Introduction to Machine Learning Hierarchical Clustering and Large Data Set Clustering

Andres Mendez-Vazquez

August 4, 2020

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1/130

Outline Hierarchical Clustering

Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

3 Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - \blacksquare Finding ϵ and MinPts

Outline Hierarchical Clustering

Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - $\textcircled{\ }$ Finding ϵ and MinPts

Concepts

Hierarchical Clustering Algorithms

They are quite different from the previous clustering algorithms.

Actually

They produce a hierarchy of clusterings.

Concepts

Hierarchical Clustering Algorithms

They are quite different from the previous clustering algorithms.

Actually

They produce a hierarchy of clusterings.

Dendrogram

Hierarchical Clustering

The clustering is obtained by cutting the **dendrogram** at a desired level:

• Each connected component forms a cluster.

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - \blacksquare Finding ϵ and MinPts

At each step t

A new clustering is obtained based on the clustering produced at the previous step t-1

At each step t

A new clustering is obtained based on the clustering produced at the previous step t-1

Two Main Types

- Agglomerative Algorithms.
 - Start with each item being a single cluster.
 - Eventually all items belong to the same cluster.
 - Divisive Algorithms
 - Start with all items belong to the same cluster.
 - Eventually each item forms a cluster on its own.

At each step t

A new clustering is obtained based on the clustering produced at the previous step t-1

Two Main Types

- Agglomerative Algorithms.
 - Start with each item being a single cluster.

Divisive Algorithms

- Start with all items belong to the same cluster.
- Eventually each item forms a cluster on its own.

At each step t

A new clustering is obtained based on the clustering produced at the previous step t-1

Two Main Types

- Agglomerative Algorithms.
 - **9** Start with each item being a single cluster.
 - O Eventually all items belong to the same cluster.

Divisive Algorithms

Start with all items belong to the same cluster.

Eventually each item forms a cluster on its own.

At each step t

A new clustering is obtained based on the clustering produced at the previous step t-1

Two Main Types

- Agglomerative Algorithms.
 - Start with each item being a single cluster.
 - e Eventually all items belong to the same cluster.
- Oivisive Algorithms

Cinvestav

イロト イロト イヨト イヨト

At each step t

A new clustering is obtained based on the clustering produced at the previous step t-1

Two Main Types

- Agglomerative Algorithms.
 - Start with each item being a single cluster.
 - e Eventually all items belong to the same cluster.
- Oivisive Algorithms
 - Start with all items belong to the same cluster.

At each step t

A new clustering is obtained based on the clustering produced at the previous step t-1

Two Main Types

- Agglomerative Algorithms.
 - Start with each item being a single cluster.
 - e Eventually all items belong to the same cluster.
- Oivisive Algorithms
 - Start with all items belong to the same cluster.
 - e Eventually each item forms a cluster on its own.

Remark

With hierarchical methods, divisions or fusions, once made

- They are irrevocable
 - Agglomerative algorithm has joined two individuals they cannot subsequently be separated.

Remark

With hierarchical methods, divisions or fusions, once made

- They are irrevocable
 - Agglomerative algorithm has joined two individuals they cannot subsequently be separated.
 - A divisive algorithm has made a split it cannot be undone.

As Kaufman and Rousseeuw (1990) colourfully comment (Similar to Forward Feature Selection)

"A hierarchical method suffers from the defect that it can never repair what was done in previous steps."

Remark

With hierarchical methods, divisions or fusions, once made

- They are irrevocable
 - Agglomerative algorithm has joined two individuals they cannot subsequently be separated.
 - A divisive algorithm has made a split it cannot be undone.

As Kaufman and Rousseeuw (1990) colourfully comment (Similar to Forward Feature Selection)

• "A hierarchical method suffers from the defect that it can never repair what was done in previous steps."

Therefore

Given the previous ideas

It is necessary to define the concept of nesting!!!

After all given a divisive and agglomerative procedure

Therefore

Given the previous ideas

It is necessary to define the concept of nesting!!!

Nested Clustering

Definition

• A clustering \Re_i containing k clusters is said to be nested in the clustering \Re_{i+1} , which contains r < k clusters, if each cluster in \Re_i , it is a subset of a set in \Re_{i+1} .

At least one cluster at \Re_i is a proper subset of a set in \Re_{i+1}

Nested Clustering

Definition

- A clustering \Re_i containing k clusters is said to be nested in the clustering \Re_{i+1} , which contains r < k clusters, if each cluster in \Re_i , it is a subset of a set in \Re_{i+1} .
- **2** At least one cluster at \Re_i is a proper subset of a set in \Re_{i+1} .

Nested Clustering

Definition

- A clustering \Re_i containing k clusters is said to be nested in the clustering \Re_{i+1} , which contains r < k clusters, if each cluster in \Re_i , it is a subset of a set in \Re_{i+1} .
- **2** At least one cluster at \Re_i is a proper subset of a set in \Re_{i+1} .

This is written as

$$\Re_i \sqsubset \Re_{i+1}$$

We have

The following set $\{x_1, x_2, x_3, x_4, x_5\}$.

We have

The following set $\{x_1, x_2, x_3, x_4, x_5\}$.

With the following structures

•
$$\Re_1 = \{\{x_1, x_3\}, \{x_4\}, \{x_2, x_5\}\}$$

イロト イロト イヨト イヨト

We have

The following set $\{x_1, x_2, x_3, x_4, x_5\}$.

With the following structures

•
$$\Re_1 = \{\{x_1, x_3\}, \{x_4\}, \{x_2, x_5\}\}$$

•
$$\Re_2 = \{\{x_1, x_3, x_4\}, \{x_2, x_5\}\}$$

Hierarchical Clustering produces a hierarchy of clusterings!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

We have

The following set $\{x_1, x_2, x_3, x_4, x_5\}$.

With the following structures

•
$$\Re_1 = \{\{x_1, x_3\}, \{x_4\}, \{x_2, x_5\}\}$$

• $\Re_2 = \{\{x_1, x_3, x_4\}, \{x_2, x_5\}\}$

Again

Hierarchical Clustering produces a hierarchy of clusterings!!!

イロン イロン イヨン イヨン

Outline

Hierarchical Clustering

Definition

Basic Ideas

Agglomerative Algorithms

Introduction

- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - \blacksquare Finding ϵ and MinPts

Initial State

• You have N clusters each containing an element of the data X.

Then, a new clustering structure \Re_{i+1} is generated.

Initial State

• You have N clusters each containing an element of the data X.

• At each step i, you have an \Re_i structure with N-i.

Initial State

 \bullet You have N clusters each containing an element of the data X.

- At each step i, you have an \Re_i structure with N-i.
- Then, a new clustering structure \Re_{i+1} is generated.

Initial State

• You have N clusters each containing an element of the data X.

- At each step i, you have an \Re_i structure with N-i.
- Then, a new clustering structure \Re_{i+1} is generated.

In that way...

We have

At each step, we have that each cluster \Re_i is a proper subset of a cluste in \Re_i or

$$\Re_i \sqsubset \Re_{i+1}$$

(2)

The Basic Algorithm for Agglomerative

For this

- We have a function $d(C_i, C_j)$ defined in all pair of cluster to measure similarity or dissimilarity.
- t denotes the current level of the hierarchy.

The Basic Algorithm for Agglomerative

For this

- We have a function $d(C_i, C_j)$ defined in all pair of cluster to measure similarity or dissimilarity.
- t denotes the current level of the hierarchy.

The Basic Algorithm

<ロト < 回 ト < 目 ト < 目 ト < 目 ト 目 の Q () 17 / 130

Additionally

Note the following

"We can say that if two vectors come together into a single cluster at level t of the hierarchy, they will remain in the same cluster for all subsequent clusterings."

< ロ > < 同 > < 回 > < 回 >

Additionally

Note the following

"We can say that if two vectors come together into a single cluster at level t of the hierarchy, they will remain in the same cluster for all subsequent clusterings."

Thus

$$\Re_0 \sqsubset \Re_1 \sqsubset \Re_2 \sqsubset \dots \Re_{N-1} \sqsubset \Re_N$$
 (3)

Which Enforces

• The nesting property!!!

Additionally

Note the following

"We can say that if two vectors come together into a single cluster at level t of the hierarchy, they will remain in the same cluster for all subsequent clusterings."

Thus

$$\Re_0 \sqsubset \Re_1 \sqsubset \Re_2 \sqsubset \dots \Re_{N-1} \sqsubset \Re_N$$

Which Enforces

• The nesting property!!!

< ロ > < 同 > < 回 > < 回 >

(3)

Outline

Hierarchical Clustering

Definition

Basic Ideas

Agglomerative Algorithms

Introduction

Two Categories of Agglomerative Algorithms

- Matrix Based Algorithms
- Single Linkage
- Complete Linkage
- Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - Finding ϵ and MinPts

イロト イヨト イヨト

Two Categories of Agglomerative Algorithms

There are two

• Matrix Theory Based.

Graph Theory Based.

Two Categories of Agglomerative Algorithms

There are two

- Matrix Theory Based.
- Graph Theory Based.

Outline

Hierarchical Clustering

Definition

Basic Ideas

Agglomerative Algorithms

Introduction

Two Categories of Agglomerative Algorithms Matrix Based Algorithms

- Matrix Based Algor
- Single Linkage
- Complete Linkage
- Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - \blacksquare Finding ϵ and MinPts

イロト イヨト イヨト

In Matrix Theory Based

Dissimilarity Matrix

As the name says, they are based in dissimilarity matrix $P_{0}=P\left(X\right)$ of $N\times N.$

In Matrix Theory Based

Dissimilarity Matrix

As the name says, they are based in dissimilarity matrix $P_0 = P(X)$ of $N \times N$.

Merging Process

At each merging the matrix is reduced by one level $\Rightarrow P_t$ becomes a $N - t \times N - t$ matrix.

Matrix Updating Algorithmic Scheme (MUAS)

Initialization

```
Choose \Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}

P_0 = P(X)

t = 0

Repeat

t = t + 1
```

```
Find one pair of clusters
```

```
(C_r,C_s) in \Re_{t-1} such that
```

```
(C_i, C_j) = \min_{r,s=1,\dots,N, r \neq s} d(C_r, C_s)
```

```
\label{eq:constraint} \blacksquare \quad \mbox{Define } C_q = C_i \cup C_j, \Re_t = \Re_{t-1} - \{C_i, C_j\} \cup C_q
```

 \bigcirc Define P_t by **STRATEGY**

Until all vectors lay in a single cluster

Cinvestav イロト イクト イミト イミト ミーク へ (* 23 / 130

Matrix Updating Algorithmic Scheme (MUAS) Initialization (2)Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$

Cinvestav ・ロト・日本・モート・モーシーモーション 23/130

Matrix Updating Algorithmic Scheme (MUAS)

Initialization (2)Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$ $P_0 = P(X)$ 3

Cinvestav < ロト < 回ト < Eト < Eト E の Q (* 23/130

Matrix Updating Algorithmic Scheme (MUAS)

Initialization

- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- $P_0 = P(X)$
 - t = 0

Repeat

4

- 0 t = t + 1
 - Find one pair of clusters
 - (C_r,C_s) in \Re_{t-1} such that
 - $l(C_i, C_j) = \min_{r,s=1,\dots,N, r \neq s} d(C_r, C_s)$
- $\label{eq:constraint} \bigcirc \qquad \mathsf{Define} \ C_q = C_i \cup C_j, \Re_t = \Re_{t-1} \{C_i, C_j\} \cup C_q$
- \bigcirc Define P_t by **STRATEGY**

Matrix Updating Algorithmic Scheme (MUAS)

Initialization

- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- $P_0 = P(X)$
 - t = 0
- Sepeat

• t = t + 1• Find one pair of clusters (C_r, C_s) in \Re_{t-1} such that $d(C_i, C_j) = \min_{r,s=1,...,N,r \neq s} d(C_r, C_s)$ • Define $C_q = C_i \cup C_j, \Re_t = \Re_{t-1} - \{C_i, C_j\} \cup C_q$ • Define P_i by STRATEGY

Matrix Updating Algorithmic Scheme (MUAS)

Initialization

- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- $P_0 = P(X)$
- S Repeat

6

t = t + 1

Find one pair of clusters

 $C_r,C_s)$ in \Re_{t-1} such that

 $(C_i, C_j) = \min_{r,s=1,\dots,N, r \neq s} d(C_r, C_s)$

 $\label{eq:constraint} \bigcirc \qquad \mathsf{Define} \ C_q = C_i \cup C_j, \Re_t = \Re_{t-1} - \{C_i, C_j\} \cup C_q$

 \bigcirc Define P_t by STRATEGY

Matrix Updating Algorithmic Scheme (MUAS)

Initialization

- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- $P_0 = P(X)$

S Repeat

6

7

- t = t + 1
- Find one pair of clusters

 (C_r,C_s) in \Re_{t-1} such that

- $\mathfrak{a}(\mathfrak{O}_{1},\mathfrak{O}_{2})=\min_{r,s=1,\ldots,N},r\neq s\mathfrak{a}(\mathfrak{O}_{1},\mathfrak{O}_{3})$
- $\bigcirc \qquad \qquad \mathsf{Define} \ C_q = C_i \cup C_j, \Re_t = \Re_{t-1} \{C_i, C_j\} \cup C_q$
- \bigcirc Define P_t by **STRATEGY**

Matrix Updating Algorithmic Scheme (MUAS)

Initialization

- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- $P_0 = P(X)$
- S Repeat

6

- t = t + 1
- Find one pair of clusters
 - (C_r, C_s) in \Re_{t-1} such that $d(C_i, C_j) = \min_{r,s=1,..,N,r \neq s} d(C_r, C_s)$
- \bigcirc Define P_t by **STRATEGY**

Until all vectors lay in a single cluster

Matrix Updating Algorithmic Scheme (MUAS)

Initialization

- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- $P_0 = P(X)$

S Repeat

6

- t = t + 1
- Find one pair of clusters

 (C_r, C_s) in \Re_{t-1} such that $d(C_i, C_i) = \min_{r,s=1,\dots,N,r \neq s} d(C_r, C_s)$

Define P_t by **STRATEGY**

Until all vectors lay in a single cluster

Matrix Updating Algorithmic Scheme (MUAS)

Initialization

- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- $P_0 = P(X)$

S Repeat

6

- t = t + 1
- Find one pair of clusters

 (C_r, C_s) in \Re_{t-1} such that $d(C_i, C_j) = \min_{r,s=1,...,N, r \neq s} d(C_r, C_s)$

- 9 Define P_t by **STRATEGY**

Until all vectors lay in a single cluster

イロト イヨト イヨト

Matrix Updating Algorithmic Scheme (MUAS)

Initialization

- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- $P_0 = P(X)$

6 Repeat

6

- t = t + 1
- Find one pair of clusters

 (C_r, C_s) in \Re_{t-1} such that $d(C_i, C_j) = \min_{r,s=1,..,N,r \neq s} d(C_r, C_s)$

- Define P_t by STRATEGY
- Until all vectors lay in a single cluster

イロト イヨト イヨト

STRATEGY

- Delete the two rows and columns that correspond to the merged clusters.
- Add new row and a new column that contain the distances between the newly formed cluster and the old (unaffected at this level) clusters.

STRATEGY

- Delete the two rows and columns that correspond to the merged clusters.
- Add new row and a new column that contain the distances between the newly formed cluster and the old (unaffected at this level) clusters.

It has been pointed out that there is only one general distance for these algorithms

$$d(C_q, C_s) = a_i d(C_i, C_s) + a_j d(C_j, C_s) + \dots bd(C_i, C_j) + c | d(C_i, C_s) - d(C_j, C_s) |$$

Where different values of a_i, a_j, b and c correspond to different choices of the dissimilarity measures.

It has been pointed out that there is only one general distance for these algorithms

$$\begin{aligned} d\left(C_{q},C_{s}\right) = & a_{i}d\left(C_{i},C_{s}\right) + a_{j}d\left(C_{j},C_{s}\right) + \dots \\ & bd\left(C_{i},C_{j}\right) + c\left|d\left(C_{i},C_{s}\right) - d\left(C_{j},C_{s}\right)\right| \end{aligned}$$

Where different values of a_i, a_j, b and c correspond to different choices of the dissimilarity measures.

Using this distance is possible to generate several algorithms

1 The single link algorithm.

The weighted pair group method average.

The unweighted pair group method centroid.

It has been pointed out that there is only one general distance for these algorithms

$$\begin{aligned} d\left(C_{q},C_{s}\right) = & a_{i}d\left(C_{i},C_{s}\right) + a_{j}d\left(C_{j},C_{s}\right) + \dots \\ & bd\left(C_{i},C_{j}\right) + c\left|d\left(C_{i},C_{s}\right) - d\left(C_{j},C_{s}\right)\right| \end{aligned}$$

Where different values of a_i, a_j, b and c correspond to different choices of the dissimilarity measures.

Using this distance is possible to generate several algorithms

- The single link algorithm.
- 2 The complete link algorithm.

The weighted pair group method average.

The unweighted pair group method centroid.

It has been pointed out that there is only one general distance for these algorithms

$$\begin{aligned} d\left(C_{q},C_{s}\right) = & a_{i}d\left(C_{i},C_{s}\right) + a_{j}d\left(C_{j},C_{s}\right) + \dots \\ & bd\left(C_{i},C_{j}\right) + c\left|d\left(C_{i},C_{s}\right) - d\left(C_{j},C_{s}\right)\right| \end{aligned}$$

Where different values of a_i, a_j, b and c correspond to different choices of the dissimilarity measures.

Using this distance is possible to generate several algorithms

- The single link algorithm.
- O The complete link algorithm.
- The weighted pair group method average.

It has been pointed out that there is only one general distance for these algorithms

$$d(C_q, C_s) = a_i d(C_i, C_s) + a_j d(C_j, C_s) + \dots bd(C_i, C_j) + c | d(C_i, C_s) - d(C_j, C_s) |$$

Where different values of a_i, a_j, b and c correspond to different choices of the dissimilarity measures.

Using this distance is possible to generate several algorithms

- The single link algorithm.
- 2 The complete link algorithm.
- Solution The weighted pair group method average.
- Output: The unweighted pair group method centroid.
Distance Used in These Schemes

It has been pointed out that there is only one general distance for these algorithms

$$\begin{aligned} d\left(C_{q},C_{s}\right) = & a_{i}d\left(C_{i},C_{s}\right) + a_{j}d\left(C_{j},C_{s}\right) + \dots \\ & bd\left(C_{i},C_{j}\right) + c\left|d\left(C_{i},C_{s}\right) - d\left(C_{j},C_{s}\right)\right| \end{aligned}$$

Where different values of a_i, a_j, b and c correspond to different choices of the dissimilarity measures.

Using this distance is possible to generate several algorithms

- The single link algorithm.
- 2 The complete link algorithm.
- Solution The weighted pair group method average.
- One of the unweighted pair group method centroid.
- 🗿 Etc...

Outline

Hierarchical Clustering

Definition

Basic Ideas

Agglomerative Algorithms

Introduction

Two Categories of Agglomerative Algorithms

Matrix Based Algorithms

Single Linkage

- Complete Linkage
- Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - $\textcircled{\ }$ Finding ϵ and MinPts

イロト イヨト イヨト

Single Linkage

Let G and H represent two such group sets

We have that

 Single linkage (SL) agglomerative clustering takes the intergroup dissimilarity to be that of the closest (Least Dissimilar) pair:

$$d_{SL}(G, H) = \min_{\boldsymbol{x}_i \in G, \boldsymbol{x}_j \in H} d(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

This is also known as

• This is also often called the nearest-neighbor technique.

・ロト ・四ト ・ヨト ・ヨト

Single Linkage

Let G and H represent two such group sets

We have that

• Single linkage (SL) agglomerative clustering takes the intergroup dissimilarity to be that of the closest (Least Dissimilar) pair:

$$d_{SL}(G, H) = \min_{\boldsymbol{x}_i \in G, \boldsymbol{x}_j \in H} d(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

This is also known as

This is also often called the nearest-neighbor technique.

Single Linkage

Let G and H represent two such group sets

We have that

• Single linkage (SL) agglomerative clustering takes the intergroup dissimilarity to be that of the closest (Least Dissimilar) pair:

$$d_{SL}(G, H) = \min_{\boldsymbol{x}_i \in G, \boldsymbol{x}_j \in H} d(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

This is also known as

• This is also often called the nearest-neighbor technique.

For example

The single linkage clustering algorithm

This is obtained if we set $a_i = 1/2$, $a_j = 1/2$, b = 0, c = -1/2

Thus, we have

$d(C_q, C_s) = \min \left\{ d(C_i, C_s), d(C_j, C_s) \right\}$

For example

The single linkage clustering algorithm

This is obtained if we set $a_i = 1/2$, $a_j = 1/2$, b = 0, c = -1/2

Thus, we have

$$d(C_q, C_s) = \min \{ d(C_i, C_s), d(C_j, C_s) \}$$
(4)

What clusters are produced?

Another Example of a Single Link Dissimilarity

This can be created using the following cluster distance

$$d_{\min}(C_i, C_j) = \min_{\boldsymbol{x} \in C_i, \boldsymbol{y} \in C_j} \|\boldsymbol{x} - \boldsymbol{y}\|^2$$

Nearest Neighborhood (Single Linkage)

Another Example of a Single Link Dissimilarity

This can be created using the following cluster distance

$$d_{\min}\left(C_{i},C_{j}
ight)=\min_{oldsymbol{x}\in C_{i},oldsymbol{y}\in C_{j}}\|oldsymbol{x}-oldsymbol{y}\|^{2}$$

Nearest Neighborhood (Single Linkage)

Outline

Hierarchical Clustering

Definition

Basic Ideas

Agglomerative Algorithms

Introduction

Two Categories of Agglomerative Algorithms

- Matrix Based Algorithms
- Single Linkage

Complete Linkage

Group Average Linkage

- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - $\textcircled{\ }$ Finding ϵ and MinPts

イロト イヨト イヨト

Complete linkage (CL)

a

Complete Linkage agglomerative clustering (furthest-neighbor technique)

• It takes the intergroup dissimilarity to be that of the furthest (most dissimilar) pair

$$\mathcal{L}_{CL}(G,H) = \max_{\boldsymbol{x}_i \in G, \boldsymbol{x}_j \in H} d(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

- Distance between farthest elements in the clusters.
- ► Forces, Spherical clusters with consistent diameter.

Example

This can be created using the following cluster distance

$$d_{\max}(C_i, C_j) = \max_{\boldsymbol{x} \in C_i, \boldsymbol{y} \in C_j} \|\boldsymbol{x} - \boldsymbol{y}\|^2$$

Outline

Hierarchical Clustering

Definition

Basic Ideas

Agglomerative Algorithms

Introduction

Two Categories of Agglomerative Algorithms

- Matrix Based Algorithms
- Single Linkage
- Complete Linkage

Group Average Linkage

- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - $\textcircled{\ }$ Finding ϵ and MinPts

イロト イヨト イヨト

Finally, a compromise

Group average (GA)

• Group average (GA) clustering uses the average dissimilarity between the groups

$$d_{CL}(G, H) = \frac{1}{N_G N_H} \sum_{\boldsymbol{x}_i \in G} \sum_{\boldsymbol{x}_j \in H} d(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

Something Notable

- Average of all the pairwise distances
- Less affected by outliers

Finally, a compromise

Group average (GA)

• Group average (GA) clustering uses the average dissimilarity between the groups

$$d_{CL}(G, H) = \frac{1}{N_G N_H} \sum_{\boldsymbol{x}_i \in G} \sum_{\boldsymbol{x}_j \in H} d(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

Something Notable

- Average of all the pairwise distances
- Less affected by outliers

イロト イヨト イヨト

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage

Graph Based Algorithms

- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - $\textcircled{\ }$ Finding ϵ and MinPts

イロト イヨト イヨト

Consider the following

• Each node in the graph G correspond to a vector.

Cluster are formed by connecting nodes.

) Certain property, $h\left(k
ight)$, needs to be respected.

Consider the following

- Each node in the graph G correspond to a vector.
- Oluster are formed by connecting nodes.

) Certain property, $h\left(k
ight)$, needs to be respected.

Common Properties: Node Connectivity

- The node connectivity of a connected subgraph is the largest integer k
 - All pairs of nodes are joined by at least k paths having no nodes in common.

< ロ > < 同 > < 回 > < 回 >

Consider the following

- Each node in the graph G correspond to a vector.
- Oluster are formed by connecting nodes.
- **③** Certain property, h(k), needs to be respected.

Common Properties: Node Connectivity

- The node connectivity of a connected subgraph is the largest integer k
 - All pairs of nodes are joined by at least k paths having no nodes in common.

< ロ > < 同 > < 回 > < 回 >

Consider the following

- Each node in the graph G correspond to a vector.
- Oluster are formed by connecting nodes.
- **③** Certain property, h(k), needs to be respected.

Common Properties: Node Connectivity

- The **node connectivity** of a connected subgraph is the largest integer \boldsymbol{k}
 - All pairs of nodes are joined by at least k paths having no nodes in common.

イロト イヨト イヨト

Common Properties: Edge Connectivity

The **edge connectivity** of a connected subgraph is the largest integer k such that all pairs of nodes are joined by at least k paths having no edges in common.

Common Properties: Node Degree

The **degree** of a connected subgraph is the largest integer k such that each node has at least k incident edges.

Common Properties: Edge Connectivity

The **edge connectivity** of a connected subgraph is the largest integer k such that all pairs of nodes are joined by at least k paths having no edges in common.

Common Properties: Node Degree

The **degree** of a connected subgraph is the largest integer k such that each node has at least k incident edges.

< ロ > < 同 > < 回 > < 回)

The function

$$d_{h(k)}(C_r, C_s) = \min_{x \in C_r, y \in C_s} \left\{ d(x, y) | Property \right\}$$

(5)

Cinvestav

39/130

イロト イヨト イヨト イヨト

The function

$$d_{h(k)}\left(C_{r},C_{s}\right) = \min_{x \in C_{r}, y \in C_{s}} \left\{ d\left(x,y\right) | Property \right\}$$

Property

The G subgraph defined by $C_r \cup C_s$ is

The function

$$d_{h(k)}(C_r, C_s) = \min_{x \in C_r, y \in C_s} \left\{ d(x, y) | Property \right\}$$

Property

The G subgraph defined by $C_r \cup C_s$ is

It is connected and either

< □ > < 同 > < □ >

The function

$$d_{h(k)}\left(C_{r},C_{s}\right) = \min_{x \in C_{r}, y \in C_{s}} \left\{ d\left(x,y\right) | Property \right\}$$

Property

The G subgraph defined by $C_r \cup C_s$ is

- It is connected and either
 - $\textbf{0} \ \ \, \text{It has the property } h(k) \ \, \text{or} \ \ \, \\$

The function

$$d_{h(k)}\left(C_{r},C_{s}\right) = \min_{x \in C_{r}, y \in C_{s}} \left\{ d\left(x,y\right) | Property \right\}$$

Property

The G subgraph defined by $C_r \cup C_s$ is

- It is connected and either
 - $\textbf{0} \ \ \, \text{It has the property } h(k) \ \, \text{or} \ \ \, \\$
 - It is complete

< ロ > < 回 > < 回 > < 回 > < 回 >

Examples

Again

Single Link Algorithm

Complete Link Algorithm

Examples

Again

- Single Link Algorithm
- Occupiete Link Algorithm

nere is other style of clustering

Clustering Algorithms Based on the Minimum Spanning Tree

Examples

Again

- Single Link Algorithm
- Occupiete Link Algorithm

There is other style of clustering

• Clustering Algorithms Based on the Minimum Spanning Tree

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods
- 4 Algorithms for Large Data Sets
 - Introduction
 - Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
 - DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - $\textcircled{\ }$ Finding ϵ and MinPts

イロト イヨト イヨト

First - Related to Nesting Property

No way to recover from a "poor" clustering that may have occurred in an earlier level of the hierarchy.

First - Related to Nesting Property

No way to recover from a "poor" clustering that may have occurred in an earlier level of the hierarchy.

Second, if we use a Naive Scheme - Full comparison at each level

• At each level t, there are N - t clusters.

First - Related to Nesting Property

No way to recover from a "poor" clustering that may have occurred in an earlier level of the hierarchy.

Second, if we use a Naive Scheme - Full comparison at each level

- At each level t, there are N t clusters.
- Thus at level t + 1 the total number of pairs compared .

otal Number of pairs compared are

First - Related to Nesting Property

No way to recover from a "poor" clustering that may have occurred in an earlier level of the hierarchy.

Second, if we use a Naive Scheme - Full comparison at each level

- At each level t, there are N t clusters.
- Thus at level t + 1 the total number of pairs compared .

$$\binom{N-t}{2} = \frac{(N-t)(N-t-1)}{2}$$
(6)

are lotal Number of pairs compared are
Problems with Schema of Agglomerative Algorithms

First - Related to Nesting Property

No way to recover from a "poor" clustering that may have occurred in an earlier level of the hierarchy.

Second, if we use a Naive Scheme - Full comparison at each level

- At each level t, there are N t clusters.
- Thus at level t + 1 the total number of pairs compared .

$$\binom{N-t}{2} = \frac{(N-t)(N-t-1)}{2}$$
(6)

Total Number of pairs compared are

$$\sum_{t=0}^{N-1} \left(\begin{array}{c} N-t\\ 2\end{array}\right) \tag{7}$$

Thus

We have that

$$\sum_{t=0}^{N-1} \binom{N-t}{2} = \sum_{k=1}^{N} \binom{k}{2} = \frac{(N-1)N(N+1)}{6}$$
(8)

Thus

The complexity of this schema is $O\left(N^3
ight)$

However

You still depend on the nature of d_{\cdot}

Thus

We have that

$$\sum_{t=0}^{N-1} \binom{N-t}{2} = \sum_{k=1}^{N} \binom{k}{2} = \frac{(N-1)N(N+1)}{6}$$
(8)

Thus

The complexity of this schema is $O(N^3)$

However

You still depend on the nature of d.

Thus

We have that

$$\sum_{k=0}^{N-1} \binom{N-t}{2} = \sum_{k=1}^{N} \binom{k}{2} = \frac{(N-1)N(N+1)}{6}$$
(8)

Thus

The complexity of this schema is $O(N^3)$

However

You still depend on the nature of d.

We need to be able to improve the complexity of Aggregation

• From the Metric Algorithms and Data structures, there are possible solutions...

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 Improving the Complexity

Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods
- 4 Algorithms for Large Data Sets
 - Introduction
 - Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
 - DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - Finding ϵ and MinPts

イロト イヨト イヨト

The idea of using a middle point

In order to establish a better performance

- Every time, we join two clusters:
 - ▶ We can then use a representative for such join in the agglomeration

Therefore, we need a data structure to be able to support these updates

• We may use a Kd-tree...

The idea of using a middle point

In order to establish a better performance

- Every time, we join two clusters:
 - ▶ We can then use a representative for such join in the agglomeration

Therefore, we need a data structure to be able to support these updates

• We may use a Kd-tree...

In this case, we assume a group average

We need a Kd-tree supporting insertions

• By Logarithmic Rebuilding...

This was born from the fact that

 It is necessary to modify the Kd-tree dynamically to maintain certain performance.

In this case, we assume a group average

We need a Kd-tree supporting insertions

• By Logarithmic Rebuilding...

This was born from the fact that

• It is necessary to modify the Kd-tree dynamically to maintain certain performance.

イロト イボト イヨト イヨト

Example

▲□▶ ▲圖▶ ▲国▶ ▲国▶

In order to keep performance, Logarithmic Rebuilding

We maintain at most $h = O(\log N)$ Kd-trees

- $T_0, T_1, ..., T_{h-1}$ such that the i^{th} $(i \in [1, h])$ tree stores precisely 2^i points.
- Each point is stored in only one Kd-tree.

Procedure

We have the following procedure

- ullet To insert a new point p, we
 - **1** Identify the smallest $i \ge 0$ such that T_i is empty
 - 2 Destroy all of $T_0, T_1, ..., T_{i-1}$. Collect all the points there into a set S.
 - 3 Construct T_i in $S \cup \{p\}$

• Note
$$|T_i| = 2^i$$

イロト イヨト イヨト

Amortized Analysis

Construction of T_i

• It takes $O\left(2^i\log 2^i\right)$ time

Charge the cost on the 2^{\prime} points in T_{ℓ} .

• Each of which is amortized $O(\log 2^i) = O(\log N)$ time.

Each point can be charged only $O(\log n)$ when moving to a bigger tree

• Amortized insertion time per point $O\left(\log^2 N
ight)$

Amortized Analysis

Construction of T_i

• It takes $O\left(2^i\log 2^i\right)$ time

Charge the cost on the 2^i points in T_i

• Each of which is amortized $O\left(\log 2^i\right) = O\left(\log N\right)$ time.

Each point can be charged only $O\left(\log n ight)$ when moving to a bigger

• Amortized insertion time per point $O\left(\log^2 N
ight)$

Amortized Analysis

Construction of T_i

• It takes $O\left(2^i \log 2^i\right)$ time

Charge the cost on the 2^i points in T_i

• Each of which is amortized $O\left(\log 2^{i}\right) = O\left(\log N\right)$ time.

Each point can be charged only $O\left(\log n\right)$ when moving to a bigger tree

• Amortized insertion time per point $O\left(\log^2 N\right)$

イロン イロン イヨン イヨン

Querying the Structure

Simply

• Search all of the h trees $T_0, T_1, ..., T_{h-1}$

Query Time

$O\left(\sqrt{2^{h-1}} + \sqrt{2^{h-2}} + \dots + \sqrt{2^0} + k\right) = O\left(\sqrt{N} + k\right)$

Similar to the search on the original Kd-tree.

Querying the Structure

Simply

• Search all of the h trees $T_0, T_1, ..., T_{h-1}$

Query Time

$$O\left(\sqrt{2^{h-1}} + \sqrt{2^{h-2}} + \dots + \sqrt{2^0} + k\right) = O\left(\sqrt{N} + k\right)$$

• Similar to the search on the original Kd-tree.

What if we avoid comparing all the elements using a Kd-Tree

Generation of the Structure

• $O\left(N\log^2 N\right)$ to get the data structure with space $O\left(N\right)$

Query

- We get to query in $O\left(\sqrt{N}+k
 ight)$ in the worst case scenario.
 - Here k is the number of elements being reported.

What if we avoid comparing all the elements using a Kd-Tree

Generation of the Structure

• $O\left(N\log^2 N\right)$ to get the data structure with space $O\left(N\right)$

Query

- We get to query in $O\left(\sqrt{N}+k\right)$ in the worst case scenario.
 - Here k is the number of elements being reported.

Therefore

We have

イロト イヨト イヨト イヨト

At Each Level

At each level calculate the new centroid

- Insert it
 - ▶ Inserting takes $O\left(\log^2 N\right)$, but How many insertions?

イロト イヨト イヨト

We have...

Therefore

• We have total number of insertions assuming pair of them:

$$\frac{N}{2} + \frac{N}{2^2} + \dots + \frac{N}{2^{\log n}} = N\left(\frac{1 - \frac{1}{N}}{\frac{1}{2}}\right) - N = *$$

Therefore

* = 2(N-1) - N = N - 2

We have...

Therefore

• We have total number of insertions assuming pair of them:

$$\frac{N}{2} + \frac{N}{2^2} + \ldots + \frac{N}{2^{\log n}} = N\left(\frac{1 - \frac{1}{N}}{\frac{1}{2}}\right) - N = *$$

Therefore

$$* = 2(N - 1) - N = N - 2$$

Final Complexity

We have after building the data structure

< ロ > < 回 > < 回 > < 回 > < 回 >

Then, we have

The Clustering takes

$$O\left(N\log^2 N\right) + O\left(N^{3/2} + Nk\right) = O\left(N^{3/2}\right)$$

Given that you need to build a tree for each centroid structure $N \log^2 N + \frac{1}{2}N \log^2 \frac{N}{2} + ... + \frac{1}{2^{\log N}} \log^2 \frac{N}{2^{\log^2}} = O\left(N \log^2 N\right)$

Then, we have

The Clustering takes

$$O\left(N\log^2 N\right) + O\left(N^{3/2} + Nk\right) = O\left(N^{3/2}\right)$$

Given that you need to build a tree for each centroid structure

$$N \log^2 N + \frac{1}{2} N \log^2 \frac{N}{2} + \ldots + \frac{1}{2^{\log N}} \log^2 \frac{N}{2^{\log^2}} = O\left(N \log^2 N\right)$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithms

- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - $\textcircled{\ }$ Finding ϵ and MinPts

イロト イヨト イヨト

Divisive Algorithms

Reverse Strategy

• Start with a single cluster split it iteratively.

They are lees common than agglomerative methods

• However, Kaufman and Rousseeuw (1990) pointed out:

This is revealed when a divisive method is applied

Divisive Algorithms

Reverse Strategy

• Start with a single cluster split it iteratively.

They are lees common than agglomerative methods

• However, Kaufman and Rousseeuw (1990) pointed out:

This is revealed when a divisive method is applied

Algorithm PROBLEM what is wrong!!!

1	Initialization
2	Choose $\Re_0 = \{X\}$
3	$P_0 = P(X)$
4	t = 0

Until all vectors lie in a single cluster

1	Initialization
2	Choose $\Re_0 = \{X\}$
3	$P_0 = P(X)$
4	t = 0
5	Repeat
6	t = t + 1
0	For $i = 1$ to t
8	Given a partition C_{t-1}, i
9	Generate all possible clusters
8	Until all vectors lie in a single cluster

1	Initialization
2	Choose $\Re_0 = \{X\}$
3	$P_0 = P(X)$
4	t = 0
6	Repeat
6	t = t + 1
0	For $i=1$ to t
8	Given a partition C_{t-1}, i
9	Generate all possible clusters
0	next i
0	Find the pair $C^1_{t-1,j}, C^2_{t-1,j}$ that
	$maximize\ g$

1	Initialization
2	Choose $\Re_0 = \{X\}$
3	$P_0 = P(X)$
4	t = 0
6	Repeat
6	t = t + 1
7	For $i = 1$ to t
8	Given a partition C_{t-1}, i
9	Generate all possible clusters
10	next i
•	Find the pair $C^1_{t-1,j}, C^2_{t-1,j}$ that
	maximize g
2	Create
	$\Re_t = \Re_{t-1} - \{C_{t-1,j}\} \cup \left\{C_{t-1,j}^1, C_{t-1,j}^2\right\}$

0	Initialization
2	Choose $\Re_0 = \{X\}$
3	$P_0 = P(X)$
4	t = 0
6	Repeat
6	t = t + 1
0	For $i = 1$ to t
8	Given a partition C_{t-1}, i
9	Generate all possible clusters
10	next i
•	Find the pair $C^1_{t-1,j}, C^2_{t-1,j}$ that
	maximize g
2	Create
	$\Re_t = \Re_{t-1} - \{C_{t-1,j}\} \cup \left\{C_{t-1,j}^1, C_{t-1,j}^2\right\}$
1	Until all vectors lie in a single cluster

Again, we need to be smart

- Initialization
- Choose $\Re_0 = \{X\}$
- $P_0 = P(X)$

t = 0

Repeat

4

 $\bullet \qquad t = t + 1$

```
For i=1 to t
```

- Given a partition C_{t-1}, i
- Generate all possible clusters

next i

```
Find the pair C^1_{t-1,j}, C^2_{t-1,j} that maximize g
```

```
) Create
```

 $\mathbb{R}_{t} = \mathbb{R}_{t-1} - \{C_{t-1,j}\} \cup \left\{C_{t-1,j}^{1}, C_{t-1,j}^{2}\right\}$

Until all vectors lie in a single cluster
Again, we need to be smart

	Initialization
2	Choose $\Re_0 = \{X\}$
3	$P_0 = P(X)$
4	t = 0
5	Repeat
6	t = t + 1
0	For $i = 1$ to t
8	Given a partition C_{t-1}, i
9	Generate all possible clusters

Again, we need to be smart

1	Initialization
2	Choose $\Re_0 = \{X\}$
3	$P_0 = P(X)$
4	t = 0
5	Repeat
6	t = t + 1
0	For $i=1$ to t
8	Given a partition C_{t-1}, i
9	Generate all possible clusters
٥	next i
0	Find the pair $C^1_{t-1,j}, C^2_{t-1,j}$ that
	$maximize\ g$

Until all vectors lie in a single cluster

Again, we need to be smart

1	Initialization
2	Choose $\Re_0 = \{X\}$
3	$P_0 = P(X)$
4	t = 0
5	Repeat
6	t = t + 1
0	For $i = 1$ to t
8	Given a partition C_{t-1}, i
9	Generate all possible clusters
10	next i
0	Find the pair $C^1_{t-1,j}, C^2_{t-1,j}$ that
	maximize g
2	Create
	$\Re_t = \Re_{t-1} - \{C_{t-1,j}\} \cup \left\{C_{t-1,j}^1, C_{t-1,j}^2\right\}$

Again, we need to be smart

1	Initialization
2	Choose $\Re_0 = \{X\}$
3	$P_0 = P(X)$
4	t = 0
5	Repeat
6	t = t + 1
0	For $i = 1$ to t
8	Given a partition C_{t-1}, i
9	Concrete all possible clusters
-	Generate an possible clusters
٥	next i
	next i Find the pair $C^1_{t-1,j}, C^2_{t-1,j}$ that
	next i Find the pair $C^1_{t-1,j}, C^2_{t-1,j}$ that maximize g
	next i Find the pair $C^1_{t-1,j}, C^2_{t-1,j}$ that maximize g Create
	next i Find the pair $C_{t-1,j}^1, C_{t-1,j}^2$ that maximize g Create $\Re_t = \Re_{t-1} - \{C_{t-1,j}\} \cup \left\{C_{t-1,j}^1, C_{t-1,j}^2\right\}$

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

3 Divisive Algorithms

Introduction

Possible Complexity

Monothetic Divisive Methods

4 Algorithms for Large Data Set

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - $\textcircled{\ }$ Finding ϵ and MinPts

イロト イヨト イヨト

Possible Complexity

This is computationally demanding

• If all $2^{N_t^i} - 1$ possible division are considered:

• With N_t^i is the number of elements in the cluster.

However, for data consisting of d binary variables

Relatively simple and computationally efficient methods exists
Monothetic divisive methods

Possible Complexity

This is computationally demanding

- If all $2^{N_t^i} 1$ possible division are considered:
 - With N_t^i is the number of elements in the cluster.

However, for data consisting of d binary variables

- Relatively simple and computationally efficient methods exists
 - Monothetic divisive methods

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - $\textcircled{\ }$ Finding ϵ and MinPts

イロト イヨト イヨト

Monothetic Divisive Methods

They are based on

- These generally divide clusters according to the presence or absence of each of the *d* variables.
 - At each stage cluster members contain or not certain attributes.

Format of the data

• The data is in the form of a two-mode (binary) matrix.

イロト イボト イヨト イヨト

Monothetic Divisive Methods

They are based on

- These generally divide clusters according to the presence or absence of each of the *d* variables.
 - At each stage cluster members contain or not certain attributes.

Format of the data

• The data is in the form of a two-mode (binary) matrix.

$$\mathsf{members} \left\{ \overbrace{\left(\begin{array}{cccc} 1 & 0 & 1 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{array} \right)} \right.$$

э

イロト イボト イヨト イヨト

Then, if we define

$f_k =$ It is the number of individuals having k^{th} attribute

• We can define the following homogeneity criterion (Information Content):

$$C = dN \log N - \sum_{k=1}^{d} \{ f_k \log f_k - (n - f_k) \log (n - f_k) \}$$

Therefore, if we split the original cluster into two groups A and E

• The reduction in C is $C_X - C_A - C_B$

Therefore

 The ideal set of clusters would have members with identical attributes and C equal to zero.

Then, if we define

$f_k =$ It is the number of individuals having k^{th} attribute

• We can define the following homogeneity criterion (Information Content):

$$C = dN \log N - \sum_{k=1}^{d} \{ f_k \log f_k - (n - f_k) \log (n - f_k) \}$$

Therefore, if we split the original cluster into two groups A and B

• The reduction in C is $C_X - C_A - C_B$

[herefore

• The ideal set of clusters would have members with identical attributes and *C* equal to zero.

67 / 130

Then, if we define

$f_k =$ It is the number of individuals having k^{th} attribute

• We can define the following homogeneity criterion (Information Content):

$$C = dN \log N - \sum_{k=1}^{d} \{ f_k \log f_k - (n - f_k) \log (n - f_k) \}$$

Therefore, if we split the original cluster into two groups A and B

• The reduction in C is $C_X - C_A - C_B$

Therefore

• The ideal set of clusters would have members with identical attributes and C equal to zero.

67 / 130

Therefore

Clusters are split at each stage

 $\bullet\,$ According to possession of the attribute which leads to the greatest reduction in C.

Other possible splitting can be done using

Association Analysis (Ecology Term)

Therefore

Clusters are split at each stage

 \bullet According to possession of the attribute which leads to the greatest reduction in C.

Other possible splitting can be done using

• Association Analysis (Ecology Term)

For Example

For one pair of variables, v_i and $v_j \in [0, 1]$

• f_{ij} = the number of times v_i and v_j coincide or not.

Some common measures of association

 $m_1(f) = |f_{11}f_{00} - f_{10}f_{01}|$ $m_2(f) = [f_{11}f_{00} - f_{10}f_{01}]^2$

For Example

For one pair of variables, v_i and $v_j \in [0, 1]$

• f_{ij} = the number of times v_i and v_j coincide or not.

Some common measures of association

$$m_1(\mathbf{f}) = |f_{11}f_{00} - f_{10}f_{01}|$$
$$m_2(\mathbf{f}) = [f_{11}f_{00} - f_{10}f_{01}]^2$$

Cinvestav

イロト イボト イヨト イヨト

Therefore

The split at each stage

- It is made according to the presence or absence of the attribute:
 - Thus, its association with the others is a maximum!!!

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - $\textcircled{\ }$ Finding ϵ and MinPts

イロト イヨト イヨト

There are several

The CURE Algorithm

- The DBSCAN Algorithm
- The ROCK Algorithm
- The Chameleon Algorithm
- The BIRCH Algorithm

There are several

- The CURE Algorithm
- The DBSCAN Algorithm
 - The ROCK Algorithm
- The Chameleon Algorithm
- The BIRCH Algorithm

There are several

- The CURE Algorithm
- The DBSCAN Algorithm
- The ROCK Algorithm
- The Chameleon Algorithm
- The BIRCH Algorithm

There are several

- The CURE Algorithm
- The DBSCAN Algorithm
- The ROCK Algorithm
- The Chameleon Algorithm

The BIRCH Algorithm

There are several

- The CURE Algorithm
- The DBSCAN Algorithm
- The ROCK Algorithm
- The Chameleon Algorithm
- The BIRCH Algorithm

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

Introduction

Clustering Using REpresentatives (CURE)

- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - $\textcircled{\ }$ Finding ϵ and MinPts

イロト イヨト イヨト

Basic Idea

• Each cluster C_i has a set of representatives $R_{C_i} = \left\{ \boldsymbol{x}_1^{(i)}, \boldsymbol{x}_2^{(i)}, ..., \boldsymbol{x}_K^{(i)} \right\}$ with K > 1.

Basic Idea

• Each cluster C_i has a set of representatives $R_{C_i} = \left\{ \boldsymbol{x}_1^{(i)}, \boldsymbol{x}_2^{(i)}, ..., \boldsymbol{x}_K^{(i)} \right\}$ with K > 1.

What is happening

• By using multiple representatives for each cluster, the CURE algorithm tries to "capture" the shape of each one.

Basic Idea

• Each cluster C_i has a set of representatives $R_{C_i} = \left\{ \boldsymbol{x}_1^{(i)}, \boldsymbol{x}_2^{(i)}, ..., \boldsymbol{x}_K^{(i)} \right\}$ with K > 1.

What is happening

• By using multiple representatives for each cluster, the CURE algorithm tries to "capture" the shape of each one.

However

• In order to avoid taking into account irregularities (For example, outliers) in the border of the cluster.

74 / 130

Basic Idea

• Each cluster C_i has a set of representatives $R_{C_i} = \left\{ \boldsymbol{x}_1^{(i)}, \boldsymbol{x}_2^{(i)}, ..., \boldsymbol{x}_K^{(i)} \right\}$ with K > 1.

What is happening

• By using multiple representatives for each cluster, the CURE algorithm tries to "capture" the shape of each one.

However

- In order to avoid taking into account irregularities (For example, outliers) in the border of the cluster.
 - The initially chosen representatives are "pushed" toward the mean of the cluster.

74 / 130

Therfore

This action is known

• As "Shrinking" in the sense that the volume of space "defined" by the representatives is shrunk toward the mean of the cluster.

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

Introduction

Clustering Using REpresentatives (CURE) Shrinking Process

- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - $\textcircled{\ }$ Finding ϵ and MinPts

イロト イヨト イヨト

Given a cluster C

• Select the point $x \in C$ with the maximum distance from the mean of C and set $R_C = \{x\}$ (the set of representatives).

Given a cluster C

• Select the point $x \in C$ with the maximum distance from the mean of C and set $R_C = \{x\}$ (the set of representatives).

1 For
$$i = 2$$
 to $\min\{K, n_C\}$

Given a cluster C

• Select the point $x \in C$ with the maximum distance from the mean of C and set $R_C = \{x\}$ (the set of representatives).

- **0** For i = 2 to $\min\{K, n_C\}$
 - 2 Determine $oldsymbol{y} \in C-R_C$ that lies farthest from the points in R_C

Given a cluster C

• Select the point $x \in C$ with the maximum distance from the mean of C and set $R_C = \{x\}$ (the set of representatives).

- **1** For i = 2 to $\min\{K, n_C\}$
- 2 Determine $oldsymbol{y} \in C R_C$ that lies farthest from the points in R_C

Given a cluster C

• Select the point $x \in C$ with the maximum distance from the mean of C and set $R_C = \{x\}$ (the set of representatives).

- **1** For i = 2 to $\min\{K, n_C\}$
- 2 Determine $oldsymbol{y} \in C R_C$ that lies farthest from the points in R_C

Shrinking Process

Do the Shrinking

• Shrink the points $x \in R_C$ toward the mean m_C in C by a factor α .

Actually

$\boldsymbol{x} = (1 - \alpha) \, \boldsymbol{x} + \alpha \boldsymbol{m}_C \, \, \forall \boldsymbol{x} \in R_C$

Shrinking Process

Do the Shrinking

• Shrink the points $x \in R_C$ toward the mean m_C in C by a factor α .

Actually

$$\boldsymbol{x} = (1 - \alpha) \, \boldsymbol{x} + \alpha \boldsymbol{m}_C \,\,\forall \boldsymbol{x} \in R_C \tag{9}$$

Image: A math a math

Resulting set R_C

Thus

• The resulting set R_C is the set of representatives of C.

Thus the distance between two cluster is defined as

 $d\left(C_{i},C_{j}\right) = \min_{\boldsymbol{x}\in R_{C_{i}},\boldsymbol{y}\in R_{C_{j}}}d\left(\boldsymbol{x},\boldsymbol{y}\right)$

Resulting set R_C

Thus

• The resulting set R_C is the set of representatives of C.

Thus the distance between two cluster is defined as

$$d(C_i, C_j) = \min_{\boldsymbol{x} \in R_{C_i}, \boldsymbol{y} \in R_{C_j}} d(\boldsymbol{x}, \boldsymbol{y})$$
(10)

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

Introduction

Clustering Using REpresentatives (CURE)

Shrinking Process

CURE Algorithm

- Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - Finding ϵ and MinPts

イロト イヨト イヨト

Basic Algorithm

- Input : A set of points $X = \{x_1, x_2, ..., x_N\}$
 - . $igodoldsymbol{0}$. For every cluster $C_i=\{x_i\}$ store $C_i.m_C=\{x_i\}$ and $C_i.R_C=\{x_i\}$
 - $\bigcirc C_i.closest$ stores the cluster closest to $C_i.$
 - All the input points are inserted into a K d tree T.
 - Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C_i and C_i.closest).
 - $\bigcirc \quad While \ size(Q) > 0$
 - Remove the top element of Q, C_i and merge it with $C_j == C_i.closest$.
 - Then compute the new representative points for the merged cluster $C_k = C_i \cup C_j$.
 - Also remove C_i and C_j from T and Q.
 - Also for all the clusters $C_h \in Q$, update $C_h.closest$ and relocate $C_h.$
 - insert C_k into Q

Basic Algorithm

- Input : A set of points $X = \{x_1, x_2, ..., x_N\}$
- $\textit{Output} : \mathcal{C} \textit{ clusters}$
 -]) For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$
 - O_i.closest stores the cluster closest to C_i.
 -) All the input points are inserted into a K-d tree T.
 - Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C₁ and C₁.closest).
 - \bigcirc While size(Q) > 0
 - Remove the top element of Q, C_i and merge it with $C_j == C_i.closest$.
 - Then compute the new representative points for the merged cluster $C_k = C_i \cup C_j$.
 - Also remove C_i and C_j from T and Q.
 - Also for all the clusters $C_h \in Q$, update C_h closest and relocate C_h .
 - insert C_k into Q

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

 $\textit{Output} : \mathcal{C} \textit{ clusters}$

() For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$

All the input points are inserted into a K - d tree T.

Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between G_t and C_t.closest).

```
While size(Q) > 0
```

Remove the top element of Q, C_i and merge it with $C_j == C_i.closest$.

Then compute the new representative points for the merged cluster $C_k = C_i \cup C_j$.

Also remove C_i and C_j from T and Q_i

Also for all the clusters $C_h \in Q$, update C_h closest and relocate C_h .

insert C_k into Q

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

Output : C clusters

- For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$
- **2** C_i .closest stores the cluster closest to C_i .

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

Output : C clusters

- **1** For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$
- **2** $C_i.closest$ stores the cluster closest to C_i .
- 3 All the input points are inserted into a K d tree T.
 - Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C₁ and C₁.closest).

```
While size(Q) > C
```

- Remove the top element of Q, C_i and merge it with $C_j == C_i.closest$.
- Then compute the new representative points for the merged cluster $C_k = C_i \cup C_j$.
- Also remove C_i and C_j from T and Q_i
- Also for all the clusters $C_h \in Q$, update C_h closest and relocate C_h .
- insert C_k into Q

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

Output : C clusters

- **1** For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$
- 2 C_i.closest stores the cluster closest to C_i.
- **3** All the input points are inserted into a K d tree T.
- Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C_i and C_i.closest).

Remove the top element of Q, C_i and merge it with $C_j == C_i.closest$. Then compute the new representative points for the merged cluster $C_k = C_i \cup C_j$. Also remove C_i and C_j from T and Q. Also for all the clusters $C_h \in Q$, update $C_h.closest$ and relocate C_h . insert C_k into Q

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

Output : C clusters

- **(**) For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$
- Or Ci.closest stores the cluster closest to Ci.
- **3** All the input points are inserted into a K d tree T.
- Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C_i and C_i.closest).
- $0 While \ size(Q) > C$
 - Remove the top element of Q, C_i and merge it with $C_i == C_i.closest$.
 - Then compute the new representative points for the merged cluster $C_k = C_i \cup C_j$.
 - Also remove C_i and C_j from T and Q.
 - Also for all the clusters $C_h \in Q$, update C_h closest and relocate C_h .
 - insert C_k into Q

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

Output : C clusters

1 For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$

2 C_i.closest stores the cluster closest to C_i.

- 3 All the input points are inserted into a K d tree T.
- Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C_i and C_i.closest).
- $0 While \ size(Q) > C$

6

Remove the top element of Q, C_i and merge it with $C_j == C_i.closest$.

Also remove C_i and C_j from T and Q_i

Also for all the clusters $C_h \in Q$, update C_h closest and relocate C_h .

insert C_k into Q

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

Output : C clusters

1 For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$

2 C_i.closest stores the cluster closest to C_i.

- 3 All the input points are inserted into a K d tree T.
- Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C_i and C_i.closest).
- $While \ size(Q) > C$

6

- Remove the top element of Q, C_i and merge it with $C_j == C_i.closest$.
- Then compute the new representative points for the merged cluster $C_k = C_i \cup C_j$.

Also for all the clusters $C_h \in Q$, update C_h closest and relocate C_h

insert C_k into Q

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

Output : C clusters

1 For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$

2 $C_i.closest$ stores the cluster closest to C_i .

- 3 All the input points are inserted into a K d tree T.
- Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C_i and C_i.closest).
- $While \ size(Q) > C$

6

8

Remove the top element of Q, C_i and merge it with $C_j == C_i.closest$.

Then compute the new representative points for the merged cluster $C_k = C_i \cup C_j$.

Also remove C_i and C_j from T and Q.

Also for all the clusters $C_h \in Q$, update C_h closest and relocate C_h .

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

Output : C clusters

1 For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$

2 $C_i.closest$ stores the cluster closest to C_i .

- 3 All the input points are inserted into a K d tree T.
- Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C_i and C_i.closest).
- $While \ size(Q) > C$

6

0

Remove the top element of Q, C_i and merge it with $C_j == C_i.closest$.

(2 Then compute the new representative points for the merged cluster $C_k = C_i \cup C_j$.

- Also remove C_i and C_j from T and Q.
 - Also for all the clusters $C_h \in Q$, update $C_h.closest$ and relocate C_h .

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

Output : C clusters

1 For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$

2 $C_i.closest$ stores the cluster closest to C_i .

- 3 All the input points are inserted into a K d tree T.
- Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C_i and C_i.closest).

$$0 While \ size(Q) > C$$

- **6** Remove the top element of Q, C_i and merge it with $C_j == C_i.closest$.
- **(2**) Then compute the new representative points for the merged cluster $C_k = C_i \cup C_j$.
- Also remove C_i and C_j from T and Q.
- 9 Also for all the clusters $C_h \in Q$, update $C_h.closest$ and relocate C_h .

insert C_k into Q

10

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

Introduction

Clustering Using REpresentatives (CURE)

- Shrinking Process
- CURE Algorithm

Complexity

- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - $\textcircled{\ }$ Finding ϵ and MinPts

イロト イヨト イヨト

Complexity of Cure

Too Prohibitive

$$O\left(N^2\log_2 N\right)$$

イロト イロト イヨト

(11)

Possible Solution

CURE does the following

• The technique adopted by the CURE algorithm, in order to reduce the computational complexity, is that of *random sampling*.

Actually

That is, a sample set X' is created from X, by choosing randomly N' out of the N points of X.

However, one has to ensure that the probability of missing a cluster of $X_{\rm c}$ due to this sampling

This can be guaranteed if the number of points N^\prime is sufficiently large.

< ロ > < 同 > < 回 > < 回 >

Possible Solution

CURE does the following

• The technique adopted by the CURE algorithm, in order to reduce the computational complexity, is that of *random sampling*.

Actually

That is, a sample set X' is created from X, by choosing randomly N' out of the N points of X.

However, one has to ensure that the probability of missing a cluster of $X_{\rm c}$ due to this sampling

This can be guaranteed if the number of points N^\prime is sufficiently large.

Possible Solution

CURE does the following

• The technique adopted by the CURE algorithm, in order to reduce the computational complexity, is that of *random sampling*.

Actually

That is, a sample set X' is created from X, by choosing randomly N' out of the N points of X.

However, one has to ensure that the probability of missing a cluster of X, due to this sampling

This can be guaranteed if the number of points N' is sufficiently large.

イロト 不得下 イヨト イヨー

Having estimated N^\prime

CURE forms a number of $p=\frac{N}{N^\prime}$ sample data sets by successive random samples.

In other words

• X is partitioned randomly in p subsets.

For this a parameter q is selected

- Then, the points in each partition p are clustered until N[']/q clusters are formed.
- The distance between the closest pair of clusters to be merged in the next iteration step exceeds a user-defined threshold.

Having estimated N^\prime

CURE forms a number of $p=\frac{N}{N^{\prime}}$ sample data sets by successive random samples.

In other words

• X is partitioned randomly in p subsets.

For this a parameter q is selected

- Then, the points in each partition p are clustered until ^{N'}/_q clusters are formed.
- The distance between the closest pair of clusters to be merged in the next iteration step exceeds a user-defined threshold.

Having estimated N^\prime

CURE forms a number of $p=\frac{N}{N^{\prime}}$ sample data sets by successive random samples.

In other words

• X is partitioned randomly in p subsets.

For this a parameter q is selected

- Then, the points in each partition p are clustered until $\frac{N'}{q}$ clusters are formed.
- The distance between the closest pair of clusters to be merged in the next iteration step exceeds a user-defined threshold.

Once this has been finished

A second clustering pass is done

One the at most $p\frac{N'}{q}=\frac{N}{q}$ clusters from all the subsets.

The Goal to apply the merging procedure described previously to all (at most) $\frac{N}{a}$

• Then, we end up with the required final number, C, of clusters.

Finally

• We have the following strategy to assign to $oldsymbol{x} \in X$ to a cluster.

Once this has been finished

A second clustering pass is done

One the at most $p\frac{N'}{q} = \frac{N}{q}$ clusters from all the subsets.

The Goal to apply the merging procedure described previously to all (at most) $\frac{N}{q}$

• Then, we end up with the required final number, C, of clusters.

Finally

ullet We have the following strategy to assign to $oldsymbol{x}\in X$ to a cluster.

Once this has been finished

A second clustering pass is done

One the at most $p\frac{N'}{q} = \frac{N}{q}$ clusters from all the subsets.

• Then, we end up with the required final number, C, of clusters.

Finally

• We have the following strategy to assign to $oldsymbol{x} \in X$ to a cluster.

First

A random sample of representative points from each of the ${\cal C}$ clusters is chosen.

First

A random sample of representative points from each of the ${\cal C}$ clusters is chosen.

Then

Then, based on the previous representatives the point \boldsymbol{x} is assigned to the cluster that contains the representative closest to it.

First

A random sample of representative points from each of the ${\cal C}$ clusters is chosen.

Then

Then, based on the previous representatives the point \boldsymbol{x} is assigned to the cluster that contains the representative closest to it.

• • • • • • • • • • •

87 / 130

Experiments reported by Guha et al. show that CURE

• It is sensitive to parameter selection.

First

A random sample of representative points from each of the ${\cal C}$ clusters is chosen.

Then

Then, based on the previous representatives the point \boldsymbol{x} is assigned to the cluster that contains the representative closest to it.

Experiments reported by Guha et al. show that CURE

- It is sensitive to parameter selection.
 - ► Specifically *K* must be large enough to capture the geometry of each cluster.

< ロ > < 同 > < 回 > < 回)

First

A random sample of representative points from each of the ${\cal C}$ clusters is chosen.

Then

Then, based on the previous representatives the point \boldsymbol{x} is assigned to the cluster that contains the representative closest to it.

Experiments reported by Guha et al. show that CURE

- It is sensitive to parameter selection.
 - ► Specifically *K* must be large enough to capture the geometry of each cluster.
 - ▶ In addition, N' must be higher than a certain percentage $\approx 2.5\%$ of N.

イロト イヨト イヨト イヨー

Not only that

The value of α (Shrinking Factors) affects also CURE

- Small values, CURE looks similar than a Minimum Spanning Tree clustering.
 - Large values, CURE resembles an algorithm with a single representative.

< ロ > < 回 > < 回 > < 回 > < 回 >

Not only that

The value of α (Shrinking Factors) affects also CURE

- Small values, CURE looks similar than a Minimum Spanning Tree clustering.
- Large values, CURE resembles an algorithm with a single representative.

< ロ > < 同 > < 回 > < 回 >

Not only that

The value of α (Shrinking Factors) affects also CURE

- Small values, CURE looks similar than a Minimum Spanning Tree clustering.
- Large values, CURE resembles an algorithm with a single representative.

The worst-case execution time for CURE increases with the sample size N^\prime

$$O\left(N^{\prime 2}\log_2 N^\prime\right) \tag{12}$$

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity

DBSCAN

- Density Based Notion of Clusters
- Beyond K-NN Idea
- Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- $\textcircled{\ }$ Finding ϵ and MinPts

イロト イヨト イヨト

Density-based spatial clustering of applications with noise (DBSCAN)

• It is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.

Density-based spatial clustering of applications with noise (DBSCAN)

• It is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.

Something Notable

• It is a density-based clustering algorithm:

Given a set of points in some space, it groups together points that are

Marking as outliers points that lie alone in low-density regions.

< ロ > < 同 > < 回 > < 回)

Density-based spatial clustering of applications with noise (DBSCAN)

• It is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.

Something Notable

- It is a density-based clustering algorithm:
 - Given a set of points in some space, it groups together points that are closely packed together.

as outliers points that lie alone in low-density regions.

< ロ > < 同 > < 回 > < 回)

Density-based spatial clustering of applications with noise (DBSCAN)

• It is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.

Something Notable

- It is a density-based clustering algorithm:
 - Given a set of points in some space, it groups together points that are closely packed together.
 - Marking as outliers points that lie alone in low-density regions.

Furthermore

Something Notable

• In 2014, the algorithm was awarded the test of time award at the leading data mining conference, KDD.

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity

DBSCAN

Density Based Notion of Clusters

- Beyond K-NN Idea
- Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- $\textcircled{\ }$ Finding ϵ and MinPts

イロト イヨト イヨト

Looking at clusters

We notice easily those clusters of points and noise points

< ロ > < 回 > < 回 > < 回 > < 回 >

We are doing something quite human

The main reason why we recognize the clusters

• We use the higher densities to recognize the clusters

Definition (e-neighborhood of a point)

• Given a distance dist : $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^+$, the ϵ -Neighborhood of a point x, denoted $N_\epsilon(x)$, is defined as $N_\epsilon(x) = \left\{ u \in \mathbb{R}^d | \text{dist}(x, u) \le \epsilon \right\}$

We are doing something quite human

The main reason why we recognize the clusters

• We use the higher densities to recognize the clusters

Definition (ϵ -neighborhood of a point)

• Given a distance dist : $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^+$, the ϵ -Neighborhood of a point x, denoted $N_{\epsilon}(x)$, is defined as

$$N_{\epsilon}\left(oldsymbol{x}
ight)=\left\{oldsymbol{y}\in\mathbb{R}^{d}|\mathsf{dist}\left(oldsymbol{x},oldsymbol{y}
ight)\leq\epsilon
ight\}$$

イロト イポト イヨト イヨー

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity

DBSCAN

Density Based Notion of Clusters

Beyond K-NN Idea

- Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- Finding ϵ and MinPts

イロト イヨト イヨト

Why not to use the idea of K-NN?

We could use our well know K-NN method

• Thus, we naively could require for each point in a cluster there at least a minimum number (*MinPts*) of points in the neighborhood of such point

However, you have something more complex-

- Points inside of the cluster (Core points)
- Points on the border of the cluster (Border points)

Why not to use the idea of K-NN?

We could use our well know K-NN method

• Thus, we naively could require for each point in a cluster there at least a minimum number (*MinPts*) of points in the neighborhood of such point

However, you have something more complex

- Points inside of the cluster (Core points)
- Points on the border of the cluster (Border points)

< ロ > < 同 > < 回 > < 回)

Example

Core points and Border points

э

イロト イロト イヨト イヨト

Therefore

In General

• An ϵ -neighborhood of a border point contains significantly less points than an ϵ -neighborhood of a core point.

herefore

MinPts varies in the presence of noise

Therefore

In General

• An ϵ -neighborhood of a border point contains significantly less points than an ϵ -neighborhood of a core point.

Therefore

• *MinPts* varies in the presence of noise

Definition (Directly Density-Reachable)

• A point ${\pmb x}$ is directly density reachable from a point ${\pmb y}$ w.r.t. $\epsilon, MinPts$ if

 $|N_{\epsilon}(y)| \geq MinPts$ (Core point condition)

(i) (1) is not symmetric if one core point and one border point are involved.

イロト イヨト イヨト

Definition (Directly Density-Reachable)

• A point ${\pmb x}$ is directly density reachable from a point ${\pmb y}$ w.r.t. $\epsilon, MinPts$ if

 $\mathbf{0} \ \boldsymbol{x} \in N_{\epsilon} \left(\boldsymbol{y} \right)$

Pts (Core point condition

Remarks

- Directly density-reachable is symmetric for pairs of core points
- It is not symmetric if one core point and one border point are involved.

< ロ > < 同 > < 回 > < 回 >

Definition (Directly Density-Reachable)

• A point $m{x}$ is directly density reachable from a point $m{y}$ w.r.t. ϵ , MinPts if

 $\mathbf{0} \ \boldsymbol{x} \in N_{\epsilon} \left(\boldsymbol{y} \right)$

2 $|N_{\epsilon}(\boldsymbol{y})| \geq MinPts$ (Core point condition)

Remarks

Directly density-reachable is symmetric for pairs of core points
 It is not symmetric if one core point and one border point are

involved.

イロト イヨト イヨト

Definition (Directly Density-Reachable)

• A point $m{x}$ is directly density reachable from a point $m{y}$ w.r.t. ϵ , MinPts if

 $\mathbf{0} \ \boldsymbol{x} \in N_{\epsilon} \left(\boldsymbol{y} \right)$

 $(2) |N_{\epsilon}(y)| \geq MinPts (Core point condition)$

Remarks

O Directly density-reachable is symmetric for pairs of core points.

is not symmetric if one core point and one border point are

< ロ > < 同 > < 回 > < 回)

Definition (Directly Density-Reachable)

• A point $m{x}$ is directly density reachable from a point $m{y}$ w.r.t. ϵ , MinPts if

 $\mathbf{0} \ \boldsymbol{x} \in N_{\epsilon} \left(\boldsymbol{y} \right)$

 $(2) |N_{\epsilon}(y)| \geq MinPts (Core point condition)$

Remarks

- O Directly density-reachable is symmetric for pairs of core points.
- It is not symmetric if one core point and one border point are involved.

Example

Density-reachable

< ロ > < 回 > < 回 > < 回 > < 回 >

Now, Density Reachable

Definition (Density-Reachable)

• A point x is density-reachable from a point y wrt. ϵ and MinPts if there is a chain of points:

$$oldsymbol{p}_1,oldsymbol{p}_2,...,oldsymbol{p}_k$$
 with $oldsymbol{p}_1=oldsymbol{x},oldsymbol{p}_k=oldsymbol{y}$

such that p_{i+1} is directly density-reachable from p_i .

Therefore

Density-Reachability is a canonical extension of **Direct Density-Reachability**

• This relation is transitive, but it is not symmetric.

102/130

イロト イヨト イヨト

Then

Remark

- $\bullet\,$ Two border points of the same cluster C are possibly not density reachable from each other:
 - The core point condition might not hold for both of them.

However

 There must be a core point in C from which both border points of C are density-reachable.

Then

Remark

- Two border points of the same cluster ${\cal C}$ are possibly not density reachable from each other:
 - The core point condition might not hold for both of them.

However

• There must be a core point in ${\cal C}$ from which both border points of ${\cal C}$ are density-reachable.

Density-Connected

Definition (Density-Connected)

• A point \boldsymbol{x} is density-connected to a point \boldsymbol{y} w.r.t. ϵ and MinPts:

 if there is a point o such that both, x and y are density-reachable from o w.r.t. ε and MinPts.

Example

Density-Connected

Definition (Density-Connected)

• A point $m{x}$ is density-connected to a point $m{y}$ w.r.t. ϵ and MinPts:

 if there is a point o such that both, x and y are density-reachable from o w.r.t. ε and MinPts.

Example

Symmetry in Density-Connectivity

Density-connectivity is a symmetric relation

• Also for density reachable points, the relation of density-connectivity is also reflexive.

We are ready to define the concept of Cluster

From the point of view density-based

Remark

- Intuitively, a cluster is defined to be a set of density-connected points which is maximal w.r.t. density-reachability.
- Noise is simply the set of points in R^d not belonging to any of its clusters.

Symmetry in Density-Connectivity

Density-connectivity is a symmetric relation

• Also for density reachable points, the relation of density-connectivity is also reflexive.

We are ready to define the concept of Cluster

• From the point of view density-based

Remark

- Intuitively, a cluster is defined to be a set of density-connected points which is maximal w.r.t. density-reachability.
- Noise is simply the set of points in R^d not belonging to any of its clusters.

Symmetry in Density-Connectivity

Density-connectivity is a symmetric relation

• Also for density reachable points, the relation of density-connectivity is also reflexive.

We are ready to define the concept of Cluster

• From the point of view density-based

Remark

- Intuitively, a cluster is defined to be a set of density-connected points which is maximal w.r.t. density-reachability.
- Noise is simply the set of points in \mathbb{R}^d not belonging to any of its clusters.

< ロ > < 同 > < 回 > < 回)

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity

DBSCAN

- Density Based Notion of Clusters
- Beyond K-NN Idea

Cluster and Noise Definition

- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- Finding ϵ and MinPts

イロト イヨト イヨト

Cluster Definition

Definition

- A cluster C w.r.t. ϵ and MinPts is a non-empty subset of \mathbb{R}^d satisfying the following conditions:
 - $\forall x, y$: if $y \in C$ and x is density-reachable from y w.r.t. ϵ and MinPts then $x \in C$ (Maximality).
 - ② ∀x, y ∈ C, x is density-connected to y w.r.t. ε and MinPts (Connectivity).

Noise Definition

Definition

- Let $C_1, ..., C_k$ be the clusters in \mathbb{R}^d w.r.t. parameters ϵ_i and $MinPts_i$, i = 1, ..., k.
 - ► Then we define the noise as the set of points in ℝ^d not belonging to any cluster C_i:

$$Noise = \left\{ oldsymbol{x} \in \mathbb{R}^d | orall i : oldsymbol{x}
otin C_i
ight\}$$

Remarks

Something Notable

• Since C contains at least one point x.

ullet x must be density-connected to itself via some point o_{\cdot}

which may be equal to x.

Thus, at least o has to satisfy the core point condition

Consequently, ϵ -Neighborhood of o contains at least MinPts

< ロ > < 回 > < 回 > < 回 > < 回 >

Remarks

Something Notable

- Since C contains at least one point x.
- x must be density-connected to itself via some point o.
 - which may be equal to x.

Remarks

Something Notable

- Since C contains at least one point x.
- x must be density-connected to itself via some point o.
 - which may be equal to x.
- ullet Thus, at least o has to satisfy the core point condition
 - Consequently, ϵ -Neighborhood of o contains at least MinPts

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity

DBSCAN

- Density Based Notion of Clusters
- Beyond K-NN Idea
- Cluster and Noise Definition

Sustaining the Algorithm

- The DBSCAN Algorithm
- Complexity
- Finding ϵ and MinPts

イロト イヨト イヨト

Supporting the idea of cluster

Lemma - Reachability

• Let \boldsymbol{y} be a point in \mathbb{R}^d and $|N_{\epsilon}(\boldsymbol{y})| \geq MinPts$. Then

 $O = \left\{ \boldsymbol{o} | \boldsymbol{o} \in \mathbb{R}^d \text{ and } \boldsymbol{o} \text{ is density-reachable from } \boldsymbol{y} \text{ w.r.t. } \epsilon \text{ and } MinPts \right\}$

is a cluster w.r.t. ϵ and MinPts.

Given the definition of ${\cal O}$

• We have the first part of the definition of Cluster w.r.t. ϵ and MinPts.

Given the that two points $o_1, o_2 \in O$ are density-reachable from y .

• o_1, o_2 are density connected.

Then

• O is a cluster w.r.t. ϵ and MinPts.

Given the definition of O

• We have the first part of the definition of Cluster w.r.t. ϵ and MinPts.

Given the that two points $oldsymbol{o}_1, oldsymbol{o}_2 \in O$ are density-reachable from $oldsymbol{y}$

• o_1, o_2 are density connected.

• O is a cluster w.r.t. ϵ and MinPts.

Given the definition of O

• We have the first part of the definition of Cluster w.r.t. ϵ and MinPts.

Given the that two points $oldsymbol{o}_1, oldsymbol{o}_2 \in O$ are density-reachable from $oldsymbol{y}$

• o_1, o_2 are density connected.

Then

• O is a cluster w.r.t. ϵ and MinPts.

Intuition

Given the parameters ϵ and MinPts, we can discover a cluster

• First, choose an arbitrary point from \mathbb{R}^d satisfying the core point condition as a seed.

hen

 Retrieve all points that are density-reachable from the seed obtaining the cluster containing the seed.

Intuition

Given the parameters ϵ and MinPts, we can discover a cluster

• First, choose an arbitrary point from \mathbb{R}^d satisfying the core point condition as a seed.

Then

• Retrieve all points that are density-reachable from the seed **obtaining the cluster** containing the seed.

However, it is not enough

We need something else

• Given that it is not obvious that a cluster C w.r.t. ϵ and MinPts is uniquely determined by any of its core points.

However, it is not enough

We need something else

• Given that it is not obvious that a cluster C w.r.t. ϵ and MinPts is uniquely determined by any of its core points.

However

• Each point in C is density-reachable from any of the core points of C.

from an arbitrary core point of C.

< ロト < 同ト < ヨト < ヨ)

However, it is not enough

We need something else

• Given that it is not obvious that a cluster C w.r.t. ϵ and MinPts is uniquely determined by any of its core points.

However

- Each point in C is density-reachable from any of the core points of C.
- A cluster C contains exactly the points which are density-reachable from an arbitrary core point of C.

< ロ > < 同 > < 三 > < 三)

Lemma - Cluster Equality to O

- Let C be a cluster w.r.t. ε and MinPts. and let y be any point in C with |N_ε(y)| ≥ MinPts
 - Then C equals to the set

 $O = \left\{ \boldsymbol{o} | \boldsymbol{o} \in \mathbb{R}^d \text{ and } \boldsymbol{o} \text{ is density-reachable from } \boldsymbol{y} \text{ w.r.t. } \epsilon \text{ and } MinPts
ight\}$

Given $\boldsymbol{x} \in C$

• We have two cases

Case 1

• x is a Border point that is density reachable from y with $|N_{\epsilon}(y)| \geq MinPts$

Then

• $\boldsymbol{x} \in O$

Given $\boldsymbol{x} \in C$

We have two cases

Case 1

• \pmb{x} is a Border point that is density reachable from \pmb{y} with $|N_{\epsilon}\left(\pmb{y}\right)| \geq MinPts$

Given $\boldsymbol{x} \in C$

We have two cases

Case 1

• x is a Border point that is density reachable from y with $|N_{\epsilon}\left(y
ight)|\geq MinPts$

Then

•
$$\boldsymbol{x} \in O$$

Now

Case 2

• \boldsymbol{x} is a Core point then $\left|N_{\epsilon}\left(\boldsymbol{x} ight)\right|\geq MinPts$

Therefore

• By Definition x is density reachable from any y w.r.t. ϵ and MinPts

Therefore

• $C \subset O$ the other contention is similar

Case 2

• \boldsymbol{x} is a Core point then $\left|N_{\epsilon}\left(\boldsymbol{x}
ight)\right|\geq MinPts$

Therefore

• By Definition ${m x}$ is density reachable from any ${m y}$ w.r.t. ϵ and MinPts.

Therefore

• $C \subset O$ the other contention is similar

Now

Case 2

• \boldsymbol{x} is a Core point then $\left|N_{\epsilon}\left(\boldsymbol{x}
ight)\right|\geq MinPts$

Therefore

• By Definition \boldsymbol{x} is density reachable from any \boldsymbol{y} w.r.t. ϵ and MinPts.

Therefore

• $C \subset O$ the other contention is similar

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity

DBSCAN

- Density Based Notion of Clusters
- Beyond K-NN Idea
- Cluster and Noise Definition
- Sustaining the Algorithm

The DBSCAN Algorithm

- Complexity
- Finding ϵ and MinPts

イロト イヨト イヨト

DBSCAN Algorithm

$\mathsf{DBSCAN}(X, \epsilon, MinPts)$

- 2 for i = 1 to X.size

3

5 6

- $\boldsymbol{x} = SetOfPoints.get\left(i\right)$
- if x.ClId is UNCLASSIFIED:
 - If **ExpandCluster**($SetPoints, \boldsymbol{x}, ClusterId, \epsilon, MinPts$)
 - ClusterId = nextId (ClusterId)

イロト イヨト イヨト

ExpandCluster(SetPoints, Point, ClId, ϵ , MinPts) $seed = SetOfPoints.regionQuery(Point, \epsilon)$ 2 If seeds.size < MinPts Then 3 SetPoints.changeClId (Point, NOISE) 4 return FALSE < ロ > < 同 > < 回 > < 回 >

Exp	$pandCluster(SetPoints, Point, ClId, \epsilon, MinPts)$	
1	$seed = SetOfPoints.regionQuery(Point, \epsilon)$	
2	If $seeds.size < MinPts$ Then	
3	SetPoints.changeClId(Point,NOISE)	
4	return FALSE	
5	else	
6	SetPoints.changeClId(seeds,ClId)	
7	$seeds.delete\left(Point ight)$	
		(Pr
		উল্ট
	return TRUE ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ きょう いんしょう いんしょ いんしょう いんしょ いんしょ いんしょ いんしょ いんしょ いんしょ いんしょ いんしょ	Cinvestav

F

Exp	$Dote(SetPoints, Point, ClId, \epsilon, MinPts)$
1	$seed = SetOfPoints.regionQuery(Point, \epsilon)$
2	If $seeds.size < MinPts$ Then
3	SetPoints.changeClId (Point, NOISE)
4	return FALSE
5	else
6	SetPoints.changeClId(seeds,ClId)
7	$seeds.delete\left(Point ight)$
8	while $seeds \neq NULL$:
9	currentP = seeds.first()
10	$result = SetOfPoints.regionQuery\left(currentP,\epsilon\right)$
	return TRUE

Exp	$pandCluster(SetPoints, Point, ClId, \epsilon, MinPts)$
1	$seed = SetOfPoints.regionQuery(Point, \epsilon)$
2	If $seeds.size < MinPts$ Then
3	SetPoints.changeClId (Point, NOISE)
4	return FALSE
5	else
6	SetPoints.changeClId(seeds,ClId)
0	$seeds.delete\left(Point ight)$
8	while $seeds \neq NULL$:
9	currentP = seeds.first()
10	$result = SetOfPoints.regionQuery\left(currentP,\epsilon\right)$
1	if $result.size() > MinPts$ then
12	for $i = 1$ to <i>result.size</i> :
	return TRUE

Exp	ExpandCluster ($SetPoints, Point, ClId, \epsilon, MinPts$)		
1	$seed = SetOfPoints.regionQuery(Point, \epsilon)$		
2	If $seeds.size < MinPts$ Then		
3	SetPoints.changeClId (Point, NOISE)		
4	return FALSE		
5	else		
6	SetPoints.changeClId(seeds,ClId)		
7	$seeds.delete\left(Point ight)$		
8	while $seeds \neq NULL$:		
9	currentP = seeds.first()		
10	$result = SetOfPoints.regionQuery\left(currentP,\epsilon\right)$		
0	if $result.size() > MinPts$ then		
12	for $i = 1$ to <i>result.size</i> :		
13	resultP = result.get(i)		
14	if $resultP.ClId \in \{NOISE, UNCLASSSIFIED\}$ and $resultP.ClId = UNCLASSSIFIED$		
15	seeds.append(resultP)		
	return TRUE (미) (퀸) (코) (코) (코) · · · · · · · · · · · · · · · · · · ·		

Cinvestav

120 / 130

Exp	$Dotalluster(SetPoints, Point, ClId, \epsilon, MinPts)$	
1	$seed = SetOfPoints.regionQuery(Point, \epsilon)$	
2	If $seeds.size < MinPts$ Then	
3	SetPoints.changeClId(Point,NOISE)	
4	return FALSE	
5	else	
6	SetPoints.changeClId(seeds,ClId)	
7	$seeds.delete\left(Point ight)$	
8	while $seeds \neq NULL$:	
9	currentP = seeds.first()	
10	$result = SetOfPoints.regionQuery\left(currentP,\epsilon\right)$	
0	if $result.size() > MinPts$ then	
12	for $i = 1$ to <i>result.size</i> :	
13	$resultP = result.get\left(i\right)$	
14	if $resultP.ClId \in \{NOISE, UNCLASSSIFIED\}$ and $resultP.ClId = UNCLASSSIFIED$	
15	seeds.append(resultP)	
16	SetPoints.changeClId(resultP,ClId)	(Prov
17	$seeds.delete\left(currentP ight)$	ŚŚ
	return TRUE (ロト <日・<日・<モ・ ミ	Sinvestav १९२०

120/130

Exp	bandCluster (<i>SetPoints</i> , <i>Point</i> , <i>ClId</i> , ϵ , <i>MinPts</i>)
1	$seed = SetOfPoints.regionQuery(Point, \epsilon)$
2	If $seeds.size < MinPts$ Then
3	SetPoints.changeClId (Point, NOISE)
4	return FALSE
5	else
6	SetPoints.changeClId(seeds,ClId)
7	$seeds.delete\left(Point ight)$
8	while $seeds \neq NULL$:
9	currentP = seeds.first()
10	$result = SetOfPoints.regionQuery\left(currentP,\epsilon\right)$
0	if $result.size() > MinPts$ then
12	for $i = 1$ to <i>result.size</i> :
13	$resultP = result.get\left(i\right)$
14	if $resultP.ClId \in \{NOISE, UNCLASSSIFIED\}$ and $resultP.ClId = UNCLASSSIFIED$
15	seeds.append(resultP)
16	SetPoints.changeClId(resultP,ClId)
0	$seeds.delete\left(current P ight)$
18	return TRUE

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity

DBSCAN

- Density Based Notion of Clusters
- Beyond K-NN Idea
- Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm

Complexity

 \blacksquare Finding ϵ and MinPts

イロト イヨト イヨト

Complexity

xis a core point

• It can be implemented using kd-trees

Thus, given the complexities of Kd-trees

Complexity

x is a core point

• It can be implemented using kd-trees

Thus, given the complexities of Kd-trees

	Average	Worst case
Space	$O\left(n ight)$	$O\left(n ight)$
Search	$O\left(\log n\right)$	$O\left(n ight)$
Insert	$O\left(\log n\right)$	$O\left(n ight)$
Delete	$O\left(\log n\right)$	$O\left(n ight)$

< ロ > < 回 > < 回 > < 回 > < 回 >

Therefore

The average Complexity of DBSCAN

- $O(dn \log n)$ to build the structure for query using a heapsort or mergesort
- $O\left(\left\{n^{1-\frac{1}{d}}+m\right\}\right)$ when m is the number of reported elements and d is the dimensionality of the points.

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithm

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity

DBSCAN

- Density Based Notion of Clusters
- Beyond K-NN Idea
- Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- Finding ϵ and MinPts

イロト イヨト イヨト

There is a problem

How do we estimate?

• ϵ and MinPts.

In the original paper

 They develop a heuristic to determine the parameters ε and MinPts of the "thinnest"

There is a problem

How do we estimate?

• ϵ and MinPts.

In the original paper

 $\bullet\,$ They develop a heuristic to determine the parameters $\epsilon\,$ and $MinPts\,$ of the "thinnest"

イロト イヨト イヨト

Heuristic

Let d be the distance of a point \boldsymbol{x}

• to its k^{th} nearest neighbor.

Then, the d-neighborhood of x contains exactly.

• k+1 points for almost all points x.

The d-neighborhood of x contains more than k+1 points.

 Only if several points have exactly the same distance d from x which is quite unlikely.

Heuristic

Let d be the distance of a point \boldsymbol{x}

• to its k^{th} nearest neighbor.

Then, the d-neighborhood of x contains exactly

• k+1 points for almost all points x.

The d-neighborhood of $m{x}$ contains more than k+1 points.

 Only if several points have exactly the same distance d from x which is quite unlikely.

Heuristic

Let d be the distance of a point \boldsymbol{x}

• to its k^{th} nearest neighbor.

Then, the d-neighborhood of $m{x}$ contains exactly

• k+1 points for almost all points x.

The d-neighborhood of $oldsymbol{x}$ contains more than k+1 points

• Only if several points have exactly the same distance d from x which is quite unlikely.

Furthermore

• Changing k for a point in a cluster does not result in large changes of d.

This only happens if the k^m nearest neighbors of $m{x}$.

for k = 1, 2, 3, ... are located approximately

on a straight line which is in general not true for a point in a cluster.

Furthermore

• Changing k for a point in a cluster does not result in large changes of d.

This only happens if the k^{th} nearest neighbors of $oldsymbol{x}$

- for $k = 1, 2, 3, \dots$ are located approximately
 - on a straight line which is in general not true for a point in a cluster.

Then, we have

For a given k we define a function k-dist from \mathbb{R}^d to \mathbb{R}

• Mapping each point to the distance from its k^{th} nearest neighbor.

When sorting the points of the database in descending order of their k-dist values

 The graph of this function gives some hints concerning the density distribution in the database.

Then, we have

For a given k we define a function k-dist from \mathbb{R}^d to \mathbb{R}

• Mapping each point to the distance from its k^{th} nearest neighbor.

When sorting the points of the database in descending order of their k-dist values

• The graph of this function gives some hints concerning the density distribution in the database.

イロト イポト イヨト イヨー

Example of 4-dist

Therefore

For more in the heuristic look at the paper

• "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise" by Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu

However, the problem is the same

 Finding the correct number of hyperparameters for getting the correct number of clusters

< ロ > < 同 > < 回 > < 回 >

130 / 130

More advanced methods of clustering exist

- Spectral Clustering Using the Graph Structure
- Dirichlet Processes Based in the Generation of a Distribution

etc

Therefore

For more in the heuristic look at the paper

 "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise" by Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu

However, the problem is the same

• Finding the correct number of hyperparameters for getting the correct number of clusters

130 / 130

More advanced methods of clustering exist

- Spectral Clustering Using the Graph Structure
- Dirichlet Processes Based in the Generation of a Distribution

etc

Therefore

For more in the heuristic look at the paper

 "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise" by Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu

However, the problem is the same

• Finding the correct number of hyperparameters for getting the correct number of clusters

130 / 130

More advanced methods of clustering exist

- Spectral Clustering Using the Graph Structure
- Dirichlet Processes Based in the Generation of a Distribution
- etc