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Association Rule Discovery

In the Market-basket model
Goal: Identify items that are bought together by enough customers
to be significant.

What do we can do?
Process the collected sales data using the barcode ID to find dependencies
among items.

We can use the following classic observation
If one buys diaper and milk, then he is likely to buy beer!!!
Thus, do not be surprised if you find six packs next to diapers!!!
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The Market-Basket Model

A large set of items
For example, things sold in a supermarket.

A large set of baskets, which is a small subset of items
For example, the things one customer buys on one day.

In general, we have a many to many mapping (association) between
two types of things
However, we are asking about connections among “items”, not “baskets.”
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Association Rules

Given a set of baskets
ID Items
1 Bread,Coke,Milk
2 Beer,Bread
3 Beer,Coke,Diaper,Milk
4 Beer,Bread,Diaper,Milk
5 Coke,Diaper,Milk

We want to discover association rules
People who bought {x, y, z} tend to buy {v, w}.
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Itemsets

Basically
Given the baskets we want to find if an itemset (Set of items) is a likely
set.
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Association Rules

And given that
We want to generate likely association rules

Output:

Rules Discovered
{Milk}⇒{Coke}

{Diaper,Milk}⇒{Beer}
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Applications: Market Analysis

Items and Baskets
Items are products at the store.
Baskets are sets of products someone bought in one trip to the store.

11 / 100



Applications: Market Analysis

Items and Baskets
Items are products at the store.
Baskets are sets of products someone bought in one trip to the store.

11 / 100



Real market baskets

Chain stores keep Tera-bytes of data about what customers buy
together

It tells them how customers navigate stores, thus allowing them
position tempting items

It suggests “marketing tricks”, for example, run sales on diapers and
raise the price of beer

Nevertheless, This needs High Support (A lot of Data), or no
Money!!!
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Applications

Baskets = sentences; Items = documents containing those sentences
Items that appear together too often could represent plagiarism

Baskets = patients; Items = drugs and side-effects
It has been used to detect combinations of drugs that result in
particular side-effects
However, it requires an extension: Absence of an item needs to be
observed as well as its presence
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Applications - Finding communities in graphs (e.g. the
Web)

If we are looking for communities
It is possible to use the idea of clique to find a community in a graph!!!

Problem
This is a complete NP-complete problem.
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We avoid this problem by using the following trick

Given a graph
Divide the nodes into two equal groups at random.

If a community exist by defining “Between each two nodes exist an
edge”

We expect that about half of its nodes to fall into each group.
We expect that about half of its edges would go between groups.
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Baskets = Nodes in the Left and Items = Nodes in
the Right

The problem becomes on a search of complete bipartite subgraphs
Ks,t on a Bipartite Graph

Thus, given a community kernel representing it, we add nodes from
either of the two groups.

By Using a Simple Rule
if those nodes have edges to many of the nodes already identified as
belonging to the community.
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Applications - Finding communities in graphs (e.g. the
Web)

For Example
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Applications - Finding communities in graphs (e.g. the
Web)

How?
The members of the basket, for node v, are the nodes of the left side to
which v is connected.

Let the support threshold be s

The number of nodes that the instance of Ks,t has on the right side.

Looking for Ks,t is like looking for a set of support s with a layer t

Or, all frequent itemsets of size t
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That is

If a set of t nodes on the right side is frequent, then they all occur
together in at least s baskets

19 / 100
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The Basics

The set of all items in a market basket data is defined as

I = {i1, i2, ..., id} (1)

The set of all transactions (Baskets)

T = {t1, t2, ..., tN} (2)

Where
Each transaction ti contains subsets of items chosen from I.
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Itemsets

Defintion
An itemset is any of the subsets from I.

Thus
A transaction ti is said to contain an Itemset I, if I is a subset of ti.

22 / 100



Itemsets

Defintion
An itemset is any of the subsets from I.

Thus
A transaction ti is said to contain an Itemset I, if I is a subset of ti.

22 / 100



Support of an Itemset

We define the support for itemset I as
Number of baskets containing all items in I

I Often expressed as a fraction of the total number of baskets.

Definition

σ (I) = |{ti|I ⊆ ti, ti ∈ T }| (3)

Then
Given a support threshold s, then sets that appear in at least s baskets
are called frequent itemsets
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Question

Now, we ask a really simplest question
Can you find sets of items that appear together “frequently” in the
baskets?
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Example of Frequent Itemsets

Items
Given a set X = {milk, coke, pepsi, beer, juice}

And the following baskets, we are looking the itemsets with support
s = 3

B1 = {m, c, b} B2 = {m, p, j} B3 = {m, b} B4 = {c, j}
B5 = {m, p, b} B6 = {m, c, b, j} B7 = {c, b, j} B8 = {b, c}

Thus, the Frequent Itemsets
{m} , {c} , {b} , {j} , {m, b} , {b, c} , {c, j}.
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Problem

We have 2|X| − 1 sets to explore
Can we do better?

How do we deal with this?
Using the Apriori Property
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Apriory Principle

Theorem (Apriori Principle)
If an itemset is frquent, then also all of its subset must also be
frequent.

The idea is based on the following observations
1 If an itemset I does not satisfy the minimum support threshold, i.e.
support (I) < s ⇒ I is not frequent.

2 If an item A is added to the itemset I i.e. {A} ∪ I, then the
resulting itemset cannot occur more frequently than I.

I Thus, I ∪A is not frequent or σ (I ∪A) < s.
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Proof

First, we prove that if itemset I is frequent then the subset are
frequent
Given a transaction ti, such that I ⊆ ti, then for any subset
A ⊆ I −→ A ⊆ ti. Now as a result that σ (I) ≥ s.

We can use the Monotonicity Property
Let I be a set of items, and J = 2I be the power set of I. A measure f is
monotone if

∀X,Y ∈ J if X ⊆ Y −→ f (X) ≤ f (Y ) (4)

Clearly
The cardinality is a monotone measure.
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Proof

Thus, given that {ti|I ⊆ ti, ti ∈ T }I ⊆ {ti|A ⊆ ti, ti ∈ T }A

|{ti|I ⊆ ti, ti ∈ T }I | ≤ |{ti|A ⊆ ti, ti ∈ T }A| (5)

Or

s < σ (I) ≤ σ (A) (6)

The itemset A is frequent.

Now assume that an itemset A is infrequent and there is a superset I
i.e. A ⊆ I

Then, given that σ(A) < s and
|{ti|I ⊆ ti, ti ∈ T }I | ≤ |{ti|A ⊆ ti, ti ∈ T }A| then σ (I) ≤ σ (A) < s i.e.
I is infrequent

Q.E.D.
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This principle allows to prune the power set

Example for {1} not frequent
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Now, Back To The Association Rules

Association Rules
They are If-then rules about the contents of baskets.

Definition
I → {j} means: “if a basket contains all of I = {i1, ..., ik} then it is
likely to contain j”
In practice there are many rules, we want to find
significant/interesting ones!
Thus, we can define the concept of Confidence for rule (I → {j}) as
the sampling probability of j given I

The the Confidence is given by

conf(I → {j}) = σ(I ∪ {j})
σ(I)

32 / 100
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However

Not all high-confidence rules are interesting
It is possible to have high confidence for many itemsets I without
creating interesting rules.
For example, milk is just purchased very often (independent of I)
making the confidence high,

I but not all the rules based on milk are interesting.

33 / 100



However

Not all high-confidence rules are interesting
It is possible to have high confidence for many itemsets I without
creating interesting rules.
For example, milk is just purchased very often (independent of I)
making the confidence high,

I but not all the rules based on milk are interesting.

33 / 100



However

Not all high-confidence rules are interesting
It is possible to have high confidence for many itemsets I without
creating interesting rules.
For example, milk is just purchased very often (independent of I)
making the confidence high,

I but not all the rules based on milk are interesting.

33 / 100



Defining Interest

Thus
We can define a better measure to find interesting rules.

Definition
The interest function is the difference between its confidence and the
fraction of baskets that contain j

Interest(I → {j}) = conf(I → j)− Pr ({j})

Where

Pr ({j}) = |{ti|I ⊆ ti, ti ∈ T }|Numer of Baskets (7)

34 / 100



Defining Interest

Thus
We can define a better measure to find interesting rules.

Definition
The interest function is the difference between its confidence and the
fraction of baskets that contain j

Interest(I → {j}) = conf(I → j)− Pr ({j})

Where

Pr ({j}) = |{ti|I ⊆ ti, ti ∈ T }|Numer of Baskets (7)

34 / 100



Defining Interest

Thus
We can define a better measure to find interesting rules.

Definition
The interest function is the difference between its confidence and the
fraction of baskets that contain j

Interest(I → {j}) = conf(I → j)− Pr ({j})

Where

Pr ({j}) = |{ti|I ⊆ ti, ti ∈ T }|Numer of Baskets (7)

34 / 100



Interesting Association Rules

Interesting rules are those with high positive or negative interest
values
For this, we have that

Pr[j]� conf (I → j) or conf (I → j)� Pr[j] (8)

For the uninteresting rules, we have that
The fraction of baskets containing j will be the same as the fraction
of the subset baskets including {I, j}
Making the interest low.
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Example of Confidence and Interest

Given the following collection of baskets

B1 = {m, c, b} B2 = {m, p, j} B3 = {m, b} B4 = {c, j}
B5 = {m, p, b} B6 = {m, c, b, j} B7 = {c, b, j} B8 = {b, c}

We measure the association rule {m, b} → c

Thus, we have that
Confidence = 2/4 = 0.5
Interest = 0.5–5/8 = −1/8

I Item c appears in 5/8 of the baskets
I Thus, the rule is not very interesting!
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Finding Association Rules

Problem
Find all association rules with support≥ s and confidence≥ c

Where the support of an association rules is defined as

s (I → {j}) = σ (I ∪ {j})
Numer of Baskets = σ (I ∪ {j})

N
(9)
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Finding Association Rules

The Hard part!!! Finding the frequent itemsets!!!
If I → {j} has high support and confidence, then both I and I ∪ {j} will
be “frequent”

Again

conf (I → {j}) = σ (I ∪ {j})
σ (I)
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Important Observation

First
Often, small frequent itemsets are quite more “frequent”

to the point that k never grows beyond 2 or 3.

Second
When looking for itemsets for a large size k.
It is usually possible to eliminate many of the items in each basket as
not able to participate in a frequent itemset.
Thus, the value of n drops as k increases.
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Outline
1 Frequent Itemset Mining & Association Rules

The Market-Basket Model
Discovering Rules
Applications

2 How Do We Start?
The Basics
Finding Interesting Association Rules
Mining Association Rules

3 Finding Frequent Itemsets
The Computational Model

4 A-Priori Algorithm
A-Priori Algorithm
Frequent Triples

5 PCY (Park-Chen-Yu) Algorithm
Refinement: Multistage Algorithm
Refinement: Mulitihash

6 Frequent Itemsets in ≤ 2 Passes

7 SON (Savasere, Omiecinski, Navathe ) Algorithm
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Association Rules Process

Step 1: Find all frequent itemsets I

We will explain this later in the presentation.

Step 2: Rule generation
For every subset A of I, generate a rule A→ I −A

I Since I is frequent, A is also frequent
I Calculate the confidences

Output the rules above the confidence threshold ε.
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We have two variants for calculating to confidence

Variant 1
Single pass to compute the rule of confidence:

conf ({A,B} → {C,D}) = σ ({A,B,C,D})
σ ({A,B}) (10)

Variant 2
Observation:

I If {A,B,C} → {D} is below confidence, so is {A,B} → {C,D}
Thus It possible to generate “bigger” rules (More items in the
antecedent and consequent) from smaller ones,

I If they are above confidence!!!
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Example
We have a bunch of baskets

B1 = {m, c, b} B2 = {m, p, j} B3 = {m, b} B4 = {c, j}
B5 = {m, p, b} B6 = {m, c, b, j} B7 = {c, b, j} B8 = {b, c}

We have a minimum support s = 3 with confidence c = 0.75

Frequent itemsets
{b,m}{b, c} {c,m} {c, j} {m, c, b}

Generate rules by eliminating anything below c = 0.75
Rule Confidence Remove
b→ m c = 4/6 Yes
m→ b c = 4/5 No

...

Rule Confidence Remove
b, c→ m c = 3/5 Yes
b,m→ c c = 3/4 No

...
43 / 100
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Other Similar Ideas about Frequent Itemsets

Maximal Frequent itemsets
No immediate superset is frequent

Closed itemsets
No immediate superset has the same count (> 0).

It stores not only frequent information, but exact counts
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Example: Maximal/Closed
Table

Set Count Maximal(S=3) Closed
{A} 4 No No
{B} 5 No Yes
{C} 3 No No
{A,B} 4 Yes Yes
{A,C} 2 No No
{B,C} 3 Yes Yes
{A,B,C} 2 No Yes

Maximal
{B} is frequent but not maximal because superset {B,C} also
frequent.
{A,B} is frequent and maximal because its only superset {A,B,C}
is not.
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Computation Model

Now
Back to finding frequent itemsets

Computing Itemsets
Typically, data is kept in flat files rather than in a database system.
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Thus

The File for the baskets
It is stored on disk
It is stored basket-by-basket

Baskets are small, but we have many
baskets and many items

You need to expand baskets into pairs,
triples, etc. as you read the baskets
You use k nested loops to generate all
sets of size k

BASKET

BASKET

BASKET

BASKET

BASKET

BASKET

BASKET

BASKET

BASKET
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Then

We want to find frequent itemsets
We want to find frequent itemsets.
To find them, we have to count them.
To count them, we have to generate them.
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Computation Model

First
The true cost of mining disk-resident data is usually the number of disk
I/O’s.

Second
In practice, association-rule algorithms read the data in passes - all baskets
are read in turn

Third
We measure the cost by the number of passes an algorithm makes over
the data
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Main-Memory Bottleneck I

The Main Problem
For many frequent-itemset algorithms, main memory is the critical
resource.

Because the combinatorial problem of calculating and counting the
power set!!!

As we read baskets
We need to count something, for example, occurrences of pairs of items.
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Main-Memory Bottleneck II

Constraint
The number of different things we can count is limited by main memory.

Therefore
Swapping counts in/out is a disaster (why?).
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Finding Frequent Pairs

Notice the following
The hardest problem often turns out to be finding the frequent pairs of
items {i1, i2}

Why?
Often frequent pairs are common, frequent triples are rare!!!

Probability of being frequent drops exponentially with size
Number of sets grows more slowly with size.

Thus
Let us first concentrate on pairs, then extend to larger sets.
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Finding Frequent Pairs

The approach
We always need to generate all the itemsets.
But we would only like to count/keep track of those itemsets that in
the end turn out to be frequent.
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Naïve Algorithm

What not to do
Naïve approach to finding frequent pairs

What not to do
Read file once, counting in main memory the occurrences of each pair:

I From each basket of n items, generate its n(n−1)
2 pairs by two nested

loops .
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Naïve Algorithm

Fails if (Number of Items)2 exceeds main memory
Remember that the Number of Items can be 100 Kb (Wal-Mart) or 10 Gb
(Web pages).

For example
Suppose we have 107 items and counts are 4-byte integers

Number of pairs of items
107 (

105-1
)

2 ≈ 5× 1011 (11)

Therefore, we need the following amount

4 bytes× 5× 1011 = 2× 1012 bytes = 2 terabytes
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Counting Pairs in Memory

Approach 1 - Using a Triangular Matrix
You can count all the pairs by simply using the counter at the cell
A [i, j] = A [i, j] + 1.
The storage used at this approach is 4 bytes per pair

Approach 2 - Using an sparse array representation
Use a hash table of triples [i, j, c] = “the count of the pair of items {i, j}
is c” using as index i ◦ j.

Approach 2 - Using an sparse array representation
If integers and item ids are 4 bytes, we need approximately 12 bytes
for pairs with count > 0
Plus some additional overhead for the hash table.

58 / 100
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Comparing the 2 Approaches

Dense vs Sparse
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Triangular Matrix Approach

Triangular Matrix Approach
n =total number items
Count pair of items {i, j} only if i < j

Storing Items in a Flat Array
Keep pair counts in lexicographic order:

I {1, 2} , {1, 3} , ..., {1, n} , {2, 3} , {2, 4} , ..., {2, n} , {3, 4} , ...

Pair {i, j} is at position (i–1)(n–i/2) + j–i
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Triangular Matrix Approach

Comparison
Total number of pairs n(n–1)/2; total bytes= 2n2

Triangular Matrix requires 4 bytes per pair
Approach 2 uses 12 bytes per pair (but only for pairs with count > 0)

I It beats triangular matrix if less than 1/3 of possible pairs
actually occur
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Observation About Using Triples

It is clear that
If we can store information in a hash table, we can really save memory.

However
False Positive Counts can increase because of the nature of the hash table.

IMPORTANT
Take this in consideration
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A-Priori Algorithm - (1)

The main algorithm idea
A two-pass approach called a-priori
limits the need for main memory

Key idea: monotonicity
If a set of items I appears at least s
times, so does every subset J of I.

Contrapositive for pairs
If item i does not appear in s baskets, then no pair including i can
appear in s baskets
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Outline
1 Frequent Itemset Mining & Association Rules

The Market-Basket Model
Discovering Rules
Applications

2 How Do We Start?
The Basics
Finding Interesting Association Rules
Mining Association Rules

3 Finding Frequent Itemsets
The Computational Model

4 A-Priori Algorithm
A-Priori Algorithm
Frequent Triples

5 PCY (Park-Chen-Yu) Algorithm
Refinement: Multistage Algorithm
Refinement: Mulitihash

6 Frequent Itemsets in ≤ 2 Passes

7 SON (Savasere, Omiecinski, Navathe ) Algorithm
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A-Priori Algorithm - (2)

Pass 1
It reads baskets and count in main memory the occurrences of each
individual item

I It requires only memory proportional to #items

Observation
Items that appear at least s times are the frequent items

Pass 2
It read baskets again and count in main memory only those pairs
where both elements are frequent (from Pass 1)

I It requires memory proportional to square of frequent items only (for
counts) i.e O(n2).

I Plus a list of the frequent items (so you know what must be counted) .
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Main-Memory Usage of the A-Priori Algorithm

Memory during the passes
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Details for A-Priori

What to do!!!
You can use the triangular matrix
method with n = number of
frequent items

I It may save space compared
with storing triples

After That
Create a new numbering for the
frequent items by generating an
array (frequent items table) with
entries 1, 2, ..., n
In addition an extra table that
relates the new numbers with the
original item numbers.
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Mechanic for The Second Step

First
For each basket, look in the frequent-items table to see which of its items
are frequent.

Second
In a double loop, generate all pairs of frequent items in that basket.

Third
For each such pair, add +1 to its count in the data structure used to store
counts.

68 / 100



Mechanic for The Second Step

First
For each basket, look in the frequent-items table to see which of its items
are frequent.

Second
In a double loop, generate all pairs of frequent items in that basket.

Third
For each such pair, add +1 to its count in the data structure used to store
counts.

68 / 100



Mechanic for The Second Step

First
For each basket, look in the frequent-items table to see which of its items
are frequent.

Second
In a double loop, generate all pairs of frequent items in that basket.

Third
For each such pair, add +1 to its count in the data structure used to store
counts.

68 / 100



Outline
1 Frequent Itemset Mining & Association Rules

The Market-Basket Model
Discovering Rules
Applications

2 How Do We Start?
The Basics
Finding Interesting Association Rules
Mining Association Rules

3 Finding Frequent Itemsets
The Computational Model

4 A-Priori Algorithm
A-Priori Algorithm
Frequent Triples

5 PCY (Park-Chen-Yu) Algorithm
Refinement: Multistage Algorithm
Refinement: Mulitihash

6 Frequent Itemsets in ≤ 2 Passes

7 SON (Savasere, Omiecinski, Navathe ) Algorithm

69 / 100



Frequent Triples, Etc.

We have then the following procedure for k-tuples
For each k, we construct two sets of k-tuples (sets of size k):

I Ck = candidate k-tuples = those that might be frequent sets (support
> s) based on information from the pass for k–1

I Lk = the set of truly frequent k-tuples

Flow Diagram
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Example

Hypothetical steps of the A-Priori algorithm
C1 = { {b} {c} {j} {m} {n} {p} }
Count the support of itemsets in C1

Prune non-frequent: L1 = {b, c, j,m}
Generate C2 = {{b, c} {b, j} {b,m} {c, j} {c,m} {j,m}}
Count the support of itemsets in C2

Prune non-frequent: L2 = {{b,m} {b, c} {c,m} {c, j}}
Generate C3 = {{b, c,m} {b, c, j} {b,m, j} {c,m, j}}
Count the support of itemsets in C3

Prune non-frequent: L3 = {{b, c,m}}
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A-Priori for All Frequent Itemsets

Properties
One pass for each k (itemset size)
Needs room in main memory to count each candidate k–tuple
For typical market-basket data and reasonable support (e.g., 1%),
k = 2 requires the most memory
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Still Problems with Memory

This happens
When counting the candidates in C2.

Can we reduce the use of Memory?
Is this even possible?

Yes, if we are willing to live under uncertain terms!!!
Remember the collisions at the hash tables!!!

Note Actually in PCY, this is removed altogether!!!
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PCY (Park-Chen-Yu) Algorithm

Observation
In pass 1 of a-priori, most memory is idle

We store only individual item counts
Can we use the idle memory to reduce memory required in pass 2?

Pass 1 of PCY
In addition to item counts, maintain a hash table with as many buckets as
fit in memory

Keep a count for each bucket into which pairs of items are hashed
I Just the count, not the pairs that hash to the bucket!
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PCY Algorithm - First Pass

Algorithm
1 for each basket tk:
2 for each item ii ∈ tk
3 add 1 to item’s count
4 for each pair of items:
5 Hash the pair into a bucket in the hash table
6 Add 1 to the counter at that bucket

Note
Pairs of items need to be generated from the input file because they are
not present in the file

75 / 100
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At Pass 1, we introduce uncertainty

By using the hash table
Yes, COLLISIONS!!!

That means that it is possible that pairs {i, j} and {t, l}
They can hash to the same bucket.
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We want the following

What?
We are not just interested in the presence of a pair, but we need to see
whether it is present at least s (support) times.

We generate candidate pairs {i, j} such that
1 i and j are frequent items.
2 {i, j} hashes to a frequent bucket.
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Observation about Buckets

Something Notable
If a bucket contains a frequent pair, then the bucket is surely frequent

I But we cannot use the hash to eliminate any member of this bucket

Even without any frequent pair, a bucket can still be frequent

Observation
But, for a bucket with total count less than s, none of its element
pairs can be frequent

I Pairs that hash to this bucket can be eliminated as candidates (even if
the pair consists of two frequent items)

Pass 2
Only count pairs that hash to frequent buckets
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PCY Algorithm - Between Passes

Replace the buckets by a bit-vector (Bloom Filter Style)
1 means the bucket count exceeded the support s (a frequent bucket)
and 0 means it did not

Property 1
4-byte integer counts are replaced by bits, so the bit-vector requires 1/32
of memory

Property 2
Also, decide which items are frequent and list them for the second pass
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PCY Algorithm - Pass 2

First
Count all pairs {i, j} that meet the conditions for being a candidate
pair:

1 Both i and j are frequent items
2 The pair {i, j} hashes to a bucket whose bit in the bit vector is 1 (i.e.,

frequent bucket)

Thus
Both conditions are necessary for the pair to have a chance of being
frequent

80 / 100



PCY Algorithm - Pass 2

First
Count all pairs {i, j} that meet the conditions for being a candidate
pair:

1 Both i and j are frequent items
2 The pair {i, j} hashes to a bucket whose bit in the bit vector is 1 (i.e.,

frequent bucket)

Thus
Both conditions are necessary for the pair to have a chance of being
frequent

80 / 100



PCY Algorithm - Pass 2

First
Count all pairs {i, j} that meet the conditions for being a candidate
pair:

1 Both i and j are frequent items
2 The pair {i, j} hashes to a bucket whose bit in the bit vector is 1 (i.e.,

frequent bucket)

Thus
Both conditions are necessary for the pair to have a chance of being
frequent

80 / 100



PCY Algorithm - Pass 2

First
Count all pairs {i, j} that meet the conditions for being a candidate
pair:

1 Both i and j are frequent items
2 The pair {i, j} hashes to a bucket whose bit in the bit vector is 1 (i.e.,

frequent bucket)

Thus
Both conditions are necessary for the pair to have a chance of being
frequent

80 / 100



We Minimize the Uncertainty

How
By the two checkings!!!

First one
1 Both i and j are frequent items

Second one
The pair {i, j} hashes to a bucket whose bit in the bit vector is 1.

Here certain amount of uncertainty is accepted in order to reduce
the amount of memory used

81 / 100



We Minimize the Uncertainty

How
By the two checkings!!!

First one
1 Both i and j are frequent items

Second one
The pair {i, j} hashes to a bucket whose bit in the bit vector is 1.

Here certain amount of uncertainty is accepted in order to reduce
the amount of memory used

81 / 100



We Minimize the Uncertainty

How
By the two checkings!!!

First one
1 Both i and j are frequent items

Second one
The pair {i, j} hashes to a bucket whose bit in the bit vector is 1.

Here certain amount of uncertainty is accepted in order to reduce
the amount of memory used

81 / 100



We Minimize the Uncertainty

How
By the two checkings!!!

First one
1 Both i and j are frequent items

Second one
The pair {i, j} hashes to a bucket whose bit in the bit vector is 1.

Here certain amount of uncertainty is accepted in order to reduce
the amount of memory used

81 / 100



Main-Memory: Picture of PCY

Something Notable
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Main-Memory Details

Buckets require a few bytes each
Note: we do not have to count past s
Number of buckets is O(main-memory size)

Table of triples
On second pass, a table of (item, item, count) triples is essential (we
cannot use triangular matrix approach, why?)

I Thus, hash table must eliminate approx. 2/3 of the candidate pairs for
PCY to beat a-priori.
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Outline
1 Frequent Itemset Mining & Association Rules

The Market-Basket Model
Discovering Rules
Applications

2 How Do We Start?
The Basics
Finding Interesting Association Rules
Mining Association Rules

3 Finding Frequent Itemsets
The Computational Model

4 A-Priori Algorithm
A-Priori Algorithm
Frequent Triples

5 PCY (Park-Chen-Yu) Algorithm
Refinement: Multistage Algorithm
Refinement: Mulitihash

6 Frequent Itemsets in ≤ 2 Passes

7 SON (Savasere, Omiecinski, Navathe ) Algorithm
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Refinement: Multistage Algorithm
Limit the number of candidates to be counted

Remember: Memory is the bottleneck
Still need to generate all the itemsets but we only want to count/keep
track of the ones that are frequent

Key idea
After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of
PCY

i and j are frequent
{i, j} hashes to a frequent bucket in the first hash table

Then
On middle pass, fewer pairs contribute to buckets, so fewer false
positives

I By hashing {i, j} to a frequent bucket in the second hash table.

Requires 3 passes over the data 85 / 100
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Main-Memory: Multistage
Something Notable
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Multistage - Pass 3

Thus
Count only those pairs {i, j} that satisfy these candidate pair
conditions:

1 Both i and j are frequent items
2 Using the first hash function, the pair hashes to a bucket whose bit in

the first bit-vector is 1.
3 Using the second hash function, the pair hashes to a bucket whose bit

in the second bit-vector is 1.
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Important Points

First
The two hash functions have to be independent

Second
We need to check both hashes on the third pass

If not, we would end up counting pairs of frequent items that hashed
first to an infrequent bucket but happened to hash second to a
frequent bucket
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Important Points

We can reduce collision
They have independent hash functions.

Thus, the probability of false positive is reduced because independence

P ( Collision by hash 1,Collision by hash 2 ) =P (Collision by hash 1)× ...
P (Collision by hash 2)
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Refinement: Mulitihash

Key idea
Use several independent hash tables on the first pass

Risk
Halving the number of buckets doubles the average count

I We have to be sure most buckets will still not reach count s

If so, we can get a benefit like multistage, but in only 2 passes
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Main-Memory: Mulitihash

Something Notable
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PCY: Extensions

Multistage or Multihash
Either multistage or multihash can use more than two hash functions

Multistage
In multistage, there is a point of diminishing returns, since the
bit-vectors eventually consume all of main memory

Multihash
For multihash, the bit-vectors occupy exactly what one PCY bitmap
does, but too many hash functions makes all counts> s
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Frequent Itemsets in ≤ 2 Passes

k Passes
A-Priori, PCY, etc., take k passes to find frequent itemsets of size k.

Question
Can we use fewer passes?

Use 2 or fewer passes for all itemset sizes
Use 2 or fewer passes for all itemset sizes, but may miss some
frequent itemsets

I Random sampling
I SON (Savasere, Omiecinski, and Navathe)
I Toivonen
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Random Sampling (1)

Thus
Take a random sample of the market baskets

Run A-priori or one of its improvements in
main memory

I So we do not pay for disk I/O each time
we increase the size of itemsets

I Reduce support threshold proportionally to
match the sample size
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However

Problem
We still have the problem of the false positives!!!
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Solution

Solution 1
Verify that the candidate pairs are truly frequent in the entire data set
by a second pass (This avoids false positives)
You need more memory!!!

However
You do not catch sets frequent in the whole but in the sample

I Solution
F Smaller threshold, e.g., ps (p fraction size sample), helps catch more

truly frequent itemsets.
F Again you can do the solution 1, but you need more memory!!!
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SON (Savasere, Omiecinski, Navathe ) Algorithm - (1)

Repeatedly read small subsets
Repeatedly read small subsets of the baskets into main memory and
run an in-memory algorithm to find all frequent itemsets

I Note: we are not sampling, but processing the entire file in
memory-sized chunks

Itemset becomes a candidate
An itemset becomes a candidate if it is found to be frequent in any
one or more subsets of the baskets.
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SON Algorithm - (2)

Second pass
On a second pass, count all the candidate itemsets and determine
which are frequent in the entire set .

Key “monotonicity” idea
an itemset cannot be frequent in the entire set of baskets unless it is
frequent in at least one subset.
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SON Distributed Version

SON lends itself to distributed data mining

Baskets distributed among many nodes
Compute frequent itemsets at each node
Distribute candidates to all nodes
Accumulate the counts of all candidates
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