Introduction to Machine Learning K-Means, K-Meoids, K-Centers and Variations

Andres Mendez-Vazquez

August 4, 2018

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 1/142

Outline

K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- Properties of K-Means
- K-Means and Principal Component Analysis

- Introduction
- The Algorithm
- Complexity

3 The K-Center Criterion Clustering

- Introduction
- Re-Stating the K-center as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Introduction
- ${\small lacepsilon}$ Re-Stating the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

The Hardness of *K*-means clustering

Definition

• Given a multiset $S \subseteq \mathbb{R}^d$, an integer k and $L \in \mathbb{R}$, is there a subset $T \subset \mathbb{R}^d$ with |T| = k such that

$$\sum_{\boldsymbol{x}\in S}\min_{\boldsymbol{t}\in T}\|\boldsymbol{x}-\boldsymbol{t}\|^2 \leq L?$$

Theorem

• The k-means clustering problem is NP-complete even for d = 2.

The Hardness of *K*-means clustering

Definition

• Given a multiset $S \subseteq \mathbb{R}^d$, an integer k and $L \in \mathbb{R}$, is there a subset $T \subset \mathbb{R}^d$ with |T| = k such that

$$\sum_{\boldsymbol{x}\in S}\min_{\boldsymbol{t}\in T}\|\boldsymbol{x}-\boldsymbol{t}\|^2 \leq L?$$

Theorem

• The k-means clustering problem is NP-complete even for d = 2.

Reduction

The reduction to an NP-Complete problem

• Exact Cover by 3-Sets problem

Definition

• Given a finite set U containing exactly 3n elements and a collection $C = \{S_1, S_2, ..., S_l\}$ of subsets of U each of which contains exactly 3 elements, Are there n sets in C such that their union is U?

Reduction

The reduction to an NP-Complete problem

• Exact Cover by 3-Sets problem

Definition

• Given a finite set U containing exactly 3n elements and a collection $C = \{S_1, S_2, ..., S_l\}$ of subsets of U each of which contains exactly 3 elements, Are there n sets in C such that their union is U?

However

There are efficient heuristic and approximation algorithms

• Which can solve this problem

Outline

K-Means Clustering

The NP-Hard Problem

K-Means Clustering Heuristic

- Convergence Criterion
- The Distance Function
- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Introduction
- ${\small \bigcirc}\ {\rm Re-Stating}$ the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

K-Means - Stuart Lloyd(Circa 1957)

History

Invented by Stuart Loyd in Bell Labs to obtain the best quantization in a signal data set.

Something Notable

The paper was published until 1982

Basically given N vectors $oldsymbol{x}_1,...,oldsymbol{x}_N\in\mathbb{R}^n$

It tries to find k points $\mu_1, ..., \mu_k \in \mathbb{R}^d$ that minimize the expression (i.e. a partition S of the vector points):

$$\sum_{k=1}^{N} \sum_{i: \bm{x}_i \in C_k} \|\bm{x}_i - \bm{\mu}_k\|^2 = \sum_{k=1}^{N} \sum_{i: \bm{x}_i \in C_k} \left(\bm{x}_i - \bm{\mu}_k\right)^T \left(\bm{x}_i - \bm{\mu}_k\right)$$

K-Means - Stuart Lloyd(Circa 1957)

History

Invented by Stuart Loyd in Bell Labs to obtain the best quantization in a signal data set.

Something Notable

The paper was published until 1982

Basically given N vectors $oldsymbol{x}_1,...,oldsymbol{x}_N\in$

It tries to find k points $\mu_1, ..., \mu_k \in \mathbb{R}^d$ that minimize the expression (i.e. a partition S of the vector points):

$$\sum_{k=1}^{N} \sum_{i: \boldsymbol{x}_i \in C_k} \| \boldsymbol{x}_i - \boldsymbol{\mu}_k \|^2 = \sum_{k=1}^{N} \sum_{i: \boldsymbol{x}_i \in C_k} \left(\boldsymbol{x}_i - \boldsymbol{\mu}_k \right)^T \left(\boldsymbol{x}_i - \boldsymbol{\mu}_k \right)$$

K-Means - Stuart Lloyd(Circa 1957)

History

Invented by Stuart Loyd in Bell Labs to obtain the best quantization in a signal data set.

Something Notable

The paper was published until 1982

Basically given N vectors $\boldsymbol{x}_1,...,\boldsymbol{x}_N \in \mathbb{R}^d$

It tries to find k points $\mu_1, ..., \mu_k \in \mathbb{R}^d$ that minimize the expression (i.e. a partition S of the vector points):

$$\sum_{k=1}^{N} \sum_{i: \boldsymbol{x}_{i} \in C_{k}} \|\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k}\|^{2} = \sum_{k=1}^{N} \sum_{i: \boldsymbol{x}_{i} \in C_{k}} (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k})^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k})$$

K-means

It is a partitional clustering algorithm.

<□ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > 三 の Q (0 9/142

K-means

It is a partitional clustering algorithm.

Definition

Let the set of data points (or instances) D be $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ where $\mathbf{x}_i = (x_{i1}, \dots, x_{ir})^T$:

Each cluster has a cluster center, called centroid.

K is specified by the user.

K-means

It is a partitional clustering algorithm.

Definition

Let the set of data points (or instances) D be $\{\mathbf{x}_1, \cdots, \mathbf{x}_n\}$ where $\mathbf{x}_i = (x_{i1}, \cdots, x_{ir})^T$:

• The K-means algorithm partitions the given data into K clusters.

Each cluster has a cluster center, called centroid.

K is specified by the user.

K-means

It is a partitional clustering algorithm.

Definition

Let the set of data points (or instances) D be $\{\mathbf{x}_1, \cdots, \mathbf{x}_n\}$ where $\mathbf{x}_i = (x_{i1}, \cdots, x_{ir})^T$:

- The K-means algorithm partitions the given data into K clusters.
- Each cluster has a cluster center, called centroid.

K-means

It is a partitional clustering algorithm.

Definition

Let the set of data points (or instances) D be $\{\mathbf{x}_1, \cdots, \mathbf{x}_n\}$ where $\mathbf{x}_i = (x_{i1}, \cdots, x_{ir})^T$:

- The K-means algorithm partitions the given data into K clusters.
- Each cluster has a cluster center, called centroid.
- K is specified by the user.

The K-means algorithm works as follows

Given \boldsymbol{k} as the possible number of cluster:

Randomly choose K data points (seeds) to be the initial centroids, cluster centers,

 $\blacktriangleright \{\mathbf{v}_1, \cdots, \mathbf{v}_k\}$

Assign each data point to the closest centroid

•
$$c_i = \arg\min_j \{dist(\mathbf{x}_i - \mathbf{v}_j)\}$$

Re-compute the centroids using the current cluster memberships

$$\mathbf{v}_j = \frac{\sum_{i=1}^n I(c_i = j) \mathbf{x}_i}{\sum_{i=1}^n I(c_i = j)}$$

If a convergence criterion is not met, go to 2.

< (T) >

The K-means algorithm works as follows

Given \boldsymbol{k} as the possible number of cluster:

Randomly choose K data points (seeds) to be the initial centroids, cluster centers,

•
$$\{\mathbf{v}_1, \cdots, \mathbf{v}_k\}$$

Assign each data point to the closest centroid

$$c_i = \arg\min_i \{dist(\mathbf{x}_i - \mathbf{v}_j)\}$$

Re-compute the centroids using the current cluster memberships

$$\mathbf{v}_j = \frac{\sum_{i=1}^n I(c_i = j) \mathbf{x}_i}{\sum_{i=1}^n I(c_i = j)}$$

If a convergence criterion is not met, go to 2.

The K-means algorithm works as follows

Given k as the possible number of cluster:

Randomly choose K data points (seeds) to be the initial centroids, cluster centers,

•
$$\{\mathbf{v}_1, \cdots, \mathbf{v}_k\}$$

Assign each data point to the closest centroid

•
$$c_i = \arg\min_j \{dist(\mathbf{x}_i - \mathbf{v}_j)\}$$

Re-compute the centroids using the current cluster memberships

$$\mathbf{v}_j = \frac{\sum_{i=1}^{n} I(c_i = j) \mathbf{x}_i}{\sum_{i=1}^{n} I(c_i = j)}$$

- U.S.

The K-means algorithm works as follows

Given k as the possible number of cluster:

Randomly choose K data points (seeds) to be the initial centroids, cluster centers,

•
$$\{\mathbf{v}_1, \cdots, \mathbf{v}_k\}$$

Assign each data point to the closest centroid

•
$$c_i = \arg\min_j \{dist(\mathbf{x}_i - \mathbf{v}_j)\}$$

Se-compute the centroids using the current cluster memberships.

•
$$\mathbf{v}_j = \frac{\sum_{i=1}^n I(c_i = j) \mathbf{x}_i}{\sum_{i=1}^n I(c_i = j)}$$

If a convergence criterion is not met, go to 2.

The K-means algorithm works as follows

Given k as the possible number of cluster:

Randomly choose K data points (seeds) to be the initial centroids, cluster centers,

•
$$\{\mathbf{v}_1, \cdots, \mathbf{v}_k\}$$

Assign each data point to the closest centroid

•
$$c_i = \arg\min_j \{dist(\mathbf{x}_i - \mathbf{v}_j)\}$$

Re-compute the centroids using the current cluster memberships.

•
$$\mathbf{v}_j = \frac{\sum_{i=1}^n I(c_i = j) \mathbf{x}_i}{\sum_{i=1}^n I(c_i = j)}$$

If a convergence criterion is not met, go to 2.

What is the code trying to do?

It is trying to find a partition S

 $K\mbox{-means tries to find a partition }S$ such that it minimizes the cost function:

$$\min_{S} \sum_{k=1}^{N} \sum_{i:\boldsymbol{x}_{i} \in C_{k}} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k}\right)^{T} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k}\right)$$
(1)

Where μ_k is the centroid for cluster C

$$oldsymbol{\mu}_k = rac{1}{N_k} \sum_{i: x_i \in C_k} x_i$$

Where N_k is the number of samples in the cluster C_k

What is the code trying to do?

It is trying to find a partition S

 $K\mbox{-means tries to find a partition }S$ such that it minimizes the cost function:

$$\min_{S} \sum_{k=1}^{N} \sum_{i:\boldsymbol{x}_{i} \in C_{k}} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k}\right)^{T} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k}\right)$$
(1)

Where μ_k is the centroid for cluster C

$$oldsymbol{\mu}_k = rac{1}{N_k} \sum_{i: x_i \in C_k} x_i$$

Where N_k is the number of samples in the cluster C_k

What is the code trying to do?

It is trying to find a partition S

 $K\mbox{-means tries to find a partition }S$ such that it minimizes the cost function:

$$\min_{S} \sum_{k=1}^{N} \sum_{i:\boldsymbol{x}_{i} \in C_{k}} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k}\right)^{T} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k}\right)$$
(1)

Where μ_k is the centroid for cluster C_k

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{i: \boldsymbol{x}_i \in C_k} \boldsymbol{x}_i \tag{2}$$

Where N_k is the number of samples in the cluster C_k .

Outline

K-Means Clustering

The NP-Hard Problem K-Means Clustering Heuristic

Convergence Criterion

- The Distance Function
- Example
- Properties of K-Means
- K-Means and Principal Component Analysis

- Introduction
- The Algorithm
- Complexity

- Introduction
- Re-Stating the K-center as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of ECM
- What can we do? Possibilistic Clustering
 - Cost Eunction

First

No (or minimum) re-assignments of data points to different clusters.

First

No (or minimum) re-assignments of data points to different clusters.

Second

No (or minimum) change of centroids.

First

No (or minimum) re-assignments of data points to different clusters.

Second

No (or minimum) change of centroids.

Third

Minimum decrease in the sum of squared error (SSE),

 $SSE = \sum_{k=1}^{N} \sum_{k=1}^{N} dist(\mathbf{x}, \mathbf{v}_{k})^{2}$

First

No (or minimum) re-assignments of data points to different clusters.

Second

No (or minimum) change of centroids.

Third

Minimum decrease in the sum of squared error (SSE),

• C_k is cluster k.

First

No (or minimum) re-assignments of data points to different clusters.

Second

No (or minimum) change of centroids.

Third

Minimum decrease in the sum of squared error (SSE),

- C_k is cluster k.
- \mathbf{v}_k is the centroid of cluster C_k .

$$SSE = \sum_{k=1}^{K} \sum_{x \in c_k} dist \left(\mathbf{x}, \mathbf{v}_k\right)^2$$

Outline

K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion

The Distance Function

- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Introduction
- ${\small lacepsilon}$ Re-Stating the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

The distance function

Actually, we have the following distance functions:

Euclidean

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \sqrt{(\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y})}$$

Manhattan

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_1 = \sum_{i=1}^n |x_i - y_i|$$

Mahalanobis

$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_A = \sqrt{(\mathbf{x} - \mathbf{y})^T A(\mathbf{x} - \mathbf{y})}$

<ロ>・(ア・・)、(P・・)、(P・・)、(P・・)、(P・・)、(P・・)、(P・・)、(P + 1)、(P + 1)、(P + 1))、(P + 1)、(P + 1), (P + 1), (P

The distance function

Actually, we have the following distance functions:

Euclidean

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \sqrt{(\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y})}$$

Manhattan

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_1 = \sum_{i=1}^n |x_i - y_i|$$

Mahalanobis

$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_A = \sqrt{(\mathbf{x} - \mathbf{y})^T A(\mathbf{x} - \mathbf{y})}$

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 15 / 142

The distance function

Actually, we have the following distance functions:

Euclidean

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \sqrt{(\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y})}$$

Manhattan

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_1 = \sum_{i=1}^n |x_i - y_i|$$

Mahalanobis

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_A = \sqrt{(\mathbf{x} - \mathbf{y})^T A(\mathbf{x} - \mathbf{y})}$$

<ロ><回><一><一><一><一><一><一><一</td>15/142

Outline

K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function

Example

- Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Introduction
- ${\small lacepsilon}$ Re-Stating the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Calculate the memberships

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We re-calculate centroids and keep going

Outline

K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example

Properties of K-Means

K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Introduction
- ${\small lacepsilon}$ Re-Stating the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

Strengths

- Simple: easy to understand and to implement
- Efficient: Time complexity: O(tKN), where N is the number of data points, K is the number of clusters, and t is the number of iterations.
 Since both K and t are small. K-means is considered a linear algorithm.

Strengths

- Simple: easy to understand and to implement
- Efficient: Time complexity: O(tKN), where N is the number of data points, K is the number of clusters, and t is the number of iterations.

K-means is the most popular clustering algorithm.

Strengths

- Simple: easy to understand and to implement
- Efficient: Time complexity: O(tKN), where N is the number of data points, K is the number of clusters, and t is the number of iterations.
- Since both K and t are small. K-means is considered a linear algorithm.

K-means is the most popular clustering algorithm.

Note that

It terminates at a local optimum if SSE is used. The global optimum is hard to find due to complexity.

Strengths

- Simple: easy to understand and to implement
- Efficient: Time complexity: O(tKN), where N is the number of data points, K is the number of clusters, and t is the number of iterations.
- Since both K and t are small. K-means is considered a linear algorithm.

Popularity

K-means is the most popular clustering algorithm.

It terminates at a local optimum if SSE is used. The global optimum is hard to find due to complexity.

Strengths

- Simple: easy to understand and to implement
- Efficient: Time complexity: O(tKN), where N is the number of data points, K is the number of clusters, and t is the number of iterations.
- Since both K and t are small. K-means is considered a linear algorithm.

Popularity

K-means is the most popular clustering algorithm.

Note that

It terminates at a local optimum if SSE is used. The global optimum is hard to find due to complexity.

Important

The algorithm is only applicable if the mean is defined.

 For categorical data, K-mode - the centroid is represented by most frequent values.

Important

The algorithm is only applicable if the mean is defined.

• For categorical data, *K*-mode - the centroid is represented by most frequent values.

In addition The user needs to specify K.

Important

The algorithm is only applicable if the mean is defined.

• For categorical data, *K*-mode - the centroid is represented by most frequent values.

In addition

The user needs to specify K.

The algorithm is sensitive to outliers.

- Outliers are data points that are very far away from other data points.
- Outliers could be errors in the data recording or some special data points with very different values.

Important

The algorithm is only applicable if the mean is defined.

• For categorical data, *K*-mode - the centroid is represented by most frequent values.

In addition

The user needs to specify K.

Outliers

The algorithm is sensitive to outliers.

Outliers are data points that are very far away from other data points.
 Outliers could be errors in the data recording or some special data points with very different values.

Important

The algorithm is only applicable if the mean is defined.

• For categorical data, *K*-mode - the centroid is represented by most frequent values.

In addition

The user needs to specify K.

Outliers

The algorithm is sensitive to outliers.

• Outliers are data points that are very far away from other data points.

points with very different values.

Important

The algorithm is only applicable if the mean is defined.

• For categorical data, *K*-mode - the centroid is represented by most frequent values.

In addition

The user needs to specify K.

Outliers

The algorithm is sensitive to outliers.

- Outliers are data points that are very far away from other data points.
- Outliers could be errors in the data recording or some special data points with very different values.

Weaknesses of K-means: Problems with outliers

A series of outliers

Weaknesses of K-means: Problems with outliers

One method

To remove some data points in the clustering process that are much further away from the centroids than other data points.

To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.

One method

To remove some data points in the clustering process that are much further away from the centroids than other data points.

• To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.

To perform random sampling.

- the chance of selecting an outlier is very small.
- Assign the rest of the data points to the clusters by distance or similarity comparison, or classification.

One method

To remove some data points in the clustering process that are much further away from the centroids than other data points.

• To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.

Another method

To perform random sampling.

 Since in sampling we only choose a small subset of the data points, the chance of selecting an outlier is very small.

Assign the rest of the data points to the clusters by distance or similarity comparison, or classification.

One method

To remove some data points in the clustering process that are much further away from the centroids than other data points.

• To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.

Another method

To perform random sampling.

• Since in sampling we only choose a small subset of the data points, the chance of selecting an outlier is very small.

Assign the rest of the data points to the clusters by distance or similarity comparison, or classification.

One method

To remove some data points in the clustering process that are much further away from the centroids than other data points.

• To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.

Another method

To perform random sampling.

- Since in sampling we only choose a small subset of the data points, the chance of selecting an outlier is very small.
- Assign the rest of the data points to the clusters by distance or similarity comparison, or classification.

Weaknesses of *K*-means (cont...)

The algorithm is sensitive to initial seeds

Weaknesses of K-means : Different Densities

< □ > < @ > < 글 > < 글 > < 글 > 글 ♡ Q (* 29/142

Weaknesses of *K*-means: Non-globular Shapes

Weaknesses of *K*-means: Non-globular Shapes

However, it sometimes work better than expected

Outline

K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Introduction
- ${\small \bigcirc}\ {\rm Re-Stating}$ the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

Consider the following

Theorem

• Every matrix $A \in \mathbb{R}^{m \times n}$ has an SVD.

Frobenious Matrix Norm

$$\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2} = \sqrt{\operatorname{trace}\left(A^T A\right)}$$

Consider the following

Theorem

• Every matrix $A \in \mathbb{R}^{m \times n}$ has an SVD.

Frobenious Matrix Norm

$$\|A\|_{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^{2}} = \sqrt{\operatorname{trace} (A^{T} A)}$$

Then, you have a the Eckhart-Young Theorem

Theorem

• Let A be a real $m \times n$ matrix. Then for any $k \in \mathbb{N}$ and any $m \times m$ orthogonal projection matrix P of rank k, we have

$$\|A - P_k A\|_F \le \|A - PA\|_F$$

• with $P_k = \sum_{i=1}^k \boldsymbol{u}_i \boldsymbol{u}_i^T$

Thus

We have the Covariance matrix

$$S = \frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T$$

I herefore, we have the following decomposition

 $S = U\Sigma U^T$

• Where $UU^T = I$ and U is a d imes d matrix

<ロ><回><一><一><一><一><一><一</td>35/142

Thus

We have the Covariance matrix

$$S = \frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T$$

Therefore, we have the following decomposition

 $S = U\Sigma U^T$

• Where $UU^T = I$ and U is a $d \times d$ matrix

Orthogonal Projection

Therefore, we have that U is a orthogonal projection

• Given that $UU^T = I$ and $U\boldsymbol{x} = \boldsymbol{x}$

Now, we can re-write k-means

$$f_{k-\mathsf{mean}} = \min_{\mu_1,\ldots,\mu_k} \sum_{i \in [n]} \min_{j \in [k]} \| oldsymbol{x}_i - \mu_j \|^2$$

<ロト < 回 ト < 巨 ト < 巨 ト ミ シ へ C 36 / 142

Orthogonal Projection

Therefore, we have that U is a orthogonal projection

• Given that $UU^T = I$ and $U\boldsymbol{x} = \boldsymbol{x}$

Now, we can re-write k-means

$$f_{k-\text{mean}} = \min_{\mu_1, \dots, \mu_k} \sum_{i \in [n]} \min_{j \in [k]} \| \boldsymbol{x}_i - \mu_j \|^2$$
Then

PCA can also re-write the cost function

$$f_{PCA} = \min_{P_k} \sum_{i \in [n]} \| m{x}_i - P_k m{x}_i \|^2 = \min_{P_k} \sum_{i \in [n]} \min_{m{y}_i \in P_k} \| m{x}_i - m{y}_i \|^2$$

Where

• Given that P_k is a projection into dimension k and $y \in P_k$ means that $P_k y = y$

Furthermore

$$\arg\min_{y\in P} \|x-y\| = Px$$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q (C) 37/142

Then

PCA can also re-write the cost function

$$f_{PCA} = \min_{P_k} \sum_{i \in [n]} \| \boldsymbol{x}_i - P_k \boldsymbol{x}_i \|^2 = \min_{P_k} \sum_{i \in [n]} \min_{\boldsymbol{y}_i \in P_k} \| \boldsymbol{x}_i - \boldsymbol{y}_i \|^2$$

Where

• Given that P_k is a projection into dimension k and ${\bm y} \in P_k$ means that $P_k {\bm y} = {\bm y}$

Furthermore

$$\arg\min_{\boldsymbol{y}\in P}\|\boldsymbol{x}-\boldsymbol{y}\|=P\boldsymbol{x}$$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q (C) 37/142

Then

PCA can also re-write the cost function

$$f_{PCA} = \min_{P_k} \sum_{i \in [n]} \| \boldsymbol{x}_i - P_k \boldsymbol{x}_i \|^2 = \min_{P_k} \sum_{i \in [n]} \min_{\boldsymbol{y}_i \in P_k} \| \boldsymbol{x}_i - \boldsymbol{y}_i \|^2$$

Where

• Given that P_k is a projection into dimension k and ${m y} \in P_k$ means that $P_k {m y} = {m y}$

Furthermore

$$\arg\min_{y\in P} \|\boldsymbol{x} - \boldsymbol{y}\| = P\boldsymbol{x}$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Assume P_k^* which contains the k optimal centers

$$k$$
-mean = $\sum_{i \in [n]} \min_{j \in [k]} \left\| \boldsymbol{x}_i - \boldsymbol{\mu}_j^* \right\|^2$

Assume P_k^* which contains the k optimal centers

$$egin{split} \hat{m{x}}_{k-\mathsf{mean}} &= \sum_{i\in[n]}\min_{j\in[k]}\left\|m{x}_{i}-\mu_{j}^{*}
ight\|^{2} \ &\geq \sum_{i\in[n]}\min_{m{y}_{i}\in P_{k}^{*}}\left\|m{x}_{i}-m{y}_{i}
ight\|^{2} \end{split}$$

Assume P_k^* which contains the k optimal centers

$$f_{k-\text{mean}} = \sum_{i \in [n]} \min_{j \in [k]} \left\| \boldsymbol{x}_i - \boldsymbol{\mu}_j^* \right\|^2$$

$$\geq \sum_{i \in [n]} \min_{\boldsymbol{y}_i \in P_k} \left\| \boldsymbol{x}_i - \boldsymbol{y}_i \right\|^2$$

$$\geq \min_{P_k} \sum_{i \in [n]} \min_{\boldsymbol{y}_i \in P_k} \left\| \boldsymbol{x}_i - \boldsymbol{y}_i \right\|^2$$

Assume P_k^* which contains the k optimal centers

• Given that $\mu_j \in P_k^*$

$$f_{k-\text{mean}} = \sum_{i \in [n]} \min_{j \in [k]} \left\| \boldsymbol{x}_i - \boldsymbol{\mu}_j^* \right\|^2$$

$$\geq \sum_{i \in [n]} \min_{\boldsymbol{y}_i \in P_k^*} \left\| \boldsymbol{x}_i - \boldsymbol{y}_i \right\|^2$$

$$\geq \min_{P_k} \sum_{i \in [n]} \min_{\boldsymbol{y}_i \in P_k} \left\| \boldsymbol{x}_i - \boldsymbol{y}_i \right\|^2$$

$$= \min_{P_k} \sum_{i \in [n]} \left\| \boldsymbol{x}_i - P_k \boldsymbol{x}_i \right\|^2$$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 へ (~ 38 / 142)

Assume P_k^* which contains the k optimal centers

 f_k

$$egin{aligned} & x_i - \mu_j^* \Big\|^2 \ & \geq \sum_{i \in [n]} \min_{oldsymbol{y}_i \in P_k^*} \|oldsymbol{x}_i - oldsymbol{y}_i \|^2 \ & \geq \min_{P_k} \sum_{i \in [n]} \min_{oldsymbol{y}_i \in P_k} \|oldsymbol{x}_i - oldsymbol{y}_i \|^2 \ & = \min_{P_k} \sum_{i \in [n]} \|oldsymbol{x}_i - P_k oldsymbol{x}_i \|^2 \ & = f_{PCA} \end{aligned}$$

Now, consider solving k-means on the points \boldsymbol{y}_i instead

$\bullet\,$ They are embedded into dimension exactly k by projection P_k

Therefore, given $P oldsymbol{x}_i = oldsymbol{y}_i$ and $\hat{\mu}_j = P \mu$

Where the S
 ^ˆ and μ
 ^ˆ are the assignments and centers of the projected
 points y_i:

Now, consider solving k-means on the points $oldsymbol{y}_i$ instead

• They are embedded into dimension exactly k by projection P_k

Therefore, given $Pm{x}_i = m{y}_i$ and $\widehat{\mu}_j = P\mu_j$

• Where the \widehat{S} and $\widehat{\mu}$ are the assignments and centers of the projected points \pmb{y}_i :

$$\sum_{j \in [k]} \sum_{i \in S_j} \| \boldsymbol{x}_i - \mu_j \|^2 \ge \sum_{j \in [k]} \sum_{i \in S_j} \| P \boldsymbol{x}_i - P \mu_j \|^2$$

Now, consider solving k-means on the points \boldsymbol{y}_i instead

• They are embedded into dimension exactly k by projection P_k

Therefore, given $P \boldsymbol{x}_i = \boldsymbol{y}_i$ and $\widehat{\mu}_j = P \mu_j$

• Where the \widehat{S} and $\widehat{\mu}$ are the assignments and centers of the projected points \pmb{y}_i :

$$\sum_{j \in [k]} \sum_{i \in S_j} \|\boldsymbol{x}_i - \boldsymbol{\mu}_j\|^2 \ge \sum_{j \in [k]} \sum_{i \in S_j} \|P\boldsymbol{x}_i - P\boldsymbol{\mu}_j\|^2$$
$$= \sum_{j \in [k]} \sum_{i \in S_j} \|\boldsymbol{y}_i - \hat{\boldsymbol{\mu}}_j\|^2$$

Now, consider solving k-means on the points \boldsymbol{y}_i instead

• They are embedded into dimension exactly k by projection P_k

Therefore, given $Poldsymbol{x}_i = oldsymbol{y}_i$ and $\widehat{\mu}_j = P\mu_j$

• Where the \widehat{S} and $\widehat{\mu}$ are the assignments and centers of the projected points \pmb{y}_i :

$$\sum_{j \in [k]} \sum_{i \in S_j} \|\boldsymbol{x}_i - \boldsymbol{\mu}_j\|^2 \ge \sum_{j \in [k]} \sum_{i \in S_j} \|P\boldsymbol{x}_i - P\boldsymbol{\mu}_j\|^2$$
$$= \sum_{j \in [k]} \sum_{i \in S_j} \|\boldsymbol{y}_i - \hat{\boldsymbol{\mu}}_j\|^2$$
$$\ge \sum_{j \in [k]} \sum_{i \in \widehat{S}_j} \|\boldsymbol{y}_i - \hat{\boldsymbol{\mu}}_j\|^2 = f_{k-\text{means}}^*$$

Therefore, your best beat

() Compute the PCA of the points x_i into dimension k.

) Solve k-means on the points y_i in dimension k

Output the resulting clusters and centers.

Therefore, your best beat

Steps

- **①** Compute the PCA of the points x_i into dimension k.
- **2** Solve *k*-means on the points y_i in dimension *k*.

Therefore, your best beat

Steps

- **①** Compute the PCA of the points x_i into dimension k.
- **2** Solve *k*-means on the points y_i in dimension *k*.
- Output the resulting clusters and centers.

Given that

We have that

$$f_{new} = \sum_{j \in [k]} \sum_{i \in S_j^*} \left\| \boldsymbol{x}_i - \mu_j^* \right\|^2 = *$$

Therefore by the fact that x_i-y_i and $y_i-\mu_i^*$ are perpendiculars

$$st = \sum_{j \in [k]} \sum_{i \in S_j^*} \left\{ \|oldsymbol{x}_i - oldsymbol{y}_i\|^2 + \left\|oldsymbol{y}_i - oldsymbol{\mu}_j^*
ight\|^2
ight\} = st$$

Finally

$${**} = \sum_{i \in [n]} \|x_i - y_i\|^2 + \sum_{j \in [k]} \sum_{i \in S_j^*} \left\|y_i - \mu_j^*
ight\|^2.$$

Given that

We have that

$$f_{new} = \sum_{j \in [k]} \sum_{i \in S_j^*} \left\| \boldsymbol{x}_i - \mu_j^* \right\|^2 = *$$

Therefore by the fact that $oldsymbol{x}_i - oldsymbol{y}_i$ and $oldsymbol{y}_i - \mu_j^*$ are perpendiculars

$$* = \sum_{j \in [k]} \sum_{i \in S_j^*} \left\{ \| m{x}_i - m{y}_i \|^2 + \| m{y}_i - \mu_j^* \|^2
ight\} = **$$

$$** = \sum_{i \in [n]} \|x_i - y_i\|^2 + \sum_{j \in [k]} \sum_{i \in S_j^*} \|y_i - \mu_j^*\|^2$$

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 1/242

Given that

We have that

$$f_{new} = \sum_{j \in [k]} \sum_{i \in S_j^*} \left\| \boldsymbol{x}_i - \mu_j^* \right\|^2 = *$$

Therefore by the fact that $oldsymbol{x}_i - oldsymbol{y}_i$ and $oldsymbol{y}_i - \mu_i^*$ are perpendiculars

$$* = \sum_{j \in [k]} \sum_{i \in S_j^*} \left\{ \| \boldsymbol{x}_i - \boldsymbol{y}_i \|^2 + \| \boldsymbol{y}_i - \mu_j^* \|^2 \right\} = **$$

Finally

$${**} = \sum_{i \in [n]} {{{{\left\| {{m{x}_i} - {m{y}_i}}
ight\|}^2} + \sum_{j \in [k]} {\sum_{i \in {S_j^*}} {{{{\left\| {{m{y}_i} - {\mu _j^*}}
ight\|}^2}}} }}$$

Therefore, we have

Something Notable

$$f_{PCA} + f_{k-means}^* \le 2f_{k-means}$$

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

Introduction

- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Introduction
- ${\small \bigcirc}\ {\rm Re-Stating}$ the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

Until now, we have assumed a Euclidean metric space

Important step

• The cluster representatives $m_1, ..., m_k$ in are taken to be the means of the currently assigned clusters.

We can generalize this by using a dissimilarity $D\left(oldsymbol{x}_{i},oldsymbol{x}_{i},oldsymbol{x}_{i} ight)$

• By using an explicit optimization with respect to $m_1,...,m_k$

Until now, we have assumed a Euclidean metric space

Important step

• The cluster representatives $m_1, ..., m_k$ in are taken to be the means of the currently assigned clusters.

We can generalize this by using a dissimilarity $D\left(m{x}_{i},m{x}_{i'}
ight)$

• By using an explicit optimization with respect to $m_1,...,m_k$

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

- Introduction
- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Introduction
- ${\small \bigcirc}\ {\rm Re-Stating}$ the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

Algorithm K-meoids

Step 1

• For a given cluster assignment C find the observation in the cluster minimizing total distance to other points in that cluster:

$$i_{k}^{*} = \arg\min_{\left\{i|C(i)=k\right\}}\sum_{C(i')=k}D\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i'}\right)$$

▶ Then $m_k = x_{i_k^*}$ k = 1, ..., K are the current estimates of the cluster centers.

Now

Step 2

• Given a current set of cluster centers $m_1, ..., m_k$, minimize the total error by assigning each observation to the closest (current) cluster center:

$$C(i) = \arg\min_{1 \le k \le K} D(\boldsymbol{x}_i, m_k)$$

Iterate over steps 1 and 2

Until the assignments do not change.

Now

Step 2

• Given a current set of cluster centers $m_1, ..., m_k$, minimize the total error by assigning each observation to the closest (current) cluster center:

$$C(i) = \arg\min_{1 \le k \le K} D(\boldsymbol{x}_i, m_k)$$

Iterate over steps 1 and 2

• Until the assignments do not change.

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

- Introduction
- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Introduction
- ${\small lacepsilon}$ Re-Stating the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

Complexity

Problem, solving the first step has a complexity for k = 1, ..., K

$$O\left(N_k^2\right)$$

Given a set of cluster "centers," $\{i_1, i_2, ..., i_K$

Given the new assignments

$$C(i) = \arg\min_{1 \le k \le K} D(x_i, m_k)$$

▶ It requires a complexity of *O*(*KN*) as before.

Complexity

Problem, solving the first step has a complexity for k = 1, ..., K

$$O\left(N_k^2\right)$$

Given a set of cluster "centers," $\{i_1, i_2, ..., i_K\}$

Given the new assignments

$$C(i) = \arg\min_{1 \le k \le K} D(\boldsymbol{x}_i, m_k)$$

• It requires a complexity of O(KN) as before.

We have that

• K-medoids is more computationally intensive than K-means.

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Re-Stating the K-center as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

The input

It is a set of points with distances represented by a weighted graph $G=(V,V\times V).$

The input

It is a set of points with distances represented by a weighted graph $G = (V, V \times V).$

Output

• Select K centroids in G.

The input

It is a set of points with distances represented by a weighted graph $G = (V, V \times V)$.

Output

- Select K centroids in G.
- Such that minimize maximum distance of every point to a centroid.

Theorem (In the general case for any distance)

It is NP-hard to approximate the general K-center problem within any factor lpha.

The input

It is a set of points with distances represented by a weighted graph $G = (V, V \times V)$.

Output

- Select K centroids in G.
- Such that minimize maximum distance of every point to a centroid.

Theorem (In the general case for any distance)

It is NP-hard to approximate the general K-center problem within any factor α .

We change the distance to be constrained by

The Triangle Inequality

Given $oldsymbol{x},oldsymbol{y}$ and $oldsymbol{z}$

$L\left(oldsymbol{x},oldsymbol{z} ight) \leq L\left(oldsymbol{x},oldsymbol{y} ight) + L\left(oldsymbol{y},oldsymbol{z} ight)$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q (C 53 / 142
Therefore

We change the distance to be constrained by

The Triangle Inequality

Given $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z}

$$L(\boldsymbol{x}, \boldsymbol{z}) \leq L(\boldsymbol{x}, \boldsymbol{y}) + L(\boldsymbol{y}, \boldsymbol{z})$$

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

3 The K-Center Criterion Clustering

Introduction

Re-Stating the K-center as a Clustering Problem

- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

We have a new criterion

Instead of using the K-mean criterion

We use the K-center criterion under the triangle inequality.

New Criterion

The K-center criterion partitions the points into K clusters so as to minimize the maximum distance of any point to its cluster center.

We have a new criterion

Instead of using the K-mean criterion

We use the K-center criterion under the triangle inequality.

New Criterion

The K-center criterion partitions the points into K clusters so as to minimize the maximum distance of any point to its cluster center.

Setup

Suppose we have a data set A that contains N objects.

Setup

Suppose we have a data set A that contains N objects.

We want the following

We want to partition A into K sets labeled $C_1, C_2, ..., C_K$.

Setup

Suppose we have a data set A that contains N objects.

We want the following

We want to partition A into K sets labeled $C_1, C_2, ..., C_K$.

Now

Define a cluster size for any cluster C_k as follows.

• The smallest value D for which all points in this cluster C_k are:

Within distance D of each other.

. Or within distance ot H of some point called the cluster center.

Setup

Suppose we have a data set A that contains N objects.

We want the following

We want to partition A into K sets labeled $C_1, C_2, ..., C_K$.

Now

Define a cluster size for any cluster C_k as follows.

• The smallest value D for which all points in this cluster C_k are:

Setup

Suppose we have a data set A that contains N objects.

We want the following

We want to partition A into K sets labeled $C_1, C_2, ..., C_K$.

Now

Define a cluster size for any cluster C_k as follows.

- The smallest value D for which all points in this cluster C_k are:
 - ▶ Within distance *D* of each other.

vithin distance $rac{arphi}{2}$ of some point called the cluster center

Setup

Suppose we have a data set A that contains N objects.

We want the following

We want to partition A into K sets labeled $C_1, C_2, ..., C_K$.

Now

Define a cluster size for any cluster C_k as follows.

- The smallest value D for which all points in this cluster C_k are:
 - Within distance *D* of each other.
 - Or within distance $\frac{D}{2}$ of some point called the cluster center.

Another Way

We have

Another way to define the cluster size:

- *D* is the maximum pairwise distance between an arbitrary pair of points in the cluster.
- Or twice the maximum distance between a data point and a chosen centroid.

Thus

Denoting the cluster size of C_k by D_k , we have that the cluster size of partition (the way the points are grouped) S by:

$$\mathcal{D} = \max_{k=1,...,K} D_k$$

another words

The cluster size of a partition composed of multiple clusters is the maximum size of these clusters.

Another Way

We have

Another way to define the cluster size:

- *D* is the maximum pairwise distance between an arbitrary pair of points in the cluster.
- Or twice the maximum distance between a data point and a chosen centroid.

Thus

Denoting the cluster size of C_k by D_k , we have that the cluster size of partition (the way the points are grouped) S by:

$$D = \max_{k=1,\dots,K} D_k \tag{3}$$

another words

The cluster size of a partition composed of multiple clusters is the maximum size of these clusters.

Another Way

We have

Another way to define the cluster size:

- *D* is the maximum pairwise distance between an arbitrary pair of points in the cluster.
- Or twice the maximum distance between a data point and a chosen centroid.

Thus

Denoting the cluster size of C_k by D_k , we have that the cluster size of partition (the way the points are grouped) S by:

$$D = \max_{k=1,\dots,K} D_k$$

In another words

The cluster size of a partition composed of multiple clusters is the maximum size of these clusters.

(3)

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

3 The K-Center Criterion Clustering

- Introduction
- Re-Stating the K-center as a Clustering Problem

Comparison with K-means

- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

Comparison with K-means

We use the following distance for comparison

In order to compare these methods, we use Euclidean distance.

In *K*-means we assume the distance between vectors is the squared Euclidean distance

K-means tries to find a partition S that minimizes:

$$\min_{S}\sum_{k=1}^{N}\sum_{i:x_{i}\in C_{k}}\left(oldsymbol{x}_{i}-oldsymbol{\mu}_{k}
ight)^{T}\left(oldsymbol{x}_{i}-oldsymbol{\mu}_{k}
ight)$$

Where μ_k is the centroid for cluster C_k

$$oldsymbol{\mu}_k = rac{1}{N_k} \sum_{i: x_i \in C_k} oldsymbol{x}_i$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Comparison with K-means

We use the following distance for comparison

In order to compare these methods, we use Euclidean distance.

In K-means we assume the distance between vectors is the squared Euclidean distance

K-means tries to find a partition S that minimizes:

$$\min_{S} \sum_{k=1}^{N} \sum_{i:x_i \in C_k} \left(\boldsymbol{x}_i - \boldsymbol{\mu}_k \right)^T \left(\boldsymbol{x}_i - \boldsymbol{\mu}_k \right)$$
(4)

Where μ_k is the centroid for cluster (

$$\mu_k = rac{1}{N_k} \sum_{i: x_i \in C_k} x_i$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Comparison with K-means

We use the following distance for comparison

In order to compare these methods, we use Euclidean distance.

In K-means we assume the distance between vectors is the squared Euclidean distance

K-means tries to find a partition S that minimizes:

$$\min_{S} \sum_{k=1}^{N} \sum_{i:x_i \in C_k} \left(\boldsymbol{x}_i - \boldsymbol{\mu}_k \right)^T \left(\boldsymbol{x}_i - \boldsymbol{\mu}_k \right)$$
(4)

Where μ_k is the centroid for cluster C_k

$$oldsymbol{\mu}_k = rac{1}{N_k}\sum_{i:x_i\in C_k}oldsymbol{x}_i$$

<□▶ < □▶ < □▶ < 필▶ < 필▶ < 필▶ 59/142

(5)

 $K\mbox{-center},$ on the other hand, minimizes the worst case distance to these centroids

$$\min_{S} \max_{k=1,\dots,K} \max_{i:x_i \in C_k} \left(\boldsymbol{x}_i - \boldsymbol{\mu}_k \right)^T \left(\boldsymbol{x}_i - \boldsymbol{\mu}_k \right)$$
(6)

 $K\mbox{-center},$ on the other hand, minimizes the worst case distance to these centroids

$$\min_{S} \max_{k=1,\dots,K} \max_{i:x_i \in C_k} \left(\boldsymbol{x}_i - \boldsymbol{\mu}_k \right)^T \left(\boldsymbol{x}_i - \boldsymbol{\mu}_k \right)$$
(6)

Where

 μ_k is called the "centroid", but may not be the mean vector.

K-center, on the other hand, minimizes the worst case distance to these centroids

$$\min_{S} \max_{k=1,\dots,K} \max_{i:x_i \in C_k} \left(\boldsymbol{x}_i - \boldsymbol{\mu}_k \right)^T \left(\boldsymbol{x}_i - \boldsymbol{\mu}_k \right)$$
(6)

Where

 μ_k is called the "centroid", but may not be the mean vector.

Properties

 The above objective function shows that for each cluster, only the worst scenario matters, that is, the farthest data point to the centroid.

 Moreover, among the clusters, only the worst cluster matters, whose farthest data point yields the maximum distance to the centroid comparing with the farthest data points of the other clusters.

K-center, on the other hand, minimizes the worst case distance to these centroids

$$\min_{S} \max_{k=1,\dots,K} \max_{i:x_i \in C_k} \left(\boldsymbol{x}_i - \boldsymbol{\mu}_k \right)^T \left(\boldsymbol{x}_i - \boldsymbol{\mu}_k \right)$$
(6)

Where

 μ_k is called the "centroid", but may not be the mean vector.

Properties

- The above objective function shows that for each cluster, only the worst scenario matters, that is, the farthest data point to the centroid.
- Moreover, among the clusters, only the worst cluster matters, whose farthest data point yields the maximum distance to the centroid comparing with the farthest data points of the other clusters.

In other words

First

This minimax type of problem is much harder to solve than solving the objective function of k-means.

Another formulation of K-center minimizes the worst case pairwise distance instead of using centroids

 $\min_{S} \max_{k=1,\ldots,K} \max_{i,j:x_i,x_j \in C_k} L\left(x_i,x_j\right)$

With

 $L\left(m{x}_i,m{x}_j
ight)$ denotes any distance between a pair of objects in the same cluster.

In other words

First

This minimax type of problem is much harder to solve than solving the objective function of k-means.

Another formulation of K-center minimizes the worst case pairwise distance instead of using centroids

$$\min_{S} \max_{k=1,\dots,K} \max_{i,j:x_i,x_j \in C_k} L\left(\boldsymbol{x}_i, \boldsymbol{x}_j\right)$$

With

 $L\left(m{x}_i,m{x}_j
ight)$ denotes any distance between a pair of objects in the same cluster.

(7)

In other words

First

This minimax type of problem is much harder to solve than solving the objective function of k-means.

Another formulation of K-center minimizes the worst case pairwise distance instead of using centroids

$$\min_{S} \max_{k=1,\dots,K} \max_{i,j:x_i,x_j \in C_k} L\left(\boldsymbol{x}_i, \boldsymbol{x}_j\right) \tag{7}$$

With

 $L\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$ denotes any distance between a pair of objects in the same cluster.

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

3 The K-Center Criterion Clustering

- Introduction
- Re-Stating the K-center as a Clustering Problem
- Comparison with K-means

The Greedy K-Center Algorithm

- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

Greedy Algorithm for K-Center

Main Idea

The idea behind the Greedy Algorithm is to choose a subset H from the original dataset S consisting of K points that are farthest apart from each other.

Intuition

Since the points in set H are far apart then the worst-case scenario has been taken care of and hopefully the cluster size for the partition is small.

Thus

Each point $oldsymbol{h}_k \in H$ represents one cluster or subset of points $C_k.$

Greedy Algorithm for K-Center

Main Idea

The idea behind the Greedy Algorithm is to choose a subset H from the original dataset S consisting of K points that are farthest apart from each other.

Intuition

Since the points in set H are far apart then the worst-case scenario has been taken care of and hopefully the cluster size for the partition is small.

Each point $oldsymbol{h}_k \in H$ represents one cluster or subset of points C_k

Greedy Algorithm for K-Center

Main Idea

The idea behind the Greedy Algorithm is to choose a subset H from the original dataset S consisting of K points that are farthest apart from each other.

Intuition

Since the points in set H are far apart then the worst-case scenario has been taken care of and hopefully the cluster size for the partition is small.

Thus

Each point $h_k \in H$ represents one cluster or subset of points C_k .

Something Notable

We can think of it as a centroid.

However

Technically it is not a centroid because it tends to be at the boundary of a cluster, but conceptually we can think of it as a centroid.

Important

The way that we partition these points given the centroids is the same as in K-means, that is, the nearest-neighbor rule.

Then

Something Notable

We can think of it as a centroid.

However

Technically it is not a centroid because it tends to be at the boundary of a cluster, but conceptually we can think of it as a centroid.

Important

The way that we partition these points given the centroids is the same as in K-means, that is, the nearest-neighbor rule.

Then

Something Notable

We can think of it as a centroid.

However

Technically it is not a centroid because it tends to be at the boundary of a cluster, but conceptually we can think of it as a centroid.

Important

The way that we partition these points given the centroids is the same as in K-means, that is, the nearest-neighbor rule.

Specifically

We do the following

For every point x_i , in order to see which cluster C_k it is partitioned into, we compute its distance to each cluster centroid as follows, and find out which centroid is the closest:

$$L(\boldsymbol{x}_{i},\boldsymbol{h}_{k}) = \min_{k'=1,\dots,K} L(\boldsymbol{x}_{i},\boldsymbol{h}_{k'})$$
(8)

Thus

Whichever centroid with the minimum distance is selected as the cluster for x_i .

Specifically

We do the following

For every point x_i , in order to see which cluster C_k it is partitioned into, we compute its distance to each cluster centroid as follows, and find out which centroid is the closest:

$$L(\boldsymbol{x}_{i},\boldsymbol{h}_{k}) = \min_{k'=1,\dots,K} L(\boldsymbol{x}_{i},\boldsymbol{h}_{k'})$$
(8)

Thus

Whichever centroid with the minimum distance is selected as the cluster for x_i .

Important

For K-center clustering

We only need pairwise distance $L(\boldsymbol{x}_i, \boldsymbol{x}_j)$ for any $\boldsymbol{x}_i, \boldsymbol{x}_j \in S$.

Where

 x_i can be a non-vector representation of the objects.

As long we can calculate

 $L\left(oldsymbol{x_i},oldsymbol{x_j}
ight)$ which makes the K-center more general than the K-means.

Important

For K-center clustering

We only need pairwise distance $L(\boldsymbol{x}_i, \boldsymbol{x}_j)$ for any $\boldsymbol{x}_i, \boldsymbol{x}_j \in S$.

Where

 $oldsymbol{x}_i$ can be a non-vector representation of the objects.

As long we can calculate

 $L\left(oldsymbol{x_i},oldsymbol{x_j}
ight)$ which makes the K-center more general than the K-means.

Important

For K-center clustering

We only need pairwise distance $L(\boldsymbol{x}_i, \boldsymbol{x}_j)$ for any $\boldsymbol{x}_i, \boldsymbol{x}_j \in S$.

Where

 \boldsymbol{x}_i can be a non-vector representation of the objects.

As long we can calculate

 $L(\boldsymbol{x}_i, \boldsymbol{x}_j)$ which makes the K-center more general than the K-means.
Properties

Something Notable

The greedy algorithm achieves an approximation factor of 2 as the distance measure L satisfies the triangle inequality.

Properties

Something Notable

The greedy algorithm achieves an approximation factor of 2 as the distance measure L satisfies the triangle inequality.

Thus, we have that

$$D^* = \min_{S} \max_{k=1,\dots,K} \max_{i,j:x_i,x_j \in C_k} L\left(\boldsymbol{x}_i, \boldsymbol{x}_j\right)$$
(9)

Then, we have the following guarantee for the greedy algorithm

$$D \le 2D^*$$

(10)

Properties

Something Notable

The greedy algorithm achieves an approximation factor of 2 as the distance measure L satisfies the triangle inequality.

Thus, we have that

$$D^* = \min_{S} \max_{k=1,\dots,K} \max_{i,j:x_i,x_j \in C_k} L\left(\boldsymbol{x}_i, \boldsymbol{x}_j\right)$$
(9)

Then, we have the following guarantee for the greedy algorithm

$$D \leq 2D^*$$

(10)

Nevertheless

We have that

K-center does not provide a locally optimal solution.

We can get only a solution

Guaranteeing to be within a certain performance range of the theoretical optimal solution.

Nevertheless

We have that

K-center does not provide a locally optimal solution.

We can get only a solution

Guaranteeing to be within a certain performance range of the theoretical optimal solution.

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

3 The K-Center Criterion Clustering

- Introduction
- Re-Stating the K-center as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm

Pseudo-Code

- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

Setup

First

Set H denotes the set of cluster centroids or cluster of representative objects $\{\pmb{h}_1,...,\pmb{h}_k\}\subset S.$

Second

Let $cluster(x_i)$ be the identity of the cluster $x_i \in S$ belongs to.

Third

The distance $dist(x_i)$ is the distance between x_i and its closest cluster representative object (centroid):

$$dist\left(\boldsymbol{x}_{i}\right) = \min_{\boldsymbol{h}_{j} \in H} L\left(\boldsymbol{x}_{i}, \boldsymbol{h}_{j}\right)$$
(11)

Setup

First

Set H denotes the set of cluster centroids or cluster of representative objects $\{\pmb{h}_1,...,\pmb{h}_k\}\subset S.$

Second

Let $cluster(x_i)$ be the identity of the cluster $x_i \in S$ belongs to.

Third

The distance $dist(x_i)$ is the distance between x_i and its closest cluster representative object (centroid):

$$dist\left(\boldsymbol{x}_{i}\right) = \min_{\boldsymbol{h}_{j} \in H} L\left(\boldsymbol{x}_{i}, \boldsymbol{h}_{j}\right)$$
(11)

Setup

First

Set H denotes the set of cluster centroids or cluster of representative objects $\{\pmb{h}_1,...,\pmb{h}_k\}\subset S.$

Second

Let $cluster(x_i)$ be the identity of the cluster $x_i \in S$ belongs to.

Third

The distance $dist(x_i)$ is the distance between x_i and its closest cluster representative object (centroid):

$$dist\left(\boldsymbol{x}_{i}\right) = \min_{\boldsymbol{h}_{j} \in H} L\left(\boldsymbol{x}_{i}, \boldsymbol{h}_{j}\right)$$
(11)

The Main Idea

Something Notable

We always assign x_i to the closest centroid. Therefore $dist(x_i)$ is the minimum distance between x_i and any centroid.

The Main Idea

Something Notable

We always assign x_i to the closest centroid. Therefore $dist(x_i)$ is the minimum distance between x_i and any centroid.

The Algorithm is Iterative

• We generate one cluster centroid first and then add others one by one until we get K clusters.

The set of centroids H starts with only a single centroid, $oldsymbol{h}_1$

The Main Idea

Something Notable

We always assign x_i to the closest centroid. Therefore $dist(x_i)$ is the minimum distance between x_i and any centroid.

The Algorithm is Iterative

- We generate one cluster centroid first and then add others one by one until we get K clusters.
- The set of centroids H starts with only a single centroid, h₁.

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

3 The K-Center Criterion Clustering

- Introduction
- Re-Stating the K-center as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code

The K-Center Algorithm

- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

Step 1

• Randomly select an object x_j from S, let $h_1 = x_j$, $H = \{h_1\}$.

It does not matter how x_i is selected.

Step 1

- Randomly select an object x_j from S, let $h_1 = x_j$, $H = \{h_1\}$.
- It does not matter how x_j is selected.

Step 1

- Randomly select an object x_j from S, let $h_1 = x_j$, $H = \{h_1\}$.
- It does not matter how x_i is selected.

Step 2

For j = 1 to n:

- The $dist\left(x_{i}
 ight)$ is the computed distance between $oldsymbol{x}_{j}$ and $oldsymbol{h}_{1}.$
- Because so far we only have one cluster, we will assign a cluster label 1 to every x_i .

Step 1

- Randomly select an object x_j from S, let $h_1 = x_j$, $H = \{h_1\}$.
- It does not matter how x_j is selected.

Step 2

For
$$j = 1$$
 to n :
1 $dist(x_i) = L(x_i, h_1)$.

-) The $dist\left(x_{i}
 ight)$ is the computed distance between $oldsymbol{x}_{j}$ and $oldsymbol{h}_{1}.$
- Because so far we only have one cluster, we will assign a cluster label
 1 to every x_j.

Step 1

- Randomly select an object x_j from S, let $h_1 = x_j$, $H = \{h_1\}$.
- It does not matter how x_j is selected.

Step 2

For j = 1 to n: **1** $dist(\mathbf{x}_i) = L(\mathbf{x}_i, \mathbf{h}_1)$. **2** $cluster(\mathbf{x}_i)$.

- The $dist\left(x_{i}
 ight)$ is the computed distance between $oldsymbol{x}_{j}$ and $oldsymbol{h}_{1}.$
- Because so far we only have one cluster, we will assign a cluster label 1 to every x_i .

Step 1

- Randomly select an object x_j from S, let $h_1 = x_j$, $H = \{h_1\}$.
- It does not matter how x_j is selected.

Step 2

For
$$j = 1$$
 to n :
1 $dist(\mathbf{x}_i) = L(\mathbf{x}_i, \mathbf{h}_1)$
2 $cluster(\mathbf{x}_i)$.

In other words

• The $dist(x_i)$ is the computed distance between x_j and h_1 .

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の < C 73 / 142

Step 1

- Randomly select an object x_j from S, let $h_1 = x_j$, $H = \{h_1\}$.
- It does not matter how x_j is selected.

Step 2

For
$$j = 1$$
 to n :
1 $dist(\mathbf{x}_i) = L(\mathbf{x}_i, \mathbf{h}_1)$.

2 cluster
$$(\boldsymbol{x}_i)$$
.

- The $dist(x_i)$ is the computed distance between x_j and h_1 .
- Because so far we only have one cluster, we will assign a cluster label 1 to every x_j .

Step 3

```
For i = 2 to K

D = \max_{\boldsymbol{x}_j: \boldsymbol{x}_j \in S - H} dist(\boldsymbol{x}_j)
Choose h \in S - H such that dist(h_j) = E

for j = 1 to N

of i \in I (\boldsymbol{x}_j, h_j) \leq dist(\boldsymbol{x}_j)

of i \in I (\boldsymbol{x}_j, h_j) \leq dist(\boldsymbol{x}_j)
```

Step 3

For i = 2 to K $D = \max_{\boldsymbol{x}_j: \boldsymbol{x}_j \in S - H} dist(\boldsymbol{x}_j)$ 2 Choose $h_i \in S - H$ such that $dist(h_i) == D$

Step 3

For i = 2 to K $D = \max_{\boldsymbol{x}_j: \boldsymbol{x}_j \in S - H} dist(\boldsymbol{x}_j)$ 2 Choose $h_i \in S - H$ such that $dist(h_i) == D$ $\bullet H = H \cup \{\boldsymbol{h}_i\}$

Step 3

For i = 2 to K $D = \max_{\boldsymbol{x}_j: \boldsymbol{x}_j \in S - H} dist(\boldsymbol{x}_j)$ 2 Choose $h_i \in S - H$ such that $dist(h_i) == D$ $\bullet H = H \cup \{h_i\}$ • for j = 1 to N

Step 3

For i = 2 to K $D = \max_{\boldsymbol{x}_j: \boldsymbol{x}_j \in S - H} dist(\boldsymbol{x}_j)$ 2 Choose $h_i \in S - H$ such that $dist(h_i) == D$ $\bullet H = H \cup \{h_i\}$ • for j = 1 to N if $L(\boldsymbol{x}_{j}, \boldsymbol{h}_{i}) \leq dist(\boldsymbol{x}_{j})$ 6

> < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = うへで 74/142

Step 3

For i = 2 to K $D = \max_{x_j:x_j \in S-H} dist(x_j)$ $Choose <math>h_i \in S - H$ such that $dist(h_i) == D$ $H = H \cup \{h_i\}$ for j = 1 to N $if L(x_j, h_i) \le dist(x_j)$ $dist(x_j) = L(x_j, h_i)$

Step 3

For i = 2 to K $D = \max_{\boldsymbol{x}_j: \boldsymbol{x}_j \in S-H} dist\left(\boldsymbol{x}_j\right)$ 2 Choose $h_i \in S - H$ such that $dist(h_i) == D$ $\bullet H = H \cup \{\boldsymbol{h}_i\}$ • for j = 1 to N 6 if $L(\boldsymbol{x}_{i}, \boldsymbol{h}_{i}) \leq dist(\boldsymbol{x}_{i})$ $dist(\boldsymbol{x}_i) = L(\boldsymbol{x}_i, \boldsymbol{h}_i)$ 6 $cluster(\boldsymbol{x}_i) = i$ 0

> <ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 へ (~ 74/142

As the algorithm progresses

- We gradually add more and more cluster centroids, beginning with 2 until we get to K.
- At each iteration, we find among all of the points which are not yet included in the set, a worst point:
 - Worst in the sense that this point has maximum distance to its corresponding centroid.

As the algorithm progresses

- We gradually add more and more cluster centroids, beginning with 2 until we get to K.
- At each iteration, we find among all of the points which are not yet included in the set, a worst point:
 - Worst in the sense that this point has maximum distance to its corresponding centroid.

This worst point

- It is added to the set H.
- To stress gain, points already included in H are not among the consideration.

As the algorithm progresses

- We gradually add more and more cluster centroids, beginning with 2 until we get to *K*.
- At each iteration, we find among all of the points which are not yet included in the set, a worst point:
 - Worst in the sense that this point has maximum distance to its corresponding centroid.

This worst point

• It is added to the set *H*.

To stress gain, points already included in H are not among the consideration.

As the algorithm progresses

- We gradually add more and more cluster centroids, beginning with 2 until we get to *K*.
- At each iteration, we find among all of the points which are not yet included in the set, a worst point:
 - Worst in the sense that this point has maximum distance to its corresponding centroid.

This worst point

- It is added to the set *H*.
- To stress gain, points already included in H are not among the consideration.

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

3 The K-Center Criterion Clustering

- Introduction
- Re-Stating the K-center as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm

Notes in Implementation

- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

We can use the following for implementation

- The disjoint-set data structure with the following operations:
 - MakeSet
 - ▶ Find
 - ▶ Union
 - ▶ Remove Iteratively through the disjoint trees

We can use the following for implementation

- The disjoint-set data structure with the following operations:
 - MakeSet
 - ▶ Find
 - ▶ Union
 - Remove Iteratively through the disjoint trees

Of course it is necessary to have extra fields for the necessary distances

Thus, each node-element for the sets must have a field $dist\left(x_{j}
ight)$ such that

$$dist(\mathbf{x}_{j}) = L(\mathbf{x}_{j}, Find(\mathbf{x}_{j}))$$
(12)

We can use the following for implementation

- The disjoint-set data structure with the following operations:
 - MakeSet
 - Find
 - Union
 - ▶ Remove Iteratively through the disjoint trees

Of course it is necessary to have extra fields for the necessary distances

Thus, each node-element for the sets must have a field $dist\left(x_{j}
ight)$ such that

$$dist(\mathbf{x}_{j}) = L(\mathbf{x}_{j}, Find(\mathbf{x}_{j}))$$
(12)

We can use the following for implementation

- The disjoint-set data structure with the following operations:
 - MakeSet
 - Find
 - Union
 - Remove Iteratively through the disjoint trees

Of course it is necessary to have extra fields for the necessary

distances

Thus, each node-element for the sets must have a field $dist\left(x_{j}
ight)$ such that

$$dist(\mathbf{x}_{j}) = L(\mathbf{x}_{j}, Find(\mathbf{x}_{j}))$$
(12)
Implementation

We can use the following for implementation

- The disjoint-set data structure with the following operations:
 - MakeSet
 - Find
 - Union
 - Remove Iteratively through the disjoint trees.

Implementation

We can use the following for implementation

- The disjoint-set data structure with the following operations:
 - MakeSet
 - Find
 - Union
 - Remove Iteratively through the disjoint trees.

Of course it is necessary to have extra fields for the necessary distances

Thus, each node-element for the sets must have a field $dist(x_j)$ such that

$$dist(\boldsymbol{x}_{j}) = L(\boldsymbol{x}_{j}, Find(\boldsymbol{x}_{j}))$$
(12)

Although

Other things need to be taken in consideration

I will allow to you to think about them

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

3 The K-Center Criterion Clustering

- Introduction
- ${\small \bigcirc}\ {\rm Re-Stating}$ the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation

Examples

- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

Example

Running the k-center and k-means algorithms allows to see that for different densities k-center is more robust

Example

Decreasing the density of one of the clusters, we see a degradation on the clusters

Using Centroids of the K-center to initialize K-mean

Thus, we can use the centroids of K-center to try to improve upon K-means to a certain degree

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

3 The K-Center Criterion Clustering

- Introduction
- ${\small \bigcirc}\ {\rm Re-Stating}$ the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples

K-Center Algorithm Properties

K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

The Running Time

We have that

The running time of the algorithm is O(KN), where K is the number of clusters generated and N is the size of the data set.

Why?

Because *K*-center only requires pairwise distance between any point and the centroids.

The Running Time

We have that

The running time of the algorithm is O(KN), where K is the number of clusters generated and N is the size of the data set.

Why?

Because K-center only requires pairwise distance between any point and the centroids.

Main Bound of the K-center algorithm

Lemma

Given the distance measure L satisfying the triangle inequality.

• If the partition obtained by the greedy algorithm is S and the optimal partition be S^* , such that the cluster size of \tilde{S} be \tilde{D} and the one for S^* is D^* , then

Main Bound of the K-center algorithm

Lemma

Given the distance measure L satisfying the triangle inequality.

• If the partition obtained by the greedy algorithm is \tilde{S} and the optimal partition be S^* , such that the cluster size of \tilde{S} be \tilde{D} and the one for S^* is D^* , then

$\widetilde{D} \le 2D^*$

Main Bound of the K-center algorithm

Lemma

Given the distance measure L satisfying the triangle inequality.

• If the partition obtained by the greedy algorithm is \widetilde{S} and the optimal partition be S^* , such that the cluster size of \widetilde{S} be \widetilde{D} and the one for S^* is D^* , then

$$\widetilde{D} \le 2D^* \tag{13}$$

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

3 The K-Center Criterion Clustering

- Introduction
- ${\small \bigcirc}\ {\rm Re-Stating}$ the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variation

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

If we look only at the first j centroid

It generates a partition j with size D_j and also:

The cluster size is the size of the biggest cluster in the current partition.

• The size of every cluster is defined as the maximum distance between a point and the cluster centroid

If we look only at the first j centroid

It generates a partition j with size D_j and also:

- The cluster size is the size of the biggest cluster in the current partition.
- The size of every cluster is defined as the maximum distance between a point and the cluster centroid

If we look only at the first j centroid

It generates a partition j with size D_j and also:

- The cluster size is the size of the biggest cluster in the current partition.
- The size of every cluster is defined as the maximum distance between a point and the cluster centroid

If we look only at the first j centroid

It generates a partition j with size D_j and also:

- The cluster size is the size of the biggest cluster in the current partition.
- The size of every cluster is defined as the maximum distance between a point and the cluster centroid

If we look only at the first j centroid

It generates a partition j with size D_j and also:

- The cluster size is the size of the biggest cluster in the current partition.
- The size of every cluster is defined as the maximum distance between a point and the cluster centroid

Thus $D_1 \ge D_2 \ge D_3...$ (14) Why? • Because $D = \max_{x_j:x_j \in S-H} dist(x_j)$ and lines 5-7 in the step 3 and using induction!!!

You can prove that part by yourselves.

If we look only at the first j centroid

It generates a partition j with size D_j and also:

- The cluster size is the size of the biggest cluster in the current partition.
- The size of every cluster is defined as the maximum distance between a point and the cluster centroid

Thus $D_1 > D_2 > D_3...$ (14)Why? • Because $D = \max_{{m x}_j: {m x}_j \in S-H} dist \, ({m x}_j)$ and lines 5-7 in the step 3 and using

induction!!!

• You can prove that part by yourselves..

Graphically

Now

It is necessary to prove

$$\forall i < j, \ L\left(\boldsymbol{h}_{i}, \boldsymbol{h}_{j}\right) \geq D_{j-1}$$

Thus

D_{j-1} is a lower bound for the distance between $oldsymbol{h}_i$ and $oldsymbol{h}_j.$

<ロト < 回 ト < 画 ト < 画 ト < 画 ト < 画 ト < 画 ト 89 / 142

Now

It is necessary to prove

$$\forall i < j, \ L\left(\boldsymbol{h}_{i}, \boldsymbol{h}_{j}\right) \geq D_{j-1}$$

Thus

D_{j-1} is a lower bound for the distance between $oldsymbol{h}_i$ and $oldsymbol{h}_j.$

<ロト < 回 ト < 画 ト < 画 ト < 画 ト < 画 ト < 画 ト 89 / 142

Now

It is necessary to prove

$$\forall i < j, \ L\left(\boldsymbol{h}_{i}, \boldsymbol{h}_{j}\right) \geq D_{j-1}$$
(15)

Thus

D_{i-1} is a lower bound for the distance between h_i and h_j .

Proof of the Previous Statement

It is possible to see that

$$L(\boldsymbol{h}_{j-2}, \boldsymbol{h}_j) \ge L(\boldsymbol{h}_{j-1}, \boldsymbol{h}_j)$$
(16)

How

Assume it is not true. Then, $L(m{h}_{j-2},m{h}_j) < L(m{h}_{j-1},m{h}_j)$

Proof of the Previous Statement

It is possible to see that

$$L(\boldsymbol{h}_{j-2}, \boldsymbol{h}_j) \ge L(\boldsymbol{h}_{j-1}, \boldsymbol{h}_j)$$
(16)

How?

Assume it is not true. Then, $L\left(\boldsymbol{h}_{j-2},\boldsymbol{h}_{j}
ight) < L\left(\boldsymbol{h}_{j-1},\boldsymbol{h}_{j}
ight)$

Then

We have that given the partition \widetilde{S} generated by the greedy algorithm

•
$$m{h}_{j-2}\in \widetilde{C}_{j-2}$$
 , $m{h}_{j-2}\in \widetilde{C}_j$ for $\widetilde{C}_{j-2},\widetilde{C}_j\in \widetilde{S}$

• It is a contradiction because h_{j-2} is generated by the algorithm such that cannot be in any other cluster!!!

hus iteratively

$L(\mathbf{h}_1, \mathbf{h}_j) \ge L(\mathbf{h}_2, \mathbf{h}_j) \ge L(\mathbf{h}_3, \mathbf{h}_j) \ge \dots \ge L(\mathbf{h}_{j-1}, \mathbf{h}_j) = D_{j-1} \quad (17)$

Then

We have that given the partition \widetilde{S} generated by the greedy algorithm

•
$$m{h}_{j-2}\in \widetilde{C}_{j-2}$$
 , $m{h}_{j-2}\in \widetilde{C}_j$ for $\widetilde{C}_{j-2},\widetilde{C}_j\in \widetilde{S}$

• It is a contradiction because h_{j-2} is generated by the algorithm such that cannot be in any other cluster!!!

Thus iteratively

$$L(\mathbf{h}_{1},\mathbf{h}_{j}) \ge L(\mathbf{h}_{2},\mathbf{h}_{j}) \ge L(\mathbf{h}_{3},\mathbf{h}_{j}) \ge ... \ge L(\mathbf{h}_{j-1},\mathbf{h}_{j}) = D_{j-1}$$
 (17)

Not only that

Not only that

$\forall j, \exists i < j, \ L\left(h_i, h_j\right) = D_{j-1}$

(18)

Therefore

Therefore, D_{j-1} is not only the lower bound for the distance between h_i and h_j , it is also the exact boundary for a specific *i*.

Not only that

Not only that

$$\forall j, \exists i < j, \ L\left(\boldsymbol{h}_{i}, \boldsymbol{h}_{j}\right) = D_{j-1}$$

Therefore

Therefore, D_{j-1} is not only the lower bound for the distance between $m{h}_i$ and $m{h}_j$, it is also the exact boundary for a specific i.

(18)

Not only that

Not only that

$$\forall j, \exists i < j, \ L\left(\boldsymbol{h}_{i}, \boldsymbol{h}_{j}\right) = D_{j-1}$$
(18)

Therefore

Therefore, D_{j-1} is not only the lower bound for the distance between h_i and h_j , it is also the exact boundary for a specific *i*.

Now

- Let us consider the optimal partition S^{\ast} with K clusters and its size $D^{\ast}.$
 - Suppose the greedy algorithm generates the centroids $\widetilde{H} = \{h_1, h_2, ..., h_K\}.$
 - For the proof, we are adding one more, h_{K+1} .

This can be done without losing generality

Now

- Let us consider the optimal partition S^* with K clusters and its size D^* .
 - Suppose the greedy algorithm generates the centroids $\widetilde{H} = \{h_1, h_2, ..., h_K\}.$
 - ► For the proof, we are adding one more, h_{K+1}.
 - This can be done without losing generality.

Now

- Let us consider the optimal partition S^* with K clusters and its size D^* .
 - Suppose the greedy algorithm generates the centroids $\widetilde{H} = \{h_1, h_2, ..., h_K\}.$
 - ► For the proof, we are adding one more, h_{K+1}.
 - This can be done without losing generality.

According to the pigeonhole principle, at least two of the centroids among

 $\{h_1, h_2, ..., h_K, h_{K+1}\}$ will fall into one cluster k of the partition S^* .

 $1 \leq i < k < j \leq K+1 \Rightarrow$ Using the triangle inequality:

 $L\left(oldsymbol{h}_{i},oldsymbol{h}_{j}
ight)\leq L\left(oldsymbol{h}_{i},oldsymbol{h}_{k}
ight)+L\left(oldsymbol{h}_{k},oldsymbol{h}_{j}
ight)\leq D^{*}+D^{*}=2D^{*}$

Now

- Let us consider the optimal partition S^* with K clusters and its size D^* .
 - Suppose the greedy algorithm generates the centroids $\widetilde{H} = \{h_1, h_2, ..., h_K\}.$
 - ► For the proof, we are adding one more, h_{K+1}.
 - This can be done without losing generality.

According to the pigeonhole principle, at least two of the centroids among

 $\{h_1, h_2, ..., h_K, h_{K+1}\}$ will fall into one cluster k of the partition S^* .

Thus assume

 $1 \leq i < k < j \leq K+1 \Rightarrow$ Using the triangle inequality:

Now

- Let us consider the optimal partition S^* with K clusters and its size D^* .
 - Suppose the greedy algorithm generates the centroids $\widetilde{H} = \{h_1, h_2, ..., h_K\}.$
 - ► For the proof, we are adding one more, h_{K+1}.
 - This can be done without losing generality.

According to the pigeonhole principle, at least two of the centroids among

 $\{h_1, h_2, ..., h_K, h_{K+1}\}$ will fall into one cluster k of the partition S^* .

Thus assume

 $1 \le i < k < j \le K + 1 \Rightarrow$ Using the triangle inequality:

 $L(h_i, h_j) \le L(h_i, h_k) + L(h_k, h_j) \le D^* + D^* = 2D^*$ (19)
Then

In addition

Also $L(\boldsymbol{h}_i, \boldsymbol{h}_j) \geq D_{j-1} \geq D_k$ then $D_k \leq 2D^*$

Given S, the partition generated by the greedy algorithm

We define Δ as

$$\Delta = \max_{\boldsymbol{x}_{j}: \boldsymbol{x}_{j} \in \widetilde{S} - \widetilde{H} \boldsymbol{h}_{k}: \boldsymbol{h}_{k} \in \widetilde{H}} L\left(\boldsymbol{x}_{j}, \boldsymbol{h}_{k}\right)$$

Basically

The maximum of all points that are not centroids that minimize the distance to some centroid for the partition generated by the greedy algorithm.

Then

In addition

Also
$$L(\boldsymbol{h}_i, \boldsymbol{h}_j) \geq D_{j-1} \geq D_k$$
 then $D_k \leq 2D^*$

Given \widetilde{S} , the partition generated by the greedy algorithm

We define Δ as

$$\Delta = \max_{\boldsymbol{x}_j: \boldsymbol{x}_j \in \widetilde{S} - \widetilde{H} \boldsymbol{h}_k: \boldsymbol{h}_k \in \widetilde{H}} \min _{\boldsymbol{k}_j: \boldsymbol{h}_k \in \widetilde{H}} L(\boldsymbol{x}_j, \boldsymbol{h}_k)$$

Basically

The maximum of all points that are not centroids that minimize the distance to some centroid for the partition generated by the greedy algorithm.

(20)

Then

In addition

Also
$$L(\boldsymbol{h}_i, \boldsymbol{h}_j) \geq D_{j-1} \geq D_k$$
 then $D_k \leq 2D^*$

Given $\widetilde{S},$ the partition generated by the greedy algorithm

We define Δ as

$$\Delta = \max_{oldsymbol{x}_j: oldsymbol{x}_j \in \widetilde{S} - \widetilde{H} oldsymbol{h}_k: oldsymbol{h}_k \in \widetilde{H}} \min_{oldsymbol{L}} L\left(oldsymbol{x}_j, oldsymbol{h}_k
ight)$$

Basically

The maximum of all points that are not centroids that minimize the distance to some centroid for the partition generated by the greedy algorithm.

(20)

Now, we are ready for the final part

Let \boldsymbol{h}_{K+1} be an element in $\widetilde{S} - \widetilde{H}$

Such that

$$\min_{\boldsymbol{h}_{k}:\boldsymbol{h}_{k}\in\widetilde{H}}L\left(\boldsymbol{h}_{K+1},\boldsymbol{h}_{k}\right)=\Delta$$
(21)

By definition

$L(\boldsymbol{h}_{K+1}, \boldsymbol{h}_k) \ge \Delta, \ \forall k = 1, ..., K$

Thus, we have the following sets

Let $H_k = \{oldsymbol{h}_1,...,oldsymbol{h}_k\}$ with $k=1,2,...,K_+$

Now, we are ready for the final part

Let \boldsymbol{h}_{K+1} be an element in $\widetilde{S} - \widetilde{H}$

Such that

$$\min_{\boldsymbol{h}_k:\boldsymbol{h}_k\in\widetilde{H}} L\left(\boldsymbol{h}_{K+1},\boldsymbol{h}_k\right) = \Delta$$
(21)

By definition

$$L(\boldsymbol{h}_{K+1}, \boldsymbol{h}_k) \geq \Delta, \ \forall k = 1, ..., K$$

Thus, we have the following sets

Let $H_k = \{oldsymbol{h}_1,...,oldsymbol{h}_k\}$ with $k=1,2,...,K_+$

<ロト</l>
<ロト
<日ト
<日ト
<日ト
<日ト
<日ト
<日ト
<日ト
<142

(22

Now, we are ready for the final part

Let \boldsymbol{h}_{K+1} be an element in $\widetilde{S} - \widetilde{H}$

Such that

$$\min_{\boldsymbol{h}_k:\boldsymbol{h}_k\in\widetilde{H}} L\left(\boldsymbol{h}_{K+1},\boldsymbol{h}_k\right) = \Delta$$
(21)

By definition

$$L\left(\boldsymbol{h}_{K+1},\boldsymbol{h}_{k}
ight)\geq\Delta,\;\forall k=1,...,K$$

Thus, we have the following sets

Let
$$H_k = \{h_1, ..., h_k\}$$
 with $k = 1, 2, ..., K$.

(22)

Consider the distance between h_i and h_j for $i < j \le K$

• According the greedy algorithm

 $\min_{\boldsymbol{h}_k:\boldsymbol{h}_k\in H_{j-1}} L\left(\boldsymbol{h}_j,\boldsymbol{h}_k\right) \geq \min_{\boldsymbol{h}_k:\boldsymbol{h}_k\in H_{j-1}} L\left(\boldsymbol{x}_l,\boldsymbol{h}_k\right) \text{ for any } x_l\in \widetilde{S}-H_j$

• Basically remember that the h_i are obtained by finding the farthest points.

Since $h_{K+1} \in \widetilde{S} - \widetilde{H}$ and $\widetilde{S} - \widetilde{H} \subset \widetilde{S} - H_j$

$$L\left(\boldsymbol{h}_{j},\boldsymbol{h}_{i}
ight)\geq\min_{\boldsymbol{h}_{k}:\boldsymbol{h}_{k}\in H_{j-1}}L\left(\boldsymbol{h}_{j},\boldsymbol{h}_{k}
ight)$$

 $=\Delta$

Since $h_{K+1} \in \widetilde{S} - \widetilde{H}$ and $\widetilde{S} - \widetilde{H} \subset \widetilde{S} - H_j$

$$L(\boldsymbol{h}_{j}, \boldsymbol{h}_{i}) \geq \min_{\boldsymbol{h}_{k}:\boldsymbol{h}_{k}\in H_{j-1}} L(\boldsymbol{h}_{j}, \boldsymbol{h}_{k})$$
$$\geq \min_{\boldsymbol{h}_{k}:\boldsymbol{h}_{k}\in H_{j-1}} L(\boldsymbol{h}_{K+1}, \boldsymbol{h}_{k})$$

We have shown that for any for $i < j \leq K + i$

$L(\boldsymbol{h}_j, \boldsymbol{h}_i) \geq \Delta$

Since $h_{K+1} \in \widetilde{S} - \widetilde{H}$ and $\widetilde{S} - \widetilde{H} \subset \widetilde{S} - H_j$

$$L(\boldsymbol{h}_{j}, \boldsymbol{h}_{i}) \geq \min_{\boldsymbol{h}_{k}:\boldsymbol{h}_{k}\in H_{j-1}} L(\boldsymbol{h}_{j}, \boldsymbol{h}_{k})$$

$$\geq \min_{\boldsymbol{h}_{k}:\boldsymbol{h}_{k}\in H_{j-1}} L(\boldsymbol{h}_{K+1}, \boldsymbol{h}_{k})$$

$$\geq \min_{\boldsymbol{h}_{k}:\boldsymbol{h}_{k}\in \widetilde{H}} L(\boldsymbol{h}_{K+1}, \boldsymbol{h}_{k})$$

We have shown that for any for $i < j \le K + 1$ $L(h_j, h_j) \ge \Delta$ (23)

97/142

Since $\overline{h_{K+1} \in \widetilde{S}} - \widetilde{H}$ and $\widetilde{S} - \widetilde{H} \subset \widetilde{S} - H_j$

$$L(\boldsymbol{h}_{j}, \boldsymbol{h}_{i}) \geq \min_{\boldsymbol{h}_{k}:\boldsymbol{h}_{k}\in H_{j-1}} L(\boldsymbol{h}_{j}, \boldsymbol{h}_{k})$$

$$\geq \min_{\boldsymbol{h}_{k}:\boldsymbol{h}_{k}\in H_{j-1}} L(\boldsymbol{h}_{K+1}, \boldsymbol{h}_{k})$$

$$\geq \min_{\boldsymbol{h}_{k}:\boldsymbol{h}_{k}\in \widetilde{H}} L(\boldsymbol{h}_{K+1}, \boldsymbol{h}_{k})$$

$$=\Delta$$

We have shown that for any for $i < j \le K + 1$ $\mathbb{A}(h_{ij}, h_{i}) \ge \Delta$ (23)

<ロ><目><日><日><日><日><日><日><日><日><日><日><日><日><日</td>97/142

Since $h_{K+1} \in \widetilde{S} - \widetilde{H}$ and $\widetilde{S} - \widetilde{H} \subset \widetilde{S} - H_i$

$$L(\boldsymbol{h}_{j}, \boldsymbol{h}_{i}) \geq \min_{\boldsymbol{h}_{k}:\boldsymbol{h}_{k}\in H_{j-1}} L(\boldsymbol{h}_{j}, \boldsymbol{h}_{k})$$

$$\geq \min_{\boldsymbol{h}_{k}:\boldsymbol{h}_{k}\in H_{j-1}} L(\boldsymbol{h}_{K+1}, \boldsymbol{h}_{k})$$

$$\geq \min_{\boldsymbol{h}_{k}:\boldsymbol{h}_{k}\in \widetilde{H}} L(\boldsymbol{h}_{K+1}, \boldsymbol{h}_{k})$$

$$=\Delta$$

We have shown that for any for $i < j \leq K + 1$

$$L(\boldsymbol{h}_j, \boldsymbol{h}_i) \geq \Delta$$

(23)

Consider the optimal partition $S^* = \{C_1^*, C_2^*, ..., C_K^*\}$

Thus at least 2 of the K + 1 elements $h_1, h_2, ..., h_{K+1}$ will be covered by one cluster.

Assume that

 $m{h}_i$ and $m{h}_j$ belong to the same cluster in S^* . Then $L\left(m{h}_i,m{h}_j
ight) \leq D^*.$

In addition

We have that since $L\left(oldsymbol{h}_{i},oldsymbol{h}_{j}
ight)\geq\Delta$ then $\Delta\leq D^{*}$

Consider the optimal partition $S^* = \{C_1^*, C_2^*, ..., C_K^*\}$

Thus at least 2 of the K + 1 elements $h_1, h_2, ..., h_{K+1}$ will be covered by one cluster.

Assume that

 h_i and h_j belong to the same cluster in S^* . Then $L(h_i, h_j) \leq D^*$.

In addition

We have that since $L\left(oldsymbol{h}_{i},oldsymbol{h}_{j}
ight)\geq\Delta$ then $\Delta\leq D^{*}$

Consider the optimal partition $S^* = \{C_1^*, C_2^*, ..., C_K^*\}$

Thus at least 2 of the K + 1 elements $h_1, h_2, ..., h_{K+1}$ will be covered by one cluster.

Assume that

 $m{h}_i$ and $m{h}_j$ belong to the same cluster in S^* . Then $L(m{h}_i, m{h}_j) \leq D^*$.

In addition

We have that since $L(\boldsymbol{h}_i, \boldsymbol{h}_j) \geq \Delta$ then $\Delta \leq D^*$

Consider elements $oldsymbol{x}_m$ and $oldsymbol{x}_n$ in any cluster represented by $oldsymbol{h}_k$

$$L(\boldsymbol{x}_m, \boldsymbol{h}_k) \leq \Delta \text{ and } L(\boldsymbol{x}_n, \boldsymbol{h}_k) \leq \Delta$$
 (24)

By Triangle Inequality

 $L(\boldsymbol{x}_{m}, \boldsymbol{x}_{k}) \leq L(\boldsymbol{x}_{m}, \boldsymbol{h}_{k}) + L(\boldsymbol{x}_{n}, \boldsymbol{h}_{k}) \leq 2\Delta$

Finally, there are two elements x_m and x_n in a cluster such that $\overline{D} = L\left(x_m, x_n
ight)$

$$\bar{D} = \max_{k} \ D_k \le 2\Delta \le 2D^* \tag{26}$$

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ○ Q (○ 99/142

Consider elements $oldsymbol{x}_m$ and $oldsymbol{x}_n$ in any cluster represented by $oldsymbol{h}_k$

$$L(\boldsymbol{x}_m, \boldsymbol{h}_k) \leq \Delta \text{ and } L(\boldsymbol{x}_n, \boldsymbol{h}_k) \leq \Delta$$
 (24)

By Triangle Inequality

$$L(\boldsymbol{x}_m, \boldsymbol{x}_k) \leq L(\boldsymbol{x}_m, \boldsymbol{h}_k) + L(\boldsymbol{x}_n, \boldsymbol{h}_k) \leq 2\Delta$$

Finally, there are two elements x_m and x_n in a cluster such that $\widetilde{D}=L\left(x_m,x_n ight)$

$$\overline{D} = \max_{k} D_{k} \le 2\Delta \le 2D^{*}$$
(26)

<□ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≧ < ○ Q () 99/142

(25

Consider elements $oldsymbol{x}_m$ and $oldsymbol{x}_n$ in any cluster represented by $oldsymbol{h}_k$

$$L(\boldsymbol{x}_m, \boldsymbol{h}_k) \leq \Delta \text{ and } L(\boldsymbol{x}_n, \boldsymbol{h}_k) \leq \Delta$$
 (24)

By Triangle Inequality

$$L(\boldsymbol{x}_m, \boldsymbol{x}_k) \leq L(\boldsymbol{x}_m, \boldsymbol{h}_k) + L(\boldsymbol{x}_n, \boldsymbol{h}_k) \leq 2\Delta$$

Finally, there are two elements
$$m{x}_m$$
 and $m{x}_n$ in a cluster such that $\widetilde{D}=L\left(m{x}_m,m{x}_n
ight)$

$$\widetilde{D} = \max_{k} D_{k} \le 2\Delta \le 2D^{*}$$
(26)

<ロ><回><一><一><一><一><一><一</td>99/142

(25)

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Introduction
- ${\small \bigcirc}\ {\rm Re-Stating}$ the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

Fuzzy Clustering

- Rethinking K-Means Cost Function
- Using the Lagrange Multipliers
- Examples
- Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

Some of the Fuzzy Clustering Models

Fuzzy Clustering Model

Bezdek, 1981

Possibilistic Clustering Model

Krishnapuram - Keller, 1993

Fuzzy Possibilistic Clustering Model

N. Pal - K. Pal - Bezdek, 1997

Some of the Fuzzy Clustering Models

Fuzzy Clustering Model

Bezdek, 1981

Possibilistic Clustering Model

Krishnapuram - Keller, 1993

Fuzzy Possibilistic Clustering Model

N. Pal - K. Pal - Bezdek, 1997

<ロト < 回 ト < 巨 ト < 巨 ト ミ シ へ C 101 / 142 Some of the Fuzzy Clustering Models

Fuzzy Clustering Model

Bezdek, 1981

Possibilistic Clustering Model

Krishnapuram - Keller, 1993

Fuzzy Possibilistic Clustering Model

N. Pal - K. Pal - Bezdek, 1997

Fuzzy C-Means Clustering

The input an unlabeled data set

- $X = \{x_1, x_2, x_3, ..., x_N\}.$
- $oldsymbol{x}_k \in \mathbb{R}^p$

Output

- A partition S of the X as a matrix U of $C \times N$.
- Set of cluster centers $V = \{oldsymbol{v}_1, oldsymbol{v}_2, ..., oldsymbol{v}_C\} \subset \mathbb{R}^p$

Fuzzy C-Means Clustering

The input an unlabeled data set

• $X = \{x_1, x_2, x_3, ..., x_N\}.$

•
$$oldsymbol{x}_k \in \mathbb{R}^p$$

Output

- A partition S of the X as a matrix U of $C \times N$.
- Set of cluster centers $V = \{oldsymbol{v}_1, oldsymbol{v}_2, ..., oldsymbol{v}_C\} \subset \mathbb{R}^p$

What we want

Creation of the Cost Function

First:

• We can use a distance defined as:

$$\|\boldsymbol{x}_k - \boldsymbol{v}_i\| = \sqrt{\left(\boldsymbol{x}_k - \boldsymbol{v}_i\right)^T \left(\boldsymbol{x}_k - \boldsymbol{v}_i\right)}$$
 (27)

The euclidean distance from a point *k* to a centroid *i*. NOTE other distances based in Mahalonobis can be taken in consideration.

What we want

Creation of the Cost Function

First:

• We can use a distance defined as:

$$\|\boldsymbol{x}_k - \boldsymbol{v}_i\| = \sqrt{\left(\boldsymbol{x}_k - \boldsymbol{v}_i\right)^T \left(\boldsymbol{x}_k - \boldsymbol{v}_i\right)}$$
 (27)

The euclidean distance from a point k to a centroid i.

What we want

Creation of the Cost Function

First:

• We can use a distance defined as:

$$\|\boldsymbol{x}_k - \boldsymbol{v}_i\| = \sqrt{\left(\boldsymbol{x}_k - \boldsymbol{v}_i\right)^T \left(\boldsymbol{x}_k - \boldsymbol{v}_i\right)}$$
 (27)

The euclidean distance from a point k to a centroid i. NOTE other distances based in Mahalonobis can be taken in consideration.

Do you remember the cost function for *K*-means?

Finding a partition \boldsymbol{S} that minimizes the following function

$$\min_{S} \sum_{k=1}^{N} \sum_{k: \boldsymbol{x}_{k} \in C_{i}} \|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{2}$$

$$(28)$$

Where
$$oldsymbol{v}_i = rac{1}{N_i} {\displaystyle \sum\limits_{oldsymbol{x}_k \in C_i}} oldsymbol{x}_k$$

We can rewrite the previous equation as

$$\min_{S} \sum_{k=1}^{N} \sum_{i=1}^{C} I\left(x_{k} \in C_{i}\right) \|x_{k} - v_{i}\|^{2}$$
(29)

<ロト<回ト<三ト<三ト<三ト<三ト<三ト 104/142

Do you remember the cost function for K-means?

Finding a partition \boldsymbol{S} that minimizes the following function

$$\min_{S} \sum_{k=1}^{N} \sum_{k: x_k \in C_i} \|x_k - v_i\|^2$$
(28)

Where
$$oldsymbol{v}_i = rac{1}{N_i} \sum\limits_{oldsymbol{x}_k \in C_i} oldsymbol{x}_k$$

We can rewrite the previous equation as

$$\min_{S} \sum_{k=1}^{N} \sum_{i=1}^{C} I(x_{k} \in C_{i}) \|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{2}$$
(29)

< □ > < @ > < 클 > < 클 > 트 → 오 ↔ 104/142

Did you notice that the membership is always one or zero?

$$\min_{S} \sum_{k=1}^{N} \sum_{i=1}^{C} \underbrace{I(x_k \in C_i)}_{I(x_k \in C_i)} \|\boldsymbol{x}_k - \boldsymbol{v}_i\|^2$$
(30)

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Introduction
- ${\small \bigcirc}\ {\rm Re-Stating}$ the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

4 Variations

Fuzzy Clustering

Rethinking K-Means Cost Function

- Using the Lagrange Multipliers
- Examples
- Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

his means that we think that each cluster C_i is "Fuzzy

We can assume a fuzzy set for the cluster C_i with membership function:

What if we modify the cost function to something like this

$$\min_{S} \sum_{k=1}^{N} \sum_{i=1}^{C} \overbrace{\mathsf{Fuzzy Value}}^{\mathsf{Membership}} \|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{2}$$
(31)

This means that we think that each cluster C_i is "Fuzzy"

We can assume a fuzzy set for the cluster C_i with membership function:

$$A_i: \mathbb{R}^p \to [0, 1] \tag{32}$$

Such that we can tune it by using a power i.e. decreasing it by a m power.

What if we modify the cost function to something like this

$$\min_{S} \sum_{k=1}^{N} \sum_{i=1}^{C} \overbrace{\mathsf{Fuzzy Value}}^{\mathsf{Membership}} \|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{2}$$
(31)

This means that we think that each cluster C_i is "Fuzzy"

We can assume a fuzzy set for the cluster C_i with membership function:

$$A_i: \mathbb{R}^p \to [0, 1] \tag{32}$$

Such that we can tune it by using a power i.e. decreasing it by a m power.

What if we modify the cost function to something like this

$$\min_{S} \sum_{k=1}^{N} \sum_{i=1}^{C} \overbrace{\mathsf{Fuzzy Value}}^{\mathsf{Membership}} \|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{2}$$
(31)

This means that we think that each cluster C_i is "Fuzzy"

We can assume a fuzzy set for the cluster C_i with membership function:

$$A_i: \mathbb{R}^p \to [0, 1] \tag{32}$$

Such that we can tune it by using a power i.e. decreasing it by a m power.

Under the following constraints

<ロ><回><一><一><一><一><一><一</th>108/142
Under the following constraints

<ロ><回><一><一><一><一><一</th>108/142

Under the following constraints

Third

$$\sum_{i=1}^{C} A_i\left(\boldsymbol{x}_k\right) = 1 \;\forall k \tag{35}$$

Properties

$$J_m(\mathcal{S}) = \sum_{k=1}^{N} \sum_{i=1}^{C} \left[A_i(\boldsymbol{x}_k) \right]^m \|\boldsymbol{x}_k - \boldsymbol{v}_i\|^2$$
(36)

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ 109/142

Properties

$$J_m(\mathcal{S}) = \sum_{k=1}^{N} \sum_{i=1}^{C} \left[A_i(\boldsymbol{x}_k) \right]^m \|\boldsymbol{x}_k - \boldsymbol{v}_i\|^2$$
(36)

Under the constraints

•
$$A_i(\boldsymbol{x}_k) \in [0,1]$$
, for $1 \le k \le N$ and $1 \le i \le C$.

<ロト < 回 > < 巨 > < 巨 > < 巨 > 三 の < C 109 / 142

Properties

$$J_m(\mathcal{S}) = \sum_{k=1}^{N} \sum_{i=1}^{C} \left[A_i(\boldsymbol{x}_k) \right]^m \|\boldsymbol{x}_k - \boldsymbol{v}_i\|^2$$
(36)

Under the constraints

•
$$A_i(\boldsymbol{x}_k) \in [0,1]$$
, for $1 \le k \le N$ and $1 \le i \le C$.

•
$$\sum_{i=1}^{C} A_i\left(oldsymbol{x}_k
ight) = 1$$
, for $1 \leq k \leq N$.

Properties

$$J_m(\mathcal{S}) = \sum_{k=1}^{N} \sum_{i=1}^{C} \left[A_i(\boldsymbol{x}_k) \right]^m \|\boldsymbol{x}_k - \boldsymbol{v}_i\|^2$$
(36)

Under the constraints

• $A_i(x_k) \in [0,1]$, for $1 \le k \le N$ and $1 \le i \le C$.

•
$$\sum_{i=1}^{C} A_i(x_k) = 1$$
, for $1 \le k \le N$.

• $0 < \sum_{k=1}^{N} A_i(\boldsymbol{x}_k) < n$, for $1 \le i \le C$.

Properties

$$J_m(\mathcal{S}) = \sum_{k=1}^{N} \sum_{i=1}^{C} \left[A_i(\boldsymbol{x}_k) \right]^m \|\boldsymbol{x}_k - \boldsymbol{v}_i\|^2$$
(36)

Under the constraints

•
$$A_i(x_k) \in [0,1]$$
, for $1 \le k \le N$ and $1 \le i \le C$.

•
$$\sum_{i=1}^{C} A_i(\boldsymbol{x}_k) = 1$$
, for $1 \le k \le N$.

•
$$0 < \sum_{k=1}^{N} A_i(x_k) < n$$
, for $1 \le i \le C$.

•
$$m > 1$$

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Introduction
- ${\small \bigcirc}\ {\rm Re-Stating}$ the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

4 Variations

Fuzzy Clustering

Rethinking K-Means Cost Function

Using the Lagrange Multipliers

- Examples
- Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

New cost function

$$\bar{J}_{m}(S) = \sum_{k=1}^{N} \sum_{i=1}^{C} [A_{i}(\boldsymbol{x}_{k})]^{m} \|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{2} - \sum_{k=1}^{N} \lambda_{k} \left[\sum_{i=1}^{C} A_{i}(\boldsymbol{x}_{k}) - 1\right]$$
(37)

Derive with respect to $A_i\left(oldsymbol{x}_k ight)$

$$\frac{\partial \bar{J}_m\left(\mathcal{S}\right)}{\partial A_i\left(x_k\right)} = m A_i\left(x_k\right)^{m-1} \left\|x_k - v_i\right\|^2 - \lambda_k = 0 \tag{38}$$

Thus
$$A_{i}\left(\boldsymbol{x}_{k}\right) = \left[\frac{\lambda_{k}}{m\left\|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\right\|^{2}}\right]^{\frac{1}{m-1}}$$
(39)

<□ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > ○ Q (C 111/142

New cost function

$$\bar{J}_{m}(S) = \sum_{k=1}^{N} \sum_{i=1}^{C} [A_{i}(\boldsymbol{x}_{k})]^{m} \|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{2} - \sum_{k=1}^{N} \lambda_{k} \left[\sum_{i=1}^{C} A_{i}(\boldsymbol{x}_{k}) - 1\right]$$
(37)

Derive with respect to $A_i(\boldsymbol{x}_k)$

$$\frac{\partial \bar{J}_m\left(\mathcal{S}\right)}{\partial A_i\left(x_k\right)} = m A_i\left(\boldsymbol{x}_k\right)^{m-1} \left\|\boldsymbol{x}_k - \boldsymbol{v}_i\right\|^2 - \lambda_k = 0$$
(38)

l hus

$$A_i(\boldsymbol{x}_k) = \left[\frac{\lambda_k}{m \|\boldsymbol{x}_k - \boldsymbol{v}_i\|^2}\right]^{\frac{1}{m-1}}$$
(39)

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 111/142

New cost function

$$\bar{J}_{m}(S) = \sum_{k=1}^{N} \sum_{i=1}^{C} [A_{i}(\boldsymbol{x}_{k})]^{m} \|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{2} - \sum_{k=1}^{N} \lambda_{k} \left[\sum_{i=1}^{C} A_{i}(\boldsymbol{x}_{k}) - 1\right]$$
(37)

Derive with respect to $A_i(\boldsymbol{x}_k)$

$$\frac{\partial \bar{J}_m\left(\mathcal{S}\right)}{\partial A_i\left(x_k\right)} = m A_i\left(\boldsymbol{x}_k\right)^{m-1} \|\boldsymbol{x}_k - \boldsymbol{v}_i\|^2 - \lambda_k = 0$$
(38)

Thus

$$A_{i}\left(\boldsymbol{x}_{k}\right) = \left[\frac{\lambda_{k}}{m \left\|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\right\|^{2}}\right]^{\frac{1}{m-1}}$$
(39)

Sum over all *i*'s

$$\sum_{i=1}^{C} A_{i}(\boldsymbol{x}_{k}) = \frac{\lambda_{k}^{\frac{1}{m-1}}}{m^{\frac{1}{m-1}} \|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{\frac{2}{m-1}}}$$

Thus

Plug Back on equation 38 using *j* instead of

$$\frac{m}{\left[\sum_{j=1}^{C} \frac{1}{\|x_k - v_j\|^{\frac{2}{m-1}}}\right]^{m-1}} = mA_i (x_k)^{m-1} \|x_k - v_i\|^2$$
(42)

(40)

Sum over all *i*'s

$$\sum_{i=1}^{C} A_{i}\left(\boldsymbol{x}_{k}\right) = \frac{\lambda_{k}^{\frac{1}{m-1}}}{m^{\frac{1}{m-1}} \left\|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\right\|^{\frac{2}{m-1}}}$$
(40)

Thus

$$\lambda_{k} = \frac{m}{\left[\sum_{i=1}^{C} \frac{1}{\|x_{k} - v_{i}\|^{\frac{2}{m-1}}}\right]^{m-1}}$$
(41)

Plug Back on equation 38 using j instead of

$$\frac{m}{\left[\sum_{j=1}^{C} \frac{1}{\|x_k - v_j\|^{\frac{2}{m-1}}}\right]^{m-1}} = mA_i (x_k)^{m-1} \|x_k - v_i\|^2$$
(42)

<ロト < 部 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 112/142

Sum over all i's

$$\sum_{i=1}^{C} A_{i}\left(\boldsymbol{x}_{k}\right) = \frac{\lambda_{k}^{\frac{1}{m-1}}}{m^{\frac{1}{m-1}} \|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{\frac{2}{m-1}}}$$
(40)

Thus

$$\lambda_{k} = \frac{m}{\left[\sum_{i=1}^{C} \frac{1}{\|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{\frac{2}{m-1}}}\right]^{m-1}}$$
(41)

Plug Back on equation 38 using j instead of i

$$\frac{m}{\left[\sum_{j=1}^{C} \frac{1}{\|\boldsymbol{x}_{k} - \boldsymbol{v}_{j}\|^{\frac{2}{m-1}}}\right]^{m-1}} = mA_{i} (\boldsymbol{x}_{k})^{m-1} \|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{2}$$
(42)

112/142

Finally

We have that

$$A_{i}(\boldsymbol{x}_{k}) = \frac{1}{\left[\sum_{j=1}^{C} \left\{\frac{\|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{2}}{\|\boldsymbol{x}_{k} - \boldsymbol{v}_{j}\|^{2}}\right\}^{\frac{1}{m-1}}\right]}$$
(43)

In a similar way we have

$$v_{i} = \frac{\sum_{k=1}^{N} A_{i} (x_{k})^{m} x_{k}}{\sum_{k=1}^{N} A_{i} (x_{k})^{m}}$$
(44)

<□ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ ? へ (~ 113/142

Finally

We have that

$$A_{i}(\boldsymbol{x}_{k}) = \frac{1}{\left[\sum_{j=1}^{C} \left\{\frac{\|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{2}}{\|\boldsymbol{x}_{k} - \boldsymbol{v}_{j}\|^{2}}\right\}^{\frac{1}{m-1}}\right]}$$
(43)

In a similar way we have

$$v_{i} = \frac{\sum_{k=1}^{N} A_{i} (\boldsymbol{x}_{k})^{m} \boldsymbol{x}_{k}}{\sum_{k=1}^{N} A_{i} (\boldsymbol{x}_{k})^{m}}$$
(44)

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 113/142

Fuzzy c-means

- Let t = 0. Select an initial fuzzy pseudo-partition.
 -) Calculate the initial C cluster centers using, $v_i^{
 m t}$
- **O** Update for each x_k the membership function by
 - Case I: $\left\| \boldsymbol{x}_{k} \boldsymbol{v}_{i}^{(t)} \right\|^{2} > 0$ for all $i \in \{1, 2, ..., C\}$ then $A_{i}^{(t+1)}\left(\boldsymbol{x}_{k}\right) = \frac{1}{\left[\sum_{j=1}^{C} \left\{ \left\| \boldsymbol{x}_{k} \boldsymbol{v}_{i}^{(t)} \right\|^{2} \right\}^{\frac{1}{m-1}} \right]}$
 - Case II: $\|\boldsymbol{x}_k \boldsymbol{v}_i^{(t)}\|^2 = 0$ for some $i \in I \subseteq \{1, 2, ..., C\}$ then define $A_i^{(t+1)}(\boldsymbol{x}_k)$ by any nonnegative number such that $\sum_{i \in I} A_i^{(t+1)}(\boldsymbol{x}_k) = 1$ and $A_i^{(t+1)}(\boldsymbol{x}_k) = 0$ for $i \notin I$.
- If $\left| S^{(t+1)} S^{(t)} \right| = \max_{i,k} \left| A_i^{(t+1)} \left(\boldsymbol{x}_k \right) A_i^{(t)} \left(\boldsymbol{x}_k \right) \right| \le \epsilon$ stop; otherwise increase t and go to step 2.

Fuzzy c-means

- Let t = 0. Select an initial fuzzy pseudo-partition.
- 2 Calculate the initial C cluster centers using, $v_i^{(t)} = \frac{\sum_{k=1}^N A_i^{(t)}(\boldsymbol{x}_k)^m \boldsymbol{x}_k}{\sum_{k=1}^N A_i^{(t)}(\boldsymbol{x}_k)^m}.$

• Update for each x_k the membership function by

- ▶ Case I: $\left\| \boldsymbol{x}_{k} \boldsymbol{v}_{i}^{(t)} \right\|^{2} > 0$ for all $i \in \{1, 2, ..., C\}$ then $A_{i}^{(t+1)}\left(\boldsymbol{x}_{k}\right) = \frac{1}{\left\| \sum_{j=1}^{C} \left\{ \frac{\left\| \boldsymbol{x}_{k} - \boldsymbol{v}_{i}^{(t)} \right\|^{2}}{\left\| \boldsymbol{x}_{k} - \boldsymbol{v}_{i}^{(t)} \right\|^{2}} \right\}^{\frac{1}{m-1}}}$
- ► Case II: $\left\| \boldsymbol{x}_{k} \boldsymbol{v}_{i}^{(t)} \right\|^{2} = 0$ for some $i \in I \subseteq \{1, 2, ..., C\}$ then define $A_{i}^{(t+1)}(\boldsymbol{x}_{k})$ by any nonnegative number such that $\sum_{i \in I} A_{i}^{(t+1)}(\boldsymbol{x}_{k}) = 1$ and $A_{i}^{(t+1)}(\boldsymbol{x}_{k}) = 0$ for $i \notin I$.

• If $\left| S^{(t+1)} - S^{(t)} \right| = \max_{i,k} \left| A_i^{(t+1)} \left(x_k \right) - A_i^{(t)} \left(x_k \right) \right| \le \epsilon$ stop; otherwise increase t and go to step 2.

Fuzzy c-means

- Let t = 0. Select an initial fuzzy pseudo-partition.
- **②** Calculate the initial C cluster centers using, $v_i^{(t)} =$

$$\frac{\sum_{k=1}^{N} A_i^{(t)}(\pmb{x}_k)^m \pmb{x}_k}{\sum_{k=1}^{N} A_i^{(t)}(\pmb{x}_k)^m}$$

Fuzzy c-means

- Let t = 0. Select an initial fuzzy pseudo-partition.
- **2** Calculate the initial C cluster centers using, $v_i^{(t)} = \frac{\sum_{k=1}^N A_i^{(t)}(\boldsymbol{x}_k)^m \boldsymbol{x}_k}{\sum_{k=1}^N A_i^{(t)}(\boldsymbol{x}_k)^m}$

③ Update for each x_k the membership function by

• Case I:
$$\left\| \boldsymbol{x}_{k} - \boldsymbol{v}_{i}^{(t)} \right\|^{2} > 0$$
 for all $i \in \{1, 2, ..., C\}$ then

$$A_{i}^{(t+1)}\left(\boldsymbol{x}_{k}\right) = \frac{1}{\left[\sum_{j=1}^{C} \left\{ \frac{\left\| \boldsymbol{x}_{k} - \boldsymbol{v}_{i}^{(t)} \right\|^{2}}{\left\| \boldsymbol{x}_{k} - \boldsymbol{v}_{j}^{(t)} \right\|^{2}} \right\}^{\frac{1}{m-1}}\right]}$$

Fuzzy c-means

- Let t = 0. Select an initial fuzzy pseudo-partition.
- **2** Calculate the initial C cluster centers using, $v_i^{(t)} = \frac{\sum_{k=1}^N A_i^{(t)}(\boldsymbol{x}_k)^m \boldsymbol{x}_k}{\sum_{i=1}^N A_i^{(t)}(\boldsymbol{x}_k)^m}$

③ Update for each x_k the membership function by

• Case I:
$$\left\| \boldsymbol{x}_{k} - \boldsymbol{v}_{i}^{(t)} \right\|^{2} > 0$$
 for all $i \in \{1, 2, ..., C\}$ then
 $A_{i}^{(t+1)}\left(\boldsymbol{x}_{k}\right) = \frac{1}{\left[\sum_{j=1}^{C} \left\{ \frac{\left\| \boldsymbol{x}_{k} - \boldsymbol{v}_{i}^{(t)} \right\|^{2}}{\left\| \boldsymbol{x}_{k} - \boldsymbol{v}_{j}^{(t)} \right\|^{2}} \right\}^{\frac{1}{m-1}}\right]}$
• Case II: $\left\| \boldsymbol{x}_{k} - \boldsymbol{v}_{i}^{(t)} \right\|^{2} = 0$ for some $i \in I \subseteq \{1, 2, ..., C\}$ then define
 $A_{i}^{(t+1)}\left(\boldsymbol{x}_{k}\right)$ by any nonnegative number such that
 $\sum_{i \in I} A_{i}^{(t+1)}\left(\boldsymbol{x}_{k}\right) = 1$ and $A_{i}^{(t+1)}\left(\boldsymbol{x}_{k}\right) = 0$ for $i \notin I$.

increase t and go to step 2.

Fuzzy c-means

- Let t = 0. Select an initial fuzzy pseudo-partition.
- **2** Calculate the initial C cluster centers using, $v_i^{(t)} = \frac{\sum_{k=1}^N A_i^{(t)}(\boldsymbol{x}_k)^m \boldsymbol{x}_k}{\sum_{k=1}^N A_i^{(t)}(\boldsymbol{x}_k)^m}$

③ Update for each x_k the membership function by

Case I: ||x_k - v_i^(t)||² > 0 for all i ∈ {1, 2, ..., C} then
A_i^(t+1) (x_k) =

$$\frac{1}{\left[\sum_{j=1}^{C} \left\{\frac{\|x_k - v_i^{(t)}\|^2}{\|x_k - v_j^{(t)}\|^2}\right\}^{\frac{1}{m-1}}\right]}$$

Case II: ||x_k - v_i^(t)||² = 0 for some i ∈ I ⊆ {1, 2, ..., C} then define
A_i^(t+1) (x_k) by any nonnegative number such that
 $\sum_{i \in I} A_i^{(t+1)} (x_k) = 1$ and $A_i^{(t+1)} (x_k) = 0$ for i ∉ I.
If |S^(t+1) - S^(t)| = max |A_i^(t+1) (x_k) - A_i^(t) (x_k)| ≤ ε stop; otherwise increase t and go to step 2.

Final Output

The Matrix U

The elements of U are $U_{ik} = A_i(\boldsymbol{x}_k)$.

The centroids

 $V = \{m{v}_1, m{v}_2, ..., m{v}_C\}$

Final Output

The Matrix U

The elements of U are $U_{ik} = A_i(\boldsymbol{x}_k)$.

The centroids

$$V = \{v_1, v_2, ..., v_C\}$$

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Introduction
- ${\small \bigcirc}\ {\rm Re-Stating}$ the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

Fuzzy Clustering

- Rethinking K-Means Cost Function
- Using the Lagrange Multipliers

Examples

- Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

Here the clustering of two Gaussian Clusters with $\mu_1 = \left(4,0 ight)^T, \mu_2 = \left(10,0 ight)^T$ and variance 1.0

Here the clustering of two Gaussian Clusters

Here the clustering of two Gaussian Clusters

Here the clustering of two Gaussian Clusters

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Introduction
- ${\small lacepsilon}$ Re-Stating the $K\mbox{-center}$ as a Clustering Problem
- \bigcirc Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

Fuzzy Clustering

- Rethinking K-Means Cost Function
- Using the Lagrange Multipliers
- Examples

Pros and Cons of FCM

What can we do? Possibilistic Clustering

Cost Function

Advantages

- Unsupervised
- Always converges

Advantages

- Unsupervised
- Always converges

• Long computational tim

- Sensitivity to the initial guess (speed, local minima)
- Sensitivity to noise
 - One expects low (or even no) membership degree for outliers (noisy points)

Advantages

- Unsupervised
- Always converges

Disadvantages

- Long computational time
 - Sensitivity to the initial guess (speed, local minima)
- Sensitivity to noise
 - One expects low (or even no) membership degree for outliers (noisy points)

Advantages

- Unsupervised
- Always converges

Disadvantages

- Long computational time
- Sensitivity to the initial guess (speed, local minima)

One expects low (or even no) membership degree for outliers (noisy points)

Advantages

- Unsupervised
- Always converges

Disadvantages

- Long computational time
- Sensitivity to the initial guess (speed, local minima)
- Sensitivity to noise

One expects low (or even no) membership degree for outliers (nois

Advantages

- Unsupervised
- Always converges

Disadvantages

- Long computational time
- Sensitivity to the initial guess (speed, local minima)
- Sensitivity to noise
 - One expects low (or even no) membership degree for outliers (noisy points)
Outliers, Disadvantage of FCM

After running without outliers

Outliers, Disadvantage of FCM

Now add outliers (Shown in blue x's) and their high memberships

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ < ○ Q (124/142)

Outliers, Disadvantage of FCM

Now add outliers (Shown in blue x's) and their high memberships

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- \bigcirc Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Introduction
- ${\small \bigcirc}\ {\rm Re-Stating}$ the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM

What can we do? Possibilistic Clustering

Cost Function

Krinshapuram and Keller

Following Zadeh

They took in consideration that each class prototype as defining an elastic constraint.

Whati

Giving the $t_i(x_k)$ as degree of compatibility of sample x_k with cluster C_i .

We do the following

If we consider the C_i as fuzzy sets over the set of samples $X = \{m{x}_1, m{x}_2, ..., m{x}_N\}$

Krinshapuram and Keller

Following Zadeh

They took in consideration that each class prototype as defining an elastic constraint.

What?

Giving the $t_i(\boldsymbol{x}_k)$ as degree of compatibility of sample \boldsymbol{x}_k with cluster C_i .

We do the following

If we consider the C_i as fuzzy sets over the set of samples $X = \{ oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N \}$

Krinshapuram and Keller

Following Zadeh

They took in consideration that each class prototype as defining an elastic constraint.

What?

Giving the $t_i(\boldsymbol{x}_k)$ as degree of compatibility of sample \boldsymbol{x}_k with cluster C_i .

We do the following

If we consider the C_i as fuzzy sets over the set of samples $X = \{ \pmb{x}_1, \pmb{x}_2, ..., \pmb{x}_N \}$

Here is the Catch!!!

We should not use the old membership

$$\sum_{i=1}^{C} A_i\left(\boldsymbol{x}_k\right) = 1$$

Because

This is quite probabilistic... which is not what we want!!!

Thus

We only ask for membership, now using the possibilistic notation of $t_i(x_k)$ (This is known as **typicality** value), to be in the interval [0,1].

(45)

Here is the Catch!!!

We should not use the old membership

$$\sum_{i=1}^{C} A_i\left(\boldsymbol{x}_k\right) = 1$$

Because

This is quite probabilistic... which is not what we want!!!

Thus

We only ask for membership, now using the possibilistic notation of $t_i(x_k)$ (This is known as **typicality** value), to be in the interval [0,1].

(45)

Here is the Catch!!!

We should not use the old membership

$$\sum_{i=1}^{C} A_i\left(\boldsymbol{x}_k\right) = 1$$

Because

This is quite probabilistic... which is not what we want !!!

Thus

We only ask for membership, now using the possibilistic notation of $t_i(\boldsymbol{x}_k)$ (This is known as **typicality** value), to be in the interval [0, 1].

(45)

New Constraints

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q (* 129/142)

New Constraints

First

$t_i(\boldsymbol{x}_k) \in [0,1] \ \forall i,k$

(46)

(47)

Second

$$0 < \sum_{k=1}^{N} t_i\left(\boldsymbol{x}_k\right) < N \; \forall i$$

$$\max_{i} t_{i}\left(oldsymbol{x}_{k}
ight) > 0 \,\, orall k$$

< □ ト < □ ト < 臣 ト < 臣 ト < 臣 ト 三 の Q (~ 129 / 142

New Constraints

First

$$t_i(\boldsymbol{x}_k) \in [0,1] \ \forall i,k$$

(47)

Second

$$0 < \sum_{k=1}^{N} t_{i}\left(\boldsymbol{x}_{k}\right) < N \;\forall i$$

Third

$$\max_{i} t_{i}\left(\boldsymbol{x}_{k}\right) > 0 \ \forall k \tag{48}$$

< □ > < @ > < ই > < ই > ই ≥ 129/142

Outline

1 K-Means Clustering

- The NP-Hard Problem
- K-Means Clustering Heuristic
- Convergence Criterion
- The Distance Function
- Example
- Properties of K-Means
- K-Means and Principal Component Analysis

K-Meoids

- Introduction
- The Algorithm
- Complexity

The K-Center Criterion Clustering

- Introduction
- ${\small \bigcirc}\ {\rm Re-Stating}$ the $K\mbox{-center}$ as a Clustering Problem
- Comparison with K-means
- The Greedy K-Center Algorithm
- Pseudo-Code
- The K-Center Algorithm
- Notes in Implementation
- Examples
- K-Center Algorithm Properties
- K-Center Algorithm proof of correctness

Variations

- Fuzzy Clustering
 - Rethinking K-Means Cost Function
 - Using the Lagrange Multipliers
 - Examples
 - Pros and Cons of FCM
- What can we do? Possibilistic Clustering
 - Cost Function

We have the following cost function

Cost Function

$$\sum_{k=1}^{N} \sum_{i=1}^{C} \left[t_i \left(\boldsymbol{x}_k \right) \right]^m \| \boldsymbol{x}_k - \boldsymbol{v}_i \|^2$$
(49)

Problem

Unconstrained optimization of first term will lead to the trivial solution $t_i(x_k) = 0$ for all i, k.

Thus, we can introduce the following constraint

$$t_i(\boldsymbol{x}_k) \to 1 \tag{50}$$

Roughly it means to make the typicality values as large as possible.

<□ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≧ > ○ Q (* 131/142

We have the following cost function

Cost Function

$$\sum_{k=1}^{N} \sum_{i=1}^{C} \left[t_i \left(\boldsymbol{x}_k \right) \right]^m \| \boldsymbol{x}_k - \boldsymbol{v}_i \|^2$$
(49)

Problem

Unconstrained optimization of first term will lead to the trivial solution $t_i(\boldsymbol{x}_k) = 0$ for all i, k.

Thus, we can introduce the following constraint

$$t_{i}\left(oldsymbol{x}_{k}
ight)
ightarrow1$$

(50)

Roughly it means to make the typicality values as large as possible.

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 131/142

We have the following cost function

Cost Function

$$\sum_{k=1}^{N} \sum_{i=1}^{C} [t_i(\boldsymbol{x}_k)]^m \| \boldsymbol{x}_k - \boldsymbol{v}_i \|^2$$
(49)

Problem

Unconstrained optimization of first term will lead to the trivial solution $t_i(\boldsymbol{x}_k) = 0$ for all i, k.

Thus, we can introduce the following constraint

$$t_i(\boldsymbol{x}_k) \to 1$$
 (50)

Roughly it means to make the typicality values as large as possible.

We can try to control this tendency

By putting all them together in

$$\sum_{k=1}^{N} (1 - t_i (\boldsymbol{x}_k))^m$$
(51)

With m to control the tendency of $t_i(\boldsymbol{x}_k) \to 1$

We can also run this tendency over all the cluster using a suitable $w_{\rm c}>0$ ner cluster

$$\sum_{i=1}^{C} w_i \sum_{k=1}^{N} (1 - t_i (\boldsymbol{x}_k))^m$$
(52)

<□ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≧ > ○ Q (○ 132/142

We can try to control this tendency

By putting all them together in

$$\sum_{k=1}^{N} \left(1 - t_i\left(\boldsymbol{x}_k\right)\right)^m \tag{51}$$

With m to control the tendency of $t_i(\boldsymbol{x}_k) \to 1$

We can also run this tendency over all the cluster using a suitable $w_i > 0 \ \mathrm{per}$ cluster

$$\sum_{i=1}^{C} w_i \sum_{k=1}^{N} (1 - t_i (\boldsymbol{x}_k))^m$$
(52)

Possibilistic C-Mean Clustering (PCM)

The final Cost Function

$$J_m(\mathcal{S}) = \sum_{k=1}^{N} \sum_{i=1}^{C} [t_i(\boldsymbol{x}_k)]^m \|\boldsymbol{x}_k - \boldsymbol{v}_i\|^2 + \sum_{i=1}^{C} w_i \sum_{k=1}^{N} (1 - t_i(\boldsymbol{x}_k))^m$$
(53)

Where

- $t_i(\boldsymbol{x}_k)$ are typicality values.
- w_i are cluster weights

Possibilistic C-Mean Clustering (PCM)

The final Cost Function

$$J_m(\mathcal{S}) = \sum_{k=1}^{N} \sum_{i=1}^{C} [t_i(\boldsymbol{x}_k)]^m \| \boldsymbol{x}_k - \boldsymbol{v}_i \|^2 + \sum_{i=1}^{C} w_i \sum_{k=1}^{N} (1 - t_i(\boldsymbol{x}_k))^m$$
(53)

Where

- $t_i(\boldsymbol{x}_k)$ are **typicality** values.
- w_i are cluster weights

First Term

$$\sum_{k=1}^{N} \sum_{i=1}^{C} [t_i(\boldsymbol{x}_k)]^m \| \boldsymbol{x}_k - \boldsymbol{v}_i \|^2$$
(54)

It demands that the distance from feature vector to prototypes be as small as possible!!!

First Term

$$\sum_{k=1}^{N} \sum_{i=1}^{C} [t_i(\boldsymbol{x}_k)]^m \| \boldsymbol{x}_k - \boldsymbol{v}_i \|^2$$
(54)

It demands that the distance from feature vector to prototypes be as small as possible!!!

First Term

$$\sum_{k=1}^{N} \sum_{i=1}^{C} [t_i(\boldsymbol{x}_k)]^m \| \boldsymbol{x}_k - \boldsymbol{v}_i \|^2$$
(54)

It demands that the distance from feature vector to prototypes be as small as possible!!!

Second Term

$$\sum_{i=1}^{c} w_i \sum_{k=1}^{n} \left(1 - t_i \left(x_k \right) \right)^m$$
(55)

t forces the typicality values $t_i(x_k)$ to be as large as possible.

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 134/142

First Term

$$\sum_{k=1}^{N} \sum_{i=1}^{C} [t_i(\boldsymbol{x}_k)]^m \| \boldsymbol{x}_k - \boldsymbol{v}_i \|^2$$
(54)

It demands that the distance from feature vector to prototypes be as small as possible!!!

Second Term

$$\sum_{i=1}^{c} w_i \sum_{k=1}^{n} (1 - t_i (x_k))^m$$
(55)

It forces the typicality values $t_i(x_k)$ to be as large as possible.

Final Updating Equations

Typicality Values

$$t_{i}(\boldsymbol{x}_{k}) = \frac{1}{1 + \left(\frac{\|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{2}}{w_{i}}\right)^{\frac{1}{m-1}}}, \ \forall i, k$$
(56)

Cluster Centers

$$v_{i} = \frac{\sum_{k=1}^{N} t_{i} \left(x_{k} \right)^{m} x_{k}}{\sum_{k=1}^{n} t_{i} \left(x_{k} \right)^{m}}$$
(57)

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q (C) 135 / 142

Final Updating Equations

Typicality Values

$$t_{i}(\boldsymbol{x}_{k}) = \frac{1}{1 + \left(\frac{\|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{2}}{w_{i}}\right)^{\frac{1}{m-1}}}, \ \forall i, k$$
(56)

Cluster Centers

$$v_{i} = \frac{\sum_{k=1}^{N} t_{i} (\boldsymbol{x}_{k})^{m} x_{k}}{\sum_{k=1}^{n} t_{i} (\boldsymbol{x}_{k})^{m}}$$
(57)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Final Updating Equations

Weights

$$w_{i} = M \frac{\sum_{k=1}^{N} [t_{i} (\boldsymbol{x}_{k})]^{m} \|\boldsymbol{x}_{k} - \boldsymbol{v}_{i}\|^{2}}{\sum_{k=1}^{n} [t_{i} (\boldsymbol{x}_{k})]^{m}},$$
(58)

with M > 0.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 137/142

Now add outliers

◆□ → ◆□ → ◆ ■ → ◆ ■ → ● ● ○ ○ ○ 138/142

Another Angle

Another Angle

Pros and Cons of Fuzzy $C\operatorname{\mathsf{-Means}}$

Advantages

Clustering noisy data samples.

Pros and Cons of Fuzzy $C\operatorname{\mathsf{-Means}}$

Advantages

Clustering noisy data samples.

Disadvantages

• Very sensitive to good initialization.

typicalities

Pros and Cons of Fuzzy C-Means

Advantages

Clustering noisy data samples.

Disadvantages

- Very sensitive to good initialization.
- For example, I needed to run fuzzy C-means to obtain good initial typicalities

n Between!!!

Coincident clusters may result.

- Because the columns and rows of the typicality matrix are independent of each other.
- This could be advantageous (start with a large value of C and get less distinct clusters)

Pros and Cons of Fuzzy C-Means

Advantages

Clustering noisy data samples.

Disadvantages

- Very sensitive to good initialization.
- For example, I needed to run fuzzy C-means to obtain good initial typicalities

In Between!!!

Coincident clusters may result.

- Because the columns and rows of the typicality matrix are independent of each other.
- This could be advantageous (start with a large value of C and get less distinct clusters)
Pros and Cons of Fuzzy C-Means

Advantages

Clustering noisy data samples.

Disadvantages

- Very sensitive to good initialization.
- For example, I needed to run fuzzy C-means to obtain good initial typicalities

In Between!!!

Coincident clusters may result.

• Because the columns and rows of the typicality matrix are independent of each other.

This could be advantageous (start with a large value of C and get less distinct clusters)

Pros and Cons of Fuzzy C-Means

Advantages

Clustering noisy data samples.

Disadvantages

- Very sensitive to good initialization.
- For example, I needed to run fuzzy C-means to obtain good initial typicalities

In Between!!!

Coincident clusters may result.

- Because the columns and rows of the typicality matrix are independent of each other.
- This could be advantageous (start with a large value of C and get less distinct clusters)

Nevertheless

There are more advanced clustering methods based on the possibilistic and fuzzy idea

Pal, N.R.; Pal, K.; Keller, J.M.; Bezdek, J.C., "A Possibilistic Fuzzy c-Means Clustering Algorithm," Fuzzy Systems, IEEE Transactions on , vol.13, no.4, pp.517,530, Aug. 2005.