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Introduction

Observation
It is often found that improved performance can be obtained by
combining multiple classifiers together in some way.

Example, Committees
We might train L different classifiers and then make predictions:

I by using the average of the predictions made by each classifier.

Example, Boosting
It involves training multiple models in sequence:

I A error function used to train a particular model depends on the
performance of the previous models.
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We could use simple averaging

Given a series of observed samples {x̂1, x̂2, ..., x̂N} with noise
ε ∼ N (0, 1)
We could use our knowledge on the noise, for example additive:

x̂i = xi + ε

We can use our knowledge of probability to remove such noise

E [x̂i] = E [xi + ε] = E [xi] + E [ε]

Then, because E [ε] = 0

E [xi] = E [x̂i] ≈
1
N

N∑
i=1

x̂i
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For Example

We have a nice result
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Beyond Simple Averaging

Instead of averaging the predictions of a set of models
You can use an alternative form of combination that selects one of
the models to make the prediction.

Where
The choice of model is a function of the input variables.

Thus
Different Models become responsible for making decisions in different
regions of the input space.
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Something like this

Models in charge of different set of inputs
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Example, Decision Trees

We can have the decision trees on top of the models
Given a set of models, a model is chosen to take a decision in certain area of the
input.

Limitation: It is based on hard splits in which only one model is responsible for
making predictions for any given value.

Thus it is better to soften the combination by using
If we have M classifier for a conditional distribution p (t|x, k).

I x is the input variable.
I t is the target variable.
I k = 1, 2, ...,M indexes the classifiers.
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This is used in the mixture of distributions

Thus (Mixture of Experts)

p (t|x) =
M∑

k=1
πk (x) p (t|x, k) (1)

where πk (x) = p (k|x) represent the input-dependent mixing coefficients.

This type of models
They can be viewed as mixture distribution in which the component
densities and the mixing coefficients are conditioned on the input variables
and are known as mixture experts.
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It is important to differentiate between them

Although
Model Combinations and Bayesian Model Averaging look similar.

I However, they are actually different

For this
We have the following example.
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Example of the Differences

For this consider the following
Mixture of Gaussians with a binary latent variable z indicating to
which component a point belongs to.

Thus the model is specified in terms a joint distribution

p (x, z)

Corresponding density over the observed variable x using
marginalization

p (x) =
∑

z

p (x, z)
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Example

In the case of Mixture of Gaussian’s

p (x) =
K∑
k=1

πkN (x|µk,Σk)

This is an example of model combination.
What about other Models
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More Models

Now, for independent, identically distributed data
X = {x1,x2, ...,xN}

p (X) =
N∏
n=1

p (xn) =
N∏
n=1

[∑
zn

p (xn, zn)
]
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Therefore

Something Notable
Each observed data point xn has a corresponding latent variable zn.

Here, we are doing a Combination of Models
Each Gaussian indexed by zn is in charge of generating one section of
the sample space
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Now, suppose

We have several different models indexed by h = 1, ..., H with prior
probabilities

One model might be a mixture of Gaussians and another model might
be a mixture of Cauchy distributions

The Marginal Distribution is

p (X) =
H∑
h=1

p (X, h) =
H∑
h=1

p (X|h) p (h)︸ ︷︷ ︸
≈p(h|X)

This is an example of Bayesian model averaging
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Bayesian Model Averaging

Remark
The summation over h means that just one model is responsible for
generating the whole data set.

Observation
The probability over h simply reflects our uncertainty of which is the
correct model to use.

Thus, as the size of the data set increases
This uncertainty reduces

I Posterior probabilities p(h|X) become increasingly focused on just one
of the models.
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NUMBER OF SAMPLES
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The Differences

Bayesian model averaging
The whole data set is generated by a single model h.

Model combination
Different data points within the data set can potentially be generated
from different by different components.
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Committees

Idea, the simplest way to construct a committee
It is to average the predictions of a set of individual models.

Thinking as a frequentist
This is coming from taking in consideration the trade-off between bias
and variance.

Where the error in the model into
The bias component that arises from differences between the model
and the true function to be predicted.
The variance component that represents the sensitivity of the
model to the individual data points.
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For example
When we averaged a set of low-bias models

We obtained accurate predictions of the underlying sinusoidal function
from which the data were generated.
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However

Big Problem
We have normally a single data set

Thus
We need to introduce certain variability between the different
committee members.

One approach
You can use bootstrap data sets.
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The Idea of Bootstrap

We denote the training set by Z = {z1, z2, ...,zN}
Where zi = (xi, yi)

The basic idea is to randomly draw datasets with replacement from
the training data

Each sample the same size as the original training set.

This is done B times
Producing B bootstrap datasets.
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Then

Then a quantity is computed
S (Z) is any quantity computed from the data Z

From the bootstrap sampling
We can estimate any aspect of the distribution of S (Z).
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Then

we refit the model to each of the bootstrap datasets
You generate S

(
Z∗b

)
to refit the model to this dataset.

Then
You examine the behavior of the fits over the B replications.
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For Example

Its variance

V̂ ar [S (Z)] = 1
B − 1

B∑
b=1

(
S
(
Z∗b

)
− S∗

)2

Where

S
∗ = 1

B

B∑
b=1

S
(
Z∗b

)
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Relation with Monte-Carlo Estimation

Note that V̂ ar [S (Z)]
It can be thought of as a Monte-Carlo estimate of the variance of
S (Z) under sampling.

This is coming
From the empirical distribution function F̂ for the data
Z = {z1, z2, ...,zN}
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For Example

Schematic of the bootstrap process

Bootstrap 
Samples

Bootstrap 
Replications
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Thus

Use each of them to train a copy yb (x) of a predictive regression
model to predict a single continuous variable
Then,

ycom (x) = 1
B

B∑
b=1

yb (x) (2)

This is also known as Bootstrap Aggregation or Bagging.
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What do we with this samples?

Now, assume a true regression function h (x) and a estimation yb (x)

yb (x) = h (x) + εb (x) (3)

The average sum-of-squares error over the data takes the form

Ex

[
(yb (x)− h (x))2

]
= Ex

[
ε2b (x)

]
(4)

What is Ex?
It denotes a frequentest expectation with respect to the distribution of the
input vector x.

40 / 132



Images/cinvestav-1.jpg

What do we with this samples?

Now, assume a true regression function h (x) and a estimation yb (x)

yb (x) = h (x) + εb (x) (3)

The average sum-of-squares error over the data takes the form

Ex

[
(yb (x)− h (x))2

]
= Ex

[
ε2b (x)

]
(4)

What is Ex?
It denotes a frequentest expectation with respect to the distribution of the
input vector x.

40 / 132



Images/cinvestav-1.jpg

What do we with this samples?

Now, assume a true regression function h (x) and a estimation yb (x)

yb (x) = h (x) + εb (x) (3)

The average sum-of-squares error over the data takes the form

Ex

[
(yb (x)− h (x))2

]
= Ex

[
ε2b (x)

]
(4)

What is Ex?
It denotes a frequentest expectation with respect to the distribution of the
input vector x.

40 / 132



Images/cinvestav-1.jpg

Meaning

Thus, the average error is

EAV = 1
B

b∑
b=1

Ex

[
{εb (x)}2

]
(5)

Similarly the Expected error over the committee

ECOM = Ex

{ 1
B

B∑
b=1

(ym (x)− h (x))
}2 = Ex

{ 1
B

B∑
b=1

εb (x)
}2

(6)
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Assume that the errors have zero mean and are
uncorrelated

Assume that the errors have zero mean and are uncorrelated
Something Reasonable to assume given the way we produce the
Bootstrap Samples

Ex [εb (x)] =0
Ex [εb (x) εl (x)] = 0, for b 6= l
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Then
We have that
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1
b2
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1
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We finally obtain

We obtain

ECOM = 1
B
EAV (7)

Looks great BUT!!!
Unfortunately, it depends on the key assumption that the errors at the
individual Bootstrap Models are uncorrelated.

44 / 132



Images/cinvestav-1.jpg

We finally obtain

We obtain

ECOM = 1
B
EAV (7)

Looks great BUT!!!
Unfortunately, it depends on the key assumption that the errors at the
individual Bootstrap Models are uncorrelated.

44 / 132



Images/cinvestav-1.jpg

Thus

The Reality!!!
The errors are typically highly correlated, and the reduction in overall error
is generally small.

Something Notable
However, It can be shown that the expected committee error will not
exceed the expected error of the constituent models, so

ECOM ≤ EAV (8)

However, we need something better
A more sophisticated technique known as boosting.
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Boosting

What Boosting does?
It combines several classifiers to produce a form of a committee.

We will describe AdaBoost
“Adaptive Boosting” developed by Freund and Schapire (1995).
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Sequential Training

Main difference between boosting and committee methods
The base classifiers are trained in sequence.

Explanation
Consider a two-class classification problem:

1 Samples x1,x2,...,xN

2 Binary labels (-1,1) t1, t2, ..., tN

48 / 132



Images/cinvestav-1.jpg

Sequential Training

Main difference between boosting and committee methods
The base classifiers are trained in sequence.

Explanation
Consider a two-class classification problem:

1 Samples x1,x2,...,xN

2 Binary labels (-1,1) t1, t2, ..., tN

48 / 132



Images/cinvestav-1.jpg

Outline
1 Combining Models

Introduction
Average for Committee
Beyond Simple Averaging
Example

2 Bayesian Model Averaging
Model Combination Vs. Bayesian Model Averaging
Now Model Averaging
The Differences

3 Committees
Introduction
Bootstrap Data Sets
Relation with Monte-Carlo Estimation

4 Boosting
AdaBoost Development
Cost Function
Selection Process

How do we select classifiers?
Selecting New Classifiers
Deriving against the weight αm

AdaBoost Algorithm
Some Remarks
Explanation about AdaBoost’s behavior

Statistical Analysis of the Exponential Loss
Moving from Regression to Classification
Minimization of the Exponential Criterion
Finally, The Additive Logistic Regression

Example using an Infinitude of Perceptrons

49 / 132



Images/cinvestav-1.jpg

Cost Function

Now
You want to put together a set of M experts able to recognize the most
difficult inputs in an accurate way!!!

Thus
For each pattern xi each expert classifier outputs a classification
yj (xi) ∈ {−1, 1}

The final decision of the committee of M experts is sign (C (xi))

C (xi) = α1y1 (xi) + α2y2 (xi) + ...+ αMyM (xi) (9)
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Now

Adaptive Boosting
It works even with a continuum of classifiers.

However
For the sake of simplicity, we will assume that the set of expert is finite.
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Getting the correct classifiers

We want the following
We want to review possible element members.
Select them, if they have certain properties.
Assigning a weight to their contribution to the set of experts.
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Now

Selection is done the following way
Testing the classifiers in the pool using a training set T of N
multidimensional data points xi:

For each point xi we have a label ti = 1 or ti = −1.

Assigning a cost for actions
We test and rank all classifiers in the expert pool by

Charging a cost exp {β} any time a classifier fails (a miss).
Charging a cost exp {−β} any time a classifier provides the right
label (a hit).
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Remarks about β
We require β > 0

Thus misses are penalized more heavily penalized than hits

Although
It looks strange to penalize hits,
However, as long that the penalty of a success is smaller than the
penalty for a miss:

exp {−β} < exp {β}

Why?
if we assign cost a to misses and cost b to hits, where a > b > 0.
We can rewrite such costs as a = cd and b = c−d for constants c and
d.

I It does not compromise generality.
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Exponential Loss Function
This kind of error function is different from Squared Euclidean
distance

The classification target is called an exponential loss function.
AdaBoost uses exponential error loss as error criterion.
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Selection of the Classifier

We need to have a way to select the best Classifier in the Pool
When we test the M classifiers in the pool, we build a matrix S

Then
We record the misses (with a ONE) and hits (with a ZERO) of each
classifiers.
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The Matrix S

Row i in the matrix is reserved for the data point xi

Column m is reserved for the mth classifier in the pool.

Classifiers

1 2 · · · M

x1 0 1 · · · 1
x2 0 0 · · · 1
x3 1 1 · · · 0
...

...
...

...
xN 0 0 · · · 0
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Something interesting about the S

The sum along the rows is the sum at the empirical risk

ER (yj) = 1
N

N∑
i=1

Sij with j = 1, ...,M

Therefore, the candidate to be used at certain iteration
It is the classifier yj with the smallest empirical risk!!!
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Main Idea

What does AdaBoost want to do?
The main idea of AdaBoost is to proceed systematically by extracting one
classifier from the pool in each of M iterations.

Thus
The elements in the data set are weighted according to their current
relevance (or urgency) at each iteration.

Thus at the beginning of the iterations
All data samples are assigned the same weight:

Just 1, or 1
N , if we want to have a total sum of 1 for all weights.
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The process of the weights

As the selection progresses
The more difficult samples, those where the committee still performs
badly, are assigned larger and larger weights.

The selection process concentrates in selecting new classifiers
For the committee by focusing on those which can help with the still
misclassified examples.

Then
The best classifiers are those which can provide new insights to the
committee.
Classifiers being selected should complement each other in an optimal
way.

62 / 132



Images/cinvestav-1.jpg

The process of the weights

As the selection progresses
The more difficult samples, those where the committee still performs
badly, are assigned larger and larger weights.

The selection process concentrates in selecting new classifiers
For the committee by focusing on those which can help with the still
misclassified examples.

Then
The best classifiers are those which can provide new insights to the
committee.
Classifiers being selected should complement each other in an optimal
way.

62 / 132



Images/cinvestav-1.jpg

The process of the weights

As the selection progresses
The more difficult samples, those where the committee still performs
badly, are assigned larger and larger weights.

The selection process concentrates in selecting new classifiers
For the committee by focusing on those which can help with the still
misclassified examples.

Then
The best classifiers are those which can provide new insights to the
committee.
Classifiers being selected should complement each other in an optimal
way.

62 / 132



Images/cinvestav-1.jpg

The process of the weights

As the selection progresses
The more difficult samples, those where the committee still performs
badly, are assigned larger and larger weights.

The selection process concentrates in selecting new classifiers
For the committee by focusing on those which can help with the still
misclassified examples.

Then
The best classifiers are those which can provide new insights to the
committee.
Classifiers being selected should complement each other in an optimal
way.

62 / 132



Images/cinvestav-1.jpg

Outline
1 Combining Models

Introduction
Average for Committee
Beyond Simple Averaging
Example

2 Bayesian Model Averaging
Model Combination Vs. Bayesian Model Averaging
Now Model Averaging
The Differences

3 Committees
Introduction
Bootstrap Data Sets
Relation with Monte-Carlo Estimation

4 Boosting
AdaBoost Development
Cost Function
Selection Process

How do we select classifiers?
Selecting New Classifiers
Deriving against the weight αm

AdaBoost Algorithm
Some Remarks
Explanation about AdaBoost’s behavior

Statistical Analysis of the Exponential Loss
Moving from Regression to Classification
Minimization of the Exponential Criterion
Finally, The Additive Logistic Regression

Example using an Infinitude of Perceptrons

63 / 132



Images/cinvestav-1.jpg

Selecting New Classifiers

What we want
In each iteration, we rank all classifiers, so that we can select the current
best out of the pool.

At mth iteration
We have already included m− 1 classifiers in the committee and we want
to select the next one.

Thus, we have the following cost function which is actually the
output of the committee

C(m−1) (xi) = α1y1 (xi) + α2y2 (xi) + ...+ αm−1ym−1 (xi) (10)
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Thus, we have that

Extending the cost function by the new regression ym
C(m) (xi) = C(m−1) (xi) + αmym (xi) (11)

At the first iteration m = 1
C(0) is the zero function.

Thus, the total cost or total error is defined as the exponential error

E =
N∑
i=1

exp
{
−ti

(
C(m−1) (xi) + αmym (xi)

)}
(12)
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Thus

We want to determine
αm and ym in optimal way

Thus, rewriting

E =
N∑
i=1

w
(m)
i exp {−tiαmym (xi)} (13)

Where, for i = 1, 2, ..., N

w
(m)
i = exp

{
−tiC(m−1) (xi)

}
(14)
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Remark

We have that the weight

w
(m)
i = exp

{
−tiC(m−1) (xi)

}
Needs to be used in someway for the training of the new classifier

This is of the out most importance!!!
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Therefore
You could use such weight

As a output in the estimator function when applied to the loss function

N∑
i=1

(
yi − w(m)

i f (xi)
)2

You could use such weight
You could sub-sample with substitution by using the distribution Dm

{
w

(m)
i

}
of xi

I The train using that sub-sample

You could apply the weight function to the loss function itself used
for training

N∑
i=1

w
(m)
i (yi − wif (xi))2
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Thus

In the first iteration w(1)
i = 1 for i = 1, ..., N

Meaning all the points have the same importance.

During later iterations, the vector w(m)

It represents the weight assigned to each data point in the training set
at iteration m.
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Rewriting the Cost Equation

We can split (Eq. 13)

E =
∑

ti=ym(xi)
w

(m)
i exp {−αm}+

∑
ti 6=ym(xi)

w
(m)
i exp {αm} (15)

Meaning
The total cost is the weighted cost of all hits plus the weighted cost of all
misses.
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Therefore

Writing the first summand as Wc exp {−αm} and the second as
We exp {αm}

E = Wc exp {−αm}+We exp {αm} (16)
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Empty

Now, for the selection of ym
The exact value of αm > 0 is irrelevant

Since a fixed αm minimizing E
It is equivalent to minimizing exp {αm}E

Or in other words

exp {αm}E = Wc +We exp {2αm} (17)
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Now, we have

Given that αm > 0

2αm > 0

We have

exp {2αm} > exp {0} = 1
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Then

We can rewrite (Eq. 17)

exp {αm}E = Wc +We −We +We exp {2αm} (18)

Thus

exp {αm}E = (Wc +We) +We (exp {2αm} − 1) (19)

Now, Wc +We is the total sum W of the weights
Of all data points which is constant in the current iteration.
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Thus

The right hand side of the equation is minimized
When at the m-th iteration, we pick the classifier with the lowest
total cost We

I That is the lowest rate of weighted error.

Intuitively
The next selected ym should be the one with the lowest penalty given the
current set of weights.
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Do you remember?

The Matrix S
We pick the classifier with the lowest total cost We

Now, we need to do some updates
Specifically the value αm .
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Deriving against the weight αm

Going back to the original E, we can use the derivative trick
∂E

∂αm
= −Wc exp {−αm}+We exp {αm} (20)

Making the equation equal to zero and multiplying by exp {αm}

−Wc +We exp {2αm} = 0 (21)

The optimal value is thus

αm = 1
2 ln

(
Wc

We

)
(22)
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Now

Making the total sum of all weights

W = Wc +We (23)

We can rewrite the previous equation as

αm = 1
2 ln

(
W −We

We

)
= 1

2 ln
(1− em

em

)
(24)

With the percentage rate of error given the weights of the data points

em = We

W
(25)
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What about the weights?

Using the equation

w
(m)
i = exp

{
−tiC(m−1) (xi)

}
(26)

And because we have αm and ym (xi)

w
(m+1)
i = exp

{
−tiC(m) (xi)

}
= exp

{
−ti

[
C(m−1) (xi) + αmym (xi)

]}
=w(m)

i exp {−tiαmym (xi)}
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Sequential Training

Thus
AdaBoost trains a new classifier using a data set
There the weighting coefficients are adjusted according to the
performance of the previously trained classifier
To give greater weight to the misclassified data points.
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AdaBoost Algorithm

Step 1
Initialize

{
w

(1)
i

}
to 1

N

Step 2
For m = 1, 2, ...,M

Select a weak classifier ym (x) to the training data by minimizing the weighted
error function or

arg min
ym

N∑
i=1

w
(m)
i I (ym (xi) 6= tn) = arg min

ym

∑
ti 6=ym(xi)

w
(m)
i = arg min

ym

We (27)

Where I is an indicator function.
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AdaBoost Algorithm

Step 2
Evaluate

em =
∑N

n=1 w
(m)
n I (ym (xn) 6= tn)∑N

n=1 w
(m)
n

(28)

Where I is an indicator function
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AdaBoost Algorithm

Step 3
Set the αm weight to

αm = 1
2 ln

{1− em
em

}
(29)

Now update the weights of the data for the next iteration
If ti 6= ym (xi) i.e. a miss

w
(m+1)
i = w

(m)
i exp {αm} = w

(m)
i

√
1− em
em

(30)

If ti == ym (xi) i.e. a hit

w
(m+1)
i = w

(m)
i exp {−αm} = w

(m)
i

√
em

1− em
(31)
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Finally, make predictions

For this use

YM (x) = sign

(
M∑
m=1

αmym (x)
)

(32)

87 / 132



Images/cinvestav-1.jpg

Outline
1 Combining Models

Introduction
Average for Committee
Beyond Simple Averaging
Example

2 Bayesian Model Averaging
Model Combination Vs. Bayesian Model Averaging
Now Model Averaging
The Differences

3 Committees
Introduction
Bootstrap Data Sets
Relation with Monte-Carlo Estimation

4 Boosting
AdaBoost Development
Cost Function
Selection Process

How do we select classifiers?
Selecting New Classifiers
Deriving against the weight αm

AdaBoost Algorithm
Some Remarks
Explanation about AdaBoost’s behavior

Statistical Analysis of the Exponential Loss
Moving from Regression to Classification
Minimization of the Exponential Criterion
Finally, The Additive Logistic Regression

Example using an Infinitude of Perceptrons

88 / 132



Images/cinvestav-1.jpg

Observations

First
The first base classifier is the usual procedure of training a single classifier.

Second
From (Eq. 30) and (Eq. 31), we can see that the weighting coefficient are
increased for data points that are misclassified.

Third
The quantity em represent weighted measures of the error rate.
Thus αm gives more weight to the more accurate classifiers.
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It only misses lead to weight modification.

Note
Note that the weight vector w(m) is constructed iteratively.
It could be recomputed completely at every iteration, but the iterative
construction is more efficient and simple to implement.
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Where each fi (xi) is a function for each feature input xi
A convenient algorithm for updating these models it the backfitting
algorithm with update:

fi (xi) = E

y −∑
k 6=i

fk (xk) |xi
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Backfitting ensures that under fairly general conditions
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(y − f (x))2
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Remark - Moving from Regression to Classification

Given that Regression have wide ranges of outputs
Logistic Regression is widely used to move Regression to Classification

log P (Y = 1|x)
P (Y = −1|x) =

M∑
m=1

fm (x)

A nice property, the probability estimates lie in [0, 1]
Now, solving by assuming P (Y = 1|x) + P (Y = −1|x) = 1

P (Y = 1|x) = eF (x)

1 + eF (x)
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The Exponential Criterion
We have our exponential Criterion under an Expected Value with
y ∈ {1,−1}

J (F ) = E
[
e−yF (x)

]
Lemma

E
[
e−yF (x)] is minimized at

F (x) = 1
2 log P (Y = 1|x)

P (Y = −1|x)
Hence:

P (Y = 1|x) = eF (x)

e−F (x) + eF (x)

P (Y = −1|x) = e−F (x)

e−F (x) + eF (x)

107 / 132



Images/cinvestav-1.jpg

The Exponential Criterion
We have our exponential Criterion under an Expected Value with
y ∈ {1,−1}

J (F ) = E
[
e−yF (x)

]
Lemma

E
[
e−yF (x)] is minimized at

F (x) = 1
2 log P (Y = 1|x)

P (Y = −1|x)
Hence:

P (Y = 1|x) = eF (x)

e−F (x) + eF (x)

P (Y = −1|x) = e−F (x)

e−F (x) + eF (x)

107 / 132



Images/cinvestav-1.jpg

Proof

Given the discrete nature of y ∈ {1,−1}

∂E
[
e−yF (x)

]
∂F (x) = −P (Y = 1|x) e−F (x) + P (Y = −1|x) eF (x)

Therefore

−P (Y = 1|x) e−F (x) + P (Y = −1|x) eF (x) = 0
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Then
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= [1− P (Y = 1|x)] eF (x)
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eF (x) =
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]
P (Y = 1|x)
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Furthermore

Corollary
If E is replaced by averages over regions of x where F (x) is constant
(Similar to a decision tree),

I The same result applies to the sample proportions of y = 1 and y = −1
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Finally, The Additive Logistic Regression

Proposition
The AdaBoost algorithm fits an additive logistic regression model by
stage-wise optimization of

J (F ) = E
[
e−yF (x)

]
Proof

Imagine you have an estimate F (x) then we seek an improved
estimate:

F (x) + f (x)

114 / 132



Images/cinvestav-1.jpg

Finally, The Additive Logistic Regression

Proposition
The AdaBoost algorithm fits an additive logistic regression model by
stage-wise optimization of

J (F ) = E
[
e−yF (x)

]
Proof

Imagine you have an estimate F (x) then we seek an improved
estimate:

F (x) + f (x)

114 / 132



Images/cinvestav-1.jpg

For This

We minimize at each x

J (F (x) + f (x))

This can be expanded

J (F (x) + f (x)) = E
[
e−y(F (x)+f(x))|x

]
= e−f(x)E

[
e−yF (x)I (y = 1) |x

]
+

...ef(x)E
[
e−yF (x)I (y = −1) |x

]
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Deriving w.r.t. f (x)

We get

−e−f(x)E
[
e−yF (x)I (y = 1) |x

]
+ ef(x)E

[
e−yF (x)I (y = −1) |x

]
= 0
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We have the following

If we divide by E
[
e−yF (x)|x

]
, the first term

E
[
e−yF (x)I (y = 1) |x

]
E [e−yF (x)|x]

= Ew [I (y = 1) |x]

Also
E
[
e−yF (x)I (y = −1) |x

]
E [e−yF (x)|x]

= Ew [I (y = −1) |x]
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Thus, we have

We apply the natural log to both sides

log e−f(x) + logEw [I (y = 1) |x] = log ef(x) + logEw [I (y = −1) |x]

Then
2f (x) = logEw [I (y = 1) |x]− logEw [I (y = −1) |x]
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Finally

We have that

f̂ (x) = 1
2 log Ew [I (y = 1) |x]

Ew [I (y = −1) |x]

In term of probabilities

f̂ (x) = 1
2 log Pw (y = 1|x)

Pw (y = −1|x)
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The Weight Update

Finally, we have a way to update the weights by setting
wt (x, y) = e−yF (x)

wt+1 (x, y) = wt (x, y) e−yf̂(x)
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Additionally, the weighted conditional mean

Corollary
At the Optimal F (x), the weighted conditional mean of y is 0.

Proof
When F (x) is optimal

∂J (F (x))
∂F (x) =

∂
{
P (Y = 1|x) e−yF (x) + P (Y = −1|x) eyF (x)}

∂F (x)
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Therefore

We have
∂J (F (x))
∂F (x) =

[
P (Y = 1|x) e−yF (x)] {−y}+

[
P (Y = −1|x) e−yF (x)] {−y}

Therefore

E
[
eyF (x)y

]
= 0
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Here, we decide to use Perceptrons

As Weak Learners
We could be using a finite number of Perceptrons
But we want to have a infinitude of possible weak learners

I Thus avoiding the need of a matrix S

Remark
We need to use a Gradient Based Learner for this
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(wj (t) yj (t)− dj)2

With yj (t) = ϕ
(
wT (t) xj

)
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∂wi

=
N∑
j=1

(wj (t) yj (t)− dj)ϕ′
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Data Set

Training set with classes ω1 = N(0, 1) and ω2 = N(0, σ2)−N(0, 1)
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At the end of the process

For m = 80

129 / 132



Images/cinvestav-1.jpg

Final Confusion Matrix

When m = 80

C1 C2

C1 1.0 0.0

C2 0.0 1.0
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At “Boosting: Foundation and Algorithms” by Schaphire and Freund

I “Train weak learner using distribution Dt”

We could re-sample using the distribution wt

Basically using sampling with substitution over the data set
{x1,x2, ...,xN}
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Other Interpretations exist

But you can use a weighted version of the cost function
1
2
∑
j

wj (t) (yj (t)− dj)2

For More, Take a look
“Boosting Neural Networks” by Holger Schwenk and Yoshua Bengio
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