# Introduction to Machine Learning <br> Combining Models, Bayesian Average and Boosting 

Andres Mendez-Vazquez

July 31, 2018

## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyond Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Model Averaging
- Now Model Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation

4 Boosting

- AdaBoost Development
- Cost Function
- Selection Process
- How do we select classifiers?
- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$
- AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behavior
- Statistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic Regression
- Example using an Infinitude of Perceptrons


## Outline

## 1 Combining Models

- Introduction
- Average for Committee
- Beyond Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Model Averaging
- Now Model Averaging
- The Differences

3 Committees

- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection ProcessHow do we select classifiers?
- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behaviorStatistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## Introduction

## Observation

- It is often found that improved performance can be obtained by combining multiple classifiers together in some way.


## Introduction

## Observation

- It is often found that improved performance can be obtained by combining multiple classifiers together in some way.


## Example, Committees

- We might train $L$ different classifiers and then make predictions:


## Introduction

## Observation

- It is often found that improved performance can be obtained by combining multiple classifiers together in some way.


## Example, Committees

- We might train $L$ different classifiers and then make predictions:
- by using the average of the predictions made by each classifier.


## Introduction

## Observation

- It is often found that improved performance can be obtained by combining multiple classifiers together in some way.


## Example, Committees

- We might train $L$ different classifiers and then make predictions:
- by using the average of the predictions made by each classifier.


## Example, Boosting

- It involves training multiple models in sequence:


## Introduction

## Observation

- It is often found that improved performance can be obtained by combining multiple classifiers together in some way.


## Example, Committees

- We might train $L$ different classifiers and then make predictions:
- by using the average of the predictions made by each classifier.


## Example, Boosting

- It involves training multiple models in sequence:
- A error function used to train a particular model depends on the performance of the previous models.


## Outline

（1）Combining Models
－Introduction
－Average for Committee
－Beyond Simple Averaging
－Example
（2）Bayesian Model Averaging
－Model Combination Vs．Bayesian Model Averaging
－Now Model Averaging
－The Differences

3 Committees
－Introduction
－Bootstrap Data Sets
－Relation with Monte－Carlo Estimation
（4）Boosting
－AdaBoost Development
－Cost Function
－Selection ProcessHow do we select classifiers？
－Selecting New Classifiers
－Deriving against the weight $\alpha_{m}$AdaBoost Algorithm
－Some Remarks
－Explanation about AdaBoost＇s behaviorStatistical Analysis of the Exponential Loss
－Moving from Regression to Classification
－Minimization of the Exponential Criterion
－Finally，The Additive Logistic RegressionExample using an Infinitude of Perceptrons

## We could use simple averaging

Given a series of observed samples $\left\{\widehat{\boldsymbol{x}}_{1}, \widehat{\boldsymbol{x}}_{2}, \ldots, \widehat{\boldsymbol{x}}_{N}\right\}$ with noise $\epsilon \sim N(0,1)$
We could use our knowledge on the noise, for example additive:

$$
\widehat{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}+\epsilon
$$

## We could use simple averaging

Given a series of observed samples $\left\{\widehat{x}_{1}, \widehat{\boldsymbol{x}}_{2}, \ldots, \widehat{\boldsymbol{x}}_{N}\right\}$ with noise $\epsilon \sim N(0,1)$
We could use our knowledge on the noise, for example additive:

$$
\widehat{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}+\epsilon
$$

We can use our knowledge of probability to remove such noise

$$
E\left[\widehat{\boldsymbol{x}}_{i}\right]=E\left[\boldsymbol{x}_{i}+\epsilon\right]=E\left[\boldsymbol{x}_{i}\right]+E[\epsilon]
$$

## We could use simple averaging

Given a series of observed samples $\left\{\widehat{x}_{1}, \widehat{x}_{2}, \ldots, \widehat{x}_{N}\right\}$ with noise $\epsilon \sim N(0,1)$
We could use our knowledge on the noise, for example additive:

$$
\widehat{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}+\epsilon
$$

We can use our knowledge of probability to remove such noise

$$
E\left[\widehat{\boldsymbol{x}}_{i}\right]=E\left[\boldsymbol{x}_{i}+\epsilon\right]=E\left[\boldsymbol{x}_{i}\right]+E[\epsilon]
$$

Then, because $E[\epsilon]=0$

$$
E\left[\boldsymbol{x}_{i}\right]=E\left[\widehat{\boldsymbol{x}}_{i}\right] \approx \frac{1}{N} \sum_{i=1}^{N} \widehat{\boldsymbol{x}}_{i}
$$

## For Example

## We have a nice result




## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyond Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Model Averaging
- Now Model Averaging
- The Differences

3 Committees

- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection ProcessHow do we select classifiers?
- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behaviorStatistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## Beyond Simple Averaging

## Instead of averaging the predictions of a set of models

- You can use an alternative form of combination that selects one of the models to make the prediction.


## Beyond Simple Averaging

## Instead of averaging the predictions of a set of models

- You can use an alternative form of combination that selects one of the models to make the prediction.


## Where

- The choice of model is a function of the input variables.


## Beyond Simple Averaging

## Instead of averaging the predictions of a set of models

- You can use an alternative form of combination that selects one of the models to make the prediction.


## Where

- The choice of model is a function of the input variables.


## Thus

- Different Models become responsible for making decisions in different regions of the input space.

Something like this

Models in charge of different set of inputs


## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyond Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Model Averaging
- Now Model Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection ProcessHow do we select classifiers?
- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behaviorStatistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## Example, Decision Trees

## We can have the decision trees on top of the models

Given a set of models, a model is chosen to take a decision in certain area of the input.

## Example, Decision Trees

## We can have the decision trees on top of the models

Given a set of models, a model is chosen to take a decision in certain area of the input.

Limitation: It is based on hard splits in which only one model is responsible for making predictions for any given value.

## Example, Decision Trees

## We can have the decision trees on top of the models

Given a set of models, a model is chosen to take a decision in certain area of the input.

Limitation: It is based on hard splits in which only one model is responsible for making predictions for any given value.

Thus it is better to soften the combination by using

- If we have $M$ classifier for a conditional distribution $p(t \mid \boldsymbol{x}, k)$.


## Example, Decision Trees

## We can have the decision trees on top of the models

Given a set of models, a model is chosen to take a decision in certain area of the input.

Limitation: It is based on hard splits in which only one model is responsible for making predictions for any given value.

Thus it is better to soften the combination by using

- If we have $M$ classifier for a conditional distribution $p(t \mid \boldsymbol{x}, k)$.
- $\boldsymbol{x}$ is the input variable.


## Example, Decision Trees

## We can have the decision trees on top of the models

Given a set of models, a model is chosen to take a decision in certain area of the input.

Limitation: It is based on hard splits in which only one model is responsible for making predictions for any given value.

## Thus it is better to soften the combination by using

- If we have $M$ classifier for a conditional distribution $p(t \mid \boldsymbol{x}, k)$.
- $\boldsymbol{x}$ is the input variable.
- $t$ is the target variable.


## Example, Decision Trees

## We can have the decision trees on top of the models

Given a set of models, a model is chosen to take a decision in certain area of the input.

Limitation: It is based on hard splits in which only one model is responsible for making predictions for any given value.

## Thus it is better to soften the combination by using

- If we have $M$ classifier for a conditional distribution $p(t \mid \boldsymbol{x}, k)$.
- $\boldsymbol{x}$ is the input variable.
- $t$ is the target variable.
- $k=1,2, \ldots, M$ indexes the classifiers.


## Example, Decision Trees

## We can have the decision trees on top of the models

Given a set of models, a model is chosen to take a decision in certain area of the input.

Limitation: It is based on hard splits in which only one model is responsible for making predictions for any given value.

## Thus it is better to soften the combination by using

- If we have $M$ classifier for a conditional distribution $p(t \mid \boldsymbol{x}, k)$.
- $\boldsymbol{x}$ is the input variable.
- $t$ is the target variable.
- $k=1,2, \ldots, M$ indexes the classifiers.


## This is used in the mixture of distributions

Thus (Mixture of Experts)

$$
\begin{equation*}
p(t \mid \boldsymbol{x})=\sum_{k=1}^{M} \pi_{k}(\boldsymbol{x}) p(t \mid \boldsymbol{x}, k) \tag{1}
\end{equation*}
$$

where $\pi_{k}(\boldsymbol{x})=p(k \mid \boldsymbol{x})$ represent the input-dependent mixing coefficients.

## This is used in the mixture of distributions

## Thus (Mixture of Experts)

$$
\begin{equation*}
p(t \mid \boldsymbol{x})=\sum_{k=1}^{M} \pi_{k}(\boldsymbol{x}) p(t \mid \boldsymbol{x}, k) \tag{1}
\end{equation*}
$$

where $\pi_{k}(\boldsymbol{x})=p(k \mid \boldsymbol{x})$ represent the input-dependent mixing coefficients.

## This type of models

They can be viewed as mixture distribution in which the component densities and the mixing coefficients are conditioned on the input variables and are known as mixture experts.

## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyond Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Model Averaging
- Now Model Averaging
- The Differences


## Committees

- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection ProcessHow do we select classifiers?
- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behaviorStatistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## It is important to differentiate between them

## Although

- Model Combinations and Bayesian Model Averaging look similar.
- However, they are actually different


## It is important to differentiate between them

## Although

- Model Combinations and Bayesian Model Averaging look similar.
- However, they are actually different

```
For this
We have the following example.
```


## Example of the Differences

## For this consider the following

- Mixture of Gaussians with a binary latent variable $\boldsymbol{z}$ indicating to which component a point belongs to.


## Example of the Differences

## For this consider the following

- Mixture of Gaussians with a binary latent variable $\boldsymbol{z}$ indicating to which component a point belongs to.

Thus the model is specified in terms a joint distribution

$$
p(\boldsymbol{x}, \boldsymbol{z})
$$

## Example of the Differences

## For this consider the following

- Mixture of Gaussians with a binary latent variable $\boldsymbol{z}$ indicating to which component a point belongs to.

Thus the model is specified in terms a joint distribution

$$
p(\boldsymbol{x}, \boldsymbol{z})
$$

Corresponding density over the observed variable $x$ using marginalization

$$
p(\boldsymbol{x})=\sum_{\boldsymbol{z}} p(\boldsymbol{x}, \boldsymbol{z})
$$

## Example

In the case of Mixture of Gaussian's

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \pi_{k} N\left(\boldsymbol{x} \mid \mu_{k}, \Sigma_{k}\right)
$$

## Example

## In the case of Mixture of Gaussian's

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \pi_{k} N\left(\boldsymbol{x} \mid \mu_{k}, \Sigma_{k}\right)
$$

This is an example of model combination.

- What about other Models


## More Models

Now, for independent, identically distributed data
$X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$

$$
p(\boldsymbol{X})=\prod_{n=1}^{N} p\left(\boldsymbol{x}_{n}\right)=\prod_{n=1}^{N}\left[\sum_{z_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n}\right)\right]
$$

## Therefore

## Something Notable

- Each observed data point $\boldsymbol{x}_{n}$ has a corresponding latent variable $\boldsymbol{z}_{n}$.


## Therefore

## Something Notable

- Each observed data point $\boldsymbol{x}_{n}$ has a corresponding latent variable $\boldsymbol{z}_{n}$.

Here, we are doing a Combination of Models

- Each Gaussian indexed by $\boldsymbol{z}_{n}$ is in charge of generating one section of the sample space


## Example

We have


## Outline

（1）Combining Models
－Introduction
－Average for Committee
－Beyond Simple Averaging
－Example

## （2）Bayesian Model Averaging

－Model Combination Vs．Bayesian Model Averaging
－Now Model Averaging
－The Differences

## Committees

© Introduction
－Bootstrap Data Sets
－Relation with Monte－Carlo Estimation

Example using an Infinitude of Perceptrons

## Now, suppose

## We have several different models indexed by $h=1, \ldots, H$ with prior probabilities <br> - One model might be a mixture of Gaussians and another model might be a mixture of Cauchy distributions

## Now, suppose

## We have several different models indexed by $h=1, \ldots, H$ with prior probabilities <br> - One model might be a mixture of Gaussians and another model might be a mixture of Cauchy distributions

The Marginal Distribution is

$$
p(X)=\sum_{h=1}^{H} p(X, h)=\sum_{h=1}^{H} \underbrace{p(X \mid h) p(h)}_{\approx p(h \mid X)}
$$

- This is an example of Bayesian model averaging


## Bayesian Model Averaging

## Remark

- The summation over $h$ means that just one model is responsible for generating the whole data set.


## Bayesian Model Averaging

## Remark

- The summation over $h$ means that just one model is responsible for generating the whole data set.


## Observation

- The probability over $h$ simply reflects our uncertainty of which is the correct model to use.


## Bayesian Model Averaging

## Remark

- The summation over $h$ means that just one model is responsible for generating the whole data set.


## Observation

- The probability over $h$ simply reflects our uncertainty of which is the correct model to use.

Thus, as the size of the data set increases

- This uncertainty reduces
- Posterior probabilities $p(h \mid X)$ become increasingly focused on just one of the models.


## Example

We have
$h_{1}$
$h_{3}$
$h_{2}$


## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyönd Simple Averaging
- Example
(2) Bayesian Model Averaging

Model Combination Vs. Bayesian Model Averaging

- Now Model Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection ProcessHow do we select classifiers?
- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behaviorStatistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## The Differences

## Bayesian model averaging

- The whole data set is generated by a single model $h$.


## The Differences

## Bayesian model averaging

- The whole data set is generated by a single model $h$.


## Model combination

- Different data points within the data set can potentially be generated from different by different components.


## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyond Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Model Averaging
- Now Model Averaging
- The Differences


## (3) Committees

- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection ProcessHow do we select classifiers?
- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behaviorStatistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## Committees

## Idea, the simplest way to construct a committee

- It is to average the predictions of a set of individual models.


## Committees

## Idea, the simplest way to construct a committee

- It is to average the predictions of a set of individual models.


## Thinking as a frequentist

- This is coming from taking in consideration the trade-off between bias and variance.


## Committees

## Idea, the simplest way to construct a committee

- It is to average the predictions of a set of individual models.

Thinking as a frequentist

- This is coming from taking in consideration the trade-off between bias and variance.


## Where the error in the model into

- The bias component that arises from differences between the model and the true function to be predicted.


## Committees

## Idea, the simplest way to construct a committee

- It is to average the predictions of a set of individual models.

Thinking as a frequentist

- This is coming from taking in consideration the trade-off between bias and variance.


## Where the error in the model into

- The bias component that arises from differences between the model and the true function to be predicted.
- The variance component that represents the sensitivity of the model to the individual data points.


## For example

## When we averaged a set of low-bias models

- We obtained accurate predictions of the underlying sinusoidal function from which the data were generated.




## However

Big Problem

- We have normally a single data set


## However

## Big Problem

- We have normally a single data set


## Thus

- We need to introduce certain variability between the different committee members.


## One approach

- You can use bootstrap data sets.


## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyond Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Nodel Averaging
- Now Model Averaging
- The Differences
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation

4 Boosting

- AdaBoost Development
- Cost Function
- Selection ProcessHow do we select classifiers?
- Selecting New Classifiers

Deriving against the weight $\alpha_{m}$AdaBoost Algorithm

- Some Remarks
- Explanation about AdaBoost's behaviorStatistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## The Idea of Bootstrap

We denote the training set by $Z=\left\{\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \ldots, \boldsymbol{z}_{N}\right\}$

- Where $\boldsymbol{z}_{i}=\left(\boldsymbol{x}_{i}, y_{i}\right)$


## The Idea of Bootstrap

## We denote the training set by $Z=\left\{\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \ldots, \boldsymbol{z}_{N}\right\}$

- Where $\boldsymbol{z}_{i}=\left(\boldsymbol{x}_{i}, y_{i}\right)$

The basic idea is to randomly draw datasets with replacement from the training data

- Each sample the same size as the original training set.


## The Idea of Bootstrap

## We denote the training set by $Z=\left\{\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \ldots, \boldsymbol{z}_{N}\right\}$

- Where $\boldsymbol{z}_{i}=\left(\boldsymbol{x}_{i}, y_{i}\right)$

The basic idea is to randomly draw datasets with replacement from the training data

- Each sample the same size as the original training set.


## This is done $B$ times

- Producing $B$ bootstrap datasets.


## Then

Then a quantity is computed

- $S(Z)$ is any quantity computed from the data $Z$


## Then

Then a quantity is computed

- $S(Z)$ is any quantity computed from the data $Z$


## Then

Then a quantity is computed

- $S(Z)$ is any quantity computed from the data $Z$

From the bootstrap sampling

- We can estimate any aspect of the distribution of $S(Z)$.


## Then

## we refit the model to each of the bootstrap datasets

- You generate $S\left(Z^{* b}\right)$ to refit the model to this dataset.


## Then

## we refit the model to each of the bootstrap datasets

- You generate $S\left(Z^{* b}\right)$ to refit the model to this dataset.


## Then

- You examine the behavior of the fits over the $B$ replications.


## For Example

## Its variance

$$
\widehat{\operatorname{Var}}[S(Z)]=\frac{1}{B-1} \sum_{b=1}^{B}\left(S\left(Z^{* b}\right)-\bar{S}^{*}\right)^{2}
$$

## For Example

## Its variance

$$
\widehat{\operatorname{Var}}[S(Z)]=\frac{1}{B-1} \sum_{b=1}^{B}\left(S\left(Z^{* b}\right)-\bar{S}^{*}\right)^{2}
$$

Where

$$
\bar{S}^{*}=\frac{1}{B} \sum_{b=1}^{B} S\left(Z^{* b}\right)
$$

## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyond Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Nodel Averaging
- Now Model Averaging
- The Differences


## (3) Committees

- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) BoostingAdaBoost Development
- Cost Function
- Selection ProcessHow do we select classifiers?
- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behaviorStatistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## Relation with Monte-Carlo Estimation

Note that $\widehat{\operatorname{Var}}[S(Z)]$

- It can be thought of as a Monte-Carlo estimate of the variance of $S(Z)$ under sampling.


## Relation with Monte-Carlo Estimation

Note that $\widehat{\operatorname{Var}}[S(Z)]$

- It can be thought of as a Monte-Carlo estimate of the variance of $S(Z)$ under sampling.


## This is coming

- From the empirical distribution function $\widehat{F}$ for the data

$$
Z=\left\{\boldsymbol{z}_{1}, \boldsymbol{z}_{\mathbf{2}}, \ldots, \boldsymbol{z}_{N}\right\}
$$

## For Example

## Schematic of the bootstrap process



## Thus

Use each of them to train a copy $y_{b}(\boldsymbol{x})$ of a predictive regression model to predict a single continuous variable
Then,

$$
\begin{equation*}
y_{\text {com }}(\boldsymbol{x})=\frac{1}{B} \sum_{b=1}^{B} y_{b}(\boldsymbol{x}) \tag{2}
\end{equation*}
$$

This is also known as Bootstrap Aggregation or Bagging.

## What do we with this samples?

Now, assume a true regression function $h(\boldsymbol{x})$ and a estimation $y_{b}(\boldsymbol{x})$

$$
\begin{equation*}
y_{b}(\boldsymbol{x})=h(\boldsymbol{x})+\epsilon_{b}(\boldsymbol{x}) \tag{3}
\end{equation*}
$$

What do we with this samples?

Now, assume a true regression function $h(x)$ and a estimation $y_{b}(x)$

$$
\begin{equation*}
y_{b}(\boldsymbol{x})=h(\boldsymbol{x})+\epsilon_{b}(\boldsymbol{x}) \tag{3}
\end{equation*}
$$

The average sum-of-squares error over the data takes the form

$$
\begin{equation*}
E_{\boldsymbol{x}}\left[\left(y_{b}(\boldsymbol{x})-h(\boldsymbol{x})\right)^{2}\right]=E_{\boldsymbol{x}}\left[\epsilon_{b}^{2}(\boldsymbol{x})\right] \tag{4}
\end{equation*}
$$

What do we with this samples?

Now, assume a true regression function $h(x)$ and a estimation $y_{b}(x)$

$$
\begin{equation*}
y_{b}(\boldsymbol{x})=h(\boldsymbol{x})+\epsilon_{b}(\boldsymbol{x}) \tag{3}
\end{equation*}
$$

The average sum-of-squares error over the data takes the form

$$
\begin{equation*}
E_{\boldsymbol{x}}\left[\left(y_{b}(\boldsymbol{x})-h(\boldsymbol{x})\right)^{2}\right]=E_{\boldsymbol{x}}\left[\epsilon_{b}^{2}(\boldsymbol{x})\right] \tag{4}
\end{equation*}
$$

## What is $E_{x}$ ?

It denotes a frequentest expectation with respect to the distribution of the input vector $\boldsymbol{x}$.

## Meaning

Thus, the average error is

$$
\begin{equation*}
E_{A V}=\frac{1}{B} \sum_{b=1}^{b} E_{\boldsymbol{x}}\left[\left\{\epsilon_{b}(\boldsymbol{x})\right\}^{2}\right] \tag{5}
\end{equation*}
$$

## Meaning

Thus, the average error is

$$
\begin{equation*}
E_{A V}=\frac{1}{B} \sum_{b=1}^{b} E_{\boldsymbol{x}}\left[\left\{\epsilon_{b}(\boldsymbol{x})\right\}^{2}\right] \tag{5}
\end{equation*}
$$

Similarly the Expected error over the committee

$$
E_{C O M}=E_{\boldsymbol{x}}\left[\left\{\frac{1}{B} \sum_{b=1}^{B}\left(y_{m}(\boldsymbol{x})-h(\boldsymbol{x})\right)\right\}^{2}\right]=E_{\boldsymbol{x}}\left[\left\{\frac{1}{B} \sum_{b=1}^{B} \epsilon_{b}(\boldsymbol{x})\right\}^{2}\right]
$$

## Assume that the errors have zero mean and are uncorrelated

## Assume that the errors have zero mean and are uncorrelated

- Something Reasonable to assume given the way we produce the Bootstrap Samples

$$
\begin{gathered}
E_{\boldsymbol{x}}\left[\epsilon_{b}(\boldsymbol{x})\right]=0 \\
E_{\boldsymbol{x}}\left[\epsilon_{b}(\boldsymbol{x}) \epsilon_{l}(\boldsymbol{x})\right]=0, \text { for } b \neq l
\end{gathered}
$$

## Then

We have that

$$
E_{C O M}=\frac{1}{b^{2}} E_{\boldsymbol{x}}\left[\left\{\sum_{b=1}^{B}\left(\epsilon_{b}(\boldsymbol{x})\right)\right\}^{2}\right]
$$

## Then

We have that

$$
\begin{aligned}
E_{C O M} & =\frac{1}{b^{2}} E_{\boldsymbol{x}}\left[\left\{\sum_{b=1}^{B}\left(\epsilon_{b}(\boldsymbol{x})\right)\right\}^{2}\right] \\
& =\frac{1}{B^{2}} E_{\boldsymbol{x}}\left[\sum_{b=1}^{B} \epsilon_{b}^{2}(\boldsymbol{x})+\sum_{h=1}^{B} \sum_{\substack{k=1 \\
h \neq k}}^{B} \epsilon_{h}(\boldsymbol{x}) \epsilon_{k}(\boldsymbol{x})\right]
\end{aligned}
$$

## Then

We have that

$$
\begin{aligned}
E_{C O M} & =\frac{1}{b^{2}} E_{\boldsymbol{x}}\left[\left\{\sum_{b=1}^{B}\left(\epsilon_{b}(\boldsymbol{x})\right)\right\}^{2}\right] \\
& =\frac{1}{B^{2}} E_{\boldsymbol{x}}\left[\sum_{b=1}^{B} \epsilon_{b}^{2}(\boldsymbol{x})+\sum_{h=1}^{B} \sum_{k=1}^{B} \epsilon_{h}(\boldsymbol{x}) \epsilon_{k}(\boldsymbol{x})\right] \\
& =\frac{1}{B^{2}}\left\{E_{\boldsymbol{x}}\left(\sum_{b=1}^{B} \epsilon_{b}^{2}(\boldsymbol{x})\right)+E_{\boldsymbol{x}}\left(\sum_{\substack{h=1 \\
h \neq k}}^{B} \sum_{k=1}^{B} \epsilon_{h}(\boldsymbol{x}) \epsilon_{k}(\boldsymbol{x})\right)\right\}
\end{aligned}
$$

## Then

We have that

$$
\begin{aligned}
E_{C O M} & =\frac{1}{b^{2}} E_{\boldsymbol{x}}\left[\left\{\sum_{b=1}^{B}\left(\epsilon_{b}(\boldsymbol{x})\right)\right\}^{2}\right] \\
& =\frac{1}{B^{2}} E_{\boldsymbol{x}}\left[\sum_{b=1}^{B} \epsilon_{b}^{2}(\boldsymbol{x})+\sum_{h=1}^{B} \sum_{k=1}^{B} \epsilon_{h}(\boldsymbol{x}) \epsilon_{k}(\boldsymbol{x})\right] \\
& =\frac{1}{B^{2}}\left\{E_{\boldsymbol{x}}\left(\sum_{b=1}^{B} \epsilon_{b}^{2}(\boldsymbol{x})\right)+E_{\boldsymbol{x}}\left(\sum_{h=1}^{B} \sum_{k=1}^{B} \epsilon_{h}(\boldsymbol{x}) \epsilon_{k}(\boldsymbol{x})\right)\right\} \\
& =\frac{1}{B^{2}}\left\{E_{\boldsymbol{x}}\left(\sum_{b=1}^{B} \epsilon_{b}^{2}(\boldsymbol{x})\right)+\sum_{h=1}^{M} \sum_{k=1}^{M} E_{\boldsymbol{x}}\left(\epsilon_{h}(\boldsymbol{x}) \epsilon_{k}(\boldsymbol{x})\right)\right\}
\end{aligned}
$$

## Then

We have that

$$
\begin{aligned}
& E_{C O M}=\frac{1}{b^{2}} E_{\boldsymbol{x}}\left[\left\{\sum_{b=1}^{B}\left(\epsilon_{b}(\boldsymbol{x})\right)\right\}^{2}\right] \\
& =\frac{1}{B^{2}} E_{\boldsymbol{x}}\left[\sum_{b=1}^{B} \epsilon_{b}^{2}(\boldsymbol{x})+\sum_{\substack{h=1 \\
h \neq k}}^{B} \sum_{\substack{k=1 \\
h}} \epsilon_{h}(\boldsymbol{x}) \epsilon_{k}(\boldsymbol{x})\right] \\
& =\frac{1}{B^{2}}\left\{E_{\boldsymbol{x}}\left(\sum_{b=1}^{B} \epsilon_{b}^{2}(\boldsymbol{x})\right)+E_{\boldsymbol{x}}\left(\sum_{\substack{h=1 \\
h \neq k}}^{B} \sum_{\substack{k=1}}^{B} \epsilon_{h}(\boldsymbol{x}) \epsilon_{k}(\boldsymbol{x})\right)\right\} \\
& =\frac{1}{B^{2}}\left\{E_{\boldsymbol{x}}\left(\sum_{b=1}^{B} \epsilon_{b}^{2}(\boldsymbol{x})\right)+\sum_{\substack{h=1 \\
h \neq k}}^{M} \sum_{\substack{k=1 \\
M}}^{M} E_{\boldsymbol{x}}\left(\epsilon_{h}(\boldsymbol{x}) \epsilon_{k}(\boldsymbol{x})\right)\right\} \\
& =\frac{1}{B^{2}}\left\{E_{\boldsymbol{x}}\left(\sum_{b=1}^{B} \epsilon_{b}^{2}(\boldsymbol{x})\right)\right\}=\frac{1}{B}\left\{\frac{1}{B} E_{\boldsymbol{x}}\left(\sum_{b=1}^{B} \epsilon_{b}^{2}(\boldsymbol{x})\right)\right\}
\end{aligned}
$$

## We finally obtain

## We obtain

$$
\begin{equation*}
E_{C O M}=\frac{1}{B} E_{A V} \tag{7}
\end{equation*}
$$

## We finally obtain

We obtain

$$
\begin{equation*}
E_{C O M}=\frac{1}{B} E_{A V} \tag{7}
\end{equation*}
$$

## Looks great BUT!!!

Unfortunately, it depends on the key assumption that the errors at the individual Bootstrap Models are uncorrelated.

## Thus

The Reality!!!
The errors are typically highly correlated, and the reduction in overall error is generally small.

## Thus

## The Reality!!!

The errors are typically highly correlated, and the reduction in overall error is generally small.

## Something Notable

However, It can be shown that the expected committee error will not exceed the expected error of the constituent models, so

$$
\begin{equation*}
E_{C O M} \leq E_{A V} \tag{8}
\end{equation*}
$$

## Thus

## The Reality!!!

The errors are typically highly correlated, and the reduction in overall error is generally small.

## Something Notable

However, It can be shown that the expected committee error will not exceed the expected error of the constituent models, so

$$
\begin{equation*}
E_{C O M} \leq E_{A V} \tag{8}
\end{equation*}
$$

However, we need something better
A more sophisticated technique known as boosting.

## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyönd Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Model Averaging
- Now Model Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection ProcessHow do we select classifiers?
- Selecting New Classifiers

Deriving against the weight $\alpha_{m}$AdaBoost Algorithm

- Some Remarks
- Explanation about AdaBoost's behaviorStatistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## Boosting

## What Boosting does?

It combines several classifiers to produce a form of a committee.

## Boosting

## What Boosting does?

It combines several classifiers to produce a form of a committee.

## We will describe AdaBoost

"Adaptive Boosting" developed by Freund and Schapire (1995).

## Sequential Training

Main difference between boosting and committee methods
The base classifiers are trained in sequence.

## Sequential Training

## Main difference between boosting and committee methods

The base classifiers are trained in sequence.

Explanation
Consider a two-class classification problem:
(1) Samples $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{N}}$
(2) Binary labels $(-1,1) t_{1}, t_{2}, \ldots, t_{N}$

## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyond Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Nodel Averaging
- Now Model Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection Process

How do we select classifiers?

- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behaviorStatistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## Cost Function

## Now

You want to put together a set of $M$ experts able to recognize the most difficult inputs in an accurate way!!!

## Cost Function

## Now

You want to put together a set of $M$ experts able to recognize the most difficult inputs in an accurate way!!!

## Thus

For each pattern $\boldsymbol{x}_{i}$ each expert classifier outputs a classification $y_{j}\left(\boldsymbol{x}_{i}\right) \in\{-1,1\}$

## Cost Function

## Now

You want to put together a set of $M$ experts able to recognize the most difficult inputs in an accurate way!!!

## Thus

For each pattern $\boldsymbol{x}_{i}$ each expert classifier outputs a classification $y_{j}\left(\boldsymbol{x}_{i}\right) \in\{-1,1\}$

The final decision of the committee of $M$ experts is $\operatorname{sign}\left(C\left(\boldsymbol{x}_{i}\right)\right)$

$$
\begin{equation*}
C\left(\boldsymbol{x}_{i}\right)=\alpha_{1} y_{1}\left(\boldsymbol{x}_{i}\right)+\alpha_{2} y_{2}\left(\boldsymbol{x}_{i}\right)+\ldots+\alpha_{M} y_{M}\left(\boldsymbol{x}_{i}\right) \tag{9}
\end{equation*}
$$

## Now

## Adaptive Boosting

It works even with a continuum of classifiers.

## Now

## Adaptive Boosting

It works even with a continuum of classifiers.

## However

For the sake of simplicity, we will assume that the set of expert is finite.

## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyönd Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Model Averaging
- Now Model Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection Process
How do we select classifiers?
- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behaviorStatistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## Getting the correct classifiers

We want the following

- We want to review possible element members.


## Getting the correct classifiers

## We want the following

- We want to review possible element members.
- Select them, if they have certain properties.


## Getting the correct classifiers

## We want the following

- We want to review possible element members.
- Select them, if they have certain properties.
- Assigning a weight to their contribution to the set of experts.


## Now

Selection is done the following way
Testing the classifiers in the pool using a training set $T$ of $N$ multidimensional data points $\boldsymbol{x}_{i}$ :

## Now

Selection is done the following way
Testing the classifiers in the pool using a training set $T$ of $N$ multidimensional data points $\boldsymbol{x}_{i}$ :

- For each point $x_{i}$ we have a label $t_{i}=1$ or $t_{i}=-1$.


## Now

## Selection is done the following way

Testing the classifiers in the pool using a training set $T$ of $N$ multidimensional data points $\boldsymbol{x}_{i}$ :

- For each point $x_{i}$ we have a label $t_{i}=1$ or $t_{i}=-1$.


## Assigning a cost for actions

We test and rank all classifiers in the expert pool by

## Now

## Selection is done the following way

Testing the classifiers in the pool using a training set $T$ of $N$ multidimensional data points $\boldsymbol{x}_{i}$ :

- For each point $x_{i}$ we have a label $t_{i}=1$ or $t_{i}=-1$.


## Assigning a cost for actions

We test and rank all classifiers in the expert pool by

- Charging a cost $\exp \{\beta\}$ any time a classifier fails (a miss).


## Now

## Selection is done the following way

Testing the classifiers in the pool using a training set $T$ of $N$ multidimensional data points $\boldsymbol{x}_{i}$ :

- For each point $x_{i}$ we have a label $t_{i}=1$ or $t_{i}=-1$.


## Assigning a cost for actions

We test and rank all classifiers in the expert pool by

- Charging a cost $\exp \{\beta\}$ any time a classifier fails (a miss).
- Charging a cost $\exp \{-\beta\}$ any time a classifier provides the right label (a hit).


## Remarks about $\beta$

## We require $\beta>0$

- Thus misses are penalized more heavily penalized than hits


## Remarks about $\beta$

## We require $\beta>0$

- Thus misses are penalized more heavily penalized than hits


## Although

- It looks strange to penalize hits,


## Remarks about $\beta$

## We require $\beta>0$

- Thus misses are penalized more heavily penalized than hits


## Although

- It looks strange to penalize hits,
- However, as long that the penalty of a success is smaller than the penalty for a miss:

$$
\exp \{-\beta\}<\exp \{\beta\}
$$

## Remarks about $\beta$

## We require $\beta>0$

- Thus misses are penalized more heavily penalized than hits


## Although

- It looks strange to penalize hits,
- However, as long that the penalty of a success is smaller than the penalty for a miss:

$$
\exp \{-\beta\}<\exp \{\beta\}
$$

## Why?

- if we assign cost $a$ to misses and cost $b$ to hits, where $a>b>0$.


## Remarks about $\beta$

## We require $\beta>0$

- Thus misses are penalized more heavily penalized than hits


## Although

- It looks strange to penalize hits,
- However, as long that the penalty of a success is smaller than the penalty for a miss:

$$
\exp \{-\beta\}<\exp \{\beta\}
$$

## Why?

- if we assign cost $a$ to misses and cost $b$ to hits, where $a>b>0$.
- We can rewrite such costs as $a=c^{d}$ and $b=c^{-d}$ for constants $c$ and $d$.


## Remarks about $\beta$

## We require $\beta>0$

- Thus misses are penalized more heavily penalized than hits


## Although

- It looks strange to penalize hits,
- However, as long that the penalty of a success is smaller than the penalty for a miss:

$$
\exp \{-\beta\}<\exp \{\beta\}
$$

## Why?

- if we assign cost $a$ to misses and cost $b$ to hits, where $a>b>0$.
- We can rewrite such costs as $a=c^{d}$ and $b=c^{-d}$ for constants $c$ and $d$.
- It does not compromise generality.


## Exponential Loss Function

This kind of error function is different from Squared Euclidean distance

- The classification target is called an exponential loss function.
- AdaBoost uses exponential error loss as error criterion.



## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyönd Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Model Averaging
- Now Model Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection Process
- How do we select classifiers?
- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$
- 

AdaBoost Algorithm

- Some Remarks
- Explanation about AdaBoost's behaviorStatistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## Selection of the Classifier

We need to have a way to select the best Classifier in the Pool

- When we test the $M$ classifiers in the pool, we build a matrix $S$


## Selection of the Classifier

We need to have a way to select the best Classifier in the Pool

- When we test the $M$ classifiers in the pool, we build a matrix $S$

Then

- We record the misses (with a ONE) and hits (with a ZERO) of each classifiers.


## The Matrix $S$

## Row $i$ in the matrix is reserved for the data point $\boldsymbol{x}_{i}$

- Column $m$ is reserved for the $m$ th classifier in the pool.


## Classifiers

|  | 1 | 2 | $\cdots$ | $M$ |
| :---: | :---: | :---: | :--- | :---: |
| $\boldsymbol{x}_{1}$ | 0 | 1 | $\cdots$ | 1 |
| $\boldsymbol{x}_{2}$ | 0 | 0 | $\cdots$ | 1 |
| $\boldsymbol{x}_{3}$ | 1 | 1 | $\cdots$ | 0 |
| $\vdots$ | $\vdots$ | $\vdots$ |  | $\vdots$ |
| $\boldsymbol{x}_{N}$ | 0 | 0 | $\cdots$ | 0 |

## Something interesting about the $S$

The sum along the rows is the sum at the empirical risk

$$
\operatorname{ER}\left(y_{j}\right)=\frac{1}{N} \sum_{i=1}^{N} S_{i j} \text { with } j=1, \ldots, M
$$

Something interesting about the $S$

The sum along the rows is the sum at the empirical risk

$$
\operatorname{ER}\left(y_{j}\right)=\frac{1}{N} \sum_{i=1}^{N} S_{i j} \text { with } j=1, \ldots, M
$$

Therefore, the candidate to be used at certain iteration

- It is the classifier $y_{j}$ with the smallest empirical risk!!!


## Main Idea

## What does AdaBoost want to do?

The main idea of AdaBoost is to proceed systematically by extracting one classifier from the pool in each of $M$ iterations.

## Main Idea

## What does AdaBoost want to do?

The main idea of AdaBoost is to proceed systematically by extracting one classifier from the pool in each of $M$ iterations.

## Thus

The elements in the data set are weighted according to their current relevance (or urgency) at each iteration.

## Main Idea

## What does AdaBoost want to do?

The main idea of AdaBoost is to proceed systematically by extracting one classifier from the pool in each of $M$ iterations.

## Thus

The elements in the data set are weighted according to their current relevance (or urgency) at each iteration.

Thus at the beginning of the iterations
All data samples are assigned the same weight:

## Main Idea

## What does AdaBoost want to do?

The main idea of AdaBoost is to proceed systematically by extracting one classifier from the pool in each of $M$ iterations.

## Thus

The elements in the data set are weighted according to their current relevance (or urgency) at each iteration.

Thus at the beginning of the iterations
All data samples are assigned the same weight:

- Just 1 , or $\frac{1}{N}$, if we want to have a total sum of 1 for all weights.


## The process of the weights

## As the selection progresses

- The more difficult samples, those where the committee still performs badly, are assigned larger and larger weights.


## The process of the weights

## As the selection progresses

- The more difficult samples, those where the committee still performs badly, are assigned larger and larger weights.

The selection process concentrates in selecting new classifiers

- For the committee by focusing on those which can help with the still misclassified examples.


## The process of the weights

## As the selection progresses

- The more difficult samples, those where the committee still performs badly, are assigned larger and larger weights.

The selection process concentrates in selecting new classifiers

- For the committee by focusing on those which can help with the still misclassified examples.


## Then

- The best classifiers are those which can provide new insights to the committee.


## The process of the weights

## As the selection progresses

- The more difficult samples, those where the committee still performs badly, are assigned larger and larger weights.

The selection process concentrates in selecting new classifiers

- For the committee by focusing on those which can help with the still misclassified examples.


## Then

- The best classifiers are those which can provide new insights to the committee.
- Classifiers being selected should complement each other in an optimal way.


## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyönd Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Model Averaging
- Now Modet Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection Process
- How do we select classifiers?
- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$
- AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behaviorStatistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## Selecting New Classifiers

## What we want

In each iteration, we rank all classifiers, so that we can select the current best out of the pool.

## Selecting New Classifiers

## What we want

In each iteration, we rank all classifiers, so that we can select the current best out of the pool.

## At $m$ th iteration

We have already included $m-1$ classifiers in the committee and we want to select the next one.

## Selecting New Classifiers

## What we want

In each iteration, we rank all classifiers, so that we can select the current best out of the pool.

## At $m$ th iteration

We have already included $m-1$ classifiers in the committee and we want to select the next one.

Thus, we have the following cost function which is actually the output of the committee

$$
\begin{equation*}
C_{(m-1)}\left(\boldsymbol{x}_{i}\right)=\alpha_{1} y_{1}\left(\boldsymbol{x}_{i}\right)+\alpha_{2} y_{2}\left(\boldsymbol{x}_{i}\right)+\ldots+\alpha_{m-1} y_{m-1}\left(\boldsymbol{x}_{i}\right) \tag{10}
\end{equation*}
$$

## Thus, we have that

Extending the cost function by the new regression $y_{m}$

$$
\begin{equation*}
C_{(m)}\left(\boldsymbol{x}_{i}\right)=C_{(m-1)}\left(\boldsymbol{x}_{i}\right)+\alpha_{m} y_{m}\left(\boldsymbol{x}_{i}\right) \tag{11}
\end{equation*}
$$

## Thus, we have that

Extending the cost function by the new regression $y_{m}$

$$
\begin{equation*}
C_{(m)}\left(\boldsymbol{x}_{i}\right)=C_{(m-1)}\left(\boldsymbol{x}_{i}\right)+\alpha_{m} y_{m}\left(\boldsymbol{x}_{i}\right) \tag{11}
\end{equation*}
$$

At the first iteration $m=1$

- $C_{(0)}$ is the zero function.

Thus, we have that

Extending the cost function by the new regression $y_{m}$

$$
\begin{equation*}
C_{(m)}\left(\boldsymbol{x}_{i}\right)=C_{(m-1)}\left(\boldsymbol{x}_{i}\right)+\alpha_{m} y_{m}\left(\boldsymbol{x}_{i}\right) \tag{11}
\end{equation*}
$$

At the first iteration $m=1$

- $C_{(0)}$ is the zero function.

Thus, the total cost or total error is defined as the exponential error

$$
\begin{equation*}
E=\sum_{i=1}^{N} \exp \left\{-t_{i}\left(C_{(m-1)}\left(\boldsymbol{x}_{i}\right)+\alpha_{m} y_{m}\left(\boldsymbol{x}_{i}\right)\right)\right\} \tag{12}
\end{equation*}
$$

## Thus

We want to determine
$\alpha_{m}$ and $y_{m}$ in optimal way

## Thus

## We want to determine

$\alpha_{m}$ and $y_{m}$ in optimal way
Thus, rewriting

$$
\begin{equation*}
E=\sum_{i=1}^{N} w_{i}^{(m)} \exp \left\{-t_{i} \alpha_{m} y_{m}\left(\boldsymbol{x}_{i}\right)\right\} \tag{13}
\end{equation*}
$$

## Thus

## We want to determine

$\alpha_{m}$ and $y_{m}$ in optimal way

Thus, rewriting

$$
\begin{equation*}
E=\sum_{i=1}^{N} w_{i}^{(m)} \exp \left\{-t_{i} \alpha_{m} y_{m}\left(\boldsymbol{x}_{i}\right)\right\} \tag{13}
\end{equation*}
$$

Where, for $i=1,2, \ldots, N$

$$
\begin{equation*}
w_{i}^{(m)}=\exp \left\{-t_{i} C_{(m-1)}\left(\boldsymbol{x}_{i}\right)\right\} \tag{14}
\end{equation*}
$$

## Remark

We have that the weight

$$
w_{i}^{(m)}=\exp \left\{-t_{i} C_{(m-1)}\left(\boldsymbol{x}_{i}\right)\right\}
$$

## Remark

We have that the weight

$$
w_{i}^{(m)}=\exp \left\{-t_{i} C_{(m-1)}\left(\boldsymbol{x}_{i}\right)\right\}
$$

Needs to be used in someway for the training of the new classifier

- This is of the out most importance!!!


## Therefore

## You could use such weight

- As a output in the estimator function when applied to the loss function

$$
\sum_{i=1}^{N}\left(y_{i}-w_{i}^{(m)} f\left(\boldsymbol{x}_{i}\right)\right)^{2}
$$

## Therefore

## You could use such weight

- As a output in the estimator function when applied to the loss function

$$
\sum_{i=1}^{N}\left(y_{i}-w_{i}^{(m)} f\left(\boldsymbol{x}_{i}\right)\right)^{2}
$$

## You could use such weight

- You could sub-sample with substitution by using the distribution $D_{m}\left\{w_{i}^{(m)}\right\}$ of $\boldsymbol{x}_{i}$


## Therefore

## You could use such weight

- As a output in the estimator function when applied to the loss function

$$
\sum_{i=1}^{N}\left(y_{i}-w_{i}^{(m)} f\left(\boldsymbol{x}_{i}\right)\right)^{2}
$$

## You could use such weight

- You could sub-sample with substitution by using the distribution $D_{m}\left\{w_{i}^{(m)}\right\}$ of $\boldsymbol{x}_{i}$
- The train using that sub-sample


## Therefore

## You could use such weight

- As a output in the estimator function when applied to the loss function

$$
\sum_{i=1}^{N}\left(y_{i}-w_{i}^{(m)} f\left(\boldsymbol{x}_{i}\right)\right)^{2}
$$

## You could use such weight

- You could sub-sample with substitution by using the distribution $D_{m}\left\{w_{i}^{(m)}\right\}$ of $\boldsymbol{x}_{i}$
- The train using that sub-sample

You could apply the weight function to the loss function itself used for training

$$
\sum_{i=1}^{N} w_{i}^{(m)}\left(y_{i}-w_{i} f\left(\boldsymbol{x}_{i}\right)\right)^{2}
$$

## Thus

In the first iteration $w_{i}^{(1)}=1$ for $i=1, \ldots, N$

- Meaning all the points have the same importance.


## Thus

In the first iteration $w_{i}^{(1)}=1$ for $i=1, \ldots, N$

- Meaning all the points have the same importance.

During later iterations, the vector $\boldsymbol{w}^{(m)}$

- It represents the weight assigned to each data point in the training set at iteration $m$.


## Rewriting the Cost Equation

We can split (Eq. 13)

$$
\begin{equation*}
E=\sum_{t_{i}=y_{m}\left(\boldsymbol{x}_{i}\right)} w_{i}^{(m)} \exp \left\{-\alpha_{m}\right\}+\sum_{t_{i} \neq y_{m}\left(\boldsymbol{x}_{i}\right)} w_{i}^{(m)} \exp \left\{\alpha_{m}\right\} \tag{15}
\end{equation*}
$$

## Rewriting the Cost Equation

## We can split (Eq. 13)

$$
\begin{equation*}
E=\sum_{t_{i}=y_{m}\left(\boldsymbol{x}_{i}\right)} w_{i}^{(m)} \exp \left\{-\alpha_{m}\right\}+\sum_{t_{i} \neq y_{m}\left(\boldsymbol{x}_{i}\right)} w_{i}^{(m)} \exp \left\{\alpha_{m}\right\} \tag{15}
\end{equation*}
$$

## Meaning

The total cost is the weighted cost of all hits plus the weighted cost of all misses.

## Therefore

Writing the first summand as $W_{c} \exp \left\{-\alpha_{m}\right\}$ and the second as $W_{e} \exp \left\{\alpha_{m}\right\}$

$$
\begin{equation*}
E=W_{c} \exp \left\{-\alpha_{m}\right\}+W_{e} \exp \left\{\alpha_{m}\right\} \tag{16}
\end{equation*}
$$

## Empty

Now, for the selection of $y_{m}$

- The exact value of $\alpha_{m}>0$ is irrelevant


## Empty

Now, for the selection of $y_{m}$

- The exact value of $\alpha_{m}>0$ is irrelevant

Since a fixed $\alpha_{m}$ minimizing $E$

- It is equivalent to minimizing $\exp \left\{\alpha_{m}\right\} E$


## Empty

Now, for the selection of $y_{m}$

- The exact value of $\alpha_{m}>0$ is irrelevant

Since a fixed $\alpha_{m}$ minimizing $E$

- It is equivalent to minimizing $\exp \left\{\alpha_{m}\right\} E$

Or in other words

$$
\begin{equation*}
\exp \left\{\alpha_{m}\right\} E=W_{c}+W_{e} \exp \left\{2 \alpha_{m}\right\} \tag{17}
\end{equation*}
$$

Now, we have

Given that $\alpha_{m}>0$

$$
2 \alpha_{m}>0
$$

Now, we have

Given that $\alpha_{m}>0$

$$
2 \alpha_{m}>0
$$

We have

$$
\exp \left\{2 \alpha_{m}\right\}>\exp \{0\}=1
$$

## Then

We can rewrite (Eq. 17)

$$
\begin{equation*}
\exp \left\{\alpha_{m}\right\} E=W_{c}+W_{e}-W_{e}+W_{e} \exp \left\{2 \alpha_{m}\right\} \tag{18}
\end{equation*}
$$

## Then

We can rewrite (Eq. 17)

$$
\begin{equation*}
\exp \left\{\alpha_{m}\right\} E=W_{c}+W_{e}-W_{e}+W_{e} \exp \left\{2 \alpha_{m}\right\} \tag{18}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\exp \left\{\alpha_{m}\right\} E=\left(W_{c}+W_{e}\right)+W_{e}\left(\exp \left\{2 \alpha_{m}\right\}-1\right) \tag{19}
\end{equation*}
$$

## We can rewrite (Eq. 17)

$$
\begin{equation*}
\exp \left\{\alpha_{m}\right\} E=W_{c}+W_{e}-W_{e}+W_{e} \exp \left\{2 \alpha_{m}\right\} \tag{18}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\exp \left\{\alpha_{m}\right\} E=\left(W_{c}+W_{e}\right)+W_{e}\left(\exp \left\{2 \alpha_{m}\right\}-1\right) \tag{19}
\end{equation*}
$$

Now, $W_{c}+W_{e}$ is the total sum $W$ of the weights

- Of all data points which is constant in the current iteration.


## Thus

The right hand side of the equation is minimized

- When at the $m$-th iteration, we pick the classifier with the lowest total cost $W_{e}$
- That is the lowest rate of weighted error.


## Thus

## The right hand side of the equation is minimized

- When at the $m$-th iteration, we pick the classifier with the lowest total cost $W_{e}$
- That is the lowest rate of weighted error.


## Intuitively

The next selected $y_{m}$ should be the one with the lowest penalty given the current set of weights.

## Do you remember?

The Matrix $S$

- We pick the classifier with the lowest total cost $W_{e}$


## Do you remember?

The Matrix $S$

- We pick the classifier with the lowest total cost $W_{e}$

Now, we need to do some updates

- Specifically the value $\alpha_{m}$.


## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyond Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Model Averaging
- Now Model Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection Process
- How do we select classifiers?
- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$
- AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behaviorStatistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons

Deriving against the weight $\alpha_{m}$

Going back to the original $E$, we can use the derivative trick

$$
\begin{equation*}
\frac{\partial E}{\partial \alpha_{m}}=-W_{c} \exp \left\{-\alpha_{m}\right\}+W_{e} \exp \left\{\alpha_{m}\right\} \tag{20}
\end{equation*}
$$

Deriving against the weight $\alpha_{m}$

Going back to the original $E$, we can use the derivative trick

$$
\begin{equation*}
\frac{\partial E}{\partial \alpha_{m}}=-W_{c} \exp \left\{-\alpha_{m}\right\}+W_{e} \exp \left\{\alpha_{m}\right\} \tag{20}
\end{equation*}
$$

Making the equation equal to zero and multiplying by $\exp \left\{\alpha_{m}\right\}$

$$
\begin{equation*}
-W_{c}+W_{e} \exp \left\{2 \alpha_{m}\right\}=0 \tag{21}
\end{equation*}
$$

Deriving against the weight $\alpha_{m}$

Going back to the original $E$, we can use the derivative trick

$$
\begin{equation*}
\frac{\partial E}{\partial \alpha_{m}}=-W_{c} \exp \left\{-\alpha_{m}\right\}+W_{e} \exp \left\{\alpha_{m}\right\} \tag{20}
\end{equation*}
$$

Making the equation equal to zero and multiplying by $\exp \left\{\alpha_{m}\right\}$

$$
\begin{equation*}
-W_{c}+W_{e} \exp \left\{2 \alpha_{m}\right\}=0 \tag{21}
\end{equation*}
$$

The optimal value is thus

$$
\begin{equation*}
\alpha_{m}=\frac{1}{2} \ln \left(\frac{W_{c}}{W_{e}}\right) \tag{22}
\end{equation*}
$$

Now

Making the total sum of all weights

$$
\begin{equation*}
W=W_{c}+W_{e} \tag{23}
\end{equation*}
$$

Now

Making the total sum of all weights

$$
\begin{equation*}
W=W_{c}+W_{e} \tag{23}
\end{equation*}
$$

We can rewrite the previous equation as

$$
\begin{equation*}
\alpha_{m}=\frac{1}{2} \ln \left(\frac{W-W_{e}}{W_{e}}\right)=\frac{1}{2} \ln \left(\frac{1-e_{m}}{e_{m}}\right) \tag{24}
\end{equation*}
$$

## Now

## Making the total sum of all weights

$$
\begin{equation*}
W=W_{c}+W_{e} \tag{23}
\end{equation*}
$$

We can rewrite the previous equation as

$$
\begin{equation*}
\alpha_{m}=\frac{1}{2} \ln \left(\frac{W-W_{e}}{W_{e}}\right)=\frac{1}{2} \ln \left(\frac{1-e_{m}}{e_{m}}\right) \tag{24}
\end{equation*}
$$

With the percentage rate of error given the weights of the data points

$$
\begin{equation*}
e_{m}=\frac{W_{e}}{W} \tag{25}
\end{equation*}
$$

## What about the weights?

Using the equation

$$
\begin{equation*}
w_{i}^{(m)}=\exp \left\{-t_{i} C_{(m-1)}\left(\boldsymbol{x}_{i}\right)\right\} \tag{26}
\end{equation*}
$$

## What about the weights?

Using the equation

$$
\begin{equation*}
w_{i}^{(m)}=\exp \left\{-t_{i} C_{(m-1)}\left(\boldsymbol{x}_{i}\right)\right\} \tag{26}
\end{equation*}
$$

And because we have $\alpha_{m}$ and $y_{m}\left(\boldsymbol{x}_{i}\right)$

$$
w_{i}^{(m+1)}=\exp \left\{-t_{i} C_{(m)}\left(\boldsymbol{x}_{i}\right)\right\}
$$

## What about the weights?

## Using the equation

$$
\begin{equation*}
w_{i}^{(m)}=\exp \left\{-t_{i} C_{(m-1)}\left(\boldsymbol{x}_{i}\right)\right\} \tag{26}
\end{equation*}
$$

And because we have $\alpha_{m}$ and $y_{m}\left(\boldsymbol{x}_{i}\right)$

$$
\begin{aligned}
w_{i}^{(m+1)} & =\exp \left\{-t_{i} C_{(m)}\left(\boldsymbol{x}_{i}\right)\right\} \\
& =\exp \left\{-t_{i}\left[C_{(m-1)}\left(\boldsymbol{x}_{i}\right)+\alpha_{m} y_{m}\left(\boldsymbol{x}_{i}\right)\right]\right\}
\end{aligned}
$$

## What about the weights?

## Using the equation

$$
\begin{equation*}
w_{i}^{(m)}=\exp \left\{-t_{i} C_{(m-1)}\left(\boldsymbol{x}_{i}\right)\right\} \tag{26}
\end{equation*}
$$

## And because we have $\alpha_{m}$ and $y_{m}\left(\boldsymbol{x}_{i}\right)$

$$
\begin{aligned}
w_{i}^{(m+1)} & =\exp \left\{-t_{i} C_{(m)}\left(\boldsymbol{x}_{i}\right)\right\} \\
& =\exp \left\{-t_{i}\left[C_{(m-1)}\left(\boldsymbol{x}_{i}\right)+\alpha_{m} y_{m}\left(\boldsymbol{x}_{i}\right)\right]\right\} \\
& =w_{i}^{(m)} \exp \left\{-t_{i} \alpha_{m} y_{m}\left(\boldsymbol{x}_{i}\right)\right\}
\end{aligned}
$$

## Sequential Training

Thus

- AdaBoost trains a new classifier using a data set


## Sequential Training

Thus

- AdaBoost trains a new classifier using a data set
- There the weighting coefficients are adjusted according to the performance of the previously trained classifier


## Sequential Training

Thus

- AdaBoost trains a new classifier using a data set
- There the weighting coefficients are adjusted according to the performance of the previously trained classifier
- To give greater weight to the misclassified data points.


## Illustration

## Schematic Illustration



## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyond Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Nodel Averaging
- Now Model Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection Process
- 

How do we select classifiers?

- Selecting New Classifiers

Deriving against the weight $\alpha_{m}$

- AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behaviorStatistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## AdaBoost Algorithm

## Step 1

Initialize $\left\{w_{i}^{(1)}\right\}$ to $\frac{1}{N}$

## AdaBoost Algorithm

## Step 1

Initialize $\left\{w_{i}^{(1)}\right\}$ to $\frac{1}{N}$

Step 2
For $m=1,2, \ldots, M$

## AdaBoost Algorithm

## Step 1

Initialize $\left\{w_{i}^{(1)}\right\}$ to $\frac{1}{N}$

## Step 2

For $m=1,2, \ldots, M$

- Select a weak classifier $y_{m}(\boldsymbol{x})$ to the training data by minimizing the weighted error function or


## AdaBoost Algorithm

## Step 1

Initialize $\left\{w_{i}^{(1)}\right\}$ to $\frac{1}{N}$

## Step 2

For $m=1,2, \ldots, M$

- Select a weak classifier $y_{m}(\boldsymbol{x})$ to the training data by minimizing the weighted error function or

$$
\begin{equation*}
\arg \min _{y_{m}} \sum_{i=1}^{N} w_{i}^{(m)} I\left(y_{m}\left(\boldsymbol{x}_{i}\right) \neq t_{n}\right)=\arg \min _{y_{m}} \sum_{t_{i} \neq y_{m}\left(\boldsymbol{x}_{i}\right)} w_{i}^{(m)}=\arg \min _{y_{m}} W_{e} \tag{27}
\end{equation*}
$$

Where $I$ is an indicator function.

## AdaBoost Algorithm

## Step 2

- Evaluate

$$
\begin{equation*}
e_{m}=\frac{\sum_{n=1}^{N} w_{n}^{(m)} I\left(y_{m}\left(\boldsymbol{x}_{\boldsymbol{n}}\right) \neq t_{n}\right)}{\sum_{n=1}^{N} w_{n}^{(m)}} \tag{28}
\end{equation*}
$$

Where $I$ is an indicator function

## AdaBoost Algorithm

## Step 3

Set the $\alpha_{m}$ weight to

$$
\begin{equation*}
\alpha_{m}=\frac{1}{2} \ln \left\{\frac{1-e_{m}}{e_{m}}\right\} \tag{29}
\end{equation*}
$$

## AdaBoost Algorithm

## Step 3

Set the $\alpha_{m}$ weight to

$$
\begin{equation*}
\alpha_{m}=\frac{1}{2} \ln \left\{\frac{1-e_{m}}{e_{m}}\right\} \tag{29}
\end{equation*}
$$

Now update the weights of the data for the next iteration

- If $t_{i} \neq y_{m}\left(\boldsymbol{x}_{i}\right)$ i.e. a miss

$$
\begin{equation*}
w_{i}^{(m+1)}=w_{i}^{(m)} \exp \left\{\alpha_{m}\right\}=w_{i}^{(m)} \sqrt{\frac{1-e_{m}}{e_{m}}} \tag{30}
\end{equation*}
$$

## AdaBoost Algorithm

## Step 3

Set the $\alpha_{m}$ weight to

$$
\begin{equation*}
\alpha_{m}=\frac{1}{2} \ln \left\{\frac{1-e_{m}}{e_{m}}\right\} \tag{29}
\end{equation*}
$$

Now update the weights of the data for the next iteration

- If $t_{i} \neq y_{m}\left(\boldsymbol{x}_{i}\right)$ i.e. a miss

$$
\begin{equation*}
w_{i}^{(m+1)}=w_{i}^{(m)} \exp \left\{\alpha_{m}\right\}=w_{i}^{(m)} \sqrt{\frac{1-e_{m}}{e_{m}}} \tag{30}
\end{equation*}
$$

- If $t_{i}==y_{m}\left(\boldsymbol{x}_{i}\right)$ i.e. a hit

$$
\begin{equation*}
w_{i}^{(m+1)}=w_{i}^{(m)} \exp \left\{-\alpha_{m}\right\}=w_{i}^{(m)} \sqrt{\frac{e_{m}}{1-e_{m}}} \tag{31}
\end{equation*}
$$

## Finally, make predictions

For this use

$$
\begin{equation*}
Y_{M}(\boldsymbol{x})=\operatorname{sign}\left(\sum_{m=1}^{M} \alpha_{m} y_{m}(\boldsymbol{x})\right) \tag{32}
\end{equation*}
$$

## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyönd Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Model Averaging
- Now Model Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection Process
- 

How do we select classifiers?

- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$
- AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behavior
- Statistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## Observations

## First

The first base classifier is the usual procedure of training a single classifier.

## Observations

## First

The first base classifier is the usual procedure of training a single classifier.

## Second

From (Eq. 30) and (Eq. 31), we can see that the weighting coefficient are increased for data points that are misclassified.

## Observations

## First

The first base classifier is the usual procedure of training a single classifier.

## Second

From (Eq. 30) and (Eq. 31), we can see that the weighting coefficient are increased for data points that are misclassified.

## Third

- The quantity $e_{m}$ represent weighted measures of the error rate.
- Thus $\alpha_{m}$ gives more weight to the more accurate classifiers.


## In addition

## The pool of classifiers in Step 1 can be substituted by a family of classifiers

One whose members are trained to minimize the error function given the current weights

## In addition

## The pool of classifiers in Step 1 can be substituted by a family of classifiers

One whose members are trained to minimize the error function given the current weights

## Now

If indeed a finite set of classifiers is given, we only need to test the classifiers once for each data point

## In addition

## The pool of classifiers in Step 1 can be substituted by a family of classifiers

One whose members are trained to minimize the error function given the current weights

## Now

If indeed a finite set of classifiers is given, we only need to test the classifiers once for each data point

## The Scouting Matrix $S$

It can be reused at each iteration by multiplying the transposed vector of weights $\boldsymbol{w}^{(m)}$ with $S$ to obtain $W_{e}$ of each machine

## We have then

The following

$$
\begin{equation*}
\left[W_{e}^{(1)} W_{e}^{(2)} \cdots W_{e}^{M}\right]=\left(\boldsymbol{w}^{(m)}\right)^{T} S \tag{33}
\end{equation*}
$$

We have then

The following

$$
\begin{equation*}
\left[W_{e}^{(1)} W_{e}^{(2)} \cdots W_{e}^{M}\right]=\left(\boldsymbol{w}^{(m)}\right)^{T} S \tag{33}
\end{equation*}
$$

This allows to reformulate the weight update step such that
It only misses lead to weight modification.

We have then

The following

$$
\begin{equation*}
\left[W_{e}^{(1)} W_{e}^{(2)} \cdots W_{e}^{M}\right]=\left(\boldsymbol{w}^{(m)}\right)^{T} S \tag{33}
\end{equation*}
$$

This allows to reformulate the weight update step such that It only misses lead to weight modification.

## Note

- Note that the weight vector $\boldsymbol{w}^{(m)}$ is constructed iteratively.

We have then

The following

$$
\begin{equation*}
\left[W_{e}^{(1)} W_{e}^{(2)} \cdots W_{e}^{M}\right]=\left(\boldsymbol{w}^{(m)}\right)^{T} S \tag{33}
\end{equation*}
$$

This allows to reformulate the weight update step such that It only misses lead to weight modification.

## Note

- Note that the weight vector $\boldsymbol{w}^{(m)}$ is constructed iteratively.
- It could be recomputed completely at every iteration, but the iterative construction is more efficient and simple to implement.


## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyond Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Model Averaging
- Now Model Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection Process
- 

How do we select classifiers?

- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$
- AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behavior
- Statistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## Explanation

Graph for $\frac{1-e_{m}}{e_{m}}$ in the range $0 \leq e_{m} \leq 1$


## So we have

## Graph for $\alpha_{m}$



## We have the following cases

We have the following
If $e_{m} \longrightarrow 1$, we have that all the samples were not correctly classified!!!

## We have the following cases


#### Abstract

We have the following If $e_{m} \longrightarrow 1$, we have that all the samples were not correctly classified!!!


## Thus

We get that for all miss-classified sample $\lim _{e_{m \rightarrow 1}} \frac{1-e_{m}}{e_{m}} \longrightarrow 0$, then $\alpha_{m} \longrightarrow-\infty$

Now

We get that for all miss-classified sample

$$
w_{i}^{(m+1)}=w_{i}^{(m)} \exp \left\{\alpha_{m}\right\} \longrightarrow 0
$$

## Now

We get that for all miss-classified sample

$$
w_{i}^{(m+1)}=w_{i}^{(m)} \exp \left\{\alpha_{m}\right\} \longrightarrow 0
$$

Therefore

- We only need to reverse the answers to get the perfect classifier and select it as the only committee member.

Now, the Last Case

If $e_{m} \longrightarrow 1 / 2$

- We have $\alpha_{m} \longrightarrow 0$

Now, the Last Case

If $e_{m} \longrightarrow 1 / 2$

- We have $\alpha_{m} \longrightarrow 0$

Thus we have that if the sample is well or bad classified

$$
\begin{equation*}
\exp \left\{-\alpha_{m} t_{i} y_{m}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right\} \rightarrow 1 \tag{34}
\end{equation*}
$$

Now, the Last Case

If $e_{m} \longrightarrow 1 / 2$

- We have $\alpha_{m} \longrightarrow 0$

Thus we have that if the sample is well or bad classified

$$
\begin{equation*}
\exp \left\{-\alpha_{m} t_{i} y_{m}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right\} \rightarrow 1 \tag{34}
\end{equation*}
$$

Therefore

- The weight does not change at all.


## Thus, we have

What about $e_{m} \rightarrow 0$

- We have that $\alpha_{m} \rightarrow+\infty$


## Thus, we have

## What about $e_{m} \rightarrow 0$

- We have that $\alpha_{m} \rightarrow+\infty$


## Thus, we have

Samples always correctly classified

$$
w_{i}^{(m+1)}=w_{i}^{(m)} \exp \left\{-\alpha_{m} t_{i} y_{m}\left(\boldsymbol{x}_{i}\right)\right\} \rightarrow 0
$$

## Thus, we have

## What about $e_{m} \rightarrow 0$

- We have that $\alpha_{m} \rightarrow+\infty$


## Thus, we have

Samples always correctly classified
$w_{i}^{(m+1)}=w_{i}^{(m)} \exp \left\{-\alpha_{m} t_{i} y_{m}\left(\boldsymbol{x}_{i}\right)\right\} \rightarrow 0$

- Thus, the only need $m$ committee members, we do not need another $m+1$ member.


## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyond Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Nodel Averaging
- Now Model Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection Process
- 

How do we select classifiers?

- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behavior
- Statistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## This comes from

The paper

- "Additive Logistic Regression: A Statistical View of Boosting" by Friedman, Hastie and Tibshirani


## This comes from

The paper

- "Additive Logistic Regression: A Statistical View of Boosting" by Friedman, Hastie and Tibshirani


## Something Notable

- In this paper, a proof exists to show that boosting algorithms are procedures to fit and additive logistic regression model.

$$
E[y \mid \boldsymbol{x}]=F(\boldsymbol{x}) \text { with } F(\boldsymbol{x})=\sum_{m=1}^{M} f_{m}(\boldsymbol{x})
$$

## Consider the Additive Regression Model

We are interested in modeling the mean $E[y \mid x]=F(x)$

- With Additive Model

$$
F(\boldsymbol{x})=\sum_{i=1}^{d} f_{i}\left(x_{i}\right)
$$

## Consider the Additive Regression Model

We are interested in modeling the mean $E[y \mid x]=F(x)$

- With Additive Model

$$
F(\boldsymbol{x})=\sum_{i=1}^{d} f_{i}\left(x_{i}\right)
$$

## Where each $f_{i}\left(x_{i}\right)$ is a function for each feature input $x_{i}$

- A convenient algorithm for updating these models it the backfitting algorithm with update:

$$
f_{i}\left(x_{i}\right)=E\left[y-\sum_{k \neq i} f_{k}\left(x_{k}\right) \mid x_{i}\right]
$$

## Remarks

## An example of these additive models is the matching pursuit

$$
f(t)=\sum_{n=-\infty}^{+\infty} a_{n} g_{\gamma_{n}}(t)
$$

## Remarks

An example of these additive models is the matching pursuit

$$
f(t)=\sum_{n=-\infty}^{+\infty} a_{n} g_{\gamma_{n}}(t)
$$

## Backfitting ensures that under fairly general conditions

- Backfitting converges to the minimizer of $E\left[(y-f(\boldsymbol{x}))^{2}\right]$


## In the case of AdaBoost

## We have an additive model

- Which considers functions $\left\{f_{m}(\boldsymbol{x})\right\}_{m=1}^{M}$ that take in account all the features - Perceptron, Decision Trees, etc


## In the case of AdaBoost

## We have an additive model

- Which considers functions $\left\{f_{m}(\boldsymbol{x})\right\}_{m=1}^{M}$ that take in account all the features - Perceptron, Decision Trees, etc

Each of these functions is characterized by a set of parameters $\gamma_{m}$ and multiplier $\alpha_{m}$

$$
f_{m}(\boldsymbol{x})=\alpha_{m} y_{m}\left(\boldsymbol{x} \mid \gamma_{m}\right)
$$

## In the case of AdaBoost

## We have an additive model

- Which considers functions $\left\{f_{m}(\boldsymbol{x})\right\}_{m=1}^{M}$ that take in account all the features - Perceptron, Decision Trees, etc

Each of these functions is characterized by a set of parameters $\gamma_{m}$ and multiplier $\alpha_{m}$

$$
f_{m}(\boldsymbol{x})=\alpha_{m} y_{m}\left(\boldsymbol{x} \mid \gamma_{m}\right)
$$

With additive model

$$
F_{M}(\boldsymbol{x})=\alpha_{1} y_{1}\left(\boldsymbol{x} \mid \gamma_{1}\right)+\cdots+\alpha_{M} y_{M}\left(\boldsymbol{x} \mid \gamma_{M}\right)
$$

## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyöd Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Model Averaging
- Now Model Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection Process
- 

How do we select classifiers?

- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$
- AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behavior
- Statistical Analysis of the Exponential Loss - Moving from Regression to Classification - Minimization of the Exponential Criterion - Finally, The Additive Logistic RegressionExample using an Infinitude of Perceptrons


## Remark - Moving from Regression to Classification

## Given that Regression have wide ranges of outputs

- Logistic Regression is widely used to move Regression to Classification

$$
\log \frac{P(Y=1 \mid \boldsymbol{x})}{P(Y=-1 \mid \boldsymbol{x})}=\sum_{m=1}^{M} f_{m}(\boldsymbol{x})
$$

## Remark - Moving from Regression to Classification

## Given that Regression have wide ranges of outputs

- Logistic Regression is widely used to move Regression to Classification

$$
\log \frac{P(Y=1 \mid \boldsymbol{x})}{P(Y=-1 \mid \boldsymbol{x})}=\sum_{m=1}^{M} f_{m}(\boldsymbol{x})
$$

A nice property, the probability estimates lie in $[0,1]$

- Now, solving by assuming $P(Y=1 \mid \boldsymbol{x})+P(Y=-1 \mid \boldsymbol{x})=1$

$$
P(Y=1 \mid \boldsymbol{x})=\frac{e^{F(\boldsymbol{x})}}{1+e^{F(\boldsymbol{x})}}
$$

## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyönd Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Model Averaging
- Now Model Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection Process
- 

How do we select classifiers?

- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$
- AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behavior
- Statistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic Regression

Example using an Infinitude of Perceptrons

## The Exponential Criterion

We have our exponential Criterion under an Expected Value with $y \in\{1,-1\}$

$$
J(F)=E\left[e^{-y F(x)}\right]
$$

## The Exponential Criterion

We have our exponential Criterion under an Expected Value with
$y \in\{1,-1\}$

$$
J(F)=E\left[e^{-y F(x)}\right]
$$

## Lemma

- $E\left[e^{-y F(\boldsymbol{x})}\right]$ is minimized at

$$
F(\boldsymbol{x})=\frac{1}{2} \log \frac{P(Y=1 \mid \boldsymbol{x})}{P(Y=-1 \mid \boldsymbol{x})}
$$

Hence:

$$
\begin{aligned}
P(Y=1 \mid \boldsymbol{x}) & =\frac{e^{F(\boldsymbol{x})}}{e^{-F(\boldsymbol{x})}+e^{F(\boldsymbol{x})}} \\
P(Y=-1 \mid \boldsymbol{x}) & =\frac{e^{-F(\boldsymbol{x})}}{e^{-F(\boldsymbol{x})}+e^{F(\boldsymbol{x})}}
\end{aligned}
$$

## Proof

Given the discrete nature of $y \in\{1,-1\}$

$$
\frac{\partial E\left[e^{-y F(\boldsymbol{x})}\right]}{\partial F(\boldsymbol{x})}=-P(Y=1 \mid \boldsymbol{x}) e^{-F(\boldsymbol{x})}+P(Y=-1 \mid \boldsymbol{x}) e^{F(\boldsymbol{x})}
$$

## Proof

Given the discrete nature of $y \in\{1,-1\}$

$$
\frac{\partial E\left[e^{-y F(\boldsymbol{x})}\right]}{\partial F(\boldsymbol{x})}=-P(Y=1 \mid \boldsymbol{x}) e^{-F(\boldsymbol{x})}+P(Y=-1 \mid \boldsymbol{x}) e^{F(\boldsymbol{x})}
$$

Therefore

$$
-P(Y=1 \mid \boldsymbol{x}) e^{-F(\boldsymbol{x})}+P(Y=-1 \mid \boldsymbol{x}) e^{F(\boldsymbol{x})}=0
$$

Then

We have that

$$
\begin{aligned}
P(Y=1 \mid \boldsymbol{x}) e^{-F(\boldsymbol{x})} & =P(Y=-1 \mid \boldsymbol{x}) e^{F(\boldsymbol{x})} \\
& =[1-P(Y=1 \mid \boldsymbol{x})] e^{F(\boldsymbol{x})}
\end{aligned}
$$

Then

We have that

$$
\begin{aligned}
P(Y=1 \mid \boldsymbol{x}) e^{-F(\boldsymbol{x})} & =P(Y=-1 \mid \boldsymbol{x}) e^{F(\boldsymbol{x})} \\
& =[1-P(Y=1 \mid \boldsymbol{x})] e^{F(\boldsymbol{x})}
\end{aligned}
$$

## Solving

$$
e^{F(\boldsymbol{x})}=\left[e^{-F(\boldsymbol{x})}+e^{F(\boldsymbol{x})}\right] P(Y=1 \mid \boldsymbol{x})
$$

## Finally, we have

## The first equation

$$
P(Y=1 \mid \boldsymbol{x})=\frac{e^{F(\boldsymbol{x})}}{e^{-F(\boldsymbol{x})}+e^{F(\boldsymbol{x})}}
$$

## Finally, we have

## The first equation

$$
P(Y=1 \mid \boldsymbol{x})=\frac{e^{F(\boldsymbol{x})}}{e^{-F(\boldsymbol{x})}+e^{F(\boldsymbol{x})}}
$$

## Similarly

$$
P(Y=-1 \mid \boldsymbol{x})=\frac{e^{-F(\boldsymbol{x})}}{e^{-F(\boldsymbol{x})}+e^{F(\boldsymbol{x})}}
$$

## Basically

We have that the $E\left[e^{-y F(x)}\right]$

- When you minimize the cost function


## Basically

We have that the $E\left[e^{-y F(x)}\right]$

- When you minimize the cost function

Then at the optimal you have the Binary Classification

- Of the Logistic Regression


## Furthermore

## Corollary

- If $E$ is replaced by averages over regions of $\boldsymbol{x}$ where $F(\boldsymbol{x})$ is constant (Similar to a decision tree),


## Furthermore

## Corollary

- If $E$ is replaced by averages over regions of $\boldsymbol{x}$ where $F(\boldsymbol{x})$ is constant (Similar to a decision tree),
- The same result applies to the sample proportions of $y=1$ and $y=-1$


## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyönd Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Model Averaging
- Now Model Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection Process
- 

How do we select classifiers?

- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$
- AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behavior
- Statistical Analysis of the Exponential Loss
- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic Regression

Example using an Infinitude of Perceptrons

## Finally, The Additive Logistic Regression

## Proposition

- The AdaBoost algorithm fits an additive logistic regression model by stage-wise optimization of

$$
J(F)=E\left[e^{-y F(x)}\right]
$$

## Finally, The Additive Logistic Regression

## Proposition

- The AdaBoost algorithm fits an additive logistic regression model by stage-wise optimization of

$$
J(F)=E\left[e^{-y F(x)}\right]
$$

## Proof

- Imagine you have an estimate $F(\boldsymbol{x})$ then we seek an improved estimate:

$$
F(\boldsymbol{x})+f(\boldsymbol{x})
$$

## For This

## We minimize at each $\boldsymbol{x}$

$$
J(F(\boldsymbol{x})+f(\boldsymbol{x}))
$$

## For This

## We minimize at each $\boldsymbol{x}$

$$
J(F(\boldsymbol{x})+f(\boldsymbol{x}))
$$

## This can be expanded

$$
\begin{aligned}
J(F(\boldsymbol{x})+f(\boldsymbol{x})) & =E\left[e^{-y(F(\boldsymbol{x})+f(\boldsymbol{x}))} \mid \boldsymbol{x}\right] \\
& =e^{-f(\boldsymbol{x})} E\left[e^{-y F(\boldsymbol{x})} I(y=1) \mid \boldsymbol{x}\right]+ \\
& \ldots e^{f(\boldsymbol{x})} E\left[e^{-y F(\boldsymbol{x})} I(y=-1) \mid \boldsymbol{x}\right]
\end{aligned}
$$

Deriving w.r.t. $f(\boldsymbol{x})$

We get

$$
-e^{-f(\boldsymbol{x})} E\left[e^{-y F(\boldsymbol{x})} I(y=1) \mid \boldsymbol{x}\right]+e^{f(\boldsymbol{x})} E\left[e^{-y F(\boldsymbol{x})} I(y=-1) \mid \boldsymbol{x}\right]=0
$$

## We have the following

If we divide by $E\left[e^{-y F(x)} \mid x\right]$, the first term

$$
\frac{E\left[e^{-y F(\boldsymbol{x})} I(y=1) \mid \boldsymbol{x}\right]}{E\left[e^{-y F(\boldsymbol{x})} \mid \boldsymbol{x}\right]}=E_{w}[I(y=1) \mid \boldsymbol{x}]
$$

We have the following

If we divide by $E\left[e^{-y F(x)} \mid \boldsymbol{x}\right]$, the first term

$$
\frac{E\left[e^{-y F(\boldsymbol{x})} I(y=1) \mid \boldsymbol{x}\right]}{E\left[e^{-y F(\boldsymbol{x})} \mid \boldsymbol{x}\right]}=E_{w}[I(y=1) \mid \boldsymbol{x}]
$$

Also

$$
\frac{E\left[e^{-y F(\boldsymbol{x})} I(y=-1) \mid \boldsymbol{x}\right]}{E\left[e^{-y F(\boldsymbol{x})} \mid \boldsymbol{x}\right]}=E_{w}[I(y=-1) \mid \boldsymbol{x}]
$$

## Thus, we have

We apply the natural $\log$ to both sides

$$
\log e^{-f(\boldsymbol{x})}+\log E_{w}[I(y=1) \mid \boldsymbol{x}]=\log e^{f(\boldsymbol{x})}+\log E_{w}[I(y=-1) \mid \boldsymbol{x}]
$$

## Thus, we have

## We apply the natural $\log$ to both sides

$$
\log e^{-f(\boldsymbol{x})}+\log E_{w}[I(y=1) \mid \boldsymbol{x}]=\log e^{f(\boldsymbol{x})}+\log E_{w}[I(y=-1) \mid \boldsymbol{x}]
$$

Then

$$
2 f(\boldsymbol{x})=\log E_{w}[I(y=1) \mid \boldsymbol{x}]-\log E_{w}[I(y=-1) \mid \boldsymbol{x}]
$$

## Finally

## We have that

$$
\widehat{f}(\boldsymbol{x})=\frac{1}{2} \log \frac{E_{w}[I(y=1) \mid \boldsymbol{x}]}{E_{w}[I(y=-1) \mid \boldsymbol{x}]}
$$

## Finally

## We have that

$$
\widehat{f}(\boldsymbol{x})=\frac{1}{2} \log \frac{E_{w}[I(y=1) \mid \boldsymbol{x}]}{E_{w}[I(y=-1) \mid \boldsymbol{x}]}
$$

## In term of probabilities

$$
\widehat{f}(\boldsymbol{x})=\frac{1}{2} \log \frac{P_{w}(y=1 \mid \boldsymbol{x})}{P_{w}(y=-1 \mid \boldsymbol{x})}
$$

## The Weight Update

Finally, we have a way to update the weights by setting
$w_{t}(\boldsymbol{x}, y)=e^{-y F(\boldsymbol{x})}$

$$
w_{t+1}(\boldsymbol{x}, y)=w_{t}(\boldsymbol{x}, y) e^{-y \widehat{f}(\boldsymbol{x})}
$$

## Additionally, the weighted conditional mean

## Corollary

- At the Optimal $F(\boldsymbol{x})$, the weighted conditional mean of $y$ is 0 .


## Additionally, the weighted conditional mean

## Corollary

- At the Optimal $F(\boldsymbol{x})$, the weighted conditional mean of $y$ is 0 .

Proof

- When $F(\boldsymbol{x})$ is optimal

$$
\frac{\partial J(F(\boldsymbol{x}))}{\partial F(\boldsymbol{x})}=\frac{\partial\left\{P(Y=1 \mid \boldsymbol{x}) e^{-y F(\boldsymbol{x})}+P(Y=-1 \mid \boldsymbol{x}) e^{y F(\boldsymbol{x})}\right\}}{\partial F(\boldsymbol{x})}
$$

## Therefore

## We have

$$
\frac{\partial J(F(\boldsymbol{x}))}{\partial F(\boldsymbol{x})}=\left[P(Y=1 \mid \boldsymbol{x}) e^{-y F(\boldsymbol{x})}\right]\{-y\}+\left[P(Y=-1 \mid \boldsymbol{x}) e^{-y F(\boldsymbol{x})}\right]\{-y\}
$$

## Therefore

We have

$$
\frac{\partial J(F(\boldsymbol{x}))}{\partial F(\boldsymbol{x})}=\left[P(Y=1 \mid \boldsymbol{x}) e^{-y F(\boldsymbol{x})}\right]\{-y\}+\left[P(Y=-1 \mid \boldsymbol{x}) e^{-y F(\boldsymbol{x})}\right]\{-y\}
$$

Therefore

$$
E\left[e^{y F(\boldsymbol{x})} y\right]=0
$$

## Outline

(1) Combining Models

- Introduction
- Average for Committee
- Beyönd Simple Averaging
- Example
(2) Bayesian Model Averaging
- Model Combination Vs. Bayesian Nodel Averaging
- Now Model Averaging
- The Differences
(3) Committees
- Introduction
- Bootstrap Data Sets
- Relation with Monte-Carlo Estimation
(4) Boosting
- AdaBoost Development
- Cost Function
- Selection Process
- 

How do we select classifiers?

- Selecting New Classifiers
- Deriving against the weight $\alpha_{m}$AdaBoost Algorithm
- Some Remarks
- Explanation about AdaBoost's behavior
- 

Statistical Analysis of the Exponential Loss

- Moving from Regression to Classification
- Minimization of the Exponential Criterion
- Finally, The Additive Logistic Regression
- Example using an Infinitude of Perceptrons


## Here, we decide to use Perceptrons

## As Weak Learners

- We could be using a finite number of Perceptrons


## Here, we decide to use Perceptrons

## As Weak Learners

- We could be using a finite number of Perceptrons
- But we want to have a infinitude of possible weak learners
- Thus avoiding the need of a matrix $S$


## Here, we decide to use Perceptrons

## As Weak Learners

- We could be using a finite number of Perceptrons
- But we want to have a infinitude of possible weak learners
- Thus avoiding the need of a matrix $S$


## Remark

- We need to use a Gradient Based Learner for this


## Perceptron

We use the following formula of error per sample

$$
E(\boldsymbol{w})=\frac{1}{2} \sum_{j=1}^{N}\left(w_{j}(t) y_{j}(t)-d_{j}\right)^{2}
$$

- With $y_{j}(t)=\varphi\left(\boldsymbol{w}^{T}(t) \boldsymbol{x}_{j}\right)$


## Perceptron

We use the following formula of error per sample

$$
E(\boldsymbol{w})=\frac{1}{2} \sum_{j=1}^{N}\left(w_{j}(t) y_{j}(t)-d_{j}\right)^{2}
$$

- With $y_{j}(t)=\varphi\left(\boldsymbol{w}^{T}(t) \boldsymbol{x}_{j}\right)$


## Deriving against $w_{i}$

$$
\frac{\partial E(\boldsymbol{w})}{\partial w_{i}}=\sum_{j=1}^{N}\left(w_{j}(t) y_{j}(t)-d_{j}\right) \varphi^{\prime}\left(\boldsymbol{w}^{T}(t) \boldsymbol{x}_{j}\right) w_{j}^{b} x_{i j}
$$

## Perceptron

We use the following formula of error per sample

$$
E(\boldsymbol{w})=\frac{1}{2} \sum_{j=1}^{N}\left(w_{j}(t) y_{j}(t)-d_{j}\right)^{2}
$$

- With $y_{j}(t)=\varphi\left(\boldsymbol{w}^{T}(t) \boldsymbol{x}_{j}\right)$


## Deriving against $w_{i}$

$$
\frac{\partial E(\boldsymbol{w})}{\partial w_{i}}=\sum_{j=1}^{N}\left(w_{j}(t) y_{j}(t)-d_{j}\right) \varphi^{\prime}\left(\boldsymbol{w}^{T}(t) \boldsymbol{x}_{j}\right) w_{j}^{b} x_{i j}
$$

Then, using gradient descent, we have the following update

$$
w_{i}(n+1)=w_{i}(n)-\eta\left[\sum_{j=1}^{N}\left(w_{j}(t) y_{j}(t)-d_{j}\right) \varphi^{\prime}\left(\boldsymbol{w}^{T}(t) \boldsymbol{x}_{j}\right) w_{i} x_{i j}\right]
$$

## Data Set

## Training set with classes and $\omega_{2}=N\left(0, \sigma^{2}\right)-N(0,1)$



## Example

## For $m=10$



## Example

## For 40



## At the end of the process

## For $m=80$



## Final Confusion Matrix

## When $m=80$

|  | $C_{1}$ | $C_{2}$ |
| :--- | :--- | :--- |
| $C_{1}$ | 1.0 | 0.0 |
| $C_{2}$ | 0.0 | 1.0 |

## However

There are other versions to the Cryptic Phrase

- At "Boosting: Foundation and Algorithms" by Schaphire and Freund
- "Train weak learner using distribution $D_{t}$ "


## However

There are other versions to the Cryptic Phrase

- At "Boosting: Foundation and Algorithms" by Schaphire and Freund
- "Train weak learner using distribution $D_{t}$ "


## We could re-sample using the distribution $\boldsymbol{w}_{t}$

- Basically using sampling with substitution over the data set $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{N}}\right\}$


## Other Interpretations exist

## But you can use a weighted version of the cost function

$$
\frac{1}{2} \sum_{j} w_{j}(t)\left(y_{j}(t)-d_{j}\right)^{2}
$$

For More, Take a look

- "Boosting Neural Networks" by Holger Schwenk and Yoshua Bengio

