
Introduction to Machine Learning
Hierarchical Clustering and Large Data Set Clustering

Andres Mendez-Vazquez

August 4, 2020

1 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

2 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

3 / 130

Concepts

Hierarchical Clustering Algorithms
They are quite different from the previous clustering algorithms.

Actually
They produce a hierarchy of clusterings.

4 / 130

Concepts

Hierarchical Clustering Algorithms
They are quite different from the previous clustering algorithms.

Actually
They produce a hierarchy of clusterings.

4 / 130

Dendrogram

Hierarchical Clustering
The clustering is obtained by cutting the dendrogram at a desired level:

Each connected component forms a cluster.

5 / 130

Example

Dendrogram

6 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

7 / 130

Basic Ideas

At each step t
A new clustering is obtained based on the clustering produced at the
previous step t− 1

Two Main Types
1 Agglomerative Algorithms.

1 Start with each item being a single cluster.
2 Eventually all items belong to the same cluster.

2 Divisive Algorithms
1 Start with all items belong to the same cluster.
2 Eventually each item forms a cluster on its own.

8 / 130

Basic Ideas

At each step t
A new clustering is obtained based on the clustering produced at the
previous step t− 1

Two Main Types
1 Agglomerative Algorithms.

1 Start with each item being a single cluster.
2 Eventually all items belong to the same cluster.

2 Divisive Algorithms
1 Start with all items belong to the same cluster.
2 Eventually each item forms a cluster on its own.

8 / 130

Basic Ideas

At each step t
A new clustering is obtained based on the clustering produced at the
previous step t− 1

Two Main Types
1 Agglomerative Algorithms.

1 Start with each item being a single cluster.
2 Eventually all items belong to the same cluster.

2 Divisive Algorithms
1 Start with all items belong to the same cluster.
2 Eventually each item forms a cluster on its own.

8 / 130

Basic Ideas

At each step t
A new clustering is obtained based on the clustering produced at the
previous step t− 1

Two Main Types
1 Agglomerative Algorithms.

1 Start with each item being a single cluster.
2 Eventually all items belong to the same cluster.

2 Divisive Algorithms
1 Start with all items belong to the same cluster.
2 Eventually each item forms a cluster on its own.

8 / 130

Basic Ideas

At each step t
A new clustering is obtained based on the clustering produced at the
previous step t− 1

Two Main Types
1 Agglomerative Algorithms.

1 Start with each item being a single cluster.
2 Eventually all items belong to the same cluster.

2 Divisive Algorithms
1 Start with all items belong to the same cluster.
2 Eventually each item forms a cluster on its own.

8 / 130

Basic Ideas

At each step t
A new clustering is obtained based on the clustering produced at the
previous step t− 1

Two Main Types
1 Agglomerative Algorithms.

1 Start with each item being a single cluster.
2 Eventually all items belong to the same cluster.

2 Divisive Algorithms
1 Start with all items belong to the same cluster.
2 Eventually each item forms a cluster on its own.

8 / 130

Basic Ideas

At each step t
A new clustering is obtained based on the clustering produced at the
previous step t− 1

Two Main Types
1 Agglomerative Algorithms.

1 Start with each item being a single cluster.
2 Eventually all items belong to the same cluster.

2 Divisive Algorithms
1 Start with all items belong to the same cluster.
2 Eventually each item forms a cluster on its own.

8 / 130

Remark

With hierarchical methods, divisions or fusions, once made
They are irrevocable

I Agglomerative algorithm has joined two individuals they cannot
subsequently be separated.

I A divisive algorithm has made a split it cannot be undone.

As Kaufman and Rousseeuw (1990) colourfully comment (Similar to
Forward Feature Selection)

“A hierarchical method suffers from the defect that it can never repair
what was done in previous steps.”

9 / 130

Remark

With hierarchical methods, divisions or fusions, once made
They are irrevocable

I Agglomerative algorithm has joined two individuals they cannot
subsequently be separated.

I A divisive algorithm has made a split it cannot be undone.

As Kaufman and Rousseeuw (1990) colourfully comment (Similar to
Forward Feature Selection)

“A hierarchical method suffers from the defect that it can never repair
what was done in previous steps.”

9 / 130

Remark

With hierarchical methods, divisions or fusions, once made
They are irrevocable

I Agglomerative algorithm has joined two individuals they cannot
subsequently be separated.

I A divisive algorithm has made a split it cannot be undone.

As Kaufman and Rousseeuw (1990) colourfully comment (Similar to
Forward Feature Selection)

“A hierarchical method suffers from the defect that it can never repair
what was done in previous steps.”

9 / 130

Therefore

Given the previous ideas
It is necessary to define the concept of nesting!!!

After all given a divisive and agglomerative procedure

10 / 130

Therefore

Given the previous ideas
It is necessary to define the concept of nesting!!!

After all given a divisive and agglomerative procedure

10 / 130

Nested Clustering

Definition
1 A clustering <i containing k clusters is said to be nested in the

clustering <i+1, which contains r < k clusters, if each cluster in <i, it
is a subset of a set in <i+1.

2 At least one cluster at <i is a proper subset of a set in <i+1.

This is written as

<i @ <i+1 (1)

11 / 130

Nested Clustering

Definition
1 A clustering <i containing k clusters is said to be nested in the

clustering <i+1, which contains r < k clusters, if each cluster in <i, it
is a subset of a set in <i+1.

2 At least one cluster at <i is a proper subset of a set in <i+1.

This is written as

<i @ <i+1 (1)

11 / 130

Nested Clustering

Definition
1 A clustering <i containing k clusters is said to be nested in the

clustering <i+1, which contains r < k clusters, if each cluster in <i, it
is a subset of a set in <i+1.

2 At least one cluster at <i is a proper subset of a set in <i+1.

This is written as

<i @ <i+1 (1)

11 / 130

Example

We have
The following set{x1, x2, x3, x4, x5}.

With the following structures
<1 = {{x1, x3} , {x4} , {x2, x5}}
<2 = {{x1, x3, x4} , {x2, x5}}

Again
Hierarchical Clustering produces a hierarchy of clusterings!!!

12 / 130

Example

We have
The following set{x1, x2, x3, x4, x5}.

With the following structures
<1 = {{x1, x3} , {x4} , {x2, x5}}
<2 = {{x1, x3, x4} , {x2, x5}}

Again
Hierarchical Clustering produces a hierarchy of clusterings!!!

12 / 130

Example

We have
The following set{x1, x2, x3, x4, x5}.

With the following structures
<1 = {{x1, x3} , {x4} , {x2, x5}}
<2 = {{x1, x3, x4} , {x2, x5}}

Again
Hierarchical Clustering produces a hierarchy of clusterings!!!

12 / 130

Example

We have
The following set{x1, x2, x3, x4, x5}.

With the following structures
<1 = {{x1, x3} , {x4} , {x2, x5}}
<2 = {{x1, x3, x4} , {x2, x5}}

Again
Hierarchical Clustering produces a hierarchy of clusterings!!!

12 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

13 / 130

Agglomerative Algorithms.

Initial State
You have N clusters each containing an element of the data X.

I At each step i, you have an <i structure with N − i.
I Then, a new clustering structure <i+1 is generated.

Thus

14 / 130

Agglomerative Algorithms.

Initial State
You have N clusters each containing an element of the data X.

I At each step i, you have an <i structure with N − i.
I Then, a new clustering structure <i+1 is generated.

Thus

14 / 130

Agglomerative Algorithms.

Initial State
You have N clusters each containing an element of the data X.

I At each step i, you have an <i structure with N − i.
I Then, a new clustering structure <i+1 is generated.

Thus

14 / 130

Agglomerative Algorithms.

Initial State
You have N clusters each containing an element of the data X.

I At each step i, you have an <i structure with N − i.
I Then, a new clustering structure <i+1 is generated.

Thus

14 / 130

In that way...

We have
At each step, we have that each cluster <i is a proper subset of a cluste in
<i or

<i @ <i+1 (2)

15 / 130

The Basic Algorithm for Agglomerative

For this
We have a function d (Ci, Cj) defined in all pair of cluster to measure
similarity or dissimilarity.
t denotes the current level of the hierarchy.

16 / 130

The Basic Algorithm for Agglomerative

For this
We have a function d (Ci, Cj) defined in all pair of cluster to measure
similarity or dissimilarity.
t denotes the current level of the hierarchy.

16 / 130

The Basic Algorithm

We have
1 Initialization
2 Choose <0 = {Ci = {xi} |i = 1, ..., N}
3 t = 0
4 Repeat:
5 t = t+ 1
6 Find one pair of clusters

(Cr, Cs) in <t−1 such that
d(Ci, Cj) = max,min of a similarity
or dissimilarity function
over all pairs

7 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq
8 Until all vectors lay in a single cluster

17 / 130

The Basic Algorithm

We have
1 Initialization
2 Choose <0 = {Ci = {xi} |i = 1, ..., N}
3 t = 0
4 Repeat:
5 t = t+ 1
6 Find one pair of clusters

(Cr, Cs) in <t−1 such that
d(Ci, Cj) = max,min of a similarity
or dissimilarity function
over all pairs

7 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq
8 Until all vectors lay in a single cluster

17 / 130

The Basic Algorithm

We have
1 Initialization
2 Choose <0 = {Ci = {xi} |i = 1, ..., N}
3 t = 0
4 Repeat:
5 t = t+ 1
6 Find one pair of clusters

(Cr, Cs) in <t−1 such that
d(Ci, Cj) = max,min of a similarity
or dissimilarity function
over all pairs

7 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq
8 Until all vectors lay in a single cluster

17 / 130

The Basic Algorithm

We have
1 Initialization
2 Choose <0 = {Ci = {xi} |i = 1, ..., N}
3 t = 0
4 Repeat:
5 t = t+ 1
6 Find one pair of clusters

(Cr, Cs) in <t−1 such that
d(Ci, Cj) = max,min of a similarity
or dissimilarity function
over all pairs

7 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq
8 Until all vectors lay in a single cluster

17 / 130

The Basic Algorithm

We have
1 Initialization
2 Choose <0 = {Ci = {xi} |i = 1, ..., N}
3 t = 0
4 Repeat:
5 t = t+ 1
6 Find one pair of clusters

(Cr, Cs) in <t−1 such that
d(Ci, Cj) = max,min of a similarity
or dissimilarity function
over all pairs

7 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq
8 Until all vectors lay in a single cluster

17 / 130

The Basic Algorithm

We have
1 Initialization
2 Choose <0 = {Ci = {xi} |i = 1, ..., N}
3 t = 0
4 Repeat:
5 t = t+ 1
6 Find one pair of clusters

(Cr, Cs) in <t−1 such that
d(Ci, Cj) = max,min of a similarity
or dissimilarity function
over all pairs

7 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq
8 Until all vectors lay in a single cluster

17 / 130

The Basic Algorithm

We have
1 Initialization
2 Choose <0 = {Ci = {xi} |i = 1, ..., N}
3 t = 0
4 Repeat:
5 t = t+ 1
6 Find one pair of clusters

(Cr, Cs) in <t−1 such that
d(Ci, Cj) = max,min of a similarity
or dissimilarity function
over all pairs

7 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq
8 Until all vectors lay in a single cluster

17 / 130

The Basic Algorithm

We have
1 Initialization
2 Choose <0 = {Ci = {xi} |i = 1, ..., N}
3 t = 0
4 Repeat:
5 t = t+ 1
6 Find one pair of clusters

(Cr, Cs) in <t−1 such that
d(Ci, Cj) = max,min of a similarity
or dissimilarity function
over all pairs

7 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq
8 Until all vectors lay in a single cluster

17 / 130

The Basic Algorithm

We have
1 Initialization
2 Choose <0 = {Ci = {xi} |i = 1, ..., N}
3 t = 0
4 Repeat:
5 t = t+ 1
6 Find one pair of clusters

(Cr, Cs) in <t−1 such that
d(Ci, Cj) = max,min of a similarity
or dissimilarity function
over all pairs

7 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq
8 Until all vectors lay in a single cluster

17 / 130

The Basic Algorithm

We have
1 Initialization
2 Choose <0 = {Ci = {xi} |i = 1, ..., N}
3 t = 0
4 Repeat:
5 t = t+ 1
6 Find one pair of clusters

(Cr, Cs) in <t−1 such that
d(Ci, Cj) = max,min of a similarity
or dissimilarity function
over all pairs

7 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq
8 Until all vectors lay in a single cluster

17 / 130

Additionally

Note the following
“We can say that if two vectors come together into a single cluster at level
t of the hierarchy, they will remain in the same cluster for all subsequent
clusterings.”

Thus

<0 @ <1 @ <2 @ ...<N−1 @ <N (3)

Which Enforces
The nesting property!!!

18 / 130

Additionally

Note the following
“We can say that if two vectors come together into a single cluster at level
t of the hierarchy, they will remain in the same cluster for all subsequent
clusterings.”

Thus

<0 @ <1 @ <2 @ ...<N−1 @ <N (3)

Which Enforces
The nesting property!!!

18 / 130

Additionally

Note the following
“We can say that if two vectors come together into a single cluster at level
t of the hierarchy, they will remain in the same cluster for all subsequent
clusterings.”

Thus

<0 @ <1 @ <2 @ ...<N−1 @ <N (3)

Which Enforces
The nesting property!!!

18 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

19 / 130

Two Categories of Agglomerative Algorithms

There are two
1 Matrix Theory Based.
2 Graph Theory Based.

20 / 130

Two Categories of Agglomerative Algorithms

There are two
1 Matrix Theory Based.
2 Graph Theory Based.

20 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

21 / 130

In Matrix Theory Based

Dissimilarity Matrix
As the name says, they are based in dissimilarity matrix P0 = P (X) of
N ×N .

Merging Process
At each merging the matrix is reduced by one level ⇒ Pt becomes a
N − t×N − t matrix.

22 / 130

In Matrix Theory Based

Dissimilarity Matrix
As the name says, they are based in dissimilarity matrix P0 = P (X) of
N ×N .

Merging Process
At each merging the matrix is reduced by one level ⇒ Pt becomes a
N − t×N − t matrix.

22 / 130

Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130

Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130

Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130

Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130

Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130

Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130

Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130

Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130

Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130

Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130

Matrix Based Algorithm

Matrix Updating Algorithmic Scheme (MUAS)
1 Initialization

2 Choose <0 = {Ci = {xi} |i = 1, ..., N}

3 P0 = P (X)

4 t = 0

5 Repeat

6 t = t+ 1

7 Find one pair of clusters
(Cr, Cs) in <t−1 such that
d(Ci, Cj) = minr,s=1,..,N,r 6=s d(Cr, Cs)

8 Define Cq = Ci ∪ Cj ,<t = <t−1 − {Ci, Cj} ∪ Cq

9 Define Pt by STRATEGY
10 Until all vectors lay in a single cluster

23 / 130

Matrix Based Algorithm

STRATEGY
1 Delete the two rows and columns that correspond to the merged

clusters.
2 Add new row and a new column that contain the distances between

the newly formed cluster and the old (unaffected at this level) clusters.

24 / 130

Matrix Based Algorithm

STRATEGY
1 Delete the two rows and columns that correspond to the merged

clusters.
2 Add new row and a new column that contain the distances between

the newly formed cluster and the old (unaffected at this level) clusters.

24 / 130

Distance Used in These Schemes
It has been pointed out that there is only one general distance for
these algorithms

d (Cq, Cs) =aid (Ci, Cs) + ajd (Cj , Cs) + ...

bd (Ci, Cj) + c |d (Ci, Cs)− d (Cj , Cs)|

Where different values of ai, aj , b and c correspond to different choices of
the dissimilarity measures.

Using this distance is possible to generate several algorithms
1 The single link algorithm.
2 The complete link algorithm.
3 The weighted pair group method average.
4 The unweighted pair group method centroid.
5 Etc...

25 / 130

Distance Used in These Schemes
It has been pointed out that there is only one general distance for
these algorithms

d (Cq, Cs) =aid (Ci, Cs) + ajd (Cj , Cs) + ...

bd (Ci, Cj) + c |d (Ci, Cs)− d (Cj , Cs)|

Where different values of ai, aj , b and c correspond to different choices of
the dissimilarity measures.

Using this distance is possible to generate several algorithms
1 The single link algorithm.
2 The complete link algorithm.
3 The weighted pair group method average.
4 The unweighted pair group method centroid.
5 Etc...

25 / 130

Distance Used in These Schemes
It has been pointed out that there is only one general distance for
these algorithms

d (Cq, Cs) =aid (Ci, Cs) + ajd (Cj , Cs) + ...

bd (Ci, Cj) + c |d (Ci, Cs)− d (Cj , Cs)|

Where different values of ai, aj , b and c correspond to different choices of
the dissimilarity measures.

Using this distance is possible to generate several algorithms
1 The single link algorithm.
2 The complete link algorithm.
3 The weighted pair group method average.
4 The unweighted pair group method centroid.
5 Etc...

25 / 130

Distance Used in These Schemes
It has been pointed out that there is only one general distance for
these algorithms

d (Cq, Cs) =aid (Ci, Cs) + ajd (Cj , Cs) + ...

bd (Ci, Cj) + c |d (Ci, Cs)− d (Cj , Cs)|

Where different values of ai, aj , b and c correspond to different choices of
the dissimilarity measures.

Using this distance is possible to generate several algorithms
1 The single link algorithm.
2 The complete link algorithm.
3 The weighted pair group method average.
4 The unweighted pair group method centroid.
5 Etc...

25 / 130

Distance Used in These Schemes
It has been pointed out that there is only one general distance for
these algorithms

d (Cq, Cs) =aid (Ci, Cs) + ajd (Cj , Cs) + ...

bd (Ci, Cj) + c |d (Ci, Cs)− d (Cj , Cs)|

Where different values of ai, aj , b and c correspond to different choices of
the dissimilarity measures.

Using this distance is possible to generate several algorithms
1 The single link algorithm.
2 The complete link algorithm.
3 The weighted pair group method average.
4 The unweighted pair group method centroid.
5 Etc...

25 / 130

Distance Used in These Schemes
It has been pointed out that there is only one general distance for
these algorithms

d (Cq, Cs) =aid (Ci, Cs) + ajd (Cj , Cs) + ...

bd (Ci, Cj) + c |d (Ci, Cs)− d (Cj , Cs)|

Where different values of ai, aj , b and c correspond to different choices of
the dissimilarity measures.

Using this distance is possible to generate several algorithms
1 The single link algorithm.
2 The complete link algorithm.
3 The weighted pair group method average.
4 The unweighted pair group method centroid.
5 Etc...

25 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

26 / 130

Single Linkage

Let G and H represent two such group sets

We have that
Single linkage (SL) agglomerative clustering takes the intergroup
dissimilarity to be that of the closest (Least Dissimilar) pair:

dSL (G,H) = min
xi∈G,xj∈H

d (xi,xj)

This is also known as
This is also often called the nearest-neighbor technique.

27 / 130

Single Linkage

Let G and H represent two such group sets

We have that
Single linkage (SL) agglomerative clustering takes the intergroup
dissimilarity to be that of the closest (Least Dissimilar) pair:

dSL (G,H) = min
xi∈G,xj∈H

d (xi,xj)

This is also known as
This is also often called the nearest-neighbor technique.

27 / 130

Single Linkage

Let G and H represent two such group sets

We have that
Single linkage (SL) agglomerative clustering takes the intergroup
dissimilarity to be that of the closest (Least Dissimilar) pair:

dSL (G,H) = min
xi∈G,xj∈H

d (xi,xj)

This is also known as
This is also often called the nearest-neighbor technique.

27 / 130

For example

The single linkage clustering algorithm
This is obtained if we set ai = 1/2, aj = 1/2, b = 0, c = −1/2

Thus, we have

d (Cq, Cs) = min {d (Ci, Cs) , d (Cj , Cs)} (4)

28 / 130

For example

The single linkage clustering algorithm
This is obtained if we set ai = 1/2, aj = 1/2, b = 0, c = −1/2

Thus, we have

d (Cq, Cs) = min {d (Ci, Cs) , d (Cj , Cs)} (4)

28 / 130

What clusters are produced?

First
Distance Between closest elements in clusters
It produces long chains xi1 → xi2 → xi3 → xi4 → xi5

29 / 130

Another Example of a Single Link Dissimilarity

This can be created using the following cluster distance

dmin (Ci, Cj) = min
x∈Ci,y∈Cj

‖x− y‖2

Nearest Neighborhood (Single Linkage)

30 / 130

Another Example of a Single Link Dissimilarity

This can be created using the following cluster distance

dmin (Ci, Cj) = min
x∈Ci,y∈Cj

‖x− y‖2

Nearest Neighborhood (Single Linkage)

30 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

31 / 130

Complete linkage (CL)
Complete Linkage agglomerative clustering (furthest-neighbor
technique)

It takes the intergroup dissimilarity to be that of the furthest (most
dissimilar) pair

dCL (G,H) = max
xi∈G,xj∈H

d (xi,xj)

I Distance between farthest elements in the clusters.
I Forces, Spherical clusters with consistent diameter.

32 / 130

Example

This can be created using the following cluster distance

dmax (Ci, Cj) = max
x∈Ci,y∈Cj

‖x− y‖2

33 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

34 / 130

Finally, a compromise

Group average (GA)
Group average (GA) clustering uses the average dissimilarity between
the groups

dCL (G,H) = 1
NGNH

∑
xi∈G

∑
xj∈H

d (xi,xj)

Something Notable
Average of all the pairwise distances
Less affected by outliers

35 / 130

Finally, a compromise

Group average (GA)
Group average (GA) clustering uses the average dissimilarity between
the groups

dCL (G,H) = 1
NGNH

∑
xi∈G

∑
xj∈H

d (xi,xj)

Something Notable
Average of all the pairwise distances
Less affected by outliers

35 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

36 / 130

Agglomerative Algorithms Based on Graph Theory

Consider the following
1 Each node in the graph G correspond to a vector.
2 Cluster are formed by connecting nodes.
3 Certain property, h (k), needs to be respected.

Common Properties: Node Connectivity
The node connectivity of a connected subgraph is the largest
integer k

I All pairs of nodes are joined by at least k paths having no nodes in
common.

37 / 130

Agglomerative Algorithms Based on Graph Theory

Consider the following
1 Each node in the graph G correspond to a vector.
2 Cluster are formed by connecting nodes.
3 Certain property, h (k), needs to be respected.

Common Properties: Node Connectivity
The node connectivity of a connected subgraph is the largest
integer k

I All pairs of nodes are joined by at least k paths having no nodes in
common.

37 / 130

Agglomerative Algorithms Based on Graph Theory

Consider the following
1 Each node in the graph G correspond to a vector.
2 Cluster are formed by connecting nodes.
3 Certain property, h (k), needs to be respected.

Common Properties: Node Connectivity
The node connectivity of a connected subgraph is the largest
integer k

I All pairs of nodes are joined by at least k paths having no nodes in
common.

37 / 130

Agglomerative Algorithms Based on Graph Theory

Consider the following
1 Each node in the graph G correspond to a vector.
2 Cluster are formed by connecting nodes.
3 Certain property, h (k), needs to be respected.

Common Properties: Node Connectivity
The node connectivity of a connected subgraph is the largest
integer k

I All pairs of nodes are joined by at least k paths having no nodes in
common.

37 / 130

Agglomerative Algorithms Based on Graph Theory

Common Properties: Edge Connectivity
The edge connectivity of a connected subgraph is the largest integer k
such that all pairs of nodes are joined by at least k paths having no edges
in common.

Common Properties: Node Degree
The degree of a connected subgraph is the largest integer k such that
each node has at least k incident edges.

38 / 130

Agglomerative Algorithms Based on Graph Theory

Common Properties: Edge Connectivity
The edge connectivity of a connected subgraph is the largest integer k
such that all pairs of nodes are joined by at least k paths having no edges
in common.

Common Properties: Node Degree
The degree of a connected subgraph is the largest integer k such that
each node has at least k incident edges.

38 / 130

Basically, We use the Same Scheme, But...

The function

dh(k) (Cr, Cs) = min
x∈Cr,y∈Cs

{d (x, y) |Property} (5)

Property
The G subgraph defined by Cr ∪ Cs is

1 It is connected and either
1 It has the property h(k) or
2 It is complete

39 / 130

Basically, We use the Same Scheme, But...

The function

dh(k) (Cr, Cs) = min
x∈Cr,y∈Cs

{d (x, y) |Property} (5)

Property
The G subgraph defined by Cr ∪ Cs is

1 It is connected and either
1 It has the property h(k) or
2 It is complete

39 / 130

Basically, We use the Same Scheme, But...

The function

dh(k) (Cr, Cs) = min
x∈Cr,y∈Cs

{d (x, y) |Property} (5)

Property
The G subgraph defined by Cr ∪ Cs is

1 It is connected and either
1 It has the property h(k) or
2 It is complete

39 / 130

Basically, We use the Same Scheme, But...

The function

dh(k) (Cr, Cs) = min
x∈Cr,y∈Cs

{d (x, y) |Property} (5)

Property
The G subgraph defined by Cr ∪ Cs is

1 It is connected and either
1 It has the property h(k) or
2 It is complete

39 / 130

Basically, We use the Same Scheme, But...

The function

dh(k) (Cr, Cs) = min
x∈Cr,y∈Cs

{d (x, y) |Property} (5)

Property
The G subgraph defined by Cr ∪ Cs is

1 It is connected and either
1 It has the property h(k) or
2 It is complete

39 / 130

Examples

Again
1 Single Link Algorithm
2 Complete Link Algorithm

There is other style of clustering
Clustering Algorithms Based on the Minimum Spanning Tree

40 / 130

Examples

Again
1 Single Link Algorithm
2 Complete Link Algorithm

There is other style of clustering
Clustering Algorithms Based on the Minimum Spanning Tree

40 / 130

Examples

Again
1 Single Link Algorithm
2 Complete Link Algorithm

There is other style of clustering
Clustering Algorithms Based on the Minimum Spanning Tree

40 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

41 / 130

Problems with Schema of Agglomerative Algorithms
First - Related to Nesting Property
No way to recover from a “poor” clustering that may have occurred in an
earlier level of the hierarchy.

Second, if we use a Naive Scheme - Full comparison at each level
At each level t, there are N − t clusters.
Thus at level t+ 1 the total number of pairs compared .(

N − t
2

)
= (N − t) (N − t− 1)

2 (6)

Total Number of pairs compared are
N−1∑
t=0

(
N − t

2

)
(7)

42 / 130

Problems with Schema of Agglomerative Algorithms
First - Related to Nesting Property
No way to recover from a “poor” clustering that may have occurred in an
earlier level of the hierarchy.

Second, if we use a Naive Scheme - Full comparison at each level
At each level t, there are N − t clusters.
Thus at level t+ 1 the total number of pairs compared .(

N − t
2

)
= (N − t) (N − t− 1)

2 (6)

Total Number of pairs compared are
N−1∑
t=0

(
N − t

2

)
(7)

42 / 130

Problems with Schema of Agglomerative Algorithms
First - Related to Nesting Property
No way to recover from a “poor” clustering that may have occurred in an
earlier level of the hierarchy.

Second, if we use a Naive Scheme - Full comparison at each level
At each level t, there are N − t clusters.
Thus at level t+ 1 the total number of pairs compared .(

N − t
2

)
= (N − t) (N − t− 1)

2 (6)

Total Number of pairs compared are
N−1∑
t=0

(
N − t

2

)
(7)

42 / 130

Problems with Schema of Agglomerative Algorithms
First - Related to Nesting Property
No way to recover from a “poor” clustering that may have occurred in an
earlier level of the hierarchy.

Second, if we use a Naive Scheme - Full comparison at each level
At each level t, there are N − t clusters.
Thus at level t+ 1 the total number of pairs compared .(

N − t
2

)
= (N − t) (N − t− 1)

2 (6)

Total Number of pairs compared are
N−1∑
t=0

(
N − t

2

)
(7)

42 / 130

Problems with Schema of Agglomerative Algorithms
First - Related to Nesting Property
No way to recover from a “poor” clustering that may have occurred in an
earlier level of the hierarchy.

Second, if we use a Naive Scheme - Full comparison at each level
At each level t, there are N − t clusters.
Thus at level t+ 1 the total number of pairs compared .(

N − t
2

)
= (N − t) (N − t− 1)

2 (6)

Total Number of pairs compared are
N−1∑
t=0

(
N − t

2

)
(7)

42 / 130

Thus

We have that
N−1∑
t=0

(
N − t

2

)
=

N∑
k=1

(
k
2

)
= (N − 1)N (N + 1)

6 (8)

Thus
The complexity of this schema is O

(
N3)

However
You still depend on the nature of d.

43 / 130

Thus

We have that
N−1∑
t=0

(
N − t

2

)
=

N∑
k=1

(
k
2

)
= (N − 1)N (N + 1)

6 (8)

Thus
The complexity of this schema is O

(
N3)

However
You still depend on the nature of d.

43 / 130

Thus

We have that
N−1∑
t=0

(
N − t

2

)
=

N∑
k=1

(
k
2

)
= (N − 1)N (N + 1)

6 (8)

Thus
The complexity of this schema is O

(
N3)

However
You still depend on the nature of d.

43 / 130

Then

We need to be able to improve the complexity of Aggregation
From the Metric Algorithms and Data structures, there are possible
solutions...

44 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

45 / 130

The idea of using a middle point

In order to establish a better performance
Every time, we join two clusters:

I We can then use a representative for such join in the agglomeration

Therefore, we need a data structure to be able to support these
updates

We may use a Kd-tree...

46 / 130

The idea of using a middle point

In order to establish a better performance
Every time, we join two clusters:

I We can then use a representative for such join in the agglomeration

Therefore, we need a data structure to be able to support these
updates

We may use a Kd-tree...

46 / 130

In this case, we assume a group average

We need a Kd-tree supporting insertions
By Logarithmic Rebuilding...

This was born from the fact that
It is necessary to modify the Kd-tree dynamically to maintain certain
performance.

47 / 130

In this case, we assume a group average

We need a Kd-tree supporting insertions
By Logarithmic Rebuilding...

This was born from the fact that
It is necessary to modify the Kd-tree dynamically to maintain certain
performance.

47 / 130

Example

48 / 130

In order to keep performance, Logarithmic Rebuilding

We maintain at most h = O (logN) Kd-trees
T0, T1, ..., Th−1 such that the ith (i ∈ [1, h]) tree stores precisely 2i
points.
Each point is stored in only one Kd-tree.

49 / 130

Procedure

We have the following procedure
To insert a new point p, we

1 Identify the smallest i ≥ 0 such that Ti is empty
2 Destroy all of T0, T1, ..., Ti−1. Collect all the points there into a set S.
3 Construct Ti in S ∪ {p}
I Note |Ti| = 2i

50 / 130

Amortized Analysis

Construction of Ti
It takes O

(
2i log 2i

)
time

Charge the cost on the 2i points in Ti
Each of which is amortized O

(
log 2i

)
= O (logN) time.

Each point can be charged only O (log n) when moving to a bigger
tree

Amortized insertion time per point O
(
log2N

)

51 / 130

Amortized Analysis

Construction of Ti
It takes O

(
2i log 2i

)
time

Charge the cost on the 2i points in Ti
Each of which is amortized O

(
log 2i

)
= O (logN) time.

Each point can be charged only O (log n) when moving to a bigger
tree

Amortized insertion time per point O
(
log2N

)

51 / 130

Amortized Analysis

Construction of Ti
It takes O

(
2i log 2i

)
time

Charge the cost on the 2i points in Ti
Each of which is amortized O

(
log 2i

)
= O (logN) time.

Each point can be charged only O (log n) when moving to a bigger
tree

Amortized insertion time per point O
(
log2N

)

51 / 130

Querying the Structure

Simply
Search all of the h trees T0, T1, ..., Th−1

Query Time

O
(√

2h−1 +
√

2h−2 + · · ·+
√

20 + k
)

= O
(√

N + k
)

Similar to the search on the original Kd-tree.

52 / 130

Querying the Structure

Simply
Search all of the h trees T0, T1, ..., Th−1

Query Time

O
(√

2h−1 +
√

2h−2 + · · ·+
√

20 + k
)

= O
(√

N + k
)

Similar to the search on the original Kd-tree.

52 / 130

What if we avoid comparing all the elements using a
Kd-Tree

Generation of the Structure
O
(
N log2N

)
to get the data structure with space O (N)

Query
We get to query in O

(√
N + k

)
in the worst case scenario.

I Here k is the number of elements being reported.

53 / 130

What if we avoid comparing all the elements using a
Kd-Tree

Generation of the Structure
O
(
N log2N

)
to get the data structure with space O (N)

Query
We get to query in O

(√
N + k

)
in the worst case scenario.

I Here k is the number of elements being reported.

53 / 130

Therefore

We have

54 / 130

At Each Level

At each level calculate the new centroid
Insert it

I Inserting takes O
(
log2 N

)
, but How many insertions?

55 / 130

We have...

Therefore
We have total number of insertions assuming pair of them:

N

2 + N

22 ++ N

2logn = N

(
1− 1

N
1
2

)
−N = ∗

Therefore

∗ = 2 (N − 1)−N = N − 2

56 / 130

We have...

Therefore
We have total number of insertions assuming pair of them:

N

2 + N

22 ++ N

2logn = N

(
1− 1

N
1
2

)
−N = ∗

Therefore

∗ = 2 (N − 1)−N = N − 2

56 / 130

Final Complexity

We have after building the data structure

57 / 130

Then, we have

The Clustering takes

O
(
N log2N

)
+O

(
N3/2 +Nk

)
= O

(
N3/2

)
Given that you need to build a tree for each centroid structure

N log2N + 1
2N log2 N

2 + ...+ 1
2logN log2 N

2log2 = O
(
N log2N

)

58 / 130

Then, we have

The Clustering takes

O
(
N log2N

)
+O

(
N3/2 +Nk

)
= O

(
N3/2

)
Given that you need to build a tree for each centroid structure

N log2N + 1
2N log2 N

2 + ...+ 1
2logN log2 N

2log2 = O
(
N log2N

)

58 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

59 / 130

Divisive Algorithms

Reverse Strategy
Start with a single cluster split it iteratively.

They are lees common than agglomerative methods
However, Kaufman and Rousseeuw (1990) pointed out:

I This is revealed when a divisive method is applied

60 / 130

Divisive Algorithms

Reverse Strategy
Start with a single cluster split it iteratively.

They are lees common than agglomerative methods
However, Kaufman and Rousseeuw (1990) pointed out:

I This is revealed when a divisive method is applied

60 / 130

Generalized Divisive Scheme
Algorithm PROBLEM what is wrong!!!

1 Initialization
2 Choose <0 = {X}
3 P0 = P (X)

4 t = 0
5 Repeat
6 t = t+ 1
7 For i = 1 to t
8 Given a partition Ct−1, i

9 Generate all possible clusters
10 next i

11 Find the pair C1
t−1,j , C

2
t−1,j that

maximize g

12 Create
<t = <t−1 − {Ct−1,j} ∪

{
C1
t−1,j , C

2
t−1,j

}
13 Until all vectors lie in a single cluster

61 / 130

Generalized Divisive Scheme
Algorithm PROBLEM what is wrong!!!

1 Initialization
2 Choose <0 = {X}
3 P0 = P (X)

4 t = 0
5 Repeat
6 t = t+ 1
7 For i = 1 to t
8 Given a partition Ct−1, i

9 Generate all possible clusters
10 next i

11 Find the pair C1
t−1,j , C

2
t−1,j that

maximize g

12 Create
<t = <t−1 − {Ct−1,j} ∪

{
C1
t−1,j , C

2
t−1,j

}
13 Until all vectors lie in a single cluster

61 / 130

Generalized Divisive Scheme
Algorithm PROBLEM what is wrong!!!

1 Initialization
2 Choose <0 = {X}
3 P0 = P (X)

4 t = 0
5 Repeat
6 t = t+ 1
7 For i = 1 to t
8 Given a partition Ct−1, i

9 Generate all possible clusters
10 next i

11 Find the pair C1
t−1,j , C

2
t−1,j that

maximize g

12 Create
<t = <t−1 − {Ct−1,j} ∪

{
C1
t−1,j , C

2
t−1,j

}
13 Until all vectors lie in a single cluster

61 / 130

Generalized Divisive Scheme
Algorithm PROBLEM what is wrong!!!

1 Initialization
2 Choose <0 = {X}
3 P0 = P (X)

4 t = 0
5 Repeat
6 t = t+ 1
7 For i = 1 to t
8 Given a partition Ct−1, i

9 Generate all possible clusters
10 next i

11 Find the pair C1
t−1,j , C

2
t−1,j that

maximize g

12 Create
<t = <t−1 − {Ct−1,j} ∪

{
C1
t−1,j , C

2
t−1,j

}
13 Until all vectors lie in a single cluster

61 / 130

Generalized Divisive Scheme
Algorithm PROBLEM what is wrong!!!

1 Initialization
2 Choose <0 = {X}
3 P0 = P (X)

4 t = 0
5 Repeat
6 t = t+ 1
7 For i = 1 to t
8 Given a partition Ct−1, i

9 Generate all possible clusters
10 next i

11 Find the pair C1
t−1,j , C

2
t−1,j that

maximize g

12 Create
<t = <t−1 − {Ct−1,j} ∪

{
C1
t−1,j , C

2
t−1,j

}
13 Until all vectors lie in a single cluster

61 / 130

Generalized Divisive Scheme
Again, we need to be smart

1 Initialization
2 Choose <0 = {X}
3 P0 = P (X)

4 t = 0
5 Repeat
6 t = t+ 1
7 For i = 1 to t
8 Given a partition Ct−1, i

9 Generate all possible clusters
10 next i

11 Find the pair C1
t−1,j , C

2
t−1,j that

maximize g

12 Create
<t = <t−1 − {Ct−1,j} ∪

{
C1
t−1,j , C

2
t−1,j

}
13 Until all vectors lie in a single cluster

62 / 130

Generalized Divisive Scheme
Again, we need to be smart

1 Initialization
2 Choose <0 = {X}
3 P0 = P (X)

4 t = 0
5 Repeat
6 t = t+ 1
7 For i = 1 to t
8 Given a partition Ct−1, i

9 Generate all possible clusters
10 next i

11 Find the pair C1
t−1,j , C

2
t−1,j that

maximize g

12 Create
<t = <t−1 − {Ct−1,j} ∪

{
C1
t−1,j , C

2
t−1,j

}
13 Until all vectors lie in a single cluster

62 / 130

Generalized Divisive Scheme
Again, we need to be smart

1 Initialization
2 Choose <0 = {X}
3 P0 = P (X)

4 t = 0
5 Repeat
6 t = t+ 1
7 For i = 1 to t
8 Given a partition Ct−1, i

9 Generate all possible clusters
10 next i

11 Find the pair C1
t−1,j , C

2
t−1,j that

maximize g

12 Create
<t = <t−1 − {Ct−1,j} ∪

{
C1
t−1,j , C

2
t−1,j

}
13 Until all vectors lie in a single cluster

62 / 130

Generalized Divisive Scheme
Again, we need to be smart

1 Initialization
2 Choose <0 = {X}
3 P0 = P (X)

4 t = 0
5 Repeat
6 t = t+ 1
7 For i = 1 to t
8 Given a partition Ct−1, i

9 Generate all possible clusters
10 next i

11 Find the pair C1
t−1,j , C

2
t−1,j that

maximize g

12 Create
<t = <t−1 − {Ct−1,j} ∪

{
C1
t−1,j , C

2
t−1,j

}
13 Until all vectors lie in a single cluster

62 / 130

Generalized Divisive Scheme
Again, we need to be smart

1 Initialization
2 Choose <0 = {X}
3 P0 = P (X)

4 t = 0
5 Repeat
6 t = t+ 1
7 For i = 1 to t
8 Given a partition Ct−1, i

9 Generate all possible clusters
10 next i

11 Find the pair C1
t−1,j , C

2
t−1,j that

maximize g

12 Create
<t = <t−1 − {Ct−1,j} ∪

{
C1
t−1,j , C

2
t−1,j

}
13 Until all vectors lie in a single cluster

62 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

63 / 130

Possible Complexity

This is computationally demanding
If all 2N i

t − 1 possible division are considered:
I With N i

t is the number of elements in the cluster.

However, for data consisting of d binary variables
Relatively simple and computationally efficient methods exists

I Monothetic divisive methods

64 / 130

Possible Complexity

This is computationally demanding
If all 2N i

t − 1 possible division are considered:
I With N i

t is the number of elements in the cluster.

However, for data consisting of d binary variables
Relatively simple and computationally efficient methods exists

I Monothetic divisive methods

64 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

65 / 130

Monothetic Divisive Methods

They are based on
These generally divide clusters according to the presence or absence
of each of the d variables.

I At each stage cluster members contain or not certain attributes.

Format of the data
The data is in the form of a two-mode (binary) matrix.

members

Attributes

︷ ︸︸ ︷
1 0 1 · · · 0
0 1 0 · · · 0
0 0 0 · · · 1
...

...
...

0 0 0 · · · 1

66 / 130

Monothetic Divisive Methods

They are based on
These generally divide clusters according to the presence or absence
of each of the d variables.

I At each stage cluster members contain or not certain attributes.

Format of the data
The data is in the form of a two-mode (binary) matrix.

members

Attributes

︷ ︸︸ ︷
1 0 1 · · · 0
0 1 0 · · · 0
0 0 0 · · · 1
...

...
...

0 0 0 · · · 1

66 / 130

Then, if we define

fk= It is the number of individuals having kth attribute
We can define the following homogeneity criterion (Information
Content):

C = dN logN −
d∑

k=1
{fk log fk − (n− fk) log (n− fk)}

Therefore, if we split the original cluster into two groups A and B
The reduction in C is CX − CA − CB

Therefore
The ideal set of clusters would have members with identical attributes
and C equal to zero.

67 / 130

Then, if we define

fk= It is the number of individuals having kth attribute
We can define the following homogeneity criterion (Information
Content):

C = dN logN −
d∑

k=1
{fk log fk − (n− fk) log (n− fk)}

Therefore, if we split the original cluster into two groups A and B
The reduction in C is CX − CA − CB

Therefore
The ideal set of clusters would have members with identical attributes
and C equal to zero.

67 / 130

Then, if we define

fk= It is the number of individuals having kth attribute
We can define the following homogeneity criterion (Information
Content):

C = dN logN −
d∑

k=1
{fk log fk − (n− fk) log (n− fk)}

Therefore, if we split the original cluster into two groups A and B
The reduction in C is CX − CA − CB

Therefore
The ideal set of clusters would have members with identical attributes
and C equal to zero.

67 / 130

Therefore

Clusters are split at each stage
According to possession of the attribute which leads to the greatest
reduction in C.

Other possible splitting can be done using
Association Analysis (Ecology Term)

68 / 130

Therefore

Clusters are split at each stage
According to possession of the attribute which leads to the greatest
reduction in C.

Other possible splitting can be done using
Association Analysis (Ecology Term)

68 / 130

For Example

For one pair of variables, vi and vj ∈ [0, 1]
vi

vj 1 0
1 f11 f10
0 f01 f00

fij = the number of times vi and vj coincide or not.

Some common measures of association

m1 (f) = |f11f00 − f10f01|
m2 (f) = [f11f00 − f10f01]2

69 / 130

For Example

For one pair of variables, vi and vj ∈ [0, 1]
vi

vj 1 0
1 f11 f10
0 f01 f00

fij = the number of times vi and vj coincide or not.

Some common measures of association

m1 (f) = |f11f00 − f10f01|
m2 (f) = [f11f00 − f10f01]2

69 / 130

Therefore

The split at each stage
It is made according to the presence or absence of the attribute:

I Thus, its association with the others is a maximum!!!

70 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

71 / 130

Algorithms for Large Data Sets

There are several
1 The CURE Algorithm
2 The DBSCAN Algorithm
3 The ROCK Algorithm
4 The Chameleon Algorithm
5 The BIRCH Algorithm

72 / 130

Algorithms for Large Data Sets

There are several
1 The CURE Algorithm
2 The DBSCAN Algorithm
3 The ROCK Algorithm
4 The Chameleon Algorithm
5 The BIRCH Algorithm

72 / 130

Algorithms for Large Data Sets

There are several
1 The CURE Algorithm
2 The DBSCAN Algorithm
3 The ROCK Algorithm
4 The Chameleon Algorithm
5 The BIRCH Algorithm

72 / 130

Algorithms for Large Data Sets

There are several
1 The CURE Algorithm
2 The DBSCAN Algorithm
3 The ROCK Algorithm
4 The Chameleon Algorithm
5 The BIRCH Algorithm

72 / 130

Algorithms for Large Data Sets

There are several
1 The CURE Algorithm
2 The DBSCAN Algorithm
3 The ROCK Algorithm
4 The Chameleon Algorithm
5 The BIRCH Algorithm

72 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

73 / 130

Clustering Using REpresentatives (CURE)

Basic Idea
Each cluster Ci has a set of representatives
RCi =

{
x

(i)
1 ,x

(i)
2 , ...,x

(i)
K

}
with K > 1.

What is happening
By using multiple representatives for each cluster, the CURE
algorithm tries to “capture” the shape of each one.

However
In order to avoid taking into account irregularities (For example,
outliers) in the border of the cluster.

I The initially chosen representatives are “pushed” toward the mean of
the cluster.

74 / 130

Clustering Using REpresentatives (CURE)

Basic Idea
Each cluster Ci has a set of representatives
RCi =

{
x

(i)
1 ,x

(i)
2 , ...,x

(i)
K

}
with K > 1.

What is happening
By using multiple representatives for each cluster, the CURE
algorithm tries to “capture” the shape of each one.

However
In order to avoid taking into account irregularities (For example,
outliers) in the border of the cluster.

I The initially chosen representatives are “pushed” toward the mean of
the cluster.

74 / 130

Clustering Using REpresentatives (CURE)

Basic Idea
Each cluster Ci has a set of representatives
RCi =

{
x

(i)
1 ,x

(i)
2 , ...,x

(i)
K

}
with K > 1.

What is happening
By using multiple representatives for each cluster, the CURE
algorithm tries to “capture” the shape of each one.

However
In order to avoid taking into account irregularities (For example,
outliers) in the border of the cluster.

I The initially chosen representatives are “pushed” toward the mean of
the cluster.

74 / 130

Clustering Using REpresentatives (CURE)

Basic Idea
Each cluster Ci has a set of representatives
RCi =

{
x

(i)
1 ,x

(i)
2 , ...,x

(i)
K

}
with K > 1.

What is happening
By using multiple representatives for each cluster, the CURE
algorithm tries to “capture” the shape of each one.

However
In order to avoid taking into account irregularities (For example,
outliers) in the border of the cluster.

I The initially chosen representatives are “pushed” toward the mean of
the cluster.

74 / 130

Therfore

This action is known
As “Shrinking” in the sense that the volume of space “defined” by the
representatives is shrunk toward the mean of the cluster.

75 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

76 / 130

Shrinking Process

Given a cluster C
Select the point x ∈ C with the maximum distance from the mean of
C and set RC = {x} (the set of representatives).

Then
1 For i = 2 to min {K,nC}
2 Determine y ∈ C −RC that lies farthest from the points in RC
3 RC = RC ∪ {y}

77 / 130

Shrinking Process

Given a cluster C
Select the point x ∈ C with the maximum distance from the mean of
C and set RC = {x} (the set of representatives).

Then
1 For i = 2 to min {K,nC}
2 Determine y ∈ C −RC that lies farthest from the points in RC
3 RC = RC ∪ {y}

77 / 130

Shrinking Process

Given a cluster C
Select the point x ∈ C with the maximum distance from the mean of
C and set RC = {x} (the set of representatives).

Then
1 For i = 2 to min {K,nC}
2 Determine y ∈ C −RC that lies farthest from the points in RC
3 RC = RC ∪ {y}

77 / 130

Shrinking Process

Given a cluster C
Select the point x ∈ C with the maximum distance from the mean of
C and set RC = {x} (the set of representatives).

Then
1 For i = 2 to min {K,nC}
2 Determine y ∈ C −RC that lies farthest from the points in RC
3 RC = RC ∪ {y}

77 / 130

Shrinking Process

Given a cluster C
Select the point x ∈ C with the maximum distance from the mean of
C and set RC = {x} (the set of representatives).

Then
1 For i = 2 to min {K,nC}
2 Determine y ∈ C −RC that lies farthest from the points in RC
3 RC = RC ∪ {y}

77 / 130

Shrinking Process

Do the Shrinking
Shrink the points x ∈ RC toward the mean mC in C by a factor α.

Actually

x = (1− α) x + αmC ∀x ∈ RC (9)

78 / 130

Shrinking Process

Do the Shrinking
Shrink the points x ∈ RC toward the mean mC in C by a factor α.

Actually

x = (1− α) x + αmC ∀x ∈ RC (9)

78 / 130

Resulting set RC

Thus
The resulting set RC is the set of representatives of C.

Thus the distance between two cluster is defined as

d (Ci, Cj) = min
x∈RCi ,y∈RCj

d (x,y) (10)

79 / 130

Resulting set RC

Thus
The resulting set RC is the set of representatives of C.

Thus the distance between two cluster is defined as

d (Ci, Cj) = min
x∈RCi ,y∈RCj

d (x,y) (10)

79 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

80 / 130

Clustering Using REpresentatives (CURE)
Basic Algorithm
Input : A set of points X = {x1,x2, ...,xN}
Output : C clusters

1 For every cluster Ci = {xi} store Ci.mC = {xi} and Ci.RC = {xi}

2 Ci.closest stores the cluster closest to Ci.

3 All the input points are inserted into a K − d tree T .

4 Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances
between Ci and Ci.closest).

5 While size(Q) > C

6 Remove the top element of Q, Ci and merge it with Cj == Ci.closest.

7 Then compute the new representative points for the merged cluster Ck = Ci ∪ Cj .

8 Also remove Ci and Cj from T and Q.

9 Also for all the clusters Ch ∈ Q, update Ch.closest and relocate Ch.
10 insert Ck into Q

81 / 130

Clustering Using REpresentatives (CURE)
Basic Algorithm
Input : A set of points X = {x1,x2, ...,xN}
Output : C clusters

1 For every cluster Ci = {xi} store Ci.mC = {xi} and Ci.RC = {xi}

2 Ci.closest stores the cluster closest to Ci.

3 All the input points are inserted into a K − d tree T .

4 Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances
between Ci and Ci.closest).

5 While size(Q) > C

6 Remove the top element of Q, Ci and merge it with Cj == Ci.closest.

7 Then compute the new representative points for the merged cluster Ck = Ci ∪ Cj .

8 Also remove Ci and Cj from T and Q.

9 Also for all the clusters Ch ∈ Q, update Ch.closest and relocate Ch.
10 insert Ck into Q

81 / 130

Clustering Using REpresentatives (CURE)
Basic Algorithm
Input : A set of points X = {x1,x2, ...,xN}
Output : C clusters

1 For every cluster Ci = {xi} store Ci.mC = {xi} and Ci.RC = {xi}

2 Ci.closest stores the cluster closest to Ci.

3 All the input points are inserted into a K − d tree T .

4 Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances
between Ci and Ci.closest).

5 While size(Q) > C

6 Remove the top element of Q, Ci and merge it with Cj == Ci.closest.

7 Then compute the new representative points for the merged cluster Ck = Ci ∪ Cj .

8 Also remove Ci and Cj from T and Q.

9 Also for all the clusters Ch ∈ Q, update Ch.closest and relocate Ch.
10 insert Ck into Q

81 / 130

Clustering Using REpresentatives (CURE)
Basic Algorithm
Input : A set of points X = {x1,x2, ...,xN}
Output : C clusters

1 For every cluster Ci = {xi} store Ci.mC = {xi} and Ci.RC = {xi}

2 Ci.closest stores the cluster closest to Ci.

3 All the input points are inserted into a K − d tree T .

4 Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances
between Ci and Ci.closest).

5 While size(Q) > C

6 Remove the top element of Q, Ci and merge it with Cj == Ci.closest.

7 Then compute the new representative points for the merged cluster Ck = Ci ∪ Cj .

8 Also remove Ci and Cj from T and Q.

9 Also for all the clusters Ch ∈ Q, update Ch.closest and relocate Ch.
10 insert Ck into Q

81 / 130

Clustering Using REpresentatives (CURE)
Basic Algorithm
Input : A set of points X = {x1,x2, ...,xN}
Output : C clusters

1 For every cluster Ci = {xi} store Ci.mC = {xi} and Ci.RC = {xi}

2 Ci.closest stores the cluster closest to Ci.

3 All the input points are inserted into a K − d tree T .

4 Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances
between Ci and Ci.closest).

5 While size(Q) > C

6 Remove the top element of Q, Ci and merge it with Cj == Ci.closest.

7 Then compute the new representative points for the merged cluster Ck = Ci ∪ Cj .

8 Also remove Ci and Cj from T and Q.

9 Also for all the clusters Ch ∈ Q, update Ch.closest and relocate Ch.
10 insert Ck into Q

81 / 130

Clustering Using REpresentatives (CURE)
Basic Algorithm
Input : A set of points X = {x1,x2, ...,xN}
Output : C clusters

1 For every cluster Ci = {xi} store Ci.mC = {xi} and Ci.RC = {xi}

2 Ci.closest stores the cluster closest to Ci.

3 All the input points are inserted into a K − d tree T .

4 Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances
between Ci and Ci.closest).

5 While size(Q) > C

6 Remove the top element of Q, Ci and merge it with Cj == Ci.closest.

7 Then compute the new representative points for the merged cluster Ck = Ci ∪ Cj .

8 Also remove Ci and Cj from T and Q.

9 Also for all the clusters Ch ∈ Q, update Ch.closest and relocate Ch.
10 insert Ck into Q

81 / 130

Clustering Using REpresentatives (CURE)
Basic Algorithm
Input : A set of points X = {x1,x2, ...,xN}
Output : C clusters

1 For every cluster Ci = {xi} store Ci.mC = {xi} and Ci.RC = {xi}

2 Ci.closest stores the cluster closest to Ci.

3 All the input points are inserted into a K − d tree T .

4 Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances
between Ci and Ci.closest).

5 While size(Q) > C

6 Remove the top element of Q, Ci and merge it with Cj == Ci.closest.

7 Then compute the new representative points for the merged cluster Ck = Ci ∪ Cj .

8 Also remove Ci and Cj from T and Q.

9 Also for all the clusters Ch ∈ Q, update Ch.closest and relocate Ch.
10 insert Ck into Q

81 / 130

Clustering Using REpresentatives (CURE)
Basic Algorithm
Input : A set of points X = {x1,x2, ...,xN}
Output : C clusters

1 For every cluster Ci = {xi} store Ci.mC = {xi} and Ci.RC = {xi}

2 Ci.closest stores the cluster closest to Ci.

3 All the input points are inserted into a K − d tree T .

4 Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances
between Ci and Ci.closest).

5 While size(Q) > C

6 Remove the top element of Q, Ci and merge it with Cj == Ci.closest.

7 Then compute the new representative points for the merged cluster Ck = Ci ∪ Cj .

8 Also remove Ci and Cj from T and Q.

9 Also for all the clusters Ch ∈ Q, update Ch.closest and relocate Ch.
10 insert Ck into Q

81 / 130

Clustering Using REpresentatives (CURE)
Basic Algorithm
Input : A set of points X = {x1,x2, ...,xN}
Output : C clusters

1 For every cluster Ci = {xi} store Ci.mC = {xi} and Ci.RC = {xi}

2 Ci.closest stores the cluster closest to Ci.

3 All the input points are inserted into a K − d tree T .

4 Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances
between Ci and Ci.closest).

5 While size(Q) > C

6 Remove the top element of Q, Ci and merge it with Cj == Ci.closest.

7 Then compute the new representative points for the merged cluster Ck = Ci ∪ Cj .

8 Also remove Ci and Cj from T and Q.

9 Also for all the clusters Ch ∈ Q, update Ch.closest and relocate Ch.
10 insert Ck into Q

81 / 130

Clustering Using REpresentatives (CURE)
Basic Algorithm
Input : A set of points X = {x1,x2, ...,xN}
Output : C clusters

1 For every cluster Ci = {xi} store Ci.mC = {xi} and Ci.RC = {xi}

2 Ci.closest stores the cluster closest to Ci.

3 All the input points are inserted into a K − d tree T .

4 Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances
between Ci and Ci.closest).

5 While size(Q) > C

6 Remove the top element of Q, Ci and merge it with Cj == Ci.closest.

7 Then compute the new representative points for the merged cluster Ck = Ci ∪ Cj .

8 Also remove Ci and Cj from T and Q.

9 Also for all the clusters Ch ∈ Q, update Ch.closest and relocate Ch.
10 insert Ck into Q

81 / 130

Clustering Using REpresentatives (CURE)
Basic Algorithm
Input : A set of points X = {x1,x2, ...,xN}
Output : C clusters

1 For every cluster Ci = {xi} store Ci.mC = {xi} and Ci.RC = {xi}

2 Ci.closest stores the cluster closest to Ci.

3 All the input points are inserted into a K − d tree T .

4 Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances
between Ci and Ci.closest).

5 While size(Q) > C

6 Remove the top element of Q, Ci and merge it with Cj == Ci.closest.

7 Then compute the new representative points for the merged cluster Ck = Ci ∪ Cj .

8 Also remove Ci and Cj from T and Q.

9 Also for all the clusters Ch ∈ Q, update Ch.closest and relocate Ch.
10 insert Ck into Q

81 / 130

Clustering Using REpresentatives (CURE)
Basic Algorithm
Input : A set of points X = {x1,x2, ...,xN}
Output : C clusters

1 For every cluster Ci = {xi} store Ci.mC = {xi} and Ci.RC = {xi}

2 Ci.closest stores the cluster closest to Ci.

3 All the input points are inserted into a K − d tree T .

4 Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances
between Ci and Ci.closest).

5 While size(Q) > C

6 Remove the top element of Q, Ci and merge it with Cj == Ci.closest.

7 Then compute the new representative points for the merged cluster Ck = Ci ∪ Cj .

8 Also remove Ci and Cj from T and Q.

9 Also for all the clusters Ch ∈ Q, update Ch.closest and relocate Ch.
10 insert Ck into Q

81 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

82 / 130

Complexity of Cure

Too Prohibitive

O
(
N2 log2N

)
(11)

83 / 130

Possible Solution

CURE does the following
The technique adopted by the CURE algorithm, in order to reduce
the computational complexity, is that of random sampling .

Actually
That is, a sample set X ′ is created from X, by choosing randomly N ′ out
of the N points of X.

However, one has to ensure that the probability of missing a cluster of
X, due to this sampling
This can be guaranteed if the number of points N ′ is sufficiently large.

84 / 130

Possible Solution

CURE does the following
The technique adopted by the CURE algorithm, in order to reduce
the computational complexity, is that of random sampling .

Actually
That is, a sample set X ′ is created from X, by choosing randomly N ′ out
of the N points of X.

However, one has to ensure that the probability of missing a cluster of
X, due to this sampling
This can be guaranteed if the number of points N ′ is sufficiently large.

84 / 130

Possible Solution

CURE does the following
The technique adopted by the CURE algorithm, in order to reduce
the computational complexity, is that of random sampling .

Actually
That is, a sample set X ′ is created from X, by choosing randomly N ′ out
of the N points of X.

However, one has to ensure that the probability of missing a cluster of
X, due to this sampling
This can be guaranteed if the number of points N ′ is sufficiently large.

84 / 130

Then

Having estimated N ′

CURE forms a number of p = N
N ′ sample data sets by successive random

samples.

In other words
X is partitioned randomly in p subsets.

For this a parameter q is selected
Then, the points in each partition p are clustered until N ′q clusters are
formed.
The distance between the closest pair of clusters to be merged in the
next iteration step exceeds a user-defined threshold.

85 / 130

Then

Having estimated N ′

CURE forms a number of p = N
N ′ sample data sets by successive random

samples.

In other words
X is partitioned randomly in p subsets.

For this a parameter q is selected
Then, the points in each partition p are clustered until N ′q clusters are
formed.
The distance between the closest pair of clusters to be merged in the
next iteration step exceeds a user-defined threshold.

85 / 130

Then

Having estimated N ′

CURE forms a number of p = N
N ′ sample data sets by successive random

samples.

In other words
X is partitioned randomly in p subsets.

For this a parameter q is selected
Then, the points in each partition p are clustered until N ′q clusters are
formed.
The distance between the closest pair of clusters to be merged in the
next iteration step exceeds a user-defined threshold.

85 / 130

Once this has been finished

A second clustering pass is done
One the at most pN ′q = N

q clusters from all the subsets.

The Goal to apply the merging procedure described previously to all
(at most) N

q

Then, we end up with the required final number, C, of clusters.

Finally
We have the following strategy to assign to x ∈ X to a cluster.

86 / 130

Once this has been finished

A second clustering pass is done
One the at most pN ′q = N

q clusters from all the subsets.

The Goal to apply the merging procedure described previously to all
(at most) N

q

Then, we end up with the required final number, C, of clusters.

Finally
We have the following strategy to assign to x ∈ X to a cluster.

86 / 130

Once this has been finished

A second clustering pass is done
One the at most pN ′q = N

q clusters from all the subsets.

The Goal to apply the merging procedure described previously to all
(at most) N

q

Then, we end up with the required final number, C, of clusters.

Finally
We have the following strategy to assign to x ∈ X to a cluster.

86 / 130

Then

First
A random sample of representative points from each of the C clusters is
chosen.

Then
Then, based on the previous representatives the point x is assigned to the
cluster that contains the representative closest to it.

Experiments reported by Guha et al. show that CURE
It is sensitive to parameter selection.

I Specifically K must be large enough to capture the geometry of each
cluster.

I In addition, N ′ must be higher than a certain percentage ≈ 2.5% of N .

87 / 130

Then

First
A random sample of representative points from each of the C clusters is
chosen.

Then
Then, based on the previous representatives the point x is assigned to the
cluster that contains the representative closest to it.

Experiments reported by Guha et al. show that CURE
It is sensitive to parameter selection.

I Specifically K must be large enough to capture the geometry of each
cluster.

I In addition, N ′ must be higher than a certain percentage ≈ 2.5% of N .

87 / 130

Then

First
A random sample of representative points from each of the C clusters is
chosen.

Then
Then, based on the previous representatives the point x is assigned to the
cluster that contains the representative closest to it.

Experiments reported by Guha et al. show that CURE
It is sensitive to parameter selection.

I Specifically K must be large enough to capture the geometry of each
cluster.

I In addition, N ′ must be higher than a certain percentage ≈ 2.5% of N .

87 / 130

Then

First
A random sample of representative points from each of the C clusters is
chosen.

Then
Then, based on the previous representatives the point x is assigned to the
cluster that contains the representative closest to it.

Experiments reported by Guha et al. show that CURE
It is sensitive to parameter selection.

I Specifically K must be large enough to capture the geometry of each
cluster.

I In addition, N ′ must be higher than a certain percentage ≈ 2.5% of N .

87 / 130

Then

First
A random sample of representative points from each of the C clusters is
chosen.

Then
Then, based on the previous representatives the point x is assigned to the
cluster that contains the representative closest to it.

Experiments reported by Guha et al. show that CURE
It is sensitive to parameter selection.

I Specifically K must be large enough to capture the geometry of each
cluster.

I In addition, N ′ must be higher than a certain percentage ≈ 2.5% of N .

87 / 130

Not only that

The value of α (Shrinking Factors) affects also CURE
Small values, CURE looks similar than a Minimum Spanning Tree
clustering.
Large values, CURE resembles an algorithm with a single
representative.

The worst-case execution time for CURE increases with the sample
size N ′

O
(
N ′2 log2N

′
)

(12)

88 / 130

Not only that

The value of α (Shrinking Factors) affects also CURE
Small values, CURE looks similar than a Minimum Spanning Tree
clustering.
Large values, CURE resembles an algorithm with a single
representative.

The worst-case execution time for CURE increases with the sample
size N ′

O
(
N ′2 log2N

′
)

(12)

88 / 130

Not only that

The value of α (Shrinking Factors) affects also CURE
Small values, CURE looks similar than a Minimum Spanning Tree
clustering.
Large values, CURE resembles an algorithm with a single
representative.

The worst-case execution time for CURE increases with the sample
size N ′

O
(
N ′2 log2N

′
)

(12)

88 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

89 / 130

A Large Name

Density-based spatial clustering of applications with noise (DBSCAN)
It is a data clustering algorithm proposed by Martin Ester, Hans-Peter
Kriegel, Jörg Sander and Xiaowei Xu in 1996.

Something Notable
It is a density-based clustering algorithm:

I Given a set of points in some space, it groups together points that are
closely packed together.

I Marking as outliers points that lie alone in low-density regions.

90 / 130

A Large Name

Density-based spatial clustering of applications with noise (DBSCAN)
It is a data clustering algorithm proposed by Martin Ester, Hans-Peter
Kriegel, Jörg Sander and Xiaowei Xu in 1996.

Something Notable
It is a density-based clustering algorithm:

I Given a set of points in some space, it groups together points that are
closely packed together.

I Marking as outliers points that lie alone in low-density regions.

90 / 130

A Large Name

Density-based spatial clustering of applications with noise (DBSCAN)
It is a data clustering algorithm proposed by Martin Ester, Hans-Peter
Kriegel, Jörg Sander and Xiaowei Xu in 1996.

Something Notable
It is a density-based clustering algorithm:

I Given a set of points in some space, it groups together points that are
closely packed together.

I Marking as outliers points that lie alone in low-density regions.

90 / 130

A Large Name

Density-based spatial clustering of applications with noise (DBSCAN)
It is a data clustering algorithm proposed by Martin Ester, Hans-Peter
Kriegel, Jörg Sander and Xiaowei Xu in 1996.

Something Notable
It is a density-based clustering algorithm:

I Given a set of points in some space, it groups together points that are
closely packed together.

I Marking as outliers points that lie alone in low-density regions.

90 / 130

Furthermore

Something Notable
In 2014, the algorithm was awarded the test of time award at the
leading data mining conference, KDD.

91 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

92 / 130

Looking at clusters

We notice easily those clusters of points and noise points

93 / 130

We are doing something quite human

The main reason why we recognize the clusters
We use the higher densities to recognize the clusters

Definition (ε-neighborhood of a point)
Given a distance dist : Rd ×Rd → R+, the ε-Neighborhood of a point
x, denoted Nε (x), is defined as

Nε (x) =
{

y ∈ Rd|dist (x,y) ≤ ε
}

94 / 130

We are doing something quite human

The main reason why we recognize the clusters
We use the higher densities to recognize the clusters

Definition (ε-neighborhood of a point)
Given a distance dist : Rd ×Rd → R+, the ε-Neighborhood of a point
x, denoted Nε (x), is defined as

Nε (x) =
{

y ∈ Rd|dist (x,y) ≤ ε
}

94 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

95 / 130

Why not to use the idea of K-NN?

We could use our well know K-NN method
Thus, we naively could require for each point in a cluster there at
least a minimum number (MinPts) of points in the neighborhood of
such point

However, you have something more complex
Points inside of the cluster (Core points)
Points on the border of the cluster (Border points)

96 / 130

Why not to use the idea of K-NN?

We could use our well know K-NN method
Thus, we naively could require for each point in a cluster there at
least a minimum number (MinPts) of points in the neighborhood of
such point

However, you have something more complex
Points inside of the cluster (Core points)
Points on the border of the cluster (Border points)

96 / 130

Example

Core points and Border points

97 / 130

Therefore

In General
An ε-neighborhood of a border point contains significantly less points
than an ε-neighborhood of a core point.

Therefore
MinPts varies in the presence of noise

98 / 130

Therefore

In General
An ε-neighborhood of a border point contains significantly less points
than an ε-neighborhood of a core point.

Therefore
MinPts varies in the presence of noise

98 / 130

Thus, we can ask for a new restriction

Definition (Directly Density-Reachable)
A point x is directly density reachable from a point y w.r.t. ε,
MinPts if

1 x ∈ Nε (y)
2 |Nε (y)| ≥MinPts (Core point condition)

Remarks
1 Directly density-reachable is symmetric for pairs of core points.
2 It is not symmetric if one core point and one border point are

involved.

99 / 130

Thus, we can ask for a new restriction

Definition (Directly Density-Reachable)
A point x is directly density reachable from a point y w.r.t. ε,
MinPts if

1 x ∈ Nε (y)
2 |Nε (y)| ≥MinPts (Core point condition)

Remarks
1 Directly density-reachable is symmetric for pairs of core points.
2 It is not symmetric if one core point and one border point are

involved.

99 / 130

Thus, we can ask for a new restriction

Definition (Directly Density-Reachable)
A point x is directly density reachable from a point y w.r.t. ε,
MinPts if

1 x ∈ Nε (y)
2 |Nε (y)| ≥MinPts (Core point condition)

Remarks
1 Directly density-reachable is symmetric for pairs of core points.
2 It is not symmetric if one core point and one border point are

involved.

99 / 130

Thus, we can ask for a new restriction

Definition (Directly Density-Reachable)
A point x is directly density reachable from a point y w.r.t. ε,
MinPts if

1 x ∈ Nε (y)
2 |Nε (y)| ≥MinPts (Core point condition)

Remarks
1 Directly density-reachable is symmetric for pairs of core points.
2 It is not symmetric if one core point and one border point are

involved.

99 / 130

Thus, we can ask for a new restriction

Definition (Directly Density-Reachable)
A point x is directly density reachable from a point y w.r.t. ε,
MinPts if

1 x ∈ Nε (y)
2 |Nε (y)| ≥MinPts (Core point condition)

Remarks
1 Directly density-reachable is symmetric for pairs of core points.
2 It is not symmetric if one core point and one border point are

involved.

99 / 130

Example

Density-reachable

100 / 130

Now, Density Reachable

Definition (Density-Reachable)
A point x is density-reachable from a point y wrt. ε and MinPts if
there is a chain of points:

p1,p2, ...,pk with p1 = x,pk = y

such that pi+1 is directly density-reachable from pi.

101 / 130

Therefore

Density-Reachability is a canonical extension of Direct
Density-Reachability

This relation is transitive, but it is not symmetric.

102 / 130

Then

Remark
Two border points of the same cluster C are possibly not density
reachable from each other:

I The core point condition might not hold for both of them.

However
There must be a core point in C from which both border points of C
are density-reachable.

103 / 130

Then

Remark
Two border points of the same cluster C are possibly not density
reachable from each other:

I The core point condition might not hold for both of them.

However
There must be a core point in C from which both border points of C
are density-reachable.

103 / 130

Density-Connected

Definition (Density-Connected)
A point x is density-connected to a point y w.r.t. ε and MinPts:

I if there is a point o such that both, x and y are density-reachable from
o w.r.t. ε and MinPts.

Example

104 / 130

Density-Connected
Definition (Density-Connected)

A point x is density-connected to a point y w.r.t. ε and MinPts:
I if there is a point o such that both, x and y are density-reachable from

o w.r.t. ε and MinPts.

Example

104 / 130

Symmetry in Density-Connectivity

Density-connectivity is a symmetric relation
Also for density reachable points, the relation of density-connectivity
is also reflexive.

We are ready to define the concept of Cluster
From the point of view density-based

Remark
Intuitively, a cluster is defined to be a set of density-connected points
which is maximal w.r.t. density-reachability.
Noise is simply the set of points in Rd not belonging to any of its
clusters.

105 / 130

Symmetry in Density-Connectivity

Density-connectivity is a symmetric relation
Also for density reachable points, the relation of density-connectivity
is also reflexive.

We are ready to define the concept of Cluster
From the point of view density-based

Remark
Intuitively, a cluster is defined to be a set of density-connected points
which is maximal w.r.t. density-reachability.
Noise is simply the set of points in Rd not belonging to any of its
clusters.

105 / 130

Symmetry in Density-Connectivity

Density-connectivity is a symmetric relation
Also for density reachable points, the relation of density-connectivity
is also reflexive.

We are ready to define the concept of Cluster
From the point of view density-based

Remark
Intuitively, a cluster is defined to be a set of density-connected points
which is maximal w.r.t. density-reachability.
Noise is simply the set of points in Rd not belonging to any of its
clusters.

105 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

106 / 130

Cluster Definition

Definition
A cluster C w.r.t. ε and MinPts is a non-empty subset of Rd
satisfying the following conditions:

1 ∀x,y: if y ∈ C and x is density-reachable from y w.r.t. ε and
MinPts then x ∈ C (Maximality).

2 ∀x,y ∈ C, x is density-connected to y w.r.t. ε and MinPts
(Connectivity).

107 / 130

Noise Definition

Definition
Let C1, ..., Ck be the clusters in Rd w.r.t. parameters εi and
MinPtsi , i = 1, ..., k.

I Then we define the noise as the set of points in Rd not belonging to
any cluster Ci:

Noise =
{

x ∈ Rd|∀i : x /∈ Ci
}

108 / 130

Remarks

Something Notable
Since C contains at least one point x.
x must be density-connected to itself via some point o.

I which may be equal to x.
Thus, at least o has to satisfy the core point condition

I Consequently, ε-Neighborhood of o contains at least MinPts

109 / 130

Remarks

Something Notable
Since C contains at least one point x.
x must be density-connected to itself via some point o.

I which may be equal to x.
Thus, at least o has to satisfy the core point condition

I Consequently, ε-Neighborhood of o contains at least MinPts

109 / 130

Remarks

Something Notable
Since C contains at least one point x.
x must be density-connected to itself via some point o.

I which may be equal to x.
Thus, at least o has to satisfy the core point condition

I Consequently, ε-Neighborhood of o contains at least MinPts

109 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

110 / 130

Supporting the idea of cluster

Lemma - Reachability
Let y be a point in Rd and |Nε (y)| ≥MinPts. Then

O =
{

o|o ∈ Rd and o is density-reachable from y w.r.t. ε and MinPts
}

is a cluster w.r.t. ε and MinPts.

111 / 130

Proof

Given the definition of O
We have the first part of the definition of Cluster w.r.t. ε and
MinPts.

Given the that two points o1,o2 ∈ O are density-reachable from y

o1,o2 are density connected.

Then
O is a cluster w.r.t. ε and MinPts.

112 / 130

Proof

Given the definition of O
We have the first part of the definition of Cluster w.r.t. ε and
MinPts.

Given the that two points o1,o2 ∈ O are density-reachable from y

o1,o2 are density connected.

Then
O is a cluster w.r.t. ε and MinPts.

112 / 130

Proof

Given the definition of O
We have the first part of the definition of Cluster w.r.t. ε and
MinPts.

Given the that two points o1,o2 ∈ O are density-reachable from y

o1,o2 are density connected.

Then
O is a cluster w.r.t. ε and MinPts.

112 / 130

Intuition

Given the parameters ε and MinPts, we can discover a cluster
First, choose an arbitrary point from Rd satisfying the core point
condition as a seed.

Then
Retrieve all points that are density-reachable from the seed obtaining
the cluster containing the seed.

113 / 130

Intuition

Given the parameters ε and MinPts, we can discover a cluster
First, choose an arbitrary point from Rd satisfying the core point
condition as a seed.

Then
Retrieve all points that are density-reachable from the seed obtaining
the cluster containing the seed.

113 / 130

However, it is not enough

We need something else
Given that it is not obvious that a cluster C w.r.t. ε and MinPts is
uniquely determined by any of its core points.

However
Each point in C is density-reachable from any of the core points of C.
A cluster C contains exactly the points which are density-reachable
from an arbitrary core point of C.

114 / 130

However, it is not enough

We need something else
Given that it is not obvious that a cluster C w.r.t. ε and MinPts is
uniquely determined by any of its core points.

However
Each point in C is density-reachable from any of the core points of C.
A cluster C contains exactly the points which are density-reachable
from an arbitrary core point of C.

114 / 130

However, it is not enough

We need something else
Given that it is not obvious that a cluster C w.r.t. ε and MinPts is
uniquely determined by any of its core points.

However
Each point in C is density-reachable from any of the core points of C.
A cluster C contains exactly the points which are density-reachable
from an arbitrary core point of C.

114 / 130

Then

Lemma - Cluster Equality to O
Let C be a cluster w.r.t. ε and MinPts. and let y be any point in C
with |Nε (y)| ≥MinPts

I Then C equals to the set

O =
{

o|o ∈ Rd and o is density-reachable from y w.r.t. ε and MinPts
}

115 / 130

Proof

Given x ∈ C
We have two cases

Case 1
x is a Border point that is density reachable from y with
|Nε (y)| ≥MinPts

Then
x ∈ O

116 / 130

Proof

Given x ∈ C
We have two cases

Case 1
x is a Border point that is density reachable from y with
|Nε (y)| ≥MinPts

Then
x ∈ O

116 / 130

Proof

Given x ∈ C
We have two cases

Case 1
x is a Border point that is density reachable from y with
|Nε (y)| ≥MinPts

Then
x ∈ O

116 / 130

Now

Case 2
x is a Core point then |Nε (x)| ≥MinPts

Therefore
By Definition x is density reachable from any y w.r.t. ε and MinPts.

Therefore
C ⊂ O the other contention is similar

117 / 130

Now

Case 2
x is a Core point then |Nε (x)| ≥MinPts

Therefore
By Definition x is density reachable from any y w.r.t. ε and MinPts.

Therefore
C ⊂ O the other contention is similar

117 / 130

Now

Case 2
x is a Core point then |Nε (x)| ≥MinPts

Therefore
By Definition x is density reachable from any y w.r.t. ε and MinPts.

Therefore
C ⊂ O the other contention is similar

117 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

118 / 130

DBSCAN Algorithm

DBSCAN(X, ε,MinPts)
1 ClusterId = nextId (NOISE)
2 for i = 1 to X.size
3 x = SetOfPoints.get (i)
4 if x.ClId is UNCLASSIFIED:
5 If ExpandCluster(SetPoints,x, ClusterId, ε,MinPts)
6 ClusterId = nextId (ClusterId)

119 / 130

ExpandCluster(SetPoints, Point, ClId, ε,MinPts)
1 seed = SetOfPoints.regionQuery (Point, ε)
2 If seeds.size < MinPts Then
3 SetPoints.changeClId (Point,NOISE)
4 return FALSE
5 else
6 SetPoints.changeClId (seeds, ClId)
7 seeds.delete (Point)
8 while seeds 6= NULL:
9 currentP = seeds.first ()
10 result = SetOfPoints.regionQuery (currentP, ε)
11 if result.size () > MinPts then
12 for i = 1 to result.size:
13 resultP = result.get (i)
14 if resultP.ClId ∈ {NOISE,UNCLASSSIFIED} and

resultP.ClId = UNCLASSSIFIED
15 seeds.append (resultP)
16 SetPoints.changeClId (resultP, ClId)
17 seeds.delete (currentP)
18 return TRUE

120 / 130

ExpandCluster(SetPoints, Point, ClId, ε,MinPts)
1 seed = SetOfPoints.regionQuery (Point, ε)
2 If seeds.size < MinPts Then
3 SetPoints.changeClId (Point,NOISE)
4 return FALSE
5 else
6 SetPoints.changeClId (seeds, ClId)
7 seeds.delete (Point)
8 while seeds 6= NULL:
9 currentP = seeds.first ()
10 result = SetOfPoints.regionQuery (currentP, ε)
11 if result.size () > MinPts then
12 for i = 1 to result.size:
13 resultP = result.get (i)
14 if resultP.ClId ∈ {NOISE,UNCLASSSIFIED} and

resultP.ClId = UNCLASSSIFIED
15 seeds.append (resultP)
16 SetPoints.changeClId (resultP, ClId)
17 seeds.delete (currentP)
18 return TRUE

120 / 130

ExpandCluster(SetPoints, Point, ClId, ε,MinPts)
1 seed = SetOfPoints.regionQuery (Point, ε)
2 If seeds.size < MinPts Then
3 SetPoints.changeClId (Point,NOISE)
4 return FALSE
5 else
6 SetPoints.changeClId (seeds, ClId)
7 seeds.delete (Point)
8 while seeds 6= NULL:
9 currentP = seeds.first ()
10 result = SetOfPoints.regionQuery (currentP, ε)
11 if result.size () > MinPts then
12 for i = 1 to result.size:
13 resultP = result.get (i)
14 if resultP.ClId ∈ {NOISE,UNCLASSSIFIED} and

resultP.ClId = UNCLASSSIFIED
15 seeds.append (resultP)
16 SetPoints.changeClId (resultP, ClId)
17 seeds.delete (currentP)
18 return TRUE

120 / 130

ExpandCluster(SetPoints, Point, ClId, ε,MinPts)
1 seed = SetOfPoints.regionQuery (Point, ε)
2 If seeds.size < MinPts Then
3 SetPoints.changeClId (Point,NOISE)
4 return FALSE
5 else
6 SetPoints.changeClId (seeds, ClId)
7 seeds.delete (Point)
8 while seeds 6= NULL:
9 currentP = seeds.first ()
10 result = SetOfPoints.regionQuery (currentP, ε)
11 if result.size () > MinPts then
12 for i = 1 to result.size:
13 resultP = result.get (i)
14 if resultP.ClId ∈ {NOISE,UNCLASSSIFIED} and

resultP.ClId = UNCLASSSIFIED
15 seeds.append (resultP)
16 SetPoints.changeClId (resultP, ClId)
17 seeds.delete (currentP)
18 return TRUE

120 / 130

ExpandCluster(SetPoints, Point, ClId, ε,MinPts)
1 seed = SetOfPoints.regionQuery (Point, ε)
2 If seeds.size < MinPts Then
3 SetPoints.changeClId (Point,NOISE)
4 return FALSE
5 else
6 SetPoints.changeClId (seeds, ClId)
7 seeds.delete (Point)
8 while seeds 6= NULL:
9 currentP = seeds.first ()
10 result = SetOfPoints.regionQuery (currentP, ε)
11 if result.size () > MinPts then
12 for i = 1 to result.size:
13 resultP = result.get (i)
14 if resultP.ClId ∈ {NOISE,UNCLASSSIFIED} and

resultP.ClId = UNCLASSSIFIED
15 seeds.append (resultP)
16 SetPoints.changeClId (resultP, ClId)
17 seeds.delete (currentP)
18 return TRUE

120 / 130

ExpandCluster(SetPoints, Point, ClId, ε,MinPts)
1 seed = SetOfPoints.regionQuery (Point, ε)
2 If seeds.size < MinPts Then
3 SetPoints.changeClId (Point,NOISE)
4 return FALSE
5 else
6 SetPoints.changeClId (seeds, ClId)
7 seeds.delete (Point)
8 while seeds 6= NULL:
9 currentP = seeds.first ()
10 result = SetOfPoints.regionQuery (currentP, ε)
11 if result.size () > MinPts then
12 for i = 1 to result.size:
13 resultP = result.get (i)
14 if resultP.ClId ∈ {NOISE,UNCLASSSIFIED} and

resultP.ClId = UNCLASSSIFIED
15 seeds.append (resultP)
16 SetPoints.changeClId (resultP, ClId)
17 seeds.delete (currentP)
18 return TRUE

120 / 130

ExpandCluster(SetPoints, Point, ClId, ε,MinPts)
1 seed = SetOfPoints.regionQuery (Point, ε)
2 If seeds.size < MinPts Then
3 SetPoints.changeClId (Point,NOISE)
4 return FALSE
5 else
6 SetPoints.changeClId (seeds, ClId)
7 seeds.delete (Point)
8 while seeds 6= NULL:
9 currentP = seeds.first ()
10 result = SetOfPoints.regionQuery (currentP, ε)
11 if result.size () > MinPts then
12 for i = 1 to result.size:
13 resultP = result.get (i)
14 if resultP.ClId ∈ {NOISE,UNCLASSSIFIED} and

resultP.ClId = UNCLASSSIFIED
15 seeds.append (resultP)
16 SetPoints.changeClId (resultP, ClId)
17 seeds.delete (currentP)
18 return TRUE

120 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

121 / 130

Complexity

xis a core point
It can be implemented using kd-trees

Thus, given the complexities of Kd-trees
Average Worst case

Space O (n) O (n)
Search O (logn) O (n)
Insert O (logn) O (n)
Delete O (logn) O (n)

122 / 130

Complexity

xis a core point
It can be implemented using kd-trees

Thus, given the complexities of Kd-trees
Average Worst case

Space O (n) O (n)
Search O (logn) O (n)
Insert O (logn) O (n)
Delete O (logn) O (n)

122 / 130

Therefore

The average Complexity of DBSCAN
O (dn logn) to build the structure for query using a heapsort or
mergesort
O
({
n1− 1

d +m
})

when m is the number of reported elements and d
is the dimensionality of the points.

123 / 130

Outline
1 Hierarchical Clustering

Definition
Basic Ideas

2 Agglomerative Algorithms
Introduction
Two Categories of Agglomerative Algorithms
Matrix Based Algorithms
Single Linkage
Complete Linkage
Group Average Linkage

Graph Based Algorithms
Problems with Agglomerative Algorithms
Improving the Complexity

3 Divisive Algorithms
Introduction
Possible Complexity
Monothetic Divisive Methods

4 Algorithms for Large Data Sets
Introduction
Clustering Using REpresentatives (CURE)
Shrinking Process
CURE Algorithm
Complexity

DBSCAN
Density Based Notion of Clusters
Beyond K-NN Idea
Cluster and Noise Definition
Sustaining the Algorithm
The DBSCAN Algorithm
Complexity
Finding ε and MinPts

124 / 130

There is a problem

How do we estimate?
ε and MinPts.

In the original paper
They develop a heuristic to determine the parameters ε and MinPts
of the "thinnest"

125 / 130

There is a problem

How do we estimate?
ε and MinPts.

In the original paper
They develop a heuristic to determine the parameters ε and MinPts
of the "thinnest"

125 / 130

Heuristic

Let d be the distance of a point x

to its kth nearest neighbor.

Then, the d-neighborhood of x contains exactly
k + 1 points for almost all points x.

The d-neighborhood of x contains more than k + 1 points
Only if several points have exactly the same distance d from x which
is quite unlikely.

126 / 130

Heuristic

Let d be the distance of a point x

to its kth nearest neighbor.

Then, the d-neighborhood of x contains exactly
k + 1 points for almost all points x.

The d-neighborhood of x contains more than k + 1 points
Only if several points have exactly the same distance d from x which
is quite unlikely.

126 / 130

Heuristic

Let d be the distance of a point x

to its kth nearest neighbor.

Then, the d-neighborhood of x contains exactly
k + 1 points for almost all points x.

The d-neighborhood of x contains more than k + 1 points
Only if several points have exactly the same distance d from x which
is quite unlikely.

126 / 130

Then

Furthermore
Changing k for a point in a cluster does not result in large changes of
d.

This only happens if the kth nearest neighbors of x

for k = 1, 2, 3, ... are located approximately
I on a straight line which is in general not true for a point in a cluster.

127 / 130

Then

Furthermore
Changing k for a point in a cluster does not result in large changes of
d.

This only happens if the kth nearest neighbors of x

for k = 1, 2, 3, ... are located approximately
I on a straight line which is in general not true for a point in a cluster.

127 / 130

Then, we have

For a given k we define a function k-dist from Rd to R
Mapping each point to the distance from its kth nearest neighbor.

When sorting the points of the database in descending order of their
k-dist values

The graph of this function gives some hints concerning the density
distribution in the database.

128 / 130

Then, we have

For a given k we define a function k-dist from Rd to R
Mapping each point to the distance from its kth nearest neighbor.

When sorting the points of the database in descending order of their
k-dist values

The graph of this function gives some hints concerning the density
distribution in the database.

128 / 130

Example of 4-dist

We set MinPts = 4 then we can calculate ε by looking

Noise Cluster

4-dist

Points

Threshold
Point

129 / 130

Therefore

For more in the heuristic look at the paper
“A Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise” by Martin Ester, Hans-Peter Kriegel, Jorg
Sander, Xiaowei Xu

However, the problem is the same
Finding the correct number of hyperparameters for getting the correct
number of clusters

More advanced methods of clustering exist
Spectral Clustering - Using the Graph Structure
Dirichlet Processes - Based in the Generation of a Distribution
etc

130 / 130

Therefore

For more in the heuristic look at the paper
“A Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise” by Martin Ester, Hans-Peter Kriegel, Jorg
Sander, Xiaowei Xu

However, the problem is the same
Finding the correct number of hyperparameters for getting the correct
number of clusters

More advanced methods of clustering exist
Spectral Clustering - Using the Graph Structure
Dirichlet Processes - Based in the Generation of a Distribution
etc

130 / 130

Therefore

For more in the heuristic look at the paper
“A Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise” by Martin Ester, Hans-Peter Kriegel, Jorg
Sander, Xiaowei Xu

However, the problem is the same
Finding the correct number of hyperparameters for getting the correct
number of clusters

More advanced methods of clustering exist
Spectral Clustering - Using the Graph Structure
Dirichlet Processes - Based in the Generation of a Distribution
etc

130 / 130

	Hierarchical Clustering
	Definition
	Basic Ideas

	Agglomerative Algorithms
	Introduction
	Two Categories of Agglomerative Algorithms
	Matrix Based Algorithms
	Single Linkage
	Complete Linkage
	Group Average Linkage

	Graph Based Algorithms
	Problems with Agglomerative Algorithms
	Improving the Complexity

	Divisive Algorithms
	Introduction
	Possible Complexity
	Monothetic Divisive Methods

	Algorithms for Large Data Sets
	Introduction
	Clustering Using REpresentatives (CURE)
	Shrinking Process
	CURE Algorithm
	Complexity

	DBSCAN
	Density Based Notion of Clusters
	Beyond K-NN Idea
	Cluster and Noise Definition
	Sustaining the Algorithm
	The DBSCAN Algorithm
	Complexity
	Finding and MinPts

