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Partition

Tree partition of the space
They partition the space of all joint predictor variable values into
disjoint regions:

Rj , j = 1, 2, ..., J

Thus, a constant γj is assigned to each such region

x ∈ Rj ⇒ f (x) = γj
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Finally, we can see a tree as

Formal, Equation

T (x|Θ) =
J∑
j=1

γjI (x ∈ Rj)

Θ = {Rj , γj}Jj=1

Then, we have the following Loss function for Θ

L (xi, γj |Θ) = I [yi 6= γj ]
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This is a problem

We have an Empirical Risk used to obtain the parameters

Θ̂ = arg min
Θ

J∑
j=1

∑
xi∈Rj

L (xi, γj |Θ)

This is a combinatorial problem
This can be quite difficult to solve
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We can solve it, if ...

Finding Rj

Note also that finding the Rj entails estimating also γj .

Normally, for this type of problems we use given that they are
NP-Complete

Recursive Branch and Bound algorithms
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Pseudo-code for Branch-and-Bound

We have
BRANCH-AND-BOUND(P0)

1 Start with some problem P0

2 Let S = {P0}, the set if active subproblems
3 bestsofar=∞
4 While S 6= ∅
5 choose a subproblem (Partial Solution) P ∈ S and remove it from S
6 expand it into smaller subproblems P1, P2, ..., Pk

7 For each Pi
8 if Pi is a complete solution:
9 update bestsofar
10 else
11 if lowerbound(Pi) <bestsofar: add Pi to S
12 return bestsofar
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Therefore

We use a smoother criterion that the one by I [yi 6= γj]

Θ̃ = arg min
Θ

N∑
i=1

L̃ (T (xi|Θ) , yi|Θ)

Here, we encounter a problem
Given Rj , How do we estimate γj?

Here, we do the following
γ̂j = yj , the mean of the yi falling in the region Rj .
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Therefore

For misclassification loss
γ̂j is the modal class of the observations falling in Rj .

How do we estimate Rj

We can use Gini or Shannon Entropy...
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We are ready to define

The Boosted tree model is a sum of such trees

fM (x) =
N∑
i=1

T (x|Θm)

This comes from the Boosting classic cost function

C (xi) = α1y1 (xi) + α2y2 (xi) + ...+ αMyM (xi) (1)
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Thus, at each stage

We need to solve the following cost function

Θ̂ = arg min
Θm

N∑
i=1

L (yi, fm−1 (xi) + T (xi|Θm))

For the region set and constants Θm = {Rjm, γjm}Jmj=1

Of the next tree give the previous model fm−1 (xi)
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This can be solved by

Forward Stage-wise Additive Modeling.
1 Init f0 = 0
2 For m = 1 to M :
3 Compute

(βm, γm) = arg minβ,γ
∑N
i=1 L (yi, fm−1 (xi) + βb (xi|γ))

4 Set fm (x) = fm (x)

Here b (xi|γ) simple functions of the multivariate argument x.
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Now

Given the regions Rjm

γ̂jm = arg min
γjm

∑
xi∈Rjm

L (yi, fm−1 (xi) + γjm)

Nevertheless, finding the regions can be difficult
For a few special cases, the problem simplifies.
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We can use AdaBoost

We can use the exponential Loss

Θ̂m = arg min
Θm

N∑
i=1

w
(m)
i exp {−yiT (|Θm)}

Now, we have a conundrum
We can decide to use a Robust Loss function

I Absolute Error, the Huber loss

This will be make our life quite difficult
Therefore, we opt for loss functions that can simplify our algorithms
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Therefore

We have the following loss function

L (f) =
N∑
i=1

L (yi, f (xi))

Minimizing can be viewed as a numerical optimization

f̂ = arg min
f
L (f)

Where

f = {f (x1) , f (x2) , ..., f (xN )}
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Thus, we have

As a Solution, we have a sum of component vectors

fM =
M∑
m=0

hm, hm ∈ RN

Thus, we select
hm = −ρmgm where ρm is a scalar and gm ∈ RN is the gradient of

L (f) =
N∑
i=1

L (yi,f (xi))

I Evaluated at f = fm−1
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Then

The components

gim = ∂L (yi,f (xi))
∂f (xi)

|f(xi)=fm−1(xi)

Where

ρm = arg min
ρ
L
(
fm−1 − ρgm

)
Then, we have the classic Gradient Descent

fm = fm−1 − ρmgm
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Therefore

We have the following Gradients for some common Loss functions
Setting Loss Function Gradient −∂L(yi,f(xi))/∂f(xi)

Regression 1
2 [yi − f (xi)]2 yi − f (xi)

Regression |yi − f (xi)| sign [yi − f (xi)]
Classification −

∑K
k=1 log pk (xi) kth component I (y = Gk)− pk (xi)
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Final Algorithm

Gradient Tree Boosting Algorithm
1 f0 (x) = arg minγ

∑N

i=1 L (yi, γ)

2 For m = 1 to M :
I For i = 1, 2, ..., N compute:

rim =
∂L (yi, f (xi))

∂f (xi)
|f(xi)=fm−1(xi)

I Fit a regression tree to the targets rim giving terminal regions Rmj j = 1, 2, ..., Jm
I For j = 1, 2, ..., Jm compute

γjm = arg min
γ

∑
xi∈Rjm

L (yi, fm−1 (xi) + γ)

I Update fm (x) = fm−1 (x) +
∑Jm

j=1 γjmI (x ∈ Rjm)

3 Output f̂ (x) = fM (x)
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How do we get the Right size for the Trees

We could see this as a separated procedure
A very large (oversized) tree is first induced,

I A bottom-up procedure is employed to prune it to the estimated
optimal number of terminal nodes.

Problem
The first trees are too Large, reducing performance...
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We can do better

We can restrict the trees to have the same size on the number of
Terminal Regions

Jm = J ∀m

At each iteration a J-terminal node regression tree is induced.

Therefore
Thus J becomes a meta-parameter of the entire boosting procedure.
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What about M the number of trees

Another parameter to estimate
The other meta-parameter of gradient boosting is the number of
boosting iterations M .

Here, a problem is that a Large M
It is clear that the Empirical Risk is reduced at each iteration.

A Large M can lead to Overfitting
A convenient way to estimate M∗ is to monitor prediction risk as a
function of M on a validation sample.

I Other Techniques are Shrinkage and Subsampling
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For More on this

Take a Look at
The Elements of Statistical Learning by Hastie et al. Chapter 10.11
and 10.12
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In the Case of Shrinkage

Instead of using

fm (x) = fm−1 (x) +
Jm∑
j=1

γjmI (x ∈ Rjm)

We modify by a parameter ν

fm (x) = fm−1 (x) + ν
Jm∑
j=1

γjmI (x ∈ Rjm)

The parameter ν is controlling the learning rate of the boosting
procedure.

Smaller values of ν (more shrinkage) result in larger training risk for
the same number of iterations M .
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A Popular Algorithm

It has been a winner 29 Kaggle challenges (2015)
17 solutions used XGBoost.

As solely algorithm
Or with a combination of neural network algorithms as ensembles
method.
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Ensemble Learning

Definition
In statistics and machine learning, ensemble methods use multiple
learning algorithms to obtain

Basically
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ŷi = φ (xi) =
K∑
k=1

fk (xi)

Where, the space of regression trees (CART)

F =
{
fk (x) = wq(x)

}(
q : Rm → T,w ∈ RT

)

35 / 65



Images/cinvestav.jpg

Cost Function Ensemble

For a given data set

D = {(xi, yi) | |D| = N,xi ∈ Rm, yi ∈ R}

A Tree Ensemble model
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corresponding leaf index.
T is the number of leaves in the tree.
Each fk corresponds to an independent tree structure q and leaf
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Unlike decision trees, each regression tree contains a continuous rank
on each of the leaf.

For this
we use wi to represent score on ith leaf.
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L (φ) =
∑
i

l (ŷi, yi) +
∑
k

Ω (fk)

whre Ω (f) =γT + 1
2λ ‖w‖

2

Remarks
l is a differentiable convex loss function.
Ω penalize the complexity of the regression tree.
1
2λ ‖w‖

2 helps to smooth the final learned weights to avoid
over-fitting.
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For this, the model is trained in an additive manner
Given ŷ(t)

i be the prediction of the ith instance at the tth iteration,

We rewrite the cost function as

L(t) (φ) =
∑
i

l
(
ŷ

(t−1)
i + ft (xi) , yi

)
+ Ω (ft)

This means we greedily add the ft that most improves our model.
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Second-order approximation
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ŷ

(t−1)
i , yi

)
+ gift (xi) + 1

2hif
2
t (xi)

]
+ Ω (ft)

Where
gi = ∂ŷ(t−1) l
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Furthermore

We have the following cost function after removing constant terms

L(t) '
N∑
i=1

[
gift (xi) + 1

2hif
2
t (xi)

]
+ Ω (ft)

Which can be expanded by defining Ij = {i|q (xi) = j}

L(t) =
N∑
i=1

[
gift (xi) + 1

2hif
2
t (xi)

]
+ γT + 1

2λ
T∑
j=1

w2
j

=
T∑
j=1

∑
i∈Ij

gi

wj + 1
2

∑
i∈Ij

hi + λ

w2
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+ λT
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Then, for a fixed structure q (x)

we can compute the optimal weight for a leaf

w∗j = −
∑
i∈Ij gi∑

i∈Ij hi + λ

Additionally, we can use the following function to score the structure
of q

L(t) (q) = −1
2

T∑
j=1

(∑
i∈Ij gi

)2

∑
i∈Ij hi + λ
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The previous equations can be used
As a scoring function to measure the quality of a tree structure q

Something Notable
This score is like the impurity score for evaluating decision trees
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However

Something Notable
Normally, it is impossible to enumerate all the possible tree structures
q.

Therefore
A greedy algorithm that starts from a single leaf and iteratively adds
branches to the tree is used instead.

Letting I = IL ∪ IR, then the reduction is given by

Lsplit = 1
2


(∑

i∈IL gi
)2

∑
i∈IL hi + λ

+

(∑
i∈IR gi

)2

∑
i∈IR hi + λ

− (
∑
i∈I gi)
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− γ
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A Big Problem
One of the key problems in tree learning is to find the best split by

Lsplit

In order to do generate these splits
A split finding algorithm enumerates over all the possible splits on all
the features
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Example, Exact Greedy Algorithm

Something Notable
1 Input: I, instance set of current node

2 Input: m, feature dimension

3 gain = 0

4 G =
∑

i∈I gi and H =
∑

i∈I hi

5 for k = 1 to m do:

6 GL = 0 and HL = 0
7 for j in sorted

(
I, by xjk

)
do

8 GL = GL + gj , HL = HL + hj .
9 GR = G−GL, HR = H −HL.

10 score = max
{
score,

G2
L

HL+λ + G2
R

HR+λ −
G2

H+λ

}
11 Output: Split with Max Score
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Problem with this Algorithm

Quite computationally demanding
This can be improved!!!

For this
The algorithm must first sort the data according to feature values.
Then, it visits the data in sorted order to accumulate the gradient
statistics.
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Therefore

Better to have an approximation
Thus, people proposed the use the percentiles of feature distributions

I To find the splitting points or candidate points

Then, it maps the continuous features into buckets split by these
candidate points

Basically you could use homogeneity via the Shannon Entropy
I Or any other possible one

Aggregates the statistics on the buckets
Then, It finds the best solution based on this statistics
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The Two Variants for Splitting

The global variant
It proposes all the candidate splits during the initial phase of tree
construction

The local variant
The local variant re-proposes after each split!!!
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Approximate Algorithm for Split Finding

Algorithm
1 for k = 1 to m:
2 Propose Sk = by using weighted percentiles at the feature k
3 Proposal can be done per tree (global) or per split
4 for k = 1 to m:
5 Gkv =

∑
j∈{j|sk,v≥xjk>sk,v−1} gj

6 Hkv =
∑
j∈{j|sk,v≥xjk>sk,v−1} hj
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However

An important subject
How the Weighted Quantile Sketch works?

Weighted Quantile Sketch
To understand the method in XGBoost

It is part of the original implementation
Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree
boosting system." In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pp.
785-794. 2016.
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Main Idea

We have then
The essential idea in bagging is to average many noisy but
approximately unbiased models.

Thus, you reduce the variance
And given that trees capture complex interactions

This is perfect given
If we can decrease the variance of the decision trees

I We obtain a more precise classifier.
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The Model

In a series of papers and technical reports
In a series of papers and technical reports - Leo Breiman
demonstrated the substantial gains in classification and regression

By using ensembles of trees
In Breiman’s approach, each tree in the collection is formed by first
selecting at random

I At each node, a small of input coordinates/features

Then, we use such features to obtain the best split
For the subsets at the nodes...
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For example, using the idea of Bootstrap

Draw a bootstrap sample Z of size N from the training data
Grow a random-forest tree Tb

Using a stopping criteria of minimum node size nmin
1 Select m variables at random from the d variables.
2 Pick the best variable/split-point among the m
3 Split the node into two daughter nodes

Finally
Output the ensemble of trees {Tb}Bb=1
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In another example

The following procedure is then repeated dlog2 kne
1 At each node, a feature of x = (x1, x2, ..., xd)T is selected, with the

jth feature having a probability pnj ∈ (0, 1) of being selected.
2 At each node, after feature selection, the split is at the midpoint of

the chosen side.
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Therefore

A Random Forest
It is a predictor consisting of a collection of randomized base trees

{Tb (x,Θm,Dn) |m > 1}

where Dn = {(xi, yi)}ni=1

Here, Θ1,Θ2, ... are i.i.d. outputs of a randomizing variable Θ

ŷ (X,Dn) = EΘ [Tb (X,Θ,Dn) |]
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We tend to use the sample mean

Regression

ŷ = 1
B

B∑
b=1

Tb (x)

Classification, given Cb (x) the classification prediction of the Tb tree

Ĉb (x) = majority vote {Cb (x)}Bb=1
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The nice part is that

Given that trees are notoriously noisy
When we average over them, we obtained better accurate predictions
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For More

Take a Look at
The Elements of Statistical Learning by Hastie et al. Chapter 15
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