
Introduction to Machine Learning
K-Means, K-Meoids, K-Centers and Variations

Andres Mendez-Vazquez

August 4, 2018

1 / 142



Images/cinvestav-1.jpg

Outline
1 K-Means Clustering

The NP-Hard Problem
K-Means Clustering Heuristic
Convergence Criterion
The Distance Function
Example
Properties of K-Means
K-Means and Principal Component Analysis

2 K-Meoids
Introduction
The Algorithm
Complexity

3 The K-Center Criterion Clustering
Introduction
Re-Stating the K-center as a Clustering Problem
Comparison with K-means
The Greedy K-Center Algorithm
Pseudo-Code
The K-Center Algorithm
Notes in Implementation
Examples
K-Center Algorithm Properties
K-Center Algorithm proof of correctness

4 Variations
Fuzzy Clustering

Rethinking K-Means Cost Function
Using the Lagrange Multipliers
Examples
Pros and Cons of FCM

What can we do? Possibilistic Clustering
Cost Function

2 / 142



Images/cinvestav-1.jpg

Outline
1 K-Means Clustering

The NP-Hard Problem
K-Means Clustering Heuristic
Convergence Criterion
The Distance Function
Example
Properties of K-Means
K-Means and Principal Component Analysis

2 K-Meoids
Introduction
The Algorithm
Complexity

3 The K-Center Criterion Clustering
Introduction
Re-Stating the K-center as a Clustering Problem
Comparison with K-means
The Greedy K-Center Algorithm
Pseudo-Code
The K-Center Algorithm
Notes in Implementation
Examples
K-Center Algorithm Properties
K-Center Algorithm proof of correctness

4 Variations
Fuzzy Clustering

Rethinking K-Means Cost Function
Using the Lagrange Multipliers
Examples
Pros and Cons of FCM

What can we do? Possibilistic Clustering
Cost Function

3 / 142



Images/cinvestav-1.jpg

The Hardness of K-means clustering

Definition
Given a multiset S ⊆ Rd , an integer k and L ∈ R, is there a subset
T ⊂ Rd with |T | = k such that∑

x∈S
min
t∈T
‖x− t‖2 ≤ L?

Theorem
The k-means clustering problem is NP-complete even for d = 2.
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Reduction

The reduction to an NP-Complete problem
Exact Cover by 3-Sets problem

Definition
Given a finite set U containing exactly 3n elements and a collection
C = {S1, S2, ..., Sl} of subsets of U each of which contains exactly 3
elements, Are there n sets in C such that their union is U?
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However

There are efficient heuristic and approximation algorithms
Which can solve this problem
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K-Means - Stuart Lloyd(Circa 1957)

History
Invented by Stuart Loyd in Bell Labs to obtain the best quantization in a
signal data set.

Something Notable
The paper was published until 1982

Basically given N vectors x1, ...,xN ∈ Rd

It tries to find k points µ1, ...,µk ∈ Rd that minimize the expression (i.e.
a partition S of the vector points):

N∑
k=1

∑
i:xi∈Ck

‖xi − µk‖
2 =

N∑
k=1

∑
i:xi∈Ck

(xi − µk)
T (xi − µk)
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K-means clustering

K-means
It is a partitional clustering algorithm.

Definition
Let the set of data points (or instances) D be {x1, · · · ,xn} where
xi = (xi1, · · · , xir)T :

The K-means algorithm partitions the given data into K clusters.
Each cluster has a cluster center, called centroid.
K is specified by the user.
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K-means algorithm
The K-means algorithm works as follows
Given k as the possible number of cluster:

1 Randomly choose K data points (seeds) to be the initial centroids,
cluster centers,

I {v1, · · · ,vk}
2 Assign each data point to the closest centroid

I ci = arg min
j
{dist(xi − vj)}

3 Re-compute the centroids using the current cluster memberships.

I vj =

n∑
i=1

I(ci = j)xi

n∑
i=1

I(ci = j)

4 If a convergence criterion is not met, go to 2.
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What is the code trying to do?

It is trying to find a partition S
K-means tries to find a partition S such that it minimizes the cost
function:

min
S

N∑
k=1

∑
i:xi∈Ck

(xi − µk)
T (xi − µk) (1)

Where µk is the centroid for cluster Ck

µk = 1
Nk

∑
i:xi∈Ck

xi (2)

Where Nk is the number of samples in the cluster Ck.
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What Stopping/convergence criterion should we use?

First
No (or minimum) re-assignments of data points to different clusters.

Second
No (or minimum) change of centroids.

Third
Minimum decrease in the sum of squared error (SSE),

Ck is cluster k.
vk is the centroid of cluster Ck.

SSE =
K∑
k=1

∑
x∈ck

dist (x,vk)2
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The distance function

Actually, we have the following distance functions:

Euclidean

dist(x,y) = ||x− y|| =
√

(x− y)T (x− y)

Manhattan

dist(x,y) = ||x− y||1 =
n∑
i=1
|xi − yi|

Mahalanobis

dist(x,y) = ||x− y||A =
√

(x− y)TA(x− y)

15 / 142



Images/cinvestav-1.jpg

The distance function

Actually, we have the following distance functions:

Euclidean

dist(x,y) = ||x− y|| =
√

(x− y)T (x− y)

Manhattan

dist(x,y) = ||x− y||1 =
n∑
i=1
|xi − yi|

Mahalanobis

dist(x,y) = ||x− y||A =
√

(x− y)TA(x− y)

15 / 142



Images/cinvestav-1.jpg

The distance function

Actually, we have the following distance functions:

Euclidean

dist(x,y) = ||x− y|| =
√

(x− y)T (x− y)

Manhattan

dist(x,y) = ||x− y||1 =
n∑
i=1
|xi − yi|

Mahalanobis

dist(x,y) = ||x− y||A =
√

(x− y)TA(x− y)

15 / 142



Images/cinvestav-1.jpg

Outline
1 K-Means Clustering

The NP-Hard Problem
K-Means Clustering Heuristic
Convergence Criterion
The Distance Function
Example
Properties of K-Means
K-Means and Principal Component Analysis

2 K-Meoids
Introduction
The Algorithm
Complexity

3 The K-Center Criterion Clustering
Introduction
Re-Stating the K-center as a Clustering Problem
Comparison with K-means
The Greedy K-Center Algorithm
Pseudo-Code
The K-Center Algorithm
Notes in Implementation
Examples
K-Center Algorithm Properties
K-Center Algorithm proof of correctness

4 Variations
Fuzzy Clustering

Rethinking K-Means Cost Function
Using the Lagrange Multipliers
Examples
Pros and Cons of FCM

What can we do? Possibilistic Clustering
Cost Function

16 / 142



Images/cinvestav-1.jpg

An example

Dropping two possible centroids
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An example

Calculate the memberships
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We re-calculate centroids
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An example

We re-calculate centroids and keep going
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Strengths of K-means

Strengths
Simple: easy to understand and to implement
Efficient: Time complexity: O(tKN), where N is the number of data
points, K is the number of clusters, and t is the number of iterations.
Since both K and t are small. K-means is considered a linear
algorithm.

Popularity
K-means is the most popular clustering algorithm.

Note that
It terminates at a local optimum if SSE is used. The global optimum is
hard to find due to complexity.
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Weaknesses of K-means

Important
The algorithm is only applicable if the mean is defined.

For categorical data, K-mode - the centroid is represented by most
frequent values.

In addition
The user needs to specify K.

Outliers
The algorithm is sensitive to outliers.

Outliers are data points that are very far away from other data points.
Outliers could be errors in the data recording or some special data
points with very different values.

24 / 142



Images/cinvestav-1.jpg

Weaknesses of K-means

Important
The algorithm is only applicable if the mean is defined.

For categorical data, K-mode - the centroid is represented by most
frequent values.

In addition
The user needs to specify K.

Outliers
The algorithm is sensitive to outliers.

Outliers are data points that are very far away from other data points.
Outliers could be errors in the data recording or some special data
points with very different values.

24 / 142



Images/cinvestav-1.jpg

Weaknesses of K-means

Important
The algorithm is only applicable if the mean is defined.

For categorical data, K-mode - the centroid is represented by most
frequent values.

In addition
The user needs to specify K.

Outliers
The algorithm is sensitive to outliers.

Outliers are data points that are very far away from other data points.
Outliers could be errors in the data recording or some special data
points with very different values.

24 / 142



Images/cinvestav-1.jpg

Weaknesses of K-means

Important
The algorithm is only applicable if the mean is defined.

For categorical data, K-mode - the centroid is represented by most
frequent values.

In addition
The user needs to specify K.

Outliers
The algorithm is sensitive to outliers.

Outliers are data points that are very far away from other data points.
Outliers could be errors in the data recording or some special data
points with very different values.

24 / 142



Images/cinvestav-1.jpg

Weaknesses of K-means

Important
The algorithm is only applicable if the mean is defined.

For categorical data, K-mode - the centroid is represented by most
frequent values.

In addition
The user needs to specify K.

Outliers
The algorithm is sensitive to outliers.

Outliers are data points that are very far away from other data points.
Outliers could be errors in the data recording or some special data
points with very different values.

24 / 142



Images/cinvestav-1.jpg

Weaknesses of K-means

Important
The algorithm is only applicable if the mean is defined.

For categorical data, K-mode - the centroid is represented by most
frequent values.

In addition
The user needs to specify K.

Outliers
The algorithm is sensitive to outliers.

Outliers are data points that are very far away from other data points.
Outliers could be errors in the data recording or some special data
points with very different values.

24 / 142



Images/cinvestav-1.jpg

Weaknesses of K-means: Problems with outliers

A series of outliers
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Weaknesses of K-means: Problems with outliers

Nevertheless, if you have more dense clusters
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Weaknesses of K-means: How to deal with outliers

One method
To remove some data points in the clustering process that are much
further away from the centroids than other data points.

To be safe, we may want to monitor these possible outliers over a few
iterations and then decide to remove them.

Another method
To perform random sampling.

Since in sampling we only choose a small subset of the data points,
the chance of selecting an outlier is very small.
Assign the rest of the data points to the clusters by distance or
similarity comparison, or classification.
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The algorithm is sensitive to initial seeds
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We have three cluster nevertheless
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Weaknesses of K-means: Non-globular Shapes

Here, we notice that K-means may only detect globular shapes
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Weaknesses of K-means: Non-globular Shapes

However, it sometimes work better than expected
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Consider the following

Theorem
Every matrix A ∈ Rm×n has an SVD.

Frobenious Matrix Norm

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2
ij =

√
trace (ATA)
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Then, you have a the Eckhart-Young Theorem

Theorem
Let A be a real m× n matrix. Then for any k ∈ N and any m×m
orthogonal projection matrix P of rank k, we have

‖A− PkA‖F ≤ ‖A− PA‖F

I with Pk =
∑k

i=1 uiu
T
i
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Thus

We have the Covariance matrix

S = 1
N − 1

N∑
i=1

(xi − x) (xi − x)T

Therefore, we have the following decomposition

S = UΣUT

Where UUT = I and U is a d× d matrix
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Orthogonal Projection

Therefore, we have that U is a orthogonal projection
Given that UUT = I and Ux = x

Now, we can re-write k-means

fk−mean = min
µ1,...µk

∑
i∈[n]

min
j∈[k]
‖xi − µj‖2
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Then

PCA can also re-write the cost function

fPCA = min
Pk

∑
i∈[n]
‖xi − Pkxi‖2 = min

Pk

∑
i∈[n]

min
yi∈Pk

‖xi − yi‖
2

Where
Given that Pk is a projection into dimension k and y ∈ Pk means that
Pky = y

Furthermore

arg min
y∈P
‖x− y‖ = Px

37 / 142



Images/cinvestav-1.jpg

Then

PCA can also re-write the cost function

fPCA = min
Pk

∑
i∈[n]
‖xi − Pkxi‖2 = min

Pk

∑
i∈[n]

min
yi∈Pk

‖xi − yi‖
2

Where
Given that Pk is a projection into dimension k and y ∈ Pk means that
Pky = y

Furthermore

arg min
y∈P
‖x− y‖ = Px

37 / 142



Images/cinvestav-1.jpg

Then

PCA can also re-write the cost function

fPCA = min
Pk

∑
i∈[n]
‖xi − Pkxi‖2 = min

Pk

∑
i∈[n]

min
yi∈Pk

‖xi − yi‖
2

Where
Given that Pk is a projection into dimension k and y ∈ Pk means that
Pky = y

Furthermore

arg min
y∈P
‖x− y‖ = Px

37 / 142



Images/cinvestav-1.jpg

Thus, using the Eckhart-Young Theorem

Assume P ∗k which contains the k optimal centers
Given that µj ∈ P ∗k

fk−mean =
∑
i∈[n]

min
j∈[k]

∥∥∥xi − µ∗j∥∥∥2

≥
∑
i∈[n]

min
yi∈P ∗k

‖xi − yi‖
2

≥ min
Pk

∑
i∈[n]

min
yi∈Pk

‖xi − yi‖
2

= min
Pk

∑
i∈[n]
‖xi − Pkxi‖2

= fPCA
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Therefore

Now, consider solving k-means on the points yi instead
They are embedded into dimension exactly k by projection Pk

Therefore, given Pxi = yi and µ̂j = Pµj

Where the Ŝ and µ̂ are the assignments and centers of the projected
points yi:∑

j∈[k]

∑
i∈Sj

‖xi − µj‖2 ≥
∑
j∈[k]

∑
i∈Sj

‖Pxi − Pµj‖2

=
∑
j∈[k]

∑
i∈Sj

‖yi − µ̂j‖
2

≥
∑
j∈[k]

∑
i∈Ŝj

‖yi − µ̂j‖
2 = f∗k−means
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Therefore, your best beat

Steps
1 Compute the PCA of the points xi into dimension k.
2 Solve k-means on the points yi in dimension k.
3 Output the resulting clusters and centers.
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Given that

We have that

fnew =
∑
j∈[k]

∑
i∈S∗j

∥∥∥xi − µ∗j∥∥∥2
= ∗

Therefore by the fact that xi − yi and yi − µ∗j are perpendiculars

∗ =
∑
j∈[k]

∑
i∈S∗j

{
‖xi − yi‖

2 +
∥∥∥yi − µ∗j∥∥∥2

}
= ∗∗

Finally

∗∗ =
∑
i∈[n]
‖xi − yi‖

2 +
∑
j∈[k]

∑
i∈S∗j

∥∥∥yi − µ∗j∥∥∥2
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Therefore, we have

Something Notable

fPCA + f∗k−means ≤ 2fk−means
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Until now, we have assumed a Euclidean metric space

Important step
The cluster representatives m1, ...,mk in are taken to be the means of
the currently assigned clusters.

We can generalize this by using a dissimilarity D (xi,xi′)
By using an explicit optimization with respect to m1, ...,mk
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Algorithm K-meoids

Step 1
For a given cluster assignment C find the observation in the cluster
minimizing total distance to other points in that cluster:

i∗k = arg min
{i|C(i)=k}

∑
C(i′)=k

D (xi,xi′)

I Then mk = xi∗
k
k = 1, ...,K are the current estimates of the cluster

centers.
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Now

Step 2
Given a current set of cluster centers m1, ...,mk, minimize the total
error by assigning each observation to the closest (current) cluster
center:

C (i) = arg min
1≤k≤K

D (xi,mk)

Iterate over steps 1 and 2
Until the assignments do not change.
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Complexity

Problem, solving the first step has a complexity for k = 1, ..., K

O
(
N2
k

)
Given a set of cluster “centers,” {i1, i2, ..., iK}

Given the new assignments

C (i) = arg min
1≤k≤K

D (xi,mk)

I It requires a complexity of O (KN) as before.
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Therefore

We have that
K-medoids is more computationally intensive than K-means.
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The K-center Problem

The input
It is a set of points with distances represented by a weighted graph
G = (V, V × V ).

Output
Select K centroids in G.
Such that minimize maximum distance of every point to a centroid.

Theorem (In the general case for any distance)
It is NP-hard to approximate the general K-center problem within any
factor α.
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Therefore

We change the distance to be constrained by
The Triangle Inequality

Given x,y and z

L (x, z) ≤ L (x,y) + L (y, z)

53 / 142



Images/cinvestav-1.jpg

Therefore

We change the distance to be constrained by
The Triangle Inequality

Given x,y and z

L (x, z) ≤ L (x,y) + L (y, z)

53 / 142



Images/cinvestav-1.jpg

Outline
1 K-Means Clustering

The NP-Hard Problem
K-Means Clustering Heuristic
Convergence Criterion
The Distance Function
Example
Properties of K-Means
K-Means and Principal Component Analysis

2 K-Meoids
Introduction
The Algorithm
Complexity

3 The K-Center Criterion Clustering
Introduction
Re-Stating the K-center as a Clustering Problem
Comparison with K-means
The Greedy K-Center Algorithm
Pseudo-Code
The K-Center Algorithm
Notes in Implementation
Examples
K-Center Algorithm Properties
K-Center Algorithm proof of correctness

4 Variations
Fuzzy Clustering

Rethinking K-Means Cost Function
Using the Lagrange Multipliers
Examples
Pros and Cons of FCM

What can we do? Possibilistic Clustering
Cost Function

54 / 142



Images/cinvestav-1.jpg

We have a new criterion

Instead of using the K-mean criterion
We use the K-center criterion under the triangle inequality.

New Criterion
The K-center criterion partitions the points into K clusters so as to
minimize the maximum distance of any point to its cluster center.

55 / 142



Images/cinvestav-1.jpg

We have a new criterion

Instead of using the K-mean criterion
We use the K-center criterion under the triangle inequality.

New Criterion
The K-center criterion partitions the points into K clusters so as to
minimize the maximum distance of any point to its cluster center.

55 / 142



Images/cinvestav-1.jpg

Explanation

Setup
Suppose we have a data set A that contains N objects.

We want the following
We want to partition A into K sets labeled C1, C2, ..., CK .

Now
Define a cluster size for any cluster Ck as follows.

The smallest value D for which all points in this cluster Ck are:
I Within distance D of each other.
I Or within distance D

2 of some point called the cluster center.
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Another Way
We have
Another way to define the cluster size:

D is the maximum pairwise distance between an arbitrary pair of
points in the cluster.
Or twice the maximum distance between a data point and a chosen
centroid.

Thus
Denoting the cluster size of Ck by Dk, we have that the cluster size of
partition (the way the points are grouped) S by:

D = max
k=1,...,K

Dk (3)

In another words
The cluster size of a partition composed of multiple clusters is the
maximum size of these clusters.
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Comparison with K-means

We use the following distance for comparison
In order to compare these methods, we use Euclidean distance.

In K-means we assume the distance between vectors is the squared
Euclidean distance
K-means tries to find a partition S that minimizes:

min
S

N∑
k=1

∑
i:xi∈Ck

(xi − µk)
T (xi − µk) (4)

Where µk is the centroid for cluster Ck

µk = 1
Nk

∑
i:xi∈Ck

xi (5)
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Now, what about the K-centers
K-center, on the other hand, minimizes the worst case distance to
these centroids

min
S

max
k=1,...,K

max
i:xi∈Ck

(xi − µk)
T (xi − µk) (6)

Where
µk is called the “centroid”, but may not be the mean vector.

Properties
The above objective function shows that for each cluster, only the
worst scenario matters, that is, the farthest data point to the centroid.
Moreover, among the clusters, only the worst cluster matters, whose
farthest data point yields the maximum distance to the centroid
comparing with the farthest data points of the other clusters.
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In other words

First
This minimax type of problem is much harder to solve than solving the
objective function of k-means.

Another formulation of K-center minimizes the worst case pairwise
distance instead of using centroids

min
S

max
k=1,...,K

max
i,j:xi,xj∈Ck

L (xi,xj) (7)

With
L (xi,xj) denotes any distance between a pair of objects in the same
cluster.
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Greedy Algorithm for K-Center

Main Idea
The idea behind the Greedy Algorithm is to choose a subset H from the
original dataset S consisting of K points that are farthest apart from each
other.

Intuition
Since the points in set H are far apart then the worst-case scenario has
been taken care of and hopefully the cluster size for the partition is small.

Thus
Each point hk ∈ H represents one cluster or subset of points Ck.
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Then

Something Notable
We can think of it as a centroid.

However
Technically it is not a centroid because it tends to be at the boundary of a
cluster, but conceptually we can think of it as a centroid.

Important
The way that we partition these points given the centroids is the same as
in K-means, that is, the nearest-neighbor rule.
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Specifically

We do the following
For every point xi, in order to see which cluster Ck it is partitioned into,
we compute its distance to each cluster centroid as follows, and find out
which centroid is the closest:

L (xi,hk) = min
k′=1,...,K

L (xi,hk′) (8)

Thus
Whichever centroid with the minimum distance is selected as the cluster
for xi.
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Important

For K-center clustering
We only need pairwise distance L (xi,xj) for any xi,xj ∈ S.

Where
xi can be a non-vector representation of the objects.

As long we can calculate
L (xi,xj) which makes the K-center more general than the K-means.
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Properties

Something Notable
The greedy algorithm achieves an approximation factor of 2 as the
distance measure L satisfies the triangle inequality.

Thus, we have that

D∗ = min
S

max
k=1,...,K

max
i,j:xi,xj∈Ck

L (xi,xj) (9)

Then, we have the following guarantee for the greedy algorithm

D ≤ 2D∗ (10)
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Nevertheless

We have that
K-center does not provide a locally optimal solution.

We can get only a solution
Guaranteeing to be within a certain performance range of the theoretical
optimal solution.
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Setup

First
Set H denotes the set of cluster centroids or cluster of representative
objects {h1, ...,hk} ⊂ S.

Second
Let cluster (xi) be the identity of the cluster xi ∈ S belongs to.

Third
The distance dist (xi) is the distance between xi and its closest cluster
representative object (centroid):

dist (xi) = min
hj∈H

L (xi,hj) (11)
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The Main Idea

Something Notable
We always assign xi to the closest centroid. Therefore dist (xi) is the
minimum distance between xi and any centroid.

The Algorithm is Iterative
We generate one cluster centroid first and then add others one by one
until we get K clusters.
The set of centroids H starts with only a single centroid, h1.
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Algorithm

Step 1
Randomly select an object xj from S, let h1 = xj , H = {h1}.
It does not matter how xj is selected.

Step 2
For j = 1 to n:

1 dist (xi) = L (xi,h1).
2 cluster (xi).

In other words
The dist (xi) is the computed distance between xj and h1.
Because so far we only have one cluster, we will assign a cluster label
1 to every xj .
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Algorithm

Step 3
For i = 2 to K

1 D = max
xj :xj∈S−H

dist (xj)

2 Choose hi ∈ S −H such that dist (hi) == D

3 H = H ∪ {hi}
4 for j = 1 to N
5 if L (xj ,hi) ≤ dist (xj)
6 dist (xj) = L (xj ,hi)
7 cluster (xj) = i
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Thus

As the algorithm progresses
We gradually add more and more cluster centroids, beginning with 2
until we get to K.
At each iteration, we find among all of the points which are not yet
included in the set, a worst point:

I Worst in the sense that this point has maximum distance to its
corresponding centroid.

This worst point
It is added to the set H.
To stress gain, points already included in H are not among the
consideration.
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Implementation

We can use the following for implementation
The disjoint-set data structure with the following operations:

I MakeSet
I Find
I Union
I Remove Iteratively through the disjoint trees.

Of course it is necessary to have extra fields for the necessary
distances
Thus, each node-element for the sets must have a field dist (xj) such that

dist (xj) = L (xj , F ind (xj)) (12)
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Although

Other things need to be taken in consideration
I will allow to you to think about them
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Example

Running the k-center and k-means algorithms allows to see that for
different densities k-center is more robust
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Example

Decreasing the density of one of the clusters, we see a degradation on
the clusters
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Using Centroids of the K-center to initialize K-mean

Thus, we can use the centroids of K-center to try to improve upon
K-means to a certain degree
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The Running Time

We have that
The running time of the algorithm is O (KN), where K is the number of
clusters generated and N is the size of the data set.

Why?
Because K-center only requires pairwise distance between any point and
the centroids.
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Main Bound of the K-center algorithm

Lemma
Given the distance measure L satisfying the triangle inequality.

If the partition obtained by the greedy algorithm is S̃ and the optimal
partition be S∗, such that the cluster size of S̃ be D̃ and the one for
S∗ is D∗, then

D̃ ≤ 2D∗ (13)
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Proof
If we look only at the first j centroid
It generates a partition j with size Dj and also:

The cluster size is the size of the biggest cluster in the current
partition.
The size of every cluster is defined as the maximum distance between
a point and the cluster centroid

Thus

D1 ≥ D2 ≥ D3... (14)

Why?
Because D = max

xj :xj∈S−H
dist (xj) and lines 5-7 in the step 3 and using

induction!!!
You can prove that part by yourselves..
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Graphically

It is easy to see that when the inner loop changes distances
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Now

It is necessary to prove

∀i < j, L (hi,hj) ≥ Dj−1 (15)

Thus
Dj−1 is a lower bound for the distance between hi and hj .
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Proof of the Previous Statement

It is possible to see that

L (hj−2,hj) ≥ L (hj−1,hj) (16)

How?
Assume it is not true. Then, L (hj−2,hj) < L (hj−1,hj)
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Then

We have that given the partition S̃ generated by the greedy algorithm
hj−2 ∈C̃j−2 , hj−2 ∈C̃j for C̃j−2, C̃j ∈ S̃
It is a contradiction because hj−2 is generated by the algorithm such
that cannot be in any other cluster!!!

Thus iteratively

L (h1,hj) ≥ L (h2,hj) ≥ L (h3,hj) ≥ ... ≥ L (hj−1,hj) = Dj−1 (17)
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Not only that

Not only that

∀j,∃i < j, L (hi,hj) = Dj−1 (18)

Therefore
Therefore, Dj−1 is not only the lower bound for the distance between hi
and hj , it is also the exact boundary for a specific i.
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If, we continue with the proof
Now

Let us consider the optimal partition S∗ with K clusters and its size
D∗.

I Suppose the greedy algorithm generates the centroids
H̃ = {h1,h2, ...,hK}.

I For the proof, we are adding one more, hK+1.
I This can be done without losing generality.

According to the pigeonhole principle, at least two of the centroids
among
{h1,h2, ...,hK ,hK+1}will fall into one cluster k of the partition S∗.

Thus assume
1 ≤ i < k < j ≤ K + 1 ⇒ Using the triangle inequality:

L (hi,hj) ≤ L (hi,hk) + L (hk,hj) ≤ D∗ +D∗ = 2D∗ (19)
93 / 142
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Then

In addition
Also L (hi,hj) ≥ Dj−1 ≥ Dk then Dk ≤ 2D∗

Given S̃, the partition generated by the greedy algorithm
We define ∆ as

∆ = max
xj :xj∈S̃−H̃

min
hk:hk∈H̃

L (xj ,hk) (20)

Basically
The maximum of all points that are not centroids that minimize the
distance to some centroid for the partition generated by the greedy
algorithm.
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Now, we are ready for the final part

Let hK+1 be an element in S̃ − H̃
Such that

min
hk:hk∈H̃

L (hK+1,hk) = ∆ (21)

By definition

L (hK+1,hk) ≥ ∆, ∀k = 1, ...,K (22)

Thus, we have the following sets
Let Hk = {h1, ...,hk} with k = 1, 2, ...,K.
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Now

Consider the distance between hi and hj for i < j ≤ K

According the greedy algorithm
min

hk:hk∈Hj−1
L (hj ,hk) ≥ min

hk:hk∈Hj−1
L (xl,hk) for any xl ∈ S̃ −Hj

Basically remember that the hi are obtained by finding the farthest
points.
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Now, we have

Since hK+1 ∈ S̃ − H̃ and S̃ − H̃ ⊂ S̃ −Hj

L (hj ,hi) ≥ min
hk:hk∈Hj−1

L (hj ,hk)

≥ min
hk:hk∈Hj−1

L (hK+1,hk)

≥ min
hk:hk∈H̃

L (hK+1,hk)

=∆

We have shown that for any for i < j ≤ K + 1

L (hj ,hi) ≥ ∆ (23)

97 / 142



Images/cinvestav-1.jpg

Now, we have

Since hK+1 ∈ S̃ − H̃ and S̃ − H̃ ⊂ S̃ −Hj

L (hj ,hi) ≥ min
hk:hk∈Hj−1

L (hj ,hk)

≥ min
hk:hk∈Hj−1

L (hK+1,hk)

≥ min
hk:hk∈H̃

L (hK+1,hk)

=∆

We have shown that for any for i < j ≤ K + 1

L (hj ,hi) ≥ ∆ (23)

97 / 142



Images/cinvestav-1.jpg

Now, we have

Since hK+1 ∈ S̃ − H̃ and S̃ − H̃ ⊂ S̃ −Hj

L (hj ,hi) ≥ min
hk:hk∈Hj−1

L (hj ,hk)

≥ min
hk:hk∈Hj−1

L (hK+1,hk)

≥ min
hk:hk∈H̃

L (hK+1,hk)

=∆

We have shown that for any for i < j ≤ K + 1

L (hj ,hi) ≥ ∆ (23)

97 / 142



Images/cinvestav-1.jpg

Now, we have

Since hK+1 ∈ S̃ − H̃ and S̃ − H̃ ⊂ S̃ −Hj

L (hj ,hi) ≥ min
hk:hk∈Hj−1

L (hj ,hk)

≥ min
hk:hk∈Hj−1

L (hK+1,hk)

≥ min
hk:hk∈H̃

L (hK+1,hk)

=∆

We have shown that for any for i < j ≤ K + 1

L (hj ,hi) ≥ ∆ (23)

97 / 142



Images/cinvestav-1.jpg

Now, we have

Since hK+1 ∈ S̃ − H̃ and S̃ − H̃ ⊂ S̃ −Hj

L (hj ,hi) ≥ min
hk:hk∈Hj−1

L (hj ,hk)

≥ min
hk:hk∈Hj−1

L (hK+1,hk)

≥ min
hk:hk∈H̃

L (hK+1,hk)

=∆

We have shown that for any for i < j ≤ K + 1

L (hj ,hi) ≥ ∆ (23)

97 / 142



Images/cinvestav-1.jpg

Now

Consider the optimal partition S∗ = {C∗1 , C∗2 , ..., C∗K}
Thus at least 2 of the K + 1 elements h1, h2, ..., hK+1 will be covered by
one cluster.

Assume that
hi and hj belong to the same cluster in S∗ . Then L (hi,hj) ≤ D∗.

In addition
We have that since L (hi,hj) ≥ ∆ then ∆ ≤ D∗
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In addition

Consider elements xm and xn in any cluster represented by hk
L (xm,hk) ≤ ∆ and L (xn,hk) ≤ ∆ (24)

By Triangle Inequality

L (xm,xk) ≤ L (xm,hk) + L (xn,hk) ≤ 2∆ (25)

Finally, there are two elements xm and xn in a cluster such that
D̃ = L (xm,xn)

D̃ = max
k

Dk ≤ 2∆ ≤ 2D∗ (26)
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NOTE other distances based in Mahalonobis can be taken in
consideration.
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Do you remember the cost function for K-means?

Finding a partition S that minimizes the following function

min
S

N∑
k=1

∑
k:xk∈Ci

‖xk − vi‖2 (28)

Where vi = 1
Ni

∑
xk∈Ci

xk

We can rewrite the previous equation as

min
S

N∑
k=1

C∑
i=1

I (xk ∈ Ci) ‖xk − vi‖2 (29)
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S

N∑
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C∑
i=1

Membership︷ ︸︸ ︷
I (xk ∈ Ci) ‖xk − vi‖2 (30)
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Thus, we can rethink the membership using something
“Fuzzy”

What if we modify the cost function to something like this

min
S

N∑
k=1

C∑
i=1

Membership︷ ︸︸ ︷
Fuzzy Value ‖xk − vi‖2 (31)

This means that we think that each cluster Ci is “Fuzzy”
We can assume a fuzzy set for the cluster Ci with membership function:

Ai : Rp → [0, 1] (32)

Such that we can tune it by using a power i.e. decreasing it by a m power.
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Jm (S) =
N∑
k=1

C∑
i=1

[Ai (xk)]m ‖xk − vi‖2 (36)

Under the constraints
Ai (xk) ∈ [0, 1], for 1 ≤ k ≤ N and 1 ≤ i ≤ C.∑C
i=1Ai (xk) = 1, for 1 ≤ k ≤ N .

0 <
∑N
k=1Ai (xk) < n, for 1 ≤ i ≤ C.

m > 1.
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Using the Lagrange Multipliers

New cost function

J̄m (S) =
N∑
k=1

C∑
i=1

[Ai (xk)]m ‖xk − vi‖2 −
N∑
k=1

λk

[
C∑
i=1

Ai (xk)− 1
]

(37)

Derive with respect to Ai (xk)
∂J̄m (S)
∂Ai (xk)

= mAi (xk)m−1 ‖xk − vi‖2 − λk = 0 (38)

Thus

Ai (xk) =
[

λk

m ‖xk − vi‖2

] 1
m−1

(39)
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Sum over all i’s

C∑
i=1

Ai (xk) = λ
1

m−1
k

m
1

m−1 ‖xk − vi‖
2

m−1
(40)

Thus

λk = m[∑C
i=1

1
‖xk−vi‖

2
m−1

]m−1 (41)

Plug Back on equation 38 using j instead of i
m[∑C

j=1
1

‖xk−vj‖
2

m−1

]m−1 = mAi (xk)m−1 ‖xk − vi‖2 (42)
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Finally

We have that

Ai (xk) = 1[∑C
j=1

{
‖xk−vi‖2

‖xk−vj‖2

} 1
m−1

] (43)

In a similar way we have

vi =
∑N
k=1Ai (xk)m xk∑N
k=1Ai (xk)m

(44)
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Final Algorithm
Fuzzy c-means

1 Let t = 0. Select an initial fuzzy pseudo-partition.

2 Calculate the initial C cluster centers using, v(t)
i =

∑N

k=1 A
(t)
i (xk)mxk∑N

k=1 A
(t)
i (xk)m

.

3 Update for each xk the membership function by

I Case I:
∥∥∥xk − v(t)

i

∥∥∥2
> 0 for all i ∈ {1, 2, ..., C} then

A
(t+1)
i (xk) = 1[∑C

j=1

{
‖xk−v

(t)
i ‖

2

‖xk−v
(t)
j ‖

2

} 1
m−1

]
I Case II:

∥∥∥xk − v(t)
i

∥∥∥2
= 0 for some i ∈ I ⊆ {1, 2, ..., C} then define

A
(t+1)
i (xk) by any nonnegative number such that∑
i∈I A

(t+1)
i (xk) = 1 and A(t+1)

i (xk) = 0 for i /∈ I.

4 If
∣∣∣S(t+1) − S(t)

∣∣∣ = max
i,k

∣∣∣A(t+1)
i (xk)−A

(t)
i (xk)

∣∣∣ ≤ ε stop; otherwise
increase t and go to step 2.
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The centroids
V = {v1,v2, ...,vC}

115 / 142



Images/cinvestav-1.jpg

Final Output

The Matrix U
The elements of U are Uik = Ai (xk).

The centroids
V = {v1,v2, ...,vC}

115 / 142



Images/cinvestav-1.jpg

Outline
1 K-Means Clustering

The NP-Hard Problem
K-Means Clustering Heuristic
Convergence Criterion
The Distance Function
Example
Properties of K-Means
K-Means and Principal Component Analysis

2 K-Meoids
Introduction
The Algorithm
Complexity

3 The K-Center Criterion Clustering
Introduction
Re-Stating the K-center as a Clustering Problem
Comparison with K-means
The Greedy K-Center Algorithm
Pseudo-Code
The K-Center Algorithm
Notes in Implementation
Examples
K-Center Algorithm Properties
K-Center Algorithm proof of correctness

4 Variations
Fuzzy Clustering

Rethinking K-Means Cost Function
Using the Lagrange Multipliers
Examples
Pros and Cons of FCM

What can we do? Possibilistic Clustering
Cost Function

116 / 142



Images/cinvestav-1.jpg

Example

Here the clustering of two Gaussian Clusters with
µ1 = (4, 0)T , µ2 = (10, 0)T and variance 1.0

24681012

4

3

2

1

0

1

2

3

4

M
em

bership Label

0.30.40.50.60.70.80.91.01.1

117 / 142



Images/cinvestav-1.jpg

Example

Here the clustering of two Gaussian Clusters

24681012

432101
2
3
4

M
e
m

b
e
rsh

ip
 La

b
e
l

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

118 / 142



Images/cinvestav-1.jpg

Example

Here the clustering of two Gaussian Clusters

2
4

6
8

10

12

4
3

2
1

0
1

2
3

4

M
e
m

b
e
rsh

ip
 La

b
e
l

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

119 / 142



Images/cinvestav-1.jpg

Example

Here the clustering of two Gaussian Clusters

24681012

432
101
234

M
e
m

b
e
rs

h
ip

 L
a
b
e
l

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

120 / 142



Images/cinvestav-1.jpg

Outline
1 K-Means Clustering

The NP-Hard Problem
K-Means Clustering Heuristic
Convergence Criterion
The Distance Function
Example
Properties of K-Means
K-Means and Principal Component Analysis

2 K-Meoids
Introduction
The Algorithm
Complexity

3 The K-Center Criterion Clustering
Introduction
Re-Stating the K-center as a Clustering Problem
Comparison with K-means
The Greedy K-Center Algorithm
Pseudo-Code
The K-Center Algorithm
Notes in Implementation
Examples
K-Center Algorithm Properties
K-Center Algorithm proof of correctness

4 Variations
Fuzzy Clustering

Rethinking K-Means Cost Function
Using the Lagrange Multipliers
Examples
Pros and Cons of FCM

What can we do? Possibilistic Clustering
Cost Function

121 / 142



Images/cinvestav-1.jpg

Pros and Cons of Fuzzy C-Means

Advantages
Unsupervised
Always converges

Disadvantages
Long computational time
Sensitivity to the initial guess (speed, local minima)
Sensitivity to noise

I One expects low (or even no) membership degree for outliers (noisy
points)

122 / 142



Images/cinvestav-1.jpg

Pros and Cons of Fuzzy C-Means

Advantages
Unsupervised
Always converges

Disadvantages
Long computational time
Sensitivity to the initial guess (speed, local minima)
Sensitivity to noise

I One expects low (or even no) membership degree for outliers (noisy
points)

122 / 142



Images/cinvestav-1.jpg

Pros and Cons of Fuzzy C-Means

Advantages
Unsupervised
Always converges

Disadvantages
Long computational time
Sensitivity to the initial guess (speed, local minima)
Sensitivity to noise

I One expects low (or even no) membership degree for outliers (noisy
points)

122 / 142



Images/cinvestav-1.jpg

Pros and Cons of Fuzzy C-Means

Advantages
Unsupervised
Always converges

Disadvantages
Long computational time
Sensitivity to the initial guess (speed, local minima)
Sensitivity to noise

I One expects low (or even no) membership degree for outliers (noisy
points)

122 / 142



Images/cinvestav-1.jpg

Pros and Cons of Fuzzy C-Means

Advantages
Unsupervised
Always converges

Disadvantages
Long computational time
Sensitivity to the initial guess (speed, local minima)
Sensitivity to noise

I One expects low (or even no) membership degree for outliers (noisy
points)

122 / 142



Images/cinvestav-1.jpg

Pros and Cons of Fuzzy C-Means

Advantages
Unsupervised
Always converges

Disadvantages
Long computational time
Sensitivity to the initial guess (speed, local minima)
Sensitivity to noise

I One expects low (or even no) membership degree for outliers (noisy
points)

122 / 142



Images/cinvestav-1.jpg

Outliers, Disadvantage of FCM

After running without outliers

2 4 6 8 10 12

4

2

0

2

4

M
e
m

b
e
rs

h
ip

 L
a
b
e
l

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

123 / 142



Images/cinvestav-1.jpg

Outliers, Disadvantage of FCM

Now add outliers (Shown in blue x′s) and their high memberships
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If we consider the Ci as fuzzy sets over the set of samples
X = {x1,x2, ...,xN}
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We should not use the old membership
C∑
i=1

Ai (xk) = 1 (45)

Because
This is quite probabilistic... which is not what we want!!!

Thus
We only ask for membership, now using the possibilistic notation of ti (xk)
(This is known as typicality value), to be in the interval [0, 1].
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0 <
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ti (xk) < N ∀i (47)
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i
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We have the following cost function

Cost Function
N∑
k=1

C∑
i=1

[ti (xk)]m ‖xk − vi‖2 (49)

Problem
Unconstrained optimization of first term will lead to the trivial solution
ti (xk) = 0 for all i, k.

Thus, we can introduce the following constraint

ti (xk)→ 1 (50)

Roughly it means to make the typicality values as large as possible.

131 / 142



Images/cinvestav-1.jpg

We have the following cost function

Cost Function
N∑
k=1

C∑
i=1

[ti (xk)]m ‖xk − vi‖2 (49)

Problem
Unconstrained optimization of first term will lead to the trivial solution
ti (xk) = 0 for all i, k.

Thus, we can introduce the following constraint

ti (xk)→ 1 (50)

Roughly it means to make the typicality values as large as possible.

131 / 142



Images/cinvestav-1.jpg

We have the following cost function

Cost Function
N∑
k=1

C∑
i=1

[ti (xk)]m ‖xk − vi‖2 (49)

Problem
Unconstrained optimization of first term will lead to the trivial solution
ti (xk) = 0 for all i, k.

Thus, we can introduce the following constraint

ti (xk)→ 1 (50)

Roughly it means to make the typicality values as large as possible.

131 / 142



Images/cinvestav-1.jpg

We can try to control this tendency

By putting all them together in
N∑
k=1

(1− ti (xk))m (51)

With m to control the tendency of ti (xk)→ 1

We can also run this tendency over all the cluster using a suitable
wi > 0 per cluster

C∑
i=1

wi

N∑
k=1

(1− ti (xk))m (52)

132 / 142



Images/cinvestav-1.jpg

We can try to control this tendency

By putting all them together in
N∑
k=1

(1− ti (xk))m (51)

With m to control the tendency of ti (xk)→ 1

We can also run this tendency over all the cluster using a suitable
wi > 0 per cluster

C∑
i=1

wi

N∑
k=1

(1− ti (xk))m (52)

132 / 142



Images/cinvestav-1.jpg

Possibilistic C-Mean Clustering (PCM)

The final Cost Function

Jm (S) =
N∑
k=1

C∑
i=1

[ti (xk)]m ‖xk − vi‖2 +
C∑
i=1

wi

N∑
k=1

(1− ti (xk))m (53)

Where
ti (xk) are typicality values.
wi are cluster weights
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Explanation

First Term
N∑
k=1

C∑
i=1

[ti (xk)]m ‖xk − vi‖2 (54)

It demands that the distance from feature vector to prototypes be as small
as possible!!!

Second Term
c∑
i=1

wi

n∑
k=1

(1− ti (xk))m (55)

It forces the typicality values ti (xk) to be as large as possible.
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Final Updating Equations

Typicality Values

ti (xk) = 1

1 +
(
‖xk−vi‖2

wi

) 1
m−1

, ∀i, k (56)

Cluster Centers

vi =
∑N
k=1 ti (xk)m xk∑n
k=1 ti (xk)m

(57)
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Final Updating Equations

Weights

wi = M

∑N
k=1 [ti (xk)]m ‖xk − vi‖2∑n

k=1 [ti (xk)]m
, (58)

with M > 0.
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Possibilistic can deal with outliers

Two Gaussian Clusters with µ1 = (4, 0)T , µ2 = (10, 0)T and σ2 = 1.0
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Pros and Cons of Fuzzy C-Means

Advantages
Clustering noisy data samples.

Disadvantages
Very sensitive to good initialization.
For example, I needed to run fuzzy C-means to obtain good initial
typicalities

In Between!!!
Coincident clusters may result.

Because the columns and rows of the typicality matrix are
independent of each other.
This could be advantageous (start with a large value of C and get
less distinct clusters)
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Nevertheless

There are more advanced clustering methods based on the
possibilistic and fuzzy idea
Pal, N.R.; Pal, K.; Keller, J.M.; Bezdek, J.C., "A Possibilistic Fuzzy
c-Means Clustering Algorithm," Fuzzy Systems, IEEE Transactions on ,
vol.13, no.4, pp.517,530, Aug. 2005.
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