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Introduction

Semi-supervised learning
Semi-Supervised Learning (SSL) is halfway between supervised and
unsupervised learning. I

Your Data
Some labels are provided, but not for all data

Thus the data set X = {x1, x2, ..., xN}
It can be divided into two parts:

The points Xl = {x1, x2, ..., xl} for which labels are provided
Yl = {y1, y2, ..., yl}
The points Xu = {xl+1, xl+2, ..., xu} where the labels are unknown.
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History

The earliest idea about using unlabeled data
It was proposed in self-learning!!!

Definition
This is a wrapper-algorithm that repeatedly uses a supervised learning
method.
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Process

First
It starts by training on the labeled data only.

Second
In each step a part of the unlabeled points is labeled according to the
current decision function:

Given xi → yl = f (xi) (1)

Third
The supervised method is retrained using its own predictions as additional
labeled points.
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When did this appear?

We have several authors proposing this idea for a long time
Scudder (1965), Fralick (1967) and Agrawala (1970).

An unsatisfactory aspect of self-learning is that the effect of the
wrapper depends on the supervised method used inside it.

Closely related
A problem related to SSL was introduced by Vapnik already several
decades ago.

Transductive learning ((Vapnik and Chervonenkis, 1974)
The idea of transduction is to perform predictions only for the test points.

This is in contrast to inductive learning, where the goal is to output a
prediction function which is defined on the entire space!!!
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Finally in the 1970’s SSL took off

With the problem
Estimating the Fisher linear discriminant rule with unlabeled data was
considered.

Hosmer, 1973; McLachlan, 1977; O’Neill, 1978; McLachlan and
Ganesalingam, 1982.

Setting
The setting was in the case where each class conditional density is
Gaussian with equal covariance matrix.

Then
The likelihood of the model was calculated using EM... thus the labels
(Hidden data) are estimated!!!
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During the 1990’s

The SSL became a subject of great interest
Mostly due to applications in natural language problems and text
classification.
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A simple question

Is semi-supervised learning meaningful?
This question is about the information that the unlabeled data can provide.

Making possible to say the following
Using enough data semi-supervised learning will be superior than
supervised learning
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In a more mathematical formulation

You could say that
1 The knowledge on p (x) that one gains through the unlabeled data

has to carry information.
2 That is useful in the inference of p (lx|x)!!!

Something Notable
If this is not the case, semi-supervised learning will not yield an
improvement over supervised learning.

It might even happen
Usage unlabeled data degrades the prediction accuracy by misguiding the
inference.
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Assumptions to be made

However, your data must have the four principles
1 The Semi-Supervised Smoothness Assumption.
2 The Cluster Assumption.
3 The Manifold Assumption.
4 Transduction Principle.
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Supervised Smoothness Assumption

Definition
If two points x1, x2 are close, then the corresponding outputs f (x1) and
f (x2).

Where f is the supervised algorithm.
Strictly speaking, this assumption only refers to continuity rather than
smoothness.

Without such assumptions
It would never be possible to generalize from a finite training set to a set
of possibly infinitely many unseen test cases.

Remember?
ill-posed problems.
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The Semi-Supervised Smoothness Assumption

Definition
If two points x1,x2 in a high-density region are close, then so should be
the corresponding outputs f (x1) and f (x2).

For example
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Implications

Given Transitivity
The assumption implies that if two points are linked by a path of high
density, then their outputs are likely to be close

Thus
If they are separated by a low-density region, then their outputs need not
be close.
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Introduction

Now
Suppose that the points of each class tended to form a cluster.

Then
We can use the unlabeled data could help to find the boundary of each
cluster more accurately.

Thus
One could run a clustering algorithm and use the labeled points to assign
a class to each cluster.
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Thus

In fact
This is the earliest form of semi-supervised learning.
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The Cluster Assumption

Definition
If points are in the same cluster, they are likely to be of the same class.

Remark
This assumption may be considered reasonable on the basis of the sheer
existence of classes

It is more
if there is a densely populated continuum of objects, it is unlikely that they
could be distinguished into different classes.
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Meaning

Something Notable
It means that, usually, we do not observe objects of two distinct classes in
the same cluster.

In addition
Low density separation: The decision boundary should lie in a
low-density region.

We can see that not?
Thing about this!!!
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Not only that

Although the definition are equivalent
They inspire different algorithms

Think about this
Some example?
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The Manifold Assumption

Definition
The (high-dimensional) data lie (roughly) on a low-dimensional manifold.

Example
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We have the following WELL KNOWN PROBLEM
The so-called curse of dimensionality
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Thus

Higher Dimensions
A Larger Amount of Data is required!!!

However
If the data happen to lie on a low-dimensional manifold the learning
algorithm can operate un a space of corresponding dimension.

Thus, avoiding the curse of dimensionality
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Facts
First
Working with manifolds can be seen as approximately implementing the
semi-supervised smoothness assumption.

Algorithms use the metric of the manifold for computing geodesic
distances.

Second
If we view the manifold as an approximation of the high-density regions.

The semi-supervised smoothness assumption reduces to the standard
smoothness assumption of supervised learning, applied on the
manifold.

Third
if the manifold is embedded into the high-dimensional input space in a
curved fashion (i.e., it is not just a subspace)

Geodesic distances differ from those in the input space.
29 / 82



Images/cinvestav-1.jpg

Facts
First
Working with manifolds can be seen as approximately implementing the
semi-supervised smoothness assumption.

Algorithms use the metric of the manifold for computing geodesic
distances.

Second
If we view the manifold as an approximation of the high-density regions.

The semi-supervised smoothness assumption reduces to the standard
smoothness assumption of supervised learning, applied on the
manifold.

Third
if the manifold is embedded into the high-dimensional input space in a
curved fashion (i.e., it is not just a subspace)

Geodesic distances differ from those in the input space.
29 / 82



Images/cinvestav-1.jpg

Facts
First
Working with manifolds can be seen as approximately implementing the
semi-supervised smoothness assumption.

Algorithms use the metric of the manifold for computing geodesic
distances.

Second
If we view the manifold as an approximation of the high-density regions.

The semi-supervised smoothness assumption reduces to the standard
smoothness assumption of supervised learning, applied on the
manifold.

Third
if the manifold is embedded into the high-dimensional input space in a
curved fashion (i.e., it is not just a subspace)

Geodesic distances differ from those in the input space.
29 / 82



Images/cinvestav-1.jpg

Facts
First
Working with manifolds can be seen as approximately implementing the
semi-supervised smoothness assumption.

Algorithms use the metric of the manifold for computing geodesic
distances.

Second
If we view the manifold as an approximation of the high-density regions.

The semi-supervised smoothness assumption reduces to the standard
smoothness assumption of supervised learning, applied on the
manifold.

Third
if the manifold is embedded into the high-dimensional input space in a
curved fashion (i.e., it is not just a subspace)

Geodesic distances differ from those in the input space.
29 / 82



Images/cinvestav-1.jpg

Facts
First
Working with manifolds can be seen as approximately implementing the
semi-supervised smoothness assumption.

Algorithms use the metric of the manifold for computing geodesic
distances.

Second
If we view the manifold as an approximation of the high-density regions.

The semi-supervised smoothness assumption reduces to the standard
smoothness assumption of supervised learning, applied on the
manifold.

Third
if the manifold is embedded into the high-dimensional input space in a
curved fashion (i.e., it is not just a subspace)

Geodesic distances differ from those in the input space.
29 / 82



Images/cinvestav-1.jpg

Facts
First
Working with manifolds can be seen as approximately implementing the
semi-supervised smoothness assumption.

Algorithms use the metric of the manifold for computing geodesic
distances.

Second
If we view the manifold as an approximation of the high-density regions.

The semi-supervised smoothness assumption reduces to the standard
smoothness assumption of supervised learning, applied on the
manifold.

Third
if the manifold is embedded into the high-dimensional input space in a
curved fashion (i.e., it is not just a subspace)

Geodesic distances differ from those in the input space.
29 / 82



Images/cinvestav-1.jpg

Outline
1 Introduction

Setup
History

2 When can semi-supervised learning work?
The Four Principles
The Semi-Supervised Smoothness Assumption
The Cluster Assumption
The Manifold Assumption
The Transduction Principle

3 The Paradigms of SSL
Introduction
The Generative Paradigm
Low-Density Separation
Graph-Based Methods

4 Text Classification Using EM
A Generative Model for Text
Model
A Document as a Vector
Final Distribution
Supervised Text Classification with Generative Models
Semi-Supervised Text Classification with EM
Classifying Unlabeled Data

The Final Semi-Supervised EM Algorithm

30 / 82



Images/cinvestav-1.jpg

Vapnik’s principle

Definition
High-dimensional estimation problems should attempt to follow the
following principle:

When trying to solve some problem, one should not solve a more
difficult problem as an intermediate step.

For example in supervised learning
Generative models estimate the density of x as an intermediate step.
Discriminative methods directly estimate the labels.

Given that
Label predictions are only required for a given test set in the transductive
setting.
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setting.
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Therefore

While an inductive method infers a function

f : X → Y (2)

Over the entire space to obtain inferences f (xi) over inputs xi.

This is different of Transduction
Transduction consists of directly estimating the finite set of test labels,

f : Xu → Y (3)

Note: This is only defined on the test set
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Transduction VS SSL

Remark
Note that transduction is not the same as SSL:

Some semi-supervised algorithms are transductive, but others are
inductive.
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What?
To see why the difference, imagine the following example
Suppose we are given a transductive algorithm which produces a solution
superior to an inductive algorithm trained on the same labeled data
(Discarding the unlabeled data).

This difference might be due to the following points
Transduction follows Vapnik’s principle more closely than induction
does.
The transductive algorithm takes advantage of the unlabeled data in
a way similar to semi-supervised learning algorithms.

Remark
There is ample evidence for improvements being due to the second of
these points.
It seems that there are no empirical results that selectively support
the first point.
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2 When can semi-supervised learning work?
The Four Principles
The Semi-Supervised Smoothness Assumption
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3 The Paradigms of SSL
Introduction
The Generative Paradigm
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A Generative Model for Text
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A Document as a Vector
Final Distribution
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Setup

Since SSL methods are supervised learning techniques
The SSL’s methods can be divided into

Generative
Low-Density Separation
Graph-Based methods

Although, there is the need to be careful given the unlabeled data!!!
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Introduction

Classes are modeled using a distribution P (x|y)
For this, we use a family of models parametrized by

{P (x|y, θ)} (4)

Furthermore
The class of priors P (y) for the labels is model by

πy = P (y|π) with π = (πy)y (5)

This is known as the joint density model
After all we are using a full joint density P (x, y) by
P (x|y,θ)P (y|π) = P (x|y,θ)πy
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Example
Graphical Model of the Joint Density

Thus for any fixed θ̂ and π̂, and a labels y ∈ {1, ...,M}

P
(
y|x, θ̂, π̂

)
=

P
(
x|y, θ̂

)
π̂y∑M

y′=1 P
(
x|y′, θ̂

)
π̂y′

(6)

Alternatively
One can obtain the Bayesian predictive distribution P (y|x, Dl) (Dl the
labeled data) by averaging

P (y|x, θ, π)
P (θ, π|Dl)

(7)
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Clearly

The marginal P (x|θ, π) can be seen as

P (x|θ, π) =
M∑
y=1

P (x|y,θ)πy (8)

If labeled and unlabeled data are available
A natural criterion emerges as the joint log likelihood of both Dl and Du:

n∑
i=1

log πyiP (xi|yi,θ) +
n+m∑
i=n+1

log

 M∑
y=1

πyP (xi|y,θ)

 (9)
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Thus

Essentially
It is an issue of maximum likelihood in the presence of missing data by
threating y as a latent variable.

Clearly
We can deal with this problem using EM algorithm.

However
Some researchers have been quick in hailing this strategy as an obvious
solution SSL:

Problem maximizing the joint likelihood of a finite sample need not
lead to a small classification error.
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Introduction

We want to
To push the decision boundary away from the unlabeled points.

The most common approach
To use a maximum margin algorithm as SVM.

This method is known as
The method of maximizing the margin for unlabeled as well as labeled
points is called the Transductive SVM (TSVM).
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Thus

The process using a SVM is as follow
1 Starting from the SVM solution as trained on the labeled data only.
2 The unlabeled points are labeled by SVM predictions.
3 The SVM is retrained on all points.

Thus: This is iterated while the weight of the unlabeled points is
slowly increased.
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Alternatives
Two alternatives to the TSVM are

1 Probability framework.
2 Information theoretic framework.

For example
We can use binary Gaussian process classification

By introducing a null class that occupies the space between the two
regular classes.

Another example
Using Entropy Minimization, it is possible to push the class-conditional
probabilities P (y|x) to 0 or 1 at unlabeled and labeled points.

Given the smoothness assumption, the probability will tend to 0 or 1
in any high-density region.
While class boundaries correspond to intermediate probabilities.
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Graph-Based Methods

This has been an active area of research in SSL
The common denominator of these methods is that

The data are represented by the nodes of a graph.
The edges are the pairwise distance between nodes.

I Missing edges correspond to infinite distances.

Now
If the distance of two points is computed by minimizing the aggregate
path distance over all paths connecting the two points.

This is an approximation to the geodesic distance of the two points!!!

Then, the graph
It can be argued to build on the manifold assumption.
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Now

Most graph methods
They refer to the graph by utilizing the Laplacian Matrix.

Setup
Let be G = (V,E) a graph with real edge weights given by weight function
w : E → R with:

w (e) represents the similarity of the incident nodes.
A missing edge correspond to zero similarity.

Now
The weighted adjacency matrix W of graph G is defined by

W ij =
{
w (e) if e = (i, j) ∈ E
0 if e = (i, j) /∈ E

(10)
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The diagonal matrix D

Definition
The diagonal matrix D defined by Dii =

∑
jW ij is called the degree

matrix of G.

Although there are different ways of defining the Laplacian Matrix
We decided to use the normalized and unormalized versions.

Laplacian Matrix
Normalized Matrix: L = I −D−1/2WD−

1/2.
Unormalized Matrix: L = D −W .
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The Multinomial Distribution

Definition
(u1, u2, ..., uk) is said to b follow a multinomial distribution with
parameters (N, p1, p2, ..., pk).

p (x1, x2, ..., xk|N, p1, p2, ..., pk) = N!
x1!x2! · · ·xk!

px1
1 p

x2
2 · · · p

xk
k (11)

Under the following conditions
1 Number of trials N > 0.
2 xi ∈ {0, 1, 2, ...,N}.
3
∑k
i=1 xi = N.

4
∑k
i=1 pi = 1.
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Now, assume
M is the number of classes.
And you have a vocabulary X of size |X|.
Each document xi has |xi| words in it.

How do we create a document using this model?
As it stands, it looks difficult!!!
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Model

First
We roll a biased M -sided die to determine the class of our document.

Second
Then, we pick up the biased |X|-sided die that corresponds to the chosen
class.

Third
We roll this die |xi| times, and count how many times each word occurs.

These word counts form the generated document.
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Formally
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It is generated according to a probability distribution with parameter θ.

The probability distribution for the documents
It consists of a mixture of components cj ∈ {1, 2, ...,M}.

Thus
A document xi is created by first selecting a mixture component according
to the mixture weights (Class probability), P (cj |θ).
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Next

We can use this mixture component
This selected mixture component to to generate a document according to
its own parameters, with distribution P (xi|cj , θ)

Thus the likelihood to see a particular document xi is

P (xi|θ) =
∑

j∈{1,2,...,M}
P (cj |θ)P (xi|cj , θ) (12)

Each document has a class label
We assume a one-to-one correspondence between mixture model
components and classes.

59 / 82



Images/cinvestav-1.jpg

Next

We can use this mixture component
This selected mixture component to to generate a document according to
its own parameters, with distribution P (xi|cj , θ)

Thus the likelihood to see a particular document xi is

P (xi|θ) =
∑

j∈{1,2,...,M}
P (cj |θ)P (xi|cj , θ) (12)

Each document has a class label
We assume a one-to-one correspondence between mixture model
components and classes.

59 / 82



Images/cinvestav-1.jpg

Next

We can use this mixture component
This selected mixture component to to generate a document according to
its own parameters, with distribution P (xi|cj , θ)

Thus the likelihood to see a particular document xi is

P (xi|θ) =
∑

j∈{1,2,...,M}
P (cj |θ)P (xi|cj , θ) (12)

Each document has a class label
We assume a one-to-one correspondence between mixture model
components and classes.

59 / 82



Images/cinvestav-1.jpg

Now

Thus
We use cj to indicate the jth mixture component as well the jth class.

Not only that
The class label for a particular document xi is written yi.

Thus
If document xi was generated by mixture component cj we say yi = cj .
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Now

A document, xi , is a vector of word counts
Thus, we write xit to be the number of times word wt occurs in document
xi.

Length of the Document
When a document is to be generated by a particular mixture component
the document length is chosen independently of the component.

|xi| =
|X|∑
t=1

xit (13)

Then
The selected mixture component is used to generate a document of the
specified length, by drawing from its multinomial distribution
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Thus

The probability of a document given a mixture component in terms of
its constituent features

P (xi|cj , θ) ∝ P (|xi|)
∏
wt∈X

P (wt|cj , θ)xit (14)

Under the standard naive assumption
The words of a document are conditionally independent of the other words
in the same document, given the class label.

Thus
The parameters of an individual mixture component define a multinomial
distribution over words.
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Meaning

The collection of word probabilities
Each written θwt|cj such that θwt|cj ≡ P (wt|cj , θ) where t ∈ {1, 2, ..., |X|}
and

∑
t P (wt|cj , θ) = 1.

In addition
Since we assume that for all classes, document length is identically
distributed, it does not need to be parameterized for classification.

What else we need?
We only need the mixture weights (Class probabilities), θcj ≡ P (cj |θ).
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Thus

The complete collection of model parameters, θ, defines a set of
multinomials and class probabilities

θ =
{
θwt|cj |wt ∈ X, cj ∈ {1, ...,M} , θcj : cj ∈ {1, ...,M}

}
(15)

Thus, we get

P (xi|θ) = P (|xi|)
∑

j∈{1,2,...,M}
P (cj |θ)

∏
wt∈X

P (wt|cj , θ)xit (16)
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Now

Given the generative model
We need to estimate the values θ̂.

For Naive Bayes
We can use MAP to find the arg maxθ P (θ|X,Y ) by using the likelihood
of the data and a prior.

We know that the commonly used conjugate prior distribution for
multinomial distributions is the Dirichlet Prior

P
(
θwt|cj |α

)
∝
∏
wt∈X

P (wt|cj)αt−1 (17)

Where αt are constants greater than zero.
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The Dirichlet Distribution

Let Θ = {θ1, θ2, ..., θm}
We write:

Θ ∼ Dirichlet (α1, α2, ..., αm) (18)

The pmf looks like

P (θ1, θ2, ..., θm) = Γ (
∑
k αk)∏

k Γ (αk)

m∏
k=1

θαk−1
k (19)
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Examples

Dirichlet distributions under different α′s
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In addition

Dirichlet distributions have two parameters
The scale or concentration σ =

∑
t αt.

The base measure (α′1, ..., α′k) with α′t = αt
σ .
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Thus

We can set all αt = 1
This prior favors the uniform distribution.

Thus
The parameter estimation formulas that result from maximization with the
data and our prior are the familiar smoothed ratios of empirical counts.

We have that

θ̂wt|cj ≡ P
(
wt|cj , θ̂

)
≡

1 +
∑
xi∈X δijxit

|X|+
∑|X|
s=1

∑
xi∈X δijxis

(20)
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Where

You have that

δij =
{

1 if yi = cj

0 if yi 6= cj
(21)

In addition

θ̂cj ≡ P
(
cj |θ̂

)
= 1 +

∑|X|
i=1 δij

M + |X| (22)

Now
Given estimates of these parameters calculated from labeled training
documents.
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Thus

Something Notable
It is possible to turn the generative model backward and calculate the
probability that a particular mixture component generated a given
document to perform classification.

Because

P
(
yi = cj |xi, θ̂

)
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P
(
cj |θ̂

)
P
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(
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Final Document classification

Finally
If our task is to classify document xi in some class, we take
arg maxj P

(
yi = cj |xi, θ̂

)
as such a a class.
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What to do?

In the semi-supervised setting with labeled and unlabeled data
We still like to find the MAP parameter estimates.

Given that there is no labeled data
We do not have labeled data, thus the closed-form equations from the
previous section are not applicable

For this, we can use the EM technique
The EM technique as applied to the case of labeled and unlabeled data
with naive Bayes yields a straightforward algorithm.
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The Log Probability of all Data and Prior

We have that

l (θ|X,Y ) = log (P (θ)) +
∑
xi∈Xu

log

 ∑
j∈{1,...,M}

P (cj |θ)P (xi|cj , θ)

+ ...

∑
xi∈Xl

log [P (yi = cj |θ)P (xi|yi = cj , θ)]
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