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Graph Data: Social Networks

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011].
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Graph Data: Media Networks

Connections between political blogs

Polarization of the network [Adamic-Glance, 2005].
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Graph Data: Information Nets

Citation networks and Maps of science

[Börner et al., 2012]
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Graph Data: Communication Nets

Internet
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Web as Graph

Web as a directed graph
Nodes: Web-pages
Edges: Hyperlinks

We can have the following Pages
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Class is at Cinvestav Guadalajara

Computer Science Area

Cinvestav

7 / 96



Web as Graph

Now Add the Edges

I teach a class of Analysis of Algorithms

Class is at Cinvestav Guadalajara

Computer Science Area

Cinvestav
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Another Example, A Semantic Web

I'm student at Univ of X Univ. of X

Classes
My song lyrics

Networks

I teach at Univ. of X

I am applying to college

USNews College Rankings

USNews Featured Colleges

Networks class blog

Blog post about college rankings

Blog post about company Z
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Broad Question

How to organize the Web?

First try
Human curated Web directories

I Yahoo, DMOZ, LookSmart

Second try
Web Search

I Information Retrieval investigates: Find relevant docs in a small and
trusted set

F Newspaper articles, Patents, etc.
I But the Web is huge, full of non-trustable documents, random things,

web spam, etc.
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Web Search: Two Challenges

Thus
We have two main challenges on web search.

First
Web contains many sources of information Who do you “trust”?

I Trick: Trustworthy pages may point to each other!

Second
What is the “best” answer to query “newspaper”?

I No single right answer
I Trick: Pages that actually know about newspapers might all be

pointing to many newspapers
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Ranking Nodes on the Graph

All web pages are not equally “important” : www.joe-schmoe.com vs.
www.stanford.edu

Web-graph node connectivity
There is large diversity in the web-graph node connectivity. Let’s rank
the pages by the link structure!
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Link Analysis Algorithms

We will cover the following Link Analysis approaches for computing
importance of nodes in a graph

Page Rank
Hubs and Authorities (HITS)
Topic-Specific (Personalized) Page Rank
Web Spam Detection Algorithms
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Link as Votes

Idea
Links as votes:

I A Page is more important if it has more incoming links
I In-coming links? Out-going links?

Think of in-links as votes
www.stanford.edu has 23, 400 in-links
www.joe-schmoe.com has 1 in-link

Are all in-links are equal?
Links from important pages count more
Recursive question!
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What do we want?

We want to generate Page Rank Scores from the structure
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Simple Recursive Formulation

Link’s vote
Each link’s vote is proportional to the importance of its source page.

Out-links
If page j with importance rj has n out-links, each link gets rj

n votes.
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Simple Recursive Formulation

In-links
Page j’s own importance is the sum of the votes on its in-links

rj = ri
3 + rk

4 (1)
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Page Rank: The “Flow” Model

Voting
A “vote” from an important page is
worth more

Importance
A page is important if it is pointed to by
other important pages

Define a “rank” rj for page j

rj =
∑
i→j

ri
di

di... out-degree of node i
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Solving the Flow Equations
Something Notable

Flow equations: 3 equations, 3 unknowns, no constants:

I No unique solution.
I All solutions equivalent modulo the scale factor.

Flow equations:
ry = ry/2 + ra/2
ra = ry/2 + rm

rm = ra/2

Additional constraint forces uniqueness:
I ry + ra + rm = 1

F Solution: ry = 2
5 , ra = 2

5 , rm = 1
5

Something Notable
Gaussian elimination method works for small examples, but we need a better
method for large web-size graphs

Therefore
We need a new formulation!
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Page Rank - Google and Company

Page Rank
Invented by Larry Page and Sergei Brin (1998) during his Ph.d studies at
Stanford University

They quit the Ph.d program
However, you need to have the knowledge!!!

Not only that they authored the following paper
“The Anatomy of a Large-Scale Hypertextual Web Search Engine”
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Page Rank: Matrix Formulation
Stochastic adjacency matrix M

Let page i has di out-links
If i→ j, then Mji = 1

di
else Mji = 0

I M is a column stochastic matrix
F Columns sum to 1

Rank vector r
vector with an entry per page

I ri is the importance score of page i
I
∑

i ri = 1

The flow equations can be written

rj =
∑
i→j

ri
di

r = M · r
29 / 96
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Example

Remember the flow equation

rj =
∑
i→j

ri
di

Flow equation in the matrix form

r = M · r

Example of i links to 3 pages, including j
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Stochastic Matrices
Markov process
A stochastic process is called a Markov process when it has the Markov
property:

P
(
Xtn |Xtn−1 = xn−1, ...Xt1 = x1

)
= P

(
Xtn |Xtn−1 = xn−1

)
(2)

Simply
The future path of a Markov process, given its current state and the past
history before, depends only on the current state (not on how this state
has been reached).

Thus (Quite an Oversimplification!!!)
A Markov process is characterized by the (one-step) transition probabilities:

pi,j = P (Xt+1 = i|Xt = j) (3)
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Markov Chains

Definition (Oversimplified)
A Markov chain is a process Xt indexed by integers t = 0, 1, ... such that
the states Xt describe the chain at time t.

From here
The probability of a path i0, i1, ..., in is

P (X0 = i0, X1 = i1, ..., Xn = in) = P (X0 = i0) pi0i1pi1i2 · · · pin−1in (4)
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The transition probability matrix of a Markov chain

The transition probabilities can be arranged as transition probability
matrix P = (pi,j)

Final State −→

Initial State ↓

 p1,1 p1,2 p1,3 · · ·
p2,1 p2,2 p2,3 · · ·

...
...

...
. . .

 = P

The column j contains the transition probabilities from state j to
other states.
Since the system always goes to some state, the sum of the column
probabilities is 1:

1TP = 1T (5)
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Stochastic Matrix

Definition
A matrix with non-negative elements such that the sum of each
column equals “ONE” is called a stochastic matrix.
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Example
We have the following state machine

 

0

1

2

We have the following Stochastic Matrix

P =

 1− p 1− p 0
p (1− p) p (1− p) 1− p

p2 p2 p

 (6)

With p = 1
3
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Therefore, we can use that

To describe the transition in the Markov Chain
Let pt ∈ Rn is the distribution matrix of Xt at time t

(pt)i = P (Xt = i) (7)

Then moving from a distribution to another one we have

pt+1 = P pt (8)
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Here, we have Perron-Frobenius

Basic Definition
A matrix is called positive if all its entries are positive.
Non-negative, if all its entries are non-negative.

Basic Facts
If A ≥ 0 (Element wise) with A ∈ Rn×n and z ≥ 0 with z ∈ Rn, then
Az ≥ 0

Matrix Multiplication preserves non-negativity!!!

Regularity
Given A ∈ Rn×n with A ≥ 0, then A is called regular if some k ≥ 1,
Ak > 0.
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Path Property

Meaning of the Previous Definition
From a directed graph on nodes 1, ..., n with an arc from i to j whenever
Aij ≥ 0 then(

Ak
)
ij
>0 if and only if there is a path of length k from i to j.

Something Notable
A is regular if for some k there is a path of length k from every node to
every other node.
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Perron-Frobenius Theorem for Regular Matrices

Theorem
Suppose A ∈ Rn×n is non-negative and regular, i.e., Ak > 0 for some k.

Then
1 There is an eigenvalue λpf of A that is real and positive, with positive

left and right eigenvectors.
2 For any other eigenvalue λ, we have |λ| < λpf .
3 The eigenvalue λpf is simple, i.e., has multiplicity one, and

corresponds to a 1× 1 Jordan block.
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Now, given our matrix P

Given P a stochastic matrix

Let π a Perron-Frobenius right eigenvector of P with π ≥ 0 and 1Tπ = 1.

Such that Pπ = π

Then π corresponds to an invariant distribution or equilibrium distribution
of the Markov chain for the eigenvalue 1.

Assume that
That P is regular then i.e. that for some k P k > 0.
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Thus

If we can force P to be regular
There is unique distribution π such that π > 0.

Something Notable
The eigenvalue 1 is simple and dominant.
Thus, we have pt → π no matter what the initial distribution p0
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Thus, a Simple Algorithms

We have a simple method
Repeatedly apply pt+1 = P pt until convergence to π.

This is a method called
The Power Method

Naive and expensive but
Stable!!!
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Eigenvector Formulation

The flow equations is written

r = M · r

Eigenvectors
So the rank vector r is an eigenvector of the stochastic web matrix M

In fact, its first or principal eigenvector, with corresponding eigenvalue
1!!!
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Eigenvector Formulation

Largest eigenvalue of M is 1 since M is column stochastic
We know r is unit length and each column of M sums to one, so
Mr ≤ 1

Thus
We can obtain r!!!
Using the Power Method!!!
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Now going back to the Flow Equation & M
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Power Iteration Method
We have that

Given a web graph with n nodes, where the nodes are pages and
edges are hyperlinks.

Power iteration: a simple iterative scheme
Suppose there are N web pages
Initialize: r(0) = [1/N, ...., 1/N ]T

Iterate: r(t+1) = M · r(t)

Stop when |r(t+1)–r(t)|1 < ε
I |x|1 =

∑
1≤i≤N |xi| is the L1 norm

r
(t+1)
j =

∑
i→j

rti
di

di.... out-degree of node i
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ry = ry/2 + ra/2
ra = ry/2 + rm
rm = ra/2

Page Rank: How to solve?

Power Iteration
Set rj = 1/N
1: r′j =

∑
i→j

ri
di

2: r = r′

Go to 1

Example

 ry
ra
rm

 =

 1/3
1/3
1/3


Iteration 0, 1, 2, ...
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Why Power Iteration works? (1)

Power iteration
A method for finding dominant eigenvector (the vector corresponding
to the largest eigenvalue)

I r(1) = M · r(0)

I r(2) = M · r(1) = M(M · r(0)) = M2 · r(0)

I r(3) = M · r(2) = M(M2 · r(0)) = M3 · r(0)

Claim
Sequence M · r(0),M2 · r(0), ...Mk · r(0), ... approaches the dominant
eigenvector of M
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Why Power Iteration works? (2)

Claim
Sequence M · r(0),M2 · r(0), ...Mk · r(0), ... approaches the dominant
eigenvector of M

Proof
Assume M has n linearly independent eigenvectors, x1, x2, ..., xn with
corresponding eigenvalues λ1, λ2, ..., λn, where λ1 > λ2 > ... > λn

Vectors x1, x2, ..., xn form a basis and thus we can write:
r(0) = c1x1 + c2x2 + · · ·+ cnxn:

Mr(0) = M(c1x1 + c2x2 + · · ·+ cnxn)
= c1(Mx1) + c2(Mx2) + · · ·+ cn(Mxn)
= c1(λ1x1) + c2(λ2x2) + · · ·+ cn(λnxn)
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Why Power Iteration works? (3)

Proof (Continued)
Repeated multiplication on both sides produces

Mkr(0) = c1(λk1x1) + c2(λk2x2) + · · ·+ cn(λknxn)

Mkr(0) = λk1

[
c1x1 + c2

(
λ2
λ1

)k
x2 + · · ·+ cn

(
λn
λ1

)k
xn

]

Since λ1 > λ2 then fractions λ2
λ1
, λ3
λ1
, ... < 1 and so λi

λ1
= 0 as k →∞

(for all i = 2...n).
Thus: Mkr(0) ≈ C1λ

k
1x1

I Note if c1 = 0 then the method will not converge .
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rj =
∑
i→j

ri
dout(i)

Random Walk Interpretation

Imagine a random web surfer
At any time t, surfer is on some page i
At time t+ 1, the surfer follows an out-link
from i uniformly at random
Ends up on some page j linked from i

Process repeats indefinitely

Let
p (t) is the vector whose ith coordinate is the probability that the
surfer is at page i at time t.
So, p(t) is a probability distribution over pages
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p(t+ 1) = M · p(t)

The Stationary Distribution

Where is the surfer at time t+ 1?
Follows a link uniformly at random
p(t+ 1) = M · p(t).

Suppose
Suppose the random walk reaches a state p(t+ 1) = M · p(t) = p(t)
then p(t) is stationary distribution of a random walk.

Our original rank vector
Our original rank vector r satisfies r = M · r

I So, r is a stationary distribution for the random walk
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Given the following formulation

Page Rank
r

(t+1)
j =

∑
i→j

r(t)

di
or equivalent r = Mr

We have the following questions
Does this converge?
Does it converge to what we want?
Are results reasonable?
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Example

Example: Does this converge?

r
(t+1)
j =

∑
i→j

r
(t)
i
di

Example
ra
rb

= 1 0 1 0
0 1 0 1

Iteration 0, 1, 2, ...
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Page Rank: More Problems

Two problems:

First One
Some pages are dead ends (have no
out-links)

I Such pages cause importance to “leak out”

Second One
Spider traps (all out-links are within the group)

I Eventually spider traps absorb all importance.
.
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ry = ry/2 + ra/2
ra = ry/2
rm = ra/2 + rm

Problems: Spider Traps

Power Iteration
Set rj = 1
rj =

∑
i→j

ri
di

I And iterate

Example

 ry
ra
rm

 =

 1/3 2/6 3/12 5/24 0
1/3 1/6 2/12 3/24 · · · 0
1/3 3/6 7/12 16/24 1
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Solution: Random Teleport

The Google solution for spider traps
At each time step, the random surfer has two options:

I With prob. β, follow a link at random.
I With prob. 1− β, jump to some random page.
I Common values for β are in the range 0.8 to 0.9

Surfer will teleport out of spider trap within a few time steps
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Solution: Always Teleport

Teleport
Follow random teleport links with probability 1.0 from dead-ends

I Adjust matrix accordingly
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Why Teleport Solve the Problems?

We know the following

r(t+1) = Mr(t)

Markov chains
Set of states X
Transition matrix P where Pij = P (Xt = i|Xt−1 = j)
π specifying the stationary probability of being at each state x ∈ X
Goal is to find π such that π = Pπ
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Why is This Analogy Useful?

From
Theory of Markov chains

We get the following fact
For any start vector,

I The power method applied to a Markov transition matrix P will
converge to a unique positive stationary vector

I If P is stochastic, irreducible and aperiodic.
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ry = ry/2 + ra/2 + rm/3
ra = ry/2 + rm/3
rm = ra/2 + rm/3

Make M Stochastic

Stochastic:
Every column sums to 1

A possible solution
Add green links

A = M + a
( 1

ne
)T

ai =
{

1 if node ihas out deg 0
0 else

e= vector of all 1’s
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Make M Aperiodic

Periodic
A chain is periodic if there is k > 1 such that the interval between
two visits to some state s is always a multiple of k.

A possible solution
Add green links
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Make M Irreducible

Definition
From any state, there is a non-zero probability of going from any one
state to any another

A possible solution for a graph
Add green links
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Final Solution

Google’s solution that does it all
Makes M stochastic, aperiodic, irreducible.

At each step, random surfer has two options
With probability β, follow a link at random.
With probability 1− β, jump to some random page.

Page Rank equation [Brin-Page, 98]

rj =
∑
i→j

β
ri
di

+ (1− β) 1
n

This formulation assumes that M has no dead ends.
We can either preprocess matrix M to remove all dead ends or explicitly
follow random teleport links with probability 1.0 from dead-ends.
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The Google Matrix

Page Rank equation [Brin-Page, 98]

rj =
∑
i→j

β
ri
di

+ (1− β) 1
n

The Google Matrix A

A = βM + (1− β) 1
n

e · eT

e... vector of all 1s
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Thus

Using the S = M + a
(

1
n
eT
)
to handle nodes with out-degree 0

We can re-write the google matrix

A = βS + (1− β) 1
n

e · eT (9)

Something Notable
The teleporting is random because the teleportation matrix E = 1

ne · eT is
uniform

Meaning
The surfer is equally likely, when teleporting, to jump to any page.
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Thus

There are several consequences of the primitivity adjustment
1 A is stochastic. It is the convex combination of the two stochastic

matrices M and E.
2 A is irreducible. Every page is directly connected to every other page,

so irreducibility is trivially enforced.
3 A is aperiodic. The self-loops (Aii > 0 for all i) create aperiodicity.
4 A is primitive because Ak > 0 for some k. Implying that a a unique

positive vector π exists, and the power method applied to A is
guaranteed to converge to this vector.

5 A is completely dense, which is a very bad thing, computationally.
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positive vector π exists, and the power method applied to A is
guaranteed to converge to this vector.

5 A is completely dense, which is a very bad thing, computationally.
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Given this little adjustment

Thus
A is stochastic, aperiodic and irreducible, so

r(t+1) = A · r(t)

What is β?In practice β = 0.8, 0.9 (make 5 steps and jump)
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Example: Random Teleport (β = 0.8)

y
a
m

=
1/3 0.33 0.24 0.26 7/33
1/3 0.20 0.20 0.18 ... 5/33
1/3 0.46 0.52 0.56 21/33
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Computing Page Rank
Key step is matrix-vector multiplication

rnew = A · rold

Easy
Easy if we have enough main memory to hold A, rold, rnew

However, if you have N = 1 billion
pages

We need 4 bytes for each entry
(say)
2 billion entries for vectors,
approx 8GB
Matrix A has N2 entries

I 1018 is a large number!
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Matrix Formulation

Suppose
Suppose there are N pages.
Consider page j, with dj out-links.
We have Mij = 1/|dj | when j → i and Mij = 0 otherwise.

The random teleport is equivalent to
Adding a teleport link from j to every other page and setting
transition probability to (1− β)/N .
Reducing the probability of following each out-link from 1/|dj | to
β/|dj | .
Equivalent: Tax each page a fraction (1− β) of its score and
redistribute evenly
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Rearranging the Equation (1)

Aij = βMij + 1−β
N

r = A · r

ri =
N∑

j=1
Aij · rj

ri =
N∑

j=1

[
βMij + 1− β

N

]
· rj

=
N∑

j=1
βMij · rj + 1− β

N

N∑
j=1

rj

=
N∑

j=1
βMij · rj + 1− β

N
1

since
∑N

j=1 rj = 1
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Rearranging the Equation (2)

So we get

r = βM · r +
[1− β
N

]
N

Note
Here we assumed M has no dead-ends.
[x]N ...a vector of length N with all entries x
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Sparse Matrix Formulation

We just rearranged the Page Rank equation

r = βM · r +
[1− β

N

]
N

where [(1− β)/N ]N is a vector with all N entries (1− β)/N

M is a sparse matrix! (with no dead-ends)
10 links per node, approx 10N entries

So in each iteration, we need to
Compute rnew = βM · rold

Add a constant value (1− β)/N to each entry in rnew
I Note if M contains dead-ends then

∑
i r

new
i < 1 and we also have to

re-normalize rnew so that it sums to 1.
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Page Rank: The Complete Algorithm

Input: Graph G and parameter β
Directed graph G with spider traps and dead ends
Parameter β

Output: Page Rank vector r
Set: r(0)

j = 1
N , t = 1

do:
I ∀j: r′(t)

j =
∑

i→j β
rt−1

i

di

F r
′(t)
j = 0 if in-deg. of j is 0

I Now re-insert the leaked Page Rank:
F ∀j: r

(t)
j = r

′(t)
j + 1−S

N
where S =

∑
j

r
′(t)
j

I t = t+ 1
while

∑
j |r

(t)
j − r

(t+1)
j | > ε
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Sparse Matrix Encoding

Encode sparse matrix using only non-zero entries
Space proportional roughly to number of links
Say 10N , or 4 ∗ 10 ∗ 1 billion = 40GB
Still will not fit in memory, but will fit on disk

Source Node Degree Destination Node
0 3 1,5,6
1 4 17,64,113,117
2 2 12,23
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Basic Algorithm: Update Step
Assume enough RAM to fit rnew into memory

Store rold and matrix M on disk

Then, the first step of power-iteration is
Initialize all entries of rnew to (1− β)/N
For each page p (of out-degree n):

I Read into memory: p, n, dest1, ..., destn, rold(p) for
j = 1...n⇒ rnew(destj)+ = βrold(p)/n

rnew

0
1
2
3
4
5
6

Source Degree Destination
0 3 1,5,6
1 4 17,64,113,117
2 2 12,23

rold

0
1
2
3
4
5
6
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Analysis

Assume enough RAM to fit rnew into memory
Store rold and matrix M on disk

In each iteration, we have to
Read rold and M
Write rnew back to disk
IO cost = 2|r|+ |M |

Question
What if we could not even fit rnew in memory?
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Block-based Update Algorithm

rnew

0
1

2
3

4
5

Source Degree Destination
0 4 0,1,3,5
1 2 0,5
2 2 3,4

rold

0
1
2
3
4
5
6
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Analysis Block Update

Similar to nested-loop join in databases
Break rnew into k blocks that fit in memory.
Scan M and rold once for each block.

k scans of M and rold
k(|M |+ |r|) + |r| = k|M |+ (k + 1)|r|.

Can we do better?
Hint: M is much bigger than r (approx 10− 20x), so we must avoid
reading it k times per iteration
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Block-Stripe Update Algorithm

rnew

0
1

2
3

4
5

Source Degree Destination
0 4 0,1
1 3 0
2 2 1

0 4 3
2 2 3

0 4 5
1 3 5
2 2 4

rold

0
1
2
3
4
5
6
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Block-Stripe Analysis

Break M into stripes
Each stripe contains only destination nodes in the corresponding
block of rnew

Some additional overhead per stripe
But it is usually worth it

Cost per iteration
|M |(1 + ε) + (k + 1)|r|
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Some Problems with Page Rank

Measures generic popularity of a page
Biased against topic-specific authorities

I Solution: Topic-Specific Page Rank (next)

Uses a single measure of importance
Other models e.g., hubs-and-authorities

I Solution: Hubs-and-Authorities (next)

Susceptible to Link spam
Artificial link topographies created in order to boost page rank

I Solution a more advanced way of page rank: Trust Rank
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