## Introduction to Machine Learning Page Ranking and the Web

Andres Mendez-Vazquez

August 21, 2020

イロン イヨン イヨン イヨン 三日

1/96

## Outline

#### Graph Data

- Question
- Challenges
- Ranking
- Link Analysis Algorithms
  - Introduction
  - Links as Votes
  - Page Rank: The "Flow" Model
  - Page Rank Google and Company
  - Stochastic Matrices and Probabilistic State Machines
  - Perron-Frobenius
  - Going Back to the Google Matrix
  - Power Iteration Method

#### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

#### How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



## Graph Data: Social Networks



Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011].

## Graph Data: Media Networks



Connections between political blogs

Polarization of the network [Adamic-Glance, 2005].

## Graph Data: Information Nets



5 / 96

э

イロト イロト イヨト イヨト

## Graph Data: Communication Nets



6/96

## Web as Graph

#### Web as a directed graph

- Nodes: Web-pages
- Edges: Hyperlinks

#### We can have the following Pages



## Web as Graph

#### Web as a directed graph

- Nodes: Web-pages
- Edges: Hyperlinks

## We can have the following Pages



## Web as Graph

#### Now Add the Edges



8/96

## Another Example, A Semantic Web





9/96

イロト イヨト イヨト イヨト 二日

## Outline

## Graph Data

#### Question

- Challenges
- Ranking

2 Link Analysis Algorithms

- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method

#### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

#### 4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem











#### Web Search

- Information Retrieval investigates: Find relevant docs in a small and trusted set
  - Newspaper articles, Patents, etc.
- But the Web is huge, full of non-trustable documents, random things web spam, etc.

cinvestav

11/96

イロト 不得 トイヨト イヨト 二日







- Web Search
  - Information Retrieval investigates: Find relevant docs in a small and trusted set
    - ★ Newspaper articles, Patents, etc.
  - But the Web is huge, full of non-trustable documents, random things, web spam, etc.

cinvesta

## Outline

#### 🕽 Graph Data

Question

#### Challenges

Ranking

#### 2 Link Analysis Algorithms

- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method

#### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

#### 4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



#### Thus

We have two main challenges on web search.



# Thus We have two main challenges on web search. First • Web contains many sources of information Who do you "trust"?



#### Thus

We have two main challenges on web search.

#### First

- Web contains many sources of information Who do you "trust"?
  - Trick: Trustworthy pages may point to each other!

#### • What is the "best" answer to query "newspaper"?

- No single right answer
- Trick: Pages that actually know about newspapers might all be pointing to many newspapers



#### Thus

We have two main challenges on web search.

#### First

• Web contains many sources of information Who do you "trust"?

Trick: Trustworthy pages may point to each other!

#### Second

• What is the "best" answer to query "newspaper"?

cinvestav

13/96

< ロ > < 同 > < 回 > < 回 >

#### Thus

We have two main challenges on web search.

#### First

• Web contains many sources of information Who do you "trust"?

Trick: Trustworthy pages may point to each other!

#### Second

- What is the "best" answer to query "newspaper"?
  - No single right answer



#### Thus

We have two main challenges on web search.

#### First

• Web contains many sources of information Who do you "trust"?

Trick: Trustworthy pages may point to each other!

#### Second

- What is the "best" answer to query "newspaper"?
  - No single right answer
  - Trick: Pages that actually know about newspapers might all be pointing to many newspapers



## Outline

#### **1** G

#### Graph Data

- Question
- Challenges
- Ranking
- 2 Link Analysis Algorithms
  - Introduction
  - Links as Votes
  - Page Rank: The "Flow" Model
  - Page Rank Google and Company
  - Stochastic Matrices and Probabilistic State Machines
  - Perron-Frobenius
  - Going Back to the Google Matrix
  - Power Iteration Method

#### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

#### 4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



## Ranking Nodes on the Graph

All web pages are not equally "important" : www.joe-schmoe.com vs. www.stanford.edu



#### Web-graph node connectivity

 There is large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

cinvestav

## Ranking Nodes on the Graph

All web pages are not equally "important" : www.joe-schmoe.com vs. www.stanford.edu



#### Web-graph node connectivity

• There is large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

sinvestav ∽) Q ( 15 / 96

< ロ > < 同 > < 回 > < 回 >

## Outline

#### 1 Graph Data

- Question
- Challenges
- Ranking

Link Analysis Algorithms

#### Introduction

- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method

#### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

#### 4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



# We will cover the following Link Analysis approaches for computing importance of nodes in a graph

- Page Rank
- Hubs and Authorities (HITS)
- Topic-Specific (Personalized) Page Rank
- Web Spam Detection Algorithms



We will cover the following Link Analysis approaches for computing importance of nodes in a graph

- Page Rank
- Hubs and Authorities (HITS)
- Topic-Specific (Personalized) Page Rank
- Web Spam Detection Algorithms



We will cover the following Link Analysis approaches for computing importance of nodes in a graph

- Page Rank
- Hubs and Authorities (HITS)
- Topic-Specific (Personalized) Page Rank

Web Spam Detection Algorithms



We will cover the following Link Analysis approaches for computing importance of nodes in a graph

- Page Rank
- Hubs and Authorities (HITS)
- Topic-Specific (Personalized) Page Rank
- Web Spam Detection Algorithms



## Outline

#### 1) Graph Data

- Question
- Challenges
- Ranking

Link Analysis Algorithms

Introduction

#### Links as Votes

- Page Rank: The "Flow" Model
- Page Rank Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method

#### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

#### 4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



## Link as Votes

#### Idea

#### • Links as votes:

A Page is more important if it has more incoming links
In-coming links? Out-going links?



<ロト < 部 > < 注 > < 注 > 注 の Q (C 19 / 96

## Link as Votes

#### Idea

#### • Links as votes:

• A Page is more important if it has more incoming links

## • www.stanford.edu has 23,400 in-link

• www.joe-schmoe.com has 1 in-link



## Link as Votes

#### Idea

#### Links as votes:

- A Page is more important if it has more incoming links
- In-coming links? Out-going links?

#### hink of in-links as votes

www.stanford.edu has 23, 400 in-links

www.joe-schmoe.com has 1 in-link

#### Are all in-links are equal?

- Links from important pages count more
- Recursive question!


### Idea

#### Links as votes:

- A Page is more important if it has more incoming links
- In-coming links? Out-going links?

#### Think of in-links as votes

• www.stanford.edu has 23,400 in-links

www.joe-schmoe.com has 1 in-link

#### Are all in-links are equal

- Links from important pages count more
- Recursive question!



### Idea

#### Links as votes:

- A Page is more important if it has more incoming links
- In-coming links? Out-going links?

#### Think of in-links as votes

- www.stanford.edu has 23,400 in-links
- www.joe-schmoe.com has 1 in-link

#### Are all in-links are equa

- Links from important pages count more
- Recursive question!



### Idea

#### Links as votes:

- A Page is more important if it has more incoming links
- In-coming links? Out-going links?

#### Think of in-links as votes

- www.stanford.edu has 23,400 in-links
- www.joe-schmoe.com has 1 in-link

### Are all in-links are equal?

Links from important pages count more



### Idea

#### Links as votes:

- A Page is more important if it has more incoming links
- In-coming links? Out-going links?

#### Think of in-links as votes

- www.stanford.edu has 23,400 in-links
- www.joe-schmoe.com has 1 in-link

### Are all in-links are equal?

- Links from important pages count more
- Recursive question!



# What do we want?

### We want to generate Page Rank Scores from the structure





# What do we want?

### We want to generate Page Rank Scores from the structure





### Link's vote

Each link's vote is proportional to the importance of its source page.

#### Out-links

If page j with importance  $r_j$  has n out-links, each link gets  $\frac{r_j}{n}$  votes.



22 / 96

<ロ> <四> <ヨ> <ヨ>

### Link's vote

Each link's vote is proportional to the importance of its source page.

### Out-links

If page j with importance  $r_j$  has n out-links, each link gets  $\frac{r_j}{n}$  votes.



### In-links

Page j's own importance is the sum of the votes on its in-links

$$r_j = \frac{r_i}{3} + \frac{r_k}{4}$$

23 / 96

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(1)

### In-links

Page j's own importance is the sum of the votes on its in-links



# Outline

#### 1 Graph Data

- Question
- Challenges
- Ranking

#### Link Analysis Algorithms

- Introduction
- Links as Votes

#### Page Rank: The "Flow" Model

- Page Rank Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method

#### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

#### 4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



# Page Rank: The "Flow" Model

# Voting

# A "vote" from an important page is worth more

#### Importance

A page is important if it is pointed to by other important pages

### Define a "rank" r, for page

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 $d_i$ ... out-degree of node i

Flow Equations  $r_y = \frac{r_y}{2} + \frac{r_a}{2}$  $r_a = \frac{r_y}{2} + r_m$  $r_m = \frac{r_a}{2}$ The Web in 1839  $\frac{y}{2}$  $\frac{a}{2}$  $\overline{\frac{2}{a}}$  $\overline{m}$ 



# Page Rank: The "Flow" Model

# Voting

A "vote" from an important page is worth more

### Importance

A page is important if it is pointed to by other important pages

### Define a "rank" $r_j$ for page j







# Page Rank: The "Flow" Model

# Voting

A "vote" from an important page is worth more

### Importance

A page is important if it is pointed to by other important pages

Define a "rank"  $r_j$  for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 $d_i$ ... out-degree of node i

Flow Equations  $r_{y} = \frac{r_{y}}{2} + \frac{r_{a}}{2}$  $r_a = \frac{r_y}{2} + r_m$  $r_m = \frac{r_a}{2}$ The Web in 1839  $\frac{y}{2}$  $\frac{a}{2}$  $\frac{\overline{a}}{2}$  $\overline{m}$ 



# Something Notable

- Flow equations: 3 equations, 3 unknowns, no constants:
  - No unique solution.
  - All solutions equivalent modulo the scale factor.
- Additional constraint forces uniqueness
  - $\blacktriangleright r_y + r_a + r_m = 1$ 
    - $\star$  Solution:  $r_y=rac{2}{5}$  ,  $r_a=rac{2}{5}$  ,  $r_m=rac{1}{5}$

# Something Notable

• Flow equations: 3 equations, 3 unknowns, no constants:

- No unique solution.
- All solutions equivalent modulo the scale factor.
- Additional constraint forces uniqueness:
  - <code>Solution:</code>  $r_y=rac{2}{5}$  ,  $r_a=rac{2}{5}$  ,  $r_m=rac{1}{5}$

#### Something Notable

 Gaussian elimination method works for small examples, but we need a better method for large web-size graphs

# Something Notable

• Flow equations: 3 equations, 3 unknowns, no constants:

- No unique solution.
- All solutions equivalent modulo the scale factor.
- Additional constraint forces uniqueness:

$$\blacktriangleright r_y + r_a + r_m = 1$$

Solution:  $r_y=rac{2}{5}$  ,  $r_a=rac{2}{5}$  ,  $r_m=rac{1}{5}$ 

#### Something Notable

 Gaussian elimination method works for small examples, but we need a better method for large web-size graphs

#### I heretore

We need a new formulation!

# Something Notable

• Flow equations: 3 equations, 3 unknowns, no constants:

- No unique solution.
- All solutions equivalent modulo the scale factor.
- Additional constraint forces uniqueness:

$$\bullet \ r_y + r_a + r_m = 1$$

#### Something Notable

 Gaussian elimination method works for small examples, but we need a better method for large web-size graphs

#### I heretore

We need a new formulation!

# Something Notable

• Flow equations: 3 equations, 3 unknowns, no constants:

- No unique solution.
- All solutions equivalent modulo the scale factor.
- Additional constraint forces uniqueness:

$$\bullet \ r_y + r_a + r_m = 1$$

# Something Notable

 Gaussian elimination method works for small examples, but we need a better method for large web-size graphs

26 / 96

# Something Notable

• Flow equations: 3 equations, 3 unknowns, no constants:

- No unique solution.
- All solutions equivalent modulo the scale factor.
- Additional constraint forces uniqueness:

$$\bullet \ r_y + r_a + r_m = 1$$

# Something Notable

• Gaussian elimination method works for small examples, but we need a better method for large web-size graphs

### Therefore

We need a new formulation!

# Outline

#### 1 Graph Data

- Question
- Challenges
- Ranking

#### Link Analysis Algorithms

- Introduction
- Links as Votes
- Page Rank: The "Flow" Model

#### Page Rank - Google and Company

- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method

#### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

#### 4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



# Page Rank - Google and Company

### Page Rank

Invented by Larry Page and Sergei Brin (1998) during his Ph.d studies at Stanford University

#### They quit the Ph.d program

However, you need to have the knowledge!!!

#### Not only that they authored the following paper

'The Anatomy of a Large-Scale Hypertextual Web Search Engine"



# Page Rank - Google and Company

### Page Rank

Invented by Larry Page and Sergei Brin (1998) during his Ph.d studies at Stanford University

### They quit the Ph.d program

However, you need to have the knowledge!!!

#### Not only that they authored the following paper

'The Anatomy of a Large-Scale Hypertextual Web Search Engine"



# Page Rank - Google and Company

### Page Rank

Invented by Larry Page and Sergei Brin (1998) during his Ph.d studies at Stanford University

### They quit the Ph.d program

However, you need to have the knowledge!!!

### Not only that they authored the following paper

"The Anatomy of a Large-Scale Hypertextual Web Search Engine"



# Stochastic adjacency matrix M

- Let page i has  $d_i$  out-links
  - If  $i \to j$ , then  $M_{ji} = \frac{1}{d_i}$  else  $M_{ji} = 0$ 
    - M is a column stochastic matrix
      - Columns sum to 1

# Stochastic adjacency matrix M

• Let page i has  $d_i$  out-links

• If 
$$i \to j$$
, then  $M_{ji} = \frac{1}{d_i}$  else  $M_{ji} = 0$ 

is a column stochastic matrix

Columns sum to 1

#### Kank vector r .

```
• vector with an entry per page
```

 $r_i$  is the importance score of page i



# Stochastic adjacency matrix M

• Let page i has  $d_i$  out-links

• If 
$$i \to j$$
, then  $M_{ji} = \frac{1}{d_i}$  else  $M_{ji} = 0$ 

• M is a column stochastic matrix

Columns sum to

# vector with an entry per page r, is the importance score of

he flow equations can be written

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

### Stochastic adjacency matrix ${\cal M}$

• Let page i has  $d_i$  out-links

• If 
$$i \to j$$
, then  $M_{ji} = \frac{1}{d_i}$  else  $M_{ji} = 0$ 

- M is a column stochastic matrix

# vector with an entry per page r<sub>i</sub> is the importance score of page ∑<sub>i</sub> r<sub>i</sub> = 1

The flow equations can be written

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

### Stochastic adjacency matrix ${\cal M}$

• Let page i has  $d_i$  out-links

• If 
$$i \to j$$
, then  $M_{ji} = \frac{1}{d_i}$  else  $M_{ji} = 0$ 

- M is a column stochastic matrix

### Rank vector $\boldsymbol{r}$

vector with an entry per page



### Stochastic adjacency matrix ${\cal M}$

• Let page i has  $d_i$  out-links

• If 
$$i \to j$$
, then  $M_{ji} = \frac{1}{d_i}$  else  $M_{ji} = 0$ 

- M is a column stochastic matrix
  - ★ Columns sum to 1

### Rank vector $\boldsymbol{r}$

- vector with an entry per page
  - r<sub>i</sub> is the importance score of page i



### Stochastic adjacency matrix M

• Let page i has  $d_i$  out-links

• If 
$$i \to j$$
, then  $M_{ji} = \frac{1}{d_i}$  else  $M_{ji} = 0$ 

- M is a column stochastic matrix
  - **\star** Columns sum to 1

### Rank vector $\boldsymbol{r}$

- vector with an entry per page
  - r<sub>i</sub> is the importance score of page i

• 
$$\sum_i r_i = 1$$

### Stochastic adjacency matrix ${\cal M}$

• Let page i has  $d_i$  out-links

• If 
$$i \to j$$
, then  $M_{ji} = \frac{1}{d_i}$  else  $M_{ji} = 0$ 

- M is a column stochastic matrix
  - **\star** Columns sum to 1

### Rank vector $\boldsymbol{r}$

- vector with an entry per page
  - $r_i$  is the importance score of page i

• 
$$\sum_i r_i = 1$$

### The flow equations can be written

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

$$\boldsymbol{r} = \boldsymbol{M} \cdot \boldsymbol{r}$$

# Example

• Remember the flow equation

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

• Flow equation in the matrix form

$$\boldsymbol{r} = \boldsymbol{M} \cdot \boldsymbol{r}$$

Example of i links to 3 pages, including .



30 / 96

2

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

# Example

• Remember the flow equation

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

• Flow equation in the matrix form

$$\boldsymbol{r} = \boldsymbol{M} \cdot \boldsymbol{r}$$





# Outline

#### Graph Data

- Question
- Challenges
- Ranking

#### Link Analysis Algorithms

- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank Google and Company

#### • Stochastic Matrices and Probabilistic State Machines

- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method

#### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

#### 4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



# Stochastic Matrices

### Markov process

A stochastic process is called a Markov process when it has the Markov property:

$$P(X_{t_n}|X_{t_{n-1}} = x_{n-1}, \dots X_{t_1} = x_1) = P(X_{t_n}|X_{t_{n-1}} = x_{n-1})$$
(2)

#### Simply

The future path of a Markov process, given its current state and the past history before, depends only on the current state (not on how this state has been reached).

### Thus (Quite an Oversimplification!!!)

A Markov process is characterized by the (one-step) transition probabilities:

$$p_{i,j} = P\left(X_{t+1} = i | X_t = j\right)$$
## Stochastic Matrices

### Markov process

A stochastic process is called a Markov process when it has the Markov property:

$$P(X_{t_n}|X_{t_{n-1}} = x_{n-1}, \dots X_{t_1} = x_1) = P(X_{t_n}|X_{t_{n-1}} = x_{n-1})$$
(2)

### Simply

The future path of a Markov process, given its current state and the past history before, depends only on the current state (not on how this state has been reached).

### (Quite an Oversimplification!!!)

A Markov process is characterized by the (one-step) transition probabilities:

$$p_{i,j} = P(X_{t+1} = i | X_t = j)$$

## Stochastic Matrices

### Markov process

A stochastic process is called a Markov process when it has the Markov property:

$$P(X_{t_n}|X_{t_{n-1}} = x_{n-1}, \dots X_{t_1} = x_1) = P(X_{t_n}|X_{t_{n-1}} = x_{n-1})$$
 (2)

### Simply

The future path of a Markov process, given its current state and the past history before, depends only on the current state (not on how this state has been reached).

### Thus (Quite an Oversimplification!!!)

A Markov process is characterized by the (one-step) transition probabilities:

$$p_{i,j} = P(X_{t+1} = i | X_t = j)$$
(3)

32 / 96

# Markov Chains

## Definition (Oversimplified)

A Markov chain is a process  $X_t$  indexed by integers t = 0, 1, ... such that the states  $X_t$  describe the chain at time t.

### From here

The probability of a path  $i_0, i_1, ..., i_n$  is

## $P(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) = P(X_0 = i_0) p_{i_0 i_1} p_{i_1 i_2} \cdots p_{i_{n-1} i_n}$ (4)



# Markov Chains

## Definition (Oversimplified)

A Markov chain is a process  $X_t$  indexed by integers t = 0, 1, ... such that the states  $X_t$  describe the chain at time t.

## From here

The probability of a path  $i_0, i_1, ..., i_n$  is

$$P(X_0 = i_0, X_1 = i_1, ..., X_n = i_n) = P(X_0 = i_0) p_{i_0 i_1} p_{i_1 i_2} \cdots p_{i_{n-1} i_n}$$
(4)



33 / 96

3

イロト イロト イヨト イヨト

# The transition probability matrix of a Markov chain

The transition probabilities can be arranged as transition probability matrix  $\boldsymbol{P}=(p_{i,j})$ 

Final State  $\longrightarrow$ Initial State  $\downarrow \begin{pmatrix} p_{1,1} & p_{1,2} & p_{1,3} & \cdots \\ p_{2,1} & p_{2,2} & p_{2,3} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \boldsymbol{P}$ 

The column *j* contains the transition probabilities from state *j* to other states.

Since the system always goes to some state, the sum of the column probabilities is 1:

$$\mathbf{1}^T P = \mathbf{1}^T$$

# The transition probability matrix of a Markov chain

The transition probabilities can be arranged as transition probability matrix  ${\bm P}=(p_{i,j})$ 

Final State  $\longrightarrow$ Initial State  $\downarrow \begin{pmatrix} p_{1,1} & p_{1,2} & p_{1,3} & \cdots \\ p_{2,1} & p_{2,2} & p_{2,3} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = P$ 

The column j contains the transition probabilities from state j to other states.

Since the system always goes to some state, the sum of the column probabilities is 1:

$$\mathbf{1}^T P = \mathbf{1}^T$$

(5)

## Stochastic Matrix

## Definition

• A matrix with non-negative elements such that the sum of each column equals "ONE" is called a stochastic matrix.



35 / 96

イロト イヨト イヨト イヨト

## Example

## We have the following state machine



### We have the following Stochastic Matrix

$$\boldsymbol{P} = \left( \begin{array}{ccc} 1-p & 1-p & 0 \\ p \left( 1-p \right) & p \left( 1-p \right) & 1-p \\ p^2 & p^2 & p \end{array} \right)$$

With 
$$p = \frac{1}{3}$$

## Example

## We have the following state machine



### We have the following Stochastic Matrix

$$\boldsymbol{P} = \begin{pmatrix} 1-p & 1-p & 0\\ p(1-p) & p(1-p) & 1-p\\ p^2 & p^2 & p \end{pmatrix}$$
(6)

With  $p = \frac{1}{3}$ 

# Therefore, we can use that

### To describe the transition in the Markov Chain

Let  $\boldsymbol{p}_t \in \mathbb{R}^n$  is the distribution matrix of  $X_t$  at time t

$$(\boldsymbol{p}_t)_i = P\left(X_t = i\right) \tag{7}$$

### Then moving from a distribution to another one we have

$$oldsymbol{p}_{t+1} = oldsymbol{P}oldsymbol{p}_t$$



## Therefore, we can use that

### To describe the transition in the Markov Chain

Let  $\boldsymbol{p}_t \in \mathbb{R}^n$  is the distribution matrix of  $X_t$  at time t

$$(\boldsymbol{p}_t)_i = P\left(X_t = i\right)$$
 (7)

Then moving from a distribution to another one we have

$$\boldsymbol{p}_{t+1} = \boldsymbol{P} \boldsymbol{p}_t \tag{8}$$

イロト イロト イヨト イヨト



37 / 96

# Outline

### 1 Graph Data

- Question
- Challenges
- Ranking

### Link Analysis Algorithms

- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank Google and Company
- Stochastic Matrices and Probabilistic State Machines

### Perron-Frobenius

- Going Back to the Google Matrix
- Power Iteration Method

### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

### 4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



## **Basic Definition**

• A matrix is called positive if all its entries are positive.



## **Basic Definition**

- A matrix is called positive if all its entries are positive.
- Non-negative, if all its entries are non-negative.

If  $A \geq 0$  (Element wise) with  $A \in \mathbb{R}^{n \times n}$  and  $z \geq 0$  with  $z \in \mathbb{R}^n$ , then  $Az \geq 0$ 

Matrix Multiplication preserves non-negativity!!!



## **Basic Definition**

- A matrix is called positive if all its entries are positive.
- Non-negative, if all its entries are non-negative.

## **Basic Facts**

If  $A\geq 0$  (Element wise) with  $A\in \mathbb{R}^{n\times n}$  and  $z\geq 0$  with  $z\in \mathbb{R}^n,$  then  $Az\geq 0$ 

Matrix Multiplication preserves non-negativity!!



## **Basic Definition**

- A matrix is called positive if all its entries are positive.
- Non-negative, if all its entries are non-negative.

## **Basic Facts**

- If  $A\geq 0$  (Element wise) with  $A\in \mathbb{R}^{n\times n}$  and  $z\geq 0$  with  $z\in \mathbb{R}^n,$  then  $Az\geq 0$ 
  - Matrix Multiplication preserves non-negativity!!!



## **Basic Definition**

- A matrix is called positive if all its entries are positive.
- Non-negative, if all its entries are non-negative.

## **Basic Facts**

If  $A\geq 0$  (Element wise) with  $A\in \mathbb{R}^{n\times n}$  and  $z\geq 0$  with  $z\in \mathbb{R}^n,$  then  $Az\geq 0$ 

Matrix Multiplication preserves non-negativity!!!

### Regularity

Given  $A \in \mathbb{R}^{n \times n}$  with  $A \ge 0$ , then A is called regular if some  $k \ge 1$ ,  $A^k > 0$ .

# Path Property

## Meaning of the Previous Definition

From a directed graph on nodes 1,...,n with an arc from i to j whenever  $A_{ij} \geq 0$  then

if and only if there is a path of length k from i to j.



# Path Property

## Meaning of the Previous Definition

From a directed graph on nodes 1,...,n with an arc from i to j whenever  $A_{ij} \geq 0$  then

•  $(A^k)_{ij} > 0$  if and only if there is a path of length k from i to j.

#### Something Notable

A is regular if for some k there is a path of length k from every node to every other node.



# Path Property

## Meaning of the Previous Definition

From a directed graph on nodes 1,...,n with an arc from i to j whenever  $A_{ij} \geq 0$  then

•  $(A^k)_{ij} > 0$  if and only if there is a path of length k from i to j.

### Something Notable

 ${\cal A}$  is regular if for some k there is a path of length k from every node to every other node.



40 / 96

イロト イボト イヨト イヨト

### Theorem

Suppose  $A \in \mathbb{R}^{n \times n}$  is non-negative and regular, i.e.,  $A^k > 0$  for some k.

# For any other eigenvalue A, we have [A] < A<sub>2</sub>y. The eigenvalue A<sub>1</sub> we have [A] < A<sub>2</sub>y. The eigenvalue A<sub>2</sub>y is simple, i.e., has multiplicity one, and corresponds to a 1 × 1 Jordan block.



<□><□><□><□><□><□><□><□><□><□><□><□><0<○ 41/96

### Theorem

Suppose  $A \in \mathbb{R}^{n \times n}$  is non-negative and regular, i.e.,  $A^k > 0$  for some k.

### Then

- There is an eigenvalue  $\lambda_{pf}$  of A that is real and positive, with positive left and right eigenvectors.
  - For any other eigenvalue  $\lambda_i$  we have  $|\lambda| < \lambda_{pf}$ .
  - The eigenvalue  $\lambda_{pf}$  is simple, i.e., has multiplicity one, and
    - corresponds to a 1 imes 1 Jordan block.



### Theorem

Suppose  $A \in \mathbb{R}^{n \times n}$  is non-negative and regular, i.e.,  $A^k > 0$  for some k.

### Then

- There is an eigenvalue  $\lambda_{pf}$  of A that is real and positive, with positive left and right eigenvectors.
- **②** For any other eigenvalue  $\lambda$ , we have  $|\lambda| < \lambda_{pf}$ .

The eigenvalue  $\lambda_{pf}$  is simple, i.e., has multiplicity one, and

orresponds to a  $1 \times 1$  Jordan block.



### Theorem

Suppose  $A \in \mathbb{R}^{n \times n}$  is non-negative and regular, i.e.,  $A^k > 0$  for some k.

### Then

- There is an eigenvalue  $\lambda_{pf}$  of A that is real and positive, with positive left and right eigenvectors.
- **②** For any other eigenvalue  $\lambda$ , we have  $|\lambda| < \lambda_{pf}$ .
- The eigenvalue  $\lambda_{pf}$  is simple, i.e., has multiplicity one, and corresponds to a  $1 \times 1$  Jordan block.



41 / 96

## Now, given our matrix $oldsymbol{P}$

### Given P a stochastic matrix

Let  $\pi$  a Perron-Frobenius right eigenvector of P with  $\pi \ge 0$  and  $1^T \pi = 1$ .

### Such that $P\pi = \pi$

Then  $\pi$  corresponds to an invariant distribution or equilibrium distribution of the Markov chain for the eigenvalue 1.

Assume that

That  $oldsymbol{P}$  is regular then i.e. that for some  $k \; oldsymbol{P}^k > 0.$ 



# Now, given our matrix $oldsymbol{P}$

### Given $\boldsymbol{P}$ a stochastic matrix

Let  $\pi$  a Perron-Frobenius right eigenvector of P with  $\pi \ge 0$  and  $1^T \pi = 1$ .

## Such that $P\pi = \pi$

Then  $\pi$  corresponds to an invariant distribution or equilibrium distribution of the Markov chain for the eigenvalue 1.

### Assume that

That  $oldsymbol{P}$  is regular then i.e. that for some  $k \; oldsymbol{P}^k > 0$ 



## Now, given our matrix $oldsymbol{P}$

### Given $\boldsymbol{P}$ a stochastic matrix

Let  $\pi$  a Perron-Frobenius right eigenvector of P with  $\pi \ge 0$  and  $1^T \pi = 1$ .

## Such that $P\pi = \pi$

Then  $\pi$  corresponds to an invariant distribution or equilibrium distribution of the Markov chain for the eigenvalue 1.

### Assume that

That P is regular then i.e. that for some  $k P^k > 0$ .





## If we can force $\boldsymbol{P}$ to be regular

## There is unique distribution $\pi$ such that $\pi > 0$ .

## Something Notable

- The eigenvalue 1 is simple and dominant.
- ullet Thus, we have  $oldsymbol{p}_t o \pi$  no matter what the initial distribution  $p_0$





### If we can force $\boldsymbol{P}$ to be regular

There is unique distribution  $\pi$  such that  $\pi > 0$ .

## Something Notable

- The eigenvalue 1 is simple and dominant.
- ullet Thus, we have  $oldsymbol{p}_t 
  ightarrow \pi$  no matter what the initial distribution  $p_0$



# Thus, a Simple Algorithms

### We have a simple method

Repeatedly apply  $p_{t+1} = Pp_t$  until convergence to  $\pi$ .

### This is a method called

The Power Method

Naive and expensive but Stable!!!



# Thus, a Simple Algorithms

### We have a simple method

Repeatedly apply  $\boldsymbol{p}_{t+1} = \boldsymbol{P} \boldsymbol{p}_t$  until convergence to  $\pi.$ 

### This is a method called

The Power Method

## Naive and expensive but

Stable!!!



# Thus, a Simple Algorithms

### We have a simple method

Repeatedly apply  $\boldsymbol{p}_{t+1} = \boldsymbol{P} \boldsymbol{p}_t$  until convergence to  $\pi$ .

### This is a method called

The Power Method

### Naive and expensive but

Stable!!!



# Outline

### Graph Data

- Question
- Challenges
- Ranking

### Link Analysis Algorithms

- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius

### Going Back to the Google Matrix

Power Iteration Method

### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

### 4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



# **Eigenvector Formulation**

## The flow equations is written

$$\boldsymbol{r} = \boldsymbol{M} \cdot \boldsymbol{r}$$

Eigenvectors

So the rank vector r is an eigenvector of the stochastic web matrix M



46 / 96

э

イロン イロン イヨン イヨン

# **Eigenvector Formulation**

### The flow equations is written

$$\boldsymbol{r} = \boldsymbol{M} \cdot \boldsymbol{r}$$

## Eigenvectors

So the rank vector  $\boldsymbol{r}$  is an eigenvector of the stochastic web matrix  $\boldsymbol{M}$ 

• In fact, its first or principal eigenvector, with corresponding eigenvalue 1!!!



# **Eigenvector Formulation**

## Largest eigenvalue of ${\cal M}$ is 1 since ${\cal M}$ is column stochastic

 $\bullet~$  We know r is unit length and each column of M sums to one, so  $Mr \leq \mathbf{1}$ 



47 / 96

イロト イロト イヨト イヨト
## **Eigenvector Formulation**

## Largest eigenvalue of ${\cal M}$ is 1 since ${\cal M}$ is column stochastic

 $\bullet~$  We know r is unit length and each column of M sums to one, so  $Mr \leq \mathbf{1}$ 

#### Fhus

• We can obtain r!!!



## **Eigenvector Formulation**

## Largest eigenvalue of ${\cal M}$ is 1 since ${\cal M}$ is column stochastic

 $\bullet~$  We know r is unit length and each column of M sums to one, so  $Mr \leq \mathbf{1}$ 

#### Thus

- We can obtain r!!!
- Using the Power Method!!!



47 / 96

< ロ > < 回 > < 回 > < 回 > < 回 >

Now going back to the Flow Equation & M





 $r = M \cdot r$ 

$$r_y = r_y/2 + r_a/2$$
  

$$r_a = r_y/2 + r_m$$
  

$$r_m = r_a/2$$

 $\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$ 



## Outline

#### Graph Data

- Question
- Challenges
- Ranking

#### Link Analysis Algorithms

- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method

#### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

#### 4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



#### We have that

• Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks.



## We have that

• Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks.

## Power iteration: a simple iterative scheme

• Suppose there are N web pages

 $|x|_1 = \sum_{i=1}^{n} |x_i| \text{ is the } L_1 \text{ norm}$ 

## We have that

• Given a web graph with *n* nodes, where the nodes are pages and edges are hyperlinks.

## Power iteration: a simple iterative scheme

- Suppose there are N web pages
- Initialize:  $r^{(0)} = [1/N, ..., 1/N]^T$

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^t}{d_i}$$

## We have that

• Given a web graph with *n* nodes, where the nodes are pages and edges are hyperlinks.

## Power iteration: a simple iterative scheme

- Suppose there are N web pages
- Initialize:  $r^{(0)} = [1/N, ..., 1/N]^T$

• Iterate: 
$$r^{(t+1)} = M \cdot r^{(t)}$$

# $r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^t}{d_i}$

## We have that

• Given a web graph with *n* nodes, where the nodes are pages and edges are hyperlinks.

## Power iteration: a simple iterative scheme

- Suppose there are N web pages
- Initialize:  $r^{(0)} = [1/N, ..., 1/N]^T$
- Iterate:  $r^{(t+1)} = M \cdot r^{(t)}$
- Stop when  $|r^{(t+1)}-r^{(t)}|_1 < \epsilon$



## We have that

• Given a web graph with *n* nodes, where the nodes are pages and edges are hyperlinks.

## Power iteration: a simple iterative scheme

- Suppose there are N web pages
- Initialize:  $r^{(0)} = [1/N, ..., 1/N]^T$
- Iterate:  $r^{(t+1)} = M \cdot r^{(t)}$
- Stop when  $|r^{(t+1)}-r^{(t)}|_1 < \epsilon$

• 
$$|x|_1 = \sum_{1 \le i \le N} |x_i|$$
 is the  $L_1$  norm

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^t}{d_i}$$

## We have that

• Given a web graph with *n* nodes, where the nodes are pages and edges are hyperlinks.

### Power iteration: a simple iterative scheme

- Suppose there are N web pages
- Initialize:  $r^{(0)} = [1/N, ..., 1/N]^T$
- Iterate:  $r^{(t+1)} = M \cdot r^{(t)}$

• Stop when 
$$|r^{(t+1)}-r^{(t)}|_1 < \epsilon$$

• 
$$|x|_1 = \sum_{1 \le i \le N} |x_i|$$
 is the  $L_1$  norm

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^t}{d_i}$$

## Power Iteration

• Set 
$$r_j = 1/N$$

• 1: 
$$r'_j = \sum_{i \to j} \frac{r_i}{d_i}$$

• 2: 
$$r = r'$$

#### Example

$$\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$



|   | у   | а   | m |
|---|-----|-----|---|
| у | 1⁄2 | 1⁄2 | 0 |
| а | 1⁄2 | 0   | 1 |
| m | 0   | 1⁄2 | 0 |

$$r_y = r_y/2 + r_a/2$$
  

$$r_a = r_y/2 + r_m$$
  

$$r_m = r_a/2$$



## Power Iteration

• Set 
$$r_j = 1/N$$

• 1: 
$$r'_j = \sum_{i \to j} \frac{r_i}{d_i}$$

• 2: 
$$r = r'$$

## Example

$$\left[\begin{array}{c} r_y \\ r_a \\ r_m \end{array}\right] = \left[\begin{array}{c} 1/3 \\ 1/3 \\ 1/3 \end{array}\right]$$
  
Iteration 0, 1, 2, ...



$$\begin{array}{c|cccc} y & a & m \\ y & \frac{1}{2} & \frac{1}{2} & 0 \\ a & \frac{1}{2} & 0 & 1 \\ m & 0 & \frac{1}{2} & 0 \end{array}$$

$$r_y = r_y/2 + r_a/2$$
$$r_a = r_y/2 + r_m$$
$$r_m = r_a/2$$

<ロ> <四> <四> <四> <三</p>



51/96

## Power Iteration

• Set 
$$r_j = 1/N$$

- 1:  $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
- 2: r = r'
- Go to 1

#### Iteration 0, 1, 2, ...



$$r_y = r_y/2 + r_a/2$$
  

$$r_a = r_y/2 + r_m$$
  

$$r_m = r_a/2$$

<ロ><一><一><一><一><一><一><一><一</td>52/96

## Power Iteration

• Set 
$$r_j = 1/N$$

• 1: 
$$r'_j = \sum_{i \to j} \frac{r_i}{d_i}$$

• Go to 1

#### Iteration 0, 1, 2, ...



$$r_y = r_y/2 + r_a/2$$
  

$$r_a = r_y/2 + r_m$$
  

$$r_m = r_a/2$$

イロン イボン イヨン トヨ

|  |  |  |  | urani ganida |
|--|--|--|--|--------------|

52 / 96

## Power Iteration

• Set 
$$r_j = 1/N$$

• 1: 
$$r'_j = \sum_{i \to j} \frac{r_i}{d_i}$$

• 2: 
$$r = r'$$

#### • Go to 1

#### Iteration 0, 1, 2, ...



$$r_y = r_y/2 + r_a/2$$
  

$$r_a = r_y/2 + r_m$$
  

$$r_m = r_a/2$$

イロン イボン イヨン トヨ

|  |  |  |  | - The second second |
|--|--|--|--|---------------------|

52 / 96

## Power Iteration

• Set 
$$r_j = 1/N$$

• 1: 
$$r'_j = \sum_{i \to j} \frac{r_i}{d_i}$$

• 2: 
$$r = r'$$

• Go to 1

#### Iteration 0, 1, 2, ...



$$r_y = r_y/2 + r_a/2$$
  

$$r_a = r_y/2 + r_m$$
  

$$r_m = r_a/2$$

Example
$$\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{bmatrix} 1/3 & 1/3 & 5/12 & 9/24 & 6/15 \\ 1/3 & 3/6 & 1/3 & 11/24 & \cdots & 6/15 \\ 1/3 & 1/6 & 3/12 & 1/6 & 6/15 \end{bmatrix}$$

## Power Iteration

• Set 
$$r_j = 1/N$$

• 1: 
$$r'_j = \sum_{i \to j} \frac{r_i}{d_i}$$

• 2: 
$$r = r'$$

• Go to 1

Iteration  $0, 1, 2, \dots$ 



$$r_y = r_y/2 + r_a/2$$
  

$$r_a = r_y/2 + r_m$$
  

$$r_m = r_a/2$$



## Power Iteration

• Set 
$$r_j = 1/N$$

• 1: 
$$r'_j = \sum_{i \to j} \frac{r_i}{d_i}$$

• 2: 
$$r = r'$$

• Go to 1

Iteration  $0, 1, 2, \dots$ 



$$r_y = r_y/2 + r_a/2$$
  

$$r_a = r_y/2 + r_m$$
  

$$r_m = r_a/2$$

## Example

$$\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{bmatrix} 1/3 & 1/3 & 5/12 & 9/24 & 6/15 \\ 1/3 & 3/6 & 1/3 & 11/24 & \cdots & 6/15 \\ 1/3 & 1/6 & 3/12 & 1/6 & 6/15 \end{bmatrix}$$

urated guadeleye

## Power iteration

• A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)

$$\blacktriangleright \ r^{(1)} = M \cdot r^{(0)}$$

 $r^{(3)} = M \cdot r^{(2)} = M(M \cdot r^{(2)}) = M^3 \cdot r^{(0)}$   $r^{(3)} = M \cdot r^{(2)} = M(M^2 \cdot r^{(0)}) = M^3 \cdot r^{(0)}$ 



## Power iteration

• A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)

• 
$$r^{(1)} = M \cdot r^{(0)}$$

• 
$$r^{(2)} = M \cdot r^{(1)} = M(M \cdot r^{(0)}) = M^2 \cdot r^{(0)}$$

▶  $r^{(3)} = M \cdot r^{(2)} = M(M^2 \cdot r^{(0)}) = M^3 \cdot r^{(0)}$ 

# • Sequence $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, ... M^k \cdot r^{(0)}, ...$ approaches the dominant eigenvector of M



## Power iteration

• A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)

• 
$$r^{(1)} = M \cdot r^{(0)}$$

• 
$$r^{(2)} = M \cdot r^{(1)} = M(M \cdot r^{(0)}) = M^2 \cdot r^{(0)}$$

• 
$$r^{(3)} = M \cdot r^{(2)} = M(M^2 \cdot r^{(0)}) = M^3 \cdot r^{(0)}$$

# • Sequence $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, ... M^k \cdot r^{(0)}, ...$ approaches the dominant eigenvector of M



## Power iteration

• A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)

• 
$$r^{(1)} = M \cdot r^{(0)}$$

• 
$$r^{(2)} = M \cdot r^{(1)} = M(M \cdot r^{(0)}) = M^2 \cdot r^{(0)}$$

• 
$$r^{(3)} = M \cdot r^{(2)} = M(M^2 \cdot r^{(0)}) = M^3 \cdot r^{(0)}$$

## Claim

• Sequence  $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, ... M^k \cdot r^{(0)}, ...$  approaches the dominant eigenvector of M



53 / 96

イロト イヨト イヨト

## Power iteration

• A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)

• 
$$r^{(1)} = M \cdot r^{(0)}$$

• 
$$r^{(2)} = M \cdot r^{(1)} = M(M \cdot r^{(0)}) = M^2 \cdot r^{(0)}$$

• 
$$r^{(3)} = M \cdot r^{(2)} = M(M^2 \cdot r^{(0)}) = M^3 \cdot r^{(0)}$$

## Claim

• Sequence  $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, ... M^k \cdot r^{(0)}, ...$  approaches the dominant eigenvector of M



53 / 96

イロト イヨト イヨト

## Claim

 $\bullet$  Sequence  $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, ... M^k \cdot r^{(0)}, ...$  approaches the dominant eigenvector of M

#### Claim

 $\bullet$  Sequence  $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, ... M^k \cdot r^{(0)}, ...$  approaches the dominant eigenvector of M

#### Proof

• Assume M has n linearly independent eigenvectors,  $x_1, x_2, ..., x_n$  with corresponding eigenvalues  $\lambda_1, \lambda_2, ..., \lambda_n$ , where  $\lambda_1 > \lambda_2 > ... > \lambda_n$ 

ctors  $x_1, x_2, ..., x_n$  form a basis and thus we can write:

 $= M(c_1x_1 + c_2x_2 + \dots + c_nx_n)$ =  $c_1(M\pi) + c_2(M\pi) + \dots + c_n(M\pi)$ 

 $= c_1(\lambda_1 x_1) + c_2(\lambda_2 x_2) + \dots + c_n(\lambda_n x_n)$ 

cinvestav

## Claim

 $\bullet$  Sequence  $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, ... M^k \cdot r^{(0)}, ...$  approaches the dominant eigenvector of M

### Proof

• Assume M has n linearly independent eigenvectors,  $x_1, x_2, ..., x_n$  with corresponding eigenvalues  $\lambda_1, \lambda_2, ..., \lambda_n$ , where  $\lambda_1 > \lambda_2 > ... > \lambda_n$ 

cinvesta

54 / 96

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

• Vectors  $x_1, x_2, ..., x_n$  form a basis and thus we can write:  $r^{(0)} = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$ :

#### Claim

 $\bullet$  Sequence  $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, ... M^k \cdot r^{(0)}, ...$  approaches the dominant eigenvector of M

#### Proof

- Assume M has n linearly independent eigenvectors,  $x_1, x_2, ..., x_n$  with corresponding eigenvalues  $\lambda_1, \lambda_2, ..., \lambda_n$ , where  $\lambda_1 > \lambda_2 > ... > \lambda_n$
- Vectors  $x_1, x_2, ..., x_n$  form a basis and thus we can write:  $r^{(0)} = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$ :

$$Mr^{(0)} = M(c_1x_1 + c_2x_2 + \dots + c_nx_n)$$
  
=  $c_1(Mx_1) + c_2(Mx_2) + \dots + c_n(Mx_n)$   
=  $c_1(\lambda_1x_1) + c_2(\lambda_2x_2) + \dots + c_n(\lambda_nx_n)$ 

cinvestav

54 / 96

・ロ・ ・ 四・ ・ ヨ・ ・

## Proof (Continued)

• Repeated multiplication on both sides produces

$$M^{k}r^{(0)} = c_{1}(\lambda_{1}^{k}x_{1}) + c_{2}(\lambda_{2}^{k}x_{2}) + \dots + c_{n}(\lambda_{n}^{k}x_{n})$$

# $M^{k}r^{(0)} = \lambda_{1}^{k} \left[ c_{1}x_{1} + c_{2} \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} x_{2} + \dots + c_{n} \left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} x_{n} \right]$

- Since  $\lambda_1 > \lambda_2$  then fractions  $\frac{\lambda_2}{\lambda_1}, \frac{\lambda_1}{\lambda_1}, ... < 1$  and so  $\frac{\lambda_i}{\lambda_1} = 0$  as  $k \to \infty$  (for all i = 2...n).
- Thus:  $M^k r^{(0)} \approx C_1 \lambda_1^k x_1$ 
  - Note if  $c_1 = 0$  then the method will not converge

## Proof (Continued)

• Repeated multiplication on both sides produces

$$M^{k}r^{(0)} = c_{1}(\lambda_{1}^{k}x_{1}) + c_{2}(\lambda_{2}^{k}x_{2}) + \dots + c_{n}(\lambda_{n}^{k}x_{n})$$

$$M^{k}r^{(0)} = \lambda_{1}^{k} \left[ c_{1}x_{1} + c_{2} \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} x_{2} + \dots + c_{n} \left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} x_{n} \right]$$

• Since  $\lambda_1 > \lambda_2$  then fractions  $\frac{\lambda_2}{\lambda_1}, \frac{\lambda_3}{\lambda_1}, \dots < 1$  and so  $\frac{\lambda_i}{\lambda_1} = 0$  as  $k \to \infty$  (for all i = 2...n).

- Thus:  $M^k r^{(0)} \approx C_1 \lambda_1^k x_1$ 
  - Note if  $c_1 = 0$  then the method will not converge

## Proof (Continued)

• Repeated multiplication on both sides produces

$$M^{k}r^{(0)} = c_{1}(\lambda_{1}^{k}x_{1}) + c_{2}(\lambda_{2}^{k}x_{2}) + \dots + c_{n}(\lambda_{n}^{k}x_{n})$$

$$M^{k}r^{(0)} = \lambda_{1}^{k} \left[ c_{1}x_{1} + c_{2} \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} x_{2} + \dots + c_{n} \left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} x_{n} \right]$$

• Since  $\lambda_1 > \lambda_2$  then fractions  $\frac{\lambda_2}{\lambda_1}, \frac{\lambda_3}{\lambda_1}, \dots < 1$  and so  $\frac{\lambda_i}{\lambda_1} = 0$  as  $k \to \infty$  (for all i = 2...n).

• Thus:  $M^{\kappa}r^{(0)}pprox C_{1}\lambda_{1}^{\kappa}x_{1}$ 

Note if c<sub>1</sub> = 0 then the method will not converge

< ロ > < 同 > < 回 > < 回 >

## Proof (Continued)

• Repeated multiplication on both sides produces

$$M^{k}r^{(0)} = c_{1}(\lambda_{1}^{k}x_{1}) + c_{2}(\lambda_{2}^{k}x_{2}) + \dots + c_{n}(\lambda_{n}^{k}x_{n})$$

$$M^{k}r^{(0)} = \lambda_{1}^{k} \left[ c_{1}x_{1} + c_{2} \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} x_{2} + \dots + c_{n} \left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} x_{n} \right]$$

• Since  $\lambda_1 > \lambda_2$  then fractions  $\frac{\lambda_2}{\lambda_1}, \frac{\lambda_3}{\lambda_1}, \dots < 1$  and so  $\frac{\lambda_i}{\lambda_1} = 0$  as  $k \to \infty$  (for all i = 2...n).

• Thus:  $M^k r^{(0)} \approx C_1 \lambda_1^k x_1$ 

if  $c_1 = 0$  then the method will not converge

< ロ > < 同 > < 回 > < 回 >

## Proof (Continued)

• Repeated multiplication on both sides produces

$$M^{k}r^{(0)} = c_{1}(\lambda_{1}^{k}x_{1}) + c_{2}(\lambda_{2}^{k}x_{2}) + \dots + c_{n}(\lambda_{n}^{k}x_{n})$$

$$M^{k}r^{(0)} = \lambda_{1}^{k} \left[ c_{1}x_{1} + c_{2} \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} x_{2} + \dots + c_{n} \left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} x_{n} \right]$$

- Since  $\lambda_1 > \lambda_2$  then fractions  $\frac{\lambda_2}{\lambda_1}, \frac{\lambda_3}{\lambda_1}, \dots < 1$  and so  $\frac{\lambda_i}{\lambda_1} = 0$  as  $k \to \infty$  (for all i = 2...n).
- Thus:  $M^k r^{(0)} \approx C_1 \lambda_1^k x_1$ 
  - $\blacktriangleright$  Note if  $c_1=0$  then the method will not converge .

## Random Walk Interpretation

## Imagine a random web surfer

- At any time t, surfer is on some page i
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely



イロト イヨト イヨト イヨト



56 / 96

## Random Walk Interpretation

## Imagine a random web surfer

- At any time t, surfer is on some page i
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely



- p(t) is the vector whose i<sup>th</sup> coordinate is the probability that the surfer is at page i at time t.
- ullet So, p(t) is a probability distribution over pages



## Random Walk Interpretation

#### Imagine a random web surfer

- At any time t, surfer is on some page i
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i

Process repeats indefinitely



 p(t) is the vector whose i<sup>th</sup> coordinate is the probability that the surfer is at page i at time t.

• So, p(t) is a probability distribution over pages


## Random Walk Interpretation

#### Imagine a random web surfer

- At any time t, surfer is on some page i
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely



 p(t) is the vector whose i<sup>th</sup> coordinate is the probability that the surfer is at page i at time t.

• So, p(t) is a probability distribution over pages



## Random Walk Interpretation

#### Imagine a random web surfer

- At any time t, surfer is on some page i
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely



< ロ > < 同 > < 回 > < 回 >

56 / 96

#### Let

• p(t) is the vector whose  $i^{th}$  coordinate is the probability that the surfer is at page i at time t.

## Random Walk Interpretation

#### Imagine a random web surfer

- At any time t, surfer is on some page i
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely



イロト イヨト イヨト

#### Let

- p(t) is the vector whose  $i^{th}$  coordinate is the probability that the surfer is at page i at time t.
- So, p(t) is a probability distribution over pages



56 / 96

## The Stationary Distribution

### Where is the surfer at time t + 1?

• Follows a link uniformly at random  $p(t+1) = M \cdot p(t)$ .



#### Suppose

• Suppose the random walk reaches a state  $p(t + 1) = M \cdot p(t) = p(t)$  then p(t) is stationary distribution of a random walk.

#### Our original rank vector

- Our original rank vector r satisfies  $r = M \cdot r$ 
  - So, r is a stationary distribution for the random walk



## The Stationary Distribution

### Where is the surfer at time t + 1?

• Follows a link uniformly at random  $p(t+1) = M \cdot p(t)$ .



#### Suppose

• Suppose the random walk reaches a state  $p(t+1)=M\cdot p(t)=p(t)$  then p(t) is stationary distribution of a random walk.

#### Our original rank vecto

- Our original rank vector r satisfies  $r = M \cdot r$ 
  - ▶ So, *r* is a stationary distribution for the random walk



## The Stationary Distribution

### Where is the surfer at time t + 1?

• Follows a link uniformly at random  $p(t+1) = M \cdot p(t)$ .



• Suppose the random walk reaches a state  $p(t+1) = M \cdot p(t) = p(t)$  then p(t) is stationary distribution of a random walk.

#### Our original rank vector

- Our original rank vector r satisfies  $r = M \cdot r$ 
  - $\blacktriangleright$  So, r is a stationary distribution for the random walk



 $p(t+1) = M \cdot p(t)$ 

## Outline

#### Graph Data

- Question
- Challenges
- Ranking

2 Link Analysis Algorithms

- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method

## 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

#### How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



## Page Rank

$$r_{j}^{(t+1)} = \sum_{i \rightarrow j} \frac{r^{(t)}}{d_{i}}$$
 or equivalent  $r = Mr$ 



59 / 96

2

イロト イヨト イヨト イヨト

#### Page Rank

$$r_j^{(t+1)} = \sum_{i 
ightarrow j} rac{r^{(t)}}{d_i}$$
 or equivalent  $r = Mr$ 

## We have the following questions

• Does this converge?

Does it converge to what we want?

Are results reasonable?



### Page Rank

$$r_j^{(t+1)} = \sum_{i 
ightarrow j} rac{r^{(t)}}{d_i}$$
 or equivalent  $r = Mr$ 

### We have the following questions

- Does this converge?
- Does it converge to what we want?

#### Are results reasonable?



59 / 96

< ロ > < 回 > < 回 > < 回 > < 回 >

### Page Rank

$$r_j^{(t+1)} = \sum_{i 
ightarrow j} rac{r^{(t)}}{d_i}$$
 or equivalent  $r = Mr$ 

### We have the following questions

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?



59 / 96

< ロ > < 同 > < 回 > < 回 >



## Example: Does this converge?



#### Example



Iteration 0, 1, 2, ...



60 / 96

イロン イボン イヨン トヨ

## Example

### Example: Does this converge?



Example

 $\begin{array}{cccc} r_a \\ r_b \end{array} = \begin{array}{ccccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array}$ 

Iteration  $0, 1, 2, \ldots$ 



60 / 96

イロン イボン イヨン トヨ

## Example

#### Example: Does this converge to what we want?



#### Example



Iteration  $0, 1, 2, \dots$ 



## Example

#### Example: Does this converge to what we want?



# Example

 $\begin{array}{cccc} r_a \\ r_b \end{array} = \begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$ 

 $\text{Iteration } 0,1,2,\ldots$ 



61/96

イロン イロン イヨン イヨン 三日

## Outline

#### Graph Data

- Question
- Challenges
- Ranking

2 Link Analysis Algorithms

- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method

#### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic



- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



Two problems:

#### First One

- Some pages are dead ends (have no out-links)
  - Such pages cause importance to "leak out





Two problems:

#### First One

- Some pages are dead ends (have no out-links)
  - Such pages cause importance to "leak out"



Spider traps (all out-links are within the group)
 Eventually spider traps absorb all importance.



Two problems:

#### First One

- Some pages are dead ends (have no out-links)
  - Such pages cause importance to "leak out"



イロト イヨト イヨト

## Second One

• Spider traps (all out-links are within the group)

63 / 96

Two problems:

#### First One

- Some pages are dead ends (have no out-links)
  - Such pages cause importance to "leak out"



イロト イヨト イヨト

## Second One

- Spider traps (all out-links are within the group)
  - Eventually spider traps absorb all importance.



63 / 96

## Problems: Spider Traps





## Problems: Spider Traps



#### The Google solution for spider traps

- At each time step, the random surfer has two options:
  - With prob.  $\beta$ , follow a link at random.
  - ▶ With prob. 1 − β, jump to some random page
  - Common values for  $\beta$  are in the range 0.8 to 0.9



#### The Google solution for spider traps

• At each time step, the random surfer has two options:

- With prob.  $\beta$ , follow a link at random.
- Common values for  $\beta$  are in the range 0.8 to 0.9

Surfer will teleport out of spider trap within a few time steps



#### The Google solution for spider traps

• At each time step, the random surfer has two options:

- With prob.  $\beta$ , follow a link at random.
- With prob.  $1 \beta$ , jump to some random page.
- $\blacktriangleright$  Common values for eta are in the range 0.8 to 0.9



#### The Google solution for spider traps

• At each time step, the random surfer has two options:

- With prob.  $\beta$ , follow a link at random.
- With prob.  $1 \beta$ , jump to some random page.
- $\blacktriangleright$  Common values for  $\beta$  are in the range 0.8 to 0.9



### The Google solution for spider traps

• At each time step, the random surfer has two options:

- With prob.  $\beta$ , follow a link at random.
- With prob.  $1 \beta$ , jump to some random page.
- $\blacktriangleright$  Common values for  $\beta$  are in the range 0.8 to 0.9



## Problem: Dead Ends





## Problem: Dead Ends





## Problem: Dead Ends



## Solution: Always Teleport

#### Teleport

 $\bullet\,$  Follow random teleport links with probability 1.0 from dead-ends





## Solution: Always Teleport

#### Teleport

 $\bullet\,$  Follow random teleport links with probability 1.0 from dead-ends

Adjust matrix accordingly





### We know the following

$$r^{(t+1)} = Mr^{(t)}$$



<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のQ() 68/96

#### We know the following

$$r^{(t+1)} = Mr^{(t)}$$

#### Markov chains



Transition matrix P where  $P_{ij} = P(X_t = i | X_{t-1} = j)$ 

 $\pi$  specifying the stationary probability of being at each state  $x\in I$ 

• Goal is to find  $\pi$  such that  $\pi = P\pi$ 



#### We know the following

$$r^{(t+1)} = Mr^{(t)}$$

イロト イヨト イヨト イヨト

68 / 96

#### Markov chains

- Set of states X
- Transition matrix P where  $P_{ij} = P(X_t = i | X_{t-1} = j)$

#### We know the following

$$r^{(t+1)} = Mr^{(t)}$$

#### Markov chains

- Set of states X
- Transition matrix P where  $P_{ij} = P(X_t = i | X_{t-1} = j)$
- $\pi$  specifying the stationary probability of being at each state  $x \in X$



68 / 96

イロト イヨト イヨト
## Why Teleport Solve the Problems?

#### We know the following

$$r^{(t+1)} = Mr^{(t)}$$

#### Markov chains

- Set of states X
- Transition matrix P where  $P_{ij} = P(X_t = i | X_{t-1} = j)$
- $\pi$  specifying the stationary probability of being at each state  $x \in X$
- Goal is to find  $\pi$  such that  $\pi = P\pi$



68 / 96

イロト イヨト イヨト

#### From

Theory of Markov chains



4 ロ ト 4 団 ト 4 茎 ト 4 茎 ト 2 の 4 での
69 / 96

#### From

Theory of Markov chains

### We get the following fact

• For any start vector,

The power method applied to a Markov transition matrix P will

nverge to a unique positive stationary vector

If P is stochastic, irreducible and aperiodic.



#### From

Theory of Markov chains

#### We get the following fact

- For any start vector,
  - The power method applied to a Markov transition matrix P will converge to a unique positive stationary vector



69 / 96

イロト イヨト イヨト

#### From

Theory of Markov chains

#### We get the following fact

- For any start vector,
  - The power method applied to a Markov transition matrix P will converge to a unique positive stationary vector
  - ▶ If *P* is stochastic, irreducible and aperiodic.



69 / 96

イロト イヨト イヨト

### Outline

#### 1 Graph Data

- Question
- Challenges
- Ranking

2 Link Analysis Algorithms

- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method

#### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

#### How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



### Stochastic:

• Every column sums to 1

$$r_y = r_y/2 + r_a/2 + r_m/3$$
  
 $r_a = r_y/2 + r_m/3$   
 $r_m = r_a/2 + r_m/3$ 

#### Stochastic:

• Every column sums to 1

#### A possible solution

• Add green links

$$r_{y} = r_{y}/2 + r_{a}/2 + r_{m}/3$$

$$r_{a} = r_{y}/2 + r_{m}/3$$

$$r_{m} = r_{a}/2 + r_{m}/3$$



イロン イ団 とくほとう ほんし э 71/96

#### Stochastic:

• Every column sums to 1

### A possible solution

• Add green links

$$A = M + a \left(\frac{1}{n}e\right)^T$$

$$r_y = r_y/2 + r_a/2 + r_m/3$$
  
 $r_a = r_y/2 + r_m/3$   
 $r_m = r_a/2 + r_m/3$ 

<ロト <回 > < 注 > < 注 > < 注 > 注 の Q (\* 71/96

#### Stochastic:

• Every column sums to 1

#### A possible solution

• Add green links

$$A = M + a \left(\frac{1}{n}e\right)^T$$
•  $a_i = \begin{cases} 1 & \text{if node } i\text{has out deg 0} \\ 0 & \text{else} \end{cases}$ 

$$r_y = r_y/2 + r_a/2 + r_m/3$$
  
 $r_a = r_y/2 + r_m/3$   
 $r_m = r_a/2 + r_m/3$ 

3

71/96

イロン イ団 とくほとう ほんし

#### Stochastic:

• Every column sums to 1

#### A possible solution

• Add green links

$$A = M + a \left(\frac{1}{n}e\right)^{T}$$
•  $a_i = \begin{cases} 1 & \text{if node } i\text{has out deg 0} \\ 0 & \text{else} \end{cases}$ 
• e = vector of all 1's

$$r_y = r_y/2 + r_a/2 + r_m/3$$

$$r_a = r_y/2 + r_m/3$$

$$r_m = r_a/2 + r_m/3$$

3

71/96

### $\mathsf{Make}\ M\ \mathsf{Stochastic}$

#### Stochastic:

• Every column sums to 1

#### A possible solution

• Add green links

$$A = M + a \left(\frac{1}{n}e\right)^{T}$$
•  $a_i = \begin{cases} 1 & \text{if node } i\text{has out deg 0} \\ 0 & \text{else} \end{cases}$ 
• e = vector of all 1's



$$r_y = r_y/2 + r_a/2 + r_m/3$$

$$r_a = r_y/2 + r_m/3$$

$$r_m = r_a/2 + r_m/3$$

71/96

### $\mathsf{Make}\ M\ \mathsf{Aperiodic}$

#### Periodic

• A chain is periodic if there is k > 1 such that the interval between two visits to some state s is always a multiple of k.

#### A possible solution

Add green links



### $\mathsf{Make}\ M\ \mathsf{Aperiodic}$

#### Periodic

• A chain is periodic if there is k > 1 such that the interval between two visits to some state s is always a multiple of k.

#### A possible solution

• Add green links





### $\mathsf{Make}\ M\ \mathsf{Irreducible}$

#### Definition

• From any state, there is a non-zero probability of going from any one state to any another

#### A possible solution for a graph

Add green links



# $\mathsf{Make}\ M\ \mathsf{Irreducible}$

#### Definition

• From any state, there is a non-zero probability of going from any one state to any another

#### A possible solution for a graph

Add green links





### Google's solution that does it all

 $\bullet\,$  Makes M stochastic, aperiodic, irreducible.

#### Google's solution that does it all

• Makes M stochastic, aperiodic, irreducible.

#### At each step, random surfer has two options

• With probability  $\beta$ , follow a link at random.



#### Google's solution that does it all

• Makes M stochastic, aperiodic, irreducible.

#### At each step, random surfer has two options

- With probability  $\beta$ , follow a link at random.
- With probability  $1 \beta$ , jump to some random page.



- This formulation assumes that M has no dead ends.
- We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

#### Google's solution that does it all

• Makes M stochastic, aperiodic, irreducible.

#### At each step, random surfer has two options

- With probability  $\beta$ , follow a link at random.
- With probability  $1 \beta$ , jump to some random page.

### Page Rank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$

- This formulation assumes that M has no dead ends.
- We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

#### Google's solution that does it all

• Makes M stochastic, aperiodic, irreducible.

#### At each step, random surfer has two options

- With probability  $\beta$ , follow a link at random.
- With probability  $1 \beta$ , jump to some random page.

#### Page Rank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$

• This formulation assumes that M has no dead ends.

 We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

#### Google's solution that does it all

 $\bullet\,$  Makes M stochastic, aperiodic, irreducible.

#### At each step, random surfer has two options

- With probability  $\beta$ , follow a link at random.
- With probability  $1 \beta$ , jump to some random page.

#### Page Rank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$

- This formulation assumes that M has no dead ends.
- We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

### The Google Matrix

### Page Rank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$



・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

э

75 / 96

### The Google Matrix

### Page Rank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$

### The Google Matrix $\boldsymbol{A}$

$$A = \beta M + (1 - \beta) \frac{1}{n} \mathbf{e} \cdot \mathbf{e}^{\mathbf{T}}$$

• e... vector of all 1s



# Using the $S = M + a\left(\frac{1}{n}e^{T}\right)$ to handle nodes with out-degree 0

We can re-write the google matrix

$$A = \beta S + (1 - \beta) \frac{1}{n} \mathbf{e} \cdot \mathbf{e}^{\mathbf{T}}$$

#### Something Notable

The teleporting is random because the teleportation matrix  $E = \frac{1}{n} \mathbf{e} \cdot \mathbf{e}^{T}$  is uniform

#### Meaning

The surfer is equally likely, when teleporting, to jump to any page.



(9)

# Using the $S = M + a\left(\frac{1}{n}e^{T}\right)$ to handle nodes with out-degree 0

We can re-write the google matrix

$$A = \beta S + (1 - \beta) \frac{1}{n} \mathbf{e} \cdot \mathbf{e}^{\mathbf{T}}$$
(9)

A D A A B A A B A A B A

### Something Notable

The teleporting is random because the teleportation matrix  $E = \frac{1}{n} \mathbf{e} \cdot \mathbf{e}^{T}$  is uniform

#### Meaning

The surfer is equally likely, when teleporting, to jump to any page.



76 / 96

# Using the $S = M + a\left(rac{1}{n}e^{T} ight)$ to handle nodes with out-degree 0

We can re-write the google matrix

$$A = \beta S + (1 - \beta) \frac{1}{n} \mathbf{e} \cdot \mathbf{e}^{\mathbf{T}}$$
(9)

#### Something Notable

The teleporting is random because the teleportation matrix  $E = \frac{1}{n} \mathbf{e} \cdot \mathbf{e}^{T}$  is uniform

#### Meaning

The surfer is equally likely, when teleporting, to jump to any page.



### There are several consequences of the primitivity adjustment

- A is stochastic. It is the convex combination of the two stochastic matrices M and E.
- A is irreducible. Every page is directly connected to every other page, so irreducibility is trivially enforced.
- A is aperiodic. The self-loops  $(A_{ii} > 0$  for all i) create aperiodicity.
- A is primitive because A<sup>k</sup> > 0 for some k. Implying that a a unique positive vector π exists, and the power method applied to A is guaranteed to converge to this vector.
- lacepsilon A is completely dense, which is a very bad thing, computationally.



#### There are several consequences of the primitivity adjustment

- A is stochastic. It is the convex combination of the two stochastic matrices M and E.
- A is irreducible. Every page is directly connected to every other page, so irreducibility is trivially enforced.
- A is primitive because A<sup>k</sup> > 0 for some k. Implying that a a unique positive vector π exists, and the power method applied to A is guaranteed to converge to this vector.
- lacepsilon A is completely dense, which is a very bad thing, computationally.



#### There are several consequences of the primitivity adjustment

- A is stochastic. It is the convex combination of the two stochastic matrices M and E.
- A is irreducible. Every page is directly connected to every other page, so irreducibility is trivially enforced.
- A is aperiodic. The self-loops  $(A_{ii} > 0 \text{ for all } i)$  create aperiodicity.

A is primitive because  $A^k > 0$  for some k. Implying that a a unique positive vector  $\pi$  exists, and the power method applied to A is guaranteed to converge to this vector.

A is completely dense, which is a very bad thing, computationally.



#### There are several consequences of the primitivity adjustment

- A is stochastic. It is the convex combination of the two stochastic matrices M and E.
- A is irreducible. Every page is directly connected to every other page, so irreducibility is trivially enforced.
- A is aperiodic. The self-loops  $(A_{ii} > 0 \text{ for all } i)$  create aperiodicity.
- A is primitive because A<sup>k</sup> > 0 for some k. Implying that a a unique positive vector π exists, and the power method applied to A is guaranteed to converge to this vector.

ig> A is completely dense, which is a very bad thing, computationally.



77 / 96

イロト イヨト イヨト イヨト

#### There are several consequences of the primitivity adjustment

- A is stochastic. It is the convex combination of the two stochastic matrices M and E.
- A is irreducible. Every page is directly connected to every other page, so irreducibility is trivially enforced.
- A is aperiodic. The self-loops  $(A_{ii} > 0 \text{ for all } i)$  create aperiodicity.
- A is primitive because A<sup>k</sup> > 0 for some k. Implying that a a unique positive vector π exists, and the power method applied to A is guaranteed to converge to this vector.
- $\textcircled{\sc 0}$  A is completely dense, which is a very bad thing, computationally.



77 / 96

イロト イヨト イヨト

### Given this little adjustment

### Thus

 $\bullet \ A$  is stochastic, aperiodic and irreducible, so

$$r^{(t+1)} = A \cdot r^{(t)}$$

### • What is eta?In practice $eta=0.8,\,0.9$ (make 5 steps and jump)



### Given this little adjustment

### Thus

• A is stochastic, aperiodic and irreducible, so  $\binom{t+1}{t}$ 

$$r^{(t+1)} = A \cdot r^{(t)}$$

### • What is $\beta$ ? In practice $\beta = 0.8, 0.9$ (make 5 steps and jump)



### Given this little adjustment

#### Thus

• A is stochastic, aperiodic and irreducible, so  $m^{(t+1)} = A m^{(t)}$ 

$$T^{(1)} = A \cdot T^{(1)}$$

• What is  $\beta$ ?In practice  $\beta = 0.8$ , 0.9 (make 5 steps and jump)



### Example: Random Teleport ( $\beta = 0.8$ )



79 / 96
## Outline

### 1 Graph Data

- Question
- Challenges
- Ranking

2 Link Analysis Algorithms

- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method

### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

### How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



## Computing Page Rank

### Key step is matrix-vector multiplication

 $r^{new} = A \cdot r^{old}$ 

### Easy

ullet Easy if we have enough main memory to hold  $A,\,r^{old},\,r^{new}$ 

## However, if you have N=1 billion pages

- We need 4 bytes for each entry (say)
- 2 billion entries for vectors, approx 8GB
- Matrix A has N<sup>2</sup> entries
   10<sup>18</sup> is a large number!

 $\mathbf{A} = \beta \cdot \mathbf{M} + (\mathbf{1} - \beta) [\mathbf{1}/\mathbf{N}]_{\mathsf{N}\mathsf{X}\mathsf{N}}$  $\mathbf{A} = \mathbf{0.8} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} + \mathbf{0.2} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$  $= \begin{bmatrix} \frac{7}{15} & \frac{7}{15} & \frac{1}{15} \\ \frac{7}{15} & \frac{1}{15} & \frac{1}{15} \\ \frac{1}{15} & \frac{7}{15} & \frac{1}{3} \\ \frac{7}{15} & \frac{7}{15} & \frac{7}{15} \\ \frac{7}$ 



## Computing Page Rank

### Key step is matrix-vector multiplication

$$r^{new} = A \cdot r^{old}$$

### Easy

• Easy if we have enough main memory to hold A,  $r^{old}$ ,  $r^{new}$ 

## However, if you have N=1 billion pages

- We need 4 bytes for each entry (say)
- 2 billion entries for vectors, approx 8GB
- Matrix A has N<sup>2</sup> entries
   10<sup>18</sup> is a large number!

$$\mathbf{A} = \beta \cdot \mathbf{M} + (\mathbf{1} - \beta) [\mathbf{1}/\mathbf{N}]_{\mathsf{N}\mathsf{X}\mathsf{N}}$$
$$\mathbf{A} = \mathbf{0.8} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & 0 & 0\\ 0 & \frac{1}{2} & 1 \end{bmatrix} + \mathbf{0.2} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{7}{15} & \frac{7}{15} & \frac{1}{15} & \frac{1}{15}\\ \frac{7}{15} & \frac{1}{15} & \frac{1}{15} & \frac{1}{15}\\ \frac{1}{15} & \frac{7}{15} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$



## Computing Page Rank

### Key step is matrix-vector multiplication

$$r^{new} = A \cdot r^{old}$$

### Easy

• Easy if we have enough main memory to hold A,  $r^{old}$ ,  $r^{new}$ 

# However, if you have ${\cal N}=1$ billion pages

- We need 4 bytes for each entry (say)
- 2 billion entries for vectors, approx 8GB
- Matrix A has  $N^2$  entries
  - $10^{18}$  is a large number!

$$\mathbf{A} = \beta \cdot \mathbf{M} + (\mathbf{1} - \beta) [\mathbf{1}/\mathbf{N}]_{\mathsf{NXN}}$$
$$\mathbf{A} = \mathbf{0.8} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & 0 & 0\\ 0 & \frac{1}{2} & 1 \end{bmatrix} + \mathbf{0.2} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{7}{15} & \frac{7}{15} & \frac{1}{15} & \frac{1}{15}\\ \frac{7}{15} & \frac{1}{15} & \frac{1}{15} & \frac{1}{15}\\ \frac{1}{15} & \frac{7}{15} & \frac{1}{3} & \frac{1}{5} \end{bmatrix}$$

81/96

### Suppose

- Suppose there are N pages.
- Consider page j, with d<sub>j</sub> out-links.
- ullet We have  $M_{ij}=1/|d_j|$  when j o i and  $M_{ij}=0$  otherwise.



### Suppose

- Suppose there are  ${\cal N}$  pages.
- Consider page j, with  $d_j$  out-links.
- ullet We have  $M_{ij}=1/|d_j|$  when j o i and  $M_{ij}=0$  otherwise.

#### The random teleport is equivalent to

- Adding a teleport link from j to every other page and setting transition probability to  $(1 \beta)/N$ .
- Reducing the probability of following each out-link from  $1/|d_j|$  to  $\beta/|d_j|$  .
- Equivalent: Tax each page a fraction (1 β) of its score and redistribute evenly



### Suppose

- $\bullet\,$  Suppose there are N pages.
- Consider page j, with  $d_j$  out-links.
- We have  $M_{ij} = 1/|d_j|$  when  $j \to i$  and  $M_{ij} = 0$  otherwise.

#### The random teleport is equivalent to

- Adding a teleport link from j to every other page and setting transition probability to  $(1 \beta)/N$ .
- Reducing the probability of following each out-link from  $1/|d_j|$  to  $\beta/|d_j|$  .
- Equivalent: Tax each page a fraction (1 β) of its score and redistribute evenly



### Suppose

- Suppose there are N pages.
- Consider page j, with  $d_j$  out-links.
- We have  $M_{ij} = 1/|d_j|$  when  $j \to i$  and  $M_{ij} = 0$  otherwise.

### The random teleport is equivalent to

• Adding a teleport link from j to every other page and setting transition probability to  $(1-\beta)/N.$ 

Reducing the probability of following each out-link from  $1/|d_j|$  to  $\beta/|d_j|$ . Equivalent: Tax each page a fraction  $(1 - \beta)$  of its score and redistribute evenly



### Suppose

- Suppose there are N pages.
- Consider page j, with  $d_j$  out-links.
- We have  $M_{ij} = 1/|d_j|$  when  $j \to i$  and  $M_{ij} = 0$  otherwise.

### The random teleport is equivalent to

- Adding a teleport link from j to every other page and setting transition probability to  $(1-\beta)/N.$
- Reducing the probability of following each out-link from  $1/|d_j|$  to  $\beta/|d_j|$  .

Equivalent: Tax each page a fraction  $(1 - \beta)$  of its score and redistribute evenly



### Suppose

- Suppose there are N pages.
- Consider page j, with  $d_j$  out-links.
- We have  $M_{ij} = 1/|d_j|$  when  $j \to i$  and  $M_{ij} = 0$  otherwise.

### The random teleport is equivalent to

- Adding a teleport link from j to every other page and setting transition probability to  $(1-\beta)/N.$
- Reducing the probability of following each out-link from  $1/|d_j|$  to  $\beta/|d_j|$  .
- Equivalent: Tax each page a fraction  $(1-\beta)$  of its score and redistribute evenly



## Outline

### Graph Data

- Question
- Challenges
- Ranking

2 Link Analysis Algorithms

- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method

### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

### 4 How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



 $A_{ij} = \beta M_{ij} + \frac{1-\beta}{N}$ 

$$r = A \cdot r$$

since  $\sum_{j=1}^{N} r_j = 1$ 

 $\overline{A_{ij}} = \beta M_{ij} + \frac{1-\beta}{N}$ 

$$r = A \cdot r$$

$$r_i = \sum_{j=1}^{N} A_{ij} \cdot r_j$$

since  $\sum_{j=1}^N r_j = 1$ 

 $A_{ij} = \beta M_{ij} + \frac{1-\beta}{N}$ 

$$r = A \cdot r$$

$$r_{i} = \sum_{j=1}^{N} A_{ij} \cdot r_{j}$$

$$r_{i} = \sum_{j=1}^{N} \left[\beta M_{ij} + \frac{1-\beta}{N}\right] \cdot r_{j}$$

since  $\sum_{j=1}^{N} r_j = 1$ 

84 / 96

 $\overline{A_{ij}} = \beta M_{ij} + \frac{1-\beta}{N}$ 

$$r = A \cdot r$$
  

$$r_i = \sum_{j=1}^{N} A_{ij} \cdot r_j$$
  

$$r_i = \sum_{j=1}^{N} \left[ \beta M_{ij} + \frac{1-\beta}{N} \right] \cdot r_j$$
  

$$= \sum_{j=1}^{N} \beta M_{ij} \cdot r_j + \frac{1-\beta}{N} \sum_{j=1}^{N} r_j$$

 $-\sum_{j=1}^{N}\beta M_{ij}\cdot r_j + \frac{1-\beta}{N}\mathbf{1}$ 

since  $\sum_{j=1}^{N} r_j = 1$ 

 $\overline{A_{ij}} = \beta M_{ij} + \frac{1-\beta}{N}$ 

$$r = A \cdot r$$
  

$$i = \sum_{j=1}^{N} A_{ij} \cdot r_j$$
  

$$i = \sum_{j=1}^{N} \left[ \beta M_{ij} + \frac{1-\beta}{N} \right] \cdot r_j$$
  

$$= \sum_{j=1}^{N} \beta M_{ij} \cdot r_j + \frac{1-\beta}{N} \sum_{j=1}^{N} \beta M_{ij} \cdot r_j + \frac{1-\beta}{N} \mathbf{1}$$

since  $\sum_{j=1}^{N} r_j = 1$ 

 $r_{j}$ 

84 / 96

γ

γ

 $\overline{A_{ij}} = \beta M_{ij} + \frac{1-\beta}{N}$ 

$$\begin{aligned} \mathbf{r} &= A \cdot \mathbf{r} \\ \mathbf{i} &= \sum_{j=1}^{N} A_{ij} \cdot \mathbf{r}_{j} \\ \mathbf{i} &= \sum_{j=1}^{N} \left[ \beta M_{ij} + \frac{1-\beta}{N} \right] \cdot \mathbf{r}_{j} \\ &= \sum_{j=1}^{N} \beta M_{ij} \cdot \mathbf{r}_{j} + \frac{1-\beta}{N} \sum_{j=1}^{N} \mathbf{r}_{j} \\ &= \sum_{j=1}^{N} \beta M_{ij} \cdot \mathbf{r}_{j} + \frac{1-\beta}{N} \mathbf{1} \end{aligned}$$

since  $\sum_{j=1}^{N} r_j = \mathbf{1}$ 

### So we get

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_{N}$$





<ロト < 回 > < 直 > < 直 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > < ○ < ○ <br/>85 / 96

### So we get

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

### Note

 $\bullet\,$  Here we assumed M has no dead-ends.



<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q () 85 / 96

### So we get

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

### Note

- Here we assumed M has no dead-ends.
- $[x]_N$ ...a vector of length N with all entries x



85 / 96

イロト イヨト イヨト イヨト

### We just rearranged the Page Rank equation

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

### • where $[(1-\beta)/N]_N$ is a vector with all N entries $(1-\beta)/N$

### We just rearranged the Page Rank equation

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

• where  $[(1-\beta)/N]_N$  is a vector with all N entries  $(1-\beta)/N$ 

## I is a sparse matrix: (with no dead-end) 10 links per node, approx 10N entries

### We just rearranged the Page Rank equation

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

• where  $[(1-\beta)/N]_N$  is a vector with all N entries  $(1-\beta)/N$ 

### M is a sparse matrix! (with no dead-ends)

• 10 links per node, approx 10N entries

#### 50 in each iteration, we need to

• Compute  $r^{new}=eta M\cdot r^{olc}$ 

- Add a constant value (1-eta)/N to each entry in  $r^{ne}$ 
  - Note if M contains dead-ends then ∑<sub>i</sub> r<sup>new</sup><sub>i</sub> < 1 and we also have to re-normalize r<sup>new</sup> so that it sums to 1.

### We just rearranged the Page Rank equation

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

• where  $[(1-\beta)/N]_N$  is a vector with all N entries  $(1-\beta)/N$ 

### M is a sparse matrix! (with no dead-ends)

• 10 links per node, approx 10N entries

### So in each iteration, we need to

• Compute  $r^{new} = \beta M \cdot r^{old}$ 

ullet Add a constant value (1-eta)/N to each entry in  $r^{neu}$ 

Note if M contains dead-ends then  $\sum_i r_i^{new} < 1$  and we also have to re-normalize  $r^{new}$  so that it sums to 1.

### We just rearranged the Page Rank equation

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

• where  $[(1-\beta)/N]_N$  is a vector with all N entries  $(1-\beta)/N$ 

### M is a sparse matrix! (with no dead-ends)

• 10 links per node, approx 10N entries

### So in each iteration, we need to

- Compute  $r^{new} = \beta M \cdot r^{old}$
- Add a constant value  $(1 \beta)/N$  to each entry in  $r^{new}$

-

イロト イボト イヨト イヨト

### We just rearranged the Page Rank equation

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

• where  $[(1-\beta)/N]_N$  is a vector with all N entries  $(1-\beta)/N$ 

### M is a sparse matrix! (with no dead-ends)

• 10 links per node, approx 10N entries

### So in each iteration, we need to

- Compute  $r^{new} = \beta M \cdot r^{old}$
- Add a constant value  $(1-\beta)/N$  to each entry in  $r^{new}$ 
  - ▶ Note if M contains dead-ends then  $\sum_i r_i^{new} < 1$  and we also have to re-normalize  $r^{new}$  so that it sums to 1.

### We just rearranged the Page Rank equation

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

• where  $[(1-\beta)/N]_N$  is a vector with all N entries  $(1-\beta)/N$ 

### M is a sparse matrix! (with no dead-ends)

• 10 links per node, approx 10N entries

### So in each iteration, we need to

- Compute  $r^{new} = \beta M \cdot r^{old}$
- Add a constant value  $(1-\beta)/N$  to each entry in  $r^{new}$ 
  - ▶ Note if M contains dead-ends then  $\sum_i r_i^{new} < 1$  and we also have to re-normalize  $r^{new}$  so that it sums to 1.

### Input: Graph G and parameter $\beta$

 $\bullet\,$  Directed graph G with spider traps and dead ends

### Input: Graph G and parameter $\beta$

- $\bullet\,$  Directed graph G with spider traps and dead ends
- Parameter  $\beta$



### Input: Graph G and parameter $\beta$

- $\bullet\,$  Directed graph G with spider traps and dead ends
- Parameter  $\beta$

### Output: Page Rank vector r

• Set: 
$$r_j^{(0)} = \frac{1}{N}$$
,  $t = 1$ 

### Input: Graph G and parameter $\beta$

- $\bullet\,$  Directed graph G with spider traps and dead ends
- Parameter  $\beta$

### Output: Page Rank vector r

• Set: 
$$r_j^{(0)} = \frac{1}{N}$$
,  $t = 1$ 

### Input: Graph G and parameter $\beta$

- $\bullet\,$  Directed graph G with spider traps and dead ends
- Parameter  $\beta$

### Output: Page Rank vector r

• Set: 
$$r_j^{(0)} = \frac{1}{N}$$
,  $t = 1$ 

$$\blacktriangleright \quad \forall j: \ r_j^{\prime(t)} = \sum_{i \to j} \beta \frac{r_i^{t-1}}{d_i}$$

### Input: Graph G and parameter $\beta$

- $\bullet\,$  Directed graph G with spider traps and dead ends
- Parameter  $\beta$

### Output: Page Rank vector r

• Set: 
$$r_j^{(0)} = \frac{1}{N}$$
,  $t = 1$ 

• 
$$\forall j: r'^{(t)}_j = \sum_{i \to j} \beta \frac{r^{t-1}_i}{d_i}$$
  
  $\star r'^{(t)}_j = 0 \text{ if in-deg. of } j \text{ is } 0$ 

### Input: Graph G and parameter $\beta$

- $\bullet\,$  Directed graph G with spider traps and dead ends
- Parameter  $\beta$

### Output: Page Rank vector r

• Set: 
$$r_j^{(0)} = \frac{1}{N}$$
,  $t = 1$ 

• do:

$$\forall j: r'_j^{(t)} = \sum_{i \to j} \beta \frac{r_i^{t-1}}{d_i}$$

$$\star r'_i^{(t)} = 0 \text{ if in-deg. of } j \text{ is } 0$$

Now re-insert the leaked Page Rank:

### Input: Graph G and parameter $\beta$

- $\bullet\,$  Directed graph G with spider traps and dead ends
- Parameter  $\beta$

### Output: Page Rank vector r

• Set: 
$$r_j^{(0)} = \frac{1}{N}$$
,  $t = 1$ 

• do:

$$\forall j: r'_j^{(t)} = \sum_{i \to j} \beta \frac{r_i^{t-1}}{d_i}$$

$$\star r'_j^{(t)} = 0 \text{ if in-deg. of } j \text{ is } 0$$

Now re-insert the leaked Page Rank:

### Input: Graph G and parameter $\beta$

- $\bullet\,$  Directed graph G with spider traps and dead ends
- Parameter  $\beta$

### Output: Page Rank vector r

• Set: 
$$r_j^{(0)} = \frac{1}{N}$$
,  $t = 1$ 

► 
$$\forall j: r'_j^{(t)} = \sum_{i \to j} \beta \frac{r_i^{t-1}}{d_i}$$
  
★  $r'_j^{(t)} = 0$  if in-deg. of  $j$  is 0  
► Now re-insert the leaked Page Rank:

★ 
$$\forall j$$
:  $r_j^{(t)} = r_j^{\prime(t)} + \frac{1-S}{N}$  where  $S = \sum_j r_j^{\prime(t)}$ 

▶ 
$$t = t + 1$$
# Page Rank: The Complete Algorithm

### Input: Graph G and parameter $\beta$

- $\bullet\,$  Directed graph G with spider traps and dead ends
- Parameter  $\beta$

### Output: Page Rank vector r

• Set: 
$$r_j^{(0)} = \frac{1}{N}$$
,  $t = 1$ 

• do:

### Outline

#### Graph Data

- Question
- Challenges
- Ranking

2 Link Analysis Algorithms

- Introduction
- Links as Votes
- Page Rank: The "Flow" Model
- Page Rank Google and Company
- Stochastic Matrices and Probabilistic State Machines
- Perron-Frobenius
- Going Back to the Google Matrix
- Power Iteration Method

#### 3 Page Rank: Three Questions

- Introduction
- Other Problems
- Forcing a Matrix to be Stochastic

#### How do we actually compute the Page Rank?

- Introduction
- Rearrange the Equations
- Improving the Sparsity Problem



Encode sparse matrix using only non-zero entries

- Space proportional roughly to number of links
- Say 10N, or 4 \* 10 \* 1 billion = 40GB
- Still will not fit in memory, but will fit on disk
  - Source Node Degree Destination Node



#### Encode sparse matrix using only non-zero entries

- Space proportional roughly to number of links
- Say 10N, or 4 \* 10 \* 1 billion = 40GB





#### Encode sparse matrix using only non-zero entries

- Space proportional roughly to number of links
- Say 10N, or 4 \* 10 \* 1 billion = 40GB
- Still will not fit in memory, but will fit on disk





89 / 96

#### Encode sparse matrix using only non-zero entries

- Space proportional roughly to number of links
- Say 10N, or 4 \* 10 \* 1 billion = 40GB
- Still will not fit in memory, but will fit on disk

| Source Node | Degree | Destination Node |
|-------------|--------|------------------|
| 0           | 3      | 1,5,6            |
| 1           | 4      | 17,64,113,117    |
| 2           | 2      | 12,23            |



Assume enough RAM to fit  $r^{new}$  into memory

 $\bullet~{\rm Store}~r^{old}$  and matrix M on disk

Assume enough RAM to fit  $r^{new}$  into memory

 $\bullet~{\rm Store}~r^{old}$  and matrix M on disk

### Then, the first step of power-iteration is

 $\bullet$  Initialize all entries of  $r^{new}$  to  $(1-\beta)/N$ 



Assume enough RAM to fit  $r^{new}$  into memory

 $\bullet~{\rm Store}~r^{old}$  and matrix M on disk

### Then, the first step of power-iteration is

 $\bullet$  Initialize all entries of  $r^{new}$  to  $(1-\beta)/N$ 

• For each page p (of out-degree n):

Assume enough RAM to fit  $r^{new}$  into memory

 $\bullet \mbox{ Store } r^{old}$  and matrix M on disk

### Then, the first step of power-iteration is

- $\bullet$  Initialize all entries of  $r^{new}$  to  $(1-\beta)/N$
- For each page p (of out-degree n):
  - ▶ Read into memory:  $p, n, dest_1, ..., dest_n, r^{old}(p)$  for

$$j=1...n \Rightarrow r^{new}(dest_j) + = \beta r^{old}(p)/n$$

rold rnew 0 0 Source Degree Destination 1 1 2 2 0 3 1.5.63 3 1 4 17,64,113,117 4 2 2 12.23 4 5 5 6 6

### Assume enough RAM to fit $r^{new}$ into memory

 $\bullet \mbox{ Store } r^{old}$  and matrix M on disk



<ロト < 回 > < 巨 > < 巨 > < 巨 > 三 の < © 91/96

### Assume enough RAM to fit $r^{new}$ into memory

 $\bullet~{\rm Store}~r^{old}$  and matrix M on disk

#### In each iteration, we have to

 ${\scriptstyle \bullet}\,$  Read  $r^{old}$  and M



### Assume enough RAM to fit $r^{new}$ into memory

 $\bullet~{\rm Store}~r^{old}$  and matrix M on disk

#### In each iteration, we have to

- $\bullet~{\rm Read}~r^{old}~{\rm and}~M$
- Write  $r^{new}$  back to disk

What if we could not even fit  $r^{new}$  in memory?



### Assume enough RAM to fit $r^{new}$ into memory

 $\bullet~{\rm Store}~r^{old}$  and matrix M on disk

#### In each iteration, we have to

- $\bullet~{\rm Read}~r^{old}~{\rm and}~M$
- Write  $r^{new}$  back to disk
- IO cost = 2|r| + |M|

### What if we could not even fit $r^{new}$ in memory?



### Assume enough RAM to fit $r^{new}$ into memory

 $\bullet \mbox{ Store } r^{old}$  and matrix M on disk

#### In each iteration, we have to

- Read  $r^{old}$  and M
- Write  $r^{new}$  back to disk
- IO cost = 2|r| + |M|

### Question

What if we could not even fit  $r^{new}$  in memory?



Block-based Update Algorithm





92 / 96

2

イロト イヨト イヨト イヨト

#### Similar to nested-loop join in databases

- Break  $r^{new}$  into k blocks that fit in memory.
  - Scan M and  $r^{old}$  once for each block



### Similar to nested-loop join in databases

- Break  $r^{new}$  into k blocks that fit in memory.
- $\bullet~{\rm Scan}~M$  and  $r^{old}$  once for each block.

# k(|M| + |r|) + |r| = k|M| + (k+1)|r|.



### Similar to nested-loop join in databases

- Break  $r^{new}$  into k blocks that fit in memory.
- Scan M and  $r^{old}$  once for each block.

### k scans of M and $r^{old}$

$$k(|M| + |r|) + |r| = k|M| + (k+1)|r|.$$

 ● Hint: M is much bigger than r (approx 10 - 20x), so we must avoid reading it k times per iteration



### Similar to nested-loop join in databases

- Break  $r^{new}$  into k blocks that fit in memory.
- Scan M and  $r^{old}$  once for each block.

### k scans of M and $r^{old}$

$$k(|M| + |r|) + |r| = k|M| + (k+1)|r|.$$

#### Can we do better?

• Hint: M is much bigger than r (approx 10 - 20x), so we must avoid reading it k times per iteration



### Block-Stripe Update Algorithm





<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のQC 94 / 96

### Block-Stripe Analysis

#### Break M into stripes

 $\bullet\,$  Each stripe contains only destination nodes in the corresponding block of  $r^{new}$ 

Some additional overhead per stripe

But it is usually worth it

Cost per iteration

 $|M|(1+\epsilon) + (k+1)|r|$ 



### Block-Stripe Analysis

#### Break M into stripes

 $\bullet\,$  Each stripe contains only destination nodes in the corresponding block of  $r^{new}$ 

### Some additional overhead per stripe

• But it is usually worth it

#### Cost per iteration

 $|M|(1+\epsilon) + (k+1)|r|$ 



# Block-Stripe Analysis

#### Break M into stripes

 $\bullet\,$  Each stripe contains only destination nodes in the corresponding block of  $r^{new}$ 

#### Some additional overhead per stripe

• But it is usually worth it

#### Cost per iteration

 $|M|(1+\epsilon)+(k+1)|r|$ 



### Some Problems with Page Rank

### Measures generic popularity of a page

• Biased against topic-specific authorities

Solution: Topic-Specific Page Rank (next)

#### Uses a single measure of importance

Other models e.g., hubs-and-authorities

▶ Solution: Hubs-and-Authorities (next)

#### Susceptible to Link spam

Artificial link topographies created in order to boost page rank

Solution a more advanced way of page rank: Trust Rank



### Some Problems with Page Rank

### Measures generic popularity of a page

• Biased against topic-specific authorities

Solution: Topic-Specific Page Rank (next)

#### Uses a single measure of importance

- Other models e.g., hubs-and-authorities
  - Solution: Hubs-and-Authorities (next)

#### Susceptible to Link spam

Artificial link topographies created in order to boost page rank

Solution a more advanced way of page rank: Trust Rank



### Some Problems with Page Rank

### Measures generic popularity of a page

• Biased against topic-specific authorities

Solution: Topic-Specific Page Rank (next)

#### Uses a single measure of importance

- Other models e.g., hubs-and-authorities
  - Solution: Hubs-and-Authorities (next)

### Susceptible to Link spam

• Artificial link topographies created in order to boost page rank

Solution a more advanced way of page rank: Trust Rank

