
Introduction to Machine Learning
XBoosting Trees and Random Forests

Andres Mendez-Vazquez

August 4, 2020

1 / 65

Images/cinvestav.jpg

Outline

1 Boosting Trees
Introduction
Cost Functions for Trees
Using a Smoother Version
Boosted Tree Model
AdaBoost for Classification Trees
Numerical Optimization via Gradient Boosting

2 XGBoost
Introduction
Cost Function
Solving some Issues
Taylor Expansion
Split Finding Algorithms
Generic Approximated Version

3 Random Forest
Introduction
From Bootstrap to Random Forest

2 / 65

Images/cinvestav.jpg

Outline

1 Boosting Trees
Introduction
Cost Functions for Trees
Using a Smoother Version
Boosted Tree Model
AdaBoost for Classification Trees
Numerical Optimization via Gradient Boosting

2 XGBoost
Introduction
Cost Function
Solving some Issues
Taylor Expansion
Split Finding Algorithms
Generic Approximated Version

3 Random Forest
Introduction
From Bootstrap to Random Forest

3 / 65

Images/cinvestav.jpg

Partition

Tree partition of the space
They partition the space of all joint predictor variable values into
disjoint regions:

Rj , j = 1, 2, ..., J

Thus, a constant γj is assigned to each such region

x ∈ Rj ⇒ f (x) = γj

4 / 65

Images/cinvestav.jpg

Partition

Tree partition of the space
They partition the space of all joint predictor variable values into
disjoint regions:

Rj , j = 1, 2, ..., J

Thus, a constant γj is assigned to each such region

x ∈ Rj ⇒ f (x) = γj

4 / 65

Images/cinvestav.jpg

Outline

1 Boosting Trees
Introduction
Cost Functions for Trees
Using a Smoother Version
Boosted Tree Model
AdaBoost for Classification Trees
Numerical Optimization via Gradient Boosting

2 XGBoost
Introduction
Cost Function
Solving some Issues
Taylor Expansion
Split Finding Algorithms
Generic Approximated Version

3 Random Forest
Introduction
From Bootstrap to Random Forest

5 / 65

Images/cinvestav.jpg

Finally, we can see a tree as

Formal, Equation

T (x|Θ) =
J∑
j=1

γjI (x ∈ Rj)

Θ = {Rj , γj}Jj=1

Then, we have the following Loss function for Θ

L (xi, γj |Θ) = I [yi 6= γj]

6 / 65

Images/cinvestav.jpg

Finally, we can see a tree as

Formal, Equation

T (x|Θ) =
J∑
j=1

γjI (x ∈ Rj)

Θ = {Rj , γj}Jj=1

Then, we have the following Loss function for Θ

L (xi, γj |Θ) = I [yi 6= γj]

6 / 65

Images/cinvestav.jpg

This is a problem

We have an Empirical Risk used to obtain the parameters

Θ̂ = arg min
Θ

J∑
j=1

∑
xi∈Rj

L (xi, γj |Θ)

This is a combinatorial problem
This can be quite difficult to solve

7 / 65

Images/cinvestav.jpg

This is a problem

We have an Empirical Risk used to obtain the parameters

Θ̂ = arg min
Θ

J∑
j=1

∑
xi∈Rj

L (xi, γj |Θ)

This is a combinatorial problem
This can be quite difficult to solve

7 / 65

Images/cinvestav.jpg

We can solve it, if ...

Finding Rj

Note also that finding the Rj entails estimating also γj .

Normally, for this type of problems we use given that they are
NP-Complete

Recursive Branch and Bound algorithms

8 / 65

Images/cinvestav.jpg

We can solve it, if ...

Finding Rj

Note also that finding the Rj entails estimating also γj .

Normally, for this type of problems we use given that they are
NP-Complete

Recursive Branch and Bound algorithms

8 / 65

Images/cinvestav.jpg

Pseudo-code for Branch-and-Bound

We have
BRANCH-AND-BOUND(P0)

1 Start with some problem P0

2 Let S = {P0}, the set if active subproblems
3 bestsofar=∞
4 While S 6= ∅
5 choose a subproblem (Partial Solution) P ∈ S and remove it from S
6 expand it into smaller subproblems P1, P2, ..., Pk

7 For each Pi
8 if Pi is a complete solution:
9 update bestsofar
10 else
11 if lowerbound(Pi) <bestsofar: add Pi to S
12 return bestsofar

9 / 65

Images/cinvestav.jpg

Pseudo-code for Branch-and-Bound

We have
BRANCH-AND-BOUND(P0)

1 Start with some problem P0

2 Let S = {P0}, the set if active subproblems
3 bestsofar=∞
4 While S 6= ∅
5 choose a subproblem (Partial Solution) P ∈ S and remove it from S
6 expand it into smaller subproblems P1, P2, ..., Pk

7 For each Pi
8 if Pi is a complete solution:
9 update bestsofar
10 else
11 if lowerbound(Pi) <bestsofar: add Pi to S
12 return bestsofar

9 / 65

Images/cinvestav.jpg

Pseudo-code for Branch-and-Bound

We have
BRANCH-AND-BOUND(P0)

1 Start with some problem P0

2 Let S = {P0}, the set if active subproblems
3 bestsofar=∞
4 While S 6= ∅
5 choose a subproblem (Partial Solution) P ∈ S and remove it from S
6 expand it into smaller subproblems P1, P2, ..., Pk

7 For each Pi
8 if Pi is a complete solution:
9 update bestsofar
10 else
11 if lowerbound(Pi) <bestsofar: add Pi to S
12 return bestsofar

9 / 65

Images/cinvestav.jpg

Pseudo-code for Branch-and-Bound

We have
BRANCH-AND-BOUND(P0)

1 Start with some problem P0

2 Let S = {P0}, the set if active subproblems
3 bestsofar=∞
4 While S 6= ∅
5 choose a subproblem (Partial Solution) P ∈ S and remove it from S
6 expand it into smaller subproblems P1, P2, ..., Pk

7 For each Pi
8 if Pi is a complete solution:
9 update bestsofar
10 else
11 if lowerbound(Pi) <bestsofar: add Pi to S
12 return bestsofar

9 / 65

Images/cinvestav.jpg

Pseudo-code for Branch-and-Bound

We have
BRANCH-AND-BOUND(P0)

1 Start with some problem P0

2 Let S = {P0}, the set if active subproblems
3 bestsofar=∞
4 While S 6= ∅
5 choose a subproblem (Partial Solution) P ∈ S and remove it from S
6 expand it into smaller subproblems P1, P2, ..., Pk

7 For each Pi
8 if Pi is a complete solution:
9 update bestsofar
10 else
11 if lowerbound(Pi) <bestsofar: add Pi to S
12 return bestsofar

9 / 65

Images/cinvestav.jpg

Outline

1 Boosting Trees
Introduction
Cost Functions for Trees
Using a Smoother Version
Boosted Tree Model
AdaBoost for Classification Trees
Numerical Optimization via Gradient Boosting

2 XGBoost
Introduction
Cost Function
Solving some Issues
Taylor Expansion
Split Finding Algorithms
Generic Approximated Version

3 Random Forest
Introduction
From Bootstrap to Random Forest

10 / 65

Images/cinvestav.jpg

Therefore

We use a smoother criterion that the one by I [yi 6= γj]

Θ̃ = arg min
Θ

N∑
i=1

L̃ (T (xi|Θ) , yi|Θ)

Here, we encounter a problem
Given Rj , How do we estimate γj?

Here, we do the following
γ̂j = yj , the mean of the yi falling in the region Rj .

11 / 65

Images/cinvestav.jpg

Therefore

We use a smoother criterion that the one by I [yi 6= γj]

Θ̃ = arg min
Θ

N∑
i=1

L̃ (T (xi|Θ) , yi|Θ)

Here, we encounter a problem
Given Rj , How do we estimate γj?

Here, we do the following
γ̂j = yj , the mean of the yi falling in the region Rj .

11 / 65

Images/cinvestav.jpg

Therefore

We use a smoother criterion that the one by I [yi 6= γj]

Θ̃ = arg min
Θ

N∑
i=1

L̃ (T (xi|Θ) , yi|Θ)

Here, we encounter a problem
Given Rj , How do we estimate γj?

Here, we do the following
γ̂j = yj , the mean of the yi falling in the region Rj .

11 / 65

Images/cinvestav.jpg

Therefore

For misclassification loss
γ̂j is the modal class of the observations falling in Rj .

How do we estimate Rj

We can use Gini or Shannon Entropy...

12 / 65

Images/cinvestav.jpg

Therefore

For misclassification loss
γ̂j is the modal class of the observations falling in Rj .

How do we estimate Rj

We can use Gini or Shannon Entropy...

12 / 65

Images/cinvestav.jpg

Outline

1 Boosting Trees
Introduction
Cost Functions for Trees
Using a Smoother Version
Boosted Tree Model
AdaBoost for Classification Trees
Numerical Optimization via Gradient Boosting

2 XGBoost
Introduction
Cost Function
Solving some Issues
Taylor Expansion
Split Finding Algorithms
Generic Approximated Version

3 Random Forest
Introduction
From Bootstrap to Random Forest

13 / 65

Images/cinvestav.jpg

We are ready to define

The Boosted tree model is a sum of such trees

fM (x) =
N∑
i=1

T (x|Θm)

This comes from the Boosting classic cost function

C (xi) = α1y1 (xi) + α2y2 (xi) + ...+ αMyM (xi) (1)

14 / 65

Images/cinvestav.jpg

We are ready to define

The Boosted tree model is a sum of such trees

fM (x) =
N∑
i=1

T (x|Θm)

This comes from the Boosting classic cost function

C (xi) = α1y1 (xi) + α2y2 (xi) + ...+ αMyM (xi) (1)

14 / 65

Images/cinvestav.jpg

Thus, at each stage

We need to solve the following cost function

Θ̂ = arg min
Θm

N∑
i=1

L (yi, fm−1 (xi) + T (xi|Θm))

For the region set and constants Θm = {Rjm, γjm}Jmj=1

Of the next tree give the previous model fm−1 (xi)

15 / 65

Images/cinvestav.jpg

Thus, at each stage

We need to solve the following cost function

Θ̂ = arg min
Θm

N∑
i=1

L (yi, fm−1 (xi) + T (xi|Θm))

For the region set and constants Θm = {Rjm, γjm}Jmj=1

Of the next tree give the previous model fm−1 (xi)

15 / 65

Images/cinvestav.jpg

This can be solved by

Forward Stage-wise Additive Modeling.
1 Init f0 = 0
2 For m = 1 to M :
3 Compute

(βm, γm) = arg minβ,γ
∑N
i=1 L (yi, fm−1 (xi) + βb (xi|γ))

4 Set fm (x) = fm (x)

Here b (xi|γ) simple functions of the multivariate argument x.

16 / 65

Images/cinvestav.jpg

Now

Given the regions Rjm

γ̂jm = arg min
γjm

∑
xi∈Rjm

L (yi, fm−1 (xi) + γjm)

Nevertheless, finding the regions can be difficult
For a few special cases, the problem simplifies.

17 / 65

Images/cinvestav.jpg

Now

Given the regions Rjm

γ̂jm = arg min
γjm

∑
xi∈Rjm

L (yi, fm−1 (xi) + γjm)

Nevertheless, finding the regions can be difficult
For a few special cases, the problem simplifies.

17 / 65

Images/cinvestav.jpg

Outline

1 Boosting Trees
Introduction
Cost Functions for Trees
Using a Smoother Version
Boosted Tree Model
AdaBoost for Classification Trees
Numerical Optimization via Gradient Boosting

2 XGBoost
Introduction
Cost Function
Solving some Issues
Taylor Expansion
Split Finding Algorithms
Generic Approximated Version

3 Random Forest
Introduction
From Bootstrap to Random Forest

18 / 65

Images/cinvestav.jpg

We can use AdaBoost

We can use the exponential Loss

Θ̂m = arg min
Θm

N∑
i=1

w
(m)
i exp {−yiT (|Θm)}

Now, we have a conundrum
We can decide to use a Robust Loss function

I Absolute Error, the Huber loss

This will be make our life quite difficult
Therefore, we opt for loss functions that can simplify our algorithms

19 / 65

Images/cinvestav.jpg

We can use AdaBoost

We can use the exponential Loss

Θ̂m = arg min
Θm

N∑
i=1

w
(m)
i exp {−yiT (|Θm)}

Now, we have a conundrum
We can decide to use a Robust Loss function

I Absolute Error, the Huber loss

This will be make our life quite difficult
Therefore, we opt for loss functions that can simplify our algorithms

19 / 65

Images/cinvestav.jpg

We can use AdaBoost

We can use the exponential Loss

Θ̂m = arg min
Θm

N∑
i=1

w
(m)
i exp {−yiT (|Θm)}

Now, we have a conundrum
We can decide to use a Robust Loss function

I Absolute Error, the Huber loss

This will be make our life quite difficult
Therefore, we opt for loss functions that can simplify our algorithms

19 / 65

Images/cinvestav.jpg

Outline

1 Boosting Trees
Introduction
Cost Functions for Trees
Using a Smoother Version
Boosted Tree Model
AdaBoost for Classification Trees
Numerical Optimization via Gradient Boosting

2 XGBoost
Introduction
Cost Function
Solving some Issues
Taylor Expansion
Split Finding Algorithms
Generic Approximated Version

3 Random Forest
Introduction
From Bootstrap to Random Forest

20 / 65

Images/cinvestav.jpg

Therefore

We have the following loss function

L (f) =
N∑
i=1

L (yi, f (xi))

Minimizing can be viewed as a numerical optimization

f̂ = arg min
f
L (f)

Where

f = {f (x1) , f (x2) , ..., f (xN)}

21 / 65

Images/cinvestav.jpg

Therefore

We have the following loss function

L (f) =
N∑
i=1

L (yi, f (xi))

Minimizing can be viewed as a numerical optimization

f̂ = arg min
f
L (f)

Where

f = {f (x1) , f (x2) , ..., f (xN)}

21 / 65

Images/cinvestav.jpg

Therefore

We have the following loss function

L (f) =
N∑
i=1

L (yi, f (xi))

Minimizing can be viewed as a numerical optimization

f̂ = arg min
f
L (f)

Where

f = {f (x1) , f (x2) , ..., f (xN)}

21 / 65

Images/cinvestav.jpg

Thus, we have

As a Solution, we have a sum of component vectors

fM =
M∑
m=0

hm, hm ∈ RN

Thus, we select
hm = −ρmgm where ρm is a scalar and gm ∈ RN is the gradient of

L (f) =
N∑
i=1

L (yi,f (xi))

I Evaluated at f = fm−1

22 / 65

Images/cinvestav.jpg

Thus, we have

As a Solution, we have a sum of component vectors

fM =
M∑
m=0

hm, hm ∈ RN

Thus, we select
hm = −ρmgm where ρm is a scalar and gm ∈ RN is the gradient of

L (f) =
N∑
i=1

L (yi,f (xi))

I Evaluated at f = fm−1

22 / 65

Images/cinvestav.jpg

Then

The components

gim = ∂L (yi,f (xi))
∂f (xi)

|f(xi)=fm−1(xi)

Where

ρm = arg min
ρ
L
(
fm−1 − ρgm

)
Then, we have the classic Gradient Descent

fm = fm−1 − ρmgm

23 / 65

Images/cinvestav.jpg

Then

The components

gim = ∂L (yi,f (xi))
∂f (xi)

|f(xi)=fm−1(xi)

Where

ρm = arg min
ρ
L
(
fm−1 − ρgm

)
Then, we have the classic Gradient Descent

fm = fm−1 − ρmgm

23 / 65

Images/cinvestav.jpg

Then

The components

gim = ∂L (yi,f (xi))
∂f (xi)

|f(xi)=fm−1(xi)

Where

ρm = arg min
ρ
L
(
fm−1 − ρgm

)
Then, we have the classic Gradient Descent

fm = fm−1 − ρmgm

23 / 65

Images/cinvestav.jpg

Therefore

We have the following Gradients for some common Loss functions
Setting Loss Function Gradient −∂L(yi,f(xi))/∂f(xi)

Regression 1
2 [yi − f (xi)]2 yi − f (xi)

Regression |yi − f (xi)| sign [yi − f (xi)]
Classification −

∑K
k=1 log pk (xi) kth component I (y = Gk)− pk (xi)

24 / 65

Images/cinvestav.jpg

Final Algorithm

Gradient Tree Boosting Algorithm
1 f0 (x) = arg minγ

∑N

i=1 L (yi, γ)

2 For m = 1 to M :
I For i = 1, 2, ..., N compute:

rim =
∂L (yi, f (xi))

∂f (xi)
|f(xi)=fm−1(xi)

I Fit a regression tree to the targets rim giving terminal regions Rmj j = 1, 2, ..., Jm
I For j = 1, 2, ..., Jm compute

γjm = arg min
γ

∑
xi∈Rjm

L (yi, fm−1 (xi) + γ)

I Update fm (x) = fm−1 (x) +
∑Jm

j=1 γjmI (x ∈ Rjm)

3 Output f̂ (x) = fM (x)

25 / 65

Images/cinvestav.jpg

Final Algorithm

Gradient Tree Boosting Algorithm
1 f0 (x) = arg minγ

∑N

i=1 L (yi, γ)

2 For m = 1 to M :
I For i = 1, 2, ..., N compute:

rim =
∂L (yi, f (xi))

∂f (xi)
|f(xi)=fm−1(xi)

I Fit a regression tree to the targets rim giving terminal regions Rmj j = 1, 2, ..., Jm
I For j = 1, 2, ..., Jm compute

γjm = arg min
γ

∑
xi∈Rjm

L (yi, fm−1 (xi) + γ)

I Update fm (x) = fm−1 (x) +
∑Jm

j=1 γjmI (x ∈ Rjm)

3 Output f̂ (x) = fM (x)

25 / 65

Images/cinvestav.jpg

Final Algorithm

Gradient Tree Boosting Algorithm
1 f0 (x) = arg minγ

∑N

i=1 L (yi, γ)

2 For m = 1 to M :
I For i = 1, 2, ..., N compute:

rim =
∂L (yi, f (xi))

∂f (xi)
|f(xi)=fm−1(xi)

I Fit a regression tree to the targets rim giving terminal regions Rmj j = 1, 2, ..., Jm
I For j = 1, 2, ..., Jm compute

γjm = arg min
γ

∑
xi∈Rjm

L (yi, fm−1 (xi) + γ)

I Update fm (x) = fm−1 (x) +
∑Jm

j=1 γjmI (x ∈ Rjm)

3 Output f̂ (x) = fM (x)

25 / 65

Images/cinvestav.jpg

Final Algorithm

Gradient Tree Boosting Algorithm
1 f0 (x) = arg minγ

∑N

i=1 L (yi, γ)

2 For m = 1 to M :
I For i = 1, 2, ..., N compute:

rim =
∂L (yi, f (xi))

∂f (xi)
|f(xi)=fm−1(xi)

I Fit a regression tree to the targets rim giving terminal regions Rmj j = 1, 2, ..., Jm
I For j = 1, 2, ..., Jm compute

γjm = arg min
γ

∑
xi∈Rjm

L (yi, fm−1 (xi) + γ)

I Update fm (x) = fm−1 (x) +
∑Jm

j=1 γjmI (x ∈ Rjm)

3 Output f̂ (x) = fM (x)

25 / 65

Images/cinvestav.jpg

Final Algorithm

Gradient Tree Boosting Algorithm
1 f0 (x) = arg minγ

∑N

i=1 L (yi, γ)

2 For m = 1 to M :
I For i = 1, 2, ..., N compute:

rim =
∂L (yi, f (xi))

∂f (xi)
|f(xi)=fm−1(xi)

I Fit a regression tree to the targets rim giving terminal regions Rmj j = 1, 2, ..., Jm
I For j = 1, 2, ..., Jm compute

γjm = arg min
γ

∑
xi∈Rjm

L (yi, fm−1 (xi) + γ)

I Update fm (x) = fm−1 (x) +
∑Jm

j=1 γjmI (x ∈ Rjm)

3 Output f̂ (x) = fM (x)

25 / 65

Images/cinvestav.jpg

Final Algorithm

Gradient Tree Boosting Algorithm
1 f0 (x) = arg minγ

∑N

i=1 L (yi, γ)

2 For m = 1 to M :
I For i = 1, 2, ..., N compute:

rim =
∂L (yi, f (xi))

∂f (xi)
|f(xi)=fm−1(xi)

I Fit a regression tree to the targets rim giving terminal regions Rmj j = 1, 2, ..., Jm
I For j = 1, 2, ..., Jm compute

γjm = arg min
γ

∑
xi∈Rjm

L (yi, fm−1 (xi) + γ)

I Update fm (x) = fm−1 (x) +
∑Jm

j=1 γjmI (x ∈ Rjm)

3 Output f̂ (x) = fM (x)

25 / 65

Images/cinvestav.jpg

Final Algorithm

Gradient Tree Boosting Algorithm
1 f0 (x) = arg minγ

∑N

i=1 L (yi, γ)

2 For m = 1 to M :
I For i = 1, 2, ..., N compute:

rim =
∂L (yi, f (xi))

∂f (xi)
|f(xi)=fm−1(xi)

I Fit a regression tree to the targets rim giving terminal regions Rmj j = 1, 2, ..., Jm
I For j = 1, 2, ..., Jm compute

γjm = arg min
γ

∑
xi∈Rjm

L (yi, fm−1 (xi) + γ)

I Update fm (x) = fm−1 (x) +
∑Jm

j=1 γjmI (x ∈ Rjm)

3 Output f̂ (x) = fM (x)

25 / 65

Images/cinvestav.jpg

How do we get the Right size for the Trees

We could see this as a separated procedure
A very large (oversized) tree is first induced,

I A bottom-up procedure is employed to prune it to the estimated
optimal number of terminal nodes.

Problem
The first trees are too Large, reducing performance...

26 / 65

Images/cinvestav.jpg

How do we get the Right size for the Trees

We could see this as a separated procedure
A very large (oversized) tree is first induced,

I A bottom-up procedure is employed to prune it to the estimated
optimal number of terminal nodes.

Problem
The first trees are too Large, reducing performance...

26 / 65

Images/cinvestav.jpg

We can do better

We can restrict the trees to have the same size on the number of
Terminal Regions

Jm = J ∀m

At each iteration a J-terminal node regression tree is induced.

Therefore
Thus J becomes a meta-parameter of the entire boosting procedure.

27 / 65

Images/cinvestav.jpg

We can do better

We can restrict the trees to have the same size on the number of
Terminal Regions

Jm = J ∀m

At each iteration a J-terminal node regression tree is induced.

Therefore
Thus J becomes a meta-parameter of the entire boosting procedure.

27 / 65

Images/cinvestav.jpg

What about M the number of trees

Another parameter to estimate
The other meta-parameter of gradient boosting is the number of
boosting iterations M .

Here, a problem is that a Large M
It is clear that the Empirical Risk is reduced at each iteration.

A Large M can lead to Overfitting
A convenient way to estimate M∗ is to monitor prediction risk as a
function of M on a validation sample.

I Other Techniques are Shrinkage and Subsampling

28 / 65

Images/cinvestav.jpg

What about M the number of trees

Another parameter to estimate
The other meta-parameter of gradient boosting is the number of
boosting iterations M .

Here, a problem is that a Large M
It is clear that the Empirical Risk is reduced at each iteration.

A Large M can lead to Overfitting
A convenient way to estimate M∗ is to monitor prediction risk as a
function of M on a validation sample.

I Other Techniques are Shrinkage and Subsampling

28 / 65

Images/cinvestav.jpg

What about M the number of trees

Another parameter to estimate
The other meta-parameter of gradient boosting is the number of
boosting iterations M .

Here, a problem is that a Large M
It is clear that the Empirical Risk is reduced at each iteration.

A Large M can lead to Overfitting
A convenient way to estimate M∗ is to monitor prediction risk as a
function of M on a validation sample.

I Other Techniques are Shrinkage and Subsampling

28 / 65

Images/cinvestav.jpg

For More on this

Take a Look at
The Elements of Statistical Learning by Hastie et al. Chapter 10.11
and 10.12

29 / 65

Images/cinvestav.jpg

In the Case of Shrinkage

Instead of using

fm (x) = fm−1 (x) +
Jm∑
j=1

γjmI (x ∈ Rjm)

We modify by a parameter ν

fm (x) = fm−1 (x) + ν
Jm∑
j=1

γjmI (x ∈ Rjm)

The parameter ν is controlling the learning rate of the boosting
procedure.

Smaller values of ν (more shrinkage) result in larger training risk for
the same number of iterations M .

30 / 65

Images/cinvestav.jpg

In the Case of Shrinkage

Instead of using

fm (x) = fm−1 (x) +
Jm∑
j=1

γjmI (x ∈ Rjm)

We modify by a parameter ν

fm (x) = fm−1 (x) + ν
Jm∑
j=1

γjmI (x ∈ Rjm)

The parameter ν is controlling the learning rate of the boosting
procedure.

Smaller values of ν (more shrinkage) result in larger training risk for
the same number of iterations M .

30 / 65

Images/cinvestav.jpg

In the Case of Shrinkage

Instead of using

fm (x) = fm−1 (x) +
Jm∑
j=1

γjmI (x ∈ Rjm)

We modify by a parameter ν

fm (x) = fm−1 (x) + ν
Jm∑
j=1

γjmI (x ∈ Rjm)

The parameter ν is controlling the learning rate of the boosting
procedure.

Smaller values of ν (more shrinkage) result in larger training risk for
the same number of iterations M .

30 / 65

Images/cinvestav.jpg

Outline

1 Boosting Trees
Introduction
Cost Functions for Trees
Using a Smoother Version
Boosted Tree Model
AdaBoost for Classification Trees
Numerical Optimization via Gradient Boosting

2 XGBoost
Introduction
Cost Function
Solving some Issues
Taylor Expansion
Split Finding Algorithms
Generic Approximated Version

3 Random Forest
Introduction
From Bootstrap to Random Forest

31 / 65

Images/cinvestav.jpg

A Popular Algorithm

It has been a winner 29 Kaggle challenges (2015)
17 solutions used XGBoost.

As solely algorithm
Or with a combination of neural network algorithms as ensembles
method.

32 / 65

Images/cinvestav.jpg

A Popular Algorithm

It has been a winner 29 Kaggle challenges (2015)
17 solutions used XGBoost.

As solely algorithm
Or with a combination of neural network algorithms as ensembles
method.

32 / 65

Images/cinvestav.jpg

Ensemble Learning

Definition
In statistics and machine learning, ensemble methods use multiple
learning algorithms to obtain

Basically
1 Bootstrap aggregating (bagging)
2 Boosting
3 Bayesian parameter averaging
4 Bayesian model combination
5 etc

33 / 65

Images/cinvestav.jpg

Ensemble Learning

Definition
In statistics and machine learning, ensemble methods use multiple
learning algorithms to obtain

Basically
1 Bootstrap aggregating (bagging)
2 Boosting
3 Bayesian parameter averaging
4 Bayesian model combination
5 etc

33 / 65

Images/cinvestav.jpg

Outline

1 Boosting Trees
Introduction
Cost Functions for Trees
Using a Smoother Version
Boosted Tree Model
AdaBoost for Classification Trees
Numerical Optimization via Gradient Boosting

2 XGBoost
Introduction
Cost Function
Solving some Issues
Taylor Expansion
Split Finding Algorithms
Generic Approximated Version

3 Random Forest
Introduction
From Bootstrap to Random Forest

34 / 65

Images/cinvestav.jpg

Cost Function Ensemble

For a given data set

D = {(xi, yi) | |D| = N,xi ∈ Rm, yi ∈ R}

A Tree Ensemble model

ŷi = φ (xi) =
K∑
k=1

fk (xi)

Where, the space of regression trees (CART)

F =
{
fk (x) = wq(x)

}(
q : Rm → T,w ∈ RT

)

35 / 65

Images/cinvestav.jpg

Cost Function Ensemble

For a given data set

D = {(xi, yi) | |D| = N,xi ∈ Rm, yi ∈ R}

A Tree Ensemble model

ŷi = φ (xi) =
K∑
k=1

fk (xi)

Where, the space of regression trees (CART)

F =
{
fk (x) = wq(x)

}(
q : Rm → T,w ∈ RT

)

35 / 65

Images/cinvestav.jpg

Cost Function Ensemble

For a given data set

D = {(xi, yi) | |D| = N,xi ∈ Rm, yi ∈ R}

A Tree Ensemble model

ŷi = φ (xi) =
K∑
k=1

fk (xi)

Where, the space of regression trees (CART)

F =
{
fk (x) = wq(x)

}(
q : Rm → T,w ∈ RT

)

35 / 65

Images/cinvestav.jpg

Remarks

q : Rm → T,w ∈ RT

q represents the structure of a tree that maps an example to the
corresponding leaf index.
T is the number of leaves in the tree.
Each fk corresponds to an independent tree structure q and leaf
weights w.

Something Notable
Unlike decision trees, each regression tree contains a continuous rank
on each of the leaf.

For this
we use wi to represent score on ith leaf.

36 / 65

Images/cinvestav.jpg

Remarks

q : Rm → T,w ∈ RT

q represents the structure of a tree that maps an example to the
corresponding leaf index.
T is the number of leaves in the tree.
Each fk corresponds to an independent tree structure q and leaf
weights w.

Something Notable
Unlike decision trees, each regression tree contains a continuous rank
on each of the leaf.

For this
we use wi to represent score on ith leaf.

36 / 65

Images/cinvestav.jpg

Remarks

q : Rm → T,w ∈ RT

q represents the structure of a tree that maps an example to the
corresponding leaf index.
T is the number of leaves in the tree.
Each fk corresponds to an independent tree structure q and leaf
weights w.

Something Notable
Unlike decision trees, each regression tree contains a continuous rank
on each of the leaf.

For this
we use wi to represent score on ith leaf.

36 / 65

Images/cinvestav.jpg

Remarks

q : Rm → T,w ∈ RT

q represents the structure of a tree that maps an example to the
corresponding leaf index.
T is the number of leaves in the tree.
Each fk corresponds to an independent tree structure q and leaf
weights w.

Something Notable
Unlike decision trees, each regression tree contains a continuous rank
on each of the leaf.

For this
we use wi to represent score on ith leaf.

36 / 65

Images/cinvestav.jpg

Remarks

q : Rm → T,w ∈ RT

q represents the structure of a tree that maps an example to the
corresponding leaf index.
T is the number of leaves in the tree.
Each fk corresponds to an independent tree structure q and leaf
weights w.

Something Notable
Unlike decision trees, each regression tree contains a continuous rank
on each of the leaf.

For this
we use wi to represent score on ith leaf.

36 / 65

Images/cinvestav.jpg

Final Cost Function

XGBoost minimize the following function

L (φ) =
∑
i

l (ŷi, yi) +
∑
k

Ω (fk)

whre Ω (f) =γT + 1
2λ ‖w‖

2

Remarks
l is a differentiable convex loss function.
Ω penalize the complexity of the regression tree.
1
2λ ‖w‖

2 helps to smooth the final learned weights to avoid
over-fitting.

37 / 65

Images/cinvestav.jpg

Final Cost Function

XGBoost minimize the following function

L (φ) =
∑
i

l (ŷi, yi) +
∑
k

Ω (fk)

whre Ω (f) =γT + 1
2λ ‖w‖

2

Remarks
l is a differentiable convex loss function.
Ω penalize the complexity of the regression tree.
1
2λ ‖w‖

2 helps to smooth the final learned weights to avoid
over-fitting.

37 / 65

Images/cinvestav.jpg

Outline

1 Boosting Trees
Introduction
Cost Functions for Trees
Using a Smoother Version
Boosted Tree Model
AdaBoost for Classification Trees
Numerical Optimization via Gradient Boosting

2 XGBoost
Introduction
Cost Function
Solving some Issues
Taylor Expansion
Split Finding Algorithms
Generic Approximated Version

3 Random Forest
Introduction
From Bootstrap to Random Forest

38 / 65

Images/cinvestav.jpg

Optimizing in an Additive Manner

For this, the model is trained in an additive manner
Given ŷ(t)

i be the prediction of the ith instance at the tth iteration,

We rewrite the cost function as

L(t) (φ) =
∑
i

l
(
ŷ

(t−1)
i + ft (xi) , yi

)
+ Ω (ft)

This means we greedily add the ft that most improves our model.

39 / 65

Images/cinvestav.jpg

Optimizing in an Additive Manner

For this, the model is trained in an additive manner
Given ŷ(t)

i be the prediction of the ith instance at the tth iteration,

We rewrite the cost function as

L(t) (φ) =
∑
i

l
(
ŷ

(t−1)
i + ft (xi) , yi

)
+ Ω (ft)

This means we greedily add the ft that most improves our model.

39 / 65

Images/cinvestav.jpg

Then, we can use the Taylor Second Optimization

Second-order approximation

L(t) '
N∑
i=1

[
l
(
ŷ

(t−1)
i , yi

)
+ gift (xi) + 1

2hif
2
t (xi)

]
+ Ω (ft)

Where
gi = ∂ŷ(t−1) l

(
ŷ

(t−1)
i , yi

)
and hi = ∂2

ŷ(t−1) l
(
ŷ

(t−1)
i , yi

)

40 / 65

Images/cinvestav.jpg

Then, we can use the Taylor Second Optimization

Second-order approximation

L(t) '
N∑
i=1

[
l
(
ŷ

(t−1)
i , yi

)
+ gift (xi) + 1

2hif
2
t (xi)

]
+ Ω (ft)

Where
gi = ∂ŷ(t−1) l

(
ŷ

(t−1)
i , yi

)
and hi = ∂2

ŷ(t−1) l
(
ŷ

(t−1)
i , yi

)

40 / 65

Images/cinvestav.jpg

Outline

1 Boosting Trees
Introduction
Cost Functions for Trees
Using a Smoother Version
Boosted Tree Model
AdaBoost for Classification Trees
Numerical Optimization via Gradient Boosting

2 XGBoost
Introduction
Cost Function
Solving some Issues
Taylor Expansion
Split Finding Algorithms
Generic Approximated Version

3 Random Forest
Introduction
From Bootstrap to Random Forest

41 / 65

Images/cinvestav.jpg

Furthermore

We have the following cost function after removing constant terms

L(t) '
N∑
i=1

[
gift (xi) + 1

2hif
2
t (xi)

]
+ Ω (ft)

Which can be expanded by defining Ij = {i|q (xi) = j}

L(t) =
N∑
i=1

[
gift (xi) + 1

2hif
2
t (xi)

]
+ γT + 1

2λ
T∑
j=1

w2
j

=
T∑
j=1

∑
i∈Ij

gi

wj + 1
2

∑
i∈Ij

hi + λ

w2
j

+ λT

42 / 65

Images/cinvestav.jpg

Furthermore

We have the following cost function after removing constant terms

L(t) '
N∑
i=1

[
gift (xi) + 1

2hif
2
t (xi)

]
+ Ω (ft)

Which can be expanded by defining Ij = {i|q (xi) = j}

L(t) =
N∑
i=1

[
gift (xi) + 1

2hif
2
t (xi)

]
+ γT + 1

2λ
T∑
j=1

w2
j

=
T∑
j=1

∑
i∈Ij

gi

wj + 1
2

∑
i∈Ij

hi + λ

w2
j

+ λT

42 / 65

Images/cinvestav.jpg

Then, for a fixed structure q (x)

we can compute the optimal weight for a leaf

w∗j = −
∑
i∈Ij gi∑

i∈Ij hi + λ

Additionally, we can use the following function to score the structure
of q

L(t) (q) = −1
2

T∑
j=1

(∑
i∈Ij gi

)2

∑
i∈Ij hi + λ

+ γT

43 / 65

Images/cinvestav.jpg

Then, for a fixed structure q (x)

we can compute the optimal weight for a leaf

w∗j = −
∑
i∈Ij gi∑

i∈Ij hi + λ

Additionally, we can use the following function to score the structure
of q

L(t) (q) = −1
2

T∑
j=1

(∑
i∈Ij gi

)2

∑
i∈Ij hi + λ

+ γT

43 / 65

Images/cinvestav.jpg

Remarks

The previous equations can be used
As a scoring function to measure the quality of a tree structure q

Something Notable
This score is like the impurity score for evaluating decision trees

44 / 65

Images/cinvestav.jpg

Remarks

The previous equations can be used
As a scoring function to measure the quality of a tree structure q

Something Notable
This score is like the impurity score for evaluating decision trees

44 / 65

Images/cinvestav.jpg

However

Something Notable
Normally, it is impossible to enumerate all the possible tree structures
q.

Therefore
A greedy algorithm that starts from a single leaf and iteratively adds
branches to the tree is used instead.

Letting I = IL ∪ IR, then the reduction is given by

Lsplit = 1
2


(∑

i∈IL gi
)2

∑
i∈IL hi + λ

+

(∑
i∈IR gi

)2

∑
i∈IR hi + λ

− (
∑
i∈I gi)

2∑
i∈I hi + λ

− γ

45 / 65

Images/cinvestav.jpg

However

Something Notable
Normally, it is impossible to enumerate all the possible tree structures
q.

Therefore
A greedy algorithm that starts from a single leaf and iteratively adds
branches to the tree is used instead.

Letting I = IL ∪ IR, then the reduction is given by

Lsplit = 1
2


(∑

i∈IL gi
)2

∑
i∈IL hi + λ

+

(∑
i∈IR gi

)2

∑
i∈IR hi + λ

− (
∑
i∈I gi)

2∑
i∈I hi + λ

− γ

45 / 65

Images/cinvestav.jpg

However

Something Notable
Normally, it is impossible to enumerate all the possible tree structures
q.

Therefore
A greedy algorithm that starts from a single leaf and iteratively adds
branches to the tree is used instead.

Letting I = IL ∪ IR, then the reduction is given by

Lsplit = 1
2


(∑

i∈IL gi
)2

∑
i∈IL hi + λ

+

(∑
i∈IR gi

)2

∑
i∈IR hi + λ

− (
∑
i∈I gi)

2∑
i∈I hi + λ

− γ

45 / 65

Images/cinvestav.jpg

Outline

1 Boosting Trees
Introduction
Cost Functions for Trees
Using a Smoother Version
Boosted Tree Model
AdaBoost for Classification Trees
Numerical Optimization via Gradient Boosting

2 XGBoost
Introduction
Cost Function
Solving some Issues
Taylor Expansion
Split Finding Algorithms
Generic Approximated Version

3 Random Forest
Introduction
From Bootstrap to Random Forest

46 / 65

Images/cinvestav.jpg

Basic Exact Greedy Algorithm

A Big Problem
One of the key problems in tree learning is to find the best split by

Lsplit

In order to do generate these splits
A split finding algorithm enumerates over all the possible splits on all
the features

47 / 65

Images/cinvestav.jpg

Basic Exact Greedy Algorithm

A Big Problem
One of the key problems in tree learning is to find the best split by

Lsplit

In order to do generate these splits
A split finding algorithm enumerates over all the possible splits on all
the features

47 / 65

Images/cinvestav.jpg

Example, Exact Greedy Algorithm

Something Notable
1 Input: I, instance set of current node

2 Input: m, feature dimension

3 gain = 0

4 G =
∑

i∈I gi and H =
∑

i∈I hi

5 for k = 1 to m do:

6 GL = 0 and HL = 0
7 for j in sorted

(
I, by xjk

)
do

8 GL = GL + gj , HL = HL + hj .
9 GR = G−GL, HR = H −HL.

10 score = max
{
score,

G2
L

HL+λ + G2
R

HR+λ −
G2

H+λ

}
11 Output: Split with Max Score

48 / 65

Images/cinvestav.jpg

Example, Exact Greedy Algorithm

Something Notable
1 Input: I, instance set of current node

2 Input: m, feature dimension

3 gain = 0

4 G =
∑

i∈I gi and H =
∑

i∈I hi

5 for k = 1 to m do:

6 GL = 0 and HL = 0
7 for j in sorted

(
I, by xjk

)
do

8 GL = GL + gj , HL = HL + hj .
9 GR = G−GL, HR = H −HL.

10 score = max
{
score,

G2
L

HL+λ + G2
R

HR+λ −
G2

H+λ

}
11 Output: Split with Max Score

48 / 65

Images/cinvestav.jpg

Example, Exact Greedy Algorithm

Something Notable
1 Input: I, instance set of current node

2 Input: m, feature dimension

3 gain = 0

4 G =
∑

i∈I gi and H =
∑

i∈I hi

5 for k = 1 to m do:

6 GL = 0 and HL = 0
7 for j in sorted

(
I, by xjk

)
do

8 GL = GL + gj , HL = HL + hj .
9 GR = G−GL, HR = H −HL.

10 score = max
{
score,

G2
L

HL+λ + G2
R

HR+λ −
G2

H+λ

}
11 Output: Split with Max Score

48 / 65

Images/cinvestav.jpg

Example, Exact Greedy Algorithm

Something Notable
1 Input: I, instance set of current node

2 Input: m, feature dimension

3 gain = 0

4 G =
∑

i∈I gi and H =
∑

i∈I hi

5 for k = 1 to m do:

6 GL = 0 and HL = 0
7 for j in sorted

(
I, by xjk

)
do

8 GL = GL + gj , HL = HL + hj .
9 GR = G−GL, HR = H −HL.

10 score = max
{
score,

G2
L

HL+λ + G2
R

HR+λ −
G2

H+λ

}
11 Output: Split with Max Score

48 / 65

Images/cinvestav.jpg

Example, Exact Greedy Algorithm

Something Notable
1 Input: I, instance set of current node

2 Input: m, feature dimension

3 gain = 0

4 G =
∑

i∈I gi and H =
∑

i∈I hi

5 for k = 1 to m do:

6 GL = 0 and HL = 0
7 for j in sorted

(
I, by xjk

)
do

8 GL = GL + gj , HL = HL + hj .
9 GR = G−GL, HR = H −HL.

10 score = max
{
score,

G2
L

HL+λ + G2
R

HR+λ −
G2

H+λ

}
11 Output: Split with Max Score

48 / 65

Images/cinvestav.jpg

Example, Exact Greedy Algorithm

Something Notable
1 Input: I, instance set of current node

2 Input: m, feature dimension

3 gain = 0

4 G =
∑

i∈I gi and H =
∑

i∈I hi

5 for k = 1 to m do:

6 GL = 0 and HL = 0
7 for j in sorted

(
I, by xjk

)
do

8 GL = GL + gj , HL = HL + hj .
9 GR = G−GL, HR = H −HL.

10 score = max
{
score,

G2
L

HL+λ + G2
R

HR+λ −
G2

H+λ

}
11 Output: Split with Max Score

48 / 65

Images/cinvestav.jpg

Example, Exact Greedy Algorithm

Something Notable
1 Input: I, instance set of current node

2 Input: m, feature dimension

3 gain = 0

4 G =
∑

i∈I gi and H =
∑

i∈I hi

5 for k = 1 to m do:

6 GL = 0 and HL = 0
7 for j in sorted

(
I, by xjk

)
do

8 GL = GL + gj , HL = HL + hj .
9 GR = G−GL, HR = H −HL.

10 score = max
{
score,

G2
L

HL+λ + G2
R

HR+λ −
G2

H+λ

}
11 Output: Split with Max Score

48 / 65

Images/cinvestav.jpg

Problem with this Algorithm

Quite computationally demanding
This can be improved!!!

For this
The algorithm must first sort the data according to feature values.
Then, it visits the data in sorted order to accumulate the gradient
statistics.

49 / 65

Images/cinvestav.jpg

Problem with this Algorithm

Quite computationally demanding
This can be improved!!!

For this
The algorithm must first sort the data according to feature values.
Then, it visits the data in sorted order to accumulate the gradient
statistics.

49 / 65

Images/cinvestav.jpg

Problem with this Algorithm

Quite computationally demanding
This can be improved!!!

For this
The algorithm must first sort the data according to feature values.
Then, it visits the data in sorted order to accumulate the gradient
statistics.

49 / 65

Images/cinvestav.jpg

Therefore

Better to have an approximation
Thus, people proposed the use the percentiles of feature distributions

I To find the splitting points or candidate points

Then, it maps the continuous features into buckets split by these
candidate points

Basically you could use homogeneity via the Shannon Entropy
I Or any other possible one

Aggregates the statistics on the buckets
Then, It finds the best solution based on this statistics

50 / 65

Images/cinvestav.jpg

Therefore

Better to have an approximation
Thus, people proposed the use the percentiles of feature distributions

I To find the splitting points or candidate points

Then, it maps the continuous features into buckets split by these
candidate points

Basically you could use homogeneity via the Shannon Entropy
I Or any other possible one

Aggregates the statistics on the buckets
Then, It finds the best solution based on this statistics

50 / 65

Images/cinvestav.jpg

Therefore

Better to have an approximation
Thus, people proposed the use the percentiles of feature distributions

I To find the splitting points or candidate points

Then, it maps the continuous features into buckets split by these
candidate points

Basically you could use homogeneity via the Shannon Entropy
I Or any other possible one

Aggregates the statistics on the buckets
Then, It finds the best solution based on this statistics

50 / 65

Images/cinvestav.jpg

The Two Variants for Splitting

The global variant
It proposes all the candidate splits during the initial phase of tree
construction

The local variant
The local variant re-proposes after each split!!!

51 / 65

Images/cinvestav.jpg

The Two Variants for Splitting

The global variant
It proposes all the candidate splits during the initial phase of tree
construction

The local variant
The local variant re-proposes after each split!!!

51 / 65

Images/cinvestav.jpg

Outline

1 Boosting Trees
Introduction
Cost Functions for Trees
Using a Smoother Version
Boosted Tree Model
AdaBoost for Classification Trees
Numerical Optimization via Gradient Boosting

2 XGBoost
Introduction
Cost Function
Solving some Issues
Taylor Expansion
Split Finding Algorithms
Generic Approximated Version

3 Random Forest
Introduction
From Bootstrap to Random Forest

52 / 65

Images/cinvestav.jpg

Approximate Algorithm for Split Finding

Algorithm
1 for k = 1 to m:
2 Propose Sk = by using weighted percentiles at the feature k
3 Proposal can be done per tree (global) or per split
4 for k = 1 to m:
5 Gkv =

∑
j∈{j|sk,v≥xjk>sk,v−1} gj

6 Hkv =
∑
j∈{j|sk,v≥xjk>sk,v−1} hj

53 / 65

Images/cinvestav.jpg

However

An important subject
How the Weighted Quantile Sketch works?

Weighted Quantile Sketch
To understand the method in XGBoost

It is part of the original implementation
Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree
boosting system." In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pp.
785-794. 2016.

54 / 65

Images/cinvestav.jpg

However

An important subject
How the Weighted Quantile Sketch works?

Weighted Quantile Sketch
To understand the method in XGBoost

It is part of the original implementation
Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree
boosting system." In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pp.
785-794. 2016.

54 / 65

Images/cinvestav.jpg

However

An important subject
How the Weighted Quantile Sketch works?

Weighted Quantile Sketch
To understand the method in XGBoost

It is part of the original implementation
Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree
boosting system." In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pp.
785-794. 2016.

54 / 65

Images/cinvestav.jpg

Outline

1 Boosting Trees
Introduction
Cost Functions for Trees
Using a Smoother Version
Boosted Tree Model
AdaBoost for Classification Trees
Numerical Optimization via Gradient Boosting

2 XGBoost
Introduction
Cost Function
Solving some Issues
Taylor Expansion
Split Finding Algorithms
Generic Approximated Version

3 Random Forest
Introduction
From Bootstrap to Random Forest

55 / 65

Images/cinvestav.jpg

Reminder

Bootstrap aggregating/ bagging

Bootstrap
Samples

Bootstrap
Replications

Training
Samples

56 / 65

Images/cinvestav.jpg

Main Idea

We have then
The essential idea in bagging is to average many noisy but
approximately unbiased models.

Thus, you reduce the variance
And given that trees capture complex interactions

This is perfect given
If we can decrease the variance of the decision trees

I We obtain a more precise classifier.

57 / 65

Images/cinvestav.jpg

Main Idea

We have then
The essential idea in bagging is to average many noisy but
approximately unbiased models.

Thus, you reduce the variance
And given that trees capture complex interactions

This is perfect given
If we can decrease the variance of the decision trees

I We obtain a more precise classifier.

57 / 65

Images/cinvestav.jpg

Main Idea

We have then
The essential idea in bagging is to average many noisy but
approximately unbiased models.

Thus, you reduce the variance
And given that trees capture complex interactions

This is perfect given
If we can decrease the variance of the decision trees

I We obtain a more precise classifier.

57 / 65

Images/cinvestav.jpg

Outline

1 Boosting Trees
Introduction
Cost Functions for Trees
Using a Smoother Version
Boosted Tree Model
AdaBoost for Classification Trees
Numerical Optimization via Gradient Boosting

2 XGBoost
Introduction
Cost Function
Solving some Issues
Taylor Expansion
Split Finding Algorithms
Generic Approximated Version

3 Random Forest
Introduction
From Bootstrap to Random Forest

58 / 65

Images/cinvestav.jpg

The Model

In a series of papers and technical reports
In a series of papers and technical reports - Leo Breiman
demonstrated the substantial gains in classification and regression

By using ensembles of trees
In Breiman’s approach, each tree in the collection is formed by first
selecting at random

I At each node, a small of input coordinates/features

Then, we use such features to obtain the best split
For the subsets at the nodes...

59 / 65

Images/cinvestav.jpg

The Model

In a series of papers and technical reports
In a series of papers and technical reports - Leo Breiman
demonstrated the substantial gains in classification and regression

By using ensembles of trees
In Breiman’s approach, each tree in the collection is formed by first
selecting at random

I At each node, a small of input coordinates/features

Then, we use such features to obtain the best split
For the subsets at the nodes...

59 / 65

Images/cinvestav.jpg

The Model

In a series of papers and technical reports
In a series of papers and technical reports - Leo Breiman
demonstrated the substantial gains in classification and regression

By using ensembles of trees
In Breiman’s approach, each tree in the collection is formed by first
selecting at random

I At each node, a small of input coordinates/features

Then, we use such features to obtain the best split
For the subsets at the nodes...

59 / 65

Images/cinvestav.jpg

For example, using the idea of Bootstrap

Draw a bootstrap sample Z of size N from the training data
Grow a random-forest tree Tb

Using a stopping criteria of minimum node size nmin
1 Select m variables at random from the d variables.
2 Pick the best variable/split-point among the m
3 Split the node into two daughter nodes

Finally
Output the ensemble of trees {Tb}Bb=1

60 / 65

Images/cinvestav.jpg

For example, using the idea of Bootstrap

Draw a bootstrap sample Z of size N from the training data
Grow a random-forest tree Tb

Using a stopping criteria of minimum node size nmin
1 Select m variables at random from the d variables.
2 Pick the best variable/split-point among the m
3 Split the node into two daughter nodes

Finally
Output the ensemble of trees {Tb}Bb=1

60 / 65

Images/cinvestav.jpg

For example, using the idea of Bootstrap

Draw a bootstrap sample Z of size N from the training data
Grow a random-forest tree Tb

Using a stopping criteria of minimum node size nmin
1 Select m variables at random from the d variables.
2 Pick the best variable/split-point among the m
3 Split the node into two daughter nodes

Finally
Output the ensemble of trees {Tb}Bb=1

60 / 65

Images/cinvestav.jpg

For example, using the idea of Bootstrap

Draw a bootstrap sample Z of size N from the training data
Grow a random-forest tree Tb

Using a stopping criteria of minimum node size nmin
1 Select m variables at random from the d variables.
2 Pick the best variable/split-point among the m
3 Split the node into two daughter nodes

Finally
Output the ensemble of trees {Tb}Bb=1

60 / 65

Images/cinvestav.jpg

For example, using the idea of Bootstrap

Draw a bootstrap sample Z of size N from the training data
Grow a random-forest tree Tb

Using a stopping criteria of minimum node size nmin
1 Select m variables at random from the d variables.
2 Pick the best variable/split-point among the m
3 Split the node into two daughter nodes

Finally
Output the ensemble of trees {Tb}Bb=1

60 / 65

Images/cinvestav.jpg

In another example

The following procedure is then repeated dlog2 kne
1 At each node, a feature of x = (x1, x2, ..., xd)T is selected, with the

jth feature having a probability pnj ∈ (0, 1) of being selected.
2 At each node, after feature selection, the split is at the midpoint of

the chosen side.

61 / 65

Images/cinvestav.jpg

Therefore

A Random Forest
It is a predictor consisting of a collection of randomized base trees

{Tb (x,Θm,Dn) |m > 1}

where Dn = {(xi, yi)}ni=1

Here, Θ1,Θ2, ... are i.i.d. outputs of a randomizing variable Θ

ŷ (X,Dn) = EΘ [Tb (X,Θ,Dn) |]

62 / 65

Images/cinvestav.jpg

Therefore

A Random Forest
It is a predictor consisting of a collection of randomized base trees

{Tb (x,Θm,Dn) |m > 1}

where Dn = {(xi, yi)}ni=1

Here, Θ1,Θ2, ... are i.i.d. outputs of a randomizing variable Θ

ŷ (X,Dn) = EΘ [Tb (X,Θ,Dn) |]

62 / 65

Images/cinvestav.jpg

We tend to use the sample mean

Regression

ŷ = 1
B

B∑
b=1

Tb (x)

Classification, given Cb (x) the classification prediction of the Tb tree

Ĉb (x) = majority vote {Cb (x)}Bb=1

63 / 65

Images/cinvestav.jpg

We tend to use the sample mean

Regression

ŷ = 1
B

B∑
b=1

Tb (x)

Classification, given Cb (x) the classification prediction of the Tb tree

Ĉb (x) = majority vote {Cb (x)}Bb=1

63 / 65

Images/cinvestav.jpg

The nice part is that

Given that trees are notoriously noisy
When we average over them, we obtained better accurate predictions

64 / 65

Images/cinvestav.jpg

For More

Take a Look at
The Elements of Statistical Learning by Hastie et al. Chapter 15

65 / 65

	Boosting Trees
	Introduction
	Cost Functions for Trees
	Using a Smoother Version
	Boosted Tree Model
	AdaBoost for Classification Trees
	Numerical Optimization via Gradient Boosting

	XGBoost
	Introduction
	Cost Function
	Solving some Issues
	Taylor Expansion
	Split Finding Algorithms

	Random Forest
	Introduction
	From Bootstrap to Random Forest

