Machine Learning for Data Mining Cluster Validity

Andres Mendez-Vazquez

August 3, 2020

Outline

Introduction

• What is a Good Clustering?

2 Cluster Validity

- The Process
- Hypothesis Testing
 - Monte Carlo techniques
 - Bootstrapping Techniques
- Which Hypothesis?
- Hypothesis Testing in Cluster Validity
- External Criteria
- Relative Criteria
 - Hard Clustering

Outline

Introduction

• What is a Good Clustering?

2 Cluster Validity

- The Process
- Hypothesis Testing
 - Monte Carlo techniques
 - Bootstrapping Techniques
- Which Hypothesis?
- Hypothesis Testing in Cluster Validity
- External Criteria
- Relative Criteria
 - Hard Clustering

Internal criterion

A good clustering will produce high quality clusters in which:

- The intra-class (that is, intra-cluster) similarity is high.
- The inter-class similarity is low.
- The measured quality of a clustering depends on both the document representation and the similarity measure used.

Internal criterion

A good clustering will produce high quality clusters in which:

- The intra-class (that is, intra-cluster) similarity is high.
- The inter-class similarity is low.
- The measured quality of a clustering depends on both the document representation and the similarity measure used.

Internal criterion

A good clustering will produce high quality clusters in which:

- The intra-class (that is, intra-cluster) similarity is high.
- The inter-class similarity is low.

The measured quality of a clustering depends on both the document representation and the similarity measure used.

Internal criterion

A good clustering will produce high quality clusters in which:

- The intra-class (that is, intra-cluster) similarity is high.
- The inter-class similarity is low.
- The measured quality of a clustering depends on both the document representation and the similarity measure used.

Problem

Many of the Clustering Algorithms

They impose a clustering structure on the data, even though the data may not posses any.

I his is why

Cluster analysis is not a panacea.

Therefore

It is necessary to have an indication that the vectors of X form clusters before we apply a clustering algorithm.

Problem

Many of the Clustering Algorithms

They impose a clustering structure on the data, even though the data may not posses any.

This is why

Cluster analysis is not a panacea.

Therefore

It is necessary to have an indication that the vectors of X form clusters before we apply a clustering algorithm.

Problem

Many of the Clustering Algorithms

They impose a clustering structure on the data, even though the data may not posses any.

This is why

Cluster analysis is not a panacea.

Therefore

It is necessary to have an indication that the vectors of X form clusters before we apply a clustering algorithm.

The problem of verifying whether \boldsymbol{X} possesses a clustering structure

Without identifying it explicitly, this is known as clustering tendency.

A different kind of problem is encountered now

• All the previous algorithms require knowledge of the values of specific parameters.

Some of them impose restrictions on the shape of the clusters.

A different kind of problem is encountered now

- All the previous algorithms require knowledge of the values of specific parameters.
- Some of them impose restrictions on the shape of the clusters.

Poor estimation of these parameters and inappropriate restrictions on the shape of the clusters may lead to incorrect conclusions about the clustering structure of X.

A different kind of problem is encountered now

- All the previous algorithms require knowledge of the values of specific parameters.
- Some of them impose restrictions on the shape of the clusters.

It is more

Poor estimation of these parameters and inappropriate restrictions on the shape of the clusters may lead to incorrect conclusions about the clustering structure of X.

us, it is necessary to discuss

 Methods suitable for quantitative evaluation of the results of a clustering algorithm.

This task is known as cluster validity.

A different kind of problem is encountered now

- All the previous algorithms require knowledge of the values of specific parameters.
- Some of them impose restrictions on the shape of the clusters.

It is more

Poor estimation of these parameters and inappropriate restrictions on the shape of the clusters may lead to incorrect conclusions about the clustering structure of X.

Thus, it is necessary to discuss

• Methods suitable for quantitative evaluation of the results of a clustering algorithm.

I his task is known as cluster validity.

A different kind of problem is encountered now

- All the previous algorithms require knowledge of the values of specific parameters.
- Some of them impose restrictions on the shape of the clusters.

It is more

Poor estimation of these parameters and inappropriate restrictions on the shape of the clusters may lead to incorrect conclusions about the clustering structure of X.

Thus, it is necessary to discuss

- Methods suitable for quantitative evaluation of the results of a clustering algorithm.
- This task is known as cluster validity.

Outline

1 Introductio

• What is a Good Clustering?

2 Cluster Validity

The Process

Hypothesis Testing

- Monte Carlo techniques
- Bootstrapping Techniques
- Which Hypothesis?
- Hypothesis Testing in Cluster Validity
- External Criteria
- Relative Criteria
 - Hard Clustering

The Cluster Flowchart

Flowchart of the validity paradigm for clustering structures

9 / 59

Outline

1 Introductio

• What is a Good Clustering?

Cluster Validity

• The Process

Hypothesis Testing

- Monte Carlo techniques
- Bootstrapping Techniques
- Which Hypothesis?
- Hypothesis Testing in Cluster Validity
- External Criteria
- Relative Criteria
 - Hard Clustering

Hypothesis Testing Revisited

Hypothesis

 $H_1: \theta \neq \theta_0$ $H_0: \theta = \theta_0$

In addition

Also let $\overline{D}_{
ho}$ be the critical interval corresponding to significance level ho of a test statistics q.

Now

Given Θ_1 , the set of all values that θ may take under hypothesis H_1 .

Hypothesis Testing Revisited

Hypothesis

$$H_1: \theta \neq \theta_0$$
$$H_0: \theta = \theta_0$$

In addition

Also let \overline{D}_{ρ} be the critical interval corresponding to significance level ρ of a test statistics q.

Given Θ_1 , the set of all values that heta may take under hypothesis H_1 .

Hypothesis Testing Revisited

Hypothesis

$$H_1: \theta \neq \theta_0$$
$$H_0: \theta = \theta_0$$

In addition

Also let \overline{D}_{ρ} be the critical interval corresponding to significance level ρ of a test statistics q.

Now

Given Θ_1 , the set of all values that θ may take under hypothesis H_1 .

Definition (Power Function)

$$W(\theta) = P\left(q \in \overline{D}_{\rho} | \theta \in \Theta_1\right) \tag{1}$$

Definition (Power Function)

$$W(\theta) = P\left(q \in \overline{D}_{\rho} | \theta \in \Theta_1\right) \tag{1}$$

Meaning

• $W(\theta)$ is the probability that q lies in the critical region when the value of the parameter vector θ .

Definition (Power Function)

$$W(\theta) = P\left(q \in \overline{D}_{\rho} | \theta \in \Theta_1\right)$$
(1)

Meaning

• $W(\theta)$ is the probability that q lies in the critical region when the value of the parameter vector θ .

Thus

• The power function can be used for the comparison of two different statistical tests.

The test whose power under the alternative hypotheses is greater is

Definition (Power Function)

$$W(\theta) = P\left(q \in \overline{D}_{\rho} | \theta \in \Theta_1\right) \tag{1}$$

Meaning

• $W(\theta)$ is the probability that q lies in the critical region when the value of the parameter vector θ .

Thus

- The power function can be used for the comparison of two different statistical tests.
- The test whose power under the alternative hypotheses is greater is always preferred.

Suppose that H_0 is true

- If $q(x) \in \overline{D}_{\rho}$, H_0 will be rejected even if it is true.
- It is called a type error I
 - The probability of such error is ρ .
 - The probability of accepting H_0 when it is true is 1ρ .

Suppose that H_0 is true

- If $q(x) \in \overline{D}_{\rho}$, H_0 will be rejected even if it is true.
- It is called a type error I.

The probability of such error is ρ .

The probability of accepting H_0 when it is true is $1 - \rho$.

Suppose that H_0 is false –

- If $q\left(x
 ight)
 otin D_{
 ho}$, H_{0} will be accepted even if it is false.
- It is called a type error
- The probability of such error is $1 W\left(heta
 ight)$
- This depends on the specific value of heta

Suppose that H_0 is true

- If $q(x) \in \overline{D}_{\rho}$, H_0 will be rejected even if it is true.
- It is called a type error I.
- The probability of such error is ρ .

• The probability of accepting H_0 when it is true is 1ho.

Suppose that H_0 is false.

- If $q(x) \notin D_{
 ho}$, H_0 will be accepted even if it is false.
- It is called a type error
- The probability of such error is $1 W\left(heta
 ight)$
- ullet This depends on the specific value of heta

Suppose that H_0 is true

- If $q(x) \in \overline{D}_{\rho}$, H_0 will be rejected even if it is true.
- It is called a type error I.
- The probability of such error is ρ .
- The probability of accepting H_0 when it is true is 1ρ .

• If $q\left(x ight) otin \overline{D}_{ ho}$, H_{0} will be accepted even if it is false.

- It is called a type error
- The probability of such error is $1-W\left(heta
 ight)$
- ullet This depends on the specific value of heta

Suppose that H_0 is true

- If $q(x) \in \overline{D}_{\rho}$, H_0 will be rejected even if it is true.
- It is called a type error I.
- The probability of such error is ρ .
- The probability of accepting H_0 when it is true is 1ρ .

Suppose that H_0 is false

• If $q(x) \notin \overline{D}_{\rho}$, H_0 will be accepted even if it is false.

This depends on the specific value of θ .

Suppose that H_0 is true

- If $q(x) \in \overline{D}_{\rho}$, H_0 will be rejected even if it is true.
- It is called a type error I.
- The probability of such error is ρ .
- The probability of accepting H_0 when it is true is 1ρ .

Suppose that H_0 is false

- If $q(x) \notin \overline{D}_{\rho}$, H_0 will be accepted even if it is false.
- It is called a type error I.

This depends on the specific value of heta

Suppose that H_0 is true

- If $q(x) \in \overline{D}_{\rho}$, H_0 will be rejected even if it is true.
- It is called a type error I.
- The probability of such error is ρ .
- The probability of accepting H_0 when it is true is 1ρ .

Suppose that H_0 is false

- If $q(x) \notin \overline{D}_{\rho}$, H_0 will be accepted even if it is false.
- It is called a type error I.
- The probability of such error is $1 W(\theta)$.

I his depends on the specific value of heta

Suppose that H_0 is true

- If $q(x) \in \overline{D}_{\rho}$, H_0 will be rejected even if it is true.
- It is called a type error I.
- The probability of such error is ρ .
- The probability of accepting H_0 when it is true is 1ρ .

Suppose that H_0 is false

- If $q(x) \notin \overline{D}_{\rho}$, H_0 will be accepted even if it is false.
- It is called a type error I.
- The probability of such error is $1 W(\theta)$.
- This depends on the specific value of θ .

Thus

Something Notable

- The probability density function (pdf) of the statistic q, under H_0 , for most of the statistics used in practice has a single maximum.
- In addition, the region \overline{D}_{ρ} , is either a half-line or the union of two half-lines.

Example

Example

A right-tailed test $p(q|H_0)$ $W(\theta)$ $p(q|H_1)$ $q_{1-\rho}^{0}$ \overline{D}_{ρ}

Example

A left-tailed test

Problem

In many practical cases

The exact form of the pdf of a statistic q, under a given hypothesis, is not available and it is difficult to obtain.

Problem

In many practical cases

The exact form of the pdf of a statistic q, under a given hypothesis, is not available and it is difficult to obtain.

However, we can do the following

• Monte Carlo techniques.

Problem

In many practical cases

The exact form of the pdf of a statistic q, under a given hypothesis, is not available and it is difficult to obtain.

However, we can do the following

- Monte Carlo techniques.
- Bootstrapping techniques.

Outline

1 Introductio

• What is a Good Clustering?

Cluster Validity

The Process

• Hypothesis Testing

- Monte Carlo techniques
- Bootstrapping Techniques
- Which Hypothesis?
- Hypothesis Testing in Cluster Validity
- External Criteria
- Relative Criteria
 - Hard Clustering

What do they do?

They rely on simulating the process at hand using a sufficient number of computer-generated data.

Given enough data, we can try to learn the pdf for q.

Then, using that pdf we simulate samples of q.

What do they do?

They rely on simulating the process at hand using a sufficient number of computer-generated data.

• Given enough data, we can try to learn the pdf for q.

Then, using that pdf we simulate samples of q.

What do they do?

They rely on simulating the process at hand using a sufficient number of computer-generated data.

- Given enough data, we can try to learn the pdf for q.
- Then, using that pdf we simulate samples of q.

What do they do?

They rely on simulating the process at hand using a sufficient number of computer-generated data.

- Given enough data, we can try to learn the pdf for q.
- Then, using that pdf we simulate samples of q.

Thus

What do they do?

They rely on simulating the process at hand using a sufficient number of computer-generated data.

- Given enough data, we can try to learn the pdf for q.
- Then, using that pdf we simulate samples of q.

Thus

Then

We construct the corresponding histogram of these values

Using this approximation

Assume

 \bullet q corresponds to a right-tailed statistical test.

 A histogram is constructed using r values of q corresponding to the r data sets.

Using this approximation

Assume

- \bullet q corresponds to a right-tailed statistical test.
- A histogram is constructed using r values of q corresponding to the r data sets.

Using this approximation

Then, acceptance or rejection may be based on the rules

• Reject H_0 , if q is greater than $(1 - \rho) r$ of the q_i values.

Then, acceptance or rejection may be based on the rules

- Reject H_0 , if q is greater than $(1 \rho) r$ of the q_i values.
- Accept H_0 , if q is smaller than $(1 \rho) r$ of the q_i values.

Next

For a left-tailed test

For a left-tailed test, rejection or acceptance of the null hypothesis is done on the basis

- **①** Reject H_0 , if q is smaller than ρr of the q_i values.
- 2 Accept H_0 , if q is greater than ρr of the q_i values

Now, for two-tailed statistical test

Thus

For a two-tailed test we have

Accept H_0 , if q is greater than $\left(\frac{\rho}{2}\right)r$ of the q_i values and less than $\left(1-\frac{\rho}{2}\right)r$ of the q_i values.

Outline

1 Introductio

• What is a Good Clustering?

2 Cluster Validity

• The Process

Hypothesis Testing

- Monte Carlo techniques
- Bootstrapping Techniques
- Which Hypothesis?
- Hypothesis Testing in Cluster Validity
- External Criteria
- Relative Criteria
 - Hard Clustering

Bootstrapping Techniques

Why?

• They constitute an alternative way to cope with a limited amount of data.

hen

 The idea here is to parameterize the unknown pdf in terms of an unknown parameter.

How

 To cope with the limited amount of data and in order to improve the accuracy of the estimate of the unknown pdf parameter.

Bootstrapping Techniques

Why?

• They constitute an alternative way to cope with a limited amount of data.

Then

• The idea here is to parameterize the unknown pdf in terms of an unknown parameter.

How

 To cope with the limited amount of data and in order to improve the accuracy of the estimate of the unknown pdf parameter.

Bootstrapping Techniques

Why?

 They constitute an alternative way to cope with a limited amount of data.

Then

• The idea here is to parameterize the unknown pdf in terms of an unknown parameter.

How

• To cope with the limited amount of data and in order to improve the accuracy of the estimate of the unknown pdf parameter.

The Process

For this, we create

 \bullet Several "fake"data sets $X_1,...,X_r$ are created by sampling X with replacement.

Thus

By using this sample, we estimate the desired pdf for q.

Then

Typically, good estimates are obtained if r is between 100 and 200.

The Process

For this, we create

• Several "fake" data sets $X_1, ..., X_r$ are created by sampling X with replacement.

Thus

 $\bullet\,$ By using this sample, we estimate the desired pdf for q.

Then

Typically, good estimates are obtained if r is between 100 and 200.

The Process

For this, we create

• Several "fake" data sets $X_1, ..., X_r$ are created by sampling X with replacement.

Thus

• By using this sample, we estimate the desired pdf for q.

Then

• Typically, good estimates are obtained if r is between 100 and 200.

Outline

1 Introductio

• What is a Good Clustering?

2 Cluster Validity

- The Process
- Hypothesis Testing
 - Monte Carlo techniques
 - Bootstrapping Techniques

• Which Hypothesis?

- Hypothesis Testing in Cluster Validity
- External Criteria
- Relative Criteria
 - Hard Clustering

Which Hypothesis?

Random position hypothesis

 H_0 : All the locations of N data points in some specific region of a d-dimensional space are equally likely.

Random graph hypothesis

 H_0 : All N imes N rank order proximity matrices are equally likely.

Random label hypothesis

 H_{0} : All permutations of the labels on N data objects are equally likely.

Which Hypothesis?

Random position hypothesis

 H_0 : All the locations of N data points in some specific region of a d-dimensional space are equally likely.

Random graph hypothesis

 H_0 : All $N \times N$ rank order proximity matrices are equally likely.

Random label hypothesis

 H_{0} : All permutations of the labels on N data objects are equally likely.

Which Hypothesis?

Random position hypothesis

 H_0 : All the locations of N data points in some specific region of a d-dimensional space are equally likely.

Random graph hypothesis

 H_0 : All $N \times N$ rank order proximity matrices are equally likely.

Random label hypothesis

 H_0 : All permutations of the labels on N data objects are equally likely.

Thus

We must define an appropriate statistic

• Whose values are indicative of the structure of a data set, and compare the value that results from our data set X against the value obtained from the reference (random) population.

Random Population

 In order to obtain the baseline distribution under the null hypothesis, statistical sampling techniques like Monte Carlo analysis and bootstrapping are used (Jain and Dubes, 1988).

Thus

We must define an appropriate statistic

• Whose values are indicative of the structure of a data set, and compare the value that results from our data set X against the value obtained from the reference (random) population.

Random Population

• In order to obtain the baseline distribution under the null hypothesis, statistical sampling techniques like Monte Carlo analysis and bootstrapping are used (Jain and Dubes, 1988).

For example

Random position hypothesis - appropriate for ratio data

• All the arrangements of N vectors in a specific region of the d-dimensional space are equally likely to occur.

How?

 One way to produce such an arrangement is to insert each point randomly in this region of the *d*-dimensional space, according to a uniform distribution.

he random position hypothesis

• It can be used with either external or internal criterion.

For example

Random position hypothesis - appropriate for ratio data

• All the arrangements of N vectors in a specific region of the d-dimensional space are equally likely to occur.

How?

• One way to produce such an arrangement is to insert each point randomly in this region of the *d*-dimensional space, according to a uniform distribution.

The random position hypothesis

It can be used with either external or internal criterion.
For example

Random position hypothesis - appropriate for ratio data

• All the arrangements of N vectors in a specific region of the d-dimensional space are equally likely to occur.

How?

• One way to produce such an arrangement is to insert each point randomly in this region of the *d*-dimensional space, according to a uniform distribution.

The random position hypothesis

• It can be used with either external or internal criterion.

Outline

1 Introductio

• What is a Good Clustering?

2 Cluster Validity

- The Process
- Hypothesis Testing
 - Monte Carlo techniques
 - Bootstrapping Techniques
- Which Hypothesis?

• Hypothesis Testing in Cluster Validity

- External Criteria
- Relative Criteria
 - Hard Clustering

What do we do?

• In this case, the statistic q is defined so as to measure the degree to which a clustering structure, produced by a clustering algorithm, matches the proximity matrix of the corresponding data set.

What do we do?

• In this case, the statistic q is defined so as to measure the degree to which a clustering structure, produced by a clustering algorithm, matches the proximity matrix of the corresponding data set.

We apply our clustering algorithm to the following data set

Let X_i be a set of N vectors generated according to the random position hypothesis.

 P_i be the corresponding proximity matrix

 C_i the corresponding clustering.

What do we do?

• In this case, the statistic q is defined so as to measure the degree to which a clustering structure, produced by a clustering algorithm, matches the proximity matrix of the corresponding data set.

We apply our clustering algorithm to the following data set

- Let X_i be a set of N vectors generated according to the random position hypothesis.
- **2** P_i be the corresponding proximity matrix.

Now, we compute the statistics q for each clustering structure

What do we do?

• In this case, the statistic q is defined so as to measure the degree to which a clustering structure, produced by a clustering algorithm, matches the proximity matrix of the corresponding data set.

We apply our clustering algorithm to the following data set

- Let X_i be a set of N vectors generated according to the random position hypothesis.
- **2** P_i be the corresponding proximity matrix.
- \bigcirc C_i the corresponding clustering.

Now, we compute the statistics q for each clustering structure

What do we do?

• In this case, the statistic q is defined so as to measure the degree to which a clustering structure, produced by a clustering algorithm, matches the proximity matrix of the corresponding data set.

We apply our clustering algorithm to the following data set

- Let X_i be a set of N vectors generated according to the random position hypothesis.
- **2** P_i be the corresponding proximity matrix.
- \bigcirc C_i the corresponding clustering.

Then, we apply our algorithm over the real data X to obtain C

• Now, we compute the statistics q for each clustering structure.

Then, we use our hypothesis H_0

The random hypothesis H_0

• It is rejected if the value q, resulting from X lies in the critical interval \overline{D}_{ρ} of the statistic pdf of the reference random population.

Meaning

if q is unusually small or large.

Then, we use our hypothesis H_0

The random hypothesis H_0

• It is rejected if the value q, resulting from X lies in the critical interval \overline{D}_{ρ} of the statistic pdf of the reference random population.

Meaning

• if q is unusually small or large.

Definition

• The statistic q is defined to measure the degree of correspondence between a **prespecified structure** \mathcal{P} imposed on X.

 And the clustering that results after the application of a specific clustering algorithm.

Definition

- The statistic q is defined to measure the degree of correspondence between a **prespecified structure** \mathcal{P} imposed on X.
- And the clustering that results after the application of a specific clustering algorithm.

• Then, the value of q corresponding to the clustering C resulting from the data set X is tested against the q_i's.

 These q_i's correspond to the clusterings resulting from the reference population generated under the random position hypothesis.

Definition

- The statistic q is defined to measure the degree of correspondence between a **prespecified structure** \mathcal{P} imposed on X.
- And the clustering that results after the application of a specific clustering algorithm.

Then

• Then, the value of q corresponding to the clustering C resulting from the data set X is tested against the q_i 's.

population generated under the random position hypothesis

• The random hypothesis is rejected if q is unusually large or small.

Definition

- The statistic q is defined to measure the degree of correspondence between a **prespecified structure** \mathcal{P} imposed on X.
- And the clustering that results after the application of a specific clustering algorithm.

Then

- Then, the value of q corresponding to the clustering C resulting from the data set X is tested against the q_i 's.
- These q_i 's correspond to the clusterings resulting from the reference population generated under the random position hypothesis.

• The random hypothesis is rejected if q is unusually large or small.

イロト イヨト イヨト

Definition

- The statistic q is defined to measure the degree of correspondence between a **prespecified structure** \mathcal{P} imposed on X.
- And the clustering that results after the application of a specific clustering algorithm.

Then

- Then, the value of q corresponding to the clustering C resulting from the data set X is tested against the q_i 's.
- These q_i 's correspond to the clusterings resulting from the reference population generated under the random position hypothesis.

Again

• The random hypothesis is rejected if q is unusually large or small.

Nevertheless

There are more examples

• In chapter 16 in the book of Theodoridis.

Outline

1 Introductio

• What is a Good Clustering?

2 Cluster Validity

- The Process
- Hypothesis Testing
 - Monte Carlo techniques
 - Bootstrapping Techniques
- Which Hypothesis?
- Hypothesis Testing in Cluster Validity

External Criteria

Relative Criteria
Hard Clustering

External Criteria Usage

First

• For the comparison of a clustering structure C, produced by a clustering algorithm, with a partition \mathcal{P} of X drawn independently from C.

Second

For measuring the degree of agreement between a predetermined partition \mathcal{P} and the proximity matrix of X, P.

External Criteria Usage

First

• For the comparison of a clustering structure C, produced by a clustering algorithm, with a partition \mathcal{P} of X drawn independently from C.

Second

• For measuring the degree of agreement between a predetermined partition \mathcal{P} and the proximity matrix of X, P.

Comparison of ${\mathcal P}$ with a Clustering ${\mathcal C}$

First

 $\bullet\,$ In this case, ${\cal C}$ may be either a specific hierarchy of clusterings or a specific clustering.

However

 The problem with the hierarchical clustering is the cutting in the correct level of the dendogram.

Then

 We will concentrate on clustering that does not imply hierarchical clustering.

Comparison of ${\mathcal P}$ with a Clustering ${\mathcal C}$

First

 $\bullet\,$ In this case, ${\cal C}$ may be either a specific hierarchy of clusterings or a specific clustering.

However

• The problem with the hierarchical clustering is the cutting in the correct level of the dendogram.

Then

 We will concentrate on clustering that does not imply hierarchical clustering.

Comparison of ${\mathcal P}$ with a Clustering ${\mathcal C}$

First

• In this case, C may be either a specific hierarchy of clusterings or a specific clustering.

However

• The problem with the hierarchical clustering is the cutting in the correct level of the dendogram.

Then

 We will concentrate on clustering that does not imply hierarchical clustering.

Setup

\bullet Consider a clustering ${\mathcal C}$ given by a specific clustering algorithm.

This clustering is done in a independently drawn partition ${\cal P}$

Setup

- \bullet Consider a clustering ${\mathcal C}$ given by a specific clustering algorithm.
- \bullet This clustering is done in a independently drawn partition $\mathcal{P}.$

Thus, we obtain the following sets

- $C = \{C_1, C_2, ..., C_m\}$
- $\mathcal{P} = \{P_1, P_2, ..., P_s\}$

Note that the number of clusters in $\mathcal C$ need not be the same as the number of groups in $\mathcal P.$

Setup

- \bullet Consider a clustering ${\mathcal C}$ given by a specific clustering algorithm.
- \bullet This clustering is done in a independently drawn partition $\mathcal{P}.$

Thus, we obtain the following sets

•
$$C = \{C_1, C_2, ..., C_m\}$$

Note that the number of clusters in ${\mathcal C}$ need not be the same as the number of groups in ${\mathcal P}.$

Setup

- \bullet Consider a clustering ${\mathcal C}$ given by a specific clustering algorithm.
- \bullet This clustering is done in a independently drawn partition $\mathcal{P}.$

Thus, we obtain the following sets

•
$$C = \{C_1, C_2, ..., C_m\}$$

•
$$\mathcal{P} = \{P_1, P_2, ..., P_s\}$$

Note that the number of clusters in ${\mathcal C}$ need not be the same as the number of groups in ${\mathcal P}.$

Setup

- $\bullet\,$ Consider a clustering ${\mathcal C}$ given by a specific clustering algorithm.
- This clustering is done in a independently drawn partition \mathcal{P} .

Thus, we obtain the following sets

•
$$C = \{C_1, C_2, ..., C_m\}$$

•
$$\mathcal{P} = \{P_1, P_2, ..., P_s\}$$

Note that the number of clusters in \mathcal{C} need not be the same as the number of groups in \mathcal{P} .

Setup

- $\bullet\,$ Consider a clustering ${\mathcal C}$ given by a specific clustering algorithm.
- This clustering is done in a independently drawn partition \mathcal{P} .

Thus, we obtain the following sets

•
$$C = \{C_1, C_2, ..., C_m\}$$

•
$$\mathcal{P} = \{P_1, P_2, ..., P_s\}$$

Note that the number of clusters in \mathcal{C} need not be the same as the number of groups in \mathcal{P} .

Now

Consider the following

- Let n_{ij} denote the number of vectors that belong to C_i and P_j simultaneously.
 - \blacktriangleright It is the number of vectors that belong to C_i .
- Similarly $n_j^P = \sum_{i=1}^m n_{ij}$
 - The number of vectors that belong to P_j

Now

Consider the following

• Let n_{ij} denote the number of vectors that belong to C_i and P_j simultaneously.

• Also
$$n_i^C = \sum_{j=1}^s n_{ij}$$

is the number of vectors that belong to C_i .

• Similarly $n_j^P = \sum_{i=1}^m n_{ij}$

The number of vectors that belong to P_j .

Now

Consider the following

- Let n_{ij} denote the number of vectors that belong to C_i and P_j simultaneously.
- Also $n_i^C = \sum_{j=1}^s n_{ij}$.
 - ▶ It is the number of vectors that belong to C_i.
- Similarly $n_j^P = \sum_{i=1}^m n_{ij}$
 - ► The number of vectors that belong to *P_j*.

- Case 1: If both vectors belong to the same cluster in ${\cal C}$ and to the same group in ${\cal P}.$
- Case 2: if both vectors belong to the same cluster in C and to different groups in P.
- Case 3: if both vectors belong to the different clusters in ${\cal C}$ and to the same group in ${\cal P}.$
- Case 4: if both vectors belong to different clusters in C and to different groups in P.

- Case 1: If both vectors belong to the same cluster in ${\cal C}$ and to the same group in ${\cal P}.$
- Case 2: if both vectors belong to the same cluster in C and to different groups in \mathcal{P} .
- Case 3: if both vectors belong to the different clusters in C and to the same group in P.
- Case 4: if both vectors belong to different clusters in C and to different groups in P.

- Case 1: If both vectors belong to the same cluster in $\mathcal C$ and to the same group in $\mathcal P$.
- Case 2: if both vectors belong to the same cluster in C and to different groups in \mathcal{P} .
- Case 3: if both vectors belong to the different clusters in ${\cal C}$ and to the same group in ${\cal P}.$
- Case 4: if both vectors belong to different clusters in C and to different groups in P.

- Case 1: If both vectors belong to the same cluster in $\mathcal C$ and to the same group in $\mathcal P$.
- Case 2: if both vectors belong to the same cluster in \mathcal{C} and to different groups in \mathcal{P} .
- Case 3: if both vectors belong to the different clusters in ${\cal C}$ and to the same group in ${\cal P}.$
- Case 4: if both vectors belong to different clusters in C and to different groups in \mathcal{P} .

Example

The numbers of pairs of points for the four cases are denoted as $a,\,b,\,c,$ and d

Partition **P**

Clustering structure C

Case	Pairs of data points	Total
1	\mathbf{x}_1 and \mathbf{x}_3 ; \mathbf{x}_2 and \mathbf{x}_5	2
2	\mathbf{x}_1 and \mathbf{x}_4 ; \mathbf{x}_3 and \mathbf{x}_4 ; \mathbf{x}_6 and \mathbf{x}_7	3
3	\mathbf{x}_1 and \mathbf{x}_6 ; \mathbf{x}_2 and \mathbf{x}_4 ; \mathbf{x}_2 and \mathbf{x}_7 ; \mathbf{x}_3 and \mathbf{x}_6 ; \mathbf{x}_4 and \mathbf{x}_5 ; \mathbf{x}_4	7
	and \mathbf{x}_7 ; \mathbf{x}_5 and \mathbf{x}_7	
4	\mathbf{x}_1 and \mathbf{x}_2 ; \mathbf{x}_1 and \mathbf{x}_5 ; \mathbf{x}_1 and \mathbf{x}_7 ; \mathbf{x}_2 and \mathbf{x}_3 ; \mathbf{x}_2 and \mathbf{x}_6 ; \mathbf{x}_3	9
	and \mathbf{x}_5 ; \mathbf{x}_3 and \mathbf{x}_7 ; \mathbf{x}_4 and \mathbf{x}_6 ; \mathbf{x}_5 and \mathbf{x}_6	

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○

The total number of pairs of points is $\frac{N(N-1)}{2}$ denoted as M

$$a+b+c+d=M$$

Now

We can give some commonly used external indices for measuring the match between ${\cal C}$ and ${\cal P}.$
The total number of pairs of points is $\frac{N(N-1)}{2}$ denoted as M

$$a+b+c+d=M$$

Now

We can give some commonly used external indices for measuring the match between ${\cal C}$ and ${\cal P}.$

(2)

Rand index (Rand, 1971)

$$R = \frac{a+d}{M}$$

Jaccard coefficient

$$J = \frac{a}{a+b+c}$$

Fowlkes and Mallows index (Fowlkes and Mallows, 1983

$$FM = \sqrt{\frac{a}{a+b} \times \frac{a}{a+c}} \tag{5}$$

<ロト < 回 > < 直 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 < つ Q () 49 / 59

(3)

Rand index (Rand, 1971)

$$R = \frac{a+d}{M}$$

Jaccard coefficient

$$J = \frac{a}{a+b+c} \tag{4}$$

Fowlkes and Mallows index (Fowlkes and Mallows, 1983

$$FM = \sqrt{\frac{a}{a+b} \times \frac{a}{a+c}} \tag{5}$$

(3)

Rand index (Rand, 1971)

$$R = \frac{a+d}{M}$$

Jaccard coefficient

$$J = \frac{a}{a+b+c}$$

Fowlkes and Mallows index (Fowlkes and Mallows, 1983)

$$FM = \sqrt{\frac{a}{a+b} \times \frac{a}{a+c}}$$
(5)

<ロト < 回 > < 臣 > < 臣 > < 臣 > 三 の Q (C 49 / 59

(3)

(4)

Explanation

${\rm Given}\,\,a+d$

The Rand statistic measures the fraction of the total number of pairs that are either case 1 or 4.

Something Notable

The Jaccard coefficient follows the same philosophy as the Rand except that it excludes case 4.

Properties

The values of these two statistics are between 0 and 1.

Explanation

Given a + d

The Rand statistic measures the fraction of the total number of pairs that are either case 1 or 4.

Something Notable

The Jaccard coefficient follows the same philosophy as the Rand except that it excludes case 4.

The values of these two statistics are between 0 and 1.

Explanation

Given a + d

The Rand statistic measures the fraction of the total number of pairs that are either case 1 or 4.

Something Notable

The Jaccard coefficient follows the same philosophy as the Rand except that it excludes case 4.

Properties

The values of these two statistics are between 0 and 1.

Hubert's Γ statistics

$$\Gamma = \frac{Ma - m_1 m_2}{\sqrt{m_1 m_2 \left(M - m_1\right) \left(M - m_2\right)}}$$
(6)

Property

Unusually large absolute values of suggest that ${\mathcal C}$ and ${\mathcal P}$ agree with each other.

Hubert's Γ statistics

$$\Gamma = \frac{Ma - m_1 m_2}{\sqrt{m_1 m_2 \left(M - m_1\right) \left(M - m_2\right)}}$$
(6)

Property

Unusually large absolute values of suggest that ${\mathcal C}$ and ${\mathcal P}$ agree with each other.

How we use all this?

Assuming a Random Hypothesis

It is possible using a Monte Carlo Method of sampling

Example: Gibbs Sampling

 \bigcirc Initialize x to some value.

Sample each variable in the feature vector $m{x}$ and resample $x_i \sim P\left(x_i | m{x}_{(i \neq j)}
ight)$

Assuming a Random Hypothesis

It is possible using a Monte Carlo Method of sampling

Example: Gibbs Sampling

() Initialize x to some value

② Sample each variable in the feature vector x and resample $x_i \sim P\left(x_i | x_{(i \neq j)}\right)$

Example

Algorithm and Example

Please

Go and read the section 16.3 in the Theodoridis' Book page 871 for more.

Outline

1 Introductio

• What is a Good Clustering?

2 Cluster Validity

- The Process
- Hypothesis Testing
 - Monte Carlo techniques
 - Bootstrapping Techniques
- Which Hypothesis?
- Hypothesis Testing in Cluster Validity
- External Criteria

Relative Criteria

Hard Clustering

Outline

1 Introductio

• What is a Good Clustering?

2 Cluster Validity

- The Process
- Hypothesis Testing
 - Monte Carlo techniques
 - Bootstrapping Techniques
- Which Hypothesis?
- Hypothesis Testing in Cluster Validity
- External Criteria
- Relative Criteria
 Hard Clustering

Hard Clustering

The Dunn and Dunn-like indices

Given a dissimilarity function:

$$d(C_i, C_j) = \min_{\boldsymbol{x} \in C_i, \boldsymbol{y} \in C_j} d(\boldsymbol{x}, \boldsymbol{y})$$

The it is possible to define the diameter of a cluster

$$diam\left(C
ight)=\max_{oldsymbol{x},oldsymbol{y}\in C}d\left(oldsymbol{x},oldsymbol{y}
ight)$$

hen the Dunn Index
$$D_m = \min_{i=1,...,m} \left\{ \min_{j=i+1,...,m} \left(\frac{d(C_i, C_j)}{\max_{k=1,...,m} diam(C_k)} \right) \right\}$$
(9)

(7)

Hard Clustering

The Dunn and Dunn-like indices

Given a dissimilarity function:

$$d(C_i, C_j) = \min_{\boldsymbol{x} \in C_i, \boldsymbol{y} \in C_j} d(\boldsymbol{x}, \boldsymbol{y})$$

The it is possible to define the diameter of a cluster

$$diam\left(C\right) = \max_{\boldsymbol{x}, \boldsymbol{y} \in C} d\left(\boldsymbol{x}, \boldsymbol{y}\right)$$

Then the Dunn Index

$$D_m = \min_{i=1,\dots,m} \left\{ \min_{j=i+1,\dots,m} \left(\frac{d\left(C_i, C_j\right)}{\max_{k=1,\dots,m} diam\left(C_k\right)} \right) \right\}$$
(9)

(7)

(8)

Hard Clustering

The Dunn and Dunn-like indices

Given a dissimilarity function:

$$d(C_i, C_j) = \min_{\boldsymbol{x} \in C_i, \boldsymbol{y} \in C_j} d(\boldsymbol{x}, \boldsymbol{y})$$

The it is possible to define the diameter of a cluster

$$diam\left(C\right) = \max_{\boldsymbol{x}, \boldsymbol{y} \in C} d\left(\boldsymbol{x}, \boldsymbol{y}\right) \tag{8}$$

Then the Dunn Index

$$D_m = \min_{i=1,\dots,m} \left\{ \min_{j=i+1,\dots,m} \left(\frac{d\left(C_i, C_j\right)}{\max_{k=1,\dots,m} diam\left(C_k\right)} \right) \right\}$$
(9)

(7)

It is possible to prove that

If \boldsymbol{X} contains compact and well-separated clusters, Dunn's index will be large

Example

Thus

It is possible to prove that

If \boldsymbol{X} contains compact and well-separated clusters, Dunn's index will be large

Example

Although there are more

Please

Look at chapter 16 in the Theodoridis' book for more examples