Introduction to Machine Learning
 Page Ranking and the Web

Andres Mendez-Vazquez

August 21, 2020

Outline

(1) Graph Data

- Question
- Challenges
- Ranking
(2) Link Analysis Algorithms
- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Graph Data: Social Networks

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011].

Graph Data: Media Networks

Connections between political blogs

Polarization of the network [Adamic-Glance, 2005].

Graph Data: Information Nets

Citation networks and Maps of science
[Börner et al., 2012]

Graph Data: Communication Nets

Internet

Web as Graph

Web as a directed graph

- Nodes: Web-pages
- Edges: Hyperlinks

Web as Graph

Web as a directed graph

- Nodes: Web-pages
- Edges: Hyperlinks

We can have the following Pages

Web as Graph

Now Add the Edges

Another Example, A Semantic Web

Outline

(1) Graph Data

- Question
- Challenges
- Ranking
(2) Link Analysis Algorithms
- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic
(4) How do we actually compute the Page Rank?
- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Broad Question

- How to organize the Web?

Yellow Pages - People Search - City Maps - Stock Quotes - Sports Scores

- Arts and Humanities - Architecture, Photography, Literature...
- Business and Economy [Xtra!] - Companies, Investments. Classifieds...
- Computers and Internet [Xtra!] - Intemet, WWW, Software, Multimedia.
- Education - Universities, K-12, College Entrance...

Broad Question

- How to organize the Web?

First try

- Human curated Web directories

Yellow Pages - People Sencch - City Maps - Stock Quotes - Sports Scores

- Arts and Humanities - Architecture, Photography, Literature...
- Business and Economy [Xtra!] - Companies, Investments. Classifieds..
- Computers and Internet [Xtra!] - Internet, WWW, Software, Multimedia.
- Education - Universities, K-12. College Entrance...

Broad Question

- How to organize the Web?

First try

- Human curated Web directories
- Yahoo, DMOZ, LookSmart

Yellow Pages - People Sencch - City Maps - Stock Quotes - Sports Scores

- Arts and Humanities - Architecture, Photography, Literature...
- Business and Economy [Xtra!] - Companies, Investments. Classifieds..
- Computers and Internet [Xtra!] - Internet, WWW, Software, Multimedia.
- Education - Universities, K-12. College Entrance...

Broad Question

- How to organize the Web?

First try

- Human curated Web directories
- Yahoo, DMOZ, LookSmart

- Arts and Humanities - Architecture, Photography, Literature...
- Business and Economy [Xtra!] - Companies, Investments. Classifieds...
- Computers and Internet [Xtra!] - Internet, WWW, Software, Multimedia.
- Education - Universities, K-12. College Entrance...

Second try

- Web Search

Broad Question

- How to organize the Web?

First try

- Human curated Web directories
- Yahoo, DMOZ, LookSmart

Yellow Pages - People Search - City Maps - Stock Quotes - Sports Scores

- Arts and Humanities - Architecture, Photography, Literature...
- Business and Economy [Xtra!] - Companies, Investments. Classifieds...
- Computers and Internet [Xtra!] - Internet, WWW, Software, Multimedia.
- Education - Universities, K-12. College Entrance...

Second try

- Web Search
- Information Retrieval investigates: Find relevant docs in a small and trusted set
\star Newspaper articles, Patents, etc.

Broad Question

- How to organize the Web?

First try

- Human curated Web directories
- Yahoo, DMOZ, LookSmart

- Arts and Humanities - Architecture, Photography, Literature.
- Business and Economy [Xtra!] - Companies, Investments. Classifieds..
- Computers and Internet [Xtra!] - Internet, WWW, Software, Multimedia.
- Education - Universities, K-12. College Entrance...

Second try

- Web Search
- Information Retrieval investigates: Find relevant docs in a small and trusted set
\star Newspaper articles, Patents, etc.
- But the Web is huge, full of non-trustable documents, random things, web spam, etc.

Outline

(1) Graph Data

- Question
- Challenges
- Ranking
(2) Link Analysis Algorithms
- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic
(4) How do we actually compute the Page Rank?
- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Web Search: Two Challenges

We have two main challenges on web search.

Web Search: Two Challenges

Thus

We have two main challenges on web search.

First

- Web contains many sources of information Who do you "trust"?

Web Search: Two Challenges

Thus

We have two main challenges on web search.

First

- Web contains many sources of information Who do you "trust"?
- Trick: Trustworthy pages may point to each other!

Web Search: Two Challenges

Thus

We have two main challenges on web search.

First

- Web contains many sources of information Who do you "trust"?
- Trick: Trustworthy pages may point to each other!

Second

- What is the "best" answer to query "newspaper"?

Web Search: Two Challenges

Thus

We have two main challenges on web search.

First

- Web contains many sources of information Who do you "trust"?
- Trick: Trustworthy pages may point to each other!

Second

- What is the "best" answer to query "newspaper"?
- No single right answer

Web Search: Two Challenges

Thus

We have two main challenges on web search.

First

- Web contains many sources of information Who do you "trust"?
- Trick: Trustworthy pages may point to each other!

Second

- What is the "best" answer to query "newspaper"?
- No single right answer
- Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Outline

(1) Graph Data

- Question
- Challenges
- Ranking
(2) Link Analysis Algorithms
- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic
(4) How do we actually compute the Page Rank?
- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Ranking Nodes on the Graph

All web pages are not equally "important" : WWW. VS. www.stanford.edu

Ranking Nodes on the Graph

All web pages are not equally "important" : vs.
www.stanford.edu

Web-graph node connectivity

- There is large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

Outline

(I) Graph Data

- Question
- Challenges
- Ranking
(2) Link Analysis Algorithms
- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic
(4) How do we actually compute the Page Rank?
- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Link Analysis Algorithms

We will cover the following Link Analysis approaches for computing importance of nodes in a graph

- Page Rank

Link Analysis Algorithms

We will cover the following Link Analysis approaches for computing importance of nodes in a graph

- Page Rank
- Hubs and Authorities (HITS)

Link Analysis Algorithms

We will cover the following Link Analysis approaches for computing importance of nodes in a graph

- Page Rank
- Hubs and Authorities (HITS)
- Topic-Specific (Personalized) Page Rank

Link Analysis Algorithms

We will cover the following Link Analysis approaches for computing importance of nodes in a graph

- Page Rank
- Hubs and Authorities (HITS)
- Topic-Specific (Personalized) Page Rank
- Web Spam Detection Algorithms

Outline

(1) Graph Data

- Question
- Challenges
- Ranking
(2) Link Analysis Algorithms
- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic
(4) How do we actually compute the Page Rank?
- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Link as Votes

Idea

- Links as votes:

Link as Votes

Idea

- Links as votes:
- A Page is more important if it has more incoming links

Link as Votes

Idea

- Links as votes:
- A Page is more important if it has more incoming links
- In-coming links? Out-going links?

Link as Votes

Idea

- Links as votes:
- A Page is more important if it has more incoming links
- In-coming links? Out-going links?

Think of in-links as votes

- www.stanford.edu has 23,400 in-links

Link as Votes

Idea

- Links as votes:
- A Page is more important if it has more incoming links
- In-coming links? Out-going links?

Think of in-links as votes

- www.stanford.edu has 23,400 in-links
- www.joe-schmoe.com has 1 in-link

Link as Votes

Idea

- Links as votes:
- A Page is more important if it has more incoming links
- In-coming links? Out-going links?

Think of in-links as votes

- www.stanford.edu has 23,400 in-links
- www.joe-schmoe.com has 1 in-link

Are all in-links are equal?

- Links from important pages count more

Link as Votes

Idea

- Links as votes:
- A Page is more important if it has more incoming links
- In-coming links? Out-going links?

Think of in-links as votes

- www.stanford.edu has 23,400 in-links
- www.joe-schmoe.com has 1 in-link

Are all in-links are equal?

- Links from important pages count more
- Recursive question!

What do we want?

We want to generate Page Rank Scores from the structure

What do we want?

We want to generate Page Rank Scores from the structure

Simple Recursive Formulation

Link's vote

Each link's vote is proportional to the importance of its source page.

Simple Recursive Formulation

Link's vote

Each link's vote is proportional to the importance of its source page.

Out-links

If page j with importance r_{j} has n out-links, each link gets $\frac{r_{j}}{n}$ votes.

Simple Recursive Formulation

In-links

Page j 's own importance is the sum of the votes on its in-links

$$
\begin{equation*}
r_{j}=\frac{r_{i}}{3}+\frac{r_{k}}{4} \tag{1}
\end{equation*}
$$

Simple Recursive Formulation

In-links

Page j 's own importance is the sum of the votes on its in-links

$$
\begin{equation*}
r_{j}=\frac{r_{i}}{3}+\frac{r_{k}}{4} \tag{1}
\end{equation*}
$$

Outline

(1) Graph Data

- Question
- Challenges
- Ranking
(2) Link Analysis Algorithms
- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic
(4) How do we actually compute the Page Rank?
- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Page Rank: The "Flow" Model

Voting

A "vote" from an important page is worth more

Flow Equations

$$
\begin{aligned}
& r_{y}=\frac{r_{y}}{2}+\frac{r_{a}}{2} \\
& r_{a}=\frac{r_{y}}{2}+r_{m} \\
& r_{m}=\frac{r_{a}}{2}
\end{aligned}
$$

The Web in 1839

Page Rank: The "Flow" Model

Voting

A "vote" from an important page is worth more

Importance

A page is important if it is pointed to by other important pages

Flow Equations

$$
\begin{aligned}
& r_{y}=\frac{r_{y}}{2}+\frac{r_{a}}{2} \\
& r_{a}=\frac{r_{y}}{2}+r_{m} \\
& r_{m}=\frac{r_{a}}{2}
\end{aligned}
$$

The Web in 1839

Page Rank: The "Flow" Model

Voting

A "vote" from an important page is worth more

Importance

A page is important if it is pointed to by other important pages

Define a "rank" r_{j} for page j

$$
r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}
$$

$d_{i} \ldots$ out-degree of node i

Flow Equations

$$
\begin{aligned}
& r_{y}=\frac{r_{y}}{2}+\frac{r_{a}}{2} \\
& r_{a}=\frac{r_{y}}{2}+r_{m} \\
& r_{m}=\frac{r_{a}}{2}
\end{aligned}
$$

The Web in 1839

Solving the Flow Equations

Something Notable

- Flow equations: 3 equations, 3 unknowns, no constants:
- No unique solution.

Flow equations:
$r_{y}=r_{y} / 2+r_{a} / 2$
$r_{a}=r_{y} / 2+r_{m}$
$r_{m}=r_{a} / 2$

- All solutions equivalent modulo the scale factor.

Solving the Flow Equations

Something Notable

- Flow equations: 3 equations, 3 unknowns, no constants:
- No unique solution.

Flow equations:
$r_{y}=r_{y} / 2+r_{a} / 2$
$r_{a}=r_{y} / 2+r_{m}$
$r_{m}=r_{a} / 2$

- All solutions equivalent modulo the scale factor.
- Additional constraint forces uniqueness:

Solving the Flow Equations

Something Notable

- Flow equations: 3 equations, 3 unknowns, no constants:
- No unique solution.

Flow equations:
$r_{y}=r_{y} / 2+r_{a} / 2$
$r_{a}=r_{y} / 2+r_{m}$
$r_{m}=r_{a} / 2$

- All solutions equivalent modulo the scale factor.
- Additional constraint forces uniqueness:
- $r_{y}+r_{a}+r_{m}=1$

Solving the Flow Equations

Something Notable

- Flow equations: 3 equations, 3 unknowns, no constants:
- No unique solution.

Flow equations:
$r_{y}=r_{y} / 2+r_{a} / 2$
$r_{a}=r_{y} / 2+r_{m}$
$r_{m}=r_{a} / 2$

- All solutions equivalent modulo the scale factor.
- Additional constraint forces uniqueness:
- $r_{y}+r_{a}+r_{m}=1$
\star Solution: $r_{y}=\frac{2}{5}, r_{a}=\frac{2}{5}, r_{m}=\frac{1}{5}$

Solving the Flow Equations

Something Notable

- Flow equations: 3 equations, 3 unknowns, no constants:
- No unique solution.

Flow equations:
$r_{y}=r_{y} / 2+r_{a} / 2$
$r_{a}=r_{y} / 2+r_{m}$
$r_{m}=r_{a} / 2$

- All solutions equivalent modulo the scale factor.
- Additional constraint forces uniqueness:
- $r_{y}+r_{a}+r_{m}=1$
\star Solution: $r_{y}=\frac{2}{5}, r_{a}=\frac{2}{5}, r_{m}=\frac{1}{5}$

Something Notable

- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs

Solving the Flow Equations

Something Notable

Flow equations:
$r_{y}=r_{y} / 2+r_{a} / 2$
$r_{a}=r_{y} / 2+r_{m}$
$r_{m}=r_{a} / 2$

- No unique solution.
- All solutions equivalent modulo the scale factor.
- Additional constraint forces uniqueness:
- $r_{y}+r_{a}+r_{m}=1$
\star Solution: $r_{y}=\frac{2}{5}, r_{a}=\frac{2}{5}, r_{m}=\frac{1}{5}$

Something Notable

- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs

Therefore

We need a new formulation!

Outline

(1) Graph Data

- Question
- Challenges
- Ranking
(2) Link Analysis Algorithms
- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Page Rank - Google and Company

Page Rank
Invented by Larry Page and Sergei Brin (1998) during his Ph.d studies at Stanford University

Page Rank - Google and Company

Page Rank

Invented by Larry Page and Sergei Brin (1998) during his Ph.d studies at Stanford University

They quit the Ph.d program
However, you need to have the knowledge!!!

Page Rank - Google and Company

Page Rank

Invented by Larry Page and Sergei Brin (1998) during his Ph.d studies at Stanford University

They quit the Ph.d program
However, you need to have the knowledge!!!

Not only that they authored the following paper
"The Anatomy of a Large-Scale Hypertextual Web Search Engine"

Page Rank: Matrix Formulation

Stochastic adjacency matrix M

- Let page i has d_{i} out-links

Page Rank: Matrix Formulation

Stochastic adjacency matrix M

- Let page i has d_{i} out-links
- If $i \rightarrow j$, then $M_{j i}=\frac{1}{d_{i}}$ else $M_{j i}=0$

Page Rank: Matrix Formulation

Stochastic adjacency matrix M

- Let page i has d_{i} out-links
- If $i \rightarrow j$, then $M_{j i}=\frac{1}{d_{i}}$ else $M_{j i}=0$
- M is a column stochastic matrix

Page Rank: Matrix Formulation

Stochastic adjacency matrix M

- Let page i has d_{i} out-links
- If $i \rightarrow j$, then $M_{j i}=\frac{1}{d_{i}}$ else $M_{j i}=0$
- M is a column stochastic matrix
* Columns sum to 1

Page Rank: Matrix Formulation

Stochastic adjacency matrix M

- Let page i has d_{i} out-links
- If $i \rightarrow j$, then $M_{j i}=\frac{1}{d_{i}}$ else $M_{j i}=0$
- M is a column stochastic matrix
\star Columns sum to 1

Rank vector r

- vector with an entry per page

Page Rank: Matrix Formulation

Stochastic adjacency matrix M

- Let page i has d_{i} out-links
- If $i \rightarrow j$, then $M_{j i}=\frac{1}{d_{i}}$ else $M_{j i}=0$
- M is a column stochastic matrix
\star Columns sum to 1

Rank vector r

- vector with an entry per page
- r_{i} is the importance score of page i

Page Rank: Matrix Formulation

Stochastic adjacency matrix M

- Let page i has d_{i} out-links
- If $i \rightarrow j$, then $M_{j i}=\frac{1}{d_{i}}$ else $M_{j i}=0$
- M is a column stochastic matrix
\star Columns sum to 1
Rank vector r
- vector with an entry per page
- r_{i} is the importance score of page i
- $\sum_{i} r_{i}=1$

Page Rank: Matrix Formulation

Stochastic adjacency matrix M

- Let page i has d_{i} out-links
- If $i \rightarrow j$, then $M_{j i}=\frac{1}{d_{i}}$ else $M_{j i}=0$
- M is a column stochastic matrix
* Columns sum to 1

Rank vector r

- vector with an entry per page
- r_{i} is the importance score of page i
- $\sum_{i} r_{i}=1$

The flow equations can be written

$$
\begin{aligned}
r_{j} & =\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}} \\
\boldsymbol{r} & =M \cdot \boldsymbol{r}
\end{aligned}
$$

Example

- Remember the flow equation

$$
r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}
$$

- Flow equation in the matrix form

$$
\boldsymbol{r}=M \cdot \boldsymbol{r}
$$

Example

- Remember the flow equation

$$
r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}
$$

- Flow equation in the matrix form

$$
\boldsymbol{r}=M \cdot \boldsymbol{r}
$$

Example of i links to 3 pages, including j

Outline

(1) Graph Data

- Question
- Challenges
- Ranking
(2) Link Analysis Algorithms
- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic
(4) How do we actually compute the Page Rank?
- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Stochastic Matrices

Markov process

A stochastic process is called a Markov process when it has the Markov property:

$$
\begin{equation*}
P\left(X_{t_{n}} \mid X_{t_{n-1}}=x_{n-1}, \ldots X_{t_{1}}=x_{1}\right)=P\left(X_{t_{n}} \mid X_{t_{n-1}}=x_{n-1}\right) \tag{2}
\end{equation*}
$$

Stochastic Matrices

Markov process

A stochastic process is called a Markov process when it has the Markov property:

$$
\begin{equation*}
P\left(X_{t_{n}} \mid X_{t_{n-1}}=x_{n-1}, \ldots X_{t_{1}}=x_{1}\right)=P\left(X_{t_{n}} \mid X_{t_{n-1}}=x_{n-1}\right) \tag{2}
\end{equation*}
$$

Simply

The future path of a Markov process, given its current state and the past history before, depends only on the current state (not on how this state has been reached).

Stochastic Matrices

Markov process

A stochastic process is called a Markov process when it has the Markov property:

$$
\begin{equation*}
P\left(X_{t_{n}} \mid X_{t_{n-1}}=x_{n-1}, \ldots X_{t_{1}}=x_{1}\right)=P\left(X_{t_{n}} \mid X_{t_{n-1}}=x_{n-1}\right) \tag{2}
\end{equation*}
$$

Simply

The future path of a Markov process, given its current state and the past history before, depends only on the current state (not on how this state has been reached).

Thus (Quite an Oversimplification!!!)

A Markov process is characterized by the (one-step) transition probabilities:

$$
\begin{equation*}
p_{i, j}=P\left(X_{t+1}=i \mid X_{t}=j\right) \tag{3}
\end{equation*}
$$

Markov Chains

Definition (Oversimplified)

A Markov chain is a process X_{t} indexed by integers $t=0,1, \ldots$ such that the states X_{t} describe the chain at time t.

Markov Chains

Definition (Oversimplified)

A Markov chain is a process X_{t} indexed by integers $t=0,1, \ldots$ such that the states X_{t} describe the chain at time t.

From here

The probability of a path $i_{0}, i_{1}, \ldots, i_{n}$ is

$$
\begin{equation*}
P\left(X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right)=P\left(X_{0}=i_{0}\right) p_{i_{0} i_{1}} p_{i_{1} i_{2}} \cdots p_{i_{n-1} i_{n}} \tag{4}
\end{equation*}
$$

The transition probability matrix of a Markov chain
The transition probabilities can be arranged as transition probability matrix $\boldsymbol{P}=\left(p_{i, j}\right)$

$$
\begin{gathered}
\text { Final State } \longrightarrow \\
\text { Initial State } \downarrow\left(\begin{array}{cccc}
p_{1,1} & p_{1,2} & p_{1,3} & \cdots \\
p_{2,1} & p_{2,2} & p_{2,3} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\boldsymbol{P}
\end{gathered}
$$

The transition probability matrix of a Markov chain
The transition probabilities can be arranged as transition probability matrix $\boldsymbol{P}=\left(p_{i, j}\right)$

Final State \longrightarrow

$$
\text { Initial State } \downarrow\left(\begin{array}{cccc}
p_{1,1} & p_{1,2} & p_{1,3} & \cdots \\
p_{2,1} & p_{2,2} & p_{2,3} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\boldsymbol{P}
$$

The column j contains the transition probabilities from state j to other states.
Since the system always goes to some state, the sum of the column probabilities is 1 :

$$
\begin{equation*}
\mathbf{1}^{T} P=\mathbf{1}^{T} \tag{5}
\end{equation*}
$$

Stochastic Matrix

Definition

- A matrix with non-negative elements such that the sum of each column equals "ONE" is called a stochastic matrix.

Example

We have the following state machine

Example

We have the following state machine

We have the following Stochastic Matrix

$$
\boldsymbol{P}=\left(\begin{array}{ccc}
1-p & 1-p & 0 \tag{6}\\
p(1-p) & p(1-p) & 1-p \\
p^{2} & p^{2} & p
\end{array}\right)
$$

With $p=\frac{1}{3}$

Therefore, we can use that

To describe the transition in the Markov Chain
Let $\boldsymbol{p}_{t} \in \mathbb{R}^{n}$ is the distribution matrix of X_{t} at time t

$$
\begin{equation*}
\left(\boldsymbol{p}_{t}\right)_{i}=P\left(X_{t}=i\right) \tag{7}
\end{equation*}
$$

Therefore, we can use that

To describe the transition in the Markov Chain
Let $\boldsymbol{p}_{t} \in \mathbb{R}^{n}$ is the distribution matrix of X_{t} at time t

$$
\begin{equation*}
\left(\boldsymbol{p}_{t}\right)_{i}=P\left(X_{t}=i\right) \tag{7}
\end{equation*}
$$

Then moving from a distribution to another one we have

$$
\begin{equation*}
\boldsymbol{p}_{t+1}=\boldsymbol{P} \boldsymbol{p}_{t} \tag{8}
\end{equation*}
$$

Outline

(I) Graph Data

- Question
- Challenges
- Ranking
(2) Link Analysis Algorithms
- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic
(4) How do we actually compute the Page Rank?
- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Here, we have Perron-Frobenius

Basic Definition

- A matrix is called positive if all its entries are positive.

Here, we have Perron-Frobenius

Basic Definition

- A matrix is called positive if all its entries are positive.
- Non-negative, if all its entries are non-negative.

Here, we have Perron-Frobenius

Basic Definition

- A matrix is called positive if all its entries are positive.
- Non-negative, if all its entries are non-negative.

Basic Facts

If $A \geq 0$ (Element wise) with $A \in \mathbb{R}^{n \times n}$ and $z \geq 0$ with $z \in \mathbb{R}^{n}$, then $A z \geq 0$

Here, we have Perron-Frobenius

Basic Definition

- A matrix is called positive if all its entries are positive.
- Non-negative, if all its entries are non-negative.

Basic Facts

If $A \geq 0$ (Element wise) with $A \in \mathbb{R}^{n \times n}$ and $z \geq 0$ with $z \in \mathbb{R}^{n}$, then $A z \geq 0$

- Matrix Multiplication preserves non-negativity!!!

Here, we have Perron-Frobenius

Basic Definition

- A matrix is called positive if all its entries are positive.
- Non-negative, if all its entries are non-negative.

Basic Facts

If $A \geq 0$ (Element wise) with $A \in \mathbb{R}^{n \times n}$ and $z \geq 0$ with $z \in \mathbb{R}^{n}$, then $A z \geq 0$

- Matrix Multiplication preserves non-negativity!!!

Regularity

Given $A \in \mathbb{R}^{n \times n}$ with $A \geq 0$, then A is called regular if some $k \geq 1$, $A^{k}>0$.

Path Property

Meaning of the Previous Definition

From a directed graph on nodes $1, \ldots, n$ with an arc from i to j whenever $A_{i j} \geq 0$ then

Path Property

Meaning of the Previous Definition

From a directed graph on nodes $1, \ldots, n$ with an arc from i to j whenever $A_{i j} \geq 0$ then

- $\left(A^{k}\right)_{i j}>0$ if and only if there is a path of length k from i to j.

Path Property

Meaning of the Previous Definition

From a directed graph on nodes $1, \ldots, n$ with an arc from i to j whenever $A_{i j} \geq 0$ then

- $\left(A^{k}\right)_{i j}>0$ if and only if there is a path of length k from i to j.

Something Notable

A is regular if for some k there is a path of length k from every node to every other node.

Perron-Frobenius Theorem for Regular Matrices

Theorem

Suppose $A \in \mathbb{R}^{n \times n}$ is non-negative and regular, i.e., $A^{k}>0$ for some k .

Perron-Frobenius Theorem for Regular Matrices

Theorem

Suppose $A \in \mathbb{R}^{n \times n}$ is non-negative and regular, i.e., $A^{k}>0$ for some k .

Then
(1) There is an eigenvalue $\lambda_{p f}$ of A that is real and positive, with positive left and right eigenvectors.

Perron-Frobenius Theorem for Regular Matrices

Theorem

Suppose $A \in \mathbb{R}^{n \times n}$ is non-negative and regular, i.e., $A^{k}>0$ for some k .

Then
(1) There is an eigenvalue $\lambda_{p f}$ of A that is real and positive, with positive left and right eigenvectors.
(2) For any other eigenvalue λ, we have $|\lambda|<\lambda_{p f}$.

Perron-Frobenius Theorem for Regular Matrices

Theorem

Suppose $A \in \mathbb{R}^{n \times n}$ is non-negative and regular, i.e., $A^{k}>0$ for some k.

Then

(1) There is an eigenvalue $\lambda_{p f}$ of A that is real and positive, with positive left and right eigenvectors.
(2) For any other eigenvalue λ, we have $|\lambda|<\lambda_{p f}$.
(3) The eigenvalue $\lambda_{p f}$ is simple, i.e., has multiplicity one, and corresponds to a 1×1 Jordan block.

Now, given our matrix \boldsymbol{P}

Given \boldsymbol{P} a stochastic matrix
Let π a Perron-Frobenius right eigenvector of P with $\pi \geq 0$ and $1^{T} \pi=1$.

Now, given our matrix \boldsymbol{P}

Given \boldsymbol{P} a stochastic matrix

Let π a Perron-Frobenius right eigenvector of P with $\pi \geq 0$ and $1^{T} \pi=1$.

Such that $P \pi=\pi$

Then π corresponds to an invariant distribution or equilibrium distribution of the Markov chain for the eigenvalue 1.

Now, given our matrix \boldsymbol{P}

Given \boldsymbol{P} a stochastic matrix

Let π a Perron-Frobenius right eigenvector of P with $\pi \geq 0$ and $1^{T} \pi=1$.

Such that $P \pi=\pi$

Then π corresponds to an invariant distribution or equilibrium distribution of the Markov chain for the eigenvalue 1.

Assume that

That \boldsymbol{P} is regular then i.e. that for some $k \boldsymbol{P}^{k}>0$.

Thus

If we can force \boldsymbol{P} to be regular

There is unique distribution π such that $\pi>0$.

Thus

If we can force \boldsymbol{P} to be regular

There is unique distribution π such that $\pi>0$.

Something Notable

- The eigenvalue 1 is simple and dominant.
- Thus, we have $\boldsymbol{p}_{t} \rightarrow \pi$ no matter what the initial distribution p_{0}

Thus, a Simple Algorithms

We have a simple method
Repeatedly apply $\boldsymbol{p}_{t+1}=\boldsymbol{P} \boldsymbol{p}_{t}$ until convergence to π.

Thus, a Simple Algorithms

We have a simple method
Repeatedly apply $\boldsymbol{p}_{t+1}=\boldsymbol{P} \boldsymbol{p}_{t}$ until convergence to π.
This is a method called
The Power Method

Thus, a Simple Algorithms

```
We have a simple method
Repeatedly apply \(\boldsymbol{p}_{t+1}=\boldsymbol{P} \boldsymbol{p}_{t}\) until convergence to \(\pi\).
```

This is a method called
The Power Method

Naive and expensive but

Stable!!!

Outline

(1) Graph Data

- Question
- Challenges
- Ranking
(2) Link Analysis Algorithms
- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic
(4) How do we actually compute the Page Rank?
- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Eigenvector Formulation

The flow equations is written

$$
\boldsymbol{r}=M \cdot \boldsymbol{r}
$$

Eigenvector Formulation

The flow equations is written

$$
\boldsymbol{r}=M \cdot \boldsymbol{r}
$$

Eigenvectors

So the rank vector r is an eigenvector of the stochastic web matrix M

- In fact, its first or principal eigenvector, with corresponding eigenvalue 1!!!

Eigenvector Formulation

Largest eigenvalue of M is 1 since M is column stochastic

- We know r is unit length and each column of M sums to one, so $M r \leq \mathbf{1}$

Eigenvector Formulation

Largest eigenvalue of M is 1 since M is column stochastic

- We know r is unit length and each column of M sums to one, so

$$
M r \leq \mathbf{1}
$$

Eigenvector Formulation

Largest eigenvalue of M is 1 since M is column stochastic

- We know r is unit length and each column of M sums to one, so

$$
M r \leq \mathbf{1}
$$

Thus

- We can obtain r !!!
- Using the Power Method!!!

Now going back to the Flow Equation \& M

	\mathbf{y}			
\mathbf{y}	\mathbf{a}	\mathbf{m}		
\mathbf{y}	$1 / 2$	$1 / 2$	0	
\mathbf{a}	$1 / 2$	0	1	
\mathbf{m}	0	$1 / 2$	0	
$r=M \cdot r$				

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

Outline

(1) Graph Data

- Question
- Challenges
- Ranking
(2) Link Analysis Algorithms
- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic
(4) How do we actually compute the Page Rank?
- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Power Iteration Method

We have that

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks.

Power Iteration Method

We have that

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks.

Power iteration: a simple iterative scheme

- Suppose there are N web pages

Power Iteration Method

We have that

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks.

Power iteration: a simple iterative scheme

- Suppose there are N web pages
- Initialize: $r^{(0)}=[1 / N, \ldots ., 1 / N]^{T}$

Power Iteration Method

We have that

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks.

Power iteration: a simple iterative scheme

- Suppose there are N web pages
- Initialize: $r^{(0)}=[1 / N, \ldots ., 1 / N]^{T}$
- Iterate: $r^{(t+1)}=M \cdot r^{(t)}$

Power Iteration Method

We have that

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks.

Power iteration: a simple iterative scheme

- Suppose there are N web pages
- Initialize: $r^{(0)}=[1 / N, \ldots ., 1 / N]^{T}$
- Iterate: $r^{(t+1)}=M \cdot r^{(t)}$
- Stop when $\left|r^{(t+1)}-r^{(t)}\right|_{1}<\epsilon$

Power Iteration Method

We have that

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks.

Power iteration: a simple iterative scheme

- Suppose there are N web pages
- Initialize: $r^{(0)}=[1 / N, \ldots, 1 / N]^{T}$
- Iterate: $r^{(t+1)}=M \cdot r^{(t)}$
- Stop when $\left|r^{(t+1)}-r^{(t)}\right|_{1}<\epsilon$
- $|x|_{1}=\sum_{1 \leq i \leq N}\left|x_{i}\right|$ is the L_{1} norm

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{t}}{d_{i}}
$$

Power Iteration Method

We have that

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks.

Power iteration: a simple iterative scheme

- Suppose there are N web pages
- Initialize: $r^{(0)}=[1 / N, \ldots, 1 / N]^{T}$
- Iterate: $r^{(t+1)}=M \cdot r^{(t)}$
- Stop when $\left|r^{(t+1)}-r^{(t)}\right|_{1}<\epsilon$
- $|x|_{1}=\sum_{1 \leq i \leq N}\left|x_{i}\right|$ is the L_{1} norm

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{t}}{d_{i}}
$$

$d_{i} \ldots$ out-degree of node i

Page Rank: How to solve?

Power Iteration

- Set $r_{j}=1 / N$
- 1: $r_{j}^{\prime}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r=r^{\prime}$
- Go to 1

Page Rank: How to solve?

Power Iteration

- Set $r_{j}=1 / N$
- 1: $r_{j}^{\prime}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r=r^{\prime}$
- Go to 1

Example

$$
\left[\begin{array}{c}
r_{y} \\
r_{a} \\
r_{m}
\end{array}\right]=\left[\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right]
$$

Iteration $0,1,2, \ldots$

Page Rank: How to solve?

Power Iteration

- Set $r_{j}=1 / N$

Page Rank: How to solve?

Power Iteration

- Set $r_{j}=1 / N$
- 1: $r_{j}^{\prime}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
m	0	$1 / 2$	0

$r_{y}=r_{y} / 2+r_{a} / 2$
$r_{a}=r_{y} / 2+r_{m}$
$r_{m}=r_{a} / 2$

Page Rank: How to solve?

Power Iteration

- Set $r_{j}=1 / N$
- 1: $r_{j}^{\prime}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r=r^{\prime}$

Page Rank: How to solve?

Power Iteration

- Set $r_{j}=1 / N$
- 1: $r_{j}^{\prime}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r=r^{\prime}$
- Go to 1

Page Rank: How to solve?

Power Iteration

- Set $r_{j}=1 / N$
- 1: $r_{j}^{\prime}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r=r^{\prime}$
- Go to 1

Iteration $0,1,2, \ldots$

Page Rank: How to solve?

Power Iteration

- Set $r_{j}=1 / N$
- 1: $r_{j}^{\prime}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r=r^{\prime}$
- Go to 1

Iteration $0,1,2, \ldots$

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
m	$1 / 2$	$1 / 2$	0

$r_{y}=r_{y} / 2+r_{a} / 2$
$r_{a}=r_{y} / 2+r_{m}$
$r_{m}=r_{a} / 2$

Example

$$
\left[\begin{array}{c}
r_{y} \\
r_{a} \\
r_{m}
\end{array}\right]=\left[\begin{array}{cccccc}
1 / 3 & 1 / 3 & 5 / 12 & 9 / 24 & & 6 / 15 \\
1 / 3 & 3 / 6 & 1 / 3 & 11 / 24 & \cdots & 6 / 15 \\
1 / 3 & 1 / 6 & 3 / 12 & 1 / 6 & & 6 / 15
\end{array}\right]
$$

Why Power Iteration works? (1)

Power iteration

- A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)
- $r^{(1)}=M \cdot r^{(0)}$

Why Power Iteration works? (1)

Power iteration

- A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)
- $r^{(1)}=M \cdot r^{(0)}$
- $r^{(2)}=M \cdot r^{(1)}=M\left(M \cdot r^{(0)}\right)=M^{2} \cdot r^{(0)}$

Why Power Iteration works? (1)

Power iteration

- A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)
- $r^{(1)}=M \cdot r^{(0)}$
- $r^{(2)}=M \cdot r^{(1)}=M\left(M \cdot r^{(0)}\right)=M^{2} \cdot r^{(0)}$
- $r^{(3)}=M \cdot r^{(2)}=M\left(M^{2} \cdot r^{(0)}\right)=M^{3} \cdot r^{(0)}$

Why Power Iteration works? (1)

Power iteration

- A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)

```
- \(r^{(1)}=M \cdot r^{(0)}\)
- \(r^{(2)}=M \cdot r^{(1)}=M\left(M \cdot r^{(0)}\right)=M^{2} \cdot r^{(0)}\)
- \(r^{(3)}=M \cdot r^{(2)}=M\left(M^{2} \cdot r^{(0)}\right)=M^{3} \cdot r^{(0)}\)
```


Claim

- Sequence $M \cdot r^{(0)}, M^{2} \cdot r^{(0)}, \ldots M^{k} \cdot r^{(0)}, \ldots$ approaches the dominant eigenvector of M

Why Power Iteration works? (1)

Power iteration

- A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)

```
- \(r^{(1)}=M \cdot r^{(0)}\)
- \(r^{(2)}=M \cdot r^{(1)}=M\left(M \cdot r^{(0)}\right)=M^{2} \cdot r^{(0)}\)
- \(r^{(3)}=M \cdot r^{(2)}=M\left(M^{2} \cdot r^{(0)}\right)=M^{3} \cdot r^{(0)}\)
```


Claim

- Sequence $M \cdot r^{(0)}, M^{2} \cdot r^{(0)}, \ldots M^{k} \cdot r^{(0)}, \ldots$ approaches the dominant eigenvector of M

Why Power Iteration works? (2)

Claim

- Sequence $M \cdot r^{(0)}, M^{2} \cdot r^{(0)}, \ldots M^{k} \cdot r^{(0)}, \ldots$ approaches the dominant eigenvector of M

Why Power Iteration works? (2)

Claim

- Sequence $M \cdot r^{(0)}, M^{2} \cdot r^{(0)}, \ldots M^{k} \cdot r^{(0)}, \ldots$ approaches the dominant eigenvector of M

Proof

- Assume M has n linearly independent eigenvectors, $x_{1}, x_{2}, \ldots, x_{n}$ with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, where $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{n}$

Why Power Iteration works? (2)

Claim

- Sequence $M \cdot r^{(0)}, M^{2} \cdot r^{(0)}, \ldots M^{k} \cdot r^{(0)}, \ldots$ approaches the dominant eigenvector of M

Proof

- Assume M has n linearly independent eigenvectors, $x_{1}, x_{2}, \ldots, x_{n}$ with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, where $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{n}$
- Vectors $x_{1}, x_{2}, \ldots, x_{n}$ form a basis and thus we can write: $r^{(0)}=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$:

Why Power Iteration works? (2)

Claim

- Sequence $M \cdot r^{(0)}, M^{2} \cdot r^{(0)}, \ldots M^{k} \cdot r^{(0)}, \ldots$ approaches the dominant eigenvector of M

Proof

- Assume M has n linearly independent eigenvectors, $x_{1}, x_{2}, \ldots, x_{n}$ with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, where $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{n}$
- Vectors $x_{1}, x_{2}, \ldots, x_{n}$ form a basis and thus we can write: $r^{(0)}=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$:

$$
\begin{aligned}
M r^{(0)} & =M\left(c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}\right) \\
& =c_{1}\left(M x_{1}\right)+c_{2}\left(M x_{2}\right)+\cdots+c_{n}\left(M x_{n}\right) \\
& =c_{1}\left(\lambda_{1} x_{1}\right)+c_{2}\left(\lambda_{2} x_{2}\right)+\cdots+c_{n}\left(\lambda_{n} x_{n}\right)
\end{aligned}
$$

Why Power Iteration works? (3)

Proof (Continued)

- Repeated multiplication on both sides produces

$$
M^{k} r^{(0)}=c_{1}\left(\lambda_{1}^{k} x_{1}\right)+c_{2}\left(\lambda_{2}^{k} x_{2}\right)+\cdots+c_{n}\left(\lambda_{n}^{k} x_{n}\right)
$$

Why Power Iteration works? (3)

Proof (Continued)

- Repeated multiplication on both sides produces

$$
M^{k} r^{(0)}=c_{1}\left(\lambda_{1}^{k} x_{1}\right)+c_{2}\left(\lambda_{2}^{k} x_{2}\right)+\cdots+c_{n}\left(\lambda_{n}^{k} x_{n}\right)
$$

$$
M^{k} r^{(0)}=\lambda_{1}^{k}\left[c_{1} x_{1}+c_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} x_{2}+\cdots+c_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} x_{n}\right]
$$

Why Power Iteration works? (3)

Proof (Continued)

- Repeated multiplication on both sides produces

$$
M^{k} r^{(0)}=c_{1}\left(\lambda_{1}^{k} x_{1}\right)+c_{2}\left(\lambda_{2}^{k} x_{2}\right)+\cdots+c_{n}\left(\lambda_{n}^{k} x_{n}\right)
$$

$$
M^{k} r^{(0)}=\lambda_{1}^{k}\left[c_{1} x_{1}+c_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} x_{2}+\cdots+c_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} x_{n}\right]
$$

- Since $\lambda_{1}>\lambda_{2}$ then fractions $\frac{\lambda_{2}}{\lambda_{1}}, \frac{\lambda_{3}}{\lambda_{1}}, \ldots<1$ and so $\frac{\lambda_{i}}{\lambda_{1}}=0$ as $k \rightarrow \infty$ (for all $i=2 \ldots n$).

Why Power Iteration works? (3)

Proof (Continued)

- Repeated multiplication on both sides produces

$$
M^{k} r^{(0)}=c_{1}\left(\lambda_{1}^{k} x_{1}\right)+c_{2}\left(\lambda_{2}^{k} x_{2}\right)+\cdots+c_{n}\left(\lambda_{n}^{k} x_{n}\right)
$$

$$
M^{k} r^{(0)}=\lambda_{1}^{k}\left[c_{1} x_{1}+c_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} x_{2}+\cdots+c_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} x_{n}\right]
$$

- Since $\lambda_{1}>\lambda_{2}$ then fractions $\frac{\lambda_{2}}{\lambda_{1}}, \frac{\lambda_{3}}{\lambda_{1}}, \ldots<1$ and so $\frac{\lambda_{i}}{\lambda_{1}}=0$ as $k \rightarrow \infty$ (for all $i=2 \ldots n$).
- Thus: $M^{k} r^{(0)} \approx C_{1} \lambda_{1}^{k} x_{1}$

Why Power Iteration works? (3)

Proof (Continued)

- Repeated multiplication on both sides produces

$$
M^{k} r^{(0)}=c_{1}\left(\lambda_{1}^{k} x_{1}\right)+c_{2}\left(\lambda_{2}^{k} x_{2}\right)+\cdots+c_{n}\left(\lambda_{n}^{k} x_{n}\right)
$$

$$
M^{k} r^{(0)}=\lambda_{1}^{k}\left[c_{1} x_{1}+c_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} x_{2}+\cdots+c_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} x_{n}\right]
$$

- Since $\lambda_{1}>\lambda_{2}$ then fractions $\frac{\lambda_{2}}{\lambda_{1}}, \frac{\lambda_{3}}{\lambda_{1}}, \ldots<1$ and so $\frac{\lambda_{i}}{\lambda_{1}}=0$ as $k \rightarrow \infty$ (for all $i=2 \ldots n$).
- Thus: $M^{k} r^{(0)} \approx C_{1} \lambda_{1}^{k} x_{1}$
- Note if $c_{1}=0$ then the method will not converge .

Random Walk Interpretation

Imagine a random web surfer

- At any time t, surfer is on some page i

$r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{o u t}(i)}$

Random Walk Interpretation

Imagine a random web surfer

- At any time t, surfer is on some page i
- At time $t+1$, the surfer follows an out-link from i uniformly at random

$r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{o u t}(i)}$

Random Walk Interpretation

Imagine a random web surfer

- At any time t, surfer is on some page i
- At time $t+1$, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i

Random Walk Interpretation

Imagine a random web surfer

- At any time t, surfer is on some page i
- At time $t+1$, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

Random Walk Interpretation

Imagine a random web surfer

- At any time t, surfer is on some page i
- At time $t+1$, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

Let

- $p(t)$ is the vector whose $i^{t h}$ coordinate is the probability that the surfer is at page i at time t.

Random Walk Interpretation

Imagine a random web surfer

- At any time t, surfer is on some page i
- At time $t+1$, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely
- $p(t)$ is the vector whose $i^{t h}$ coordinate is the probability that the surfer is at page i at time t.
- So, $p(t)$ is a probability distribution over pages

The Stationary Distribution

Where is the surfer at time $t+1$?

- Follows a link uniformly at random

$$
p(t+1)=M \cdot p(t)
$$

$$
p(t+1)=M \cdot p(t)
$$

The Stationary Distribution

Where is the surfer at time $t+1$?

- Follows a link uniformly at random

$$
p(t+1)=M \cdot p(t)
$$

$$
p(t+1)=M \cdot p(t)
$$

Suppose

- Suppose the random walk reaches a state $p(t+1)=M \cdot p(t)=p(t)$ then $p(t)$ is stationary distribution of a random walk.

The Stationary Distribution

Where is the surfer at time $t+1$?

- Follows a link uniformly at random

$$
p(t+1)=M \cdot p(t)
$$

Suppose

- Suppose the random walk reaches a state $p(t+1)=M \cdot p(t)=p(t)$ then $p(t)$ is stationary distribution of a random walk.

Our original rank vector

- Our original rank vector r satisfies $r=M \cdot r$
- So, r is a stationary distribution for the random walk

Outline

(I) Graph Data

- Question
- Challenges
- Ranking
(2) Link Analysis Algorithms
- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic
(4) How do we actually compute the Page Rank?
- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Given the following formulation

Page Rank

$r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r^{(t)}}{d_{i}}$ or equivalent $r=M r$

Given the following formulation

Page Rank
$r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r^{(t)}}{d_{i}}$ or equivalent $r=M r$

We have the following questions

- Does this converge?

Given the following formulation

Page Rank
$r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r^{(t)}}{d_{i}}$ or equivalent $r=M r$

We have the following questions

- Does this converge?
- Does it converge to what we want?

Given the following formulation

Page Rank
$r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r^{(t)}}{d_{i}}$ or equivalent $r=M r$

We have the following questions

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

Example

Example: Does this converge?

Example

Example: Does this converge?

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{d_{i}}
$$

Example

$$
\begin{aligned}
& r_{a} \\
& r_{b}
\end{aligned}=\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}
$$

Iteration $0,1,2, \ldots$

Example

Example: Does this converge to what we want?

$$
\begin{aligned}
& a \\
& r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{d_{i}}
\end{aligned}
$$

Example

Example: Does this converge to what we want?

Example

$$
\begin{aligned}
& r_{a}=\begin{array}{llll}
1 & 0 & 0 & 0 \\
r_{b}
\end{array}=\begin{array}{lll}
0 & 1 & 0
\end{array} \\
& 0
\end{aligned}
$$

Iteration $0,1,2, \ldots$

Outline

(I) Graph Data

- Question
- Challenges
- Ranking
(2) Link Analysis Algorithms
- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Page Rank: More Problems

Two problems:

First One

- Some pages are dead ends (have no out-links)

Page Rank: More Problems

Two problems:

First One

- Some pages are dead ends (have no out-links)
- Such pages cause importance to "leak out"

Page Rank: More Problems

Two problems:

First One

- Some pages are dead ends (have no out-links)
- Such pages cause importance to "leak out"

Second One

- Spider traps (all out-links are within the group)

Page Rank: More Problems

Two problems:

First One

- Some pages are dead ends (have no out-links)
- Such pages cause importance to "leak out"

Second One

- Spider traps (all out-links are within the group)
- Eventually spider traps absorb all importance.

Problems: Spider Traps

Power Iteration
- Set $r_{j}=1$
- $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- And iterate

Problems: Spider Traps

Power Iteration

- Set $r_{j}=1$
- $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- And iterate

$r_{y}=r_{y} / 2+r_{a} / 2$
$r_{a}=r_{y} / 2$
$r_{m}=r_{a} / 2+r_{m}$

Example

$$
\left[\begin{array}{c}
r_{y} \\
r_{a} \\
r_{m}
\end{array}\right]=\left[\begin{array}{cccccc}
1 / 3 & 2 / 6 & 3 / 12 & 5 / 24 & & 0 \\
1 / 3 & 1 / 6 & 2 / 12 & 3 / 24 & \cdots & 0 \\
1 / 3 & 3 / 6 & 7 / 12 & 16 / 24 & & 1
\end{array}\right]
$$

Solution: Random Teleport

The Google solution for spider traps

- At each time step, the random surfer has two options:

Solution: Random Teleport

The Google solution for spider traps

- At each time step, the random surfer has two options:
- With prob. β, follow a link at random.

Solution: Random Teleport

The Google solution for spider traps

- At each time step, the random surfer has two options:
- With prob. β, follow a link at random.
- With prob. $1-\beta$, jump to some random page.

Solution: Random Teleport

The Google solution for spider traps

- At each time step, the random surfer has two options:
- With prob. β, follow a link at random.
- With prob. $1-\beta$, jump to some random page.
- Common values for β are in the range 0.8 to 0.9

Solution: Random Teleport

The Google solution for spider traps

- At each time step, the random surfer has two options:
- With prob. β, follow a link at random.
- With prob. $1-\beta$, jump to some random page.
- Common values for β are in the range 0.8 to 0.9

Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

Power Iteration on the previous graph
 - Set $r_{j}=1$

Problem: Dead Ends

Power Iteration on the previous graph

- Set $r_{j}=1$
- $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$

Problem: Dead Ends

Power Iteration on the previous graph

- Set $r_{j}=1$
- $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- And iterate

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	0
m	0	$1 / 2$	0

Example

$$
\left[\begin{array}{c}
r_{y} \\
r_{a} \\
r_{m}
\end{array}\right]=\left[\begin{array}{llllll}
1 / 3 & 2 / 6 & 3 / 12 & 5 / 24 & & 0 \\
1 / 3 & 1 / 6 & 2 / 12 & 3 / 24 & \cdots & 0 \\
1 / 3 & 1 / 6 & 1 / 12 & 2 / 24 & & 0
\end{array}\right]
$$

Solution: Always Teleport

Teleport

- Follow random teleport links with probability 1.0 from dead-ends

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	0
m	0	$1 / 2$	0

	y		a		m
y	$1 / 2$	$1 / 2$	$1 / 3$		
a	$1 / 2$	0	$1 / 3$		
m	0	$1 / 2$	$1 / 3$		

Solution: Always Teleport

Teleport

- Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly

	y	a	m
y	y		
a	$1 / 2$	$1 / 2$	0
m	$1 / 2$	0	0
	0	$1 / 2$	0

	y	a	m
y	1/2	1/2	1/3
a	1/2	0	1/3
m	0	1/2	1/3

Why Teleport Solve the Problems?

We know the following

$$
r^{(t+1)}=M r^{(t)}
$$

Why Teleport Solve the Problems?

We know the following

$$
r^{(t+1)}=M r^{(t)}
$$

Markov chains

- Set of states X

Why Teleport Solve the Problems?

We know the following

$$
r^{(t+1)}=M r^{(t)}
$$

Markov chains

- Set of states X
- Transition matrix P where $P_{i j}=P\left(X_{t}=i \mid X_{t-1}=j\right)$

Why Teleport Solve the Problems?

We know the following

$$
r^{(t+1)}=M r^{(t)}
$$

Markov chains

- Set of states X
- Transition matrix P where $P_{i j}=P\left(X_{t}=i \mid X_{t-1}=j\right)$
- π specifying the stationary probability of being at each state $x \in X$

Why Teleport Solve the Problems?

We know the following

$$
r^{(t+1)}=M r^{(t)}
$$

Markov chains

- Set of states X
- Transition matrix P where $P_{i j}=P\left(X_{t}=i \mid X_{t-1}=j\right)$
- π specifying the stationary probability of being at each state $x \in X$
- Goal is to find π such that $\pi=P \pi$

Why is This Analogy Useful?

From

Theory of Markov chains

Why is This Analogy Useful?

From

Theory of Markov chains
We get the following fact

- For any start vector,

Why is This Analogy Useful?

From

Theory of Markov chains

We get the following fact

- For any start vector,
- The power method applied to a Markov transition matrix P will converge to a unique positive stationary vector

Why is This Analogy Useful?

From

Theory of Markov chains
We get the following fact

- For any start vector,
- The power method applied to a Markov transition matrix P will converge to a unique positive stationary vector
- If P is stochastic, irreducible and aperiodic.

Outline

(1) Graph Data

- Question
- Challenges
- Ranking

2 Link Analysis Algorithms

- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic
(4) How do we actually compute the Page Rank?
- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Make M Stochastic

Stochastic:

- Every column sums to 1

$$
\begin{aligned}
& r_{y}=r_{y} / 2+r_{a} / 2+r_{m} / 3 \\
& r_{a}=r_{y} / 2+r_{m} / 3 \\
& r_{m}=r_{a} / 2+r_{m} / 3
\end{aligned}
$$

Make M Stochastic

Stochastic:

- Every column sums to 1

A possible solution

- Add green links

$$
\begin{aligned}
& r_{y}=r_{y} / 2+r_{a} / 2+r_{m} / 3 \\
& r_{a}=r_{y} / 2+r_{m} / 3 \\
& r_{m}=r_{a} / 2+r_{m} / 3
\end{aligned}
$$

Make M Stochastic

Stochastic:

- Every column sums to 1

A possible solution

- Add green links
$A=M+a\left(\frac{1}{n} e\right)^{T}$

$$
\begin{aligned}
& r_{y}=r_{y} / 2+r_{a} / 2+r_{m} / 3 \\
& r_{a}=r_{y} / 2+r_{m} / 3 \\
& r_{m}=r_{a} / 2+r_{m} / 3
\end{aligned}
$$

Make M Stochastic

Stochastic:

- Every column sums to 1

A possible solution

- Add green links

$$
A=M+a\left(\frac{1}{n} e\right)^{T}
$$

$$
a_{i}= \begin{cases}1 & \text { if node } i \text { has out deg } 0 \\ 0 & \text { else }\end{cases}
$$

$$
\begin{aligned}
& r_{y}=r_{y} / 2+r_{a} / 2+r_{m} / 3 \\
& r_{a}=r_{y} / 2+r_{m} / 3 \\
& r_{m}=r_{a} / 2+r_{m} / 3
\end{aligned}
$$

Make M Stochastic

Stochastic:

- Every column sums to 1

A possible solution

- Add green links

$$
A=M+a\left(\frac{1}{n} e\right)^{T}
$$

- $a_{i}= \begin{cases}1 & \text { if node } i \text { has out } \operatorname{deg} 0 \\ 0 & \text { else }\end{cases}$
- $\mathbf{e}=$ vector of all 1 's

$$
\begin{aligned}
& r_{y}=r_{y} / 2+r_{a} / 2+r_{m} / 3 \\
& r_{a}=r_{y} / 2+r_{m} / 3 \\
& r_{m}=r_{a} / 2+r_{m} / 3
\end{aligned}
$$

Make M Stochastic

Stochastic:

- Every column sums to 1

A possible solution

- Add green links

$$
A=M+a\left(\frac{1}{n} e\right)^{T}
$$

- $a_{i}= \begin{cases}1 & \text { if node } i \text { has out } \operatorname{deg} 0 \\ 0 & \text { else }\end{cases}$
- $\mathbf{e}=$ vector of all 1's

	y	a	m
y	1/2	1/2	1/3
a	1/2	0	1/3
m	0	1/2	1/3

$$
\begin{aligned}
& r_{y}=r_{y} / 2+r_{a} / 2+r_{m} / 3 \\
& r_{a}=r_{y} / 2+r_{m} / 3 \\
& r_{m}=r_{a} / 2+r_{m} / 3
\end{aligned}
$$

Make M Aperiodic

Periodic

- A chain is periodic if there is $k>1$ such that the interval between two visits to some state s is always a multiple of k.

Make M Aperiodic

Periodic

- A chain is periodic if there is $k>1$ such that the interval between two visits to some state \boldsymbol{s} is always a multiple of k.

A possible solution

- Add green links

Make M Irreducible

Definition

- From any state, there is a non-zero probability of going from any one state to any another

Make M Irreducible

Definition

- From any state, there is a non-zero probability of going from any one state to any another

A possible solution for a graph

- Add green links

Final Solution

Google's solution that does it all

- Makes M stochastic, aperiodic, irreducible.

Final Solution

Google's solution that does it all

- Makes M stochastic, aperiodic, irreducible.

At each step, random surfer has two options

- With probability β, follow a link at random.

Final Solution

Google's solution that does it all

- Makes M stochastic, aperiodic, irreducible.

At each step, random surfer has two options

- With probability β, follow a link at random.
- With probability $1-\beta$, jump to some random page.

Final Solution

Google's solution that does it all

- Makes M stochastic, aperiodic, irreducible.

At each step, random surfer has two options

- With probability β, follow a link at random.
- With probability $1-\beta$, jump to some random page.

Page Rank equation [Brin-Page, 98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{n}
$$

Final Solution

Google's solution that does it all

- Makes M stochastic, aperiodic, irreducible.

At each step, random surfer has two options

- With probability β, follow a link at random.
- With probability $1-\beta$, jump to some random page.

Page Rank equation [Brin-Page, 98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{n}
$$

- This formulation assumes that M has no dead ends.

Final Solution

Google's solution that does it all

- Makes M stochastic, aperiodic, irreducible.

At each step, random surfer has two options

- With probability β, follow a link at random.
- With probability $1-\beta$, jump to some random page.

Page Rank equation [Brin-Page, 98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{n}
$$

- This formulation assumes that M has no dead ends.
- We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

Page Rank equation [Brin-Page, 98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{n}
$$

The Google Matrix

Page Rank equation [Brin-Page, 98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{n}
$$

The Google Matrix A

$$
A=\beta M+(1-\beta) \frac{1}{n} \mathbf{e} \cdot \mathbf{e}^{\mathbf{T}}
$$

- e... vector of all 1 s

Thus

Using the $S=M+a\left(\frac{1}{n} e^{T}\right)$ to handle nodes with out-degree 0
We can re-write the google matrix

$$
\begin{equation*}
A=\beta S+(1-\beta) \frac{1}{n} \mathbf{e} \cdot \mathbf{e}^{\mathbf{T}} \tag{9}
\end{equation*}
$$

Thus

Using the $S=M+a\left(\frac{1}{n} e^{T}\right)$ to handle nodes with out-degree 0
We can re-write the google matrix

$$
\begin{equation*}
A=\beta S+(1-\beta) \frac{1}{n} \mathbf{e} \cdot \mathbf{e}^{\mathbf{T}} \tag{9}
\end{equation*}
$$

Something Notable

The teleporting is random because the teleportation matrix $E=\frac{1}{n} \mathbf{e} \cdot \mathbf{e}^{\mathbf{T}}$ is uniform

Thus

Using the $S=M+a\left(\frac{1}{n} e^{T}\right)$ to handle nodes with out-degree 0
We can re-write the google matrix

$$
\begin{equation*}
A=\beta S+(1-\beta) \frac{1}{n} \mathbf{e} \cdot \mathbf{e}^{\mathbf{T}} \tag{9}
\end{equation*}
$$

Something Notable

The teleporting is random because the teleportation matrix $E=\frac{1}{n} \mathbf{e} \cdot \mathbf{e}^{\mathbf{T}}$ is uniform

Meaning

The surfer is equally likely, when teleporting, to jump to any page.

Thus

There are several consequences of the primitivity adjustment
(1) A is stochastic. It is the convex combination of the two stochastic matrices M and E.

Thus

There are several consequences of the primitivity adjustment
(1) A is stochastic. It is the convex combination of the two stochastic matrices M and E.
(2) A is irreducible. Every page is directly connected to every other page, so irreducibility is trivially enforced.

Thus

There are several consequences of the primitivity adjustment
(1) A is stochastic. It is the convex combination of the two stochastic matrices M and E.
(2) A is irreducible. Every page is directly connected to every other page, so irreducibility is trivially enforced.
(3) A is aperiodic. The self-loops ($A_{i i}>0$ for all i) create aperiodicity.

Thus

There are several consequences of the primitivity adjustment

(1) A is stochastic. It is the convex combination of the two stochastic matrices M and E.
(2) A is irreducible. Every page is directly connected to every other page, so irreducibility is trivially enforced.
(3) A is aperiodic. The self-loops ($A_{i i}>0$ for all i) create aperiodicity.
(9) A is primitive because $A^{k}>0$ for some k. Implying that a a unique positive vector π exists, and the power method applied to A is guaranteed to converge to this vector.

Thus

There are several consequences of the primitivity adjustment

(1) A is stochastic. It is the convex combination of the two stochastic matrices M and E.
(2) A is irreducible. Every page is directly connected to every other page, so irreducibility is trivially enforced.
(3) A is aperiodic. The self-loops ($A_{i i}>0$ for all i) create aperiodicity.
(9) A is primitive because $A^{k}>0$ for some k. Implying that a a unique positive vector π exists, and the power method applied to A is guaranteed to converge to this vector.
(5) A is completely dense, which is a very bad thing, computationally.

Given this little adjustment

Thus

- A is stochastic, aperiodic and irreducible, so

$$
r^{(t+1)}=A \cdot r^{(t)}
$$

Given this little adjustment

Thus

- A is stochastic, aperiodic and irreducible, so

$$
r^{(t+1)}=A \cdot r^{(t)}
$$

- What is β ?

Given this little adjustment

Thus

- A is stochastic, aperiodic and irreducible, so

$$
r^{(t+1)}=A \cdot r^{(t)}
$$

- What is β ? In practice $\beta=0.8,0.9$ (make 5 steps and jump)

Example: Random Teleport $(\beta=0.8)$

$$
\left.\begin{array}{ccccccc}
y & 1 / 3 & 0.33 & 0.24 & 0.26 & & 7 / 33 \\
a & = & 1 / 3 & 0.20 & 0.20 & 0.18 & \ldots
\end{array}\right) 5 / 330 子 21 / 33
$$

Outline

(1) Graph Data

- Question
- Challenges
- Ranking
(2) Link Analysis Algorithms
- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

4. How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Computing Page Rank

Key step is matrix-vector multiplication

$$
r^{n e w}=A \cdot r^{o l d}
$$

$$
\begin{array}{r}
\mathbf{A}=\beta \cdot \mathbf{M}+(1-\beta)[1 / \mathrm{N}]_{\mathrm{N} \times \mathrm{N}} \\
\boldsymbol{A}=0.8 \begin{array}{|ccc|}
\hline 1 / 2 & 1 / 2 & 0 \\
1 / 2 & 0 & 0 \\
0 & 1 / 2 & 1
\end{array}+0.2 \begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array} \\
\\
\\
=\begin{array}{ccc}
7 / 15 & 7 / 15 & 1 / 15 \\
7 / 15 & 1 / 15 & 1 / 15 \\
1 / 15 & 7 / 15 & 13 / 15 \\
\hline
\end{array}
\end{array}
$$

Computing Page Rank

Key step is matrix-vector multiplication

$$
r^{n e w}=A \cdot r^{o l d}
$$

Easy

- Easy if we have enough main memory to hold $A, r^{\text {old }}, r^{\text {new }}$

$$
\begin{array}{r}
\mathbf{A}=\beta \cdot \mathbf{M}+(1-\beta)[1 / \mathrm{N}]_{\mathrm{N} \times \mathrm{N}} \\
\boldsymbol{A}=0.8 \left\lvert\, \begin{array}{|ccc|}
\hline 1 / 2 & 1 / 2 & 0 \\
1 / 2 & 0 & 0 \\
0 & 1 / 2 & 1
\end{array}+0.2 \begin{array}{|lll}
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right.
\end{array}
$$

$=$| $7 / 15$ | $7 / 15$ | $1 / 15$ |
| :---: | :---: | :---: |
| $7 / 15$ | $1 / 15$ | $1 / 15$ |
| $1 / 15$ | $7 / 15$ | $13 / 15$ |

Computing Page Rank

Key step is matrix-vector multiplication

$$
r^{n e w}=A \cdot r^{o l d}
$$

Easy

- Easy if we have enough main memory to hold $A, r^{\text {old }}, r^{\text {new }}$

However, if you have $N=1$ billion pages

- We need 4 bytes for each entry (say)
- 2 billion entries for vectors, approx 8GB
- Matrix A has N^{2} entries
- 10^{18} is a large number!

$$
\begin{aligned}
& \mathbf{A}=\beta \cdot \mathbf{M}+(1-\beta)[1 / \mathrm{N}]_{\mathrm{N} \times \mathrm{N}} \\
& \boldsymbol{A}=0.8\left[\begin{array}{lll}
1 / 2 & 1 / 2 & 0 \\
1 / 2 & 0 & 0 \\
0 & 1 / 2 & 1
\end{array}+0.2 \begin{array}{ll}
1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 \\
1 / 3 \\
\hline
\end{array}\right. \\
&=\begin{array}{lll}
7 / 15 & 7 / 15 & 1 / 15 \\
7 / 15 & 1 / 15 & 1 / 15 \\
1 / 15 & 7 / 15 & 13 / 15 \\
1 / 1
\end{array}
\end{aligned}
$$

Matrix Formulation

Suppose

- Suppose there are N pages.

Matrix Formulation

Suppose

- Suppose there are N pages.
- Consider page j, with d_{j} out-links.

Matrix Formulation

Suppose

- Suppose there are N pages.
- Consider page j, with d_{j} out-links.
- We have $M_{i j}=1 /\left|d_{j}\right|$ when $j \rightarrow i$ and $M_{i j}=0$ otherwise.

Matrix Formulation

Suppose

- Suppose there are N pages.
- Consider page j, with d_{j} out-links.
- We have $M_{i j}=1 /\left|d_{j}\right|$ when $j \rightarrow i$ and $M_{i j}=0$ otherwise.

The random teleport is equivalent to

- Adding a teleport link from j to every other page and setting transition probability to $(1-\beta) / N$.

Matrix Formulation

Suppose

- Suppose there are N pages.
- Consider page j, with d_{j} out-links.
- We have $M_{i j}=1 /\left|d_{j}\right|$ when $j \rightarrow i$ and $M_{i j}=0$ otherwise.

The random teleport is equivalent to

- Adding a teleport link from j to every other page and setting transition probability to $(1-\beta) / N$.
- Reducing the probability of following each out-link from $1 /\left|d_{j}\right|$ to $\beta /\left|d_{j}\right|$.

Matrix Formulation

Suppose

- Suppose there are N pages.
- Consider page j, with d_{j} out-links.
- We have $M_{i j}=1 /\left|d_{j}\right|$ when $j \rightarrow i$ and $M_{i j}=0$ otherwise.

The random teleport is equivalent to

- Adding a teleport link from j to every other page and setting transition probability to $(1-\beta) / N$.
- Reducing the probability of following each out-link from $1 /\left|d_{j}\right|$ to $\beta /\left|d_{j}\right|$.
- Equivalent: Tax each page a fraction $(1-\beta)$ of its score and redistribute evenly

Outline

(1) Graph Data

- Question
- Challenges
- Ranking

2 Link Analysis Algorithms

- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Rearranging the Equation (1)

$$
A_{i j}=\beta M_{i j}+\frac{1-\beta}{N}
$$

$$
r=A \cdot r
$$

Rearranging the Equation (1)

$$
A_{i j}=\beta M_{i j}+\frac{1-\beta}{N}
$$

$$
\begin{aligned}
r & =A \cdot r \\
r_{i} & =\sum_{j=1}^{N} A_{i j} \cdot r_{j}
\end{aligned}
$$

Rearranging the Equation (1)

$$
A_{i j}=\beta M_{i j}+\frac{1-\beta}{N}
$$

$$
\begin{aligned}
r & =A \cdot r \\
r_{i} & =\sum_{j=1}^{N} A_{i j} \cdot r_{j} \\
r_{i} & =\sum_{j=1}^{N}\left[\beta M_{i j}+\frac{1-\beta}{N}\right] \cdot r_{j}
\end{aligned}
$$

Rearranging the Equation (1)

$$
A_{i j}=\beta M_{i j}+\frac{1-\beta}{N}
$$

$$
\begin{aligned}
r & =A \cdot r \\
r_{i} & =\sum_{j=1}^{N} A_{i j} \cdot r_{j} \\
r_{i} & =\sum_{j=1}^{N}\left[\beta M_{i j}+\frac{1-\beta}{N}\right] \cdot r_{j} \\
& =\sum_{j=1}^{N} \beta M_{i j} \cdot r_{j}+\frac{1-\beta}{N} \sum_{j=1}^{N} r_{j}
\end{aligned}
$$

Rearranging the Equation (1)

$$
A_{i j}=\beta M_{i j}+\frac{1-\beta}{N}
$$

$$
\begin{aligned}
r & =A \cdot r \\
r_{i} & =\sum_{j=1}^{N} A_{i j} \cdot r_{j} \\
r_{i} & =\sum_{j=1}^{N}\left[\beta M_{i j}+\frac{1-\beta}{N}\right] \cdot r_{j} \\
& =\sum_{j=1}^{N} \beta M_{i j} \cdot r_{j}+\frac{1-\beta}{N} \sum_{j=1}^{N} r_{j} \\
& =\sum_{j=1}^{N} \beta M_{i j} \cdot r_{j}+\frac{1-\beta}{N} \mathbf{1}
\end{aligned}
$$

Rearranging the Equation (1)

$$
A_{i j}=\beta M_{i j}+\frac{1-\beta}{N}
$$

$$
\begin{aligned}
r & =A \cdot r \\
r_{i} & =\sum_{j=1}^{N} A_{i j} \cdot r_{j} \\
r_{i} & =\sum_{j=1}^{N}\left[\beta M_{i j}+\frac{1-\beta}{N}\right] \cdot r_{j} \\
& =\sum_{j=1}^{N} \beta M_{i j} \cdot r_{j}+\frac{1-\beta}{N} \sum_{j=1}^{N} r_{j} \\
& =\sum_{j=1}^{N} \beta M_{i j} \cdot r_{j}+\frac{1-\beta}{N} \mathbf{1}
\end{aligned}
$$

since $\sum_{j=1}^{N} r_{j}=\mathbf{1}$

Rearranging the Equation (2)

So we get

$$
r=\beta M \cdot r+\left[\frac{1-\beta}{N}\right]_{N}
$$

Rearranging the Equation (2)

So we get

$$
r=\beta M \cdot r+\left[\frac{1-\beta}{N}\right]_{N}
$$

Note

- Here we assumed M has no dead-ends.

Rearranging the Equation (2)

So we get

$$
r=\beta M \cdot r+\left[\frac{1-\beta}{N}\right]_{N}
$$

Note

- Here we assumed M has no dead-ends.
- $[x]_{N}$...a vector of length N with all entries x

Sparse Matrix Formulation

We just rearranged the Page Rank equation

$$
r=\beta M \cdot r+\left[\frac{1-\beta}{N}\right]_{N}
$$

Sparse Matrix Formulation

We just rearranged the Page Rank equation

$$
r=\beta M \cdot r+\left[\frac{1-\beta}{N}\right]_{N}
$$

- where $[(1-\beta) / N]_{N}$ is a vector with all N entries $(1-\beta) / N$

Sparse Matrix Formulation

We just rearranged the Page Rank equation

$$
r=\beta M \cdot r+\left[\frac{1-\beta}{N}\right]_{N}
$$

- where $[(1-\beta) / N]_{N}$ is a vector with all N entries $(1-\beta) / N$
M is a sparse matrix! (with no dead-ends)
- 10 links per node, approx 10 N entries

Sparse Matrix Formulation

We just rearranged the Page Rank equation

$$
r=\beta M \cdot r+\left[\frac{1-\beta}{N}\right]_{N}
$$

- where $[(1-\beta) / N]_{N}$ is a vector with all N entries $(1-\beta) / N$
M is a sparse matrix! (with no dead-ends)
- 10 links per node, approx 10 N entries

So in each iteration, we need to

- Compute $r^{\text {new }}=\beta M \cdot r^{\text {old }}$

Sparse Matrix Formulation

We just rearranged the Page Rank equation

$$
r=\beta M \cdot r+\left[\frac{1-\beta}{N}\right]_{N}
$$

- where $[(1-\beta) / N]_{N}$ is a vector with all N entries $(1-\beta) / N$
M is a sparse matrix! (with no dead-ends)
- 10 links per node, approx 10 N entries

So in each iteration, we need to

- Compute $r^{\text {new }}=\beta M \cdot r^{\text {old }}$
- Add a constant value $(1-\beta) / N$ to each entry in $r^{n e w}$

Sparse Matrix Formulation

We just rearranged the Page Rank equation

$$
r=\beta M \cdot r+\left[\frac{1-\beta}{N}\right]_{N}
$$

- where $[(1-\beta) / N]_{N}$ is a vector with all N entries $(1-\beta) / N$
M is a sparse matrix! (with no dead-ends)
- 10 links per node, approx 10 N entries

So in each iteration, we need to

- Compute $r^{\text {new }}=\beta M \cdot r^{\text {old }}$
- Add a constant value $(1-\beta) / N$ to each entry in $r^{\text {new }}$
- Note if M contains dead-ends then $\sum_{i} r_{i}^{\text {new }}<1$ and we also have to re-normalize $r^{\text {new }}$ so that it sums to 1 .

Sparse Matrix Formulation

We just rearranged the Page Rank equation

$$
r=\beta M \cdot r+\left[\frac{1-\beta}{N}\right]_{N}
$$

- where $[(1-\beta) / N]_{N}$ is a vector with all N entries $(1-\beta) / N$
M is a sparse matrix! (with no dead-ends)
- 10 links per node, approx 10 N entries

So in each iteration, we need to

- Compute $r^{\text {new }}=\beta M \cdot r^{\text {old }}$
- Add a constant value $(1-\beta) / N$ to each entry in $r^{n e w}$
- Note if M contains dead-ends then $\sum_{i} r_{i}^{\text {new }}<1$ and we also have to re-normalize $r^{\text {new }}$ so that it sums to 1 .

Page Rank: The Complete Algorithm

Input: Graph G and parameter β

- Directed graph G with spider traps and dead ends

Page Rank: The Complete Algorithm

Input: Graph G and parameter β

- Directed graph G with spider traps and dead ends
- Parameter β

Page Rank: The Complete Algorithm

Input: Graph G and parameter β

- Directed graph G with spider traps and dead ends
- Parameter β

Output: Page Rank vector r

- Set: $r_{j}^{(0)}=\frac{1}{N}, t=1$

Page Rank: The Complete Algorithm

Input: Graph G and parameter β

- Directed graph G with spider traps and dead ends
- Parameter β

Output: Page Rank vector r

- Set: $r_{j}^{(0)}=\frac{1}{N}, t=1$
- do:

Page Rank: The Complete Algorithm

Input: Graph G and parameter β

- Directed graph G with spider traps and dead ends
- Parameter β

Output: Page Rank vector r

- Set: $r_{j}^{(0)}=\frac{1}{N}, t=1$
- do:
- $\forall j: r_{j}^{\prime(t)}=\sum_{i \rightarrow j} \beta \frac{r_{i}^{t-1}}{d_{i}}$

Page Rank: The Complete Algorithm

Input: Graph G and parameter β

- Directed graph G with spider traps and dead ends
- Parameter β

Output: Page Rank vector r

- Set: $r_{j}^{(0)}=\frac{1}{N}, t=1$
- do:

$$
\begin{aligned}
& \forall j: r_{j}^{\prime(t)}=\sum_{i \rightarrow j} \beta \frac{r_{i}^{t-1}}{d_{i}} \\
& \star r_{j}^{\prime(t)}=0 \text { if in-deg. of } j \text { is } 0
\end{aligned}
$$

Page Rank: The Complete Algorithm

Input: Graph G and parameter β

- Directed graph G with spider traps and dead ends
- Parameter β

Output: Page Rank vector r

- Set: $r_{j}^{(0)}=\frac{1}{N}, t=1$
- do:
- $\forall j: r_{j}^{\prime(t)}=\sum_{i \rightarrow j} \beta \frac{r_{i}^{t-1}}{d_{i}}$
$\star r_{j}^{\prime(t)}=0$ if in-deg. of j is 0
- Now re-insert the leaked Page Rank:

Page Rank: The Complete Algorithm

Input: Graph G and parameter β

- Directed graph G with spider traps and dead ends
- Parameter β

Output: Page Rank vector r

- Set: $r_{j}^{(0)}=\frac{1}{N}, t=1$
- do:
- $\forall j: r_{j}^{\prime(t)}=\sum_{i \rightarrow j} \beta \frac{r_{i}^{t-1}}{d_{i}}$
$\star r_{j}^{\prime(t)}=0$ if in-deg. of j is 0
- Now re-insert the leaked Page Rank:

$$
\star \forall j: r_{j}^{(t)}=r_{j}^{\prime(t)}+\frac{1-S}{N} \text { where } S=\sum_{j} r_{j}^{\prime(t)}
$$

Page Rank: The Complete Algorithm

Input: Graph G and parameter β

- Directed graph G with spider traps and dead ends
- Parameter β

Output: Page Rank vector r

- Set: $r_{j}^{(0)}=\frac{1}{N}, t=1$
- do:
- $\forall j: r_{j}^{\prime(t)}=\sum_{i \rightarrow j} \beta \frac{r_{i}^{t-1}}{d_{i}}$
$\star r_{j}^{\prime(t)}=0$ if in-deg. of j is 0
- Now re-insert the leaked Page Rank:

$$
\star \forall j: r_{j}^{(t)}=r_{j}^{\prime(t)}+\frac{1-S}{N} \text { where } S=\sum_{j} r_{j}^{\prime(t)}
$$

- $t=t+1$

Page Rank: The Complete Algorithm

Input: Graph G and parameter β

- Directed graph G with spider traps and dead ends
- Parameter β

Output: Page Rank vector r

- Set: $r_{j}^{(0)}=\frac{1}{N}, t=1$
- do:
- $\forall j: r_{j}^{\prime(t)}=\sum_{i \rightarrow j} \beta \frac{r_{i}^{t-1}}{d_{i}}$
$\star r_{j}^{\prime(t)}=0$ if in-deg. of j is 0
- Now re-insert the leaked Page Rank:

$$
\star \forall j: r_{j}^{(t)}=r_{j}^{\prime(t)}+\frac{1-S}{N} \text { where } S=\sum_{j} r_{j}^{\prime(t)}
$$

- $t=t+1$
- while $\sum_{j}\left|r_{j}^{(t)}-r_{j}^{(t+1)}\right|>\epsilon$

Outline

(1) Graph Data

- Question
- Challenges
- Ranking

2 Link Analysis Algorithms

- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank - Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method
(3) Page Rank: Three Questions
- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem

Sparse Matrix Encoding

Encode sparse matrix using only non-zero entries

- Space proportional roughly to number of links

Sparse Matrix Encoding

Encode sparse matrix using only non-zero entries

- Space proportional roughly to number of links
- Say $10 N$, or $4 * 10 * 1$ billion $=40 \mathrm{~GB}$

Sparse Matrix Encoding

Encode sparse matrix using only non-zero entries

- Space proportional roughly to number of links
- Say $10 N$, or $4 * 10 * 1$ billion $=40 \mathrm{~GB}$
- Still will not fit in memory, but will fit on disk

Sparse Matrix Encoding

Encode sparse matrix using only non-zero entries

- Space proportional roughly to number of links
- Say $10 N$, or $4 * 10 * 1$ billion $=40 \mathrm{~GB}$
- Still will not fit in memory, but will fit on disk

Source Node	Degree	Destination Node
0	3	$1,5,6$
1	4	$17,64,113,117$
2	2	12,23

Basic Algorithm: Update Step

Assume enough RAM to fit $r^{\text {new }}$ into memory

- Store $r^{\text {old }}$ and matrix M on disk

Basic Algorithm: Update Step

Assume enough RAM to fit $r^{\text {new }}$ into memory

- Store $r^{o l d}$ and matrix M on disk

Then, the first step of power-iteration is

- Initialize all entries of $r^{\text {new }}$ to $(1-\beta) / N$

Basic Algorithm: Update Step

Assume enough RAM to fit $r^{\text {new }}$ into memory

- Store $r^{o l d}$ and matrix M on disk

Then, the first step of power-iteration is

- Initialize all entries of $r^{\text {new }}$ to $(1-\beta) / N$
- For each page p (of out-degree n):

Basic Algorithm: Update Step

Assume enough RAM to fit $r^{\text {new }}$ into memory

- Store $r^{o l d}$ and matrix M on disk

Then, the first step of power-iteration is

- Initialize all entries of $r^{n e w}$ to $(1-\beta) / N$
- For each page p (of out-degree n):
- Read into memory: $p, n, d e s t_{1}, \ldots$, dest $_{n}, r^{\text {old }}(p)$ for
$j=1 \ldots n \Rightarrow r^{\text {new }}\left(\right.$ dest $\left._{j}\right)+=\beta r^{\text {old }}(p) / n$
$\boldsymbol{r}^{n e w}$

$$
\boldsymbol{r}^{\text {old }}
$$

| 0 |
| :--- | :--- |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |

Source	Degree	Destination	1
0	3	1,5,6	2
1	4	17,64,113,117	3
2	2	12,23	4
			5 6

Analysis

Assume enough RAM to fit $r^{\text {new }}$ into memory

- Store $r^{\text {old }}$ and matrix M on disk

Analysis

Assume enough RAM to fit $r^{\text {new }}$ into memory

- Store $r^{\text {old }}$ and matrix M on disk

In each iteration, we have to

- Read $r^{\text {old }}$ and M

Analysis

Assume enough RAM to fit $r^{\text {new }}$ into memory

- Store $r^{\text {old }}$ and matrix M on disk

In each iteration, we have to

- Read $r^{\text {old }}$ and M
- Write $r^{\text {new }}$ back to disk

Analysis

Assume enough RAM to fit $r^{\text {new }}$ into memory

- Store $r^{\text {old }}$ and matrix M on disk

In each iteration, we have to

- Read $r^{\text {old }}$ and M
- Write $r^{\text {new }}$ back to disk
- 1 O cost $=2|r|+|M|$

Analysis

Assume enough RAM to fit $r^{\text {new }}$ into memory

- Store $r^{\text {old }}$ and matrix M on disk

In each iteration, we have to

- Read $r^{\text {old }}$ and M
- Write $r^{\text {new }}$ back to disk
- IO cost $=2|r|+|M|$

Question

What if we could not even fit $r^{\text {new }}$ in memory?

Block-based Update Algorithm

Analysis Block Update

Similar to nested-loop join in databases

- Break $r^{\text {new }}$ into k blocks that fit in memory.

Analysis Block Update

Similar to nested-loop join in databases

- Break $r^{n e w}$ into k blocks that fit in memory.
- Scan M and $r^{\text {old }}$ once for each block.

Analysis Block Update

Similar to nested-loop join in databases

- Break $r^{n e w}$ into k blocks that fit in memory.
- Scan M and $r^{\text {old }}$ once for each block.

```
k scans of M and rold
k(|M| + |r|) + |r| =k| M| +(k+1)|r|.
```


Analysis Block Update

Similar to nested-loop join in databases

- Break $r^{n e w}$ into k blocks that fit in memory.
- Scan M and $r^{\text {old }}$ once for each block.

```
k scans of M and rold
k(|M|+|r|)+|r| = k|M| +(k+1)|r|.
```

Can we do better?

- Hint: M is much bigger than r (approx $10-20 x$), so we must avoid reading it k times per iteration

Block-Stripe Update Algorithm

Block-Stripe Analysis

Break M into stripes

- Each stripe contains only destination nodes in the corresponding block of $r^{\text {new }}$

Block-Stripe Analysis

Break M into stripes

- Each stripe contains only destination nodes in the corresponding block of $r^{\text {new }}$

Some additional overhead per stripe

- But it is usually worth it

Block-Stripe Analysis

Break M into stripes

- Each stripe contains only destination nodes in the corresponding block of $r^{\text {new }}$

Some additional overhead per stripe

- But it is usually worth it

Cost per iteration
$|M|(1+\epsilon)+(k+1)|r|$

Some Problems with Page Rank

Measures generic popularity of a page

- Biased against topic-specific authorities
- Solution: Topic-Specific Page Rank (next)

Some Problems with Page Rank

Measures generic popularity of a page

- Biased against topic-specific authorities
- Solution: Topic-Specific Page Rank (next)

Uses a single measure of importance

- Other models e.g., hubs-and-authorities
- Solution: Hubs-and-Authorities (next)

Some Problems with Page Rank

Measures generic popularity of a page

- Biased against topic-specific authorities
- Solution: Topic-Specific Page Rank (next)

Uses a single measure of importance

- Other models e.g., hubs-and-authorities
- Solution: Hubs-and-Authorities (next)

Susceptible to Link spam

- Artificial link topographies created in order to boost page rank
- Solution a more advanced way of page rank: Trust Rank

