Machine Learning for Data Mining Finding Similar Items in High Dimensional Spaces

Andres Mendez-Vazquez

August 17, 2018

Outline

- Finding Similar Items in High Dimensional Spaces
 - Introduction
 - A Common Idea
- 2 Finding Similar Items
 - Distance Measures
 - Finding Similar Documents
- 3 Shingling
 - Documents as High-Dimensional Data
 - Shingles
- 4 MinHashing
 - Encoding Sets
 - Finding Similar Columns
 - Min-Hashing
 - Implementation Trick

Introduction

Outline

1 Finding Similar Items in High Dimensional Spaces

Introduction

A Common Idea

Finding Similar Items

- Distance Measures
- Finding Similar Documents

3 Shingling

- Documents as High-Dimensional Data
- Shingles

4 MinHashing

- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick

Locality Sensitive Hashing (LSH)

Introduction

Example

Example

10 nearest neighbors from a collection of 20,000 images

6 / 67

10 nearest neighbors from a collection of 2 million images

Outline

1 Finding Similar Items in High Dimensional Spaces

Introduction

A Common Idea

Finding Similar Items

- Distance Measures
- Finding Similar Documents

3 Shingling

- Documents as High-Dimensional Data
- Shingles

4 MinHashing

- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick

Locality Sensitive Hashing (LSH)

Introduction

Problems

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in <u>high-dimensional</u> space

Problems

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in <u>high-dimensional</u> space

Examples

- Pages with similar words
 - For duplicate detection, classification by topic

Customers who purchased similar products

Products with similar customer sets

Images with similar features

Users who visited the similar websites

Problems

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in <u>high-dimensional</u> space

Examples

- Pages with similar words
 - For duplicate detection, classification by topic
- Customers who purchased similar products
 - Products with similar customer sets

Problems

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in <u>high-dimensional</u> space

Examples

- Pages with similar words
 - For duplicate detection, classification by topic
- Customers who purchased similar products
 - Products with similar customer sets
- Images with similar features

Problems

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in <u>high-dimensional</u> space

Examples

- Pages with similar words
 - For duplicate detection, classification by topic
- Customers who purchased similar products
 - Products with similar customer sets
- Images with similar features
- Users who visited the similar websites

We had the Naïve solution

Single pass but requires space quadratic in the number of items:

- N = number of distinct items
- K =number of items with support ≥ s

However the A-priori Algorithm

- First pass: Find frequent singletons
 - For a pair to be a candidate for a frequent pair, its singletons have to be frequent!
- Second pass:
 - Count only candidate pairs

We had the Naïve solution

Single pass but requires space quadratic in the number of items:

- N = number of distinct items
- K =number of items with support $\geq s$

However the A-priori Algorithm

- First pass: Find frequent singletons
 - For a pair to be a candidate for a frequent pair, its singletons have to be frequent!
- Second pass:
 - Count only candidate pairs

We had the Naïve solution

Single pass but requires space quadratic in the number of items:

- N = number of distinct items
- K =number of items with support $\geq s$

However the A-priori Algorithm

- First pass: Find frequent singletons
 - For a pair to be a candidate for a frequent pair, its singletons have to be frequent!
- Second pass:
 - Count only candidate pairs!

10/67

Last time

Finding frequent pairs.

11 / 67

э

イロン イ団 とく ヨン イヨン

Last time

Finding frequent pairs.

Further improvement using PCY

• Pass 1:

Count exact frequency of each item:

Items 1...N

Take pairs of items {i, j}, hash them into B buckets and count of the number of pairs that hashed to each bucket:

Last time

Finding frequent pairs.

Further improvement using PCY

Pass 1:

Count exact frequency of each item:

► Take pairs of items {*i*, *j*}, hash them into B buckets and count of the number of pairs that hashed to each bucket:

11/67

イロト イヨト イヨト

Further improvement: PCY

Pass 2:

• For a pair $\{i, j\}$ to be a candidate for a frequent pair, its singletons have to be frequent and it has to hash to a frequent bucket!

イロト イヨト イヨト

Thus, we have

Previous Lecture: A-Priori

- Main Idea: Candidates
 - Instead of keeping a count of each pair, only keep a count for candidate pairs!

Today's Lectuire

- Main Idea: Candidates
 - Pass 1: Take documents and has them to buckets such that documents that are similar hash to the same bucket.
 - Pass 2: Only compare documents that are candidates (Hashed into the same bucket)
- Thus, we need O(N) instead of $O(N^2)$.

Thus, we have

Previous Lecture: A-Priori

- Main Idea: Candidates
 - Instead of keeping a count of each pair, only keep a count for candidate pairs!

Today's Lectuire

- Main Idea: Candidates
 - Pass 1: Take documents and has them to buckets such that documents that are similar hash to the same bucket.
 - Pass 2: Only compare documents that are candidates (Hashed into the same bucket)
- Thus, we need O(N) instead of $O(N^2)$.

Outline

- 1 Finding Similar Items in High Dimensional Spaces
 - Introduction
 - A Common Idea
- 2 Finding Similar Items
 - Distance Measures
 - Finding Similar Documents
- 3 Shingling
 - Documents as High-Dimensional Data
 - Shingles
- 4 MinHashing
 - Encoding Sets
 - Finding Similar Columns
 - Min-Hashing
 - Implementation Trick
- 5 Locality Sensitive Hashing (LSH)
 - Introduction

Goal

- Find near-neighbors in high-dim. space
 - We formally define "near neighbors" as points that are a "small distance" apart.

Application

For each application, we first need to define what "distance" means

15 / 67

イロト イヨト イヨト イヨト

Goal

- Find near-neighbors in high-dim. space
 - We formally define "near neighbors" as points that are a "small distance" apart.

Application

• For each application, we first need to define what "distance" means

15 / 67

Today: Jaccard distance (/similarity)

• The Jaccard Similarity/Distance of two sets is the size of their intersection / the size of their union:

16/67

Today: Jaccard distance (/similarity)

- The Jaccard Similarity/Distance of two sets is the size of their intersection / the size of their union:
 - $sim(C_1, C_2) = |C_1 \bigcap C_2| / |C_1 \bigcup C_2|$

16 / 67

イロト イボト イヨト イヨト

Today: Jaccard distance (/similarity)

- The Jaccard Similarity/Distance of two sets is the size of their intersection / the size of their union:
 - $sim(C_1, C_2) = |C_1 \bigcap C_2| / |C_1 \bigcup C_2|$
 - $d(C_1, C_2) = 1 |C_1 \bigcap C_2| / |C_1 \bigcup C_2|$

Today: Jaccard distance (/similarity)

• The Jaccard Similarity/Distance of two sets is the size of their intersection / the size of their union:

▶
$$sim(C_1, C_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$$

▶ $d(C_1, C_2) = 1 - |C_1 \cap C_2| / |C_1 \cup C_2|$

Outline

- 1 Finding Similar Items in High Dimensional Spaces
 - Introduction
 - A Common Idea

2 Finding Similar Items

- Distance Measures
- Finding Similar Documents
- 3 Shinglin
 - Documents as High-Dimensional Data
 - Shingles
- 4 MinHashing
 - Encoding Sets
 - Finding Similar Columns
 - Min-Hashing
 - Implementation Trick

5 Locality Sensitive Hashing (LSH)

Introduction

Goal

• Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates."

18/67

3

イロト イロト イヨト イヨト

Goal

• Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates."

Applications

• Mirror websites, or approximate mirrors.

We do not want to show both of them in a search.

Similar news articles at many news sites.

Cluster articles by "same story."

Goal

• Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates."

Applications

- Mirror websites, or approximate mirrors.
 - We do not want to show both of them in a search.

Similar news articles at many news sites.

Cluster articles by "same story."

Goal

• Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates."

Applications

- Mirror websites, or approximate mirrors.
 - We do not want to show both of them in a search.
- Similar news articles at many news sites.

18 / 67

Goal

• Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates."

Applications

- Mirror websites, or approximate mirrors.
 - We do not want to show both of them in a search.
- Similar news articles at many news sites.
 - Cluster articles by "same story."

18 / 67

Goal

• Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates."

Applications

- Mirror websites, or approximate mirrors.
 - We do not want to show both of them in a search.
- Similar news articles at many news sites.
 - Cluster articles by "same story."

18 / 67

Finding Similar Documents

Problems

- Many small pieces of one document can appear out of order in another.
- Too many documents to compare all pairs.
- Documents are so large or so many that they cannot fit in main memory.

Finding Similar Documents

Problems

- Many small pieces of one document can appear out of order in another.
- Too many documents to compare all pairs.

Documents are so large or so many that they cannot fit in main memory.

Finding Similar Documents

Problems

- Many small pieces of one document can appear out of order in another.
- Too many documents to compare all pairs.
- Documents are so large or so many that they cannot fit in main memory.

3 Essential Steps for Similar Docs

Step 1: Shingling

Convert documents to sets

Step 2: Minhashing

Convert large sets to short signatures, while preserving similarity

Locality-sensitive hashing

Focus on pairs of signatures likely to be from similar documents

• Candidate pairs!

3 Essential Steps for Similar Docs

Step 1: Shingling

Convert documents to sets

Step 2: Minhashing

Convert large sets to short signatures, while preserving similarity

Locality-sensitive hashing

Focus on pairs of signatures likely to be from similar documents
 Candidate pairs!

20 / 67

イロト イロト イヨト イヨト

3 Essential Steps for Similar Docs

Step 1: Shingling

Convert documents to sets

Step 2: Minhashing

Convert large sets to short signatures, while preserving similarity

Locality-sensitive hashing

Focus on pairs of signatures likely to be from similar documents

Candidate pairs!

20 / 67

< ロ > < 同 > < 回 > < 回 >

The Big Picture

The Process of Identification

21/67

э

イロト イヨト イヨト

Outline

- 1 Finding Similar Items in High Dimensional Spaces
 - Introduction
 - A Common Idea

Finding Similar Items

- Distance Measures
- Finding Similar Documents

3 Shingling

• Documents as High-Dimensional Data

Shingles

4 MinHashing

- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick

Locality Sensitive Hashing (LSH)

Introduction

Step 1: Shingling

Convert documents to sets.

Step 1: Shingling

Convert documents to sets.

Simple approaches

• Document = set of words appearing in document.

Document = set of "important" words

Don't work well for this application. Why?

Step 1: Shingling

Convert documents to sets.

Simple approaches

- Document = set of words appearing in document.
- Document = set of "important" words.

Ve want to avoid to get tangled in the text structure

Need to account for ordering of words!

A different way: Use Shingles!!!

Step 1: Shingling

Convert documents to sets.

Simple approaches

- Document = set of words appearing in document.
- Document = set of "important" words.
- Don't work well for this application. Why?

Need to account for ordering of words!
 A different upon the Shingled!!!

Step 1: Shingling

Convert documents to sets.

Simple approaches

- Document = set of words appearing in document.
- Document = set of "important" words.
- Don't work well for this application. Why?

We want to avoid to get tangled in the text structure

• Need to account for ordering of words!

Step 1: Shingling

Convert documents to sets.

Simple approaches

- Document = set of words appearing in document.
- Document = set of "important" words.
- Don't work well for this application. Why?

We want to avoid to get tangled in the text structure

- Need to account for ordering of words!
- A different way: Use Shingles!!!

Outline

- - Introduction
 - A Common Idea

- Distance Measures
- Finding Similar Documents

3 Shingling

- Documents as High-Dimensional Data
- Shingles

- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick

Introduction

k-shingle

- A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears in the doc.
 - Tokens can be characters, words or something else, depending on the application.
 - Assume tokens = characters for the examples.

k-shingle

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc.
 - ► Tokens can be characters, words or something else, depending on the application.
 - Assume tokens = characters for the examples.

Example

- k = 2; document $D_1 = abcab$ Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
 - One possible option: Shingles as a bag (multiset). Thus, count ab twice: $S'(D_1) = \{ab, bc, ca, ab\}$

k-shingle

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc.
 - Tokens can be characters, words or something else, depending on the application.
 - Assume tokens = characters for the examples.

k = 2; document D₁ = abcab Set of 2-shingles: S(D₁) = {ab, bc, ca} One possible option: Shingles as a bag (multiset). Thus, count ab twice: S'(D₁) = {ab, bc, ca, ab}

k-shingle

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc.
 - ► Tokens can be characters, words or something else, depending on the application.
 - Assume tokens = characters for the examples.

Example

• k = 2; document $D_1 = abcab$ Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$

25 / 67

イロト イヨト イヨト

k-shingle

- A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears in the doc.
 - ► Tokens can be characters, words or something else, depending on the application.
 - Assume tokens = characters for the examples.

Example

- k = 2; document $D_1 = abcab$ Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
 - ► One possible option: Shingles as a bag (multiset). Thus, count *ab* twice: S'(D₁) = {*ab*, *bc*, *ca*, *ab*}

25 / 67

イロト 不得 トイヨト イヨト 二日

Compress

• To compress long shingles, we can hash them to (say) 4 bytes.

Compress

• To compress long shingles, we can hash them to (say) 4 bytes.

Represent a doc

• Represent a doc by the set of hash values of its k-shingles.

dea: I wo documents could (rarely) appear to have shingles in

mmon, when in fact only the hash-values were shared

Compress

• To compress long shingles, we can hash them to (say) 4 bytes.

Represent a doc

• Represent a doc by the set of hash values of its k-shingles.

Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared.

Example • k = 2; document $D_1 = abcab$ Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$ • Hash the shingles using the division method to a hash table.

Compress

• To compress long shingles, we can hash them to (say) 4 bytes.

Represent a doc

• Represent a doc by the set of hash values of its k-shingles.

Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared.

Example

26 / 67

イロト イヨト イヨト

Compress

• To compress long shingles, we can hash them to (say) 4 bytes.

Represent a doc

• Represent a doc by the set of hash values of its k-shingles.

Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared.

Example

- k = 2; document $D_1 = abcab$ Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
- Hash the shingles using the division method to a hash table.

Document

• Document D_1 = set of k-shingles $C_1 = S(D_1)$

Document

• Document $D_1 = \text{set of } k \text{-shingles } C_1 = S(D_1)$

0/1 vector

• Equivalently, each document is a 0/1 vector in the space of k-shingles

Document

• Document $D_1 = \text{set of } k \text{-shingles } C_1 = S(D_1)$

0/1 vector

- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension.

We need a measure that can handle this situation

A natural similarity measure is the Jaccard similarity $sim(D_1, D_2) = \frac{|D_1 \cap D_2|}{|D_1 \cup D_2|} \tag{1}$

27 / 67

Document

• Document $D_1 = \text{set of } k \text{-shingles } C_1 = S(D_1)$

0/1 vector

- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension.
 - Problem!!! Vectors are very sparse.

 $S_{1} = \frac{|D_{1} \cap D_{2}|}{|D_{1} \cup D_{2}|}$ $sim(D_{1}, D_{2}) = \frac{|D_{1} \cap D_{2}|}{|D_{1} \cup D_{2}|}$ (1)

Document

• Document $D_1 = \text{set of } k \text{-shingles } C_1 = S(D_1)$

0/1 vector

- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension.
 - Problem!!! Vectors are very sparse.

 $\star\,$ We need a measure that can handle this situation.

Document

• Document $D_1 = \text{set of } k \text{-shingles } C_1 = S(D_1)$

0/1 vector

• Equivalently, each document is a 0/1 vector in the space of k-shingles

- Each unique shingle is a dimension.
- Problem!!! Vectors are very sparse.

 $\star\,$ We need a measure that can handle this situation.

A natural similarity measure is the Jaccard similarity

$$sim(D_1, D_2) = \frac{|D_1 \cap D_2|}{|D_1 \cup D_2|}$$

Cinvestav

イロト イボト イヨト イヨト

(1)

Remember the SWAR-Popcount

Code - SWAR-Popcount - Divide and Conquer

```
// This works only in 32 bits
int product(int row, int vector){
  int i = row & vector;
  i = i - ((i >> 1) \& 0 \times 55555555);
  i = (i \& 0 \times 33333333) + ((i >> 2) \& 0 \times 33333333);
  i = (((i + (i >> 4)) \& 0 \times 0F0F0F0F) * 0 \times 01010101) >> 24;
  return i & 0x0000001;
                                                イロト 不得 トイヨト イヨト 二日
```

28 / 67

Remember the SWAR-Popcount

Code - SWAR-Popcount - Divide and Conquer

```
// This works only in 32 bits
int product(int row, int vector){
    int i = row & vector;
    i = i - ((i >> 1) & 0x55555555);
    i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
    i = (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
    return i & 0x00000001;
```

We can use this

Together with AND and OR to implement the Jaccard similarity

Working Assumption

Similar text

• Documents that have lots of shingles in common have similar text, even if the text appears in different order.

29 / 67

< ロ > < 回 > < 回 > < 回 > < 回 >

Working Assumption

Similar text

• Documents that have lots of shingles in common have similar text, even if the text appears in different order.

Caveat

• You must pick k large enough, or most documents will have most shingles.

It seems to be that

k = 5 is OK for short documents.

k=10 is better for long documents.

Working Assumption

Similar text

• Documents that have lots of shingles in common have similar text, even if the text appears in different order.

Caveat

- You must pick k large enough, or most documents will have most shingles.
- It seems to be that

29 / 67

イロト イヨト イヨト

Working Assumption

Similar text

• Documents that have lots of shingles in common have similar text, even if the text appears in different order.

Caveat

- You must pick k large enough, or most documents will have most shingles.
- It seems to be that
 - k = 5 is OK for short documents.

29 / 67

イロト イヨト イヨト

Working Assumption

Similar text

• Documents that have lots of shingles in common have similar text, even if the text appears in different order.

Caveat

- You must pick k large enough, or most documents will have most shingles.
- It seems to be that
 - k = 5 is OK for short documents.
 - k = 10 is better for long documents.

29 / 67

イロト イヨト イヨト

Motivation for Minhash/LSH

Imagine the following

We need to find near-duplicate documents among ${\cal N}=1,000,000$ documents.

Motivation for Minhash/LSH

Imagine the following

We need to find near-duplicate documents among ${\cal N}=1,000,000$ documents.

Compute pairwaise Jaccard similarites

 Naïvely, we would have to compute pairwaise Jaccard similarites for every pair of docs.

Motivation for Minhash/LSH

Imagine the following

We need to find near-duplicate documents among N=1,000,000 documents.

Compute pairwaise Jaccard similarites

- Naïvely, we would have to compute pairwaise Jaccard similarites for every pair of docs.
 - i.e, $N(N-1)/2 \approx 5*10^{11}$ comparisons.

For N = 10 million, it takes more than

Motivation for $\mathsf{Minhash}/\mathsf{LSH}$

Imagine the following

We need to find near-duplicate documents among N=1,000,000 documents.

Compute pairwaise Jaccard similarites

- Naïvely, we would have to compute pairwaise Jaccard similarites for every pair of docs.
 - i.e, $N(N-1)/2 \approx 5*10^{11}$ comparisons.
 - \blacktriangleright At $10^5~{\rm secs/day}$ and $10^6~{\rm comparisons/sec,}$ it would take $5~{\rm days.}$

For N = 10 million, it takes more than a year...

30 / 67

イロト イヨト イヨト

Motivation for $\mathsf{Minhash}/\mathsf{LSH}$

Imagine the following

We need to find near-duplicate documents among N=1,000,000 documents.

Compute pairwaise Jaccard similarites

- Naïvely, we would have to compute pairwaise Jaccard similarites for every pair of docs.
 - i.e, $N(N-1)/2 \approx 5*10^{11}$ comparisons.
 - At 10^5 secs/day and 10^6 comparisons/sec, it would take 5 days.

For something larger

For N = 10 million, it takes more than a year...

Outline

Finding Similar Items in High Dimensional Spaces

- Introduction
- A Common Idea

Finding Similar Items

- Distance Measures
- Finding Similar Documents

3 Shinglin

- Documents as High-Dimensional Data
- Shingles

4 MinHashing

Encoding Sets

- Finding Similar Columns
- Min-Hashing
- Implementation Trick

Locality Sensitive Hashing (LSH)

Introduction

Something Notable

• Many similarity problems can be formalized as finding subsets that have significant intersection.

Something Notable

• Many similarity problems can be formalized as finding subsets that have significant intersection.

Encode sets

• Encode sets using 0/1 (bit, boolean) vectors.

One dimension per element in the universal set.

 Interpret set intersection as bitwise AND, and set union as bitwise OR.

Something Notable

 Many similarity problems can be formalized as finding subsets that have significant intersection.

Encode sets

- Encode sets using 0/1 (bit, boolean) vectors.
 - One dimension per element in the universal set.

Interpret set intersection as bitwise AND, and set union as bitwise

Example

• $C_1 = 10111$; $C_2 = 10011$.

- Size of intersection = 3; size of union = 4, Jaccard similarity (not distance) = 3/4
- $d(C_1, C_2) = 1 (\text{Jaccard similarity}) = 1/4$

Something Notable

 Many similarity problems can be formalized as finding subsets that have significant intersection.

Encode sets

- Encode sets using 0/1 (bit, boolean) vectors.
 - One dimension per element in the universal set.
- Interpret set intersection as bitwise **AND**, and set union as bitwise **OR**.

• $C_1 = 10111; C_2 = 10011.$

- Size of intersection = 3; size of union = 4, Jaccard similarity (not distance) = 3/4
- $d(C_1, C_2) = 1 (\text{Jaccard similarity}) = 1/4$

Something Notable

 Many similarity problems can be formalized as finding subsets that have significant intersection.

Encode sets

- Encode sets using 0/1 (bit, boolean) vectors.
 - One dimension per element in the universal set.
- Interpret set intersection as bitwise **AND**, and set union as bitwise **OR**.

Example

• $C_1 = 10111; C_2 = 10011.$

Size of intersection = 3; size of union = 4, Jaccard similarity (not distance) = 3/4 $d(C_1, C_2) = 1-(Jaccard similarity) = 1/4$

Something Notable

 Many similarity problems can be formalized as finding subsets that have significant intersection.

Encode sets

- Encode sets using 0/1 (bit, boolean) vectors.
 - One dimension per element in the universal set.
- Interpret set intersection as bitwise **AND**, and set union as bitwise **OR**.

Example

- $C_1 = 10111; C_2 = 10011.$
 - Size of intersection = 3; size of union = 4, Jaccard similarity (not distance) = 3/4

Something Notable

 Many similarity problems can be formalized as finding subsets that have significant intersection.

Encode sets

- Encode sets using 0/1 (bit, boolean) vectors.
 - One dimension per element in the universal set.
- Interpret set intersection as bitwise **AND**, and set union as bitwise **OR**.

Example

- $C_1 = 10111; C_2 = 10011.$
 - ► Size of intersection = 3; size of union = 4, Jaccard similarity (not distance) = 3/4
 - $d(C_1, C_2) = 1-(\text{Jaccard similarity}) = 1/4$

Rows

• Rows are equal to elements (shingles)

1	1	1	0
1	1	о	1
0	1	о	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

< ■ ト < ■ ト ■ の Q (C 33 / 67

• Rows are equal to elements (shingles)

• The Columns are equal to sets (documents)

Typical matrix is sparse!

1	1	1	0
1	1	0	1
0	1	о	1
0	0	0	1
1	0	о	1
1	1	1	0
1	0	1	0

Rows

• Rows are equal to elements (shingles)

- The Columns are equal to sets (documents)
 - ▶ 1 in row e and column s if and only if e is a member of s

orresponding sets (rows with vpical matrix is sparse!

Each document is a column

- Example: $sim(C_1, C_2) = ?$
 - Size of intersection = 3; size of union = 6, Jaccarc similarity (not distance) = 3/6
 - $d(C_1, C_2) = 1 (\text{Jaccard similarity}) = 3/6$

1	1	1	0
1	1	0	1
0	1	о	1
0	0	о	1
1	0	о	1
1	1	1	0
1	0	1	0

(E)

Rows

• Rows are equal to elements (shingles)

Columns

- The Columns are equal to sets (documents)
 - ► 1 in row *e* and column *s* if and only if *e* is a member of *s*
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)

a column is a column c

- Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6
- $d(C_1, C_2) = 1 (\text{Jaccard similarity}) = 3/6$

1	1	1	0
1	1	0	1
0	1	о	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

• = • •

Rows

• Rows are equal to elements (shingles)

Columns

- The Columns are equal to sets (documents)
 - ► 1 in row *e* and column *s* if and only if *e* is a member of *s*
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!

• Example: $sim(C_1, C_2) = ?$

- Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6
- $d(C_1, C_2) = 1 (\text{Jaccard similarity}) = 3/6$

	1	1	1	0
	1	1	0	1
	0	1	о	1
ſ	0	0	0	1
	1	0	0	1
	1	1	1	0
	1	0	1	0

Rows

• Rows are equal to elements (shingles)

Columns

- The Columns are equal to sets (documents)
 - ► 1 in row *e* and column *s* if and only if *e* is a member of *s*
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!

Each document is a column

• Example: $sim(C_1, C_2) = ?$

Size of intersection = 3; size of union = 6, Jaccarc similarity (not distance) = 3/6
 d(C₁, C₂) = 1-(Jaccard similarity) = 3/6

1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	о	1	0

Rows

• Rows are equal to elements (shingles)

Columns

- The Columns are equal to sets (documents)
 - ► 1 in row *e* and column *s* if and only if *e* is a member of *s*
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!

Each document is a column

- Example: $sim(C_1, C_2) = ?$
 - Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6

1	1	1	0
1	1	0	1
0	1	о	1
0	0	о	1
1	0	о	1
1	1	1	0
1	0	1	0

Rows

• Rows are equal to elements (shingles)

Columns

- The Columns are equal to sets (documents)
 - ► 1 in row *e* and column *s* if and only if *e* is a member of *s*
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!

Each document is a column

- Example: $sim(C_1, C_2) = ?$
 - Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6
 - $d(C_1, C_2) = 1 (\text{Jaccard similarity}) = 3/6$

1	1	1	0
1	1	0	1
0	1	o	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

(B)

Outline

- 1 Finding Similar Items in High Dimensional Spaces
 - Introduction
 - A Common Idea

Finding Similar Items

- Distance Measures
- Finding Similar Documents
- 3 Shingling
 - Documents as High-Dimensional Data
 - Shingles
- 4 MinHashing
 - Encoding Sets
 - Finding Similar Columns
 - Min-Hashing
 - Implementation Trick
- Locality Sensitive Hashing (LSH)
 - Introduction

So far and next goal

- So far:

 - Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

So far and next goal

- So far:
 - $\blacktriangleright \ \ \mathsf{Documents} \to \mathsf{Sets} \ \mathsf{of} \ \mathsf{shingles}$
 - Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

Approach

- O Signatures of columns: small summaries of columns
- Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures & columns are related
- Optional: Check that columns with similar signatures are really similar

So far and next goal

- So far:
 - ► Documents → Sets of shingles
 - Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

Approach

- Signatures of columns: small summaries of columns
- Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures & columns are related
 - Optional: Check that columns with similar signatures are really similar

- Comparing all pairs may take too much time: Job for Locality Sensitive Hashing (LSH)
 - These methods can produce false negatives, and even false positives (if the optional check is not made) 35 / 67

So far and next goal

- So far:
 - ▶ Documents → Sets of shingles
 - Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

Signatures of columns: small summaries of columns

- 🥚 Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures & columns are related
 - Optional: Check that columns with similar signatures are really similar

- Comparing all pairs may take too much time: Job for Locality Sensitive Hashing (LSH)
 - These methods can produce false negatives, and even false positives (if the optional check is not made) 35 / 67

So far and next goal

- So far:
 - ▶ Documents → Sets of shingles
 - Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

Approach

Signatures of columns: small summaries of columns

Examine pairs of signatures to find similar columns

Essential: Similarities of signatures & columns are related

Optional: Check that columns with similar signatures are really similar

- Comparing all pairs may take too much time: Job for Locality Sensitive Hashing (LSH)
 - These methods can produce false negatives, and even false positives (if the optional check is not made) 35 / 67

So far and next goal

- So far:
 - ▶ Documents → Sets of shingles
 - Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

Approach

- Signatures of columns: small summaries of columns
- 2 Examine pairs of signatures to find similar columns

Essential: Similarities of signatures & columns are related

Optional: Check that columns with similar signatures are really similar

- Comparing all pairs may take too much time: Job for Locality Sensitive Hashing (LSH)
 - These methods can produce false negatives, and even false positives (if the optional check is not made)
 35 / 67

So far and next goal

- So far:
 - ▶ Documents → Sets of shingles
 - Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

Approach

- Signatures of columns: small summaries of columns
- 2 Examine pairs of signatures to find similar columns
 - ▶ Essential: Similarities of signatures & columns are related

Optional: Check that columns with similar signatures are really similar

- Comparing all pairs may take too much time: Job for Locality Sensitive Hashing (LSH)
 - These methods can produce false negatives, and even false positives (if the optional check is not made)
 35 / 67

So far and next goal

- So far:
 - ▶ Documents → Sets of shingles
 - Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

Approach

- Signatures of columns: small summaries of columns
- 2 Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures & columns are related
- Optional: Check that columns with similar signatures are really similar

- Comparing all pairs may take too much time: Job for Locality Sensitive Hashing (LSH)
 - These methods can produce false negatives, and even false positives (if the optional check is not made) 35 / 67

So far and next goal

- So far:
 - ▶ Documents → Sets of shingles
 - Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

Approach

- Signatures of columns: small summaries of columns
- 2 Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures & columns are related
 - Optional: Check that columns with similar signatures are really similar

Warnings

• Comparing all pairs may take too much time: Job for Locality Sensitive Hashing (LSH)

These methods can produce false negatives, and even false positives (if the optional check is not made) \$35/67\$

So far and next goal

- So far:
 - ▶ Documents → Sets of shingles
 - Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

Approach

- Signatures of columns: small summaries of columns
- 2 Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures & columns are related
- Optional: Check that columns with similar signatures are really similar

- Comparing all pairs may take too much time: Job for Locality Sensitive Hashing (LSH)
 - These methods can produce false negatives, and even false positives (if the optional check is not made) 35/67

Hashing Columns (Signatures)

Key idea

• "Hash" each column C to a small signature h(C), such that:

(1) h(C) is small enough that the signature fits in RAM.
 (2) sim(C₁, C₂) is the same as the "similarity" of signatures h(C₁) and h(C₂).

イロト 不得 トイヨト イヨト

3

Hashing Columns (Signatures)

Key idea

- $\bullet\,$ "Hash" each column C to a small signature h(C), such that:
 - (1) h(C) is small enough that the signature fits in RAM.

• Find a hash function $h(\cdot)$ such that:

- if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
- if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$.

Key idea

• "Hash" each column C to a small signature h(C), such that:

- (1) h(C) is small enough that the signature fits in RAM.
- ▶ (2) sim(C₁, C₂) is the same as the "similarity" of signatures h(C₁) and h(C₂).

• Find a hash function $h(\cdot)$ such that:

- ▶ if $sim(C_1,C_2)$ is high, then with high prob. $h(C_1)=h(C_2)$
- if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$.

Buckets

 Thus, we hash documents into buckets, and expect that "most" pairs of near duplicate docs hash into the same bucket!

Key idea

• "Hash" each column C to a small signature h(C), such that:

- (1) h(C) is small enough that the signature fits in RAM.
- ▶ (2) sim(C₁, C₂) is the same as the "similarity" of signatures h(C₁) and h(C₂).

Goal

• Find a hash function $h(\cdot)$ such that:

Buckets

 Thus, we hash documents into buckets, and expect that "most" pairs of near duplicate docs hash into the same bucket!

イロト イボト イヨト イヨト

Key idea

• "Hash" each column C to a small signature h(C), such that:

- (1) h(C) is small enough that the signature fits in RAM.
- ▶ (2) sim(C₁, C₂) is the same as the "similarity" of signatures h(C₁) and h(C₂).

Goal

Find a hash function h(·) such that:

• if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$.

Thus, we hash documents into buckets, and expect that "most" pairs of near duplicate docs hash into the same bucket!

36 / 67

Key idea

• "Hash" each column C to a small signature h(C), such that:

- (1) h(C) is small enough that the signature fits in RAM.
- ▶ (2) sim(C₁, C₂) is the same as the "similarity" of signatures h(C₁) and h(C₂).

Goal

Find a hash function h(·) such that:

- if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$.
- if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$.

 Thus, we hash documents into buckets, and expect that "most" pairs of near duplicate docs hash into the same bucket!

> ୬ ବ. ୯ 36 / 67

イロト 不得 トイヨト イヨト

Key idea

• "Hash" each column C to a small signature h(C), such that:

- (1) h(C) is small enough that the signature fits in RAM.
- ▶ (2) sim(C₁, C₂) is the same as the "similarity" of signatures h(C₁) and h(C₂).

Goal

Find a hash function h(·) such that:

- if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$.
- if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$.

Buckets

 Thus, we hash documents into buckets, and expect that "most" pairs of near duplicate docs hash into the same bucket!

Outline

- 1 Finding Similar Items in High Dimensional Spaces
 - Introduction
 - A Common Idea

Finding Similar Items

- Distance Measures
- Finding Similar Documents
- 3 Shingling
 - Documents as High-Dimensional Data
 - Shingles

4 MinHashing

- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick
- Locality Sensitive Hashing (LSH)
 - Introduction

Goal

• Find a hash function $h(\cdot)$ such that:

▶ if $sim(C_1, C_2)$ is high, then with high prob. h(C1) = h(C2)▶ if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Goal

• Find a hash function $h(\cdot)$ such that:

▶ if $sim(C_1, C_2)$ is high, then with high prob. h(C1) = h(C2)

Similarity metric

Clearly, the hash function depends on the similarity metric:

Not all similarity metrics have a suitable hash function.

Goal

• Find a hash function $h(\cdot)$ such that:

- ▶ if $sim(C_1, C_2)$ is high, then with high prob. h(C1) = h(C2)
- ▶ if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Similarity metric

Clearly, the hash function depends on the similarity metric:
 Not all similarity metrics have a suitable hash function.

Hash function

There is a suitable hash function for Jaccard similarity: Min-hash

Goal

• Find a hash function $h(\cdot)$ such that:

- if $sim(C_1, C_2)$ is high, then with high prob. h(C1) = h(C2)
- ▶ if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Similarity metric

• Clearly, the hash function depends on the similarity metric:

Goal

• Find a hash function $h(\cdot)$ such that:

- if $sim(C_1, C_2)$ is high, then with high prob. h(C1) = h(C2)
- ▶ if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Similarity metric

- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function.

38 / 67

Goal

• Find a hash function $h(\cdot)$ such that:

- if $sim(C_1, C_2)$ is high, then with high prob. h(C1) = h(C2)
- ▶ if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Similarity metric

- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function.

Hash function

• There is a suitable hash function for Jaccard similarity: Min-hashing.

Goal

• Find a hash function $h(\cdot)$ such that:

- if $sim(C_1, C_2)$ is high, then with high prob. h(C1) = h(C2)
- ▶ if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Similarity metric

- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function.

Hash function

• There is a suitable hash function for Jaccard similarity: Min-hashing.

Random permutation

Imagine the rows of the boolean matrix permuted under random permutation $\boldsymbol{\pi}$.

"Hash" function $h_{\pi}(C)$

 Define a "hash" function h_π(C) = the number of the first (in the permuted order π) row in which column C has value 1:

 $h_{\pi}(C) = min_{\pi}\pi(C)$

What can we do?

 Use several (e.g., 100) independent hash functions to create a signature of a column

39 / 67

イロト イボト イヨト イヨト

Random permutation

Imagine the rows of the boolean matrix permuted under random permutation $\boldsymbol{\pi}$.

"Hash" function $h_{\pi}(C)$

• Define a "hash" function $h_{\pi}(C) =$ the number of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(C) = min_{\pi}\pi(C)$$

What can we do?

 Use several (e.g., 100) independent hash functions to create a signature of a column

39 / 67

A D > A D > A D > A D >

Random permutation

Imagine the rows of the boolean matrix permuted under random permutation $\boldsymbol{\pi}$.

"Hash" function $h_{\pi}(C)$

• Define a "hash" function $h_{\pi}(C) =$ the number of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(C) = min_{\pi}\pi(C)$$

What can we do?

• Use several (e.g., 100) independent hash functions to create a signature of a column

39 / 67

イロト 不得 トイヨト イヨト

Min-Hashing Example

Note: Another (equ		ent) v	vay i	s to
store row indexes:	1	5	1	5
	2	3	1	3
	6	4	6	4

Something Notable

<ロ > < 回 > < 回 > < 直 > < 直 > < 直 > 三 の < で 40 / 67

Commising Duran autor	0	0	
Surprising Property	0	0	
	1	1	
• Choose a random permutation π	0	ο	
• Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$ Why?	0	1	
	1	0	

• Choose a random permutation π

• Claim:
$$Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$$
 Why?

- Let X be a document (set of shingles)
- Then: $Pr[\pi(x) = min(\pi(X))] = 1/|X|$
- ullet It is equally likely that any $x\in X$ is mapped to the min element
- Let x be s.t. $\pi(x) = min(\pi(C_1 \bigcup C_2))$
- Then either: $\pi(x) = min(\pi(C_1))$ if $x \in C_1$, or $\pi(x) = min(\pi(C_2))$ if $x \in C2$
 - \succ One of the two cols had to have 1 at position x
-) So the prob. that both are true is the prob. $x\in C_1igcarrow C_2$

$Pr[min(\pi(C_1)) = min(\pi(C_2))] = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|} = sim(C_1, C_2)$

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$ Why?

Why?

- Let X be a document (set of shingles)
- It is equally likely that any $x \in X$ is mapped to the min element
- Let x be s.t. $\pi(x) = min(\pi(C_1 \bigcup C_2))$
- Then either: $\pi(x) = min(\pi(C_1))$ if $x \in C_1$, or $\pi(x) = min(\pi(C_2))$ if $x \in C2$
 - One of the two cols had to have 1 at position x
- So the prob. that both are true is the prob. $x\in C_1\bigcap C_2$

 $Pr[min(\pi(C_1)) = min(\pi(C_2))] = \frac{|C_1| ||C_2|}{|C_1| ||C_2|} = sim(C_1, C_2)$

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$ Why?

Why?

• Let X be a document (set of shingles)

• Then:
$$Pr[\pi(x) = min(\pi(X))] = 1/|X|$$

) It is equally likely that any $x \in X$ is mapped to the min element

• Let x be s.t. $\pi(x) = min(\pi(C_1 \bigcup C_2))$

- Then either: $\pi(x) = min(\pi(C_1))$ if $x \in C_1$, or $\pi(x) = min(\pi(C_2))$ if $x \in C2$
 - One of the two cols had to have 1 at position x
- ullet So the prob. that both are true is the prob. $x\in C_1igcarrow C_2$

 $Pr[min(\pi(C_1)) = min(\pi(C_2))] = \frac{|C_1|}{|C_1|} \frac{|C_2|}{|C_1|} = sim(C_1, C_2)$

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$ Why?

Why?

- Let X be a document (set of shingles)
- Then: $Pr[\pi(x) = min(\pi(X))] = 1/|X|$
- It is equally likely that any $x \in X$ is mapped to the min element

• Then either: $\pi(x) = min(\pi(C_1))$ if $x \in C_1$, or $\pi(x) = min(\pi(C_2))$ if $x \in C_2$

ullet So the prob. that both are true is the prob. $x\in C_1igcarrow C_2$

 $r[min(\pi(C_1)) = min(\pi(C_2))] = \frac{|C_1| |C_2|}{|C_1| |C_2|} = sim(C_1,$

0 0

0

0 0

1 1

0 0

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$ Why?

Why?

- Let X be a document (set of shingles)
- Then: $Pr[\pi(x) = min(\pi(X))] = 1/|X|$
- It is equally likely that any $x \in X$ is mapped to the min element
- Let x be s.t. $\pi(x) = min(\pi(C_1 \bigcup C_2))$

So the problethat both are true is the problem $C \cap C_{r}$

0 0

0

0 0

1 1

0 0

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$ Why?

Why?

- Let X be a document (set of shingles)
- Then: $Pr[\pi(x) = min(\pi(X))] = 1/|X|$
- It is equally likely that any $x \in X$ is mapped to the min element

• Let x be s.t.
$$\pi(x) = min(\pi(C_1 \bigcup C_2))$$

• Then either: $\pi(x) = min(\pi(C_1))$ if $x \in C_1$, or $\pi(x) = min(\pi(C_2))$ if $x \in C_2$

. So the prob. that both are true is the prob. $x\in C_1\bigcap C_2$

<ロ><合>、<一>、<合>、<き>、<き>、<き>、<き、、き、<うへ(41/67)

0 0

0

0 0

1 1

0 0

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$ Why?

Why?

- Let X be a document (set of shingles)
- Then: $Pr[\pi(x) = min(\pi(X))] = 1/|X|$
- It is equally likely that any $x \in X$ is mapped to the min element

• Let x be s.t.
$$\pi(x) = min(\pi(C_1 \bigcup C_2))$$

- Then either: $\pi(x) = min(\pi(C_1))$ if $x \in C_1$, or $\pi(x) = min(\pi(C_2))$ if $x \in C_2$
 - \blacktriangleright One of the two cols had to have 1 at position x

the prob. that both are true is the prob. $x\in C_1igcap C_2$

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$ Why?

Why?

- Let X be a document (set of shingles)
- Then: $Pr[\pi(x) = min(\pi(X))] = 1/|X|$
- It is equally likely that any $x \in X$ is mapped to the min element

• Let x be s.t.
$$\pi(x) = min(\pi(C_1 \bigcup C_2))$$

- Then either: $\pi(x) = min(\pi(C_1))$ if $x \in C_1$, or $\pi(x) = min(\pi(C_2))$ if $x \in C_2$
 - One of the two cols had to have 1 at position x
- So the prob. that both are true is the prob. $x \in C_1 \bigcap C_2$

0 0

0 0

0 0 1 1

0 1

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$ Why?

Why?

- Let X be a document (set of shingles)
- Then: $Pr[\pi(x) = min(\pi(X))] = 1/|X|$
- It is equally likely that any $x \in X$ is mapped to the min element

• Let x be s.t.
$$\pi(x) = min(\pi(C_1 \bigcup C_2))$$

- Then either: $\pi(x) = min(\pi(C_1))$ if $x \in C_1$, or $\pi(x) = min(\pi(C_2))$ if $x \in C_2$
 - One of the two cols had to have 1 at position x
- So the prob. that both are true is the prob. $x \in C_1 \bigcap C_2$

$$Pr[min(\pi(C_1)) = min(\pi(C_2))] = \frac{|C_1 \bigcap C_2|}{|C_1 \cup C_2|} = sim(C_1, C_2)$$
(2)

<ロ><回><日><日><日><日><日><日><日><日><日><日><日><日><日</td>41/67

		h			
1	0	0	1	0	0
0	1	0	1	0	0

Four Types of Rows between two Documents Given cols C_1 and C_2 , rows may be classified as $\underline{C}_1 \underline{C}_2$ Α 1 1 B 1 0 0 С D 0 0 a = #rows of type A, etc.

- \succ Look down the cols C_1 and C_2 until we see a L

Four Types of Rows between two Documents

l hen

• Then: $Pr[h(C_1) = h(C_2)] = sim(C_1, C_2)$

- Look down the cols C_1 and C_2 until we see a 1.
- $\label{eq:constraint} \begin{array}{l} \| \mathcal{C}_1 \| = h(\mathcal{C}_2) \| \| = h(\mathcal{C}_3) \| = h(\mathcal{C}_3)$

Four Types of Rows between two Documents

Note

$$sim(C_1, C_2) = \frac{a}{a+b+c}$$

(3)

Then

- Then: $Pr[h(C_1) = h(C_2)] = sim(C_1, C_2)$
 - Look down the cols C_1 and C_2 until we see a 1.
 - If it's a type-A row, then $h(C_1) = h(C_2)$ If a type-B or type-C row, then not.

Four Types of Rows between two Documents

Note

$$sim(C_1, C_2) = \frac{a}{a+b+c}$$

(3)

Then

- Then: $Pr[h(C_1) = h(C_2)] = sim(C_1, C_2)$
 - Look down the cols C_1 and C_2 until we see a 1.
 - If it's a type-A row, then $h(C_1) = h(C_2)$ If a type-B or type-C row, then not.

We know

•
$$Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$$

Now generalize to multiple hash functions

We know

- $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions

• The similarity of two signatures is the fraction of the hash functions in which they agree

We know

- $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions

Similarity

• The similarity of two signatures is the fraction of the hash functions in which they agree

 Because of the minhash property, the similarity of columns is the same as the expected similarity of their signatures

We know

- $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions

Similarity

• The similarity of two signatures is the fraction of the hash functions in which they agree

Note

• Because of the minhash property, the similarity of columns is the same as the expected similarity of their signatures

We know

- $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions

Similarity

• The similarity of two signatures is the fraction of the hash functions in which they agree

Note

• Because of the minhash property, the similarity of columns is the same as the expected similarity of their signatures

Min-Hashing Example

Note: Another (equivalent) way is to									
store row indexes:	1	5	1	5					
	2	3	1	3					
	6	4	6	4					

Example

Ρ	erm	utat	ion π	;	Input matrix (Shingles x Documents)					Signature matrix M					
	2	4	3		1	0	1	0		2	1	2	1		
	3	2	4		1	0	0	1		2	1	4	1		
	7	1	7		0	1	0	1		1	2	1	2		
	6	3	2		0	1	0	1		_	-	-	-		
	1	6	6		0	1	0	1	Similari	milarities:					
	5	7	1		1	0	1	0	Col/Col	1-3 0.75	2-4 0.7		2 <u>3-4</u> 0		
Ī	4	5	5		1	0	1	0	Sig/Sig				0		

cinvestav

• Pick K = 100 random permutations of the rows

- Pick ${\cal K}=100$ random permutations of the rows
- Think of sig(C) (Signature of C) as a column vector

- $\bullet~{\rm Pick}~K=100$ random permutations of the rows
- Think of sig(C) (Signature of C) as a column vector
- $sig(C)[i]=\!\!$ according to the $i\!\!$ -th permutation, the index of the first row that has a 1 in column C

 $sig(C)[i] = min(\pi i(C))$

ullet Note: The sketch (signature) of document C is small – ~ 100 bytes!

 We achieved our goal! We "compressed" long bit vectors into short signatures

- Pick K = 100 random permutations of the rows
- Think of sig(C) (Signature of C) as a column vector
- $sig(C)[i]=\!\!$ according to the $i\!\!$ -th permutation, the index of the first row that has a 1 in column C

 $sig(C)[i] = min(\pi i(C))$

• Note: The sketch (signature) of document C is small – ~ 100 bytes!

We achieved our goal! We "compressed" long bit vectors into short signatures

- Pick K = 100 random permutations of the rows
- Think of sig(C) (Signature of C) as a column vector
- $sig(C)[i]=\!\!$ according to the $i\!\!$ -th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi i(C))$$

• Note: The sketch (signature) of document C is small – ~ 100 bytes!

 We achieved our goal! We "compressed" long bit vectors into short signatures

- Pick K = 100 random permutations of the rows
- Think of sig(C) (Signature of C) as a column vector
- sig(C)[i] =according to the i-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi i(C))$$

- Note: The sketch (signature) of document C is small ~ 100 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

Outline

- 1 Finding Similar Items in High Dimensional Spaces
 - Introduction
 - A Common Idea

Finding Similar Items

- Distance Measures
- Finding Similar Documents
- 3 Shingling
 - Documents as High-Dimensional Data
 - Shingles

4 MinHashing

- Encoding Sets
- Finding Similar Columns
- Min-Hashing
- Implementation Trick

5 Locality Sensitive Hashing (LSH)

• Permuting rows even once is prohibitive

• Permuting rows even once is prohibitive

Row hashing!

• Pick K = 100 hash functions k_i

• Ordering under κ_i gives a random row permutation!

• Permuting rows even once is prohibitive

Row hashing!

- Pick K = 100 hash functions k_i
- Ordering under k_i gives a random row permutation!

• For each column C and hash-function k_i keep a "slot" for the min-hash value

- Initialize all $sig(C)[i] = \infty$
- Scan rows looking for 1s
 - Suppose row j has 1 in column C
 - Then for each k_i :

If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

How to pick a random hash function h(x)? Universal hashing: $h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$ where: a, b... random integers p... prime number (p > N)

• Permuting rows even once is prohibitive

Row hashing!

- Pick K = 100 hash functions k_i
- Ordering under k_i gives a random row permutation!

One-pass implementation

- \bullet For each column C and hash-function k_i keep a "slot" for the min-hash value
 - Initialize all sig(C)[i] = ∞
 Scan rows looking for 1s
 - ▶ Suppose row *j* has 1 in column *C*
 - Then for each k_i :

If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

How to pick a random hash function h(x)? Universal hashing: $h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$ where: a, b... random integers p... prime number (p > N)

• Permuting rows even once is prohibitive

Row hashing!

- Pick K = 100 hash functions k_i
- Ordering under k_i gives a random row permutation!

One-pass implementation

- \bullet For each column C and hash-function k_i keep a "slot" for the min-hash value
 - Initialize all $sig(C)[i] = \infty$

► Suppose row *j* has 1 in

• Then for each k_i

If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

How to pick a random hash function h(x)? Universal hashing: $h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$ where: a, b... random integers p... prime number (p > N)

• Permuting rows even once is prohibitive

Row hashing!

- Pick K = 100 hash functions k_i
- Ordering under k_i gives a random row permutation!

One-pass implementation

- \bullet For each column C and hash-function k_i keep a "slot" for the min-hash value
 - Initialize all $sig(C)[i] = \infty$
 - Scan rows looking for 1s

tion h(x)? Universal hashing: $h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$ where: a, b... random integers p... prime number (p > N)

If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

• Permuting rows even once is prohibitive

Row hashing!

- Pick K = 100 hash functions k_i
- Ordering under k_i gives a random row permutation!

One-pass implementation

- \bullet For each column C and hash-function k_i keep a "slot" for the min-hash value
 - Initialize all $sig(C)[i]=\infty$
 - Scan rows looking for 1s
 - ► Suppose row *j* has 1 in column *C*

How to pick a random hash function h(x)? Universal hashing: $h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$ where: a, b... random integers p... prime number (p > N)

• Permuting rows even once is prohibitive

Row hashing!

- Pick K = 100 hash functions k_i
- Ordering under k_i gives a random row permutation!

One-pass implementation

- \bullet For each column C and hash-function k_i keep a "slot" for the min-hash value
 - Initialize all $sig(C)[i] = \infty$
 - Scan rows looking for 1s
 - ► Suppose row *j* has 1 in column *C*
 - ▶ Then for each k_i:

How to pick a random hash function h(x)? Universal hashing: $h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$ where: a, b... random integers p... prime number (p > N)

• Permuting rows even once is prohibitive

Row hashing!

- Pick K = 100 hash functions k_i
- Ordering under k_i gives a random row permutation!

One-pass implementation

- \bullet For each column C and hash-function k_i keep a "slot" for the min-hash value
 - Initialize all $sig(C)[i]=\infty$
 - Scan rows looking for 1s
 - ► Suppose row *j* has 1 in column *C*
 - ▶ Then for each k_i:

If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

How to pick a random hash function h(x)?

• Permuting rows even once is prohibitive

Row hashing!

- Pick K = 100 hash functions k_i
- Ordering under k_i gives a random row permutation!

One-pass implementation

- \bullet For each column C and hash-function k_i keep a "slot" for the min-hash value
 - Initialize all $sig(C)[i]=\infty$
 - Scan rows looking for 1s
 - Suppose row j has 1 in column C
 - ▶ Then for each k_i:

If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

How to pick a random hash function h(x)? Universal hashing:

• Permuting rows even once is prohibitive

Row hashing!

- Pick K = 100 hash functions k_i
- Ordering under k_i gives a random row permutation!

One-pass implementation

- \bullet For each column C and hash-function k_i keep a "slot" for the min-hash value
 - Initialize all $sig(C)[i]=\infty$
 - Scan rows looking for 1s
 - ► Suppose row *j* has 1 in column *C*
 - ▶ Then for each k_i:

If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

How to pick a random hash function h(x)? Universal hashing: $h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$ where:

... prime number (p > N)

• Permuting rows even once is prohibitive

Row hashing!

- Pick K = 100 hash functions k_i
- Ordering under k_i gives a random row permutation!

One-pass implementation

- \bullet For each column C and hash-function k_i keep a "slot" for the min-hash value
 - Initialize all $sig(C)[i]=\infty$
 - Scan rows looking for 1s
 - ► Suppose row *j* has 1 in column *C*
 - ▶ Then for each k_i:

If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

How to pick a random hash function h(x)? Universal hashing: $h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$ where: a, b... random integers

• Permuting rows even once is prohibitive

Row hashing!

- Pick K = 100 hash functions k_i
- Ordering under k_i gives a random row permutation!

One-pass implementation

- \bullet For each column C and hash-function k_i keep a "slot" for the min-hash value
 - Initialize all $sig(C)[i]=\infty$
 - Scan rows looking for 1s
 - ► Suppose row *j* has 1 in column *C*
 - ▶ Then for each k_i:

If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

How to pick a random hash function h(x)? Universal hashing: $h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$ where: a, b... random integers p... prime number (p > N)

• Permuting rows even once is prohibitive

Row hashing!

- Pick K = 100 hash functions k_i
- Ordering under k_i gives a random row permutation!

One-pass implementation

- $\bullet\,$ For each column C and hash-function k_i keep a "slot" for the min-hash value
 - Initialize all $sig(C)[i]=\infty$
 - Scan rows looking for 1s
 - ► Suppose row *j* has 1 in column *C*
 - ▶ Then for each k_i:

If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

How to pick a random hash function h(x)? Universal hashing: $h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$ where: a, b... random integers p... prime number (p > N)

Outline

- 1 Finding Similar Items in High Dimensional Spaces
 - Introduction
 - A Common Idea

Finding Similar Items

- Distance Measures
- Finding Similar Documents
- 3 Shingling
 - Documents as High-Dimensional Data
 - Shingles
- 4 MinHashing
 - Encoding Sets
 - Finding Similar Columns
 - Min-Hashing
 - Implementation Trick
- 5 Locality Sensitive Hashing (LSH)
 - Introduction

Goal

 $\bullet\,$ Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)

Goal

 $\bullet\,$ Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)

LSH – General idea

• Use a function f(x, y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated.

Goal

 $\bullet\,$ Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)

LSH – General idea

• Use a function f(x, y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated.

For MinHash matrices

• Hash columns of signature matrix M to many buckets.

Each pair of documents that hashes into the same bucket is a candidate pair.

49 / 67

イロト イロト イヨト イヨト

Goal

 $\bullet\,$ Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)

LSH – General idea

• Use a function f(x, y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated.

For MinHash matrices

- Hash columns of signature matrix M to many buckets.
- Each pair of documents that hashes into the same bucket is a candidate pair.

Goal

 $\bullet\,$ Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)

LSH – General idea

• Use a function f(x, y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated.

For MinHash matrices

- Hash columns of signature matrix M to many buckets.
- Each pair of documents that hashes into the same bucket is a candidate pair.

49 / 67

< ロ > < 同 > < 回 > < 回 >

• Pick a similarity threshold $s \ (0 < s < 1)$.

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ 50 / 67

• Pick a similarity threshold $s \ (0 < s < 1).$

Candidate pair

• Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:

(i,x)=M(i,y) for at least fraction s of values of γ

We expect documents x and y to have the same (Jaccard) similarity as is the similarity of their signatures

• Pick a similarity threshold $s \ (0 < s < 1).$

Candidate pair

- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
 - M(i,x) = M(i,y) for at least fraction s of values of i

50 / 67

< ロ > < 同 > < 回 > < 回 >

• Pick a similarity threshold $s \ (0 < s < 1)$.

Candidate pair

- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
 - M(i,x) = M(i,y) for at least fraction s of values of i
 - ***** We expect documents x and y to have the same (Jaccard) similarity as is the similarity of their signatures

50 / 67

イロト イヨト イヨト

LSH for Minhash

Big idea

• Hash columns of signature matrix M several times

Likely to hash

 Arrange that (only) similar columns are likely to hash to the same bucket, with high probability

Candidate pairs

• Candidate pairs are those that hash to the same bucket

LSH for Minhash

Big idea

• Hash columns of signature matrix M several times

Likely to hash

• Arrange that (only) similar columns are likely to hash to the same bucket, with high probability

Candidate pairs

• Candidate pairs are those that hash to the same bucket

LSH for Minhash

Big idea

• Hash columns of signature matrix M several times

Likely to hash

• Arrange that (only) similar columns are likely to hash to the same bucket, with high probability

Candidate pairs

• Candidate pairs are those that hash to the same bucket

51/67

イロト イヨト イヨト

Partition \boldsymbol{M} into \boldsymbol{b} Bands

Partition \boldsymbol{M} into \boldsymbol{b} Bands

Divide Matrix

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.
 - ▶ Make k as large as possible.

Partition \boldsymbol{M} into \boldsymbol{b} Bands

Divide Matrix

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with *k* buckets.
 - Make k as large as possible.

Candidate

Candidate column pairs are those that hash to the same bucket for ≥ 1 bands.

Partition \boldsymbol{M} into \boldsymbol{b} Bands

Divide Matrix

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with *k* buckets.
 - Make k as large as possible.

$\bullet\,$ Candidate column pairs are those that hash to the same bucket for ≥ 1 bands.

Catch most similar pairs

• Tune b and r to catch most similar pairs, but few non-similar pairs

Partition M into b Bands

Divide Matrix

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.
 - Make k as large as possible.

Candidate

 $\bullet\,$ Candidate column pairs are those that hash to the same bucket for ≥ 1 bands.

• Tune b and r to catch most similar pairs, but few non-similar pairs.

Partition M into b Bands

Divide Matrix

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.
 - Make k as large as possible.

Candidate

 $\bullet\,$ Candidate column pairs are those that hash to the same bucket for ≥ 1 bands.

Catch most similar pairs

• Tune b and r to catch most similar pairs, but few non-similar pairs.

Partition M into b Bands

Divide Matrix

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.
 - Make k as large as possible.

Candidate

 $\bullet\,$ Candidate column pairs are those that hash to the same bucket for ≥ 1 bands.

Catch most similar pairs

• Tune b and r to catch most similar pairs, but few non-similar pairs.

Hashing Bands

Simplifying Assumption

Identical

• There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band

Same bucket

• Then, we assume that "same bucket" means "identical in that band

Not for correctness

 Assumption needed only to simplify analysis, not for the correctness of algorithm

55 / 67

イロト イヨト イヨト イヨト

Simplifying Assumption

Identical

• There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band

Same bucket

• Then, we assume that "same bucket" means "identical in that band"

Not for correctness

 Assumption needed only to simplify analysis, not for the correctness of algorithm

Simplifying Assumption

Identical

• There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band

Same bucket

Then, we assume that "same bucket" means "identical in that band"

Not for correctness

 Assumption needed only to simplify analysis, not for the correctness of algorithm

55 / 67

Assume the following case

- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose b = 20 bands of r = 5 integers/band

Assume the following case

- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)

• I nerefore, signatures take 40M0

• Choose b = 20 bands of r = 5 integers/band

• Find pairs of documents that are at least s=0.8 similar

Assume the following case

- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)
- $\bullet\,$ Therefore, signatures take 40Mb
- Choose b = 20 bands of r = 5 integers/band

• Find pairs of documents that are at least s=0.8 similar

Assume the following case

- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)
- $\bullet\,$ Therefore, signatures take 40Mb
- Choose b = 20 bands of r = 5 integers/band

ullet Find pairs of documents that are at least s=0.8 similar

Assume the following case

- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40 Mb
- Choose b = 20 bands of r = 5 integers/band

Goal

• Find pairs of documents that are at least s = 0.8 similar

56 / 67

< ロ > < 同 > < 回 > < 回 >

Assume

- Assume: $sim(C_1, C_2) = 0.8$
 - Since sim(C₁, C₂) ≥ s, we want C₁, C₂ to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

2

2

Assume

• Assume: $sim(C_1, C_2) = 0.8$

Since $sim(C_1, C_2) \ge s$, we want C_1 , C_2 to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

In one particular band

ullet Probability C_1 , C_2 identical in one particular band: $(0.8)^5=0.328$

2

Assume

- Find pairs of $\geq s = 0.8$ similarity, set b = 20, r = 5
- Assume: $sim(C_1, C_2) = 0.8$
 - ► Since sim(C₁, C₂) ≥ s, we want C₁, C₂ to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

In one particular band

• Probability $C_1,\,C_2$ identical in one particular band: $(0.8)^5=0.328$

What is the Probability of not being similar at all?

- Probability C_1 , C_2 are not similar in all of the 20 bands: $(1 0.328)^{20} = 0.00035$
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
 - We would find 99.965% pairs of truly similar documents

Assume

- Find pairs of $\geq s = 0.8$ similarity, set b = 20, r = 5
- Assume: $sim(C_1, C_2) = 0.8$
 - ► Since sim(C₁, C₂) ≥ s, we want C₁, C₂ to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

In one particular band

• Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$

• Probability C_1 , C_2 are not similar in all of the 20 bands: $(1 - 0.328)^{20} = 0.00035$

- i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
- We would find 99.965% pairs of truly similar documents

Assume

- Find pairs of $\geq s = 0.8$ similarity, set b = 20, r = 5
- Assume: $sim(C_1, C_2) = 0.8$
 - ► Since sim(C₁, C₂) ≥ s, we want C₁, C₂ to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

In one particular band

• Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$

What is the Probability of not being similar at all?

• Probability C_1 , C_2 are not similar in all of the 20 bands: $(1 - 0.328)^{20} = 0.00035$

 i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
 We would find 99.965% pairs of truly similar documents

Assume

- Find pairs of $\geq s = 0.8$ similarity, set b = 20, r = 5
- Assume: $sim(C_1, C_2) = 0.8$
 - ► Since sim(C₁, C₂) ≥ s, we want C₁, C₂ to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

In one particular band

• Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$

What is the Probability of not being similar at all?

- Probability $C_1,\,C_2$ are not similar in all of the 20 bands: $(1-0.328)^{20}=0.00035$
 - ▶ i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)

Assume

- Find pairs of $\geq s = 0.8$ similarity, set b = 20, r = 5
- Assume: $sim(C_1, C_2) = 0.8$
 - ► Since sim(C₁, C₂) ≥ s, we want C₁, C₂ to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

In one particular band

• Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$

What is the Probability of not being similar at all?

- Probability $C_1,\,C_2$ are not similar in all of the 20 bands: $(1-0.328)^{20}=0.00035$
 - ▶ i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
 - \blacktriangleright We would find 99.965% pairs of truly similar documents

Assume

• Assume: $sim(C_1, C_2) = 0.3$

Since $sim(C_1, C_2) < swe$ want C_1 , C_2 to hash to NO common buckets (all bands should be different).

lentical in one particular band

• Probability C_1, C_2 identical in one particular band: $(0.3)^5 = 0.00243$

2

2

Assume

- Find pairs of $\geq s = 0.8$ similarity, set b = 20, r = 5
- Assume: $sim(C_1, C_2) = 0.3$
 - Since $sim(C_1, C_2) < swe$ want C_1 , C_2 to hash to NO common buckets (all bands should be different).

lentical in one particular band

• Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$.

Properties

- Probability C₁, C₂ identical in at least 1 of 20 bands: 1 - (1 - 0.00243)20 = 0.0474.
 - In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs.
 - * They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold a.

Assume

- Find pairs of $\geq s = 0.8$ similarity, set b = 20, r = 5
- Assume: $sim(C_1, C_2) = 0.3$
 - ► Since sim(C₁, C₂) < swe want C₁, C₂ to hash to NO common buckets (all bands should be different).

Identical in one particular band

• Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$.

Probability C_1 , C_2 identical in at least 1 of 20 bands: 1 - (1 - 0.00243)20 = 0.0474.

- In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs.
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold a.

Assume

- Find pairs of $\geq s = 0.8$ similarity, set b = 20, r = 5
- Assume: $sim(C_1, C_2) = 0.3$
 - ► Since sim(C₁, C₂) < swe want C₁, C₂ to hash to NO common buckets (all bands should be different).

Identical in one particular band

• Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$.

Properties

• Probability C_1 , C_2 identical in at least 1 of 20 bands: 1 - (1 - 0.00243)20 = 0.0474.

In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs.

They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s.

Assume

- Find pairs of $\geq s = 0.8$ similarity, set b = 20, r = 5
- Assume: $sim(C_1, C_2) = 0.3$
 - Since sim(C₁, C₂) < swe want C₁, C₂ to hash to NO common buckets (all bands should be different).

Identical in one particular band

• Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$.

Properties

- Probability C_1 , C_2 identical in at least 1 of 20 bands: 1 - (1 - 0.00243)20 = 0.0474.
 - ▶ In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs.

Assume

- Find pairs of $\geq s = 0.8$ similarity, set b = 20, r = 5
- Assume: $sim(C_1, C_2) = 0.3$
 - ► Since sim(C₁, C₂) < swe want C₁, C₂ to hash to NO common buckets (all bands should be different).

Identical in one particular band

• Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$.

Properties

- Probability C_1 , C_2 identical in at least 1 of 20 bands:
 - 1 (1 0.00243)20 = 0.0474.
 - ▶ In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs.
 - ★ They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold *s*.

You need to pick

- The number of minhashes (rows of M).
 - The number of bands b.
 - The number of rows r per band to balance false positives/negatives.

You need to pick

- The number of minhashes (rows of M).
- The number of bands b.

The number of rows r per band to balance false positives/negatives.

Example

 if we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

You need to pick

- The number of minhashes (rows of M).
- The number of bands b.
- The number of rows r per band to balance false positives/negatives.

if we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

You need to pick

- The number of minhashes (rows of M).
- The number of bands b.
- The number of rows r per band to balance false positives/negatives.

Example

• if we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

59 / 67

Analysis of LSH - What We Want

What $1 \mbox{ Band of } 1 \mbox{ Row Gives You}$

61/67

Given that probability of two documents aggree in a row is \ensuremath{s}

We can calculate the probability that these documents become a candidate pair as follows

- The probability that the signatures agree in all rows of one particular band is s^r .
- The probability that the signatures disagree in at least one row of a particular band is $1 s^r$.
- The probability that the signatures disagree in at least one row of each of the bands is (1 s^r)^b.
- The probability that the signatures agree in all the rows of at least one band, and therefore become a candidate pair, is 1 - (1 - s^r)^b.

Given that probability of two documents aggree in a row is \ensuremath{s}

We can calculate the probability that these documents become a candidate pair as follows

- The probability that the signatures agree in all rows of one particular band is s^r.
- 0 The probability that the signatures disagree in at least one row of a particular band is $1-s^r$.
- The probability that the signatures disagree in at least one row of each of the bands is (1 s^r)^b.
- The probability that the signatures agree in all the rows of at least one band, and therefore become a candidate pair, is 1 - (1 - s^r)^b.

Given that probability of two documents aggree in a row is \ensuremath{s}

We can calculate the probability that these documents become a candidate pair as follows

- The probability that the signatures agree in all rows of one particular band is s^r.
- ⁽²⁾ The probability that the signatures disagree in at least one row of a particular band is $1-s^r$.
- The probability that the signatures disagree in at least one row of each of the bands is $(1 s^r)^b$.

The probability that the signatures agree in all the rows of at least one band, and therefore become a candidate pair, is $1 - (1 - s^r)^b$

Given that probability of two documents aggree in a row is \ensuremath{s}

We can calculate the probability that these documents become a candidate pair as follows

- The probability that the signatures agree in all rows of one particular band is s^r.
- 0 The probability that the signatures disagree in at least one row of a particular band is $1-s^r$.
- The probability that the signatures disagree in at least one row of each of the bands is $(1 s^r)^b$.
- The probability that the signatures agree in all the rows of at least one band, and therefore become a candidate pair, is $1 (1 s^r)^b$.

If you fix r and b

Something Notable

63 / 67

Example: b = 20; r = 5

Given

• Similarity threshold s

Similarity threshold *s* Prob. that at least 1 band is identical

Example: b = 20; r = 5

Given

• Similarity threshold s

Similarity threshold \boldsymbol{s} Prob. that at least 1 band is identical

s	$1 - (1 - s^r)^b$	
.2	0.006	
.3	0.047	
.4	0.186	
.5	0.470	
.6	0.802	
.7	0.975	
.8	0.9996	

Picking r and b: The S-curve

Picking r and b to get the best S-curve

• 50 hash-functions (r = 5, b = 10)

65 / 67

LSH Summary

Tune M, b, r

• Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures

Check in main memory

Check in main memory that candidate pairs really do have similar signatures

Optional

 In another pass through data, check that the remaining candidate pairs really represent similar documents

66 / 67

ヘロト ヘロト ヘヨト ヘヨト

LSH Summary

Tune \overline{M} , b, r

• Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures

Check in main memory

Check in main memory that candidate pairs really do have similar signatures

Optional

 In another pass through data, check that the remaining candidate pairs really represent similar documents

LSH Summary

Tune M, b, r

• Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures

Check in main memory

Check in main memory that candidate pairs really do have similar signatures

Optional

 In another pass through data, check that the remaining candidate pairs really represent similar documents

Shingling

- Convert documents to sets
 - We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

Shingling

Convert documents to sets

We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

Min-hashing

Convert large sets to short signatures, while preserving similarity.
 We used similarity preserving hashing to generate signatures with property Pr[h_π(C₁) = h_π(C₂)] = sim(C₁, C₂).
 We used hashing to get around generating random permutations.

Shingling

- Convert documents to sets
 - ► We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

Min-hashing

• Convert large sets to short signatures, while preserving similarity.

Locality-Sensitive Hashing

Focus on pairs of signatures likely to be from similar documents

▶ We used hashing to find candidate pairs of similarity ≥ s

Shingling

- Convert documents to sets
 - ► We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

Min-hashing

- Convert large sets to short signatures, while preserving similarity.
 - ► We used similarity preserving hashing to generate signatures with property $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2).$

• Focus on pairs of signatures likely to be from similar documents.

- We used hashing to find candidate pairs of similarity $\geq s$

Shingling

- Convert documents to sets
 - ► We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

Min-hashing

• Convert large sets to short signatures, while preserving similarity.

- ► We used similarity preserving hashing to generate signatures with property $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2).$
- We used hashing to get around generating random permutations.

Shingling

- Convert documents to sets
 - ► We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

Min-hashing

• Convert large sets to short signatures, while preserving similarity.

- ► We used similarity preserving hashing to generate signatures with property $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2).$
- We used hashing to get around generating random permutations.

Locality-Sensitive Hashing

• Focus on pairs of signatures likely to be from similar documents.

Shingling

- Convert documents to sets
 - ► We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

Min-hashing

Convert large sets to short signatures, while preserving similarity.

- We used similarity preserving hashing to generate signatures with property Pr[h_π(C₁) = h_π(C₂)] = sim(C₁, C₂).
- We used hashing to get around generating random permutations.

Locality-Sensitive Hashing

- Focus on pairs of signatures likely to be from similar documents.
 - \blacktriangleright We used hashing to find candidate pairs of similarity $\geq s$