
Introduction to Neural Networks and Deep Learning
Learning Process

Andres Mendez-Vazquez

September 14, 2019

1 / 94



Outline

1 Learning Process
Introduction
Implications

2 Types of Learning
Error Correcting Learning
Gradient Descent in Error Learning
Delta Rule or Widrow-Hoff Rule

Memory-Based Learning
Introduction
Ingredients
Example

Hebbian Learning
Hebbian Rule
Key Mechanism of Hebbian Synapse
Mathematical Models of Hebbian Modifications

Competitive Learning
Basic Elements

Boltzmann Learning
Learning with a teacher AKA Supervised Learning
Learning without a teacher
Reinforcement learning/Neurodynamic programming
Unsupervised Learning

Learning Tasks

2 / 94



Outline

1 Learning Process
Introduction
Implications

2 Types of Learning
Error Correcting Learning
Gradient Descent in Error Learning
Delta Rule or Widrow-Hoff Rule

Memory-Based Learning
Introduction
Ingredients
Example

Hebbian Learning
Hebbian Rule
Key Mechanism of Hebbian Synapse
Mathematical Models of Hebbian Modifications

Competitive Learning
Basic Elements

Boltzmann Learning
Learning with a teacher AKA Supervised Learning
Learning without a teacher
Reinforcement learning/Neurodynamic programming
Unsupervised Learning

Learning Tasks

3 / 94



Learning

How do we define learning in a Neural Network?
The property that is of primary significance for a neural network is

The ability of the network to learn from its environment.
To improve its performance through learning.

Thus, we use the following definition by Mendel and McClaren [1]
“Learning is a process by which the free parameters of neural network are
adapted through a process of stimulation by the environment in which the
network is embedded. The type of learning is determined by the manner in
which the parameter changes take place.”
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Implications of the Definition of Learning

First
The neural network is stimulated by an environment.

Second
The neural network undergoes changes in its free parameters as a result of
this stimulation.

Third
The neural network responds in a new way to the environment because of
the changes that have occurred in its internal structure.
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Solution of Learning Problem ≈ Learning Algorithm

Quite Interesting
There is no unique learning algorithm for the design of neural networks.

What we have is more
A "kit of tools" represented by a diverse variety of learning algorithms:

They depend on the type of architecture used in the Neural Network!!!
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Error Correcting Learning

Error Signal
We have an input x (t) (Here assume a time t) to a neuron k:

1 Desired response : dk(t).
2 Output signal : yk (t).

Error Signal

ek (t) = dk (t)− yk (t) (1)
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Error?

This is used
As a control mechanism.

The strategy to be followed
It is s to apply a sequence of corrective adjustments to the synaptic
weights of neuron k.

What do we want?
We want

lim
t→∞

yk (t) = dk

if we assume dk (t) = dk a constant.
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The Architecture

Graphical Representation

-1
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How do we do this?

We need to use this error in some way
For this we use a well know convex function

Quadratic function E (t) = 1
2x

2
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Error Correcting Learning

Cost Function with the error in it

E (t) = 1
2e

2
k (t) (2)

We need to minimize this error
For this, we use the a learning rule called Delta Rule or Widrow-Hoff Rule
[2]!!
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How this is done
We take derivative (Gradient) with respect to wkj′ by imagining that
we fix all the other values

E (t) = 1
2

dk (t)−
m∑
j=0

wkj(t)xj (t)

2

Assuming: yk (t) =
∑m
j=0wkj(t)xj (t)

Thus, we have

E (t) = 1
2
(
Ck (t)− wkj′(t)xj′ (t)

)2
Where: Ck (t) = dk (t)−

∑m

j = 1
j 6= j′

wkj(t)xj (t)
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We have something like this

The Intuitive Idea
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What information do we get from the Gradient?

We get the following information
The directions of greatest change in the axis of wkj(t)

We use this to adjust the learning
For each weight element storing information for the neuron k.

Thus, we can state the delta rule [2]
“The adjustment made to a synaptic weight of a neuron is
proportional to the product of the error signal and the input signal
of the synapse in question.”
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This is simple

It comes from taking the gradient

∂E (t)
∂wkj′

=
∂ 1

2
(
Ck (t)− wkj′(t)xj′ (t)

)2
∂wkj′

= −
(
Ck (t)− wkj′(t)xj′ (t)

)
xj′ (t)

= −ek (t)xj′ (t)
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Thus, we get

Delta Rule or Widrow-Hoff Rule

∆wkj′ (t) = ηek (t)xj′(t) (3)

With η absorbing the negative sign and representing the learning rate!!!

Actually this is know as Gradient Descent

wkj′ (t+ 1) = wkj′ (t) + ∆wkj′ (t) (4)
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It is more

We have that
In effect, wkj′ (t) and wkj′ (t+ 1) may be viewed as the old and new
values of synaptic weight wkj′ , respectively.

In computational method, we can also write that

wkj′ (t) = z−1 [wkj′ (t+ 1)
]
,

where z−1 is the unit-delay operator. In other words, z−1 represents a
storage element.
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The Error-Correction Architecture

We have the graphical representation of the error-correction learning

-1

This is an example of a closed-loop feedback system
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What is this?

We store information
All ( or most) of the past experiences are explicitly stored in a large
memory of correctly classified input-output examples.

Formally
Input-Output examples : {(xi, di)}Ni=1

Where
xi denotes an input vector.
di denotes the corresponding desired response.
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In addition, we split these samples into classes

Each of these inputs are in a Class Cj

Class

Class

Class
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Then

Given all this information
We can build an algorithm to classify not seen before samples xtest.

This algorithm works as follow
The algorithm responds by retrieving and analyzing the training data in a
"local neighborhood" of xtest.
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Ingredients

First
Criterion used for defining the local neighborhood of the test vector xtest.
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Ingredients

Second
Learning rule applied to the training examples in the local neighborhood of
xtest.
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Remark

Something Notable
Algorithms are different between each other depending on how these two
ingredients are defined
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Example: K-Nearest Neighbor Classifier

First Step
Identify the k classified patterns that lie nearest to the test vector xtest for
some integer k.
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Example: K-Nearest Neighbor Classifier

Second Step
Assign xtest to the class that is most frequently represented in the k
nearest neighbors to xtest.
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Cover and Hart (1967) have studied the nearest
neighborhood rule (Simplest Version of K-NN)

Their analysis (Chapter 3) is based in the following assumptions
The classified examples (xi, d) are independently and identically
distributed (iid), according to the joint probability distribution of the
example (x, d).
The sample size N is infinitely large.

Then it is possible to prove
It is shown that the probability of classification error incurred by the
nearest neighbor rule is bounded above by twice the Bayes probability
of error.
This is known as the minimum probability of error over all decision
rules.
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Hebb’s postulate of learning

It is the oldest of all learning rules
In Hebb’s “The Organization of Behavior (1949, p.62)”[3]:

When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth process
or metabolic changes take place in one or both cells such that A’s
efficiency as one of the cells firing B, is increased.
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This can be rephrased as...

Something Notable
It is possible to expand this as a two-part rule...(Stent. 1973; Changeux
and Danchin. 1976)

First
If two neurons on either side of a synapse (connection) are activated
simultaneously (i.e., synchronously). then the strength of that synapse is
selectively increased.
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Thus

First
If two neurons on either side of a synapse (connection) are activated
simultaneously (i.e., synchronously). then the strength of that synapse is
selectively increased.
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Then

Second
If two neurons on either side of a synapse are activated asynchronously,
then that synapse is selectively weakened or eliminated.
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Finally

Second
If two neurons on either side of a synapse are activated asynchronously,
then that synapse is selectively weakened or eliminated.
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The Hebbian Synapse

Definition
A Hebbian synapse is a synapse that uses a:

1 Time-Dependant
2 Highly Local
3 Strongly Interactive

Mechanism to increase synaptic efficiency as a function of the correlation
between the presynaptic and postsynaptic activities.
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Key Mechanism of Hebbian Synapse

Time-dependent mechanism
It refers to the dependence of the synapse to the exact time of occurrence
of the presynaptic and postsynaptic signals.

Local Mechanism
It refers to how the local information is used by the Hebbian synapse to
make modifications to the synapse itself.

Interactive Mechanism
A Hebbian form of learning depends on a "true interaction" between
presynaptic and postsynaptic signals which can be deterministic or
statistical!!!
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Key Mechanism of Hebbian Synapse

Conjunctional or correlational mechanism
The co-occurrence of presynaptic and postsynaptic signals (within a
short interval of time) is sufficient to produce the synaptic
modification.
It is for this reason that a Hebbian synapse is sometimes referred to
as a conjunctional synapse.
In addition, the correlation over time between presynaptic and
postsynaptic signals is viewed as being responsible for a synaptic
change.
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Initial Setup

Consider
A synaptic weight wkj of neuron k
Presynaptic signal xj
Postsynaptical signal yk

The general adjustment
∆wkj (t) = F (yk (t) , xj (t))

Where
F is a function of both postsynaptic and presynaptic signals.
The signals xj (t) and yk (t) are often treated dimensionless signals.
The previous formula admits many forms!!! We will look at two of
them: Hebb’s and Covariance hypothesis.
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Hebb’s Hypothesis

The simplest form of Hebbian learning is described by

∆wkj (t) = ηyk (t)xj (t) (5)

Where
η is a positive constant that determines the learning rate.
Clearly (Eq. 5) emphasizes the correlational nature of a Hebbian rate
of synapse.
It is referred as the activity product rule.
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Graphical Representation

∆wkj plotted versus the output signal (Quite similar to RELU)

Hebb's hypothesis

Postsynaptic activity

Slope=

0
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Problem

Something Notable
The repeated application of the input signal (presynaptic activity) xj leads
to an increase in yk

It is more
It leads to exponential growth that finally drives the synaptic connection
into saturation!!!

Thus
At that point no information will be stored in the synapse and selectivity is
lost.
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To solve this, we have...

Covariance Hypothesis (Sejnowski, 1974) [4]
In this hypothesis, the presynaptic and postsynaptic signals are replaced by
the departure of presynaptic and postsynaptic signals from their respective
average values over a certain time interval.Xi

Given the values x and y with respect to time

∆wkj = η (xj − x) (yk − y) (6)
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Graphical Representation

∆wkj plotted versus the output signal

Hebb's hypothesis

Postsynaptic activity

Slope=

0

Covariance hypothesis

Slope=

Balance point=

Maximim depression point
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Properties of the Covariance Hypothesis

The covariance hypothesis allows for the following
Convergence to a nontrivial state, which is reached when xk = x and
yj = y.
Prediction of both synaptic potentiation (i.e., increase in synaptic
strength) and synaptic depression (i.e., decrease in synaptic strength).

In addition, we have the following observations from (Eq. 6)
Synaptic weight wkj is enhanced if

I xj > x i.e. enough presynaptic input
I yj > y i.e. enough postynaptic output
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Properties of the Covariance Hypothesis

In addition, we have the following observations from (Eq. 6)
Synaptic weight wkj is depressed if there is either

I A presynaptic activation (xj > x) in the absence of sufficient
postsynaptic activation (yj > y).

I A postsynaptic activation (yk > y) in the absence of sufficient
presynaptic activation (xj < x).
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Remarks

First
This behavior may be regarded as a form of temporal competition between
the incoming patterns.

Second
There is strong physiological evidence for Hebbian learning in the area of
the brain called the hippocampus.
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The meaning

Intuition
In competitive learning the output neurons of a neural network compete
among themselves to become active (fired).

Not only that
In Hebbian learning several output neurons may be active simultaneously,
but in competitive learning only a single output neuron is active at any one
time!!!

Important
This makes competitive learning highly suited to discover statistically
salient features that may be used to classify a set of input patterns.
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Basic Elements (Rumelhart and Zipser, 1985) [5]

First
A set of neurons that are all the same except for some randomly
distributed synaptic weights, and which therefore respond differently to a
given set of input patterns.

Second
A limit imposed on the "strength" of each neuron.

Third
A mechanism that permits the neurons to compete for the right to
respond to a given subset of inputs, such that only one output neuron
is active (i.e. “ON”).
The neuron that wins the competition is called a winner-takes-all
neuron.
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Simple Example

Architecture of a competitive learning network

Lateral inhibitory connections

Feedforward excitatory connections
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Mathematical Model

We want the following
For a neuron k to be the winning neuron, its induced local field vk, for a
specified input pattern x must be the largest among all the neurons in the
network.

Thus, we have

yk =
{

1 if vk > vj ∀j, j 6= k

0 otherwise
(7)

With
vk represents the combined action of all the forward and feedback inputs
to neuron k.
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In addition

We want each neuron to have a fixed amount of synaptic weight∑
j

wkj = 1 (8)

Thus
A neuron learns by shifting synaptic weights from inactive to active inputs.

Then, we have the following competitive learning rule

∆wkj =
{
η (xj − wkj) if neuron k wins the competition
0 if neuron k loses the competition

(9)
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Then

What is going to happened?

wk −→ x (10)

i.e. moving the weight in neuron k toward the pattern x.
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Example
We have then (Given ∑j wkj = 1)
Here, the gray dots are the patterns and the red stars are the state of the
networks!!!
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Meaning

It represents
The ability of a neural network to perform clustering through competitive
learning.

However
The competitive learning is “stable” only if the patterns have well defined
groups.

Otherwise
The network may be unstable!!!
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Boltzmann Learning

Ludwig Boltzmann
Ludwig Eduard Boltzmann was an Austrian physicist and philosopher
(1844-1906).
Greatest achievement was in the development of statistical
mechanics, which explains and predicts how the properties of atoms
determine the physical properties of matter.

This learning
It is based in using a stochastic learning algorithm.

Neural Networks
Neural Networks based on this learning are called Boltzmann machines
(Ackley et a\., 1985; Hinton and Sejnowski, 1986).
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Boltzmann Machines

Here
The neurons constitute a recurrent structure operating in a binary
manner!!!

Binary Manner?
They are in an ON state, denoted +1.
Or they are in an OFF state, denoted -1.
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Boltzmann Machines

The machine is characterized by an energy function

E = −1
2
∑
j

∑
k

j 6=k

wkjxkxj (11)

Here
The xj is the state of neuron j.
wkj is the synaptic weight connecting neuron j to neuron k.
The fact that j 6= k means simply that none of the neurons in the
machine has a self-feedback.
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Operation of a Boltzmann Machine

Take a neuron randomly
Then change the state of the neuron k from state xk to state −xk at
some temperature T with probability

P (xk −→ −xk) = 1
1 + exp

{
−∆Ek

T

} (12)

Where
∆Ek is the energy change inside of the machine given the flip.
T is a pseudotemperature - See chapter 1.
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Architecture for the Boltzmann Machines
We have
The neurons of a Boltzmann machine partition into two functional groups:
visible and hidden.

Thus
The visible neurons provide an interface between the network and the
environment in which it operates.
The hidden neurons always operate freely
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Modes of Operation

Clamped condition
The visible neurons are all clamped onto specific states determined by the
environment.

Free-running condition
All the neurons (visible and hidden) are allowed to operate freely.

Now
ρ+
kj denotes the correlation between the states of neurons j and k

under clamping.
ρ−kj denotes the correlation between the states of neurons j and k
under free running.
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A little taste

Here is one definition

ρ+
kj = 〈xkxj〉+

=
∑

xα∈T

∑
xβ

P (Xβ = xβ|Xα = xα)xkxj

xα training inputs from environment.
xβ hidden responses.
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Modes of Operation

Important
Both correlations are averaged over all possible states of the machine when
it is in thermal equilibrium.

Boltzmann learning rule
The change ∆wkj applied to synaptic weight wkj from neuron j to neuron
k (Hinton and Sejnowski, 1986):

∆wkj = η
(
ρ+
kj − ρ

−
kj

)
(13)

More about this
Chapter 11 Haykin’s Book.
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A Graphical View

Error Correcting Version
Vectors Describing the Environment 

Environment Teacher

Learning
system

Desired
Response

Actual

Error Signal

Response

+

-
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Reinforcement learning/Neurodynamic programming
Barto et aI., 1983

Environment Critic

Learning
system

State (input) vector

Primary

Reinforcement

Reinforcement

Heuristic

Actions

Remark: Reinforcement learning is closely related to dynamic
programming, which was developed by Bellman (1957) in the
context of optimal control theory.
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Observations on Reinforcement Learning

First
We want to minimize a cost-to-go function defined as the expectation of
the cumulative cost of actions taken over a sequence of steps.

Second
The system is designed to learn under delayed reinforcement.

Delayed Reinforcement
The system observes a temporal sequence of stimuli (i.e., state vectors)
also received from the environment, which eventually result in the
generation of the heuristic reinforcement signal.
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Problems with Delayed-Reinforcement Learning

It is difficult to perform
There is no teacher to provide a desired response at each step of the
learning process.
The delay incurred in the generation of the primary reinforcement
signal implies that the learning machine must use an expected next
signal.
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Unsupervised Learning

Here
In unsupervised or self-organized learning there is no external teacher or
critic to oversee the learning process

Something Notable
Provision is made for a taskindependent measure of the quality of
representation that the network is required to learn, and the free
parameters of the network are optimized with respect to that measure

How is this done?
This develops the ability to form internal representations for encoding
features of the input and thereby to create new classes automatically
(Becker, 1991).
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Learning Tasks

Pattern Association
An associative memory is a brainlike distributed memory that
learns by association.

xk −→
Associate

yk, k = 1, 2, ..., q
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Learning Tasks

Pattern Recognition
It is is formally defined as the process whereby a received
pattern/signal is assigned to one ofa prescribed number of classes
(categories).
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Learning Tasks

Function Approximation

Consider an input-output mapping d = f (x)
The requirement is to design a neural network that approximates
the unknown function f (x) using a function F (x)

‖F (x)− f (x)‖ < ε,∀x
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Function approximation can be used

System Identification

Unknown 
System 

Input 
Vector

NN

+

-
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Function approximation can be used

Inverse system

+-

Input 
Vector Inverse 

Model
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In addition

Neural Networks can be used for Control

Controller Plant
+

-

Reference
Signal

Error
Signal

Plant
Input

Plant Output
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Finally, Filtering

We may use a filter to perform three basic information processing
tasks

1 Filtering. This task refers to the extraction of information about a
quantity of interest at discrete time n by using data measured up to
and including time n.

2 Smoothing. This second task differs from filtering in that
information about the quantity of interest need not be available at
time n, and data measured later than time n can be used in obtaining
this information.

3 Prediction. This task is the forecasting side of information
processing.
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