
Introduction to Neural Networks and Deep Learning
Deep Forward Neural Networks

Andres Mendez-Vazquez

August 22, 2020

1 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 2 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 3 / 132

Images/cinvestav.jpg

For this initial analysis

We will look at the paper by Bengio
"Learning deep architectures for AI", Foundations and trends in
Machine Learning 2, 1 (2009), pp. 1--127.

And for this, we will look at Boolean functions
After Shanon pointed out the fact they are useful to represent
complex problems [1].

4 / 132

Images/cinvestav.jpg

For this initial analysis

We will look at the paper by Bengio
"Learning deep architectures for AI", Foundations and trends in
Machine Learning 2, 1 (2009), pp. 1--127.

And for this, we will look at Boolean functions
After Shanon pointed out the fact they are useful to represent
complex problems [1].

4 / 132

Images/cinvestav.jpg

Architecture

A two-layer circuit of logic gates can represent any boolean function
[2]

Any boolean function can be written as a sum of products, disjunctive
normal form:

I AND gates on the first layer with optional negation of inputs,
I And OR gate on the second layer

Example

5 / 132

Images/cinvestav.jpg

Architecture
A two-layer circuit of logic gates can represent any boolean function
[2]

Any boolean function can be written as a sum of products, disjunctive
normal form:

I AND gates on the first layer with optional negation of inputs,
I And OR gate on the second layer

Example

5 / 132

Images/cinvestav.jpg

The Exponential Width
Here, we have a small problem

There are functions computable with a polynomial-size logic gates
circuit of depth k that require exponential size when restricted to
depth k − 1[3]

I For Example

parity : (b1, ..., bd) ∈ {0, 1}d 7→
{

1 if ∑d
i=1 bi

−1 otherwise
is even

How this impact shallow learning in Machine Learning?
Many of the results for boolean circuits can be generalized to
architectures whose computational elements are linear threshold units

f (x) = 1wx+b>0

I The fan-in of a circuit is the maximum number of inputs of a particular
element.

6 / 132

Images/cinvestav.jpg

The Exponential Width
Here, we have a small problem

There are functions computable with a polynomial-size logic gates
circuit of depth k that require exponential size when restricted to
depth k − 1[3]

I For Example

parity : (b1, ..., bd) ∈ {0, 1}d 7→
{

1 if ∑d
i=1 bi

−1 otherwise
is even

How this impact shallow learning in Machine Learning?
Many of the results for boolean circuits can be generalized to
architectures whose computational elements are linear threshold units

f (x) = 1wx+b>0

I The fan-in of a circuit is the maximum number of inputs of a particular
element.

6 / 132

Images/cinvestav.jpg

Therefore

How this impact shallow learning in Machine Learning?
First, we define the concept of fk function

Definition
The function fk is a function of N2k−2 variables. It is defined by a
depth k circuit that is a tree. At the leaves of the tree there are
unnegated variable, The ith level from the bottom consists of ∧-gates
if i is even and otherwise it consists of ∨-gates.

7 / 132

Images/cinvestav.jpg

Therefore
How this impact shallow learning in Machine Learning?

First, we define the concept of fk function

Definition
The function fk is a function of N2k−2 variables. It is defined by a
depth k circuit that is a tree. At the leaves of the tree there are
unnegated variable, The ith level from the bottom consists of ∧-gates
if i is even and otherwise it consists of ∨-gates.

7 / 132

Images/cinvestav.jpg

An Important Theorem

Of particular interest is the following theorem
Monotone weighted threshold circuits (i.e. multi-layer neural networks
with linear threshold units and positive weights)

Theorem [4]
A monotone weighted threshold circuit of depth k − 1 computing a
function fk has size at least 2cN for some constant c > 0 and
N > N0.

8 / 132

Images/cinvestav.jpg

An Important Theorem

Of particular interest is the following theorem
Monotone weighted threshold circuits (i.e. multi-layer neural networks
with linear threshold units and positive weights)

Theorem [4]
A monotone weighted threshold circuit of depth k − 1 computing a
function fk has size at least 2cN for some constant c > 0 and
N > N0.

8 / 132

Images/cinvestav.jpg

Meaning

This theorem does not fail any type of architecture
But the question arises, Are the depth 1, 2 and 3 architectures (many
Machine Learning algorithms) too shallow to represent efficiently
more complicated functions?

What happens in Deep Architectures
Bengio et al. argues that they can represent highly-varying functions
[5]

9 / 132

Images/cinvestav.jpg

Meaning

This theorem does not fail any type of architecture
But the question arises, Are the depth 1, 2 and 3 architectures (many
Machine Learning algorithms) too shallow to represent efficiently
more complicated functions?

What happens in Deep Architectures
Bengio et al. argues that they can represent highly-varying functions
[5]

9 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 10 / 132

Images/cinvestav.jpg

Highly-varying functions

Meaning
We say that a function is highly-varying when a piecewise
approximation of that function would require a large number of pieces.

Clearly
Deeper Architectures can handle such functions in a easier way than
shallow ones.

For Example
The polynomial ∏n

i=1
∑m
j=1 aijxj can be represented as a product of

sums with only O (nm) elements

11 / 132

Images/cinvestav.jpg

Highly-varying functions

Meaning
We say that a function is highly-varying when a piecewise
approximation of that function would require a large number of pieces.

Clearly
Deeper Architectures can handle such functions in a easier way than
shallow ones.

For Example
The polynomial ∏n

i=1
∑m
j=1 aijxj can be represented as a product of

sums with only O (nm) elements

11 / 132

Images/cinvestav.jpg

Highly-varying functions

Meaning
We say that a function is highly-varying when a piecewise
approximation of that function would require a large number of pieces.

Clearly
Deeper Architectures can handle such functions in a easier way than
shallow ones.

For Example
The polynomial ∏n

i=1
∑m
j=1 aijxj can be represented as a product of

sums with only O (nm) elements

11 / 132

Images/cinvestav.jpg

Basically

We have a Perceptron Layer and a Product Second Layer

What if I do a product of sums
What will happen?

12 / 132

Images/cinvestav.jpg

Basically

We have a Perceptron Layer and a Product Second Layer

What if I do a product of sums
What will happen?

12 / 132

Images/cinvestav.jpg

Ok, we have a problem

Because for our case

3∏
i=1

6∑
j=1

aijxj =
6∑
j=1

3∏
i=1

aijxj

We have the following problem O (nm)

13 / 132

Images/cinvestav.jpg

Ok, we have a problem
Because for our case

3∏
i=1

6∑
j=1

aijxj =
6∑
j=1

3∏
i=1

aijxj

We have the following problem O (nm)

13 / 132

Images/cinvestav.jpg

Actually

You could claim
Machine Learning shallow learning depends on complex
computational units to handle complex functions

Deep Learning
Proposes simpler units but deeper structures to handle complex
functions

What about both ideas together
Complex adaptive units
Deeper architectures to helps such units

I It seems to be the case of the human brain...!!!

14 / 132

Images/cinvestav.jpg

Actually

You could claim
Machine Learning shallow learning depends on complex
computational units to handle complex functions

Deep Learning
Proposes simpler units but deeper structures to handle complex
functions

What about both ideas together
Complex adaptive units
Deeper architectures to helps such units

I It seems to be the case of the human brain...!!!

14 / 132

Images/cinvestav.jpg

Actually

You could claim
Machine Learning shallow learning depends on complex
computational units to handle complex functions

Deep Learning
Proposes simpler units but deeper structures to handle complex
functions

What about both ideas together
Complex adaptive units
Deeper architectures to helps such units

I It seems to be the case of the human brain...!!!

14 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 15 / 132

Images/cinvestav.jpg

Local vs Non-Local Generalization

Something Notable
A local estimator partitions the input space in regions

Thus, local estimators are based on matching local templates
It can be thought of as having two levels...

The first level
It is made of a set of templates which can be matched to the input.

16 / 132

Images/cinvestav.jpg

Local vs Non-Local Generalization

Something Notable
A local estimator partitions the input space in regions

Thus, local estimators are based on matching local templates
It can be thought of as having two levels...

The first level
It is made of a set of templates which can be matched to the input.

16 / 132

Images/cinvestav.jpg

Local vs Non-Local Generalization

Something Notable
A local estimator partitions the input space in regions

Thus, local estimators are based on matching local templates
It can be thought of as having two levels...

The first level
It is made of a set of templates which can be matched to the input.

16 / 132

Images/cinvestav.jpg

Then

A template unit will output a value that indicates the degree of
matching

K (x|Θ)

The second level combines these values
Typically a simple linear combination or product combination

L (x) =
k∑
i=1

K (x|Θi)

Classic Example, the kernel machine

f (x) = b+
k∑
i=1

αiK (x, xi)

17 / 132

Images/cinvestav.jpg

Then

A template unit will output a value that indicates the degree of
matching

K (x|Θ)

The second level combines these values
Typically a simple linear combination or product combination

L (x) =
k∑
i=1

K (x|Θi)

Classic Example, the kernel machine

f (x) = b+
k∑
i=1

αiK (x, xi)

17 / 132

Images/cinvestav.jpg

Then

A template unit will output a value that indicates the degree of
matching

K (x|Θ)

The second level combines these values
Typically a simple linear combination or product combination

L (x) =
k∑
i=1

K (x|Θi)

Classic Example, the kernel machine

f (x) = b+
k∑
i=1

αiK (x, xi)

17 / 132

Images/cinvestav.jpg

As you can see

The Kernel has a local influence based on the support vectors
For example the Gaussian Kernel

K (x, xi) = exp
{
−‖x− xi‖

2

σ2

}

The Problem of Kernel
The assumption that the target function is smooth or can be well
approximated with a smooth function.

The limitations of a fixed generic kernel such as the Gaussian kernel
They have motivated a lot of research in designing kernels [6, 7]

18 / 132

Images/cinvestav.jpg

As you can see

The Kernel has a local influence based on the support vectors
For example the Gaussian Kernel

K (x, xi) = exp
{
−‖x− xi‖

2

σ2

}

The Problem of Kernel
The assumption that the target function is smooth or can be well
approximated with a smooth function.

The limitations of a fixed generic kernel such as the Gaussian kernel
They have motivated a lot of research in designing kernels [6, 7]

18 / 132

Images/cinvestav.jpg

As you can see

The Kernel has a local influence based on the support vectors
For example the Gaussian Kernel

K (x, xi) = exp
{
−‖x− xi‖

2

σ2

}

The Problem of Kernel
The assumption that the target function is smooth or can be well
approximated with a smooth function.

The limitations of a fixed generic kernel such as the Gaussian kernel
They have motivated a lot of research in designing kernels [6, 7]

18 / 132

Images/cinvestav.jpg

For Example, in supervised learning

If we have the training example (xi, yi)
We want to build predictor that output something near yi when any
other sample is near xi

Basically the situation when regularizing
Bengio and Le Cun claim this is not enough [8, 9]

Although, It is possible to argue
That such highly varying space is due to a lack of the correct feature
selection process.

19 / 132

Images/cinvestav.jpg

For Example, in supervised learning

If we have the training example (xi, yi)
We want to build predictor that output something near yi when any
other sample is near xi

Basically the situation when regularizing
Bengio and Le Cun claim this is not enough [8, 9]

Although, It is possible to argue
That such highly varying space is due to a lack of the correct feature
selection process.

19 / 132

Images/cinvestav.jpg

For Example, in supervised learning

If we have the training example (xi, yi)
We want to build predictor that output something near yi when any
other sample is near xi

Basically the situation when regularizing
Bengio and Le Cun claim this is not enough [8, 9]

Although, It is possible to argue
That such highly varying space is due to a lack of the correct feature
selection process.

19 / 132

Images/cinvestav.jpg

However

If you look at the parity problem

parity : (b1, ..., bd) ∈ {0, 1}d 7→
{

1 if ∑d
i=1 bi

−1 otherwise
is even

Theorem
Let f (x) = b+

∑2d
i=1 αiK (xi,x) be an affine combination of

Gaussian with the same width σ centered on points xi ∈ {−1, 1}d . If
f solve the parity problem, then there are at least 2d−1 non-zero
support vectors.

20 / 132

Images/cinvestav.jpg

However

If you look at the parity problem

parity : (b1, ..., bd) ∈ {0, 1}d 7→
{

1 if ∑d
i=1 bi

−1 otherwise
is even

Theorem
Let f (x) = b+

∑2d
i=1 αiK (xi,x) be an affine combination of

Gaussian with the same width σ centered on points xi ∈ {−1, 1}d . If
f solve the parity problem, then there are at least 2d−1 non-zero
support vectors.

20 / 132

Images/cinvestav.jpg

However

Although, this function is not a representative
The kind of functions we are more interested in AI.

It suggest that local based estimators
They are not enough, but still not a conclusive result

After all
More Memory could be added to those systems

21 / 132

Images/cinvestav.jpg

However

Although, this function is not a representative
The kind of functions we are more interested in AI.

It suggest that local based estimators
They are not enough, but still not a conclusive result

After all
More Memory could be added to those systems

21 / 132

Images/cinvestav.jpg

However

Although, this function is not a representative
The kind of functions we are more interested in AI.

It suggest that local based estimators
They are not enough, but still not a conclusive result

After all
More Memory could be added to those systems

21 / 132

Images/cinvestav.jpg

For example

Tensors have been used to add memory to SVM

min
U

(m)
i ,K(m),β,b

γ
N∑
i=1

∥∥∥Xi − r
K(1)U

(1)
i , · · · ,K(M)U

(M)
i

z∥∥∥2

F
+ · · ·

λβT K̂β +
N∑
i=1

[
1− yi

(
k̂
T

i β + b

)]
+

K(m) are kernel matrices defined on each mode to capture the
nonlinear part.
U (m) =

[
u

(m)
1 , . . . ,u

(m)
R

]
are factor matrices of size Im ×Rm

22 / 132

Images/cinvestav.jpg

However

A Problem
You are limiting the Machine Learning operations to matrix additions
and products and non-linear operations.

I In a shallow way...

We need to add more complex functions
After all deeper architectures construct complex functions layer by
layer

23 / 132

Images/cinvestav.jpg

However

A Problem
You are limiting the Machine Learning operations to matrix additions
and products and non-linear operations.

I In a shallow way...

We need to add more complex functions
After all deeper architectures construct complex functions layer by
layer

23 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 24 / 132

Images/cinvestav.jpg

By Using Weights in Certain Deep Learners

The Application of each Layer increase the complexity of the features

25 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 26 / 132

Images/cinvestav.jpg

Some of the Models to be Reviewed of Models

Convolutional Neural Networks
The classic model that started the phenomena of Neural Networks.

Auto Encoder
How to generate novel features by funneling.

Boltzmann Machine
Energy Based Models.

27 / 132

Images/cinvestav.jpg

Some of the Models to be Reviewed of Models

Convolutional Neural Networks
The classic model that started the phenomena of Neural Networks.

Auto Encoder
How to generate novel features by funneling.

Boltzmann Machine
Energy Based Models.

27 / 132

Images/cinvestav.jpg

Some of the Models to be Reviewed of Models

Convolutional Neural Networks
The classic model that started the phenomena of Neural Networks.

Auto Encoder
How to generate novel features by funneling.

Boltzmann Machine
Energy Based Models.

27 / 132

Images/cinvestav.jpg

However

We will see that there are many possible architectures
And more with the different layers
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] :

Components

Convolutional Layer Pooling Layer Activation Function Loss FunctionRegularization Layers

Transposed Convolution

Classic Convolutional Average

Max

Learned-Norm (LP)

Spatial Pyramid

Strided Convolution

ReLU

LReLU

PReLU

RReLU

ELU

Maxout

Batch Normalization

Dropout

Drop Connect

Residual Layer

Dilated Convolution

Separable Convolution

Hinge

Softmax

Contrastive

Triplet

KL Divergence

28 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 29 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 30 / 132

Images/cinvestav.jpg

Digital Images as pixels in a digitized matrix

31 / 132

Images/cinvestav.jpg

Further

Pixel values typically represent
Gray levels, colours, heights, opacities etc

Something Notable
Remember digitization implies that a digital image is an
approximation of a real scene

32 / 132

Images/cinvestav.jpg

Further

Pixel values typically represent
Gray levels, colours, heights, opacities etc

Something Notable
Remember digitization implies that a digital image is an
approximation of a real scene

32 / 132

Images/cinvestav.jpg

Therefore, we have the following process

Low Level Process
Input Processes Output

Noise
Image Removal Improved

Image Image
Sharpening

Example, Edge Detection

33 / 132

Images/cinvestav.jpg

Therefore, we have the following process

Low Level Process
Input Processes Output

Noise
Image Removal Improved

Image Image
Sharpening

Example, Edge Detection

33 / 132

Images/cinvestav.jpg

Then

Mid Level Process
Input Processes Output

Object
Image Recognition Attributes

Segmentation

Object Recognition

34 / 132

Images/cinvestav.jpg

Then
Mid Level Process

Input Processes Output

Object
Image Recognition Attributes

Segmentation

Object Recognition

34 / 132

Images/cinvestav.jpg

Therefore

It would be nice to automatize all these processes
We would solve a lot of headaches when setting up such process

Why not to use the data sets
By using a Neural Networks that replicates the process.

35 / 132

Images/cinvestav.jpg

Therefore

It would be nice to automatize all these processes
We would solve a lot of headaches when setting up such process

Why not to use the data sets
By using a Neural Networks that replicates the process.

35 / 132

Images/cinvestav.jpg

Convolutional Neural Networks History

Work by Hubel and Wiesel in the 1950s and 1960s
They showed that cat and monkey visual cortexes contain neurons
that individually respond to small regions of the visual field.

After all more studies about the visual cortex happened
David H. Hubel and Torsten N. Wiesel (2005). Brain and visual
perception: the story of a 25-year collaboration. Oxford University
Press US. p. 106.

36 / 132

Images/cinvestav.jpg

Convolutional Neural Networks History

Work by Hubel and Wiesel in the 1950s and 1960s
They showed that cat and monkey visual cortexes contain neurons
that individually respond to small regions of the visual field.

After all more studies about the visual cortex happened
David H. Hubel and Torsten N. Wiesel (2005). Brain and visual
perception: the story of a 25-year collaboration. Oxford University
Press US. p. 106.

36 / 132

Images/cinvestav.jpg

Neurocognitron (Circa 1980)

Kunihiko Fukushima [21]
Proposed a Hierarchical Network for image recognition with a
convolution!!!

But it used a function ϕ

ϕ

1 +
∑Kt−1
kt−1=1

∑
v∈Sl al (kt−1, v, kl)ucl−1 (kl=1, n+ v)

1 + 2rl
1+rl bl (kl) vCl−1 (n)

− 1


With a Relu function

ϕ (x) =
{
x x ≥ 0
0 x < 0

37 / 132

Images/cinvestav.jpg

Neurocognitron (Circa 1980)

Kunihiko Fukushima [21]
Proposed a Hierarchical Network for image recognition with a
convolution!!!

But it used a function ϕ

ϕ

1 +
∑Kt−1
kt−1=1

∑
v∈Sl al (kt−1, v, kl)ucl−1 (kl=1, n+ v)

1 + 2rl
1+rl bl (kl) vCl−1 (n)

− 1


With a Relu function

ϕ (x) =
{
x x ≥ 0
0 x < 0

37 / 132

Images/cinvestav.jpg

Neurocognitron (Circa 1980)

Kunihiko Fukushima [21]
Proposed a Hierarchical Network for image recognition with a
convolution!!!

But it used a function ϕ

ϕ

1 +
∑Kt−1
kt−1=1

∑
v∈Sl al (kt−1, v, kl)ucl−1 (kl=1, n+ v)

1 + 2rl
1+rl bl (kl) vCl−1 (n)

− 1


With a Relu function

ϕ (x) =
{
x x ≥ 0
0 x < 0

37 / 132

Images/cinvestav.jpg

Furthermore (Circa 1993)

Weng et al. [22, 23]
Proposed the use of Maxpooling to recognize 3D objects in 2D images

Yan LeCunn finally proposed the use of backpropagation [24]
The Beginning of the Dream!!!

38 / 132

Images/cinvestav.jpg

Furthermore (Circa 1993)

Weng et al. [22, 23]
Proposed the use of Maxpooling to recognize 3D objects in 2D images

Yan LeCunn finally proposed the use of backpropagation [24]
The Beginning of the Dream!!!

38 / 132

Images/cinvestav.jpg

Convolutional Neural Networks

Basically they are deep learners based in convolutions or its variants

(f ∗ g) (i, j) =
−n∑
k=n

n∑
l=−n

f (k, l)× g (i− k, j − l) (1)

Basically Filters

39 / 132

Images/cinvestav.jpg

Convolutional Neural Networks
Basically they are deep learners based in convolutions or its variants

(f ∗ g) (i, j) =
−n∑
k=n

n∑
l=−n

f (k, l)× g (i− k, j − l) (1)

Basically Filters
Feature Maps

39 / 132

Images/cinvestav.jpg

Example of CNN

A Basic Convolutional Network

Convolution Convolution

Max-Pool
Dense

3@128x128
8@64x64

24@48x48
24@16x16

1x256

1x128

40 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 41 / 132

Images/cinvestav.jpg

We know that

Many of the existing machine learning algorithms
They depend on the quality of the input characteristics to generate a
good model.

Not only that
The amount of these variables is also important, given that
performance tends to decline as the input dimensionality increases.

42 / 132

Images/cinvestav.jpg

We know that

Many of the existing machine learning algorithms
They depend on the quality of the input characteristics to generate a
good model.

Not only that
The amount of these variables is also important, given that
performance tends to decline as the input dimensionality increases.

42 / 132

Images/cinvestav.jpg

We have several techniques for that

Principal Component Analysis

L (u1) = uT1 Su1 + λ1
(
1− uT1 u1

)
Linear Locally Embeddings

Φ (Y) =
∑
i

∣∣∣∣∣∣Yi −
∑
j

WijYj

∣∣∣∣∣∣
2

And recently
Uniform Manifold Approximation and Projection for Dimension
Reduction [25]

43 / 132

Images/cinvestav.jpg

We have several techniques for that

Principal Component Analysis

L (u1) = uT1 Su1 + λ1
(
1− uT1 u1

)
Linear Locally Embeddings

Φ (Y) =
∑
i

∣∣∣∣∣∣Yi −
∑
j

WijYj

∣∣∣∣∣∣
2

And recently
Uniform Manifold Approximation and Projection for Dimension
Reduction [25]

43 / 132

Images/cinvestav.jpg

We have several techniques for that

Principal Component Analysis

L (u1) = uT1 Su1 + λ1
(
1− uT1 u1

)
Linear Locally Embeddings

Φ (Y) =
∑
i

∣∣∣∣∣∣Yi −
∑
j

WijYj

∣∣∣∣∣∣
2

And recently
Uniform Manifold Approximation and Projection for Dimension
Reduction [25]

43 / 132

Images/cinvestav.jpg

Therefore

We have the need to codify the original feature into better ones
This can be done by a series of mappings that act as funnels, How?

Basically, we have a series of mappings

x ∈ Rn1 → f1 (x) ∈ Rn2 → f2 (x1) ∈ Rn3 · · · −→ fm (xm−1) ∈ Rnm+1

Where

n1 < n2 < · · · < nm < nm+1

44 / 132

Images/cinvestav.jpg

Therefore

We have the need to codify the original feature into better ones
This can be done by a series of mappings that act as funnels, How?

Basically, we have a series of mappings

x ∈ Rn1 → f1 (x) ∈ Rn2 → f2 (x1) ∈ Rn3 · · · −→ fm (xm−1) ∈ Rnm+1

Where

n1 < n2 < · · · < nm < nm+1

44 / 132

Images/cinvestav.jpg

Therefore

We have the need to codify the original feature into better ones
This can be done by a series of mappings that act as funnels, How?

Basically, we have a series of mappings

x ∈ Rn1 → f1 (x) ∈ Rn2 → f2 (x1) ∈ Rn3 · · · −→ fm (xm−1) ∈ Rnm+1

Where

n1 < n2 < · · · < nm < nm+1

44 / 132

Images/cinvestav.jpg

Then, we can use linear mappings for this

With the following matrix functions

σ
[
fAi+1 (xi)

]
= σ (Ai+1x)

Therefore
Therefore, we have the following architecture.

45 / 132

Images/cinvestav.jpg

Then, we can use linear mappings for this

With the following matrix functions

σ
[
fAi+1 (xi)

]
= σ (Ai+1x)

Therefore
Therefore, we have the following architecture.

45 / 132

Images/cinvestav.jpg

The Basic Auto Encoder Architecture

We have

46 / 132

Images/cinvestav.jpg

Taxonomy

Most popular Auto Encoders
Autoencoder taxonomy

Lower dimensionality Regularization Noise Tolerance Generative model

Basic

Convolutional

LSTM

Sparse

Contractive

Denoising

Robust

Varaiational

Adversarial

47 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 48 / 132

Images/cinvestav.jpg

The Basic Energy Models

We have that the Boltzmann Machines
A Boltzmann machine is a network of units that are connected to
each other

Here, we have N be the number of units
Each unit takes a binary value in {0, 1}

I Represented by a random variable Xi, i = 1, ..., N .

Additionally, it has parameters
Bias bi
Weight wij between unit i and unit j, (i, j) ∈ [1, N − 1]× [i+ 1, N]

49 / 132

Images/cinvestav.jpg

The Basic Energy Models

We have that the Boltzmann Machines
A Boltzmann machine is a network of units that are connected to
each other

Here, we have N be the number of units
Each unit takes a binary value in {0, 1}

I Represented by a random variable Xi, i = 1, ..., N .

Additionally, it has parameters
Bias bi
Weight wij between unit i and unit j, (i, j) ∈ [1, N − 1]× [i+ 1, N]

49 / 132

Images/cinvestav.jpg

The Basic Energy Models

We have that the Boltzmann Machines
A Boltzmann machine is a network of units that are connected to
each other

Here, we have N be the number of units
Each unit takes a binary value in {0, 1}

I Represented by a random variable Xi, i = 1, ..., N .

Additionally, it has parameters
Bias bi
Weight wij between unit i and unit j, (i, j) ∈ [1, N − 1]× [i+ 1, N]

49 / 132

Images/cinvestav.jpg

The Energy Based Structure

The energy of the Boltzmann machine is defined by

EW,b [x] = −
N∑
i=1

bixi −
N−1∑
i=1

N∑
j=i+1

wijxixj = −bTx− xTWx

This allows to define a probability distribution

PW,b (x) = exp (−EW,b [x])∑
x̃ exp (−EW,b [x̃])

50 / 132

Images/cinvestav.jpg

The Energy Based Structure

The energy of the Boltzmann machine is defined by

EW,b [x] = −
N∑
i=1

bixi −
N−1∑
i=1

N∑
j=i+1

wijxixj = −bTx− xTWx

This allows to define a probability distribution

PW,b (x) = exp (−EW,b [x])∑
x̃ exp (−EW,b [x̃])

50 / 132

Images/cinvestav.jpg

Example

Restricted Boltzmann Machines where the conectivity is layer by layer

51 / 132

Images/cinvestav.jpg

Thus, using it as a basic model

We can stack them into a multiple layer model

52 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 53 / 132

Images/cinvestav.jpg

Generative Adversarial Networks

They can be seen as an Accept-Reject MCMC Model
However, they do not require Markov Chains with the classic problem:

I The independence between the samples to generate ergodic
probabilities (The real one)

As in the Accept-Reject
The generator network tries to produce realistic-looking samples
The discriminator network tries to figure out whether an image
came from the training set or the generator network

54 / 132

Images/cinvestav.jpg

Generative Adversarial Networks

They can be seen as an Accept-Reject MCMC Model
However, they do not require Markov Chains with the classic problem:

I The independence between the samples to generate ergodic
probabilities (The real one)

As in the Accept-Reject
The generator network tries to produce realistic-looking samples
The discriminator network tries to figure out whether an image
came from the training set or the generator network

54 / 132

Images/cinvestav.jpg

Graphically

We have the following Basic Model

55 / 132

Images/cinvestav.jpg

Here

There is a need to join both functions
So, we can use the idea of Backpropagation to obtain the desired
minimization.

How can we do this?
We can define a sensible learning criterion when the dataset is not
linearly separable

For this, we can use the logistic cross-entropy loss (We will explain
more about this later)

LLCE (z, t) = LCE (σ (z) , t) = t log
(
1 + e−z

)
+ (1− t) log (1 + ez)

56 / 132

Images/cinvestav.jpg

Here

There is a need to join both functions
So, we can use the idea of Backpropagation to obtain the desired
minimization.

How can we do this?
We can define a sensible learning criterion when the dataset is not
linearly separable

For this, we can use the logistic cross-entropy loss (We will explain
more about this later)

LLCE (z, t) = LCE (σ (z) , t) = t log
(
1 + e−z

)
+ (1− t) log (1 + ez)

56 / 132

Images/cinvestav.jpg

Here

There is a need to join both functions
So, we can use the idea of Backpropagation to obtain the desired
minimization.

How can we do this?
We can define a sensible learning criterion when the dataset is not
linearly separable

For this, we can use the logistic cross-entropy loss (We will explain
more about this later)

LLCE (z, t) = LCE (σ (z) , t) = t log
(
1 + e−z

)
+ (1− t) log (1 + ez)

56 / 132

Images/cinvestav.jpg

Therefore, we have

The following architecture use this idea

57 / 132

Images/cinvestav.jpg

In this basic Generator

D denote the discriminator’s predicted probability of being data

JD = Ex∼D [− logD (x)] + Ez [− log (1−D (G (z)))]

One possible cost function for the generator

JG = −JD = const+ Ez [log (1−D (G (z)))]

58 / 132

Images/cinvestav.jpg

In this basic Generator

D denote the discriminator’s predicted probability of being data

JD = Ex∼D [− logD (x)] + Ez [− log (1−D (G (z)))]

One possible cost function for the generator

JG = −JD = const+ Ez [log (1−D (G (z)))]

58 / 132

Images/cinvestav.jpg

Then using both functions

The minimax formulation
Since the generator and discriminator are playing a zero-sum game
against each other.

Basically

max
G

min
D
JD

There are other examples using the LSE [26]

JG = 1
N

N∑
i=1

[G (z)− x]2

59 / 132

Images/cinvestav.jpg

Then using both functions

The minimax formulation
Since the generator and discriminator are playing a zero-sum game
against each other.

Basically

max
G

min
D
JD

There are other examples using the LSE [26]

JG = 1
N

N∑
i=1

[G (z)− x]2

59 / 132

Images/cinvestav.jpg

Then using both functions

The minimax formulation
Since the generator and discriminator are playing a zero-sum game
against each other.

Basically

max
G

min
D
JD

There are other examples using the LSE [26]

JG = 1
N

N∑
i=1

[G (z)− x]2

59 / 132

Images/cinvestav.jpg

Therefore, we have two updates

First update the Discriminator

Forward

Backpropagation

60 / 132

Images/cinvestav.jpg

Now

Update the Generator

Forward

Backpropagation

Backprop Derivatives Through the Discriminator, but do not
change variables on it... only in the generator

61 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 62 / 132

Images/cinvestav.jpg

There Are Many More!!! Here a few more...

Markov Chain Hopfield Network Restricted BMBoltzmann Machine

Deep Belief Network Convolutional Network

63 / 132

Images/cinvestav.jpg

Furthermore

Deconvolutional Network
Autoencoder

Generative Adversarial Network Deep Residual Network

64 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 65 / 132

Images/cinvestav.jpg

As We know

In Recurrent Neural Networks, we have the problem
Vanishing and Exploding Gradients

In the Deeper Architectures as encoder-decoder we have such
phenomena

66 / 132

Images/cinvestav.jpg

As We know

In Recurrent Neural Networks, we have the problem
Vanishing and Exploding Gradients

In the Deeper Architectures as encoder-decoder we have such
phenomena

66 / 132

Images/cinvestav.jpg

Consider a simple encoder encoder network

We have this simplified version

We have the following structure

ht = wtxt + zt−1

zt = stht

67 / 132

Images/cinvestav.jpg

Consider a simple encoder encoder network

We have this simplified version

We have the following structure

ht = wtxt + zt−1

zt = stht

67 / 132

Images/cinvestav.jpg

Backpropagation Rules

Then, we get the following backpropagation rules

∂ht
∂wi

= ∂ht
∂ht−1

× ∂ht−1
∂ht−2

× ...× ∂hi
∂wi

∂ht
∂si

= ∂ht
∂ht−1

× ∂ht−1
∂ht−2

× ...× ∂hi+1
∂si

68 / 132

Images/cinvestav.jpg

Then, we have

By Using Our simplifying assumption that
∂ht
∂ht−1

= ∂ (wtxt + st−1ht−1)
∂ht−1

= st−1

And for ∂hi
∂wi

∂hi
∂wi

= xt

Finally, we have that

∂ht
∂wi

= xt

 i−1∏
k=t−1

sk



69 / 132

Images/cinvestav.jpg

Then, we have

By Using Our simplifying assumption that
∂ht
∂ht−1

= ∂ (wtxt + st−1ht−1)
∂ht−1

= st−1

And for ∂hi
∂wi

∂hi
∂wi

= xt

Finally, we have that

∂ht
∂wi

= xt

 i−1∏
k=t−1

sk



69 / 132

Images/cinvestav.jpg

Then, we have

By Using Our simplifying assumption that
∂ht
∂ht−1

= ∂ (wtxt + st−1ht−1)
∂ht−1

= st−1

And for ∂hi
∂wi

∂hi
∂wi

= xt

Finally, we have that

∂ht
∂wi

= xt

 i−1∏
k=t−1

sk



69 / 132

Images/cinvestav.jpg

It is clear that

Unless the sk’s are near to 1
You have the vanishing gradient if sk ∈ [0, 1) for all k.
You have the exploding gradient if sk ∈ (1,+∞] for all k.

Even with activation functions
These terms tend to appear in the Deep Learners when
Backpropagation is done

In the case of Forward
We have many activation function that squash the signal...

70 / 132

Images/cinvestav.jpg

It is clear that

Unless the sk’s are near to 1
You have the vanishing gradient if sk ∈ [0, 1) for all k.
You have the exploding gradient if sk ∈ (1,+∞] for all k.

Even with activation functions
These terms tend to appear in the Deep Learners when
Backpropagation is done

In the case of Forward
We have many activation function that squash the signal...

70 / 132

Images/cinvestav.jpg

It is clear that

Unless the sk’s are near to 1
You have the vanishing gradient if sk ∈ [0, 1) for all k.
You have the exploding gradient if sk ∈ (1,+∞] for all k.

Even with activation functions
These terms tend to appear in the Deep Learners when
Backpropagation is done

In the case of Forward
We have many activation function that squash the signal...

70 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 71 / 132

Images/cinvestav.jpg

Instead of doing this

Let us to do the following

f (x) = 3.5x (1− x)

In the first composition, we get

72 / 132

Images/cinvestav.jpg

Instead of doing this
Let us to do the following

f (x) = 3.5x (1− x)

In the first composition, we get

72 / 132

Images/cinvestav.jpg

Now, as we compound the function

Second one, y = f ◦ f (x)

73 / 132

Images/cinvestav.jpg

Now, as we increment iterations

Third one, y = f ◦ f ◦ f (x)

74 / 132

Images/cinvestav.jpg

Finally

We see the increment in the gradient part negative or positive

Vanishing Gradient

Exploiding Gradient

75 / 132

Images/cinvestav.jpg

Actually, we have
A Frontier defining the Vanishing and Exploding Gradient [27]

0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

0.25

ORDERED

VANISHING
GRADIENT CHAOTIC

EXPLODING
GRADIENT

76 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 77 / 132

Images/cinvestav.jpg

Actually

Eventually, the iterates go to infinity or zero OR
They wind up at a fixed point...

A Fixed Point?

x = f (x)

78 / 132

Images/cinvestav.jpg

Actually

Eventually, the iterates go to infinity or zero OR
They wind up at a fixed point...

A Fixed Point?

x = f (x)

78 / 132

Images/cinvestav.jpg

Basically

The fixed points can be thought
Some fixed points repel the iterates; these are called sources.
Other fixed points attract the iterates; these are called sinks.

Basically f ′ (x) < 1 are sinks and f ′ (x) > 1 are sources

79 / 132

Images/cinvestav.jpg

Basically

The fixed points can be thought
Some fixed points repel the iterates; these are called sources.
Other fixed points attract the iterates; these are called sinks.

Basically f ′ (x) < 1 are sinks and f ′ (x) > 1 are sources

SINK
SOURCE

79 / 132

Images/cinvestav.jpg

Areas of attraction

Basically, we have that there are areas the pull in the iterations of the
function

80 / 132

Images/cinvestav.jpg

These fixed points

In Deep Structures as RNN without sigmoid functions

ht = Wsdxt + Ussht−1

yt = Vosht

We have

xt = Vos [Wsdxt + Ussht−1]

Therefore if b = VosUssht−1

Then, we have that

xt = VosWsdxt + VosUssht−1 = Ixt + 0

81 / 132

Images/cinvestav.jpg

These fixed points

In Deep Structures as RNN without sigmoid functions

ht = Wsdxt + Ussht−1

yt = Vosht

We have

xt = Vos [Wsdxt + Ussht−1]

Therefore if b = VosUssht−1

Then, we have that

xt = VosWsdxt + VosUssht−1 = Ixt + 0

81 / 132

Images/cinvestav.jpg

These fixed points

In Deep Structures as RNN without sigmoid functions

ht = Wsdxt + Ussht−1

yt = Vosht

We have

xt = Vos [Wsdxt + Ussht−1]

Therefore if b = VosUssht−1

Then, we have that

xt = VosWsdxt + VosUssht−1 = Ixt + 0

81 / 132

Images/cinvestav.jpg

Therefore

We have that

VosWsd ≈ I and ht−1 ≈ 0

82 / 132

Images/cinvestav.jpg

They define an area

Where Vos and Wsd

They are the inverse of each other

And the hidden state is almost zero
Basically they fixed point converts a RNN without activation
functions in a linear model

83 / 132

Images/cinvestav.jpg

They define an area

Where Vos and Wsd

They are the inverse of each other

And the hidden state is almost zero
Basically they fixed point converts a RNN without activation
functions in a linear model

83 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 84 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 85 / 132

Images/cinvestav.jpg

Gradient Clipping

We prevent gradient from blowing up by rescaling to a certain value

‖∇θL‖ > η =⇒ ∇θL = η∇θL
‖∇θL‖

We have a series of nice analysis [28]

min
x∈Rd

f (x)

Furthermore, we define a space

S = {x|∃y such that f (y) ≤ f (xo) , and ‖x− y‖ ≤ 1}

86 / 132

Images/cinvestav.jpg

Gradient Clipping

We prevent gradient from blowing up by rescaling to a certain value

‖∇θL‖ > η =⇒ ∇θL = η∇θL
‖∇θL‖

We have a series of nice analysis [28]

min
x∈Rd

f (x)

Furthermore, we define a space

S = {x|∃y such that f (y) ≤ f (xo) , and ‖x− y‖ ≤ 1}

86 / 132

Images/cinvestav.jpg

Gradient Clipping

We prevent gradient from blowing up by rescaling to a certain value

‖∇θL‖ > η =⇒ ∇θL = η∇θL
‖∇θL‖

We have a series of nice analysis [28]

min
x∈Rd

f (x)

Furthermore, we define a space

S = {x|∃y such that f (y) ≤ f (xo) , and ‖x− y‖ ≤ 1}

86 / 132

Images/cinvestav.jpg

We have then for S

In R2 the following example

87 / 132

Images/cinvestav.jpg

Assumptions

Assumption 1
Function f is lower bounded by f∗

Assumption 2
Function f is twice differentiable

88 / 132

Images/cinvestav.jpg

Assumptions

Assumption 1
Function f is lower bounded by f∗

Assumption 2
Function f is twice differentiable

88 / 132

Images/cinvestav.jpg

Then, there are the following proposals

The ordinary gradient descent

xk+1 = xk − η∇f (xk)

The Clipped Gradient Descent (CGD)

xk+1 = xk − hc∇f (xk) , where hc = min
{
ηc,

γηc
‖∇f (x)‖

}

Normalized Gradient Descent (NGD)

xk+1 = xk − hn∇f (xk) , where hn = ηc
‖∇f (x)‖+ β

89 / 132

Images/cinvestav.jpg

Then, there are the following proposals

The ordinary gradient descent

xk+1 = xk − η∇f (xk)

The Clipped Gradient Descent (CGD)

xk+1 = xk − hc∇f (xk) , where hc = min
{
ηc,

γηc
‖∇f (x)‖

}

Normalized Gradient Descent (NGD)

xk+1 = xk − hn∇f (xk) , where hn = ηc
‖∇f (x)‖+ β

89 / 132

Images/cinvestav.jpg

Then, there are the following proposals

The ordinary gradient descent

xk+1 = xk − η∇f (xk)

The Clipped Gradient Descent (CGD)

xk+1 = xk − hc∇f (xk) , where hc = min
{
ηc,

γηc
‖∇f (x)‖

}

Normalized Gradient Descent (NGD)

xk+1 = xk − hn∇f (xk) , where hn = ηc
‖∇f (x)‖+ β

89 / 132

Images/cinvestav.jpg

Remark

Clipped GD and NGD are almost equivalent
If we set γηc = ηn and ηc = ηn

β then

1
2hc ≤ hn ≤ 2hc

90 / 132

Images/cinvestav.jpg

A Natural Question

Definition
The objective f is called L-smooth if
‖∇f (x)−∇f (y)‖ ≤ L ‖x− y‖ for all x, y ∈ Rd

This is equivalent under a twice differentiable f∥∥∥∇2f (x)
∥∥∥ ≤ L

Then, you get the following upper-bound

f (y) ≈ f (x) +∇T f (x) (y − x) + 1
2 (y − x)T ∇2f (x) (y − x)

91 / 132

Images/cinvestav.jpg

A Natural Question

Definition
The objective f is called L-smooth if
‖∇f (x)−∇f (y)‖ ≤ L ‖x− y‖ for all x, y ∈ Rd

This is equivalent under a twice differentiable f∥∥∥∇2f (x)
∥∥∥ ≤ L

Then, you get the following upper-bound

f (y) ≈ f (x) +∇T f (x) (y − x) + 1
2 (y − x)T ∇2f (x) (y − x)

91 / 132

Images/cinvestav.jpg

A Natural Question

Definition
The objective f is called L-smooth if
‖∇f (x)−∇f (y)‖ ≤ L ‖x− y‖ for all x, y ∈ Rd

This is equivalent under a twice differentiable f∥∥∥∇2f (x)
∥∥∥ ≤ L

Then, you get the following upper-bound

f (y) ≈ f (x) +∇T f (x) (y − x) + 1
2 (y − x)T ∇2f (x) (y − x)

91 / 132

Images/cinvestav.jpg

Then, it is possible to use the 3 Assumption

We have that

f (y) ≤ f (x) +∇T f (x) (y − x) + 1
2L ‖y − x‖

2

Then fixing all the other variables and assuming y = x− h∇f (x)

h∗ = arg min
h

[
f (x)− h ‖∇f (x)‖2 + 1

2Lh
2 ‖∇f (x)‖2

]
= 1
L

Basically
This choice of h leads to GD with a fixed step,

92 / 132

Images/cinvestav.jpg

Then, it is possible to use the 3 Assumption

We have that

f (y) ≤ f (x) +∇T f (x) (y − x) + 1
2L ‖y − x‖

2

Then fixing all the other variables and assuming y = x− h∇f (x)

h∗ = arg min
h

[
f (x)− h ‖∇f (x)‖2 + 1

2Lh
2 ‖∇f (x)‖2

]
= 1
L

Basically
This choice of h leads to GD with a fixed step,

92 / 132

Images/cinvestav.jpg

Then, it is possible to use the 3 Assumption

We have that

f (y) ≤ f (x) +∇T f (x) (y − x) + 1
2L ‖y − x‖

2

Then fixing all the other variables and assuming y = x− h∇f (x)

h∗ = arg min
h

[
f (x)− h ‖∇f (x)‖2 + 1

2Lh
2 ‖∇f (x)‖2

]
= 1
L

Basically
This choice of h leads to GD with a fixed step,

92 / 132

Images/cinvestav.jpg

Now

Question
“Is clipped gradient descent optimized for a different smoothness
condition?”

Inspired in the equation

f (y) ≤ f (x) +∇T f (x) (y − x) + 1
2L ‖y − x‖

2

Assume

h∗ = η

‖∇f (x)‖+ β

93 / 132

Images/cinvestav.jpg

Now

Question
“Is clipped gradient descent optimized for a different smoothness
condition?”

Inspired in the equation

f (y) ≤ f (x) +∇T f (x) (y − x) + 1
2L ‖y − x‖

2

Assume

h∗ = η

‖∇f (x)‖+ β

93 / 132

Images/cinvestav.jpg

Now

Question
“Is clipped gradient descent optimized for a different smoothness
condition?”

Inspired in the equation

f (y) ≤ f (x) +∇T f (x) (y − x) + 1
2L ‖y − x‖

2

Assume

h∗ = η

‖∇f (x)‖+ β

93 / 132

Images/cinvestav.jpg

Then, we have

Assume that such value optimize the equation

f (x)− h ‖∇f (x)‖2 + 1
2Lh

2 ‖∇f (x)‖2

Then, we have

L (x) = ‖∇f (x)‖+ β

η

Assumption 3 by using ‖∇2f (x)‖ ≤ L

(L0, L1)-smoothness. f is (L0, L1)-smooth, if there exist positive L0
and L1 such that

∥∥∇2f (x)
∥∥ ≤ L0 + L1 ‖∇f (x)‖

I ∇2f (x) is the Hessian

94 / 132

Images/cinvestav.jpg

Then, we have

Assume that such value optimize the equation

f (x)− h ‖∇f (x)‖2 + 1
2Lh

2 ‖∇f (x)‖2

Then, we have

L (x) = ‖∇f (x)‖+ β

η

Assumption 3 by using ‖∇2f (x)‖ ≤ L

(L0, L1)-smoothness. f is (L0, L1)-smooth, if there exist positive L0
and L1 such that

∥∥∇2f (x)
∥∥ ≤ L0 + L1 ‖∇f (x)‖

I ∇2f (x) is the Hessian

94 / 132

Images/cinvestav.jpg

Then, we have

Assume that such value optimize the equation

f (x)− h ‖∇f (x)‖2 + 1
2Lh

2 ‖∇f (x)‖2

Then, we have

L (x) = ‖∇f (x)‖+ β

η

Assumption 3 by using ‖∇2f (x)‖ ≤ L

(L0, L1)-smoothness. f is (L0, L1)-smooth, if there exist positive L0
and L1 such that

∥∥∇2f (x)
∥∥ ≤ L0 + L1 ‖∇f (x)‖

I ∇2f (x) is the Hessian

94 / 132

Images/cinvestav.jpg

The final Theorem

Theorem (CGD) [28]
Assume that Assumptions 1, 2, and 3 hold in set S. With parameters

ηc = 1
10Lo

and γ = min
{ 1
ηc
,

1
10Loηc

}
,

I Then Clipped GD terminates in

20L0 (f (x0)− f∗)
ε2

+
20 max

{
1, L2

1
}

(f (x0)− f∗)
L0

iterations

95 / 132

Images/cinvestav.jpg

Remarks

The paper
It points out to a high correlation between the Jacobian and the
Hessian

There are more work to be done
Please read the paper...

96 / 132

Images/cinvestav.jpg

Remarks

The paper
It points out to a high correlation between the Jacobian and the
Hessian

There are more work to be done
Please read the paper...

96 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 97 / 132

Images/cinvestav.jpg

Another way to stabilize the network

Data Normalization
Standardization is the most popular form of preprocessing

I Normally mean subtraction and subsequent scaling by the standard
deviation.

Mean subtraction

µ = 1
N

N∑
i=1
xi then xci = xi − µ

Finally
Standardization refers to altering the data dimensions such that they
are of approximately the same scale.

98 / 132

Images/cinvestav.jpg

Another way to stabilize the network

Data Normalization
Standardization is the most popular form of preprocessing

I Normally mean subtraction and subsequent scaling by the standard
deviation.

Mean subtraction

µ = 1
N

N∑
i=1
xi then xci = xi − µ

Finally
Standardization refers to altering the data dimensions such that they
are of approximately the same scale.

98 / 132

Images/cinvestav.jpg

Another way to stabilize the network

Data Normalization
Standardization is the most popular form of preprocessing

I Normally mean subtraction and subsequent scaling by the standard
deviation.

Mean subtraction

µ = 1
N

N∑
i=1
xi then xci = xi − µ

Finally
Standardization refers to altering the data dimensions such that they
are of approximately the same scale.

98 / 132

Images/cinvestav.jpg

Therefore, we have that

Standardization

σ2 = 1
N

N∑
i=1

(xi − µ)2

xsi = xi − µ
σ

However, there other tricks, Bengio et al [29]

99 / 132

Images/cinvestav.jpg

Therefore, we have that
Standardization

σ2 = 1
N

N∑
i=1

(xi − µ)2

xsi = xi − µ
σ

However, there other tricks, Bengio et al [29]

99 / 132

Images/cinvestav.jpg

Softmax Scaling

Thus
All new features have zero mean and unit variance.

Further
Other linear techniques limit the feature values in the range of [0, 1]
or [−1, 1] by proper scaling.

However
We can non-linear mapping. For example the softmax scaling.

100 / 132

Images/cinvestav.jpg

Softmax Scaling

Thus
All new features have zero mean and unit variance.

Further
Other linear techniques limit the feature values in the range of [0, 1]
or [−1, 1] by proper scaling.

However
We can non-linear mapping. For example the softmax scaling.

100 / 132

Images/cinvestav.jpg

Softmax Scaling

Thus
All new features have zero mean and unit variance.

Further
Other linear techniques limit the feature values in the range of [0, 1]
or [−1, 1] by proper scaling.

However
We can non-linear mapping. For example the softmax scaling.

100 / 132

Images/cinvestav.jpg

Steps of Softmax Scaling

Softmax Scaling
It consists of two steps

First one

yik = xik − xk
σ

(2)

Second one

x̂ik = 1
1 + exp {−yik}

(3)

101 / 132

Images/cinvestav.jpg

Steps of Softmax Scaling

Softmax Scaling
It consists of two steps

First one

yik = xik − xk
σ

(2)

Second one

x̂ik = 1
1 + exp {−yik}

(3)

101 / 132

Images/cinvestav.jpg

Steps of Softmax Scaling

Softmax Scaling
It consists of two steps

First one

yik = xik − xk
σ

(2)

Second one

x̂ik = 1
1 + exp {−yik}

(3)

101 / 132

Images/cinvestav.jpg

Explanation
Notice the red area is almost flat!!!

Thus, we have that
The red region represents values of y inside of the region defined by
the mean and variance (small values of y).
Then, if we have those values x behaves as a linear function.

And values too away from the mean
They are squashed by the exponential part of the function.

102 / 132

Images/cinvestav.jpg

Explanation
Notice the red area is almost flat!!!

Thus, we have that
The red region represents values of y inside of the region defined by
the mean and variance (small values of y).
Then, if we have those values x behaves as a linear function.

And values too away from the mean
They are squashed by the exponential part of the function.

102 / 132

Images/cinvestav.jpg

Explanation
Notice the red area is almost flat!!!

Thus, we have that
The red region represents values of y inside of the region defined by
the mean and variance (small values of y).
Then, if we have those values x behaves as a linear function.

And values too away from the mean
They are squashed by the exponential part of the function.

102 / 132

Images/cinvestav.jpg

Explanation
Notice the red area is almost flat!!!

Thus, we have that
The red region represents values of y inside of the region defined by
the mean and variance (small values of y).
Then, if we have those values x behaves as a linear function.

And values too away from the mean
They are squashed by the exponential part of the function.

102 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 103 / 132

Images/cinvestav.jpg

Here, the people at Google [17] around 2015

They commented in the “Internal Covariate Shift Phenomena”
Due to the change in the distribution of each layer’s input

They claim
The min-batch forces to have those changes which impact on the
learning capabilities of the network.

In Neural Networks, they define this
Internal Covariate Shift as the change in the distribution of network
activations due to the change in network parameters during training.

104 / 132

Images/cinvestav.jpg

Here, the people at Google [17] around 2015

They commented in the “Internal Covariate Shift Phenomena”
Due to the change in the distribution of each layer’s input

They claim
The min-batch forces to have those changes which impact on the
learning capabilities of the network.

In Neural Networks, they define this
Internal Covariate Shift as the change in the distribution of network
activations due to the change in network parameters during training.

104 / 132

Images/cinvestav.jpg

Here, the people at Google [17] around 2015

They commented in the “Internal Covariate Shift Phenomena”
Due to the change in the distribution of each layer’s input

They claim
The min-batch forces to have those changes which impact on the
learning capabilities of the network.

In Neural Networks, they define this
Internal Covariate Shift as the change in the distribution of network
activations due to the change in network parameters during training.

104 / 132

Images/cinvestav.jpg

They gave the following reasons

Consider a layer with the input u that adds the learned bias b
Then, it normalizes the result by subtracting the mean of the
activation over the training data:

x̂ = x− E [x]

I X = {x, ...,xN} the data samples and E [x] = 1
N

∑N
i=1 xi

Now, if the gradient ignores the dependence of E [x] on b
Then b = b+ ∆b where ∆b ∝ − ∂l

∂x̂

Finally

u+ (b+ ∆b)−E[u+ (b+ ∆b)] = u+ b−E[u+ b]

105 / 132

Images/cinvestav.jpg

They gave the following reasons

Consider a layer with the input u that adds the learned bias b
Then, it normalizes the result by subtracting the mean of the
activation over the training data:

x̂ = x− E [x]

I X = {x, ...,xN} the data samples and E [x] = 1
N

∑N
i=1 xi

Now, if the gradient ignores the dependence of E [x] on b
Then b = b+ ∆b where ∆b ∝ − ∂l

∂x̂

Finally

u+ (b+ ∆b)−E[u+ (b+ ∆b)] = u+ b−E[u+ b]

105 / 132

Images/cinvestav.jpg

They gave the following reasons

Consider a layer with the input u that adds the learned bias b
Then, it normalizes the result by subtracting the mean of the
activation over the training data:

x̂ = x− E [x]

I X = {x, ...,xN} the data samples and E [x] = 1
N

∑N
i=1 xi

Now, if the gradient ignores the dependence of E [x] on b
Then b = b+ ∆b where ∆b ∝ − ∂l

∂x̂

Finally

u+ (b+ ∆b)−E[u+ (b+ ∆b)] = u+ b−E[u+ b]

105 / 132

Images/cinvestav.jpg

Then

The following will happen
The update to b leads to no change in the output of the layer.

Therefore
We need to integrate the normalization into the process of training.

106 / 132

Images/cinvestav.jpg

Then

The following will happen
The update to b leads to no change in the output of the layer.

Therefore
We need to integrate the normalization into the process of training.

106 / 132

Images/cinvestav.jpg

Normalization via Mini-Batch Statistic

It is possible to describe the normalization as a transformation layer

x̂ = Norm (x,X)

Which depends on all the training samples X which also depends on
the layer parameters

For back-propagation, we will need to generate the following terms
∂Norm (x,X)

∂x
and ∂Norm (x,X)

∂X

107 / 132

Images/cinvestav.jpg

Normalization via Mini-Batch Statistic

It is possible to describe the normalization as a transformation layer

x̂ = Norm (x,X)

Which depends on all the training samples X which also depends on
the layer parameters

For back-propagation, we will need to generate the following terms
∂Norm (x,X)

∂x
and ∂Norm (x,X)

∂X

107 / 132

Images/cinvestav.jpg

Normalization via Mini-Batch Statistic

Problem!!!
whitening the layer inputs is expensive, as it requires computing the
covariance matrix

Cov [x] = Ex∈X
[
xxT

]
and E [x]E [x]T

I To produce the whitened activations

108 / 132

Images/cinvestav.jpg

Therefore

A Better Options, we can normalize each dimension

x̂(k) = x(k) − µ
σ

with µ = E
[
x(k)

]
and σ2 = V ar

[
x(k)

]
This allows to speed up convergence

Simply normalizing each input of a layer may change what the layer
can represent.

So, we need to insert a transformation in the network
Which can represent the identity transform

109 / 132

Images/cinvestav.jpg

Therefore

A Better Options, we can normalize each dimension

x̂(k) = x(k) − µ
σ

with µ = E
[
x(k)

]
and σ2 = V ar

[
x(k)

]
This allows to speed up convergence

Simply normalizing each input of a layer may change what the layer
can represent.

So, we need to insert a transformation in the network
Which can represent the identity transform

109 / 132

Images/cinvestav.jpg

Therefore

A Better Options, we can normalize each dimension

x̂(k) = x(k) − µ
σ

with µ = E
[
x(k)

]
and σ2 = V ar

[
x(k)

]
This allows to speed up convergence

Simply normalizing each input of a layer may change what the layer
can represent.

So, we need to insert a transformation in the network
Which can represent the identity transform

109 / 132

Images/cinvestav.jpg

The Transformation

The Linear transformation

y(k) = γ(k)x̂(k) + β(k)

The parameters γ(k), β(k)

This allow to recover the identity by setting γ(k) =
√
V ar

[
x(k)] and

β(k) = E
[
x(k)

]
if necessary.

110 / 132

Images/cinvestav.jpg

The Transformation

The Linear transformation

y(k) = γ(k)x̂(k) + β(k)

The parameters γ(k), β(k)

This allow to recover the identity by setting γ(k) =
√
V ar

[
x(k)] and

β(k) = E
[
x(k)

]
if necessary.

110 / 132

Images/cinvestav.jpg

Finally

Batch Normalizing Transform
Input: Values of x over a mini-batch: B = {x1...m}, Parameters to

be learned: γ, β
Output: {yi = BNγ,β (xi)}

1 µB = 1
m

∑m
i=1 xi

2 σ2
B = 1

m

∑m
i=1 (xi − µ)2

3 x̂ = xi−µB√
σ2
B+ε

4 yi = γ(k)x̂i + β = BNγ,β (xi)

111 / 132

Images/cinvestav.jpg

Finally

Batch Normalizing Transform
Input: Values of x over a mini-batch: B = {x1...m}, Parameters to

be learned: γ, β
Output: {yi = BNγ,β (xi)}

1 µB = 1
m

∑m
i=1 xi

2 σ2
B = 1

m

∑m
i=1 (xi − µ)2

3 x̂ = xi−µB√
σ2
B+ε

4 yi = γ(k)x̂i + β = BNγ,β (xi)

111 / 132

Images/cinvestav.jpg

Finally

Batch Normalizing Transform
Input: Values of x over a mini-batch: B = {x1...m}, Parameters to

be learned: γ, β
Output: {yi = BNγ,β (xi)}

1 µB = 1
m

∑m
i=1 xi

2 σ2
B = 1

m

∑m
i=1 (xi − µ)2

3 x̂ = xi−µB√
σ2
B+ε

4 yi = γ(k)x̂i + β = BNγ,β (xi)

111 / 132

Images/cinvestav.jpg

Finally

Batch Normalizing Transform
Input: Values of x over a mini-batch: B = {x1...m}, Parameters to

be learned: γ, β
Output: {yi = BNγ,β (xi)}

1 µB = 1
m

∑m
i=1 xi

2 σ2
B = 1

m

∑m
i=1 (xi − µ)2

3 x̂ = xi−µB√
σ2
B+ε

4 yi = γ(k)x̂i + β = BNγ,β (xi)

111 / 132

Images/cinvestav.jpg

Finally

Batch Normalizing Transform
Input: Values of x over a mini-batch: B = {x1...m}, Parameters to

be learned: γ, β
Output: {yi = BNγ,β (xi)}

1 µB = 1
m

∑m
i=1 xi

2 σ2
B = 1

m

∑m
i=1 (xi − µ)2

3 x̂ = xi−µB√
σ2
B+ε

4 yi = γ(k)x̂i + β = BNγ,β (xi)

111 / 132

Images/cinvestav.jpg

Backpropagation

We have the following equations by using the loss function l
1 ∂l

∂x̂i
= ∂l

∂yi
× γ

2 ∂l
∂σ2
B

=
∑m
i=1

∂l
∂x̂i
× (xi − µB)×

(
−1

2

)
×
(
σ2
B + ε

)− 3
2

3 ∂l
∂µB

=
(∑m

i=1
∂l
∂x̂i
× −1√

σ2
B+ε

)
+ ∂l

∂σ2
B
×
∑m

i=1−2×(xi−µB)
m

4 ∂l
∂xi

= ∂l
∂x̂i
× 1√

σ2
B+ε

+ ∂l
∂σ2
B
× 2×(xi−µB)

m + ∂l
∂µB
× 1

m

5 ∂l
∂γ =

∑m
i=1

∂l
∂yi
× x̂i

6 ∂l
∂β =

∑m
i=1

∂l
∂yi

112 / 132

Images/cinvestav.jpg

Backpropagation

We have the following equations by using the loss function l
1 ∂l

∂x̂i
= ∂l

∂yi
× γ

2 ∂l
∂σ2
B

=
∑m
i=1

∂l
∂x̂i
× (xi − µB)×

(
−1

2

)
×
(
σ2
B + ε

)− 3
2

3 ∂l
∂µB

=
(∑m

i=1
∂l
∂x̂i
× −1√

σ2
B+ε

)
+ ∂l

∂σ2
B
×
∑m

i=1−2×(xi−µB)
m

4 ∂l
∂xi

= ∂l
∂x̂i
× 1√

σ2
B+ε

+ ∂l
∂σ2
B
× 2×(xi−µB)

m + ∂l
∂µB
× 1

m

5 ∂l
∂γ =

∑m
i=1

∂l
∂yi
× x̂i

6 ∂l
∂β =

∑m
i=1

∂l
∂yi

112 / 132

Images/cinvestav.jpg

Backpropagation

We have the following equations by using the loss function l
1 ∂l

∂x̂i
= ∂l

∂yi
× γ

2 ∂l
∂σ2
B

=
∑m
i=1

∂l
∂x̂i
× (xi − µB)×

(
−1

2

)
×
(
σ2
B + ε

)− 3
2

3 ∂l
∂µB

=
(∑m

i=1
∂l
∂x̂i
× −1√

σ2
B+ε

)
+ ∂l

∂σ2
B
×
∑m

i=1−2×(xi−µB)
m

4 ∂l
∂xi

= ∂l
∂x̂i
× 1√

σ2
B+ε

+ ∂l
∂σ2
B
× 2×(xi−µB)

m + ∂l
∂µB
× 1

m

5 ∂l
∂γ =

∑m
i=1

∂l
∂yi
× x̂i

6 ∂l
∂β =

∑m
i=1

∂l
∂yi

112 / 132

Images/cinvestav.jpg

Backpropagation

We have the following equations by using the loss function l
1 ∂l

∂x̂i
= ∂l

∂yi
× γ

2 ∂l
∂σ2
B

=
∑m
i=1

∂l
∂x̂i
× (xi − µB)×

(
−1

2

)
×
(
σ2
B + ε

)− 3
2

3 ∂l
∂µB

=
(∑m

i=1
∂l
∂x̂i
× −1√

σ2
B+ε

)
+ ∂l

∂σ2
B
×
∑m

i=1−2×(xi−µB)
m

4 ∂l
∂xi

= ∂l
∂x̂i
× 1√

σ2
B+ε

+ ∂l
∂σ2
B
× 2×(xi−µB)

m + ∂l
∂µB
× 1

m

5 ∂l
∂γ =

∑m
i=1

∂l
∂yi
× x̂i

6 ∂l
∂β =

∑m
i=1

∂l
∂yi

112 / 132

Images/cinvestav.jpg

Backpropagation

We have the following equations by using the loss function l
1 ∂l

∂x̂i
= ∂l

∂yi
× γ

2 ∂l
∂σ2
B

=
∑m
i=1

∂l
∂x̂i
× (xi − µB)×

(
−1

2

)
×
(
σ2
B + ε

)− 3
2

3 ∂l
∂µB

=
(∑m

i=1
∂l
∂x̂i
× −1√

σ2
B+ε

)
+ ∂l

∂σ2
B
×
∑m

i=1−2×(xi−µB)
m

4 ∂l
∂xi

= ∂l
∂x̂i
× 1√

σ2
B+ε

+ ∂l
∂σ2
B
× 2×(xi−µB)

m + ∂l
∂µB
× 1

m

5 ∂l
∂γ =

∑m
i=1

∂l
∂yi
× x̂i

6 ∂l
∂β =

∑m
i=1

∂l
∂yi

112 / 132

Images/cinvestav.jpg

Backpropagation

We have the following equations by using the loss function l
1 ∂l

∂x̂i
= ∂l

∂yi
× γ

2 ∂l
∂σ2
B

=
∑m
i=1

∂l
∂x̂i
× (xi − µB)×

(
−1

2

)
×
(
σ2
B + ε

)− 3
2

3 ∂l
∂µB

=
(∑m

i=1
∂l
∂x̂i
× −1√

σ2
B+ε

)
+ ∂l

∂σ2
B
×
∑m

i=1−2×(xi−µB)
m

4 ∂l
∂xi

= ∂l
∂x̂i
× 1√

σ2
B+ε

+ ∂l
∂σ2
B
× 2×(xi−µB)

m + ∂l
∂µB
× 1

m

5 ∂l
∂γ =

∑m
i=1

∂l
∂yi
× x̂i

6 ∂l
∂β =

∑m
i=1

∂l
∂yi

112 / 132

Images/cinvestav.jpg

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations
{
x(k)
}K
k=1

Output: Batch-normalized network for inference N inf
BN

1 Ntr
BN = N // Training BN network

2 for k = 1...K do
3 Add transformation y(k) = BNγ(k),β(k)

(
x(k)
)

to Ntr
BN

4 Modify each layer in Ntr
BN with input x(k) to take y(k)instead

5 Train Ntr
BN to optimize the parameters Θ ∪

{
γ(k), β(k)

}K
k=1

6 N inf
BN = Ntr

BN // Inference BN network with frozen parameters
7 for k = 1...K do
8 Process multiple training mini-batches B, each of size m, and

average over them
9 E [x] = EB [µB] and V ar [x] = m

m−1B

[
σ2
B

]
10 In N inf

BN , replace the transform y = BNγ,β (x) with
11 y = γ√

V ar[x]+ε
× x+

[
β − γE[x]√

V ar[x]+ε

]

113 / 132

Images/cinvestav.jpg

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations
{
x(k)
}K
k=1

Output: Batch-normalized network for inference N inf
BN

1 Ntr
BN = N // Training BN network

2 for k = 1...K do
3 Add transformation y(k) = BNγ(k),β(k)

(
x(k)
)

to Ntr
BN

4 Modify each layer in Ntr
BN with input x(k) to take y(k)instead

5 Train Ntr
BN to optimize the parameters Θ ∪

{
γ(k), β(k)

}K
k=1

6 N inf
BN = Ntr

BN // Inference BN network with frozen parameters
7 for k = 1...K do
8 Process multiple training mini-batches B, each of size m, and

average over them
9 E [x] = EB [µB] and V ar [x] = m

m−1B

[
σ2
B

]
10 In N inf

BN , replace the transform y = BNγ,β (x) with
11 y = γ√

V ar[x]+ε
× x+

[
β − γE[x]√

V ar[x]+ε

]

113 / 132

Images/cinvestav.jpg

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations
{
x(k)
}K
k=1

Output: Batch-normalized network for inference N inf
BN

1 Ntr
BN = N // Training BN network

2 for k = 1...K do
3 Add transformation y(k) = BNγ(k),β(k)

(
x(k)
)

to Ntr
BN

4 Modify each layer in Ntr
BN with input x(k) to take y(k)instead

5 Train Ntr
BN to optimize the parameters Θ ∪

{
γ(k), β(k)

}K
k=1

6 N inf
BN = Ntr

BN // Inference BN network with frozen parameters
7 for k = 1...K do
8 Process multiple training mini-batches B, each of size m, and

average over them
9 E [x] = EB [µB] and V ar [x] = m

m−1B

[
σ2
B

]
10 In N inf

BN , replace the transform y = BNγ,β (x) with
11 y = γ√

V ar[x]+ε
× x+

[
β − γE[x]√

V ar[x]+ε

]

113 / 132

Images/cinvestav.jpg

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations
{
x(k)
}K
k=1

Output: Batch-normalized network for inference N inf
BN

1 Ntr
BN = N // Training BN network

2 for k = 1...K do
3 Add transformation y(k) = BNγ(k),β(k)

(
x(k)
)

to Ntr
BN

4 Modify each layer in Ntr
BN with input x(k) to take y(k)instead

5 Train Ntr
BN to optimize the parameters Θ ∪

{
γ(k), β(k)

}K
k=1

6 N inf
BN = Ntr

BN // Inference BN network with frozen parameters
7 for k = 1...K do
8 Process multiple training mini-batches B, each of size m, and

average over them
9 E [x] = EB [µB] and V ar [x] = m

m−1B

[
σ2
B

]
10 In N inf

BN , replace the transform y = BNγ,β (x) with
11 y = γ√

V ar[x]+ε
× x+

[
β − γE[x]√

V ar[x]+ε

]

113 / 132

Images/cinvestav.jpg

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations
{
x(k)
}K
k=1

Output: Batch-normalized network for inference N inf
BN

1 Ntr
BN = N // Training BN network

2 for k = 1...K do
3 Add transformation y(k) = BNγ(k),β(k)

(
x(k)
)

to Ntr
BN

4 Modify each layer in Ntr
BN with input x(k) to take y(k)instead

5 Train Ntr
BN to optimize the parameters Θ ∪

{
γ(k), β(k)

}K
k=1

6 N inf
BN = Ntr

BN // Inference BN network with frozen parameters
7 for k = 1...K do
8 Process multiple training mini-batches B, each of size m, and

average over them
9 E [x] = EB [µB] and V ar [x] = m

m−1B

[
σ2
B

]
10 In N inf

BN , replace the transform y = BNγ,β (x) with
11 y = γ√

V ar[x]+ε
× x+

[
β − γE[x]√

V ar[x]+ε

]

113 / 132

Images/cinvestav.jpg

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations
{
x(k)
}K
k=1

Output: Batch-normalized network for inference N inf
BN

1 Ntr
BN = N // Training BN network

2 for k = 1...K do
3 Add transformation y(k) = BNγ(k),β(k)

(
x(k)
)

to Ntr
BN

4 Modify each layer in Ntr
BN with input x(k) to take y(k)instead

5 Train Ntr
BN to optimize the parameters Θ ∪

{
γ(k), β(k)

}K
k=1

6 N inf
BN = Ntr

BN // Inference BN network with frozen parameters
7 for k = 1...K do
8 Process multiple training mini-batches B, each of size m, and

average over them
9 E [x] = EB [µB] and V ar [x] = m

m−1B

[
σ2
B

]
10 In N inf

BN , replace the transform y = BNγ,β (x) with
11 y = γ√

V ar[x]+ε
× x+

[
β − γE[x]√

V ar[x]+ε

]

113 / 132

Images/cinvestav.jpg

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations
{
x(k)
}K
k=1

Output: Batch-normalized network for inference N inf
BN

1 Ntr
BN = N // Training BN network

2 for k = 1...K do
3 Add transformation y(k) = BNγ(k),β(k)

(
x(k)
)

to Ntr
BN

4 Modify each layer in Ntr
BN with input x(k) to take y(k)instead

5 Train Ntr
BN to optimize the parameters Θ ∪

{
γ(k), β(k)

}K
k=1

6 N inf
BN = Ntr

BN // Inference BN network with frozen parameters
7 for k = 1...K do
8 Process multiple training mini-batches B, each of size m, and

average over them
9 E [x] = EB [µB] and V ar [x] = m

m−1B

[
σ2
B

]
10 In N inf

BN , replace the transform y = BNγ,β (x) with
11 y = γ√

V ar[x]+ε
× x+

[
β − γE[x]√

V ar[x]+ε

]

113 / 132

Images/cinvestav.jpg

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations
{
x(k)
}K
k=1

Output: Batch-normalized network for inference N inf
BN

1 Ntr
BN = N // Training BN network

2 for k = 1...K do
3 Add transformation y(k) = BNγ(k),β(k)

(
x(k)
)

to Ntr
BN

4 Modify each layer in Ntr
BN with input x(k) to take y(k)instead

5 Train Ntr
BN to optimize the parameters Θ ∪

{
γ(k), β(k)

}K
k=1

6 N inf
BN = Ntr

BN // Inference BN network with frozen parameters
7 for k = 1...K do
8 Process multiple training mini-batches B, each of size m, and

average over them
9 E [x] = EB [µB] and V ar [x] = m

m−1B

[
σ2
B

]
10 In N inf

BN , replace the transform y = BNγ,β (x) with
11 y = γ√

V ar[x]+ε
× x+

[
β − γE[x]√

V ar[x]+ε

]

113 / 132

Images/cinvestav.jpg

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations
{
x(k)
}K
k=1

Output: Batch-normalized network for inference N inf
BN

1 Ntr
BN = N // Training BN network

2 for k = 1...K do
3 Add transformation y(k) = BNγ(k),β(k)

(
x(k)
)

to Ntr
BN

4 Modify each layer in Ntr
BN with input x(k) to take y(k)instead

5 Train Ntr
BN to optimize the parameters Θ ∪

{
γ(k), β(k)

}K
k=1

6 N inf
BN = Ntr

BN // Inference BN network with frozen parameters
7 for k = 1...K do
8 Process multiple training mini-batches B, each of size m, and

average over them
9 E [x] = EB [µB] and V ar [x] = m

m−1B

[
σ2
B

]
10 In N inf

BN , replace the transform y = BNγ,β (x) with
11 y = γ√

V ar[x]+ε
× x+

[
β − γE[x]√

V ar[x]+ε

]

113 / 132

Images/cinvestav.jpg

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations
{
x(k)
}K
k=1

Output: Batch-normalized network for inference N inf
BN

1 Ntr
BN = N // Training BN network

2 for k = 1...K do
3 Add transformation y(k) = BNγ(k),β(k)

(
x(k)
)

to Ntr
BN

4 Modify each layer in Ntr
BN with input x(k) to take y(k)instead

5 Train Ntr
BN to optimize the parameters Θ ∪

{
γ(k), β(k)

}K
k=1

6 N inf
BN = Ntr

BN // Inference BN network with frozen parameters
7 for k = 1...K do
8 Process multiple training mini-batches B, each of size m, and

average over them
9 E [x] = EB [µB] and V ar [x] = m

m−1B

[
σ2
B

]
10 In N inf

BN , replace the transform y = BNγ,β (x) with
11 y = γ√

V ar[x]+ε
× x+

[
β − γE[x]√

V ar[x]+ε

]

113 / 132

Images/cinvestav.jpg

Training Batch Normalization Networks

Input: Network N with trainable parameters Θ; subset of activations
{
x(k)
}K
k=1

Output: Batch-normalized network for inference N inf
BN

1 Ntr
BN = N // Training BN network

2 for k = 1...K do
3 Add transformation y(k) = BNγ(k),β(k)

(
x(k)
)

to Ntr
BN

4 Modify each layer in Ntr
BN with input x(k) to take y(k)instead

5 Train Ntr
BN to optimize the parameters Θ ∪

{
γ(k), β(k)

}K
k=1

6 N inf
BN = Ntr

BN // Inference BN network with frozen parameters
7 for k = 1...K do
8 Process multiple training mini-batches B, each of size m, and

average over them
9 E [x] = EB [µB] and V ar [x] = m

m−1B

[
σ2
B

]
10 In N inf

BN , replace the transform y = BNγ,β (x) with
11 y = γ√

V ar[x]+ε
× x+

[
β − γE[x]√

V ar[x]+ε

]

113 / 132

Images/cinvestav.jpg

However

Santurkar et al. [18]
They found thats is not the covariance shift the one affected by it!!!

Santurkar et al. recognize that
Batch normalization has been arguably one of the most successful
architectural innovations in deep learning.

They used a standard Very deep convolutional network
on CIFAR-10 with and without BatchNorm

114 / 132

Images/cinvestav.jpg

However

Santurkar et al. [18]
They found thats is not the covariance shift the one affected by it!!!

Santurkar et al. recognize that
Batch normalization has been arguably one of the most successful
architectural innovations in deep learning.

They used a standard Very deep convolutional network
on CIFAR-10 with and without BatchNorm

114 / 132

Images/cinvestav.jpg

However

Santurkar et al. [18]
They found thats is not the covariance shift the one affected by it!!!

Santurkar et al. recognize that
Batch normalization has been arguably one of the most successful
architectural innovations in deep learning.

They used a standard Very deep convolutional network
on CIFAR-10 with and without BatchNorm

114 / 132

Images/cinvestav.jpg

They found something quite interesting

The following facts

115 / 132

Images/cinvestav.jpg

Actually Batch Normalization

It does not do anything to the Internal Covariate Shift
Actually smooth the optimization manifold

I It is not the only way to achieve it!!!

They suggest that
“This suggests that the positive impact of BatchNorm on training
might be somewhat serendipitous.”

116 / 132

Images/cinvestav.jpg

Actually Batch Normalization

It does not do anything to the Internal Covariate Shift
Actually smooth the optimization manifold

I It is not the only way to achieve it!!!

They suggest that
“This suggests that the positive impact of BatchNorm on training
might be somewhat serendipitous.”

116 / 132

Images/cinvestav.jpg

They actually have a connected result

To the analysis of gradient clipping!!!
They are the same group

Theorem (The effect of BatchNorm on the Lipschitzness of the loss)
For a BatchNorm network with loss L̂ and an identical non-BN
network with (identical) loss L,∥∥∥∇yj L̂∥∥∥2

≤ γ2

σ2
j

[∥∥∥∇yjL∥∥∥2
− 1
m

〈
1,∇yjL

〉2
− 1√

m

〈
∇yjL, ŷj

〉2
]

117 / 132

Images/cinvestav.jpg

They actually have a connected result

To the analysis of gradient clipping!!!
They are the same group

Theorem (The effect of BatchNorm on the Lipschitzness of the loss)
For a BatchNorm network with loss L̂ and an identical non-BN
network with (identical) loss L,∥∥∥∇yj L̂∥∥∥2

≤ γ2

σ2
j

[∥∥∥∇yjL∥∥∥2
− 1
m

〈
1,∇yjL

〉2
− 1√

m

〈
∇yjL, ŷj

〉2
]

117 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 118 / 132

Images/cinvestav.jpg

Definition

Degradation Problem
With the network depth increasing, accuracy gets saturated (which
might be unsurprising) and then degrades rapidly.

Something Notable
Unexpectedly, such degradation is not caused by overfitting,

and adding more layers
to a suitably deep model leads to higher training error,

119 / 132

Images/cinvestav.jpg

Definition

Degradation Problem
With the network depth increasing, accuracy gets saturated (which
might be unsurprising) and then degrades rapidly.

Something Notable
Unexpectedly, such degradation is not caused by overfitting,

and adding more layers
to a suitably deep model leads to higher training error,

119 / 132

Images/cinvestav.jpg

Definition

Degradation Problem
With the network depth increasing, accuracy gets saturated (which
might be unsurprising) and then degrades rapidly.

Something Notable
Unexpectedly, such degradation is not caused by overfitting,

and adding more layers
to a suitably deep model leads to higher training error,

119 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 120 / 132

Images/cinvestav.jpg

Therefore, we need to deal with such problems

The Residual Network [16]
He, Kaiming et al. - "Deep Residual Learning for Image Recognition"

Basically they got two layers doing something to an input

F (x) = A2A1x

Then imagine you have an ideal mapping H (x)

F (x) = H (x)− x =⇒ F (x) + x = H (x) =⇒

121 / 132

Images/cinvestav.jpg

Therefore, we need to deal with such problems

The Residual Network [16]
He, Kaiming et al. - "Deep Residual Learning for Image Recognition"

Basically they got two layers doing something to an input

F (x) = A2A1x

Then imagine you have an ideal mapping H (x)

F (x) = H (x)− x =⇒ F (x) + x = H (x) =⇒

121 / 132

Images/cinvestav.jpg

Therefore, we need to deal with such problems

The Residual Network [16]
He, Kaiming et al. - "Deep Residual Learning for Image Recognition"

Basically they got two layers doing something to an input

F (x) = A2A1x

Then imagine you have an ideal mapping H (x)

F (x) = H (x)− x =⇒ F (x) + x = H (x) =⇒

121 / 132

Images/cinvestav.jpg

Basically

This allows to
Motivation for skipping over layers is to avoid the problem of
vanishing gradients.

Something Notable
In the simplest case, only the weights for the adjacent layer’s
connection are adapted.

122 / 132

Images/cinvestav.jpg

Basically

This allows to
Motivation for skipping over layers is to avoid the problem of
vanishing gradients.

Something Notable
In the simplest case, only the weights for the adjacent layer’s
connection are adapted.

122 / 132

Images/cinvestav.jpg

Blocks of the Original RNN

We have

123 / 132

Images/cinvestav.jpg

A Winner

Something Notable
Winner of ILSVRC 2015 in image classification, detection, and
localization, as well as Winner of MS COCO 2015 detection, and
segmentation.

124 / 132

Images/cinvestav.jpg

Outline
1 Introduction

Limitations of Shallow Architectures
Highly-varying functions
Local vs Non-Local Generalization
From Simpler Features to More Complex Features

2 Deep Forward Architectures
Introduction
Convolutional Neural Networks

Image Processing
Auto Encoders
Boltzmann Machines
Generative Adversarial Networks
There Are Many More

3 The Vanishing and Exploding Gradients
Introduction
Reasoning Iteratively
Fixed Points
Stabilizing the Network

Gradient Clipping
Normalizing your Data
Normalization Layer AKA Batch Normalization

4 Problems with Deeper Architectures
The Degradation Problem
The Residual Networks
Conclusions 125 / 132

Images/cinvestav.jpg

We have seen many concepts

Deep Forward Networks
Although a simple idea

They represent a rich field of study
Basically... From Lower Complexity Features toward more complex
more informative!!!

In conclusion
Deep Forward Networks look to have more expressibility than shallow
learners.

126 / 132

Images/cinvestav.jpg

We have seen many concepts

Deep Forward Networks
Although a simple idea

They represent a rich field of study
Basically... From Lower Complexity Features toward more complex
more informative!!!

In conclusion
Deep Forward Networks look to have more expressibility than shallow
learners.

126 / 132

Images/cinvestav.jpg

We have seen many concepts

Deep Forward Networks
Although a simple idea

They represent a rich field of study
Basically... From Lower Complexity Features toward more complex
more informative!!!

In conclusion
Deep Forward Networks look to have more expressibility than shallow
learners.

126 / 132

Images/cinvestav.jpg

C. E. Shannon, “A symbolic analysis of relay and switching circuits,”
Electrical Engineering, vol. 57, no. 12, pp. 713–723, 1938.
E. Mendelson, Introduction to mathematical logic.
Chapman and Hall/CRC, 2009.

J. Hastad, “Almost optimal lower bounds for small depth circuits,” in
Proceedings of the eighteenth annual ACM symposium on Theory of
computing, pp. 6–20, Citeseer, 1986.
J. Håstad and M. Goldmann, “On the power of small-depth threshold
circuits,” Computational Complexity, vol. 1, no. 2, pp. 113–129, 1991.
Y. Bengio et al., “Learning deep architectures for ai,” Foundations and
trends® in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.
M. Gönen and E. Alpaydın, “Multiple kernel learning algorithms,”
Journal of machine learning research, vol. 12, no. Jul, pp. 2211–2268,
2011.

127 / 132

Images/cinvestav.jpg

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I.
Jordan, “Learning the kernel matrix with semidefinite programming,”
J. Mach. Learn. Res., vol. 5, pp. 27–72, Dec. 2004.
Y. Bengio, O. Delalleau, and N. L. Roux, “The curse of highly variable
functions for local kernel machines,” in Advances in neural information
processing systems, pp. 107–114, 2006.
Y. Bengio, Y. LeCun, et al., “Scaling learning algorithms towards ai,”
Large-scale kernel machines, vol. 34, no. 5, pp. 1–41, 2007.
Z. Zhang, “Derivation of backpropagation in convolutional neural
network (cnn),” University of Tennessee, Knoxville, TN, 2016.

X. Peng, H. Cao, and P. Natarajan, “Using convolutional
encoder-decoder for document image binarization,” in 2017 14th IAPR
International Conference on Document Analysis and Recognition
(ICDAR), vol. 1, pp. 708–713, IEEE, 2017.

128 / 132

Images/cinvestav.jpg

P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and
G. Cottrell, “Understanding convolution for semantic segmentation,”
in 2018 IEEE winter conference on applications of computer vision
(WACV), pp. 1451–1460, IEEE, 2018.

V. Podlozhnyuk, “Image convolution with cuda,” NVIDIA Corporation
white paper, June, vol. 2097, no. 3, 2007.
X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 315–323, 2011.
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
The MIT Press, 2016.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770–778, 2016.

129 / 132

Images/cinvestav.jpg

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.
S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch
normalization help optimization?,” in Advances in Neural Information
Processing Systems, pp. 2483–2493, 2018.
C. Gulcehre, M. Moczulski, M. Denil, and Y. Bengio, “Noisy
activation functions,” in International conference on machine learning,
pp. 3059–3068, 2016.
S. Sharma, “Activation functions in neural networks,” Towards Data
Science, vol. 6, 2017.
K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in
position,” Biological cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

130 / 132

Images/cinvestav.jpg

J. J. Weng, N. Ahuja, and T. S. Huang, “Learning recognition and
segmentation of 3-d objects from 2-d images,” in 1993 (4th)
International Conference on Computer Vision, pp. 121–128, IEEE,
1993.
J. J. Weng, N. Ahuja, and T. S. Huang, “Learning recognition and
segmentation using the cresceptron,” International Journal of
Computer Vision, vol. 25, no. 2, pp. 109–143, 1997.
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to
handwritten zip code recognition,” Neural computation, vol. 1, no. 4,
pp. 541–551, 1989.
L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold
approximation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.

131 / 132

Images/cinvestav.jpg

Y. Li, S. Liu, J. Yang, and M.-H. Yang, “Generative face completion,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3911–3919, 2017.
J. Pennington, S. S. Schoenholz, and S. Ganguli, “The emergence of
spectral universality in deep networks,” arXiv preprint
arXiv:1802.09979, 2018.
J. Zhang, T. He, S. Sra, and A. Jadbabaie, “Analysis of gradient
clipping and adaptive scaling with a relaxed smoothness condition,”
arXiv preprint arXiv:1905.11881, 2019.
Y. Bengio and Y. Le Cun, “Word normalization for on-line handwritten
word recognition,” in International Conference on Pattern Recognition,
pp. 409–409, IEEE COMPUTER SOCIETY PRESS, 1994.

132 / 132

	Introduction
	Limitations of Shallow Architectures
	Highly-varying functions
	Local vs Non-Local Generalization
	From Simpler Features to More Complex Features

	Deep Forward Architectures
	Introduction
	Convolutional Neural Networks
	Auto Encoders
	Boltzmann Machines
	Generative Adversarial Networks
	There Are Many More

	The Vanishing and Exploding Gradients
	Introduction
	Reasoning Iteratively
	Fixed Points
	Stabilizing the Network

	Problems with Deeper Architectures
	The Degradation Problem
	The Residual Networks
	Conclusions

