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Until Now

We have been learning
A Lot of functions to approximate the models f of a given data set D.

Data Observation/Data Collection 

What we can observePhenomea Generating
 Samples
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The Question

But Never asked ourselves if
Are we able to really learn f from D?
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Example

Consider the following data set D
Consider a Boolean target function over a three-dimensional input
space X = {0, 1}3

With a data set D
n xn yn

1 000 0
2 001 1
3 010 1
4 011 0
5 100 1
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We have the following

We have the space of input has 23 possibilities
Therefore, we have 223 possible functions for f

Learning outside the data D, basically we want a g that generalize
outside D

n xn yn g f1 f2 f3 f4 f5 f6 f7 f8

1 000 0 0 0 0 0 0 0 0 0 0
2 001 1 1 1 1 1 1 1 1 1 1
3 010 1 1 1 1 1 1 1 1 1 1
4 011 0 0 0 0 0 0 0 0 0 0
5 100 1 1 1 1 1 1 1 1 1 1

6 101 ? 0 0 0 0 1 1 1 1
7 110 ? 0 0 1 1 0 0 1 1
7 110 ? 0 1 0 1 0 1 0 1
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Here is the Dilemma!!!

Each of the f1, f2, ..., f8

It is a possible real f , the true f .
Any of them is a possible good f

Therefore
The quality of the learning will be determined by how close our
prediction is to the true value.
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Therefore, we have

In order to select a g, we need to have an hypothesis H
To be able to select such g by our training procedure.

Further, any of the f1, f2, ..., f8 is a good choice for f
Therefore, it does not matter how near we are to the bits in D

Our problem, we want to generalize to the data outside D
However, it does not make any difference if our Hypothesis is correct
or incorrect in D
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We want to Generalize

But, If we want to use only a deterministic approach to H
Our Attempts to use H to learn g is a waste of time!!!
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Consider a “bin” with red and green marbles

Going back to our example
BIN

SAMPLES
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Therefore

We have the “Real Probabilities”
P [Pick a Red marble] = µ

P [Pick a Blue marble] = 1− µ

However, the value of µ is not know
Thus, we sample the space for N samples in an independent way.

Here, the fraction of real marbles is equal to ν
Question: Can ν can be used to know about µ?

14 / 135



Images/cinvestav.jpg

Therefore

We have the “Real Probabilities”
P [Pick a Red marble] = µ

P [Pick a Blue marble] = 1− µ

However, the value of µ is not know
Thus, we sample the space for N samples in an independent way.

Here, the fraction of real marbles is equal to ν
Question: Can ν can be used to know about µ?

14 / 135



Images/cinvestav.jpg

Therefore

We have the “Real Probabilities”
P [Pick a Red marble] = µ

P [Pick a Blue marble] = 1− µ

However, the value of µ is not know
Thus, we sample the space for N samples in an independent way.

Here, the fraction of real marbles is equal to ν
Question: Can ν can be used to know about µ?

14 / 135



Images/cinvestav.jpg

Two Answers... Possible vs. Probable

No!!! Because we can see only the samples
For example, Sample an be mostly blue while bin is mostly red.

Yes!!!
Sample frequency ν is likely close to bin frequency µ.
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What does ν say about µ?

We have the following hypothesis
In a big sample (large N ), ν is probably close to µ (within ε).

How?
Hoeffding’s Inequality .
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We have the following theorem

Theorem (Hoeffding’s inequality)
Let Z1, ..., Zn be independent bounded random variables with
Zi ∈ [a, b] for all i, where −∞ < a ≤ b <∞. Then

P

(
1
N

N∑
i=1

(Zi − E [Zi]) ≥ t
)
≤ exp−

2Nt2
(b−a)2

and

P

(
1
N

N∑
i=1

(Zi − E [Zi]) ≤ −t
)
≤ exp−

2Nt2
(b−a)2

for all t ≥ 0.
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Therefore

Assume that the Zi are the random variables from the N samples
Then, we have that values for Zi ∈ {0, 1} therefore we have that...

First inequality, for any ε > 0 and N

P

[(
1
N

N∑
i=1

Zi

)
− µ ≥ ε

]
≤ exp−2Nε2

Second inequality, for ε > 0 and N

P

[(
1
N

N∑
i=1

Zi

)
− µ ≤ ε

]
≤ exp−2Nε2
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Here

We can use the fact that

ν = 1
N

N∑
i=1

Zi

Putting all together, we have

P (ν − µ ≥ ε or ν − µ ≤ ε) ≤ P (ν − µ ≥ ε) + P (ν − µ ≤ ε)

Finally

P (|ν − µ| ≥ ε) ≤ 2 exp−2Nε2
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Therefore

We have the following
If ε is small enough and as long as N is large
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Making Possible

Possible to estimate ν ≈ µ

How do we connect with Learning?

Learning
We want to find a function f : X −→ Y which is unknown!!!

I Here we assume that each ball in the bin is a sample x ∈ X .

Thus, it is necessary to select an hypothesis
Basically, we want to have an hypothesis h:

h (x) = f (x) we color the sample blue.
h (x) 6= f (x) we color the sample red.
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Here a Small Remark

Here, we are not talking about classes
When talking about blue and red balls, but if we are able to identify
the correct label:

ŷh = h (x) =f (x) = y

or
ŷh = h (x) 6=f (x) = y

Still, the use of blue and red balls allows
to see our Learning Problem as a Bernoulli distribution
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Swiss mathematician Jacob Bernoulli

Definition
The Bernoulli distribution is a discrete distribution having two
possible outcomes X = 0 or X = 1.

With the following probabilities

P (X|p) =
{

1− p if X = 0
p if X = 1

Also expressed as

P (X = k|p) = (p)k (1− p)1−k
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Thus

We define Ein (in-sample error)

Ein (h) = 1
N

N∑
n=1

I (h (xn) 6= f (xn))

We have made explicit the dependency of Ein on the particular h that
we are considering.

Now Eout (out-of-sample error)

Eout (h) = P (h (x) 6= f (x)) = µ

Where
The probability is based on the distribution P over X which is used to
sample the data points x.
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Generalization Error

Definition (Generalization Error/out-of-sample error)
Given a hypothesis/proposed model h ∈ H, a target concept/real
model f ∈ F , and an underlying distribution D, the generalization error or
risk of h is defined by

R (h) = Px∼D (h (x) 6= f (x)) = Ex∼D
[
Ih(x)6=f(x)

]
a

where Iω is the indicator function of the event ω.
aThis comes the fact that 1 ∗ P (A) + 0 ∗ P

(
A
)

= E [IA]
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Empirical Error

Definition (Empirical Error/in-sample error)
Given a hypothesis/proposed model h ∈ H, a target concept/real
model f ∈ F , a sample X = {x1,x2, ...,xN}, the empirical error or
empirical risk of h is defined by:

R̂ = 1
N

N∑
i=1

Ih(xi)6=f(xi)
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Basically

We have

P (|Ein (h)− Eout (h)| ≥ ε) ≤ 2 exp−2Nt2

Now, we need to consider an entire set of hypothesis, H

H = {h1, h2, ..., hM}
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Therefore

Each Hypothesis is a scenario in the bin space
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Remark

The Hoeffding Inequality still applies to each bin individually
Now, we need to consider all the bins simultaneously.

Here, we have the following situation
h is fixed before the data set is generated!!!

If you are allowed to change h after you generate the data set
The Hoeffding Inequality no longer holds
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Therefore

With multiple hypotheses in H
The Learning Algorithm chooses the final hypothesis g based on D
after generating the data.

The statement we would like to make is not

P (|Ein (hm)− Eout (hm)| ≥ ε) is small.

We would rather

P (|Ein (g)− Eout (g)| ≥ ε) is small for the final hypothesis g.
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Therefore

Something Notable
The hypothesis g is not fixed ahead of time before generating the data

Thus we need to bound

P (|Ein (g)− Eout (g)| ≥ ε)

Which it does not depend on which g the algorithm picks.
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We have two rules

First one

if A1 =⇒ A2, then P (A1) ≤ P (A2)

If you have any set of events A1, A2, ..., AM

P (A1 ∪A2 ∪ · · · ∪AM ) ≤
M∑
m=1

P (Am)
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Therefore

Now assuming independence between hypothesis

|Ein (g)− Eout (g)| ≥ ε =⇒|Ein (h1)− Eout (h1)| ≥ ε
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We have two possibilities
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The other say it is possible!!!

Here, we introduce the probabilistic answer
This will solve our conundrum!!!

42 / 135



Images/cinvestav.jpg

We have

Something Notable
We have introduced two apparently conflicting arguments about the
feasibility of learning.

We have two possibilities
One argument says that we cannot learn anything outside of D.
The other say it is possible!!!

Here, we introduce the probabilistic answer
This will solve our conundrum!!!

42 / 135



Images/cinvestav.jpg

We have

Something Notable
We have introduced two apparently conflicting arguments about the
feasibility of learning.

We have two possibilities
One argument says that we cannot learn anything outside of D.
The other say it is possible!!!

Here, we introduce the probabilistic answer
This will solve our conundrum!!!

42 / 135



Images/cinvestav.jpg

We have

Something Notable
We have introduced two apparently conflicting arguments about the
feasibility of learning.

We have two possibilities
One argument says that we cannot learn anything outside of D.
The other say it is possible!!!

Here, we introduce the probabilistic answer
This will solve our conundrum!!!

42 / 135



Images/cinvestav.jpg

Then

The Deterministic Answer
Do we have something to say about f outside of D? The answer is
NO.

The Probabilistic Answer
Is D telling us something likely about f outside of D? The answer is
YES

The reason why
We approach our Learning from a Probabilistic point of view!!!
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We could have hypothesis based in hyperplanes
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h (x) =
d∑
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Therefore

Ein (x) = 1
N
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i=1

(h (xn)− yn)2
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Assuming P (y|x) instead of y = f (x)
Then a data point (x, y) is now generated by the joint distribution
P (x, y) = P (x)P (y|x)

Therefore
Noisy target is a deterministic target plus added noise.

f (x) ≈ E [y|x] + (y − f (x))
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Both convey probabilistic aspects of x and y.

Therefore
1 The Target distribution P (y|x) is what we are trying to learn.
2 The Input distribution P (x) quantifies relative importance of x.

Finally
Merging P (x, y) = P (y|x)P (x) mixes the two concepts
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Then

We make at the same time

Ein (g) ≈ 0

To Make the Error in our selected hypothesis g with respect to the
real function f

Learning splits in two questions
1 Can we make Eout (g) is close enough Ein (g)?
2 Can we make Ein (g) small enough?
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Eout (h) = P (h (x) 6= f (x))

It Measures how well our training on D
It has generalized to data that we have not seen before.

Remark
Eout is based on the performance over the entire input space X .
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Testing Data Set

Intuitively
we want to estimate the value of Eout using a sample of data points.

Something Notable
These points must be ’fresh’ test points that have not been used for
training.

Basically
Out Testing Set.
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Thus

It is possible to define
The generalization error as the discrepancy between Ein and Eout

Therefore
The Hoeffding Inequality is a way to characterize the generalization
error with a probabilistic bound

P (|Ein (g)− Eout (g)| ≥ ε) ≤ 2M exp−2Nε2

I For any ε > 0.
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Reinterpreting This

Assume a Tolerance Level δ, for example δ = 0.0005
It is possible to say that with probability 1− δ :

Eout (g) < Ein (g) +

√
1

2N ln 2M
δ
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Proof

We have the complement Hoeffding Probability using the absolute
value

P (|Eout (g)− Ein (g)| < ε) ≤ 1− 2M exp−2Nε2

Therefore, we have

P (−ε < Eout (g)− Ein (g) < ε) ≤ 1− 2M exp−2Nε2

This imply

Eout (g) < Ein (g) + ε
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Therefore

We simply use

δ = 2M exp−2Nε2

Then

ln 1− ln δ

2M = 2Nε2

Therefore

ε =

√
1

2N ln 2M
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Generalization Bound

This inequality is know as a generalization Bound

Ein (g) < Eout (g) +

√
1

2N ln 2M
δ
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We have
The following inequality also holds

−ε < Eout (g)− Ein (g)⇒ Eout (g) > Ein (g)− ε

Thus
Not only we want our hypothesis g to do well int the out samples,
Eout (g) < Ein (g) + ε

But, we want to know how well we did with our H
Thus, Eout (g) > Ein (g)− ε assures that it is not possible to do
better!!!

I Given any hypothesis with higher

Ein (h) = 1
N

N∑
n=1

I (h (xn) 6= f (xn))

than g.
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Given any hypothesis h with higher than g

Ein (h) = 1
N
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n=1

I (h (xn) 6= f (xn))

It will have a higher Eout (h) given

Eout (h) > Ein (h)− ε
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The Infiniteness of H

A Problem with the Error Bound given its dependency on M√
1

2N ln 2M
δ

What happens when M becomes infinity
The number of hypothesis in H becomes infinity.

Thus, the bound becomes infinity
Problem, almost all interesting learning models have infinite H....

I For Example... in our linear Regression... f (x) = wT x
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Therefore, we need to replace M

We need to find a finite substitute with finite range values
For this, we notice that

|Ein (h1)− Eout (h1)| ≥ ε or |Ein (h2)− Eout (h2)| ≥ ε · · ·

or |Ein (hM )− Eout (hM )| ≥ ε
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We have

This guarantee |Ein (g)− Eout (g)| ≥ ε

Thus, we can take a look at the events Bm events for which you have
|Ein (hm)− Eout (hm)| ≥ ε

Then

P
[
B1 or B2 · · · or BM

]
≤

M∑
m=1

P [Bm]
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Now, we have the following

Example

We have a gross overestimate
Basically, if hi and hj are quite similar the two events

|Ein (hi)− Eout (hi)| ≥ ε and |Ein (hj)− Eout (hj)| ≥ ε

are likely to coincide!!!
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We have

Something Notable
In a typical learning model, many hypotheses are indeed very similar.

The mathematical theory of generalization hinges on this observation
We only need to account for the overlapping on different hypothesis
to substitute M .
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Consider

A finite data set

X = {x1,x2, ...,xN}

And we consider a set of hypothesis h ∈ H such that
h : X → {−1,+1}

We get a N -tuple, when applied to X , h (x1) , h (x2) , ..., h (xN ) of
±1.

Such N -tuple is called a Dichotomy
Given that it splits x1,x2, ...,xN into two groups...
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Dichotomy

Definition
Given a hypothesis set H, a dichotomy of a set X is one of the
possible ways of labeling the points of X using a hypothesis in H.
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Examples of Dichotomies

Here the first Dichotomy can be generated by a perceptron
Class +1

Class -1

The Dichotomy Generated 
 By a Perceptron
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Something Important

Each h ∈ H generates a dichotomy on x1, ...,xN

However, two different h’s may generate the same dichotomy if they
generate the same pattern
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Remark

Definition
Let x1,x2, ...,xn ∈ X . The dichotomies generated by H on these
points are defined by

H (x1,x2, ...,xN ) = {(h [x1] , h [x2] , ..., h [xN ]) |h ∈ H}

Therefore
We can see H (x1,x2, ...,xN ) as a set of hypothesis by using the
geometry of the points.

Thus
A large H (x1,x2, ...,xN ) means H is more diverse.
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Growth function, Our Replacement of M

Definition
The growth function is defined for a hypothesis set H by

mH (N) = max
x1,...,xN∈X

#H (x1,x2, ...,xN )

I where # denotes the cardinality (number of elements) of a set.

Therefore
mH (N) is the maximum number of dichotomies that be
generated by H on any N points.

I We remove dependency on the entire X
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Therefore

We have that
M and mH (N) is a measure of the of the number of hypothesis in H

However, we avoid considering all of X
Now we only consider N points instead of the entire X .
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Upper Bound for mH (N)

First, we know that

H (x1,x2, ...,xN ) ⊆ {−1,+1}N

Hence, we have the value of mH (N) is at most # {−1,+1}N

mH (N) ≤ 2N
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Therefore

If H is capable of generating all possible dichotomies on x1,x2, ...,xN

Then,
I H (x1,x2, ...,xN ) = {−1,+1}N and #H (x1,x2, ...,xN ) = 2N

We can say that
H can shatter x1,x2, ...,xN

Meaning
H is as diverse as can be on this particular sample.
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Shattering

Definition
A set X of N ≥ 1 points is said to be shattered by a hypothesis set
H when H realizes all possible dichotomies of X , that is when

mH (N) = 2N
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Example

Positive Rays
Imagine a input space on R, with H consisting of all hypotheses
h : R→ {−1,+1} of the form

h (x) = sign (x− a)

Example
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Thus, we have that

As we change a, we get N + 1 different dichotomies

mH (N) = N + 1

Now, we have the case of positive intervals
H consists of all hypotheses in one dimension that return +1 within
some interval and −1 otherwise.
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Therefore

We have
The line is again split by the points into N + 1 regions.

Furthermore
The dichotomy we get is decided by which two regions contain the
end values of the interval

Therefore, we have the number of possible dichotomies(
N + 1

2

)
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Additionally

If the two points fall in the same region, the H = −1
Then

mH (N) =
(
N + 1

2

)
+ 1 = 1

2N
2 + 1

2N + 1
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Finally

In the case of a Convex Set in R2

H consists of all hypothesis in two dimensions that are positive inside
some convex set and negative elsewhere.
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Therefore

We have the following

mH (N) = 2N

By using the “Radon’s theorem”
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Remember

We have that

P (|Ein (g)− Eout (g)| ≥ ε) ≤ 2M exp−2Nε2

What if mH (N) replaces M
If mH (N) is polynomial, we have an excellent case!!!

Therefore, we need to prove that
mH (N) is polynomial
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Break Point

Definition
If no data set of size k can be shattered by H, then k is said to be
a break point for H:

mH (k) < 2k
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Example

For the Perceptron, we have k = 4
Non-ShatterShatter
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Important

Something Notable
In general, it is easier to find a break point for H than to compute the
full growth function for that H.

Using this concept
We are ready to define the concept of Vapnik–Chervonenkis (VC)
dimension.
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VC-Dimension

Definition
The VC-dimension of a hypothesis set H is the size of the largest set
that can be fully shattered by H (Those points need to be in “General
Position”):

V Cdim (H) = max
{
k|mH (k) = 2k

}
I A set containing k points, for arbitrary k, is in general linear position

if and only if no (k − 1)−dimensional flat contains them all

100 / 135



Images/cinvestav.jpg

Important Remarks

Remark 1
if V Cdim (H) = d, there exists a set of size d that can be fully
shattered.

Remark2
This does not imply that all sets of size d or less are fully shattered

I This is typically the case!!!
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Why? General Linear Position

For example in the Perceptron
No General Position 
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Now, we define B(N, k)

Definition
B(N, k) is the maximum number of dichotomies on N points such
that no subset of size k of the N points can be shattered by these
dichotomies.

Something Notable
The definition of B(N, k) assumes a break point k!!!
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Further

Since B(N, k) is a maximum
It is an upper bound for mH (N) under a break point k.

mH (N) ≤ B (N, k) if k is a break point for H.

Then
We need to find a Bound for B (N, k) to prove that mH (k) is
polynomial.
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Therefore

Thus, we start with two boundary conditions k = 1 and N = 1

B (N, 1) = 1
B (1, k) = 2 k > 1
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Why?

Something Notable
B(N, 1) = 1 for all N since if no subset of size 1 can be shattered

I Then only one dichotomy can be allowed.
I Because a second different dichotomy must differ on at least one point

and then that subset of size 1 would be shattered.

Second
B(1, k) = 2 for k > 1 since there do not even exist subsets of size k.

I Because the constraint is vacuously true and we have 2 possible
dichotomies +1 and −1.
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B(N, k) Dichotomies, N ≥ 2 and k ≥ 2
# of rows x1 x2 · · · xN−1 xN

+1 +1 · · · +1 +1

-1 +1 · · · +1 -1

S1 α
...

... · · ·
...

...

+1 -1 · · · -1 -1

-1 +1 · · · -1 +1

+1 -1 · · · +1 +1

-1 -1 · · · +1 +1

S+
2 β

...
... · · ·

...
...

+1 -1 · · · +1 +1

S2
-1 +1 · · · -1 +1

+1 -1 · · · +1 -1

-1 -1 · · · +1 -1

S−2 β
...

... · · ·
...

...

+1 -1 · · · +1 -1

-1 +1 · · · -1 -1
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What is this partition mean

First, Consider the dichotomies on x1x2 · · ·xN−1

Some appear once (Either +1 or -1 at xN ), but only ONCE!!!
We collect them in S1

The Remaining Dichotomies appear Twice
Once with +1 and once with -1 in the xN column.
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Therefore, we collect them in three sets

The ones with only one Dichotomy
We use the set S1

The other in two different sets
S+

2 the ones with xN = +1.
S−2 the ones with xN = −1.
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Therefore

We have the following

B (N, k) = α+ 2β

The total number of different dichotomies on the first N − 1 points
They are α+ β.

Additionally, no subset of k of these first N − 1 points can be
shattered

Since no k-subset of all N points can be shattered:

α+ β ≤ B (N − 1, k)

By definition of B.
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Then

Further, no subset of size k − 1 of the first N − 1 points can be
shattered by the dichotomies in S+

2

If there existed such a subset, then taking the corresponding set of
dichotomies in S−2 and xN

I You finish with a subset of size k that can be shattered a contradiction
given the definition of B (N, k).

Therefore

β ≤ B (N − 1, k − 1)

Then, we have

B (N, k) ≤ B(N − 1, k) +B (N − 1, k − 1)
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Connecting the Growth Function with the V Cdim

Sauer’s Lemma
For all k ∈ N , the following inequality holds:

B (N, k) ≤
k−1∑
i=0

(
N
i

)
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Proof

Proof

For k = 1

B (N, 1) ≤ B(N − 1, 1) +B (N − 1, 0) = 1 + 0 =
(
N
0

)

Then, by induction

We assume that the statement is true for N ≤ N0 and all k.
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Now

We need to prove this for N = N0 + 1 and all k
Observation: This is true for k = 1 given

B (N, 1) = 1

Now, consider k ≥ 2

B(N0, k) +B (N0, k − 1)

Therefore

B (N0 + 1, k) ≤
k−1∑
i=0

(
N0
i
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+
k−2∑
i=0

(
N0
i

)
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We have in conclusion for all k
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Then

Theorem
If mH (k) < 2k for some value k, then

mH (N) ≤
k−1∑
i=0

(
N
i

)
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Finally

Corollary
Let H be a hypothesis set with V Cdim (H) = k. Then, for all
N ≥ k

mH (N) ≤
(
eN

k

)k−1
= O

(
Nk
)
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Therefore

We have that
mH (N) is bounded by Nk−1 i.e. if mH (k) < 2k we have that
mH (N) is polynomial
We are not depending on the number of hypothesis!!!!
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Remark about mH (k)

We have bounded the number of effective hypothesis
Yes!!! we can have M hypotheses but the number of
dichotomies generated by them is bounded by mH (k)

125 / 135



Images/cinvestav.jpg

VC-Dimension Again

Definition
The VC-dimension of a hypothesis set H is the size of the largest set
that can be fully shattered by H (Those points need to be in “General
Position”):

V Cdim (H) = max
{
k|mH (k) = 2k

}
Something Notable

If mH (N) = 2N for all N , V Cdim (H) =∞
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Remember

We have the following

Ein (g) < Eout (g) +

√
1

2N ln 2M
δ

We instead of using M , we use mH (N)
We can use our growth function as the effective way to bound

Ein (g) < Eout (g) +

√
1

2N ln 2mH (N)
δ
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VC Generalized Bound

Theorem (VC Generalized Bound)
For any tolerance δ > 0 and H be a hypothesis set with
V Cdim (H) = k.,

Ein (g) < Eout (g) +

√
2k
N

ln eN
k

+
√

1
2N ln 1

δ

I with probability ≥ 1− δ

Something Notable
This Bound only fails when V Cdim (H) =∞!!!
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Proof

Although we will not talk about it
We will remark the that is possible to use the Rademacher complexity

I To manage the number of overlapping hypothesis (Which can be
infinite)

We will stop here, but
But I will encourage to look at more about the proof...
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About the Proof

For More, take a look at
“A Probabilistic Theory of Pattern Recognition” by Luc Devroye et al.
“Foundations of Machine Learning” by Mehryar Mohori et al.

This is the equivalent to use Measure Theory to understand the
innards of Probability

We are professionals, we must understand!!!
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As you remember from previous classes

We have architectures like
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G-composition of H

Let G be a layered directed acyclic graph
Where directed edges go from one layer l to the next layer l + 1.

Now, we have a set of hypothesis H
N Input Nodes with in-degree 0
Intermediate Nodes with in-degree r
Single Output node with out-degree 0

H our hypothesis over the space Euclidean space Rr

Basically each node represent the hypothesis ci : Rr → {−1, 1} by
mean of tanh.
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Therefore

We have that
The Neural concept represent an hypothesis from RN to {−1, 1}

Therefore the entire hypothesis is a composition of concepts
This is called a G-composition of H.
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We have the following theorem

Theorem (Kearns and Vazirani, 1994)
Let G be a layered directed acyclic graph with N input nodes and
r ≥ 2 internal nodes each of indegree r.
Let H hypothesis set over Rr of V Cdim (H) = d, and let
G-composition of H. then

V Cdim (HG) ≤ 2ds log2 (es)
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