functions in a easier way than
shallow ones.

For Example
The polynomial ∏n

i=1
∑m
j=1 aijxj can be represented as a product of

sums with only O (nm) elements
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Basically

We have a Perceptron Layer and a Product Second Layer

What if I do a product of sums
What will happen?
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Ok, we have a problem

Because for our case

3∏
i=1

6∑
j=1

aijxj =
6∑
j=1

3∏
i=1

aijxj

We have the following problem O (nm)
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Actually

You could claim
Machine Learning shallow learning depends on complex
computational units to handle complex functions

Deep Learning
Proposes simpler units but deeper structures to handle complex
functions

What about both ideas together
Complex adaptive units
Deeper architectures to helps such units

I It seems to be the case of the human brain...!!!
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Local vs Non-Local Generalization

Something Notable
A local estimator partitions the input space in regions

Thus, local estimators are based on matching local templates
It can be thought of as having two levels...

The first level
It is made of a set of templates which can be matched to the input.
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Then

A template unit will output a value that indicates the degree of
matching

K (x|Θ)

The second level combines these values
Typically a simple linear combination or product combination

L (x) =
k∑
i=1

K (x|Θi)

Classic Example, the kernel machine

f (x) = b+
k∑
i=1

αiK (x, xi)
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As you can see

The Kernel has a local influence based on the support vectors
For example the Gaussian Kernel

K (x, xi) = exp
{
−‖x− xi‖

2

σ2

}

The Problem of Kernel
The assumption that the target function is smooth or can be well
approximated with a smooth function.

The limitations of a fixed generic kernel such as the Gaussian kernel
They have motivated a lot of research in designing kernels [6, 7]
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For Example, in supervised learning

If we have the training example (xi, yi)
We want to build predictor that output something near yi when any
other sample is near xi

Basically the situation when regularizing
Bengio and Le Cun claim this is not enough [8, 9]

Although, It is possible to argue
That such highly varying space is due to a lack of the correct feature
selection process.
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However

If you look at the parity problem

parity : (b1, ..., bd) ∈ {0, 1}d 7→
{

1 if ∑d
i=1 bi

−1 otherwise
is even

Theorem
Let f (x) = b+

∑2d
i=1 αiK (xi,x) be an affine combination of

Gaussian with the same width σ centered on points xi ∈ {−1, 1}d . If
f solve the parity problem, then there are at least 2d−1 non-zero
support vectors.
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However

Although, this function is not a representative
The kind of functions we are more interested in AI.

It suggest that local based estimators
They are not enough, but still not a conclusive result

After all
More Memory could be added to those systems
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For example

Tensors have been used to add memory to SVM

min
U

(m)
i ,K(m),β,b

γ
N∑
i=1

∥∥∥Xi − r
K(1)U

(1)
i , · · · ,K(M)U

(M)
i

z∥∥∥2

F
+ · · ·

λβT K̂β +
N∑
i=1

[
1− yi

(
k̂
T

i β + b

)]
+

K(m) are kernel matrices defined on each mode to capture the
nonlinear part.
U (m) =

[
u

(m)
1 , . . . ,u

(m)
R

]
are factor matrices of size Im ×Rm
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However

A Problem
You are limiting the Machine Learning operations to matrix additions
and products and non-linear operations.

I In a shallow way...

We need to add more complex functions
After all deeper architectures construct complex functions layer by
layer
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By Using Weights in Certain Deep Learners

The Application of each Layer increase the complexity of the features
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Some of the Models to be Reviewed of Models

Convolutional Neural Networks
The classic model that started the phenomena of Neural Networks.

Auto Encoder
How to generate novel features by funneling.

Boltzmann Machine
Energy Based Models.
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However

We will see that there are many possible architectures
And more with the different layers
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] :

Components

Convolutional Layer Pooling Layer Activation Function Loss FunctionRegularization Layers

Transposed Convolution

Classic Convolutional Average

Max

Learned-Norm (LP)

Spatial Pyramid

Strided Convolution

ReLU

LReLU

PReLU

RReLU

ELU

Maxout

Batch Normalization

Dropout

Drop Connect

Residual Layer

Dilated Convolution

Separable Convolution

Hinge

Softmax

Contrastive 

Triplet

KL Divergence
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Digital Images as pixels in a digitized matrix
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Further

Pixel values typically represent
Gray levels, colours, heights, opacities etc

Something Notable
Remember digitization implies that a digital image is an
approximation of a real scene
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Therefore, we have the following process

Low Level Process
Input Processes Output

Noise
Image Removal Improved

Image Image
Sharpening

Example, Edge Detection
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Mid Level Process
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Object
Image Recognition Attributes

Segmentation

Object Recognition
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Therefore

It would be nice to automatize all these processes
We would solve a lot of headaches when setting up such process

Why not to use the data sets
By using a Neural Networks that replicates the process.
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Convolutional Neural Networks History

Work by Hubel and Wiesel in the 1950s and 1960s
They showed that cat and monkey visual cortexes contain neurons
that individually respond to small regions of the visual field.

After all more studies about the visual cortex happened
David H. Hubel and Torsten N. Wiesel (2005). Brain and visual
perception: the story of a 25-year collaboration. Oxford University
Press US. p. 106.
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Neurocognitron (Circa 1980)

Kunihiko Fukushima [21]
Proposed a Hierarchical Network for image recognition with a
convolution!!!

But it used a function ϕ

ϕ

1 +
∑Kt−1
kt−1=1

∑
v∈Sl al (kt−1, v, kl)ucl−1 (kl=1, n+ v)

1 + 2rl
1+rl bl (kl) vCl−1 (n)

− 1


With a Relu function

ϕ (x) =
{
x x ≥ 0
0 x < 0
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Furthermore (Circa 1993)

Weng et al. [22, 23]
Proposed the use of Maxpooling to recognize 3D objects in 2D images

Yan LeCunn finally proposed the use of backpropagation [24]
The Beginning of the Dream!!!
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Convolutional Neural Networks

Basically they are deep learners based in convolutions or its variants

(f ∗ g) (i, j) =
−n∑
k=n

n∑
l=−n

f (k, l)× g (i− k, j − l) (1)

Basically Filters
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Example of CNN

A Basic Convolutional Network

Convolution Convolution

Max-Pool
Dense

3@128x128
8@64x64

24@48x48
24@16x16

1x256

1x128
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We know that

Many of the existing machine learning algorithms
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We have several techniques for that

Principal Component Analysis

L (u1) = uT1 Su1 + λ1
(
1− uT1 u1

)
Linear Locally Embeddings

Φ (Y ) =
∑
i

∣∣∣∣∣∣Yi −
∑
j

WijYj

∣∣∣∣∣∣
2

And recently
Uniform Manifold Approximation and Projection for Dimension
Reduction [25]
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Therefore

We have the need to codify the original feature into better ones
This can be done by a series of mappings that act as funnels, How?

Basically, we have a series of mappings

x ∈ Rn1 → f1 (x) ∈ Rn2 → f2 (x1) ∈ Rn3 · · · −→ fm (xm−1) ∈ Rnm+1

Where

n1 < n2 < · · · < nm < nm+1
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Then, we can use linear mappings for this

With the following matrix functions

σ
[
fAi+1 (xi)

]
= σ (Ai+1x)

Therefore
Therefore, we have the following architecture.
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The Basic Auto Encoder Architecture

We have
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The Basic Energy Models

We have that the Boltzmann Machines
A Boltzmann machine is a network of units that are connected to
each other

Here, we have N be the number of units
Each unit takes a binary value in {0, 1}

I Represented by a random variable Xi, i = 1, ..., N .

Additionally, it has parameters
Bias bi
Weight wij between unit i and unit j, (i, j) ∈ [1, N − 1]× [i+ 1, N ]
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The Energy Based Structure

The energy of the Boltzmann machine is defined by

EW,b [x] = −
N∑
i=1

bixi −
N−1∑
i=1

N∑
j=i+1

wijxixj = −bTx− xTWx

This allows to define a probability distribution

PW,b (x) = exp (−EW,b [x])∑
x̃ exp (−EW,b [x̃])
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Example

Restricted Boltzmann Machines where the conectivity is layer by layer

51 / 132



Images/cinvestav.jpg

Thus, using it as a basic model

We can stack them into a multiple layer model
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Generative Adversarial Networks

They can be seen as an Accept-Reject MCMC Model
However, they do not require Markov Chains with the classic problem:

I The independence between the samples to generate ergodic
probabilities (The real one)

As in the Accept-Reject
The generator network tries to produce realistic-looking samples
The discriminator network tries to figure out whether an image
came from the training set or the generator network

54 / 132



Images/cinvestav.jpg

Generative Adversarial Networks

They can be seen as an Accept-Reject MCMC Model
However, they do not require Markov Chains with the classic problem:

I The independence between the samples to generate ergodic
probabilities (The real one)

As in the Accept-Reject
The generator network tries to produce realistic-looking samples
The discriminator network tries to figure out whether an image
came from the training set or the generator network

54 / 132



Images/cinvestav.jpg

Graphically

We have the following Basic Model
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Here

There is a need to join both functions
So, we can use the idea of Backpropagation to obtain the desired
minimization.

How can we do this?
We can define a sensible learning criterion when the dataset is not
linearly separable

For this, we can use the logistic cross-entropy loss (We will explain
more about this later)

LLCE (z, t) = LCE (σ (z) , t) = t log
(
1 + e−z

)
+ (1− t) log (1 + ez)
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Therefore, we have

The following architecture use this idea
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In this basic Generator

D denote the discriminator’s predicted probability of being data

JD = Ex∼D [− logD (x)] + Ez [− log (1−D (G (z)))]

One possible cost function for the generator

JG = −JD = const+ Ez [log (1−D (G (z)))]
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Then using both functions

The minimax formulation
Since the generator and discriminator are playing a zero-sum game
against each other.

Basically

max
G

min
D
JD

There are other examples using the LSE [26]

JG = 1
N

N∑
i=1

[G (z)− x]2
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Therefore, we have two updates

First update the Discriminator

Forward

Backpropagation
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Now

Update the Generator

Forward

Backpropagation

Backprop Derivatives Through the Discriminator, but do not 
change variables on it... only in the generator 
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There Are Many More!!! Here a few more...

Markov Chain Hopfield Network Restricted BMBoltzmann Machine

Deep Belief Network Convolutional Network
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Furthermore

Deconvolutional Network
Autoencoder

Generative Adversarial Network Deep Residual Network
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As We know

In Recurrent Neural Networks, we have the problem
Vanishing and Exploding Gradients

In the Deeper Architectures as encoder-decoder we have such
phenomena
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Consider a simple encoder encoder network

We have this simplified version

We have the following structure

ht = wtxt + zt−1

zt = stht

67 / 132



Images/cinvestav.jpg

Consider a simple encoder encoder network

We have this simplified version

We have the following structure

ht = wtxt + zt−1

zt = stht

67 / 132



Images/cinvestav.jpg

Backpropagation Rules

Then, we get the following backpropagation rules

∂ht
∂wi

= ∂ht
∂ht−1

× ∂ht−1
∂ht−2

× ...× ∂hi
∂wi

∂ht
∂si

= ∂ht
∂ht−1

× ∂ht−1
∂ht−2

× ...× ∂hi+1
∂si
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Then, we have

By Using Our simplifying assumption that
∂ht
∂ht−1

= ∂ (wtxt + st−1ht−1)
∂ht−1

= st−1

And for ∂hi
∂wi

∂hi
∂wi

= xt

Finally, we have that

∂ht
∂wi

= xt

 i−1∏
k=t−1

sk
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It is clear that

Unless the sk’s are near to 1
You have the vanishing gradient if sk ∈ [0, 1) for all k.
You have the exploding gradient if sk ∈ (1,+∞] for all k.

Even with activation functions
These terms tend to appear in the Deep Learners when
Backpropagation is done

In the case of Forward
We have many activation function that squash the signal...
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Instead of doing this

Let us to do the following

f (x) = 3.5x (1− x)

In the first composition, we get
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Now, as we compound the function

Second one, y = f ◦ f (x)
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Now, as we increment iterations

Third one, y = f ◦ f ◦ f (x)
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Finally

We see the increment in the gradient part negative or positive

Vanishing Gradient

Exploiding Gradient
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Actually, we have
A Frontier defining the Vanishing and Exploding Gradient [27]
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Actually

Eventually, the iterates go to infinity or zero OR
They wind up at a fixed point...

A Fixed Point?

x = f (x)
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Basically

The fixed points can be thought
Some fixed points repel the iterates; these are called sources.
Other fixed points attract the iterates; these are called sinks.

Basically f ′ (x) < 1 are sinks and f ′ (x) > 1 are sources
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Areas of attraction

Basically, we have that there are areas the pull in the iterations of the
function
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These fixed points

In Deep Structures as RNN without sigmoid functions

ht = Wsdxt + Ussht−1

yt = Vosht

We have

xt = Vos [Wsdxt + Ussht−1]

Therefore if b = VosUssht−1

Then, we have that

xt = VosWsdxt + VosUssht−1 = Ixt + 0
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Therefore

We have that

VosWsd ≈ I and ht−1 ≈ 0
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They define an area

Where Vos and Wsd

They are the inverse of each other

And the hidden state is almost zero
Basically they fixed point converts a RNN without activation
functions in a linear model
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Gradient Clipping

We prevent gradient from blowing up by rescaling to a certain value

‖∇θL‖ > η =⇒ ∇θL = η∇θL
‖∇θL‖

We have a series of nice analysis [28]

min
x∈Rd

f (x)

Furthermore, we define a space

S = {x|∃y such that f (y) ≤ f (xo) , and ‖x− y‖ ≤ 1}

86 / 132



Images/cinvestav.jpg

Gradient Clipping

We prevent gradient from blowing up by rescaling to a certain value

‖∇θL‖ > η =⇒ ∇θL = η∇θL
‖∇θL‖

We have a series of nice analysis [28]

min
x∈Rd

f (x)

Furthermore, we define a space

S = {x|∃y such that f (y) ≤ f (xo) , and ‖x− y‖ ≤ 1}

86 / 132



Images/cinvestav.jpg

Gradient Clipping

We prevent gradient from blowing up by rescaling to a certain value

‖∇θL‖ > η =⇒ ∇θL = η∇θL
‖∇θL‖

We have a series of nice analysis [28]

min
x∈Rd

f (x)

Furthermore, we define a space

S = {x|∃y such that f (y) ≤ f (xo) , and ‖x− y‖ ≤ 1}

86 / 132



Images/cinvestav.jpg

We have then for S

In R2 the following example
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Assumptions

Assumption 1
Function f is lower bounded by f∗

Assumption 2
Function f is twice differentiable
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Then, there are the following proposals

The ordinary gradient descent

xk+1 = xk − η∇f (xk)

The Clipped Gradient Descent (CGD)

xk+1 = xk − hc∇f (xk) , where hc = min
{
ηc,

γηc
‖∇f (x)‖

}

Normalized Gradient Descent (NGD)

xk+1 = xk − hn∇f (xk) , where hn = ηc
‖∇f (x)‖+ β
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Remark

Clipped GD and NGD are almost equivalent
If we set γηc = ηn and ηc = ηn

β then

1
2hc ≤ hn ≤ 2hc
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A Natural Question

Definition
The objective f is called L-smooth if
‖∇f (x)−∇f (y)‖ ≤ L ‖x− y‖ for all x, y ∈ Rd

This is equivalent under a twice differentiable f∥∥∥∇2f (x)
∥∥∥ ≤ L

Then, you get the following upper-bound

f (y) ≈ f (x) +∇T f (x) (y − x) + 1
2 (y − x)T ∇2f (x) (y − x)
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Then, it is possible to use the 3 Assumption

We have that

f (y) ≤ f (x) +∇T f (x) (y − x) + 1
2L ‖y − x‖

2

Then fixing all the other variables and assuming y = x− h∇f (x)

h∗ = arg min
h

[
f (x)− h ‖∇f (x)‖2 + 1

2Lh
2 ‖∇f (x)‖2

]
= 1
L

Basically
This choice of h leads to GD with a fixed step,
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Now

Question
“Is clipped gradient descent optimized for a different smoothness
condition?”

Inspired in the equation

f (y) ≤ f (x) +∇T f (x) (y − x) + 1
2L ‖y − x‖

2

Assume

h∗ = η

‖∇f (x)‖+ β
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Then, we have

Assume that such value optimize the equation

f (x)− h ‖∇f (x)‖2 + 1
2Lh

2 ‖∇f (x)‖2

Then, we have

L (x) = ‖∇f (x)‖+ β

η

Assumption 3 by using ‖∇2f (x)‖ ≤ L

(L0, L1)-smoothness. f is (L0, L1)-smooth, if there exist positive L0
and L1 such that

∥∥∇2f (x)
∥∥ ≤ L0 + L1 ‖∇f (x)‖

I ∇2f (x) is the Hessian
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The final Theorem

Theorem (CGD) [28]
Assume that Assumptions 1, 2, and 3 hold in set S. With parameters

ηc = 1
10Lo

and γ = min
{ 1
ηc
,

1
10Loηc

}
,

I Then Clipped GD terminates in

20L0 (f (x0)− f∗)
ε2

+
20 max

{
1, L2

1
}

(f (x0)− f∗)
L0

iterations
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Remarks

The paper
It points out to a high correlation between the Jacobian and the
Hessian

There are more work to be done
Please read the paper...
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Another way to stabilize the network

Data Normalization
Standardization is the most popular form of preprocessing

I Normally mean subtraction and subsequent scaling by the standard
deviation.

Mean subtraction

µ = 1
N

N∑
i=1
xi then xci = xi − µ

Finally
Standardization refers to altering the data dimensions such that they
are of approximately the same scale.
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Therefore, we have that

Standardization

σ2 = 1
N

N∑
i=1

(xi − µ)2

xsi = xi − µ
σ

However, there other tricks, Bengio et al [29]

99 / 132



Images/cinvestav.jpg

Therefore, we have that
Standardization

σ2 = 1
N

N∑
i=1

(xi − µ)2

xsi = xi − µ
σ

However, there other tricks, Bengio et al [29]

99 / 132



Images/cinvestav.jpg

Softmax Scaling

Thus
All new features have zero mean and unit variance.

Further
Other linear techniques limit the feature values in the range of [0, 1]
or [−1, 1] by proper scaling.

However
We can non-linear mapping. For example the softmax scaling.

100 / 132



Images/cinvestav.jpg

Softmax Scaling

Thus
All new features have zero mean and unit variance.

Further
Other linear techniques limit the feature values in the range of [0, 1]
or [−1, 1] by proper scaling.

However
We can non-linear mapping. For example the softmax scaling.

100 / 132



Images/cinvestav.jpg

Softmax Scaling

Thus
All new features have zero mean and unit variance.

Further
Other linear techniques limit the feature values in the range of [0, 1]
or [−1, 1] by proper scaling.

However
We can non-linear mapping. For example the softmax scaling.

100 / 132



Images/cinvestav.jpg

Steps of Softmax Scaling

Softmax Scaling
It consists of two steps

First one

yik = xik − xk
σ

(2)

Second one

x̂ik = 1
1 + exp {−yik}

(3)
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Explanation
Notice the red area is almost flat!!!

Thus, we have that
The red region represents values of y inside of the region defined by
the mean and variance (small values of y).
Then, if we have those values x behaves as a linear function.

And values too away from the mean
They are squashed by the exponential part of the function.
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Here, the people at Google [17] around 2015

They commented in the “Internal Covariate Shift Phenomena”
Due to the change in the distribution of each layer’s input

They claim
The min-batch forces to have those changes which impact on the
learning capabilities of the network.

In Neural Networks, they define this
Internal Covariate Shift as the change in the distribution of network
activations due to the change in network parameters during training.
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They gave the following reasons

Consider a layer with the input u that adds the learned bias b
Then, it normalizes the result by subtracting the mean of the
activation over the training data:

x̂ = x− E [x]

I X = {x, ...,xN} the data samples and E [x] = 1
N

∑N
i=1 xi

Now, if the gradient ignores the dependence of E [x] on b
Then b = b+ ∆b where ∆b ∝ − ∂l

∂x̂

Finally

u+ (b+ ∆b)−E[u+ (b+ ∆b)] = u+ b−E[u+ b]
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Then

The following will happen
The update to b leads to no change in the output of the layer.

Therefore
We need to integrate the normalization into the process of training.

106 / 132



Images/cinvestav.jpg

Then

The following will happen
The update to b leads to no change in the output of the layer.

Therefore
We need to integrate the normalization into the process of training.

106 / 132



Images/cinvestav.jpg

Normalization via Mini-Batch Statistic

It is possible to describe the normalization as a transformation layer

x̂ = Norm (x,X )

Which depends on all the training samples X which also depends on
the layer parameters

For back-propagation, we will need to generate the following terms
∂Norm (x,X )

∂x
and ∂Norm (x,X )

∂X
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Normalization via Mini-Batch Statistic

Problem!!!
whitening the layer inputs is expensive, as it requires computing the
covariance matrix

Cov [x] = Ex∈X
[
xxT

]
and E [x]E [x]T

I To produce the whitened activations
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Therefore

A Better Options, we can normalize each dimension

x̂(k) = x(k) − µ
σ

with µ = E
[
x(k)

]
and σ2 = V ar

[
x(k)

]
This allows to speed up convergence

Simply normalizing each input of a layer may change what the layer
can represent.

So, we need to insert a transformation in the network
Which can represent the identity transform
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The Transformation

The Linear transformation

y(k) = γ(k)x̂(k) + β(k)

The parameters γ(k), β(k)

This allow to recover the identity by setting γ(k) =
√
V ar

[
x(k)] and

β(k) = E
[
x(k)

]
if necessary.
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Finally

Batch Normalizing Transform
Input: Values of x over a mini-batch: B = {x1...m}, Parameters to

be learned: γ, β
Output: {yi = BNγ,β (xi)}

1 µB = 1
m

∑m
i=1 xi

2 σ2
B = 1

m

∑m
i=1 (xi − µ)2

3 x̂ = xi−µB√
σ2
B+ε

4 yi = γ(k)x̂i + β = BNγ,β (xi)
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Backpropagation

We have the following equations by using the loss function l
1 ∂l

∂x̂i
= ∂l

∂yi
× γ

2 ∂l
∂σ2
B

=
∑m
i=1

∂l
∂x̂i
× (xi − µB)×

(
−1

2

)
×
(
σ2
B + ε

)− 3
2

3 ∂l
∂µB

=
(∑m

i=1
∂l
∂x̂i
× −1√

σ2
B+ε

)
+ ∂l

∂σ2
B
×
∑m

i=1−2×(xi−µB)
m

4 ∂l
∂xi

= ∂l
∂x̂i
× 1√

σ2
B+ε

+ ∂l
∂σ2
B
× 2×(xi−µB)

m + ∂l
∂µB
× 1

m

5 ∂l
∂γ =

∑m
i=1

∂l
∂yi
× x̂i

6 ∂l
∂β =

∑m
i=1

∂l
∂yi
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They found thats is not the covariance shift the one affected by it!!!

Santurkar et al. recognize that
Batch normalization has been arguably one of the most successful
architectural innovations in deep learning.

They used a standard Very deep convolutional network
on CIFAR-10 with and without BatchNorm
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It does not do anything to the Internal Covariate Shift
Actually smooth the optimization manifold

I It is not the only way to achieve it!!!

They suggest that
“This suggests that the positive impact of BatchNorm on training
might be somewhat serendipitous.”
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Therefore, we need to deal with such problems

The Residual Network [16]
He, Kaiming et al. - "Deep Residual Learning for Image Recognition"

Basically they got two layers doing something to an input

F (x) = A2A1x

Then imagine you have an ideal mapping H (x)

F (x) = H (x)− x =⇒ F (x) + x = H (x) =⇒
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This allows to
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vanishing gradients.

Something Notable
In the simplest case, only the weights for the adjacent layer’s
connection are adapted.
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A Winner

Something Notable
Winner of ILSVRC 2015 in image classification, detection, and
localization, as well as Winner of MS COCO 2015 detection, and
segmentation.
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They represent a rich field of study
Basically... From Lower Complexity Features toward more complex
more informative!!!

In conclusion
Deep Forward Networks look to have more expressibility than shallow
learners.
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