Machine Learning for Data Mining

Finding Similar Items in High Dimensional Spaces

Andres Mendez-Vazquez

August 17, 2018

Outline

(1) Finding Similar Items in High Dimensional Spaces

- Introduction
- A Common Idea
(2) Finding Similar Items
- Distance Measures
- Finding Similar Documents
(3) Shingling
- Documents as High-Dimensional Data
- Shingles

4) MinHashing

- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick
(5) Locality Sensitive Hashing (LSH)
- Introduction

Outline

(1) Finding Similar Items in High Dimensional Spaces

- Introduction
- A Common Idea
(2) Finding Similar Items
- Distance Measures
- Finding Similar Documents
(3) Shingling
- Documents as High-Dimensional Data
- Shingles
(4) MinHashing
- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick
(5) Locality Sensitive Hashing (LSH)
- Introduction

Scene Completion Problem

Example

Scene Completion Problem

Example

Scene Completion Problem

10 nearest neighbors from a collection of 20,000 images

Scene Completion Problem

10 nearest neighbors from a collection of 2 million images

Outline

(1) Finding Similar Items in High Dimensional Spaces

- Introduction
- A Common Idea
(2) Finding Similar Items
- Distance Measures
- Finding Similar Documents
(3) Shingling
- Documents as High-Dimensional Data
- Shingles
(4) MinHashing
- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick
(5) Locality Sensitive Hashing (LSH)
- Introduction

A Common Idea

Problems

- Many problems can be expressed as finding "similar" sets:
- Find near-neighbors in high-dimensional space

A Common Idea

Problems

- Many problems can be expressed as finding "similar" sets:
- Find near-neighbors in high-dimensional space

Examples

- Pages with similar words
- For duplicate detection, classification by topic

A Common Idea

Problems

- Many problems can be expressed as finding "similar" sets:
- Find near-neighbors in high-dimensional space

Examples

- Pages with similar words
- For duplicate detection, classification by topic
- Customers who purchased similar products
- Products with similar customer sets

A Common Idea

Problems

- Many problems can be expressed as finding "similar" sets:
- Find near-neighbors in high-dimensional space

Examples

- Pages with similar words
- For duplicate detection, classification by topic
- Customers who purchased similar products
- Products with similar customer sets
- Images with similar features

A Common Idea

Problems

- Many problems can be expressed as finding "similar" sets:
- Find near-neighbors in high-dimensional space

Examples

- Pages with similar words
- For duplicate detection, classification by topic
- Customers who purchased similar products
- Products with similar customer sets
- Images with similar features
- Users who visited the similar websites

Relation to Previous Lecture

Last time: Finding frequent pairs

Relation to Previous Lecture

Last time: Finding frequent pairs

We had the Naïve solution

Single pass but requires space quadratic in the number of items:

- $N=$ number of distinct items
- $K=$ number of items with support $\geq s$

Relation to Previous Lecture

Last time: Finding frequent pairs

Items 1 ... K

We had the Naïve solution

Single pass but requires space quadratic in the number of items:

- $N=$ number of distinct items
- $K=$ number of items with support $\geq s$

However the A-priori Algorithm

- First pass: Find frequent singletons
- For a pair to be a candidate for a frequent pair, its singletons have to be frequent!
- Second pass:
- Count only candidate pairs!

Relation to Previous Lecture

Last time
Finding frequent pairs.

Relation to Previous Lecture

Last time

Finding frequent pairs.

Further improvement using PCY

- Pass 1:
- Count exact frequency of each item:

Items $1 \ldots . N$

Relation to Previous Lecture

Last time

Finding frequent pairs.

Further improvement using PCY

- Pass 1:
- Count exact frequency of each item:

- Take pairs of items $\{i, j\}$, hash them into B buckets and count of the number of pairs that hashed to each bucket:

Relation to Previous Lecture

Further improvement: PCY

Pass 2:

- For a pair $\{i, j\}$ to be a candidate for a frequent pair, its singletons have to be frequent and it has to hash to a frequent bucket!

Buckets 1...B

Thus, we have

Previous Lecture: A-Priori

- Main Idea: Candidates
- Instead of keeping a count of each pair, only keep a count for candidate pairs!

Thus, we have

Previous Lecture: A-Priori

- Main Idea: Candidates
- Instead of keeping a count of each pair, only keep a count for candidate pairs!

Today's Lectuire

- Main Idea: Candidates
- Pass 1: Take documents and has them to buckets such that documents that are similar hash to the same bucket.
- Pass 2: Only compare documents that are candidates (Hashed into the same bucket)
- Thus, we need $O(N)$ instead of $O\left(N^{2}\right)$.

Outline

(1) Finding Similar Items in High Dimensional Spaces

- Introduction
- A Common Idea
(2) Finding Similar Items
- Distance Measures
- Finding Similar Documents
(3) Shingling
- Documents as High-Dimensional Data
- Shingles
(4) MinHashing
- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick
(5) Locality Sensitive Hashing (LSH)
- Introduction

Distance Measures

Goal

- Find near-neighbors in high-dim. space
- We formally define "near neighbors" as points that are a "small distance" apart.

Distance Measures

Goal

- Find near-neighbors in high-dim. space
- We formally define "near neighbors" as points that are a "small distance" apart.

Application

- For each application, we first need to define what "distance" means

Distance Measures

Today: Jaccard distance (/similarity)

- The Jaccard Similarity/Distance of two sets is the size of their intersection / the size of their union:

Distance Measures

Today: Jaccard distance (/similarity)

- The Jaccard Similarity/Distance of two sets is the size of their intersection / the size of their union:
- $\operatorname{sim}\left(C_{1}, C_{2}\right)=\left|C_{1} \bigcap C_{2}\right| /\left|C_{1} \bigcup C_{2}\right|$

Distance Measures

Today: Jaccard distance (/similarity)

- The Jaccard Similarity/Distance of two sets is the size of their intersection / the size of their union:
- $\operatorname{sim}\left(C_{1}, C_{2}\right)=\left|C_{1} \bigcap C_{2}\right| /\left|C_{1} \cup C_{2}\right|$
- $d\left(C_{1}, C_{2}\right)=1-\left|C_{1} \cap C_{2}\right| /\left|C_{1} \bigcup C_{2}\right|$

Distance Measures

Today: Jaccard distance (/similarity)

- The Jaccard Similarity/Distance of two sets is the size of their intersection / the size of their union:

```
- \(\operatorname{sim}\left(C_{1}, C_{2}\right)=\left|C_{1} \bigcap C_{2}\right| /\left|C_{1} \cup C_{2}\right|\)
- \(d\left(C_{1}, C_{2}\right)=1-\left|C_{1} \bigcap C_{2}\right| /\left|C_{1} \bigcup C_{2}\right|\)
```

3 in intersection
8 in union

$$
\begin{aligned}
\operatorname{sim}\left(C_{1}, C_{2}\right) & =\frac{3}{8} \\
d\left(C_{1}, C_{2}\right) & =\frac{5}{8}
\end{aligned}
$$

Outline

(1) Finding Similar Items in High Dimensional Spaces

- Introduction
- A Common Idea
(2) Finding Similar Items
- Distance Measures
- Finding Similar Documents
(3) Shingling
- Documents as High-Dimensional Data
- Shingles
(4) MinHashing
- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick
(5) Locality Sensitive Hashing (LSH)
- Introduction

Finding Similar Documents

Goal

- Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates."

Finding Similar Documents

Goal

- Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates."

Applications

- Mirror websites, or approximate mirrors.

Finding Similar Documents

Goal

- Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates."

Applications

- Mirror websites, or approximate mirrors.
- We do not want to show both of them in a search.

Finding Similar Documents

Goal

- Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates."

Applications

- Mirror websites, or approximate mirrors.
- We do not want to show both of them in a search.
- Similar news articles at many news sites.

Finding Similar Documents

Goal

- Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates."

Applications

- Mirror websites, or approximate mirrors.
- We do not want to show both of them in a search.
- Similar news articles at many news sites.
- Cluster articles by "same story."

Finding Similar Documents

Goal

- Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates."

Applications

- Mirror websites, or approximate mirrors.
- We do not want to show both of them in a search.
- Similar news articles at many news sites.
- Cluster articles by "same story."

Finding Similar Documents

Problems

- Many small pieces of one document can appear out of order in another.

Finding Similar Documents

Problems

- Many small pieces of one document can appear out of order in another.
- Too many documents to compare all pairs.

Finding Similar Documents

Problems

- Many small pieces of one document can appear out of order in another.
- Too many documents to compare all pairs.
- Documents are so large or so many that they cannot fit in main memory.

3 Essential Steps for Similar Docs

Step 1: Shingling
Convert documents to sets

3 Essential Steps for Similar Docs

Step 1: Shingling
Convert documents to sets

Step 2: Minhashing

Convert large sets to short signatures, while preserving similarity

3 Essential Steps for Similar Docs

```
Step 1: Shingling
Convert documents to sets
```


Step 2: Minhashing

Convert large sets to short signatures, while preserving similarity

Locality-sensitive hashing

Focus on pairs of signatures likely to be from similar documents

- Candidate pairs!

The Big Picture

The Process of Identification

$21 / 67$

Outline

（1）Finding Similar Items in High Dimensional Spaces
－Introduction
－A Common Idea
（2）Finding Similar Items
－Distance Measures
－Finding Similar Documents
（3）Shingling
－Documents as High－Dimensional Data
－Shingles
（4）MinHashing
－Encoding Sets
－Finding Similar Columns
－Min－Hashing
－Implementation Trick
（5）Locality Sensitive Hashing（LSH）
－Introduction

Documents as High-Dimensional Data

Step 1: Shingling

Convert documents to sets.

Documents as High-Dimensional Data

Step 1: Shingling

Convert documents to sets.

Simple approaches

- Document $=$ set of words appearing in document.

Documents as High-Dimensional Data

Step 1: Shingling

Convert documents to sets.

Simple approaches

- Document $=$ set of words appearing in document.
- Document $=$ set of "important" words.

Documents as High-Dimensional Data

Step 1: Shingling

Convert documents to sets.

Simple approaches

- Document $=$ set of words appearing in document.
- Document $=$ set of "important" words.
- Don't work well for this application. Why?

Documents as High-Dimensional Data

Step 1: Shingling

Convert documents to sets.

Simple approaches

- Document $=$ set of words appearing in document.
- Document $=$ set of "important" words.
- Don't work well for this application. Why?

We want to avoid to get tangled in the text structure

- Need to account for ordering of words!

Documents as High-Dimensional Data

Step 1: Shingling

Convert documents to sets.

Simple approaches

- Document $=$ set of words appearing in document.
- Document $=$ set of "important" words.
- Don't work well for this application. Why?

We want to avoid to get tangled in the text structure

- Need to account for ordering of words!
- A different way: Use Shingles!!!

Outline

(1) Finding Similar Items in High Dimensional Spaces

- Introduction
- A Common Idea
(2) Finding Similar Items
- Distance Measures
- Finding Similar Documents

(3) Shingling

- Documents as High-Dimensional Data
- Shingles
(4) MinHashing
- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick
(5) Locality Sensitive Hashing (LSH)
- Introduction

Shingles

k-shingle

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc.

Shingles

k-shingle

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc.
- Tokens can be characters, words or something else, depending on the application.

Shingles

k-shingle

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc.
- Tokens can be characters, words or something else, depending on the application.
- Assume tokens $=$ characters for the examples.

Shingles

k-shingle

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc.
- Tokens can be characters, words or something else, depending on the application.
- Assume tokens $=$ characters for the examples.

Example

- $k=2$; document $D_{1}=a b c a b$ Set of 2-shingles: $S\left(D_{1}\right)=\{a b, b c, c a\}$

Shingles

k-shingle

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc.
- Tokens can be characters, words or something else, depending on the application.
- Assume tokens $=$ characters for the examples.

Example

- $k=2$; document $D_{1}=a b c a b$ Set of 2-shingles: $S\left(D_{1}\right)=\{a b, b c, c a\}$
- One possible option: Shingles as a bag (multiset). Thus, count $a b$ twice: $S^{\prime}\left(D_{1}\right)=\{a b, b c, c a, a b\}$

Compressing Shingles

Compress

- To compress long shingles, we can hash them to (say) 4 bytes.

Compressing Shingles

Compress

- To compress long shingles, we can hash them to (say) 4 bytes.

Represent a doc

- Represent a doc by the set of hash values of its k-shingles.

Compressing Shingles

Compress

- To compress long shingles, we can hash them to (say) 4 bytes.

Represent a doc

- Represent a doc by the set of hash values of its k-shingles.
- Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared.

Compressing Shingles

Compress

- To compress long shingles, we can hash them to (say) 4 bytes.

Represent a doc

- Represent a doc by the set of hash values of its k-shingles.
- Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared.

Example

- $k=2$; document $D_{1}=a b c a b$ Set of 2-shingles: $S\left(D_{1}\right)=\{a b, b c, c a\}$

Compressing Shingles

Compress

- To compress long shingles, we can hash them to (say) 4 bytes.

Represent a doc

- Represent a doc by the set of hash values of its k-shingles.
- Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared.

Example

- $k=2$; document $D_{1}=a b c a b$ Set of 2-shingles: $S\left(D_{1}\right)=\{a b, b c, c a\}$
- Hash the shingles using the division method to a hash table.

Similarity Metric for Shingles

Document

- Document $D_{1}=$ set of k-shingles $C_{1}=S\left(D_{1}\right)$

Similarity Metric for Shingles

Document

- Document $D_{1}=$ set of k-shingles $C_{1}=S\left(D_{1}\right)$

$0 / 1$ vector

- Equivalently, each document is a $0 / 1$ vector in the space of k-shingles

Similarity Metric for Shingles

Document

- Document $D_{1}=$ set of k-shingles $C_{1}=S\left(D_{1}\right)$

$0 / 1$ vector

- Equivalently, each document is a $0 / 1$ vector in the space of k-shingles
- Each unique shingle is a dimension.

Similarity Metric for Shingles

Document

- Document $D_{1}=$ set of k-shingles $C_{1}=S\left(D_{1}\right)$

$0 / 1$ vector

- Equivalently, each document is a $0 / 1$ vector in the space of k-shingles
- Each unique shingle is a dimension.
- Problem!!! Vectors are very sparse.

Similarity Metric for Shingles

Document

- Document $D_{1}=$ set of k-shingles $C_{1}=S\left(D_{1}\right)$

$0 / 1$ vector

- Equivalently, each document is a $0 / 1$ vector in the space of k-shingles
- Each unique shingle is a dimension.
- Problem!!! Vectors are very sparse.
* We need a measure that can handle this situation.

Similarity Metric for Shingles

Document

- Document $D_{1}=$ set of k-shingles $C_{1}=S\left(D_{1}\right)$
$0 / 1$ vector
- Equivalently, each document is a $0 / 1$ vector in the space of k-shingles
- Each unique shingle is a dimension.
- Problem!!! Vectors are very sparse.
\star We need a measure that can handle this situation.
A natural similarity measure is the Jaccard similarity

$$
\begin{equation*}
\operatorname{sim}\left(D_{1}, D_{2}\right)=\frac{\left|D_{1} \cap D_{2}\right|}{\left|D_{1} \cup D_{2}\right|} \tag{1}
\end{equation*}
$$

Remember the SWAR-Popcount

Code - SWAR-Popcount - Divide and Conquer

// This works only in 32 bits
int product(int row,int vector)\{
int $i=$ row \& vector;
$\mathrm{i}=\mathrm{i}-((\mathrm{i} \gg 1) \& 0 \times 55555555)$;
$\mathrm{i}=(\mathrm{i} \& 0 \times 33333333)+((\mathrm{i} \gg 2) \& 0 \times 33333333)$;
$i=(((i+(i \gg 4)) \& 0 \times 0 F 0 F 0 F 0 F) * 0 \times 01010101) \gg 24 ;$
return i \& 0×00000001;

Remember the SWAR-Popcount

Code - SWAR-Popcount - Divide and Conquer

```
// This works only in 32 bits
int product(int row, int vector){
int i = row & vector;
i=i-((i >> 1) & 0\times55555555);
i = (i & 0\times33333333) + ((i >> 2) & 0x33333333);
i}=(((i+(i>>4))&0x0F0F0F0F)*0\times01010101)>> 24
return i & 0x00000001;
```

\}

We can use this

Together with AND and OR to implement the Jaccard similarity

Working Assumption

Similar text

- Documents that have lots of shingles in common have similar text, even if the text appears in different order.

Working Assumption

Similar text

- Documents that have lots of shingles in common have similar text, even if the text appears in different order.

Caveat

- You must pick k large enough, or most documents will have most shingles.

Working Assumption

Similar text

- Documents that have lots of shingles in common have similar text, even if the text appears in different order.

Caveat

- You must pick k large enough, or most documents will have most shingles.
- It seems to be that

Working Assumption

Similar text

- Documents that have lots of shingles in common have similar text, even if the text appears in different order.

Caveat

- You must pick k large enough, or most documents will have most shingles.
- It seems to be that
- $k=5$ is OK for short documents.

Working Assumption

Similar text

- Documents that have lots of shingles in common have similar text, even if the text appears in different order.

Caveat

- You must pick k large enough, or most documents will have most shingles.
- It seems to be that
- $k=5$ is OK for short documents.
- $k=10$ is better for long documents.

Motivation for Minhash/LSH

Imagine the following

We need to find near-duplicate documents among $N=1,000,000$ documents.

Motivation for Minhash/LSH

Imagine the following

We need to find near-duplicate documents among $N=1,000,000$ documents.

Compute pairwaise Jaccard similarites

- Naïvely, we would have to compute pairwaise Jaccard similarites for every pair of docs.

Motivation for Minhash/LSH

Imagine the following

We need to find near-duplicate documents among $N=1,000,000$ documents.

Compute pairwaise Jaccard similarites

- Naïvely, we would have to compute pairwaise Jaccard similarites for every pair of docs.
- i.e, $N(N-1) / 2 \approx 5 * 10^{11}$ comparisons.

Motivation for Minhash/LSH

Imagine the following

We need to find near-duplicate documents among $N=1,000,000$ documents.

Compute pairwaise Jaccard similarites

- Naïvely, we would have to compute pairwaise Jaccard similarites for every pair of docs.
- i.e, $N(N-1) / 2 \approx 5 * 10^{11}$ comparisons.
- At 10^{5} secs/day and 10^{6} comparisons/sec, it would take 5 days.

Motivation for Minhash/LSH

Imagine the following

We need to find near-duplicate documents among $N=1,000,000$ documents.

Compute pairwaise Jaccard similarites

- Naïvely, we would have to compute pairwaise Jaccard similarites for every pair of docs.
- i.e, $N(N-1) / 2 \approx 5 * 10^{11}$ comparisons.
- At 10^{5} secs/day and 10^{6} comparisons/sec, it would take 5 days.

For something larger

For $N=10$ million, it takes more than a year...

Outline

(1) Finding Similar Items in High Dimensional Spaces

- Introduction
- A Common Idea

(2) Finding Similar Items
- Distance Measures
- Finding Similar Documents
(3) Shingling
- Documents as High-Dimensional Data
- Shingles
(4) MinHashing
- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick
(5) Locality Sensitive Hashing (LSH)
- Introduction

Encoding Sets as Bit Vectors

Something Notable

- Many similarity problems can be formalized as
 finding subsets that have significant intersection.

Encoding Sets as Bit Vectors

Something Notable

- Many similarity problems can be formalized as
 finding subsets that have significant intersection.

Encode sets

- Encode sets using 0/1 (bit, boolean) vectors.

Encoding Sets as Bit Vectors

Something Notable

- Many similarity problems can be formalized as
 finding subsets that have significant intersection.

Encode sets

- Encode sets using 0/1 (bit, boolean) vectors.
- One dimension per element in the universal set.

Encoding Sets as Bit Vectors

Something Notable

- Many similarity problems can be formalized as
 finding subsets that have significant intersection.

Encode sets

- Encode sets using 0/1 (bit, boolean) vectors.
- One dimension per element in the universal set.
- Interpret set intersection as bitwise AND, and set union as bitwise OR.

Encoding Sets as Bit Vectors

Something Notable

- Many similarity problems can be formalized as
 finding subsets that have significant intersection.

Encode sets

- Encode sets using 0/1 (bit, boolean) vectors.
- One dimension per element in the universal set.
- Interpret set intersection as bitwise AND, and set union as bitwise OR.

Example

- $C_{1}=10111 ; C_{2}=10011$.

Encoding Sets as Bit Vectors

Something Notable

- Many similarity problems can be formalized as
 finding subsets that have significant intersection.

Encode sets

- Encode sets using 0/1 (bit, boolean) vectors.
- One dimension per element in the universal set.
- Interpret set intersection as bitwise AND, and set union as bitwise OR.

Example

- $C_{1}=10111 ; C_{2}=10011$.
- Size of intersection $=3$; size of union $=4$, Jaccard similarity (not distance) $=3 / 4$

Encoding Sets as Bit Vectors

Something Notable

- Many similarity problems can be formalized as
 finding subsets that have significant intersection.

Encode sets

- Encode sets using 0/1 (bit, boolean) vectors.
- One dimension per element in the universal set.
- Interpret set intersection as bitwise AND, and set union as bitwise OR.

Example

- $C_{1}=10111 ; C_{2}=10011$.
- Size of intersection $=3$; size of union $=4$, Jaccard similarity (not distance) $=3 / 4$
- $d\left(C_{1}, C_{2}\right)=1$-(Jaccard similarity) $=1 / 4$

From Sets to Boolean Matrices

Rows

- Rows are equal to elements (shingles)

1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

From Sets to Boolean Matrices

Rows

- Rows are equal to elements (shingles)

Columns

- The Columns are equal to sets (documents)

1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

From Sets to Boolean Matrices

Rows

- Rows are equal to elements (shingles)

Columns

- The Columns are equal to sets (documents)
- 1 in row e and column s if and only if e is a member of s

1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

cinvestov

From Sets to Boolean Matrices

Rows

- Rows are equal to elements (shingles)

Columns

- The Columns are equal to sets (documents)
- 1 in row e and column s if and only if e is a member of s
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)

1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

From Sets to Boolean Matrices

Rows

- Rows are equal to elements (shingles)

Columns

- The Columns are equal to sets (documents)
- 1 in row e and column s if and only if e is a member of s
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is sparse!

1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

From Sets to Boolean Matrices

Rows

- Rows are equal to elements (shingles)

Columns

- The Columns are equal to sets (documents)
- 1 in row e and column s if and only if e is a member of s
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is sparse!

Each document is a column

- Example: $\operatorname{sim}\left(C_{1}, C_{2}\right)=$?

1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

From Sets to Boolean Matrices

Rows

- Rows are equal to elements (shingles)

Columns

- The Columns are equal to sets (documents)
- 1 in row e and column s if and only if e is a member of s
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is sparse!

Each document is a column

- Example: $\operatorname{sim}\left(C_{1}, C_{2}\right)=$?
- Size of intersection $=3$; size of union $=6$, Jaccard similarity $($ not distance $)=3 / 6$

1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

From Sets to Boolean Matrices

Rows

- Rows are equal to elements (shingles)

Columns

- The Columns are equal to sets (documents)
- 1 in row e and column s if and only if e is a member of s
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is sparse!

Each document is a column

- Example: $\operatorname{sim}\left(C_{1}, C_{2}\right)=$?
- Size of intersection $=3$; size of union $=6$, Jaccard similarity (not distance) $=3 / 6$
- $d\left(C_{1}, C_{2}\right)=1-($ Jaccard similarity $)=3 / 6$

1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

Outline

(1) Finding Similar Items in High Dimensional Spaces

- Introduction
- A Common Idea
(2) Finding Similar Items
- Distance Measures
- Finding Similar Documents
(3) Shingling
- Documents as High-Dimensional Data
- Shingles
(4) MinHashing
- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick
(5) Locality Sensitive Hashing (LSH)
- Introduction

Outline: Finding Similar Columns

So far and next goal

- So far:

Outline: Finding Similar Columns

So far and next goal

- So far:
- Documents \rightarrow Sets of shingles

Outline: Finding Similar Columns

So far and next goal

- So far:
- Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix

Outline: Finding Similar Columns

So far and next goal

- So far:
- Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

Outline: Finding Similar Columns

So far and next goal

- So far:
- Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

Approach

(1) Signatures of columns: small summaries of columns

Outline: Finding Similar Columns

So far and next goal

- So far:
- Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

Approach

(1) Signatures of columns: small summaries of columns
(2) Examine pairs of signatures to find similar columns

Outline: Finding Similar Columns

So far and next goal

- So far:
- Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

Approach

(1) Signatures of columns: small summaries of columns
(2) Examine pairs of signatures to find similar columns

- Essential: Similarities of signatures \& columns are related

Outline: Finding Similar Columns

So far and next goal

- So far:
- Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

Approach

(1) Signatures of columns: small summaries of columns
(2) Examine pairs of signatures to find similar columns

- Essential: Similarities of signatures \& columns are related
(3) Optional: Check that columns with similar signatures are really similar

Outline: Finding Similar Columns

So far and next goal

- So far:
- Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

Approach

(1) Signatures of columns: small summaries of columns
(2) Examine pairs of signatures to find similar columns

- Essential: Similarities of signatures \& columns are related
(3) Optional: Check that columns with similar signatures are really similar

Warnings

- Comparing all pairs may take too much time: Job for Locality Sensitive Hashing (LSH)

Outline: Finding Similar Columns

So far and next goal

- So far:
- Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

Approach

(1) Signatures of columns: small summaries of columns
(2) Examine pairs of signatures to find similar columns

- Essential: Similarities of signatures \& columns are related
(3) Optional: Check that columns with similar signatures are really similar

Warnings

- Comparing all pairs may take too much time: Job for Locality Sensitive Hashing (LSH)
- These methods can produce false negatives, and even false positives (if the optional check is not made)

Hashing Columns (Signatures)

Key idea

- "Hash" each column C to a small signature $h(C)$, such that:

Hashing Columns (Signatures)

Key idea

- "Hash" each column C to a small signature $h(C)$, such that:
- (1) $h(C)$ is small enough that the signature fits in RAM.

Hashing Columns (Signatures)

Key idea

- "Hash" each column C to a small signature $h(C)$, such that:
- (1) $h(C)$ is small enough that the signature fits in RAM.
- (2) $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$.

Hashing Columns (Signatures)

Key idea

- "Hash" each column C to a small signature $h(C)$, such that:
- (1) $h(C)$ is small enough that the signature fits in RAM.
- (2) $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$.

Goal

- Find a hash function $h(\cdot)$ such that:

Hashing Columns (Signatures)

Key idea

- "Hash" each column C to a small signature $h(C)$, such that:
- (1) $h(C)$ is small enough that the signature fits in RAM.
- (2) $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$.

Goal

- Find a hash function $h(\cdot)$ such that:
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h\left(C_{1}\right)=h\left(C_{2}\right)$.

Hashing Columns (Signatures)

Key idea

- "Hash" each column C to a small signature $h(C)$, such that:
- (1) $h(C)$ is small enough that the signature fits in RAM.
- (2) $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$.

Goal

- Find a hash function $h(\cdot)$ such that:
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h\left(C_{1}\right)=h\left(C_{2}\right)$.
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$.

Hashing Columns (Signatures)

Key idea

- "Hash" each column C to a small signature $h(C)$, such that:
- (1) $h(C)$ is small enough that the signature fits in RAM.
- (2) $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$.

Goal

- Find a hash function $h(\cdot)$ such that:
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h\left(C_{1}\right)=h\left(C_{2}\right)$.
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$.

Buckets

- Thus, we hash documents into buckets, and expect that "most" pairs of near duplicate docs hash into the same bucket!

Outline

(1) Finding Similar Items in High Dimensional Spaces

- Introduction
- A Common Idea
(2) Finding Similar Items
- Distance Measures
- Finding Similar Documents
(3) Shingling
- Documents as High-Dimensional Data
- Shingles
(4) MinHashing
- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick
(5) Locality Sensitive Hashing (LSH)
- Introduction

Min-Hashing

Goal

- Find a hash function $h(\cdot)$ such that:

Min-Hashing

Goal

- Find a hash function $h(\cdot)$ such that:
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h(C 1)=h(C 2)$

Min-Hashing

Goal

- Find a hash function $h(\cdot)$ such that:
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h(C 1)=h(C 2)$
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$

Min-Hashing

Goal

- Find a hash function $h(\cdot)$ such that:
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h(C 1)=h(C 2)$
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$

Similarity metric

- Clearly, the hash function depends on the similarity metric:

Min-Hashing

Goal

- Find a hash function $h(\cdot)$ such that:
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h(C 1)=h(C 2)$
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$

Similarity metric

- Clearly, the hash function depends on the similarity metric:
- Not all similarity metrics have a suitable hash function.

Min-Hashing

Goal

- Find a hash function $h(\cdot)$ such that:
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h(C 1)=h(C 2)$
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$

Similarity metric

- Clearly, the hash function depends on the similarity metric:
- Not all similarity metrics have a suitable hash function.

Hash function

- There is a suitable hash function for Jaccard similarity: Min-hashing.

Min-Hashing

Goal

- Find a hash function $h(\cdot)$ such that:
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h(C 1)=h(C 2)$
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$

Similarity metric

- Clearly, the hash function depends on the similarity metric:
- Not all similarity metrics have a suitable hash function.

Hash function

- There is a suitable hash function for Jaccard similarity: Min-hashing.

Min-Hashing

Random permutation

Imagine the rows of the boolean matrix permuted under random permutation π.

Min-Hashing

Random permutation

Imagine the rows of the boolean matrix permuted under random permutation π.

"Hash" function $h_{\pi}(C)$

- Define a "hash" function $h_{\pi}(C)=$ the number of the first (in the permuted order π) row in which column C has value 1 :

$$
h_{\pi}(C)=\min _{\pi} \pi(C)
$$

Min-Hashing

Random permutation

Imagine the rows of the boolean matrix permuted under random permutation π.

"Hash" function $h_{\pi}(C)$

- Define a "hash" function $h_{\pi}(C)=$ the number of the first (in the permuted order π) row in which column C has value 1:

$$
h_{\pi}(C)=\min _{\pi} \pi(C)
$$

What can we do?

- Use several (e.g., 100) independent hash functions to create a signature of a column

Min-Hashing Example

Something Notable

$2^{\text {nd }}$ element of the permutation
is the first to map to a 1
Permutation π Input matrix (Shingles \times Documents)
Signature matrix M

Surprising Property

- Choose a random permutation π

0	0
0	0
1	1
0	0
0	1
1	0

Surprising Property

- Choose a random permutation π
- Claim: $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$ Why?

0	0
0	0
1	1
0	0
0	1
1	0

Surprising Property

- Choose a random permutation π
- Claim: $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$ Why?

0	0
0	0
1	1
0	0
0	1
1	0

Why?

- Let X be a document (set of shingles)

Surprising Property

- Choose a random permutation π
- Claim: $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$ Why?

0	0
0	0
1	1
0	0
0	1
1	0

Why?

- Let X be a document (set of shingles)
- Then: $\operatorname{Pr}[\pi(x)=\min (\pi(X))]=1 /|X|$

Surprising Property

- Choose a random permutation π
- Claim: $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$ Why?

0	0
0	0
1	1
0	0
0	1
1	0

Why?

- Let X be a document (set of shingles)
- Then: $\operatorname{Pr}[\pi(x)=\min (\pi(X))]=1 /|X|$
- It is equally likely that any $x \in X$ is mapped to the min element

Surprising Property

- Choose a random permutation π
- Claim: $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$ Why?

0	0
0	0
1	1
0	0
0	1
1	0

Why?

- Let X be a document (set of shingles)
- Then: $\operatorname{Pr}[\pi(x)=\min (\pi(X))]=1 /|X|$
- It is equally likely that any $x \in X$ is mapped to the min element
- Let x be s.t. $\pi(x)=\min \left(\pi\left(C_{1} \bigcup C_{2}\right)\right)$

Surprising Property

- Choose a random permutation π
- Claim: $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$ Why?

0	0
0	0
1	1
0	0
0	1
1	0

Why?

- Let X be a document (set of shingles)
- Then: $\operatorname{Pr}[\pi(x)=\min (\pi(X))]=1 /|X|$
- It is equally likely that any $x \in X$ is mapped to the min element
- Let x be s.t. $\pi(x)=\min \left(\pi\left(C_{1} \bigcup C_{2}\right)\right)$
- Then either: $\pi(x)=\min \left(\pi\left(C_{1}\right)\right)$ if $x \in C_{1}$, or $\pi(x)=\min \left(\pi\left(C_{2}\right)\right)$ if $x \in C 2$

Surprising Property

- Choose a random permutation π
- Claim: $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$ Why?

0	0
0	0
1	1
0	0
0	1
1	0

Why?

- Let X be a document (set of shingles)
- Then: $\operatorname{Pr}[\pi(x)=\min (\pi(X))]=1 /|X|$
- It is equally likely that any $x \in X$ is mapped to the min element
- Let x be s.t. $\pi(x)=\min \left(\pi\left(C_{1} \bigcup C_{2}\right)\right)$
- Then either: $\pi(x)=\min \left(\pi\left(C_{1}\right)\right)$ if $x \in C_{1}$, or $\pi(x)=\min \left(\pi\left(C_{2}\right)\right)$ if $x \in C 2$
- One of the two cols had to have 1 at position x

Surprising Property

- Choose a random permutation π
- Claim: $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$ Why?

0	0
0	0
1	1
0	0
0	1
1	0

Why?

- Let X be a document (set of shingles)
- Then: $\operatorname{Pr}[\pi(x)=\min (\pi(X))]=1 /|X|$
- It is equally likely that any $x \in X$ is mapped to the min element
- Let x be s.t. $\pi(x)=\min \left(\pi\left(C_{1} \bigcup C_{2}\right)\right)$
- Then either: $\pi(x)=\min \left(\pi\left(C_{1}\right)\right)$ if $x \in C_{1}$, or $\pi(x)=\min \left(\pi\left(C_{2}\right)\right)$ if $x \in C 2$
- One of the two cols had to have 1 at position x
- So the prob. that both are true is the prob. $x \in C_{1} \bigcap C_{2}$

Surprising Property

- Choose a random permutation π
- Claim: $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$ Why?

0	0
0	0
1	1
0	0
0	1
1	0

Why?

- Let X be a document (set of shingles)
- Then: $\operatorname{Pr}[\pi(x)=\min (\pi(X))]=1 /|X|$
- It is equally likely that any $x \in X$ is mapped to the min element
- Let x be s.t. $\pi(x)=\min \left(\pi\left(C_{1} \bigcup C_{2}\right)\right)$
- Then either: $\pi(x)=\min \left(\pi\left(C_{1}\right)\right)$ if $x \in C_{1}$, or $\pi(x)=\min \left(\pi\left(C_{2}\right)\right)$ if $x \in C 2$
- One of the two cols had to have 1 at position x
- So the prob. that both are true is the prob. $x \in C_{1} \bigcap C_{2}$

$$
\begin{equation*}
\operatorname{Pr}\left[\min \left(\pi\left(C_{1}\right)\right)=\min \left(\pi\left(C_{2}\right)\right)\right]=\frac{\left|C_{1} \bigcap C_{2}\right|}{\left|C_{1} \cup C_{2}\right|}=\operatorname{sim}\left(C_{1}, C_{2}\right) \tag{2}
\end{equation*}
$$

Four Types of Rows between two Documents

Given cols C_{1} and C_{2}, rows may be classified as

	\underline{C}_{1}	C_{2}
A	1	1
B	1	0
C	0	1
D	0	0

$$
a=\# \text { rows of type A, etc. }
$$

Four Types of Rows between two Documents

Given cols C_{1} and C_{2}, rows may be classified as

	\underline{C}_{1}	C_{2}
A	1	1
B	1	0
C	0	1
D	0	0

$$
a=\# \text { rows of type A, etc. }
$$

Note

$$
\begin{equation*}
\operatorname{sim}\left(C_{1}, C_{2}\right)=\frac{a}{a+b+c} \tag{3}
\end{equation*}
$$

Four Types of Rows between two Documents

Given cols C_{1} and C_{2}, rows may be classified as

	\underline{C}_{1}	C_{2}
A	1	1
B	1	0
C	0	1
D	0	0

$$
a=\# \text { rows of type A, etc. }
$$

Note

$$
\begin{equation*}
\operatorname{sim}\left(C_{1}, C_{2}\right)=\frac{a}{a+b+c} \tag{3}
\end{equation*}
$$

Then

- Then: $\operatorname{Pr}\left[h\left(C_{1}\right)=h\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$
- Look down the cols C_{1} and C_{2} until we see a 1 .
- If it's a type-A row, then $h\left(C_{1}\right)=h\left(C_{2}\right)$ If a type-B or type-C row, then not.

Four Types of Rows between two Documents

Given cols C_{1} and C_{2}, rows may be classified as

	\underline{C}_{1}	C_{2}
A	1	1
B	1	0
C	0	1
D	0	0

$$
a=\# \text { rows of type A, etc. }
$$

Note

$$
\begin{equation*}
\operatorname{sim}\left(C_{1}, C_{2}\right)=\frac{a}{a+b+c} \tag{3}
\end{equation*}
$$

Then

- Then: $\operatorname{Pr}\left[h\left(C_{1}\right)=h\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$
- Look down the cols C_{1} and C_{2} until we see a 1 .
- If it's a type-A row, then $h\left(C_{1}\right)=h\left(C_{2}\right)$ If a type-B or type-C row, then not.

Similarity for Signatures

We know

$$
\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)
$$

Similarity for Signatures

We know

- $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$
- Now generalize to multiple hash functions

Similarity for Signatures

We know

- $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$
- Now generalize to multiple hash functions

Similarity

- The similarity of two signatures is the fraction of the hash functions in which they agree

Similarity for Signatures

We know

- $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$
- Now generalize to multiple hash functions

Similarity

- The similarity of two signatures is the fraction of the hash functions in which they agree

Note

- Because of the minhash property, the similarity of columns is the same as the expected similarity of their signatures

Similarity for Signatures

We know

- $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$
- Now generalize to multiple hash functions

Similarity

- The similarity of two signatures is the fraction of the hash functions in which they agree

Note

- Because of the minhash property, the similarity of columns is the same as the expected similarity of their signatures

Min-Hashing Example

Example

Permutation π Input matrix (Shingles \times Documents)

Signature matrix M

2	4	3	1	0	1	0
3	2	4	1	0	0	1
7	1	7	0	1	0	1
6	3	2	0	1	0	1
1	6	6	0	1	0	1
5	7	1	1	0	1	0
4	5	5	1	0	1	0

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	$1-3$	2.4	$1-2$	$3-4$
Col/Col	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0

MinHash Signatures

- Pick $K=100$ random permutations of the rows

MinHash Signatures

- Pick $K=100$ random permutations of the rows
- Think of $\operatorname{sig}(C)$ (Signature of C) as a column vector

MinHash Signatures

- Pick $K=100$ random permutations of the rows
- Think of $\operatorname{sig}(C)$ (Signature of C) as a column vector
- $\operatorname{sig}(C)[i]=$ according to the i-th permutation, the index of the first row that has a 1 in column C

MinHash Signatures

- Pick $K=100$ random permutations of the rows
- Think of $\operatorname{sig}(C)$ (Signature of C) as a column vector
- $\operatorname{sig}(C)[i]=$ according to the i-th permutation, the index of the first row that has a 1 in column C

$$
\operatorname{sig}(C)[i]=\min (\pi i(C))
$$

MinHash Signatures

- Pick $K=100$ random permutations of the rows
- Think of $\operatorname{sig}(C)$ (Signature of C) as a column vector
- $\operatorname{sig}(C)[i]=$ according to the i-th permutation, the index of the first row that has a 1 in column C

$$
\operatorname{sig}(C)[i]=\min (\pi i(C))
$$

- Note: The sketch (signature) of document C is small $-\sim 100$ bytes!

MinHash Signatures

- Pick $K=100$ random permutations of the rows
- Think of $\operatorname{sig}(C)$ (Signature of C) as a column vector
- $\operatorname{sig}(C)[i]=$ according to the i-th permutation, the index of the first row that has a 1 in column C

$$
\operatorname{sig}(C)[i]=\min (\pi i(C))
$$

- Note: The sketch (signature) of document C is small $-\sim 100$ bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

Outline

(1) Finding Similar Items in High Dimensional Spaces

- Introduction
- A Common Idea
(2) Finding Similar Items
- Distance Measures
- Finding Similar Documents
(3) Shingling
- Documents as High-Dimensional Data
- Shingles
(4) MinHashing
- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick
(5) Locality Sensitive Hashing (LSH)
- Introduction

Implementation Trick

- Permuting rows even once is prohibitive

Implementation Trick

- Permuting rows even once is prohibitive

Row hashing!

- Pick $K=100$ hash functions k_{i}

Implementation Trick

- Permuting rows even once is prohibitive

Row hashing!

- Pick $K=100$ hash functions k_{i}
- Ordering under k_{i} gives a random row permutation!

Implementation Trick

- Permuting rows even once is prohibitive

Row hashing!

- Pick $K=100$ hash functions k_{i}
- Ordering under k_{i} gives a random row permutation!

One-pass implementation

- For each column C and hash-function k_{i} keep a "slot" for the min-hash value

Implementation Trick

- Permuting rows even once is prohibitive

Row hashing!

- Pick $K=100$ hash functions k_{i}
- Ordering under k_{i} gives a random row permutation!

One-pass implementation

- For each column C and hash-function k_{i} keep a "slot" for the min-hash value
- Initialize all $\operatorname{sig}(C)[i]=\infty$

Implementation Trick

- Permuting rows even once is prohibitive

Row hashing!

- Pick $K=100$ hash functions k_{i}
- Ordering under k_{i} gives a random row permutation!

One-pass implementation

- For each column C and hash-function k_{i} keep a "slot" for the min-hash value
- Initialize all $\operatorname{sig}(C)[i]=\infty$
- Scan rows looking for 1 s

Implementation Trick

- Permuting rows even once is prohibitive

Row hashing!

- Pick $K=100$ hash functions k_{i}
- Ordering under k_{i} gives a random row permutation!

One-pass implementation

- For each column C and hash-function k_{i} keep a "slot" for the min-hash value
- Initialize all $\operatorname{sig}(C)[i]=\infty$
- Scan rows looking for 1 s
- Suppose row j has 1 in column C

Implementation Trick

- Permuting rows even once is prohibitive

Row hashing!

- Pick $K=100$ hash functions k_{i}
- Ordering under k_{i} gives a random row permutation!

One-pass implementation

- For each column C and hash-function k_{i} keep a "slot" for the min-hash value
- Initialize all $\operatorname{sig}(C)[i]=\infty$
- Scan rows looking for 1 s
- Suppose row j has 1 in column C
- Then for each k_{i} :

Implementation Trick

- Permuting rows even once is prohibitive

Row hashing!

- Pick $K=100$ hash functions k_{i}
- Ordering under k_{i} gives a random row permutation!

One-pass implementation

- For each column C and hash-function k_{i} keep a "slot" for the min-hash value
- Initialize all $\operatorname{sig}(C)[i]=\infty$

How to pick a random hash function $h(x)$?

- Scan rows looking for 1 s
- Suppose row j has 1 in column C
- Then for each k_{i} :

If $k_{i}(j)<\operatorname{sig}(C)[i]$, then $\operatorname{sig}(C)[i] \leftarrow k_{i}(j)$

Implementation Trick

- Permuting rows even once is prohibitive

Row hashing!

- Pick $K=100$ hash functions k_{i}
- Ordering under k_{i} gives a random row permutation!

One-pass implementation

- For each column C and hash-function k_{i} keep a "slot" for the min-hash value
- Initialize all $\operatorname{sig}(C)[i]=\infty$
- Scan rows looking for 1 s
- Suppose row j has 1 in column C
- Then for each k_{i} :

If $k_{i}(j)<\operatorname{sig}(C)[i]$, then $\operatorname{sig}(C)[i] \leftarrow k_{i}(j)$

How to pick a random hash function $h(x)$?
Universal hashing:

Implementation Trick

- Permuting rows even once is prohibitive

Row hashing!

- Pick $K=100$ hash functions k_{i}
- Ordering under k_{i} gives a random row permutation!

One-pass implementation

- For each column C and hash-function k_{i} keep a "slot" for the min-hash value
- Initialize all $\operatorname{sig}(C)[i]=\infty$
- Scan rows looking for 1 s
- Suppose row j has 1 in column C
- Then for each k_{i} :

If $k_{i}(j)<\operatorname{sig}(C)[i]$, then $\operatorname{sig}(C)[i] \leftarrow k_{i}(j)$

How to pick a random hash function $h(x)$?
Universal hashing:
$h_{a, b}(x)=((a \cdot x+b) \bmod p) \bmod N$ where:

Implementation Trick

- Permuting rows even once is prohibitive

Row hashing!

- Pick $K=100$ hash functions k_{i}
- Ordering under k_{i} gives a random row permutation!

One-pass implementation

- For each column C and hash-function k_{i} keep a "slot" for the min-hash value
- Initialize all $\operatorname{sig}(C)[i]=\infty$
- Scan rows looking for 1 s
- Suppose row j has 1 in column C
- Then for each k_{i} :

If $k_{i}(j)<\operatorname{sig}(C)[i]$, then $\operatorname{sig}(C)[i] \leftarrow k_{i}(j)$

How to pick a random hash function $h(x)$?
Universal hashing:
$h_{a, b}(x)=((a \cdot x+b) \bmod p) \bmod N$ where:
$a, b \ldots$ random integers

Implementation Trick

- Permuting rows even once is prohibitive

Row hashing!

- Pick $K=100$ hash functions k_{i}
- Ordering under k_{i} gives a random row permutation!

One-pass implementation

- For each column C and hash-function k_{i} keep a "slot" for the min-hash value
- Initialize all $\operatorname{sig}(C)[i]=\infty$
- Scan rows looking for 1 s
- Suppose row j has 1 in column C
- Then for each k_{i} :

If $k_{i}(j)<\operatorname{sig}(C)[i]$, then $\operatorname{sig}(C)[i] \leftarrow k_{i}(j)$

How to pick a random hash function $h(x)$?
Universal hashing:
$h_{a, b}(x)=((a \cdot x+b) \bmod p) \bmod N$ where:
$a, b \ldots$ random integers
$p \ldots$ prime number $(p>N)$

Implementation Trick

- Permuting rows even once is prohibitive

Row hashing!

- Pick $K=100$ hash functions k_{i}
- Ordering under k_{i} gives a random row permutation!

One-pass implementation

- For each column C and hash-function k_{i} keep a "slot" for the min-hash value
- Initialize all $\operatorname{sig}(C)[i]=\infty$
- Scan rows looking for 1 s
- Suppose row j has 1 in column C
- Then for each k_{i} :

If $k_{i}(j)<\operatorname{sig}(C)[i]$, then $\operatorname{sig}(C)[i] \leftarrow k_{i}(j)$

How to pick a random hash function $h(x)$?
Universal hashing:
$h_{a, b}(x)=((a \cdot x+b) \bmod p) \bmod N$ where:
$a, b \ldots$ random integers
$p \ldots$ prime number $(p>N)$

Outline

(1) Finding Similar Items in High Dimensional Spaces

- Introduction
- A Common Idea
(2) Finding Similar Items
- Distance Measures
- Finding Similar Documents
(3) Shingling
- Documents as High-Dimensional Data
- Shingles
(4) MinHashing
- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick
(5) Locality Sensitive Hashing (LSH)
- Introduction

Trying to define LSH

Goal

- Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., $s=0.8$)

Trying to define LSH

2	1	4	1
1	2	1	2
2	1	2	1

Goal

- Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., $s=0.8$)

LSH - General idea

- Use a function $f(x, y)$ that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated.

Trying to define LSH

2	1	4	1
1	2	1	2
2	1	2	1

Goal

- Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., $s=0.8$)

LSH - General idea

- Use a function $f(x, y)$ that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated.

For MinHash matrices

- Hash columns of signature matrix M to many buckets.

Trying to define LSH

Goal

- Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., $s=0.8$)

LSH - General idea

- Use a function $f(x, y)$ that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated.

For MinHash matrices

- Hash columns of signature matrix M to many buckets.
- Each pair of documents that hashes into the same bucket is a candidate pair.

Trying to define LSH

Goal

- Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., $s=0.8$)

LSH - General idea

- Use a function $f(x, y)$ that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated.

For MinHash matrices

- Hash columns of signature matrix M to many buckets.
- Each pair of documents that hashes into the same bucket is a candidate pair.

Candidates from Minhash

2	1	4	1
1	2	1	2
2	1	2	1

- Pick a similarity threshold $s(0<s<1)$.

Candidates from Minhash

2	1	4	1
1	2	1	2
2	1	2	1

- Pick a similarity threshold $s(0<s<1)$.

Candidate pair

- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:

Candidates from Minhash

2	1	4	1
1	2	1	2
2	1	2	1

- Pick a similarity threshold $s(0<s<1)$.

Candidate pair

- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
- $M(i, x)=M(i, y)$ for at least fraction s of values of i

Candidates from Minhash

2	1	4	1
1	2	1	2
2	1	2	1

- Pick a similarity threshold $s(0<s<1)$.

Candidate pair

- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
- $M(i, x)=M(i, y)$ for at least fraction s of values of i
\star We expect documents x and y to have the same (Jaccard) similarity as is the similarity of their signatures

LSH for Minhash

2	1	4	1
1	2	1	2
2	1	2	1

Big idea

- Hash columns of signature matrix M several times

LSH for Minhash

2	1	4	1
1	2	1	2
2	1	2	1

Big idea

- Hash columns of signature matrix M several times

Likely to hash

- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability

LSH for Minhash

2	1	4	1
1	2	1	2
2	1	2	1

Big idea

- Hash columns of signature matrix M several times

Likely to hash

- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability

Candidate pairs

- Candidate pairs are those that hash to the same bucket

Partition M into b Bands

2	1	4	1
1	2	1	2
2	1	2	1

Signature matrix M

Partition M into b Bands

Divide Matrix

- Divide matrix M into b bands of r rows.

Partition M into b Bands

Divide Matrix

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.

Partition M into b Bands

Divide Matrix

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.
- Make k as large as possible.

Partition M into b Bands

Divide Matrix

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.
- Make k as large as possible.

Candidate

- Candidate column pairs are those that hash to the same bucket for ≥ 1 bands.

Partition M into b Bands

Divide Matrix

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.
- Make k as large as possible.

Candidate

- Candidate column pairs are those that hash to the same bucket for ≥ 1 bands.

Catch most similar pairs

- Tune b and r to catch most similar pairs, but few non-similar pairs.

Partition M into b Bands

Divide Matrix

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.
- Make k as large as possible.

Candidate

- Candidate column pairs are those that hash to the same bucket for ≥ 1 bands.

Catch most similar pairs

- Tune b and r to catch most similar pairs, but few non-similar pairs.

Hashing Bands

Simplifying Assumption

Identical

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band

Simplifying Assumption

Identical

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band

Same bucket

- Then, we assume that "same bucket" means "identical in that band"

Simplifying Assumption

Identical

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band

Same bucket

- Then, we assume that "same bucket" means "identical in that band"

Not for correctness

- Assumption needed only to simplify analysis, not for the correctness of algorithm

Example of Bands

2	1	4	1
1	2	1	2
2	1	2	1

Assume the following case

- Suppose 100,000 columns of M ($100 k$ docs)

Example of Bands

2	1	4	1
1	2	1	2
2	1	2	1

Assume the following case

- Suppose 100,000 columns of M ($100 k$ docs)
- Signatures of 100 integers (rows)

Example of Bands

2	1	4	1
1	2	1	2
2	1	2	1

Assume the following case

- Suppose 100,000 columns of M ($100 k$ docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40 Mb

Example of Bands

2	1	4	1
1	2	1	2
2	1	2	1

Assume the following case

- Suppose 100,000 columns of M ($100 k$ docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40 Mb
- Choose $b=20$ bands of $r=5$ integers/band

Example of Bands

2	1	4	1
1	2	1	2
2	1	2	1

Assume the following case

- Suppose 100,000 columns of M ($100 k$ docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40 Mb
- Choose $b=20$ bands of $r=5$ integers/band

Goal

- Find pairs of documents that are at least $s=0.8$ similar

Now, if C_{1}, C_{2} are 80% Similar

Assume

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$

Now, if C_{1}, C_{2} are 80% Similar

Assume

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.8$

Now, if C_{1}, C_{2} are 80% Similar

Assume

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.8$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right) \geq s$, we want C_{1}, C_{2} to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

Now, if C_{1}, C_{2} are 80% Similar

2	1	4	1
1	2	1	2

Assume

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.8$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right) \geq s$, we want C_{1}, C_{2} to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

In one particular band

- Probability C_{1}, C_{2} identical in one particular band: $(0.8)^{5}=0.328$

Now, if C_{1}, C_{2} are 80% Similar

2	1	4	1
1	2	1	2

Assume

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.8$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right) \geq s$, we want C_{1}, C_{2} to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

In one particular band

- Probability C_{1}, C_{2} identical in one particular band: $(0.8)^{5}=0.328$

What is the Probability of not being similar at all?

- Probability C_{1}, C_{2} are not similar in all of the 20 bands:

$$
(1-0.328)^{20}=0.00035
$$

Now, if C_{1}, C_{2} are 80% Similar

2	1	4	1
1	2	1	2

Assume

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.8$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right) \geq s$, we want C_{1}, C_{2} to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

In one particular band

- Probability C_{1}, C_{2} identical in one particular band: $(0.8)^{5}=0.328$

What is the Probability of not being similar at all?

- Probability C_{1}, C_{2} are not similar in all of the 20 bands:

$$
(1-0.328)^{20}=0.00035
$$

- i.e., about $1 / 3000$ th of the 80%-similar column pairs are false negatives (we miss them)

Now, if C_{1}, C_{2} are 80% Similar

2	1	4	1
1	2	1	2

Assume

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.8$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right) \geq s$, we want C_{1}, C_{2} to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

In one particular band

- Probability C_{1}, C_{2} identical in one particular band: $(0.8)^{5}=0.328$

What is the Probability of not being similar at all?

- Probability C_{1}, C_{2} are not similar in all of the 20 bands:

$$
(1-0.328)^{20}=0.00035
$$

- i.e., about $1 / 3000$ th of the 80%-similar column pairs are false negatives (we miss them)
- We would find 99.965% pairs of truly similar documents

Assume

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.3$

Assume

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.3$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right)<$ swe want C_{1}, C_{2} to hash to NO common buckets (all bands should be different).

Assume

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.3$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right)<$ swe want C_{1}, C_{2} to hash to NO common buckets (all bands should be different).

Identical in one particular band

- Probability C_{1}, C_{2} identical in one particular band: $(0.3)^{5}=0.00243$.
- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.3$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right)<$ swe want C_{1}, C_{2} to hash to NO common buckets (all bands should be different).

Identical in one particular band

- Probability C_{1}, C_{2} identical in one particular band: $(0.3)^{5}=0.00243$.

Properties

- Probability C_{1}, C_{2} identical in at least 1 of 20 bands:

$$
1-(1-0.00243) 20=0.0474
$$

Assume

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.3$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right)<s$ we want C_{1}, C_{2} to hash to NO common buckets (all bands should be different).

Identical in one particular band

- Probability C_{1}, C_{2} identical in one particular band: $(0.3)^{5}=0.00243$.

Properties

- Probability C_{1}, C_{2} identical in at least 1 of 20 bands:

$$
1-(1-0.00243) 20=0.0474
$$

- In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs.

Assume

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.3$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right)<s$ we want C_{1}, C_{2} to hash to NO common buckets (all bands should be different).

Identical in one particular band

- Probability C_{1}, C_{2} identical in one particular band: $(0.3)^{5}=0.00243$.

Properties

- Probability C_{1}, C_{2} identical in at least 1 of 20 bands:

$$
1-(1-0.00243) 20=0.0474
$$

- In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs.
* They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s.

LSH Involves a Tradeoff

2	1	4	1
1	2	1	2
2	1	2	1

You need to pick

- The number of minhashes (rows of M).

LSH Involves a Tradeoff

2	1	4	1
1	2	1	2
2	1	2	1

You need to pick

- The number of minhashes (rows of M).
- The number of bands b.

LSH Involves a Tradeoff

2	1	4	1
1	2	1	2
2	1	2	1

You need to pick

- The number of minhashes (rows of M).
- The number of bands b.
- The number of rows r per band to balance false positives/negatives.

LSH Involves a Tradeoff

2	1	4	1
1	2	1	2
2	1	2	1

You need to pick

- The number of minhashes (rows of M).
- The number of bands b.
- The number of rows r per band to balance false positives/negatives.

Example

- if we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

Analysis of LSH - What We Want

The Ideal detection of similar objects

What 1 Band of 1 Row Gives You

Not so great

Given that probability of two documents aggree in a row is S

We can calculate the probability that these documents become a candidate pair as follows
(1) The probability that the signatures agree in all rows of one particular band is s^{r}.

Given that probability of two documents aggree in a row is S

We can calculate the probability that these documents become a candidate pair as follows
(1) The probability that the signatures agree in all rows of one particular band is s^{r}.
(2) The probability that the signatures disagree in at least one row of a particular band is $1-s^{r}$.

Given that probability of two documents aggree in a row is

 S
We can calculate the probability that these documents become a candidate pair as follows

(1) The probability that the signatures agree in all rows of one particular band is s^{r}.
(2) The probability that the signatures disagree in at least one row of a particular band is $1-s^{r}$.
(3) The probability that the signatures disagree in at least one row of each of the bands is $\left(1-s^{r}\right)^{b}$.

Given that probability of two documents aggree in a row is

 S
We can calculate the probability that these documents become a candidate pair as follows

(1) The probability that the signatures agree in all rows of one particular band is s^{r}.
(2) The probability that the signatures disagree in at least one row of a particular band is $1-s^{r}$.
(3) The probability that the signatures disagree in at least one row of each of the bands is $\left(1-s^{r}\right)^{b}$.
(9) The probability that the signatures agree in all the rows of at least one band, and therefore become a candidate pair, is $1-\left(1-s^{r}\right)^{b}$.

If you fix r and b

Something Notable

Example: $b=20 ; r=5$

Given

- Similarity threshold s

Example: $b=20 ; r=5$

Given

- Similarity threshold s

Similarity threshold s Prob. that at least 1 band is identical

s	$1-\left(1-s^{r}\right)^{b}$
.2	0.006
.3	0.047
.4	0.186
.5	0.470
.6	0.802
.7	0.975
.8	0.9996

Picking r and b : The S-curve

Picking r and b to get the best S-curve

- 50 hash-functions $(r=5, b=10)$

LSH Summary

Tune M, b, r

- Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures

LSH Summary

Tune M, b, r

- Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures

Check in main memory

- Check in main memory that candidate pairs really do have similar signatures

LSH Summary

Tune M, b, r

- Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures

Check in main memory

- Check in main memory that candidate pairs really do have similar signatures

Optional

- In another pass through data, check that the remaining candidate pairs really represent similar documents

Summary: 3 steps

Shingling

- Convert documents to sets

Summary: 3 steps

Shingling

- Convert documents to sets
- We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

Summary: 3 steps

Shingling

- Convert documents to sets
- We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

Min-hashing

- Convert large sets to short signatures, while preserving similarity.

Summary: 3 steps

Shingling

- Convert documents to sets
- We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

Min-hashing

- Convert large sets to short signatures, while preserving similarity.
- We used similarity preserving hashing to generate signatures with property $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$.

Summary: 3 steps

Shingling

- Convert documents to sets
- We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

Min-hashing

- Convert large sets to short signatures, while preserving similarity.
- We used similarity preserving hashing to generate signatures with property $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$.
- We used hashing to get around generating random permutations.

Summary: 3 steps

Shingling

- Convert documents to sets
- We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

Min-hashing

- Convert large sets to short signatures, while preserving similarity.
- We used similarity preserving hashing to generate signatures with property $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$.
- We used hashing to get around generating random permutations.

Locality-Sensitive Hashing

- Focus on pairs of signatures likely to be from similar documents.

Summary: 3 steps

Shingling

- Convert documents to sets
- We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

Min-hashing

- Convert large sets to short signatures, while preserving similarity.
- We used similarity preserving hashing to generate signatures with property $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$.
- We used hashing to get around generating random permutations.

Locality-Sensitive Hashing

- Focus on pairs of signatures likely to be from similar documents.
- We used hashing to find candidate pairs of similarity $\geq s$

