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Concepts

Hierarchical Clustering Algorithms
They are quite different from the previous clustering algorithms.

Actually
They produce a hierarchy of clusterings.
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Dendrogram

Hierarchical Clustering
The clustering is obtained by cutting the dendrogram at a desired level:

Each connected component forms a cluster.
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Example

Dendrogram
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Basic Ideas

At each step t
A new clustering is obtained based on the clustering produced at the
previous step t− 1

Two Main Types
1 Agglomerative Algorithms.

1 Start with each item being a single cluster.
2 Eventually all items belong to the same cluster.

2 Divisive Algorithms
1 Start with all items belong to the same cluster.
2 Eventually each item forms a cluster on its own.
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Remark

With hierarchical methods, divisions or fusions, once made
They are irrevocable

I Agglomerative algorithm has joined two individuals they cannot
subsequently be separated.

I A divisive algorithm has made a split it cannot be undone.

As Kaufman and Rousseeuw (1990) colourfully comment (Similar to
Forward Feature Selection)

“A hierarchical method suffers from the defect that it can never repair
what was done in previous steps.”
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Therefore

Given the previous ideas
It is necessary to define the concept of nesting!!!

After all given a divisive and agglomerative procedure
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Nested Clustering

Definition
1 A clustering <i containing k clusters is said to be nested in the

clustering <i+1, which contains r < k clusters, if each cluster in <i, it
is a subset of a set in <i+1.

2 At least one cluster at <i is a proper subset of a set in <i+1.

This is written as

<i @ <i+1 (1)
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Example

We have
The following set{x1, x2, x3, x4, x5}.

With the following structures
<1 = {{x1, x3} , {x4} , {x2, x5}}
<2 = {{x1, x3, x4} , {x2, x5}}

Again
Hierarchical Clustering produces a hierarchy of clusterings!!!
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Agglomerative Algorithms.

Initial State
You have N clusters each containing an element of the data X.

I At each step i, you have an <i structure with N − i.
I Then, a new clustering structure <i+1 is generated.

Thus

14 / 130



Agglomerative Algorithms.

Initial State
You have N clusters each containing an element of the data X.

I At each step i, you have an <i structure with N − i.
I Then, a new clustering structure <i+1 is generated.

Thus

14 / 130



Agglomerative Algorithms.

Initial State
You have N clusters each containing an element of the data X.

I At each step i, you have an <i structure with N − i.
I Then, a new clustering structure <i+1 is generated.

Thus

14 / 130



Agglomerative Algorithms.

Initial State
You have N clusters each containing an element of the data X.

I At each step i, you have an <i structure with N − i.
I Then, a new clustering structure <i+1 is generated.

Thus

14 / 130



In that way...

We have
At each step, we have that each cluster <i is a proper subset of a cluste in
<i or

<i @ <i+1 (2)
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The Basic Algorithm for Agglomerative

For this
We have a function d (Ci, Cj) defined in all pair of cluster to measure
similarity or dissimilarity.
t denotes the current level of the hierarchy.
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The Basic Algorithm

We have
1 Initialization
2 Choose <0 = {Ci = {xi} |i = 1, ..., N}
3 t = 0
4 Repeat:
5 t = t+ 1
6 Find one pair of clusters

(Cr, Cs) in <t−1 such that
d(Ci, Cj) = max,min of a similarity
or dissimilarity function
over all pairs

7 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq
8 Until all vectors lay in a single cluster
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Additionally

Note the following
“We can say that if two vectors come together into a single cluster at level
t of the hierarchy, they will remain in the same cluster for all subsequent
clusterings.”

Thus

<0 @ <1 @ <2 @ ...<N−1 @ <N (3)

Which Enforces
The nesting property!!!
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Two Categories of Agglomerative Algorithms

There are two
1 Matrix Theory Based.
2 Graph Theory Based.
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In Matrix Theory Based

Dissimilarity Matrix
As the name says, they are based in dissimilarity matrix P0 = P (X) of
N ×N .

Merging Process
At each merging the matrix is reduced by one level ⇒ Pt becomes a
N − t×N − t matrix.
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Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130



Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130



Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130



Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130



Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130



Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130



Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130



Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130



Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130



Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130



Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130



Matrix Based Algorithm

STRATEGY
1 Delete the two rows and columns that correspond to the merged

clusters.
2 Add new row and a new column that contain the distances between

the newly formed cluster and the old (unaffected at this level) clusters.
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Distance Used in These Schemes
It has been pointed out that there is only one general distance for
these algorithms

d (Cq, Cs) =aid (Ci, Cs) + ajd (Cj , Cs) + ...

bd (Ci, Cj) + c |d (Ci, Cs)− d (Cj , Cs)|

Where different values of ai, aj , b and c correspond to different choices of
the dissimilarity measures.

Using this distance is possible to generate several algorithms
1 The single link algorithm.
2 The complete link algorithm.
3 The weighted pair group method average.
4 The unweighted pair group method centroid.
5 Etc...
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Single Linkage

Let G and H represent two such group sets

We have that
Single linkage (SL) agglomerative clustering takes the intergroup
dissimilarity to be that of the closest (Least Dissimilar) pair:

dSL (G,H) = min
xi∈G,xj∈H

d (xi,xj)

This is also known as
This is also often called the nearest-neighbor technique.
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For example

The single linkage clustering algorithm
This is obtained if we set ai = 1/2, aj = 1/2, b = 0, c = −1/2

Thus, we have

d (Cq, Cs) = min {d (Ci, Cs) , d (Cj , Cs)} (4)
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What clusters are produced?

First
Distance Between closest elements in clusters
It produces long chains xi1 → xi2 → xi3 → xi4 → xi5
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Another Example of a Single Link Dissimilarity

This can be created using the following cluster distance

dmin (Ci, Cj) = min
x∈Ci,y∈Cj

‖x− y‖2

Nearest Neighborhood (Single Linkage)
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Complete linkage (CL)
Complete Linkage agglomerative clustering (furthest-neighbor
technique)

It takes the intergroup dissimilarity to be that of the furthest (most
dissimilar) pair

dCL (G,H) = max
xi∈G,xj∈H

d (xi,xj)

I Distance between farthest elements in the clusters.
I Forces, Spherical clusters with consistent diameter.
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Example

This can be created using the following cluster distance

dmax (Ci, Cj) = max
x∈Ci,y∈Cj

‖x− y‖2
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Finally, a compromise

Group average (GA)
Group average (GA) clustering uses the average dissimilarity between
the groups

dCL (G,H) = 1
NGNH

∑
xi∈G

∑
xj∈H

d (xi,xj)

Something Notable
Average of all the pairwise distances
Less affected by outliers
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Agglomerative Algorithms Based on Graph Theory

Consider the following
1 Each node in the graph G correspond to a vector.
2 Cluster are formed by connecting nodes.
3 Certain property, h (k), needs to be respected.

Common Properties: Node Connectivity
The node connectivity of a connected subgraph is the largest
integer k

I All pairs of nodes are joined by at least k paths having no nodes in
common.
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Agglomerative Algorithms Based on Graph Theory

Common Properties: Edge Connectivity
The edge connectivity of a connected subgraph is the largest integer k
such that all pairs of nodes are joined by at least k paths having no edges
in common.

Common Properties: Node Degree
The degree of a connected subgraph is the largest integer k such that
each node has at least k incident edges.
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Basically, We use the Same Scheme, But...

The function

dh(k) (Cr, Cs) = min
x∈Cr,y∈Cs

{d (x, y) |Property} (5)

Property
The G subgraph defined by Cr ∪ Cs is

1 It is connected and either
1 It has the property h(k) or
2 It is complete
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Examples

Again
1 Single Link Algorithm
2 Complete Link Algorithm

There is other style of clustering
Clustering Algorithms Based on the Minimum Spanning Tree
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Problems with Schema of Agglomerative Algorithms
First - Related to Nesting Property
No way to recover from a “poor” clustering that may have occurred in an
earlier level of the hierarchy.

Second, if we use a Naive Scheme - Full comparison at each level
At each level t, there are N − t clusters.
Thus at level t+ 1 the total number of pairs compared .(

N − t
2

)
= (N − t) (N − t− 1)

2 (6)

Total Number of pairs compared are
N−1∑
t=0

(
N − t

2

)
(7)
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Thus

We have that
N−1∑
t=0

(
N − t

2

)
=

N∑
k=1

(
k
2

)
= (N − 1)N (N + 1)

6 (8)

Thus
The complexity of this schema is O

(
N3)

However
You still depend on the nature of d.
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Then

We need to be able to improve the complexity of Aggregation
From the Metric Algorithms and Data structures, there are possible
solutions...
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The idea of using a middle point

In order to establish a better performance
Every time, we join two clusters:

I We can then use a representative for such join in the agglomeration

Therefore, we need a data structure to be able to support these
updates

We may use a Kd-tree...
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In this case, we assume a group average

We need a Kd-tree supporting insertions
By Logarithmic Rebuilding...

This was born from the fact that
It is necessary to modify the Kd-tree dynamically to maintain certain
performance.
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Example
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In order to keep performance, Logarithmic Rebuilding

We maintain at most h = O (logN) Kd-trees
T0, T1, ..., Th−1 such that the ith (i ∈ [1, h]) tree stores precisely 2i
points.
Each point is stored in only one Kd-tree.
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Procedure

We have the following procedure
To insert a new point p, we

1 Identify the smallest i ≥ 0 such that Ti is empty
2 Destroy all of T0, T1, ..., Ti−1. Collect all the points there into a set S.
3 Construct Ti in S ∪ {p}
I Note |Ti| = 2i
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Amortized Analysis

Construction of Ti
It takes O

(
2i log 2i

)
time

Charge the cost on the 2i points in Ti
Each of which is amortized O

(
log 2i

)
= O (logN) time.

Each point can be charged only O (log n) when moving to a bigger
tree

Amortized insertion time per point O
(
log2N

)
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Querying the Structure

Simply
Search all of the h trees T0, T1, ..., Th−1

Query Time

O
(√

2h−1 +
√

2h−2 + · · ·+
√

20 + k
)

= O
(√

N + k
)

Similar to the search on the original Kd-tree.
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What if we avoid comparing all the elements using a
Kd-Tree

Generation of the Structure
O
(
N log2N

)
to get the data structure with space O (N)

Query
We get to query in O

(√
N + k

)
in the worst case scenario.

I Here k is the number of elements being reported.
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Therefore

We have
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At Each Level

At each level calculate the new centroid
Insert it

I Inserting takes O
(
log2 N

)
, but How many insertions?
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We have...

Therefore
We have total number of insertions assuming pair of them:

N

2 + N

22 + ....+ N

2logn = N

(
1− 1

N
1
2

)
−N = ∗

Therefore

∗ = 2 (N − 1)−N = N − 2
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Final Complexity

We have after building the data structure
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Then, we have

The Clustering takes

O
(
N log2N

)
+O

(
N3/2 +Nk

)
= O

(
N3/2

)
Given that you need to build a tree for each centroid structure

N log2N + 1
2N log2 N

2 + ...+ 1
2logN log2 N

2log2 = O
(
N log2N

)
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Divisive Algorithms

Reverse Strategy
Start with a single cluster split it iteratively.

They are lees common than agglomerative methods
However, Kaufman and Rousseeuw (1990) pointed out:

I This is revealed when a divisive method is applied
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Generalized Divisive Scheme
Algorithm PROBLEM what is wrong!!!

1 Initialization
2 Choose <0 = {X}
3 P0 = P (X)

4 t = 0
5 Repeat
6 t = t+ 1
7 For i = 1 to t
8 Given a partition Ct−1, i

9 Generate all possible clusters
10 next i

11 Find the pair C1
t−1,j , C

2
t−1,j that

maximize g

12 Create
<t = <t−1 − {Ct−1,j} ∪

{
C1
t−1,j , C

2
t−1,j

}
13 Until all vectors lie in a single cluster
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Possible Complexity

This is computationally demanding
If all 2N i

t − 1 possible division are considered:
I With N i

t is the number of elements in the cluster.

However, for data consisting of d binary variables
Relatively simple and computationally efficient methods exists

I Monothetic divisive methods
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Monothetic Divisive Methods

They are based on
These generally divide clusters according to the presence or absence
of each of the d variables.

I At each stage cluster members contain or not certain attributes.

Format of the data
The data is in the form of a two-mode (binary) matrix.

members

Attributes

︷ ︸︸ ︷
1 0 1 · · · 0
0 1 0 · · · 0
0 0 0 · · · 1
...

...
... . . . ...

0 0 0 · · · 1
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Then, if we define

fk= It is the number of individuals having kth attribute
We can define the following homogeneity criterion (Information
Content):

C = dN logN −
d∑

k=1
{fk log fk − (n− fk) log (n− fk)}

Therefore, if we split the original cluster into two groups A and B
The reduction in C is CX − CA − CB

Therefore
The ideal set of clusters would have members with identical attributes
and C equal to zero.
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Therefore

Clusters are split at each stage
According to possession of the attribute which leads to the greatest
reduction in C.

Other possible splitting can be done using
Association Analysis (Ecology Term)
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For Example

For one pair of variables, vi and vj ∈ [0, 1]
vi

vj 1 0
1 f11 f10
0 f01 f00

fij = the number of times vi and vj coincide or not.

Some common measures of association

m1 (f) = |f11f00 − f10f01|
m2 (f) = [f11f00 − f10f01]2
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Therefore

The split at each stage
It is made according to the presence or absence of the attribute:

I Thus, its association with the others is a maximum!!!
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Algorithms for Large Data Sets

There are several
1 The CURE Algorithm
2 The DBSCAN Algorithm
3 The ROCK Algorithm
4 The Chameleon Algorithm
5 The BIRCH Algorithm
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Clustering Using REpresentatives (CURE)

Basic Idea
Each cluster Ci has a set of representatives
RCi =

{
x

(i)
1 ,x

(i)
2 , ...,x

(i)
K

}
with K > 1.

What is happening
By using multiple representatives for each cluster, the CURE
algorithm tries to “capture” the shape of each one.

However
In order to avoid taking into account irregularities (For example,
outliers) in the border of the cluster.

I The initially chosen representatives are “pushed” toward the mean of
the cluster.
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Therfore

This action is known
As “Shrinking” in the sense that the volume of space “defined” by the
representatives is shrunk toward the mean of the cluster.
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Shrinking Process

Given a cluster C
Select the point x ∈ C with the maximum distance from the mean of
C and set RC = {x} (the set of representatives).

Then
1 For i = 2 to min {K,nC}
2 Determine y ∈ C −RC that lies farthest from the points in RC
3 RC = RC ∪ {y}
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Shrinking Process

Do the Shrinking
Shrink the points x ∈ RC toward the mean mC in C by a factor α.

Actually

x = (1− α) x + αmC ∀x ∈ RC (9)
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Resulting set RC

Thus
The resulting set RC is the set of representatives of C.

Thus the distance between two cluster is defined as

d (Ci, Cj) = min
x∈RCi ,y∈RCj

d (x,y) (10)
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Clustering Using REpresentatives (CURE)
Basic Algorithm
Input : A set of points X = {x1,x2, ...,xN}
Output : C clusters

1 For every cluster Ci = {xi} store Ci.mC = {xi} and Ci.RC = {xi}

2 Ci.closest stores the cluster closest to Ci.

3 All the input points are inserted into a K − d tree T .

4 Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances
between Ci and Ci.closest).

5 While size(Q) > C

6 Remove the top element of Q, Ci and merge it with Cj == Ci.closest.

7 Then compute the new representative points for the merged cluster Ck = Ci ∪ Cj .

8 Also remove Ci and Cj from T and Q.

9 Also for all the clusters Ch ∈ Q, update Ch.closest and relocate Ch.
10 insert Ck into Q
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Complexity of Cure

Too Prohibitive

O
(
N2 log2N

)
(11)
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Possible Solution

CURE does the following
The technique adopted by the CURE algorithm, in order to reduce
the computational complexity, is that of random sampling .

Actually
That is, a sample set X ′ is created from X, by choosing randomly N ′ out
of the N points of X.

However, one has to ensure that the probability of missing a cluster of
X, due to this sampling
This can be guaranteed if the number of points N ′ is sufficiently large.
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Then

Having estimated N ′

CURE forms a number of p = N
N ′ sample data sets by successive random

samples.

In other words
X is partitioned randomly in p subsets.

For this a parameter q is selected
Then, the points in each partition p are clustered until N ′q clusters are
formed.
The distance between the closest pair of clusters to be merged in the
next iteration step exceeds a user-defined threshold.
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Once this has been finished

A second clustering pass is done
One the at most pN ′q = N

q clusters from all the subsets.

The Goal to apply the merging procedure described previously to all
(at most) N

q

Then, we end up with the required final number, C, of clusters.

Finally
We have the following strategy to assign to x ∈ X to a cluster.
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Then

First
A random sample of representative points from each of the C clusters is
chosen.

Then
Then, based on the previous representatives the point x is assigned to the
cluster that contains the representative closest to it.

Experiments reported by Guha et al. show that CURE
It is sensitive to parameter selection.

I Specifically K must be large enough to capture the geometry of each
cluster.

I In addition, N ′ must be higher than a certain percentage ≈ 2.5% of N .
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Not only that

The value of α (Shrinking Factors) affects also CURE
Small values, CURE looks similar than a Minimum Spanning Tree
clustering.
Large values, CURE resembles an algorithm with a single
representative.

The worst-case execution time for CURE increases with the sample
size N ′

O
(
N ′2 log2N

′
)

(12)
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A Large Name

Density-based spatial clustering of applications with noise (DBSCAN)
It is a data clustering algorithm proposed by Martin Ester, Hans-Peter
Kriegel, Jörg Sander and Xiaowei Xu in 1996.

Something Notable
It is a density-based clustering algorithm:

I Given a set of points in some space, it groups together points that are
closely packed together.

I Marking as outliers points that lie alone in low-density regions.
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Furthermore

Something Notable
In 2014, the algorithm was awarded the test of time award at the
leading data mining conference, KDD.
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Looking at clusters

We notice easily those clusters of points and noise points
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We are doing something quite human

The main reason why we recognize the clusters
We use the higher densities to recognize the clusters

Definition ( ε-neighborhood of a point)
Given a distance dist : Rd ×Rd → R+, the ε-Neighborhood of a point
x, denoted Nε (x), is defined as

Nε (x) =
{

y ∈ Rd|dist (x,y) ≤ ε
}
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Why not to use the idea of K-NN?

We could use our well know K-NN method
Thus, we naively could require for each point in a cluster there at
least a minimum number (MinPts) of points in the neighborhood of
such point

However, you have something more complex
Points inside of the cluster (Core points)
Points on the border of the cluster (Border points)
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Example

Core points and Border points
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Therefore

In General
An ε-neighborhood of a border point contains significantly less points
than an ε-neighborhood of a core point.

Therefore
MinPts varies in the presence of noise

98 / 130



Therefore

In General
An ε-neighborhood of a border point contains significantly less points
than an ε-neighborhood of a core point.

Therefore
MinPts varies in the presence of noise

98 / 130



Thus, we can ask for a new restriction

Definition (Directly Density-Reachable)
A point x is directly density reachable from a point y w.r.t. ε,
MinPts if

1 x ∈ Nε (y)
2 |Nε (y)| ≥MinPts (Core point condition)

Remarks
1 Directly density-reachable is symmetric for pairs of core points.
2 It is not symmetric if one core point and one border point are

involved.
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Example

Density-reachable
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Now, Density Reachable

Definition (Density-Reachable)
A point x is density-reachable from a point y wrt. ε and MinPts if
there is a chain of points:

p1,p2, ...,pk with p1 = x,pk = y

such that pi+1 is directly density-reachable from pi.
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Therefore

Density-Reachability is a canonical extension of Direct
Density-Reachability

This relation is transitive, but it is not symmetric.
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Then

Remark
Two border points of the same cluster C are possibly not density
reachable from each other:

I The core point condition might not hold for both of them.

However
There must be a core point in C from which both border points of C
are density-reachable.
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Density-Connected

Definition (Density-Connected)
A point x is density-connected to a point y w.r.t. ε and MinPts:

I if there is a point o such that both, x and y are density-reachable from
o w.r.t. ε and MinPts.

Example
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Symmetry in Density-Connectivity

Density-connectivity is a symmetric relation
Also for density reachable points, the relation of density-connectivity
is also reflexive.

We are ready to define the concept of Cluster
From the point of view density-based

Remark
Intuitively, a cluster is defined to be a set of density-connected points
which is maximal w.r.t. density-reachability.
Noise is simply the set of points in Rd not belonging to any of its
clusters.
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Cluster Definition

Definition
A cluster C w.r.t. ε and MinPts is a non-empty subset of Rd
satisfying the following conditions:

1 ∀x,y: if y ∈ C and x is density-reachable from y w.r.t. ε and
MinPts then x ∈ C (Maximality).

2 ∀x,y ∈ C, x is density-connected to y w.r.t. ε and MinPts
(Connectivity).
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Noise Definition

Definition
Let C1, ..., Ck be the clusters in Rd w.r.t. parameters εi and
MinPtsi , i = 1, ..., k.

I Then we define the noise as the set of points in Rd not belonging to
any cluster Ci:

Noise =
{

x ∈ Rd|∀i : x /∈ Ci
}
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Remarks

Something Notable
Since C contains at least one point x.
x must be density-connected to itself via some point o.

I which may be equal to x.
Thus, at least o has to satisfy the core point condition

I Consequently, ε-Neighborhood of o contains at least MinPts
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Supporting the idea of cluster

Lemma - Reachability
Let y be a point in Rd and |Nε (y)| ≥MinPts. Then

O =
{

o|o ∈ Rd and o is density-reachable from y w.r.t. ε and MinPts
}

is a cluster w.r.t. ε and MinPts.
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Proof

Given the definition of O
We have the first part of the definition of Cluster w.r.t. ε and
MinPts.

Given the that two points o1,o2 ∈ O are density-reachable from y

o1,o2 are density connected.

Then
O is a cluster w.r.t. ε and MinPts.
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Intuition

Given the parameters ε and MinPts, we can discover a cluster
First, choose an arbitrary point from Rd satisfying the core point
condition as a seed.

Then
Retrieve all points that are density-reachable from the seed obtaining
the cluster containing the seed.
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However, it is not enough

We need something else
Given that it is not obvious that a cluster C w.r.t. ε and MinPts is
uniquely determined by any of its core points.

However
Each point in C is density-reachable from any of the core points of C.
A cluster C contains exactly the points which are density-reachable
from an arbitrary core point of C.
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Then

Lemma - Cluster Equality to O
Let C be a cluster w.r.t. ε and MinPts. and let y be any point in C
with |Nε (y)| ≥MinPts

I Then C equals to the set

O =
{

o|o ∈ Rd and o is density-reachable from y w.r.t. ε and MinPts
}
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Proof

Given x ∈ C
We have two cases

Case 1
x is a Border point that is density reachable from y with
|Nε (y)| ≥MinPts

Then
x ∈ O
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Now

Case 2
x is a Core point then |Nε (x)| ≥MinPts

Therefore
By Definition x is density reachable from any y w.r.t. ε and MinPts.

Therefore
C ⊂ O the other contention is similar
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DBSCAN Algorithm

DBSCAN(X, ε,MinPts)
1 ClusterId = nextId (NOISE)
2 for i = 1 to X.size
3 x = SetOfPoints.get (i)
4 if x.ClId is UNCLASSIFIED:
5 If ExpandCluster(SetPoints,x, ClusterId, ε,MinPts)
6 ClusterId = nextId (ClusterId)
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ExpandCluster(SetPoints, Point, ClId, ε,MinPts)
1 seed = SetOfPoints.regionQuery (Point, ε)
2 If seeds.size < MinPts Then
3 SetPoints.changeClId (Point,NOISE)
4 return FALSE
5 else
6 SetPoints.changeClId (seeds, ClId)
7 seeds.delete (Point)
8 while seeds 6= NULL:
9 currentP = seeds.first ()
10 result = SetOfPoints.regionQuery (currentP, ε)
11 if result.size () > MinPts then
12 for i = 1 to result.size:
13 resultP = result.get (i)
14 if resultP.ClId ∈ {NOISE,UNCLASSSIFIED} and

resultP.ClId = UNCLASSSIFIED
15 seeds.append (resultP )
16 SetPoints.changeClId (resultP, ClId)
17 seeds.delete (currentP )
18 return TRUE
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Complexity

xis a core point
It can be implemented using kd-trees

Thus, given the complexities of Kd-trees
Average Worst case

Space O (n) O (n)
Search O (logn) O (n)
Insert O (logn) O (n)
Delete O (logn) O (n)
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Therefore

The average Complexity of DBSCAN
O (dn logn) to build the structure for query using a heapsort or
mergesort
O
({
n1− 1

d +m
})

when m is the number of reported elements and d
is the dimensionality of the points.
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There is a problem

How do we estimate?
ε and MinPts.

In the original paper
They develop a heuristic to determine the parameters ε and MinPts
of the "thinnest"
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Heuristic

Let d be the distance of a point x

to its kth nearest neighbor.

Then, the d-neighborhood of x contains exactly
k + 1 points for almost all points x.

The d-neighborhood of x contains more than k + 1 points
Only if several points have exactly the same distance d from x which
is quite unlikely.
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Then

Furthermore
Changing k for a point in a cluster does not result in large changes of
d.

This only happens if the kth nearest neighbors of x

for k = 1, 2, 3, ... are located approximately
I on a straight line which is in general not true for a point in a cluster.
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Then, we have

For a given k we define a function k-dist from Rd to R
Mapping each point to the distance from its kth nearest neighbor.

When sorting the points of the database in descending order of their
k-dist values

The graph of this function gives some hints concerning the density
distribution in the database.
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Example of 4-dist

We set MinPts = 4 then we can calculate ε by looking

Noise Cluster

4-dist

Points

Threshold
Point
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Therefore

For more in the heuristic look at the paper
“A Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise” by Martin Ester, Hans-Peter Kriegel, Jorg
Sander, Xiaowei Xu

However, the problem is the same
Finding the correct number of hyperparameters for getting the correct
number of clusters

More advanced methods of clustering exist
Spectral Clustering - Using the Graph Structure
Dirichlet Processes - Based in the Generation of a Distribution
etc
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