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What is a Good Clustering?

Internal criterion

A good clustering will produce high quality clusters in which:

@ The intra-class (that is, intra-cluster) similarity is high.
@ The inter-class similarity is low.

@ The measured quality of a clustering depends on both the document
representation and the similarity measure used.
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Problem

Many of the Clustering Algorithms

They impose a clustering structure on the data, even though the data may
not posses any.
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Problem

Many of the Clustering Algorithms
They impose a clustering structure on the data, even though the data may
not posses any.

Cluster analysis is not a panacea. \

Therefore

It is necessary to have an indication that the vectors of X form clusters
before we apply a clustering algorithm.
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Then

The problem of verifying whether X possesses a clustering structure

Without identifying it explicitly, this is known as clustering tendency.
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What can happen if X posses a cluster structure?

A different kind of problem is encountered now

@ All the previous algorithms require knowledge of the values of specific
parameters.
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It is more
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What can happen if X posses a cluster structure?

A different kind of problem is encountered now

@ All the previous algorithms require knowledge of the values of specific
parameters.

@ Some of them impose restrictions on the shape of the clusters.

| A

It is more

Poor estimation of these parameters and inappropriate restrictions on the
shape of the clusters may lead to incorrect conclusions about the
clustering structure of X.

| N\

Thus, it is necessary to discuss
@ Methods suitable for quantitative evaluation of the results of a
clustering algorithm.

@ This task is known as cluster validity.

A
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The Cluster Flowchart

Flowchart of the validity paradigm for clustering structures

and validation type

!

‘ Determine a validation ‘

‘ Identify the clustering structure ‘

index

1

Define a null hypothesis
of no structure

!

Establish the baseline distribution
under the null hypothesis

!

| Calculate the index |

!

Test the hypothesis of no
structure
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@ Hypothesis Testing
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Hypothesis Testing Revisited

Hi :0 # 6
H() 10200
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Hypothesis Testing Revisited

Hy :0 # 6y
Hy :0 = 6

In addition

Also let D, be the critical interval corresponding to significance level p of
a test statistics q.

Given O1, the set of all values that 6 may take under hypothesis H;.
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Power Function

Definition (Power Function)

W (0)=P(qeDyld € &)

12/59



Power Function

Definition (Power Function)

W (0)=P(qeDyld € &) (1)

Meaning

e W (0) is the probability that ¢ lies in the critical region when the
value of the parameter vector 6.

12/59



Power Function

Definition (Power Function)

W (0)=P(qeDyld € &) (1)

Meaning

e W (0) is the probability that ¢ lies in the critical region when the
value of the parameter vector 6.

@ The power function can be used for the comparison of two different
statistical tests.

A

12/59



Power Function

Definition (Power Function)

W (0)=P(qeDyld € &) (1)

Meaning

e W (0) is the probability that ¢ lies in the critical region when the
value of the parameter vector 6.

@ The power function can be used for the comparison of two different
statistical tests.

@ The test whose power under the alternative hypotheses is greater is
always preferred.

.
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There are two types of errors associated with a statistical
test

Suppose that Hj is true

o If ¢(x) € D,, Hy will be rejected even if it is true.
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There are two types of errors associated with a statistical
test

Suppose that Hj is true

o If ¢(x) € D,, Hy will be rejected even if it is true.

@ It is called a type error I.

@ The probability of such error is p.

@ The probability of accepting Hy when it is true is 1 — p.

Suppose that H is false

o If g(z) ¢ D,, Hy will be accepted even if it is false.
o It is called a type error |.
@ The probability of such error is 1 — W (0).

@ This depends on the specific value of 6.
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Thus

Something Notable

@ The probability density function (pdf) of the statistic g, under Hy ,
for most of the statistics used in practice has a single maximum.

@ In addition, the region Ep, is either a half-line or the union of two
half-lines.
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Example

D, is the union of two half-lines (A two-tailed statistical test)
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Example

A right-tailed test

P(Q|H0)

D(q|Hy)
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Example

A left-tailed test

w(0) (g Hy)

p(Q|H1)

A
N
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Problem

In many practical cases

The exact form of the pdf of a statistic ¢, under a given hypothesis, is not
available and it is difficult to obtain.
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Problem

In many practical cases

The exact form of the pdf of a statistic ¢, under a given hypothesis, is not
available and it is difficult to obtain.

v

However, we can do the following

@ Monte Carlo techniques.

@ Bootstrapping techniques.

\
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© Cluster Validity

@ Hypothesis Testing

@ Monte Carlo techniques
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Monte Carlo techniques

What do they do?

They rely on simulating the process at hand using a sufficient number of
computer-generated data.
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Monte Carlo techniques

What do they do?

They rely on simulating the process at hand using a sufficient number of
computer-generated data.

@ Given enough data, we can try to learn the pdf for q.

@ Then, using that pdf we simulate samples of q.

Thus
For each of the say r, data sets, X;, we compute the value of ¢, denoted
by gi.

| A\

A,
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Then

We construct the corresponding histogram of these values

Distribution of TitleLength

Percent

q;

1220 26 35 44 52 60 68 76 B4 92 100108 115 124 132 140 148 156 164 172
TieLengin
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Using this approximation

Assume

@ ¢ corresponds to a right-tailed statistical test.
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Using this approximation

@ ¢ corresponds to a right-tailed statistical test.

@ A histogram is constructed using r values of ¢ corresponding to the r
data sets.
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Using this approximation

A right-tailed test

p(q\Hy)

D(q|Hy)
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Thus

Then, acceptance or rejection may be based on the rules

@ Reject Hy, if ¢ is greater than (1 — p) r of the g; values.
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Thus

Then, acceptance or rejection may be based on the rules

@ Reject Hy, if ¢ is greater than (1 — p) r of the g; values.
@ Accept Hy, if g is smaller than (1 — p) r of the ¢; values.
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Next

For a left-tailed test

w(0) (g Hy)

_[7((]|1E{1)

A
N

25 /59



Next

For a left-tailed test, rejection or acceptance of the null hypothesis is

done on the basis

© Reject Hy, if q is smaller than pr of the ¢; values.
@ Accept Hy, if q is greater than pr of the ¢; values
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Now, for two-tailed statistical test

A two-tailed statistical test
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Thus

For a two-tailed test we have

Accept Hy, if q is greater than (§) r of the ¢; values and less than
(1 —£)r of the ¢; values.

28/59



Outline

© Cluster Validity

@ Hypothesis Testing

@ Bootstrapping Techniques
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Bootstrapping Techniques

@ They constitute an alternative way to cope with a limited amount of
data.
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Bootstrapping Techniques

Why?
@ They constitute an alternative way to cope with a limited amount of
data.

| A\

Then

@ The idea here is to parameterize the unknown pdf in terms of an
unknown parameter.

'
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Bootstrapping Techniques

Why?
@ They constitute an alternative way to cope with a limited amount of
data.

| A\

Then

@ The idea here is to parameterize the unknown pdf in terms of an
unknown parameter.

'

How

@ To cope with the limited amount of data and in order to improve the
accuracy of the estimate of the unknown pdf parameter.

A
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The Process

For this, we create

@ Several “fake”data sets X1, ..., X, are created by sampling X with
replacement.
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The Process

For this, we create
@ Several “fake”data sets X1, ..., X, are created by sampling X with
replacement.

@ By using this sample, we estimate the desired pdf for q. \
o Typically, good estimates are obtained if r is between 100 and 200. \
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© Cluster Validity

@ Which Hypothesis?
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Which Hypothesis?

Random position hypothesis

Hy: All the locations of /N data points in some specific region of a
d-dimensional space are equally likely.
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Which Hypothesis?

Random position hypothesis

Hy: All the locations of /N data points in some specific region of a
d-dimensional space are equally likely.

Random graph hypothesis
Hy: All N x N rank order proximity matrices are equally likely.

Random label hypothesis

Hy: All permutations of the labels on [V data objects are equally likely.
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Thus

We must define an appropriate statistic

@ Whose values are indicative of the structure of a data set, and
compare the value that results from our data set X against the value
obtained from the reference (random) population.
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Thus

We must define an appropriate statistic

@ Whose values are indicative of the structure of a data set, and
compare the value that results from our data set X against the value
obtained from the reference (random) population.

v

Random Population

@ In order to obtain the baseline distribution under the null hypothesis,
statistical sampling techniques like Monte Carlo analysis and
bootstrapping are used (Jain and Dubes, 1988).

A,
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For example

Random position hypothesis - appropriate for ratio data

@ All the arrangements of N vectors in a specific region of the
d-dimensional space are equally likely to occur.
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For example

Random position hypothesis - appropriate for ratio data

@ All the arrangements of N vectors in a specific region of the
d-dimensional space are equally likely to occur.

How?
@ One way to produce such an arrangement is to insert each point
randomly in this region of the d-dimensional space, according to a
uniform distribution.

| A\
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For example

Random position hypothesis - appropriate for ratio data

@ All the arrangements of N vectors in a specific region of the
d-dimensional space are equally likely to occur.

| A\

How?
@ One way to produce such an arrangement is to insert each point
randomly in this region of the d-dimensional space, according to a
uniform distribution.

The random position hypothesis
@ It can be used with either external or internal criterion.
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@ Hypothesis Testing in Cluster Validity
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Internal criteria

What do we do?

@ In this case, the statistic ¢ is defined so as to measure the degree to
which a clustering structure, produced by a clustering algorithm,
matches the proximity matrix of the corresponding data set.
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Internal criteria

What do we do?
@ In this case, the statistic ¢ is defined so as to measure the degree to
which a clustering structure, produced by a clustering algorithm,
matches the proximity matrix of the corresponding data set.

v

We apply our clustering algorithm to the following data set

©Q Let X; be a set of N vectors generated according to the random
position hypothesis.

@ P, be the corresponding proximity matrix.

© C; the corresponding clustering.

\

Then, we apply our algorithm over the real data X to obtain C'

@ Now, we compute the statistics ¢ for each clustering structure.

37/59



Then, we use our hypothesis H|

The random hypothesis H

o |t is rejected if the value ¢, resulting from X lies in the critical
interval D, of the statistic pdf of the reference random population.
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Then, we use our hypothesis H|

The random hypothesis H

o |t is rejected if the value ¢, resulting from X lies in the critical
interval D, of the statistic pdf of the reference random population.

Meaning
@ if ¢ is unusually small or large.
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Also a External Criteria can be used
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between a prespecified structure P imposed on X.
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Also a External Criteria can be used

@ The statistic ¢ is defined to measure the degree of correspondence

between a prespecified structure P imposed on X.

@ And the clustering that results after the application of a specific
clustering algorithm.

| \

Then
@ Then, the value of ¢ corresponding to the clustering C' resulting from
the data set X is tested against the ¢;'s.

@ These ¢;'s correspond to the clusterings resulting from the reference
population generated under the random position hypothesis.

Again
@ The random hypothesis is rejected if ¢ is unusually large or small.
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Nevertheless

There are more examples
@ In chapter 16 in the book of Theodoridis.
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External Criteria Usage

@ For the comparison of a clustering structure C, produced by a
clustering algorithm, with a partition P of X drawn independently
from C.
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External Criteria Usage

First
@ For the comparison of a clustering structure C, produced by a

clustering algorithm, with a partition P of X drawn independently
from C.

Second

@ For measuring the degree of agreement between a predetermined
partition P and the proximity matrix of X, P.

| A\
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Comparison of P with a Clustering C

@ In this case, C may be either a specific hierarchy of clusterings or a
specific clustering.
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Comparison of P with a Clustering C

First

@ In this case, C may be either a specific hierarchy of clusterings or a
specific clustering.

| N\

However

@ The problem with the hierarchical clustering is the cutting in the
correct level of the dendogram.

v
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Comparison of P with a Clustering C

First
@ In this case, C may be either a specific hierarchy of clusterings or a
specific clustering.

| N\

However

@ The problem with the hierarchical clustering is the cutting in the
correct level of the dendogram.

| \

Then
@ We will concentrate on clustering that does not imply hierarchical
clustering.

.
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Thus

o Consider a clustering C given by a specific clustering algorithm.
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Thus

o Consider a clustering C given by a specific clustering algorithm.

@ This clustering is done in a independently drawn partition P.

Thus, we obtain the following sets
o C={C1,Cy,..,Cn}
o P={P,P,,.. P}
Note that the number of clusters in C need not be the same as the number
of groups in P.
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Thus

o Consider a clustering C given by a specific clustering algorithm.

@ This clustering is done in a independently drawn partition P.

Thus, we obtain the following sets
o C = {01,02, ,Cm}
o P= {PlaP2a"'aPS}

Note that the number of clusters in C need not be the same as the number
of groups in P.
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Now

Consider the following

@ Let n;; denote the number of vectors that belong to C; and P;
simultaneously.
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Now

Consider the following

@ Let n;; denote the number of vectors that belong to C; and P;
simultaneously.

e Also nlc = 25:1 {5

> It is the number of vectors that belong to C;.
o Similarly nj; = 37" ny;

» The number of vectors that belong to P;.
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Consider the a pair of vectors (x,, x,)

Thus, we have the following cases

@ Case 1: If both vectors belong to the same cluster in C and to the
same group in P.
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Consider the a pair of vectors (x,, x,)

Thus, we have the following cases

@ Case 1: If both vectors belong to the same cluster in C and to the
same group in P.

@ Case 2: if both vectors belong to the same cluster in C and to
different groups in P.

@ Case 3: if both vectors belong to the different clusters in C and to the
same group in P.

@ Case 4: if both vectors belong to different clusters in C and to
different groups in P.
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Example

The numbers of pairs of points for the four cases are denoted as a, b,

¢, and d

Partition P Clustering structure C
Case Pairs of data points Total
1 x; and x3; X2 and Xs 2
2 x; and X4; X3 and X4; X¢ and x7 3
3 x; and X¢; X2 and X4; X» and X7; X3 and Xe; X4 and Xs; X4 7
and x7; X5 and x7
4 x; and x2; x; and Xs; X; and X7; Xz and X3; X, and Xe; X3 9
and xs; X3 and X7; X4 and Xe; Xs and Xe
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Thus

The total number of pairs of points is w denoted as M

at+b+c+d=M (2)
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Thus

The total number of pairs of points is w denoted as M

a+b+c+d=M

Now
We can give some commonly used external indices for measuring the
match between C and P.
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Commonly used external indices

Rand index (Rand, 1971)
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Commonly used external indices

Rand index (Rand, 1971)

a-+d
Jaccard coefficient
a
J=—0" 4
a+b+c ( )J
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Commonly used external indices

Rand index (Rand, 1971)

rR="T (3)

v

Jaccard coefficient
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Explanation

The Rand statistic measures the fraction of the total number of pairs that
are either case 1 or 4.
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The Rand statistic measures the fraction of the total number of pairs that
are either case 1 or 4.

Something Notable

| A\

The Jaccard coefficient follows the same philosophy as the Rand except
that it excludes case 4.
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Explanation

Given a +d

The Rand statistic measures the fraction of the total number of pairs that
are either case 1 or 4.

Something Notable

| N

The Jaccard coefficient follows the same philosophy as the Rand except
that it excludes case 4.

Properties
The values of these two statistics are between 0 and 1.

A\
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Commonly used external indices

Hubert's ' statistics

Ma — mims
I'= \/mlmg (M — ml) (M — ﬂ’LQ) (6)
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Commonly used external indices

Hubert's ' statistics

Ma — mims
I'= \/mlmg (M — ml) (M — ﬂ’LQ) (6)

Unusually large absolute values of suggest that C and P agree with each
other.

N,
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How we use all this?

Assuming a Random Hypothesis
It is possible using a Monte Carlo Method of sampling
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How we use all this?

Assuming a Random Hypothesis

It is possible using a Monte Carlo Method of sampling

Example: Gibbs Sampling

Q Initialize  to some value
@ Sample each variable in the feature vector & and resample
2 ~ P (il i)
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Example

A trace of sampling for a single variable

20 -
10

(o] 10000 20000 30000 40000 50000
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Algorithm and Example

PIease
Go and read the section 16.3 in the Theodoridis' Book page 871 for more.
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© Cluster Validity

@ Relative Criteria
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@ Relative Criteria
@ Hard Clustering
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Hard Clustering

The Dunn and Dunn-like indices

Given a dissimilarity function:

d(C;,Cj) = xegliyrécjd(w,y) (7)
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Hard Clustering

The Dunn and Dunn-like indices

Given a dissimilarity function:
4(Ci.Cy) = _min,, d(@.y) (7)
diam (C) = m%%)é'd(w’y) (8)
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Hard Clustering

The Dunn and Dunn-like indices

Given a dissimilarity function:

d(C;,C5) = meé?i;écjd(w’y) (7)

The it is possible to define the diameter of a cluster

it () = mae 8@, 5) (8)

| \

Then the Dunn Index

. . (i((:kv (jj)
D= m m : 9
2:11nm {]:H—llnm (maxkzl,n_,m diam (Cy) )
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Thus

It is possible to prove that

If X contains compact and well-separated clusters, Dunn's index will be
large
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Thus

It is possible to prove that

If X contains compact and well-separated clusters, Dunn's index will be
large
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Although there are more

Please
Look at chapter 16 in the Theodoridis’ book for more examples
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