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What is a Good Clustering?

Internal criterion
A good clustering will produce high quality clusters in which:

The intra-class (that is, intra-cluster) similarity is high.
The inter-class similarity is low.
The measured quality of a clustering depends on both the document
representation and the similarity measure used.
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Problem

Many of the Clustering Algorithms
They impose a clustering structure on the data, even though the data may
not posses any.

This is why
Cluster analysis is not a panacea.

Therefore
It is necessary to have an indication that the vectors of X form clusters
before we apply a clustering algorithm.
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Then

The problem of verifying whether X possesses a clustering structure
Without identifying it explicitly, this is known as clustering tendency.
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What can happen if X posses a cluster structure?

A different kind of problem is encountered now
All the previous algorithms require knowledge of the values of specific
parameters.
Some of them impose restrictions on the shape of the clusters.

It is more
Poor estimation of these parameters and inappropriate restrictions on the
shape of the clusters may lead to incorrect conclusions about the
clustering structure of X.

Thus, it is necessary to discuss
Methods suitable for quantitative evaluation of the results of a
clustering algorithm.
This task is known as cluster validity.
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The Cluster Flowchart
Flowchart of the validity paradigm for clustering structures
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Hypothesis Testing Revisited

Hypothesis

H1 :θ 6= θ0

H0 :θ = θ0

In addition
Also let Dρ be the critical interval corresponding to significance level ρ of
a test statistics q.

Now
Given Θ1, the set of all values that θ may take under hypothesis H1.
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Power Function

Definition (Power Function)

W (θ) = P
(
q ∈ Dρ|θ ∈ Θ1

)
(1)

Meaning
W (θ) is the probability that q lies in the critical region when the
value of the parameter vector θ.

Thus
The power function can be used for the comparison of two different
statistical tests.
The test whose power under the alternative hypotheses is greater is
always preferred.
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There are two types of errors associated with a statistical
test

Suppose that H0 is true
If q (x) ∈ Dρ, H0 will be rejected even if it is true.
It is called a type error I.
The probability of such error is ρ.
The probability of accepting H0 when it is true is 1− ρ.

Suppose that H0 is false
If q (x) /∈ Dρ, H0 will be accepted even if it is false.
It is called a type error I.
The probability of such error is 1−W (θ).
This depends on the specific value of θ.
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Thus

Something Notable
The probability density function (pdf) of the statistic q, under H0 ,
for most of the statistics used in practice has a single maximum.
In addition, the region Dρ, is either a half-line or the union of two
half-lines.
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Example

Dρ is the union of two half-lines (A two-tailed statistical test)
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A right-tailed test
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Problem

In many practical cases
The exact form of the pdf of a statistic q, under a given hypothesis, is not
available and it is difficult to obtain.

However, we can do the following
Monte Carlo techniques.
Bootstrapping techniques.
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Monte Carlo techniques

What do they do?
They rely on simulating the process at hand using a sufficient number of
computer-generated data.

Given enough data, we can try to learn the pdf for q.
Then, using that pdf we simulate samples of q.

Thus
For each of the say r, data sets, Xi, we compute the value of q, denoted
by qi.
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Then

We construct the corresponding histogram of these values
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Using this approximation

Assume
q corresponds to a right-tailed statistical test.
A histogram is constructed using r values of q corresponding to the r
data sets.
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A right-tailed test

23 / 59



Images/cinvestav-1.jpg

Thus

Then, acceptance or rejection may be based on the rules
Reject H0, if q is greater than (1− ρ) r of the qi values.
Accept H0, if q is smaller than (1− ρ) r of the qi values.
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For a left-tailed test
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Next

For a left-tailed test, rejection or acceptance of the null hypothesis is
done on the basis

1 Reject H0, if q is smaller than ρr of the qi values.
2 Accept H0, if q is greater than ρr of the qi values
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Now, for two-tailed statistical test

A two-tailed statistical test
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Thus

For a two-tailed test we have
Accept H0, if q is greater than

(ρ
2
)
r of the qi values and less than(

1− ρ
2
)
r of the qi values.
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Bootstrapping Techniques

Why?
They constitute an alternative way to cope with a limited amount of
data.

Then
The idea here is to parameterize the unknown pdf in terms of an
unknown parameter.

How
To cope with the limited amount of data and in order to improve the
accuracy of the estimate of the unknown pdf parameter.
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The Process

For this, we create
Several “fake”data sets X1, ..., Xr are created by sampling X with
replacement.

Thus
By using this sample, we estimate the desired pdf for q.

Then
Typically, good estimates are obtained if r is between 100 and 200.
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Which Hypothesis?

Random position hypothesis
H0: All the locations of N data points in some specific region of a
d-dimensional space are equally likely.

Random graph hypothesis
H0: All N ×N rank order proximity matrices are equally likely.

Random label hypothesis
H0: All permutations of the labels on N data objects are equally likely.
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Thus

We must define an appropriate statistic
Whose values are indicative of the structure of a data set, and
compare the value that results from our data set X against the value
obtained from the reference (random) population.

Random Population
In order to obtain the baseline distribution under the null hypothesis,
statistical sampling techniques like Monte Carlo analysis and
bootstrapping are used (Jain and Dubes, 1988).
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For example

Random position hypothesis - appropriate for ratio data
All the arrangements of N vectors in a specific region of the
d-dimensional space are equally likely to occur.

How?
One way to produce such an arrangement is to insert each point
randomly in this region of the d-dimensional space, according to a
uniform distribution.

The random position hypothesis
It can be used with either external or internal criterion.
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Internal criteria

What do we do?
In this case, the statistic q is defined so as to measure the degree to
which a clustering structure, produced by a clustering algorithm,
matches the proximity matrix of the corresponding data set.

We apply our clustering algorithm to the following data set
1 Let Xi be a set of N vectors generated according to the random

position hypothesis.
2 Pi be the corresponding proximity matrix.
3 Ci the corresponding clustering.

Then, we apply our algorithm over the real data X to obtain C

Now, we compute the statistics q for each clustering structure.
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Then, we use our hypothesis H0

The random hypothesis H0

It is rejected if the value q, resulting from X lies in the critical
interval Dρ of the statistic pdf of the reference random population.

Meaning
if q is unusually small or large.
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Also a External Criteria can be used

Definition
The statistic q is defined to measure the degree of correspondence
between a prespecified structure P imposed on X.
And the clustering that results after the application of a specific
clustering algorithm.

Then
Then, the value of q corresponding to the clustering C resulting from
the data set X is tested against the qi’s.
These qi’s correspond to the clusterings resulting from the reference
population generated under the random position hypothesis.

Again
The random hypothesis is rejected if q is unusually large or small.
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Nevertheless

There are more examples
In chapter 16 in the book of Theodoridis.
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External Criteria Usage

First
For the comparison of a clustering structure C, produced by a
clustering algorithm, with a partition P of X drawn independently
from C.

Second
For measuring the degree of agreement between a predetermined
partition P and the proximity matrix of X, P .
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Comparison of P with a Clustering C

First
In this case, C may be either a specific hierarchy of clusterings or a
specific clustering.

However
The problem with the hierarchical clustering is the cutting in the
correct level of the dendogram.

Then
We will concentrate on clustering that does not imply hierarchical
clustering.
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Thus

Setup
Consider a clustering C given by a specific clustering algorithm.
This clustering is done in a independently drawn partition P.

Thus, we obtain the following sets
C = {C1, C2, ..., Cm}
P = {P1, P2, ..., Ps}

Note that the number of clusters in C need not be the same as the number
of groups in P.
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Now

Consider the following
Let nij denote the number of vectors that belong to Ci and Pj
simultaneously.
Also nCi =

∑s
j=1 nij .

I It is the number of vectors that belong to Ci.
Similarly nPj =

∑m
i=1 nij

I The number of vectors that belong to Pj .
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Consider the a pair of vectors (xv, xu)

Thus, we have the following cases
Case 1: If both vectors belong to the same cluster in C and to the
same group in P.
Case 2: if both vectors belong to the same cluster in C and to
different groups in P.
Case 3: if both vectors belong to the different clusters in C and to the
same group in P.
Case 4: if both vectors belong to different clusters in C and to
different groups in P.
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Example
The numbers of pairs of points for the four cases are denoted as a, b,
c, and d
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Thus

The total number of pairs of points is N(N−1)
2 denoted as M

a+ b+ c+ d = M (2)

Now
We can give some commonly used external indices for measuring the
match between C and P.
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Commonly used external indices

Rand index (Rand, 1971)

R = a+ d

M
(3)

Jaccard coefficient

J = a

a+ b+ c
(4)

Fowlkes and Mallows index (Fowlkes and Mallows, 1983)

FM =
√

a

a+ b
× a

a+ c
(5)
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Explanation

Given a + d

The Rand statistic measures the fraction of the total number of pairs that
are either case 1 or 4.

Something Notable
The Jaccard coefficient follows the same philosophy as the Rand except
that it excludes case 4.

Properties
The values of these two statistics are between 0 and 1.
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Commonly used external indices

Hubert’s Γ statistics

Γ = Ma−m1m2√
m1m2 (M −m1) (M −m2)

(6)

Property
Unusually large absolute values of suggest that C and P agree with each
other.
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How we use all this?

Assuming a Random Hypothesis
It is possible using a Monte Carlo Method of sampling

Example: Gibbs Sampling
1 Initialize x to some value
2 Sample each variable in the feature vector x and resample
xi ∼ P

(
xi|x(i 6=j)

)
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Example

A trace of sampling for a single variable
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Algorithm and Example

Please
Go and read the section 16.3 in the Theodoridis’ Book page 871 for more.
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Hard Clustering

The Dunn and Dunn-like indices
Given a dissimilarity function:

d (Ci, Cj) = min
x∈Ci,y∈Cj

d (x,y) (7)

The it is possible to define the diameter of a cluster

diam (C) = max
x,y∈C

d (x,y) (8)

Then the Dunn Index

Dm = min
i=1,..,m

{
min

j=i+1,...,m

(
d (Ci, Cj)

maxk=1,...,m diam (Ck)

)}
(9)
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Thus

It is possible to prove that
If X contains compact and well-separated clusters, Dunn’s index will be
large

Example

58 / 59



Images/cinvestav-1.jpg

Thus
It is possible to prove that
If X contains compact and well-separated clusters, Dunn’s index will be
large

Example

58 / 59



Images/cinvestav-1.jpg

Although there are more

Please
Look at chapter 16 in the Theodoridis’ book for more examples
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