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Scene Completion Problem
Example
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Scene Completion Problem
10 nearest neighbors from a collection of 20,000 images
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Scene Completion Problem
10 nearest neighbors from a collection of 2 million images
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A Common Idea

Problems
Many problems can be expressed as finding “similar” sets:

I Find near-neighbors in high-dimensional space

Examples
Pages with similar words

I For duplicate detection, classification by topic

Customers who purchased similar products
I Products with similar customer sets

Images with similar features
Users who visited the similar websites
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Relation to Previous Lecture
Last time: Finding frequent pairs

We had the Naïve solution
Single pass but requires space quadratic
in the number of items:

N = number of distinct items
K =number of items with
support ≥ s

However the A-priori Algorithm
First pass: Find frequent singletons

I For a pair to be a candidate for
a frequent pair, its singletons
have to be frequent!

Second pass:
I Count only candidate pairs!
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Relation to Previous Lecture

Last time
Finding frequent pairs.

Further improvement using PCY
Pass 1:

I Count exact frequency of each item:
Items 1...N

I Take pairs of items {i, j}, hash them into B buckets and count of the
number of pairs that hashed to each bucket:
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I Count exact frequency of each item:
Items 1...N

I Take pairs of items {i, j}, hash them into B buckets and count of the
number of pairs that hashed to each bucket:

Basket 1: {1,2,3}

Pairs: {1,2} {1,3} {2,3}

2 1

Buckets 1...B
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Relation to Previous Lecture

Further improvement: PCY
Pass 2:

For a pair {i, j} to be a candidate for a frequent pair, its singletons
have to be frequent and it has to hash to a frequent bucket!

Basket 1: {1,2,3}

Pairs: {1,2} {1,3} {2,3}

3 2

Buckets 1...B

Basket 2: {1,2,4}

Pairs: {1,2} {1,4} {2,4}

1
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Thus, we have

Previous Lecture: A-Priori
Main Idea: Candidates

I Instead of keeping a count of each pair, only keep a count for
candidate pairs!

Today’s Lectuire
Main Idea: Candidates

I Pass 1: Take documents and has them to buckets such that
documents that are similar hash to the same bucket.

I Pass 2: Only compare documents that are candidates (Hashed into the
same bucket)

Thus, we need O(N) instead of O(N2).
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Distance Measures

Goal
Find near-neighbors in high-dim. space

I We formally define “near neighbors” as points that are a “small
distance” apart.

Application
For each application, we first need to define what “distance” means
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Distance Measures

Today: Jaccard distance (/similarity)
The Jaccard Similarity/Distance of two sets is the size of their
intersection / the size of their union:

I sim(C1, C2) = |C1
⋂
C2|/|C1

⋃
C2|

I d(C1, C2) = 1− |C1
⋂
C2|/|C1

⋃
C2|
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Finding Similar Documents

Goal
Given a large number (N in the millions or billions) of text
documents, find pairs that are “near duplicates.”

Applications
Mirror websites, or approximate mirrors.

I We do not want to show both of them in a search.

Similar news articles at many news sites.
I Cluster articles by “same story.”
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Finding Similar Documents

Problems
Many small pieces of one document can appear out of order in
another.
Too many documents to compare all pairs.
Documents are so large or so many that they cannot fit in main
memory.
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3 Essential Steps for Similar Docs

Step 1: Shingling
Convert documents to sets

Step 2: Minhashing
Convert large sets to short signatures, while preserving similarity

Locality-sensitive hashing
Focus on pairs of signatures likely to be from similar documents

Candidate pairs!
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The Big Picture

The Process of Identification
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Documents as High-Dimensional Data

Step 1: Shingling
Convert documents to sets.

Simple approaches
Document = set of words appearing in document.
Document = set of “important” words.
Don’t work well for this application. Why?

We want to avoid to get tangled in the text structure
Need to account for ordering of words!
A different way: Use Shingles!!!
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Shingles

k-shingle
A k-shingle (or k-gram) for a document is a sequence of k tokens
that appears in the doc.

I Tokens can be characters, words or something else, depending on the
application.

I Assume tokens = characters for the examples.

Example
k = 2; document D1 = abcab Set of 2-shingles: S(D1) = {ab, bc, ca}

I One possible option: Shingles as a bag (multiset). Thus, count ab
twice: S’(D1) = {ab, bc, ca, ab}

25 / 67



Shingles

k-shingle
A k-shingle (or k-gram) for a document is a sequence of k tokens
that appears in the doc.

I Tokens can be characters, words or something else, depending on the
application.

I Assume tokens = characters for the examples.

Example
k = 2; document D1 = abcab Set of 2-shingles: S(D1) = {ab, bc, ca}

I One possible option: Shingles as a bag (multiset). Thus, count ab
twice: S’(D1) = {ab, bc, ca, ab}

25 / 67



Shingles

k-shingle
A k-shingle (or k-gram) for a document is a sequence of k tokens
that appears in the doc.

I Tokens can be characters, words or something else, depending on the
application.

I Assume tokens = characters for the examples.

Example
k = 2; document D1 = abcab Set of 2-shingles: S(D1) = {ab, bc, ca}

I One possible option: Shingles as a bag (multiset). Thus, count ab
twice: S’(D1) = {ab, bc, ca, ab}

25 / 67



Shingles

k-shingle
A k-shingle (or k-gram) for a document is a sequence of k tokens
that appears in the doc.

I Tokens can be characters, words or something else, depending on the
application.

I Assume tokens = characters for the examples.

Example
k = 2; document D1 = abcab Set of 2-shingles: S(D1) = {ab, bc, ca}

I One possible option: Shingles as a bag (multiset). Thus, count ab
twice: S’(D1) = {ab, bc, ca, ab}

25 / 67



Shingles

k-shingle
A k-shingle (or k-gram) for a document is a sequence of k tokens
that appears in the doc.

I Tokens can be characters, words or something else, depending on the
application.

I Assume tokens = characters for the examples.

Example
k = 2; document D1 = abcab Set of 2-shingles: S(D1) = {ab, bc, ca}

I One possible option: Shingles as a bag (multiset). Thus, count ab
twice: S’(D1) = {ab, bc, ca, ab}

25 / 67



Compressing Shingles

Compress
To compress long shingles, we can hash them to (say) 4 bytes.

Represent a doc
Represent a doc by the set of hash values of its k-shingles.

I Idea: Two documents could (rarely) appear to have shingles in
common, when in fact only the hash-values were shared.

Example
k = 2; document D1 = abcab Set of 2-shingles: S(D1) = {ab, bc, ca}
Hash the shingles using the division method to a hash table.
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Similarity Metric for Shingles

Document
Document D1 = set of k-shingles C1 = S(D1)

0/1 vector
Equivalently, each document is a 0/1 vector in the space of k-shingles

I Each unique shingle is a dimension.
I Problem!!! Vectors are very sparse.

F We need a measure that can handle this situation.

A natural similarity measure is the Jaccard similarity

sim (D1, D2) = |D1 ∩D2|
|D1 ∪D2|

(1)
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Remember the SWAR-Popcount

Code - SWAR-Popcount - Divide and Conquer

// This works on l y i n 32 b i t s
i n t p roduc t ( i n t row , i n t v e c t o r ){

i n t i = row & ve c t o r ;

i = i − ( ( i >> 1) & 0x55555555 ) ;
i = ( i & 0x33333333 ) + ( ( i >> 2) & 0x33333333 ) ;
i = ( ( ( i + ( i >> 4)) & 0x0F0F0F0F ) ∗ 0x01010101 ) >> 24 ;

r e t u r n i & 0x00000001 ;

}

We can use this
Together with AND and OR to implement the Jaccard similarity
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Working Assumption

Similar text
Documents that have lots of shingles in common have similar text,
even if the text appears in different order.

Caveat
You must pick k large enough, or most documents will have most
shingles.
It seems to be that

I k = 5 is OK for short documents.
I k = 10 is better for long documents.
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Motivation for Minhash/LSH

Imagine the following
We need to find near-duplicate documents among N = 1, 000, 000
documents.

Compute pairwaise Jaccard similarites
Naïvely, we would have to compute pairwaise Jaccard similarites for
every pair of docs.

I i.e, N(N − 1)/2 ≈ 5 ∗ 1011 comparisons.
I At 105 secs/day and 106 comparisons/sec, it would take 5 days.

For something larger
For N = 10 million, it takes more than a year...

30 / 67
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Encoding Sets as Bit Vectors

Something Notable
Many similarity problems can be formalized as
finding subsets that have significant intersection.

Encode sets
Encode sets using 0/1 (bit, boolean) vectors.

I One dimension per element in the universal set.

Interpret set intersection as bitwise AND, and set union as bitwise
OR.

Example
C1 = 10111; C2 = 10011.

I Size of intersection = 3; size of union = 4, Jaccard similarity (not
distance) = 3/4

I d(C1, C2) = 1–(Jaccard similarity) = 1/4
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From Sets to Boolean Matrices

Rows
Rows are equal to elements (shingles)

Columns
The Columns are equal to sets (documents)

I 1 in row e and column s if and only if e is a
member of s

I Column similarity is the Jaccard similarity of the
corresponding sets (rows with value 1)

I Typical matrix is sparse!

Each document is a column
Example: sim(C1, C2) =?

I Size of intersection = 3; size of union = 6, Jaccard
similarity (not distance) = 3/6

I d(C1, C2) = 1–(Jaccard similarity) = 3/6
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Outline: Finding Similar Columns
So far and next goal

So far:
I Documents → Sets of shingles
I Represent sets as boolean vectors in a matrix

Next Goal: Find similar columns, Small signatures

Approach
1 Signatures of columns: small summaries of columns
2 Examine pairs of signatures to find similar columns

I Essential: Similarities of signatures & columns are related
3 Optional: Check that columns with similar signatures are really similar

Warnings
Comparing all pairs may take too much time: Job for Locality Sensitive Hashing
(LSH)

I These methods can produce false negatives, and even false positives (if the
optional check is not made) 35 / 67
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Hashing Columns (Signatures)

Key idea
“Hash” each column C to a small signature h(C), such that:

I (1) h(C) is small enough that the signature fits in RAM.
I (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1)

and h(C2).

Goal
Find a hash function h(·) such that:

I if sim(C1, C2) is high, then with high prob. h(C1) = h(C2).
I if sim(C1, C2) is low, then with high prob. h(C1) 6= h(C2).

Buckets
Thus, we hash documents into buckets, and expect that “most” pairs of
near duplicate docs hash into the same bucket!
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Min-Hashing

Goal
Find a hash function h(·) such that:

I if sim(C1, C2) is high, then with high prob. h(C1) = h(C2)
I if sim(C1, C2) is low, then with high prob. h(C1) 6= h(C2)

Similarity metric
Clearly, the hash function depends on the similarity metric:

I Not all similarity metrics have a suitable hash function.

Hash function
There is a suitable hash function for Jaccard similarity: Min-hashing.

38 / 67
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Min-Hashing

Random permutation
Imagine the rows of the boolean matrix permuted under random
permutation π .

“Hash” function hπ(C)
Define a “hash” function hπ(C) = the number of the first (in the
permuted order π) row in which column C has value 1:

hπ(C) = minππ(C)

What can we do?
Use several (e.g., 100) independent hash functions to create a
signature of a column

39 / 67
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Min-Hashing Example

Something Notable
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Surprising Property

Choose a random permutation π
Claim: Pr[hπ(C1) = hπ(C2)] = sim(C1, C2) Why?

Why?
Let X be a document (set of shingles)
Then: Pr[π(x) = min(π(X))] = 1/|X|
It is equally likely that any x ∈ X is mapped to the min element
Let x be s.t. π(x) = min(π(C1

⋃
C2))

Then either: π(x) = min(π(C1)) if x ∈ C1 , or π(x) = min(π(C2)) if x ∈ C2
I One of the two cols had to have 1 at position x

So the prob. that both are true is the prob. x ∈ C1
⋂
C2

Pr[min(π(C1)) = min(π(C2))] =
|C1

⋂
C2|

|C1∪C2|
= sim(C1, C2) (2)

41 / 67



Surprising Property

Choose a random permutation π
Claim: Pr[hπ(C1) = hπ(C2)] = sim(C1, C2) Why?

Why?
Let X be a document (set of shingles)
Then: Pr[π(x) = min(π(X))] = 1/|X|
It is equally likely that any x ∈ X is mapped to the min element
Let x be s.t. π(x) = min(π(C1

⋃
C2))

Then either: π(x) = min(π(C1)) if x ∈ C1 , or π(x) = min(π(C2)) if x ∈ C2
I One of the two cols had to have 1 at position x

So the prob. that both are true is the prob. x ∈ C1
⋂
C2

Pr[min(π(C1)) = min(π(C2))] =
|C1

⋂
C2|

|C1∪C2|
= sim(C1, C2) (2)

41 / 67



Surprising Property

Choose a random permutation π
Claim: Pr[hπ(C1) = hπ(C2)] = sim(C1, C2) Why?

Why?
Let X be a document (set of shingles)
Then: Pr[π(x) = min(π(X))] = 1/|X|
It is equally likely that any x ∈ X is mapped to the min element
Let x be s.t. π(x) = min(π(C1

⋃
C2))

Then either: π(x) = min(π(C1)) if x ∈ C1 , or π(x) = min(π(C2)) if x ∈ C2
I One of the two cols had to have 1 at position x

So the prob. that both are true is the prob. x ∈ C1
⋂
C2

Pr[min(π(C1)) = min(π(C2))] =
|C1

⋂
C2|

|C1∪C2|
= sim(C1, C2) (2)

41 / 67



Surprising Property

Choose a random permutation π
Claim: Pr[hπ(C1) = hπ(C2)] = sim(C1, C2) Why?

Why?
Let X be a document (set of shingles)
Then: Pr[π(x) = min(π(X))] = 1/|X|
It is equally likely that any x ∈ X is mapped to the min element
Let x be s.t. π(x) = min(π(C1

⋃
C2))

Then either: π(x) = min(π(C1)) if x ∈ C1 , or π(x) = min(π(C2)) if x ∈ C2
I One of the two cols had to have 1 at position x

So the prob. that both are true is the prob. x ∈ C1
⋂
C2

Pr[min(π(C1)) = min(π(C2))] =
|C1

⋂
C2|

|C1∪C2|
= sim(C1, C2) (2)

41 / 67



Surprising Property

Choose a random permutation π
Claim: Pr[hπ(C1) = hπ(C2)] = sim(C1, C2) Why?

Why?
Let X be a document (set of shingles)
Then: Pr[π(x) = min(π(X))] = 1/|X|
It is equally likely that any x ∈ X is mapped to the min element
Let x be s.t. π(x) = min(π(C1

⋃
C2))

Then either: π(x) = min(π(C1)) if x ∈ C1 , or π(x) = min(π(C2)) if x ∈ C2
I One of the two cols had to have 1 at position x

So the prob. that both are true is the prob. x ∈ C1
⋂
C2

Pr[min(π(C1)) = min(π(C2))] =
|C1

⋂
C2|

|C1∪C2|
= sim(C1, C2) (2)

41 / 67



Surprising Property

Choose a random permutation π
Claim: Pr[hπ(C1) = hπ(C2)] = sim(C1, C2) Why?

Why?
Let X be a document (set of shingles)
Then: Pr[π(x) = min(π(X))] = 1/|X|
It is equally likely that any x ∈ X is mapped to the min element
Let x be s.t. π(x) = min(π(C1

⋃
C2))

Then either: π(x) = min(π(C1)) if x ∈ C1 , or π(x) = min(π(C2)) if x ∈ C2
I One of the two cols had to have 1 at position x

So the prob. that both are true is the prob. x ∈ C1
⋂
C2

Pr[min(π(C1)) = min(π(C2))] =
|C1

⋂
C2|

|C1∪C2|
= sim(C1, C2) (2)

41 / 67



Surprising Property

Choose a random permutation π
Claim: Pr[hπ(C1) = hπ(C2)] = sim(C1, C2) Why?

Why?
Let X be a document (set of shingles)
Then: Pr[π(x) = min(π(X))] = 1/|X|
It is equally likely that any x ∈ X is mapped to the min element
Let x be s.t. π(x) = min(π(C1

⋃
C2))

Then either: π(x) = min(π(C1)) if x ∈ C1 , or π(x) = min(π(C2)) if x ∈ C2
I One of the two cols had to have 1 at position x

So the prob. that both are true is the prob. x ∈ C1
⋂
C2

Pr[min(π(C1)) = min(π(C2))] =
|C1

⋂
C2|

|C1∪C2|
= sim(C1, C2) (2)

41 / 67



Surprising Property

Choose a random permutation π
Claim: Pr[hπ(C1) = hπ(C2)] = sim(C1, C2) Why?

Why?
Let X be a document (set of shingles)
Then: Pr[π(x) = min(π(X))] = 1/|X|
It is equally likely that any x ∈ X is mapped to the min element
Let x be s.t. π(x) = min(π(C1

⋃
C2))

Then either: π(x) = min(π(C1)) if x ∈ C1 , or π(x) = min(π(C2)) if x ∈ C2
I One of the two cols had to have 1 at position x

So the prob. that both are true is the prob. x ∈ C1
⋂
C2

Pr[min(π(C1)) = min(π(C2))] =
|C1

⋂
C2|

|C1∪C2|
= sim(C1, C2) (2)

41 / 67



Surprising Property

Choose a random permutation π
Claim: Pr[hπ(C1) = hπ(C2)] = sim(C1, C2) Why?

Why?
Let X be a document (set of shingles)
Then: Pr[π(x) = min(π(X))] = 1/|X|
It is equally likely that any x ∈ X is mapped to the min element
Let x be s.t. π(x) = min(π(C1

⋃
C2))

Then either: π(x) = min(π(C1)) if x ∈ C1 , or π(x) = min(π(C2)) if x ∈ C2
I One of the two cols had to have 1 at position x

So the prob. that both are true is the prob. x ∈ C1
⋂
C2

Pr[min(π(C1)) = min(π(C2))] =
|C1

⋂
C2|

|C1∪C2|
= sim(C1, C2) (2)

41 / 67



Surprising Property

Choose a random permutation π
Claim: Pr[hπ(C1) = hπ(C2)] = sim(C1, C2) Why?

Why?
Let X be a document (set of shingles)
Then: Pr[π(x) = min(π(X))] = 1/|X|
It is equally likely that any x ∈ X is mapped to the min element
Let x be s.t. π(x) = min(π(C1

⋃
C2))

Then either: π(x) = min(π(C1)) if x ∈ C1 , or π(x) = min(π(C2)) if x ∈ C2
I One of the two cols had to have 1 at position x

So the prob. that both are true is the prob. x ∈ C1
⋂
C2

Pr[min(π(C1)) = min(π(C2))] =
|C1

⋂
C2|

|C1∪C2|
= sim(C1, C2) (2)

41 / 67



Four Types of Rows between two Documents
Given cols C1 and C2, rows may be classified as

a = #rows of type A, etc.

Note

sim(C1, C2) = a

a+ b+ c
(3)

Then
Then: Pr[h(C1) = h(C2)] = sim(C1, C2)

I Look down the cols C1 and C2 until we see a 1.
I If it’s a type-A row, then h(C1) = h(C2) If a type-B or type-C row,

then not.
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Similarity for Signatures

We know
Pr[hπ(C1) = hπ(C2)] = sim(C1, C2)
Now generalize to multiple hash functions

Similarity
The similarity of two signatures is the fraction of the hash functions
in which they agree

Note
Because of the minhash property, the similarity of columns is the
same as the expected similarity of their signatures
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Min-Hashing Example

Example
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MinHash Signatures

Pick K = 100 random permutations of the rows
Think of sig(C) (Signature of C) as a column vector

sig(C)[i] =according to the i-th permutation, the index of the first
row that has a 1 in column C

sig(C)[i] = min(πi(C))

Note: The sketch (signature) of document C is small – ∼ 100 bytes!

We achieved our goal! We “compressed” long bit vectors into short
signatures
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Implementation Trick
Permuting rows even once is prohibitive

Row hashing!
Pick K = 100 hash functions ki
Ordering under ki gives a random row permutation!

One-pass implementation
For each column C and hash-function ki keep a “slot” for the
min-hash value

Initialize all sig(C)[i] =∞
Scan rows looking for 1s

I Suppose row j has 1 in
column C

I Then for each ki:
If ki(j) < sig(C)[i] , then sig(C)[i]← ki(j)

How to pick a random hash func-
tion h(x)?
Universal hashing:
ha,b(x) = ((a · x + b) mod p) mod N
where:
a, b... random integers
p... prime number (p > N)

47 / 67



Implementation Trick
Permuting rows even once is prohibitive

Row hashing!
Pick K = 100 hash functions ki
Ordering under ki gives a random row permutation!

One-pass implementation
For each column C and hash-function ki keep a “slot” for the
min-hash value

Initialize all sig(C)[i] =∞
Scan rows looking for 1s

I Suppose row j has 1 in
column C

I Then for each ki:
If ki(j) < sig(C)[i] , then sig(C)[i]← ki(j)

How to pick a random hash func-
tion h(x)?
Universal hashing:
ha,b(x) = ((a · x + b) mod p) mod N
where:
a, b... random integers
p... prime number (p > N)

47 / 67



Implementation Trick
Permuting rows even once is prohibitive

Row hashing!
Pick K = 100 hash functions ki
Ordering under ki gives a random row permutation!

One-pass implementation
For each column C and hash-function ki keep a “slot” for the
min-hash value

Initialize all sig(C)[i] =∞
Scan rows looking for 1s

I Suppose row j has 1 in
column C

I Then for each ki:
If ki(j) < sig(C)[i] , then sig(C)[i]← ki(j)

How to pick a random hash func-
tion h(x)?
Universal hashing:
ha,b(x) = ((a · x + b) mod p) mod N
where:
a, b... random integers
p... prime number (p > N)

47 / 67



Implementation Trick
Permuting rows even once is prohibitive

Row hashing!
Pick K = 100 hash functions ki
Ordering under ki gives a random row permutation!

One-pass implementation
For each column C and hash-function ki keep a “slot” for the
min-hash value

Initialize all sig(C)[i] =∞
Scan rows looking for 1s

I Suppose row j has 1 in
column C

I Then for each ki:
If ki(j) < sig(C)[i] , then sig(C)[i]← ki(j)

How to pick a random hash func-
tion h(x)?
Universal hashing:
ha,b(x) = ((a · x + b) mod p) mod N
where:
a, b... random integers
p... prime number (p > N)

47 / 67



Implementation Trick
Permuting rows even once is prohibitive

Row hashing!
Pick K = 100 hash functions ki
Ordering under ki gives a random row permutation!

One-pass implementation
For each column C and hash-function ki keep a “slot” for the
min-hash value

Initialize all sig(C)[i] =∞
Scan rows looking for 1s

I Suppose row j has 1 in
column C

I Then for each ki:
If ki(j) < sig(C)[i] , then sig(C)[i]← ki(j)

How to pick a random hash func-
tion h(x)?
Universal hashing:
ha,b(x) = ((a · x + b) mod p) mod N
where:
a, b... random integers
p... prime number (p > N)

47 / 67



Implementation Trick
Permuting rows even once is prohibitive

Row hashing!
Pick K = 100 hash functions ki
Ordering under ki gives a random row permutation!

One-pass implementation
For each column C and hash-function ki keep a “slot” for the
min-hash value

Initialize all sig(C)[i] =∞
Scan rows looking for 1s

I Suppose row j has 1 in
column C

I Then for each ki:
If ki(j) < sig(C)[i] , then sig(C)[i]← ki(j)

How to pick a random hash func-
tion h(x)?
Universal hashing:
ha,b(x) = ((a · x + b) mod p) mod N
where:
a, b... random integers
p... prime number (p > N)

47 / 67



Implementation Trick
Permuting rows even once is prohibitive

Row hashing!
Pick K = 100 hash functions ki
Ordering under ki gives a random row permutation!

One-pass implementation
For each column C and hash-function ki keep a “slot” for the
min-hash value

Initialize all sig(C)[i] =∞
Scan rows looking for 1s

I Suppose row j has 1 in
column C

I Then for each ki:
If ki(j) < sig(C)[i] , then sig(C)[i]← ki(j)

How to pick a random hash func-
tion h(x)?
Universal hashing:
ha,b(x) = ((a · x + b) mod p) mod N
where:
a, b... random integers
p... prime number (p > N)

47 / 67



Implementation Trick
Permuting rows even once is prohibitive

Row hashing!
Pick K = 100 hash functions ki
Ordering under ki gives a random row permutation!

One-pass implementation
For each column C and hash-function ki keep a “slot” for the
min-hash value

Initialize all sig(C)[i] =∞
Scan rows looking for 1s

I Suppose row j has 1 in
column C

I Then for each ki:
If ki(j) < sig(C)[i] , then sig(C)[i]← ki(j)

How to pick a random hash func-
tion h(x)?
Universal hashing:
ha,b(x) = ((a · x + b) mod p) mod N
where:
a, b... random integers
p... prime number (p > N)

47 / 67



Implementation Trick
Permuting rows even once is prohibitive

Row hashing!
Pick K = 100 hash functions ki
Ordering under ki gives a random row permutation!

One-pass implementation
For each column C and hash-function ki keep a “slot” for the
min-hash value

Initialize all sig(C)[i] =∞
Scan rows looking for 1s

I Suppose row j has 1 in
column C

I Then for each ki:
If ki(j) < sig(C)[i] , then sig(C)[i]← ki(j)

How to pick a random hash func-
tion h(x)?
Universal hashing:
ha,b(x) = ((a · x + b) mod p) mod N
where:
a, b... random integers
p... prime number (p > N)

47 / 67



Implementation Trick
Permuting rows even once is prohibitive

Row hashing!
Pick K = 100 hash functions ki
Ordering under ki gives a random row permutation!

One-pass implementation
For each column C and hash-function ki keep a “slot” for the
min-hash value

Initialize all sig(C)[i] =∞
Scan rows looking for 1s

I Suppose row j has 1 in
column C

I Then for each ki:
If ki(j) < sig(C)[i] , then sig(C)[i]← ki(j)

How to pick a random hash func-
tion h(x)?
Universal hashing:
ha,b(x) = ((a · x + b) mod p) mod N
where:
a, b... random integers
p... prime number (p > N)

47 / 67



Implementation Trick
Permuting rows even once is prohibitive

Row hashing!
Pick K = 100 hash functions ki
Ordering under ki gives a random row permutation!

One-pass implementation
For each column C and hash-function ki keep a “slot” for the
min-hash value

Initialize all sig(C)[i] =∞
Scan rows looking for 1s

I Suppose row j has 1 in
column C

I Then for each ki:
If ki(j) < sig(C)[i] , then sig(C)[i]← ki(j)

How to pick a random hash func-
tion h(x)?
Universal hashing:
ha,b(x) = ((a · x + b) mod p) mod N
where:
a, b... random integers
p... prime number (p > N)

47 / 67



Implementation Trick
Permuting rows even once is prohibitive

Row hashing!
Pick K = 100 hash functions ki
Ordering under ki gives a random row permutation!

One-pass implementation
For each column C and hash-function ki keep a “slot” for the
min-hash value

Initialize all sig(C)[i] =∞
Scan rows looking for 1s

I Suppose row j has 1 in
column C

I Then for each ki:
If ki(j) < sig(C)[i] , then sig(C)[i]← ki(j)

How to pick a random hash func-
tion h(x)?
Universal hashing:
ha,b(x) = ((a · x + b) mod p) mod N
where:
a, b... random integers
p... prime number (p > N)

47 / 67



Implementation Trick
Permuting rows even once is prohibitive

Row hashing!
Pick K = 100 hash functions ki
Ordering under ki gives a random row permutation!

One-pass implementation
For each column C and hash-function ki keep a “slot” for the
min-hash value

Initialize all sig(C)[i] =∞
Scan rows looking for 1s

I Suppose row j has 1 in
column C

I Then for each ki:
If ki(j) < sig(C)[i] , then sig(C)[i]← ki(j)

How to pick a random hash func-
tion h(x)?
Universal hashing:
ha,b(x) = ((a · x + b) mod p) mod N
where:
a, b... random integers
p... prime number (p > N)

47 / 67



Implementation Trick
Permuting rows even once is prohibitive

Row hashing!
Pick K = 100 hash functions ki
Ordering under ki gives a random row permutation!

One-pass implementation
For each column C and hash-function ki keep a “slot” for the
min-hash value

Initialize all sig(C)[i] =∞
Scan rows looking for 1s

I Suppose row j has 1 in
column C

I Then for each ki:
If ki(j) < sig(C)[i] , then sig(C)[i]← ki(j)

How to pick a random hash func-
tion h(x)?
Universal hashing:
ha,b(x) = ((a · x + b) mod p) mod N
where:
a, b... random integers
p... prime number (p > N)

47 / 67



Outline
1 Finding Similar Items in High Dimensional Spaces

Introduction
A Common Idea

2 Finding Similar Items
Distance Measures
Finding Similar Documents

3 Shingling
Documents as High-Dimensional Data
Shingles

4 MinHashing
Encoding Sets
Finding Similar Columns
Min-Hashing
Implementation Trick

5 Locality Sensitive Hashing (LSH)
Introduction

48 / 67



Trying to define LSH

Goal
Find documents with Jaccard similarity at least s (for some similarity
threshold, e.g., s = 0.8)

LSH – General idea
Use a function f(x, y) that tells whether x and y is a candidate pair:
a pair of elements whose similarity must be evaluated.

For MinHash matrices
Hash columns of signature matrix M to many buckets.
Each pair of documents that hashes into the same bucket is a
candidate pair.
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Candidates from Minhash

Pick a similarity threshold s (0 < s < 1).

Candidate pair
Columns x and y of M are a candidate pair if their signatures agree
on at least fraction s of their rows:

I M(i, x) = M(i, y) for at least fraction s of values of i
F We expect documents x and y to have the same (Jaccard) similarity as

is the similarity of their signatures
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F We expect documents x and y to have the same (Jaccard) similarity as

is the similarity of their signatures
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LSH for Minhash

Big idea
Hash columns of signature matrix M several times

Likely to hash
Arrange that (only) similar columns are likely to hash to the same
bucket, with high probability

Candidate pairs
Candidate pairs are those that hash to the same bucket
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Partition M into b Bands
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Partition M into b Bands

Divide Matrix
Divide matrix M into b bands of r rows.
For each band, hash its portion of each column to a hash table with k
buckets.

I Make k as large as possible.

Candidate
Candidate column pairs are those that hash to the same bucket for
≥ 1 bands.

Catch most similar pairs
Tune b and r to catch most similar pairs, but few non-similar pairs.
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Hashing Bands
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Simplifying Assumption

Identical
There are enough buckets that columns are unlikely to hash to the
same bucket unless they are identical in a particular band

Same bucket
Then, we assume that “same bucket” means “identical in that band”

Not for correctness
Assumption needed only to simplify analysis, not for the correctness
of algorithm
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Example of Bands

Assume the following case
Suppose 100, 000 columns of M (100k docs)
Signatures of 100 integers (rows)
Therefore, signatures take 40Mb

Choose b = 20 bands of r = 5 integers/band

Goal
Find pairs of documents that are at least s = 0.8 similar
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Now, if C1,C2 are 80% Similar
Assume

Find pairs of ≥ s = 0.8 similarity, set b = 20, r = 5
Assume: sim(C1, C2) = 0.8

I Since sim(C1, C2) ≥ s, we want C1, C2 to be a candidate pair: We
want them to hash to at least 1 common bucket (at least one band is
identical)

In one particular band
Probability C1, C2 identical in one particular band: (0.8)5 = 0.328

What is the Probability of not being similar at all?
Probability C1, C2 are not similar in all of the 20 bands:
(1− 0.328)20 = 0.00035

I i.e., about 1/3000th of the 80%-similar column pairs are false negatives
(we miss them)

I We would find 99.965% pairs of truly similar documents
57 / 67
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C1,C2 are 30% Similar
Assume

Find pairs of ≥ s = 0.8 similarity, set b = 20, r = 5
Assume: sim(C1, C2) = 0.3

I Since sim(C1, C2) < swe want C1, C2 to hash to NO common buckets
(all bands should be different).

Identical in one particular band
Probability C1, C2 identical in one particular band: (0.3)5 = 0.00243.

Properties
Probability C1, C2 identical in at least 1 of 20 bands:
1− (1− 0.00243)20 = 0.0474.

I In other words, approximately 4.74% pairs of docs with similarity 0.3%
end up becoming candidate pairs.

F They are false positives since we will have to examine them (they are
candidate pairs) but then it will turn out their similarity is below
threshold s. 58 / 67
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LSH Involves a Tradeoff

You need to pick
The number of minhashes (rows of M).
The number of bands b.
The number of rows r per band to balance false positives/negatives.

Example
if we had only 15 bands of 5 rows, the number of false positives
would go down, but the number of false negatives would go up
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Analysis of LSH - What We Want

The Ideal detection of similar objects
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What 1 Band of 1 Row Gives You

Not so great
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Remember: 

Probability of equal hash-values = similarty

61 / 67



Given that probability of two documents aggree in a row is
s

We can calculate the probability that these documents become a
candidate pair as follows

1 The probability that the signatures agree in all rows of one particular
band is sr.

2 The probability that the signatures disagree in at least one row of a
particular band is 1− sr .

3 The probability that the signatures disagree in at least one row of
each of the bands is (1− sr)b.

4 The probability that the signatures agree in all the rows of at least
one band, and therefore become a candidate pair, is 1− (1− sr)b.
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If you fix r and b

Something Notable
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Example: b = 20; r = 5

Given
Similarity threshold s

Similarity threshold s Prob. that at least 1 band is identical
s 1− (1− sr)b

.2 0.006

.3 0.047

.4 0.186

.5 0.470

.6 0.802

.7 0.975

.8 0.9996
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Picking r and b: The S-curve

Picking r and b to get the best S-curve
50 hash-functions (r = 5, b = 10)
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FALSE NEGATIVE RATE

FALSE POSITIVE RATE
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LSH Summary

Tune M , b, r

Tune M , b, r to get almost all pairs with similar signatures, but
eliminate most pairs that do not have similar signatures

Check in main memory
Check in main memory that candidate pairs really do have similar
signatures

Optional
In another pass through data, check that the remaining candidate
pairs really represent similar documents
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Summary: 3 steps

Shingling
Convert documents to sets

I We used hashing to assign each shingle an ID Min-hashing: Convert
large sets to short

Min-hashing
Convert large sets to short signatures, while preserving similarity.

I We used similarity preserving hashing to generate signatures with
property Pr[hπ(C1) = hπ(C2)] = sim(C1, C2).

I We used hashing to get around generating random permutations.

Locality-Sensitive Hashing
Focus on pairs of signatures likely to be from similar documents.

I We used hashing to find candidate pairs of similarity ≥ s
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