Introduction to Machine Learning Vapnik–Chervonenkis Dimension

Andres Mendez-Vazquez

July 22, 2018

<ロ><回><一><一><一><一><一><一><一</td>1/135

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\textcircled{\ } \mathsf{A} \ \mathsf{Problem} \ \mathsf{with} \ M$
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- ${\color{black} \bullet}$ Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example Multi-Layer Perceptron

Outline

Is Learning Feasible?

- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\hfill {igstacless}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

Until Now

The Question

But Never asked ourselves if

• Are we able to really learn f from \mathcal{D} ?

Example

Consider the following data set $\ensuremath{\mathcal{D}}$

 \bullet Consider a Boolean target function over a three-dimensional input space $\mathcal{X}=\left\{0,1\right\}^3$

Example

Consider the following data set $\ensuremath{\mathcal{D}}$

 \bullet Consider a Boolean target function over a three-dimensional input space $\mathcal{X}=\{0,1\}^3$

With a data set ${\cal D}$			
[n	$oldsymbol{x}_n$	y_n
	1	000	0
	2	001	1
	3	010	1
	4	011	0
	5	100	1

We have the following

We have the space of input has 2^3 possibilities

 $\bullet\,$ Therefore, we have 2^{2^3} possible functions for f

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 ──○へ⊙

7/135

We have the following

We have the space of input has 2^3 possibilities

 $\bullet\,$ Therefore, we have 2^{2^3} possible functions for f

Learning outside the data $\mathcal{D},$ basically we want a g that generalize outside \mathcal{D}

n	$oldsymbol{x}_n$	y_n	g	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8
1	000	0	0	0	0	0	0	0	0	0	0
2	001	1	1	1	1	1	1	1	1	1	1
3	010	1	1	1	1	1	1	1	1	1	1
4	011	0	0	0	0	0	0	0	0	0	0
5	100	1	1	1	1	1	1	1	1	1	1
6	101		?	0	0	0	0	1	1	1	1
7	110		?	0	0	1	1	0	0	1	1
7	110		?	0	1	0	1	0	1	0	1

・ロト ・回 ・ ・ ヨ ・ ・ 回 ・ ・ ロ ・

Outline

Is Learning Feasible?

Introduction

The Dilemma

- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\hfill {f O}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

Here is the Dilemma!!!

Each of the $f_1, f_2, ..., f_8$

- It is a possible real f, the true f.
- $\bullet\,$ Any of them is a possible good f

 The quality of the learning will be determined by how close our prediction is to the true value.

Here is the Dilemma!!!

Each of the $f_1, f_2, ..., f_8$

- It is a possible real f, the true f.
- Any of them is a possible good f

Therefore

• The quality of the learning will be determined by how close our prediction is to the true value.

Therefore, we have

In order to select a g, we need to have an hypothesis \mathcal{H}

• To be able to select such g by our training procedure.

ullet Therefore, it does not matter how near we are to the bits in ${\cal D}$

 $\bullet\,$ However, it does not make any difference if our Hypothesis is correct or incorrect in $\mathcal D$

Therefore, we have

In order to select a g, we need to have an hypothesis \mathcal{H}

• To be able to select such g by our training procedure.

Further, any of the $f_1, f_2, ..., f_8$ is a good choice for f

 $\bullet\,$ Therefore, it does not matter how near we are to the bits in ${\cal D}\,$

 However, it does not make any difference if our Hypothesis is correct or incorrect in D

Therefore, we have

In order to select a g, we need to have an hypothesis \mathcal{H}

• To be able to select such g by our training procedure.

Further, any of the $f_1, f_2, ..., f_8$ is a good choice for f

 $\bullet\,$ Therefore, it does not matter how near we are to the bits in ${\cal D}\,$

Our problem, we want to generalize to the data outside $\ensuremath{\mathcal{D}}$

 \bullet However, it does not make any difference if our Hypothesis is correct or incorrect in ${\cal D}$

We want to Generalize

But, If we want to use only a deterministic approach to ${\mathcal H}$

• Our Attempts to use \mathcal{H} to learn g is a waste of time!!!

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma

A Binary Problem, Solving the Dilemma

- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\hfill {f O}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

Consider a "bin" with red and green marbles

We have the "Real Probabilities"

- P [Pick a Red marble] = μ
- P [Pick a Blue marble] = 1μ

Thus, we sample the space for N samples in an independent way.

tere, the fraction of real marbles is equal to a

Question: Can u can be used to know about μ ?

We have the "Real Probabilities"

- P [Pick a Red marble] = μ
- P [Pick a Blue marble] = 1μ

However, the value of μ is not know

 $\bullet\,$ Thus, we sample the space for N samples in an independent way.

Question: Can ν can be used to know about μ ?

We have the "Real Probabilities"

- P [Pick a Red marble] = μ
- P [Pick a Blue marble] = 1μ

However, the value of $\boldsymbol{\mu}$ is not know

• Thus, we sample the space for N samples in an independent way.

Here, the fraction of real marbles is equal to $\boldsymbol{\nu}$

• Question: Can ν can be used to know about μ ?

Two Answers... Possible vs. Probable

No!!! Because we can see only the samples

• For example, Sample an be mostly blue while bin is mostly red.

Sample frequency u is likely close to bin frequency μ

Two Answers... Possible vs. Probable

No!!! Because we can see only the samples

• For example, Sample an be mostly blue while bin is mostly red.

Yes!!!

• Sample frequency ν is likely close to bin frequency μ .

What does ν say about μ ?

We have the following hypothesis

• In a big sample (large N), ν is probably close to μ (within ϵ).

Hoeffding's Inequality

What does ν say about μ ?

We have the following hypothesis

• In a big sample (large N), ν is probably close to μ (within ϵ).

How?

• Hoeffding's Inequality .

Outline

Is Learning Feasible?

- Introduction
 The Dilemma
- A Binary Problem, Solving the Dilemma

Hoeffding's Inequality

- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\hfill {igstacle}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

We have the following theorem

Theorem (Hoeffding's inequality)

• Let $Z_1, ..., Z_n$ be independent bounded random variables with $Z_i \in [a, b]$ for all i, where $-\infty < a \le b < \infty$. Then

$$P\left(\frac{1}{N}\sum_{i=1}^{N}\left(Z_{i}-E\left[Z_{i}\right]\right)\geq t\right)\leq\exp^{-\frac{2Nt^{2}}{(b-a)^{2}}}$$

and

$$P\left(\frac{1}{N}\sum_{i=1}^{N} (Z_i - E[Z_i]) \le -t\right) \le \exp^{-\frac{2Nt^2}{(b-a)^2}}$$

for all $t \geq 0$.

Assume that the Z_i are the random variables from the N samples

• Then, we have that values for $Z_i \in \{0,1\}$ therefore we have that...

Second inequality for e > 0 and

$$P\left[\left(\frac{1}{N}\sum_{i=1}^{N}Z_{i}\right)-\mu\leq\epsilon\right]\leq\exp^{-2N\epsilon^{2}}$$

<□ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≧ 9 Q () 19/135

Assume that the Z_i are the random variables from the N samples

• Then, we have that values for $Z_i \in \{0,1\}$ therefore we have that...

First inequality, for any $\epsilon>0$ and N

$$P\left[\left(\frac{1}{N}\sum_{i=1}^{N}Z_{i}\right)-\mu\geq\epsilon\right]\leq\exp^{-2N\epsilon^{2}}$$

$$P\left[\left(\frac{1}{N}\sum_{i=1}^{N} Z_{i}\right) - \mu \leq \epsilon\right] \leq \exp^{-2N\epsilon^{2}}$$

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≧ 9 Q () 19/135

Assume that the Z_i are the random variables from the N samples

• Then, we have that values for $Z_i \in \{0,1\}$ therefore we have that...

First inequality, for any $\epsilon>0$ and N

$$P\left[\left(\frac{1}{N}\sum_{i=1}^{N}Z_{i}\right)-\mu\geq\epsilon\right]\leq\exp^{-2N\epsilon^{2}}$$

Second inequality, for $\epsilon > 0$ and N

$$P\left[\left(\frac{1}{N}\sum_{i=1}^{N}Z_{i}\right)-\mu\leq\epsilon\right]\leq\exp^{-2N\epsilon^{2}}$$

Here

We can use the fact that

$$\nu = \frac{1}{N} \sum_{i=1}^{N} Z_i$$

$P\left(\nu-\mu\geq\epsilon\text{ or }\nu-\mu\leq\epsilon\right)\leq P\left(\nu-\mu\geq\epsilon\right)+P\left(\nu-\mu\leq\epsilon\right)$

$P\left(\left| u-\mu ight|\geq\epsilon ight)\leq2\exp^{-2N\epsilon^{2}}$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q (C 20 / 135 Here

We can use the fact that

$$\nu = \frac{1}{N} \sum_{i=1}^{N} Z_i$$

Putting all together, we have

$$P\left(\nu-\mu\geq\epsilon \text{ or } \nu-\mu\leq\epsilon
ight)\leq P\left(\nu-\mu\geq\epsilon
ight)+P\left(\nu-\mu\leq\epsilon
ight)$$

$\mathsf{P}\left(| u-\mu|\geq\epsilon ight)\leq2\,\mathrm{exp}^{-2N\epsilon^2}$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q (C 20 / 135 Here

We can use the fact that

$$\nu = \frac{1}{N} \sum_{i=1}^{N} Z_i$$

Putting all together, we have

$$P\left(\nu-\mu\geq\epsilon \text{ or } \nu-\mu\leq\epsilon
ight)\leq P\left(\nu-\mu\geq\epsilon
ight)+P\left(\nu-\mu\leq\epsilon
ight)$$

Finally

$$P(|\nu - \mu| \ge \epsilon) \le 2 \exp^{-2N\epsilon^2}$$

We have the following

 $\bullet~$ If $\epsilon~$ is small enough and as long as N~ is large

Making Possible

Possible to estimate $\nu \approx \mu$

• How do we connect with Learning?

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > < ≧ > ○ Q (~ 22/135

Making Possible

Possible to estimate $\nu \approx \mu$

• How do we connect with Learning?

Learning

• We want to find a function $f : \mathcal{X} \longrightarrow \mathcal{Y}$ which is unknown!!!

$a \mathrel{:} h\left(x \right) = f\left(x \right)$ we color the sample blue.

 $a h(z) \neq f(z)$ we color the sample red.

Possible to estimate $\nu \approx \mu$

• How do we connect with Learning?

Learning

- We want to find a function $f : \mathcal{X} \longrightarrow \mathcal{Y}$ which is unknown!!!
 - \blacktriangleright Here we assume that each ball in the bin is a sample $x \in \mathcal{X}$.

Basically, we want to have an hypothesis h:

• $h(\mathbf{x}) \neq f(\mathbf{x})$ we color the sample **red**.

Possible to estimate $\nu \approx \mu$

• How do we connect with Learning?

Learning

- We want to find a function $f : \mathcal{X} \longrightarrow \mathcal{Y}$ which is unknown!!!
 - \blacktriangleright Here we assume that each ball in the bin is a sample $x \in \mathcal{X}$.

Thus, it is necessary to select an hypothesis

Basically, we want to have an hypothesis h:

Possible to estimate $\nu \approx \mu$

• How do we connect with Learning?

Learning

- We want to find a function $f : \mathcal{X} \longrightarrow \mathcal{Y}$ which is unknown!!!
 - Here we assume that each ball in the bin is a sample $x \in \mathcal{X}$.

Thus, it is necessary to select an hypothesis

Basically, we want to have an hypothesis h:

• $h(\mathbf{x}) = f(\mathbf{x})$ we color the sample **blue**.

Possible to estimate $\nu \approx \mu$

• How do we connect with Learning?

Learning

- We want to find a function $f : \mathcal{X} \longrightarrow \mathcal{Y}$ which is unknown!!!
 - ▶ Here we assume that each ball in the bin is a sample $x \in \mathcal{X}$.

Thus, it is necessary to select an hypothesis

Basically, we want to have an hypothesis h:

- $h(\boldsymbol{x}) = f(\boldsymbol{x})$ we color the sample **blue**.
- $h(\mathbf{x}) \neq f(\mathbf{x})$ we color the sample red.

Here a Small Remark

Here, we are not talking about classes

• When talking about blue and red balls, but if we are able to identify the correct label:

$$\widehat{y}_{h} = h\left(oldsymbol{x}
ight) = f\left(oldsymbol{x}
ight) = y$$
 or $\widehat{y}_{h} = h\left(oldsymbol{x}
ight)
eq f\left(oldsymbol{x}
ight) = y$

to see our Learning Problem as a Bernoulli distribution

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Here a Small Remark

Here, we are not talking about classes

• When talking about blue and red balls, but if we are able to identify the correct label:

$$\widehat{y}_{h} = h\left(oldsymbol{x}
ight) = f\left(oldsymbol{x}
ight) = y$$
 or $\widehat{y}_{h} = h\left(oldsymbol{x}
ight)
eq f\left(oldsymbol{x}
ight) = y$

Still, the use of blue and red balls allows

• to see our Learning Problem as a Bernoulli distribution

Swiss mathematician Jacob Bernoulli

Definition

• The Bernoulli distribution is a discrete distribution having two possible outcomes X = 0 or X = 1.

Also expressed as

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ▶ 24 / 135

Swiss mathematician Jacob Bernoulli

Definition

• The Bernoulli distribution is a discrete distribution having two possible outcomes X = 0 or X = 1.

With the following probabilities

$$P\left(X|p\right) = \begin{cases} 1-p & \text{if } X = 0\\ p & \text{if } X = 1 \end{cases}$$

$P(X = k|p) = (p)^{k} (1-p)^{1-k}$

Swiss mathematician Jacob Bernoulli

Definition

• The Bernoulli distribution is a discrete distribution having two possible outcomes X = 0 or X = 1.

With the following probabilities

$$P(X|p) = \begin{cases} 1-p & \text{if } X = 0\\ p & \text{if } X = 1 \end{cases}$$

Also expressed as

$$P(X = k|p) = (p)^k (1-p)^{1-k}$$

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality

Error in the Sample and Error in the Phenomena

- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\hfill {igstacless}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

We define E_{in} (in-sample error)

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} I(h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))$$

• We have made explicit the dependency of E_{in} on the particular h that we are considering.

$E_{out}\left(h ight)=P\left(h\left(oldsymbol{x} ight) eq f\left(oldsymbol{x} ight) ight)=\mu$

 The probability is based on the distribution P over X which is used to sample the data points x.

We define E_{in} (in-sample error)

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} I(h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))$$

• We have made explicit the dependency of E_{in} on the particular h that we are considering.

Now E_{out} (out-of-sample error)

$$E_{out}(h) = P(h(\boldsymbol{x}) \neq f(\boldsymbol{x})) = \mu$$

 The probability is based on the distribution P over X which is used to sample the data points x.

We define E_{in} (in-sample error)

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} I(h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))$$

• We have made explicit the dependency of E_{in} on the particular h that we are considering.

Now E_{out} (out-of-sample error)

$$E_{out}(h) = P(h(\boldsymbol{x}) \neq f(\boldsymbol{x})) = \mu$$

Where

• The probability is based on the distribution P over \mathcal{X} which is used to sample the data points x.

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality

Error in the Sample and Error in the Phenomena Formal Definitions

- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\hfill {igstacless}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

Generalization Error

Definition (Generalization Error/out-of-sample error)

Given a **hypothesis/proposed** model $h \in \mathcal{H}$, a target **concept/real** model $f \in \mathcal{F}$, and an underlying distribution \mathcal{D} , the generalization error or risk of h is defined by

$$R(h) = P_{\boldsymbol{x} \sim \mathcal{D}}(h(\boldsymbol{x}) \neq f(\boldsymbol{x})) = E_{\boldsymbol{x} \sim \mathcal{D}}\left[I_{h(\boldsymbol{x}) \neq f(\boldsymbol{x})}\right]$$

28 / 135

а

where I_{ω} is the indicator function of the event ω .

^aThis comes the fact that $1 * P(A) + 0 * P(\overline{A}) = E[I_A]$

Empirical Error

Definition (Empirical Error/in-sample error)

Given a hypothesis/proposed model $h \in H$, a target concept/real model $f \in F$, a sample $\mathcal{X} = \{x_1, x_2, ..., x_N\}$, the empirical error or empirical risk of h is defined by:

$$\widehat{R} = \frac{1}{N} \sum_{i=1}^{N} I_{h(\boldsymbol{x}_i) \neq f(\boldsymbol{x}_i)}$$

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions

Back to the Hoeffding's Inequality

- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\ensuremath{\bigcirc}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

Basically

We have

$$P\left(\left|E_{in}\left(h\right) - E_{out}\left(h\right)\right| \ge \epsilon\right) \le 2\exp^{-2Nt^{2}}$$

$\mathcal{H} = \{h_1, h_2, ..., h_M\}$

< □ ト < □ ト < 直 ト < 直 ト < 直 ト 目 の Q (~ 31/135

Basically

We have

$$P\left(\left|E_{in}\left(h\right) - E_{out}\left(h\right)\right| \ge \epsilon\right) \le 2\exp^{-2Nt^{2}}$$

Now, we need to consider an entire set of hypothesis, ${\cal H}$

$$\mathcal{H} = \{h_1, h_2, \dots, h_M\}$$

Remark

The Hoeffding Inequality still applies to each bin individually

• Now, we need to consider all the bins simultaneously.

 $\bullet h$ is fixed before the data set is generated!!!

The Hoeffding Inequality no longer holds

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Remark

The Hoeffding Inequality still applies to each bin individually

• Now, we need to consider all the bins simultaneously.

Here, we have the following situation

• *h* is fixed before the data set is generated!!!

The Hoeffding Inequality no longer holds

Remark

The Hoeffding Inequality still applies to each bin individually

• Now, we need to consider all the bins simultaneously.

Here, we have the following situation

• h is fixed before the data set is generated!!!

If you are allowed to change \boldsymbol{h} after you generate the data set

• The Hoeffding Inequality no longer holds

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality

The Learning Process

- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\hfill {f O}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

With multiple hypotheses in \mathcal{H}

• The Learning Algorithm chooses the final hypothesis g based on \mathcal{D} after generating the data.

$P\left(\left|E_{in}\left(h_{m}\right)-E_{out}\left(h_{m}\right)\right|\geq\epsilon ight)$ is small.

$P\left(\left|E_{in}\left(g ight)-E_{out}\left(g ight) ight|\geq\epsilon ight)$ is small for the final hypothesis g_{i}

With multiple hypotheses in \mathcal{H}

• The Learning Algorithm chooses the final hypothesis g based on \mathcal{D} after generating the data.

The statement we would like to make is not

$$P\left(\left|E_{in}\left(h_{m}\right)-E_{out}\left(h_{m}\right)\right|\geq\epsilon\right) \text{ is small.}$$

 $P\left(\left|E_{in}\left(g
ight)-E_{out}\left(g
ight)
ight|\geq\epsilon
ight)$ is small for the final hypothesis g.

With multiple hypotheses in \mathcal{H}

• The Learning Algorithm chooses the final hypothesis g based on \mathcal{D} after generating the data.

The statement we would like to make is not

$$P\left(\left|E_{in}\left(h_{m}\right)-E_{out}\left(h_{m}\right)\right|\geq\epsilon
ight)$$
 is small.

We would rather

 $P\left(\left|E_{in}\left(g\right)-E_{out}\left(g\right)\right|\geq\epsilon
ight)$ is small for the final hypothesis g.

Something Notable

 $\bullet\,$ The hypothesis g is not fixed ahead of time before generating the data

$P\left(\left|E_{in}\left(g\right)-E_{out}\left(g\right)\right|\geq\epsilon ight)$

Which it does not depend on which g the algorithm picks.

Something Notable

 $\bullet\,$ The hypothesis g is not fixed ahead of time before generating the data

Thus we need to bound

$$P\left(\left|E_{in}\left(g\right) - E_{out}\left(g\right)\right| \ge \epsilon\right)$$

• Which it does not depend on which g the algorithm picks.

We have two rules

First one

if
$$A_1 \Longrightarrow A_2$$
, then $P(A_1) \le P(A_2)$

$P\left(A_1 \cup A_2 \cup \dots \cup A_M\right) \le \sum_{m=1}^M P\left(A_m\right)$

<ロ><回><一><一><一><一><一><一><一</td>37/135

We have two rules

First one

if
$$A_1 \Longrightarrow A_2$$
, then $P(A_1) \le P(A_2)$

If you have any set of events $A_1, \overline{A_2, ..., A_M}$

$$P(A_1 \cup A_2 \cup \dots \cup A_M) \le \sum_{m=1}^M P(A_m)$$

<ロト < 回 > < 巨 > < 巨 > < 巨 > 三 の < © 37/135

Now assuming independence between hypothesis

$$|E_{in}(g) - E_{out}(g)| \ge \epsilon \Longrightarrow |E_{in}(h_1) - E_{out}(h_1)| \ge \epsilon$$

or $|E_{in}(h_2) - E_{out}(h_2)| \ge \epsilon$
 \cdots
or $|E_{in}(h_M) - E_{out}(h_M)| \ge \epsilon$

We have

$$P\left(\left|E_{in}\left(g\right) - E_{out}\left(g\right)\right| \ge \epsilon\right) \le P\left[\left|E_{in}\left(h_{1}\right) - E_{out}\left(h_{1}\right)\right| \ge \epsilon$$

or $\left|E_{in}\left(h_{2}\right) - E_{out}\left(h_{2}\right)\right| \ge \epsilon$
...
or $\left|E_{in}\left(h_{M}\right) - E_{out}\left(h_{M}\right)\right| \ge \epsilon$

< □ > < □ > < 直 > < 直 > < 直 > < 直 > ○ Q (~ 39/135

We have

$$P\left(\left|E_{in}\left(g\right) - E_{out}\left(g\right)\right| \ge \epsilon\right) \le \sum_{m=1}^{M} \left[\left|E_{in}\left(h_{m}\right) - E_{out}\left(h_{m}\right)\right| \ge \epsilon\right]$$

$P\left(\left|E_{in}\left(g\right) - E_{out}\left(g\right)\right| \ge \epsilon\right) \le 2M \exp^{-2N\epsilon^{2}}$

< □ ▶ < □ ▶ < 臣 ▶ < 臣 ▶ < 臣 ▶ 三 の Q (~ 40 / 135

We have

$$P\left(\left|E_{in}\left(g\right) - E_{out}\left(g\right)\right| \ge \epsilon\right) \le \sum_{m=1}^{M} \left[\left|E_{in}\left(h_{m}\right) - E_{out}\left(h_{m}\right)\right| \ge \epsilon\right]$$

Thus

$$P\left(\left|E_{in}\left(g\right) - E_{out}\left(g\right)\right| \ge \epsilon\right) \le 2M \exp^{-2N\epsilon^2}$$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q (~ 40 / 135

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process

Feasibility of Learning

- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\hfill {f O}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

Something Notable

• We have introduced two apparently conflicting arguments about the feasibility of learning.

Something Notable

• We have introduced two apparently conflicting arguments about the feasibility of learning.

We have two possibilities

• One argument says that we cannot learn anything outside of \mathcal{D} .

Something Notable

• We have introduced two apparently conflicting arguments about the feasibility of learning.

We have two possibilities

- \bullet One argument says that we cannot learn anything outside of $\mathcal{D}.$
- The other say it is possible!!!

This will solve our conundrum!!!

Something Notable

• We have introduced two apparently conflicting arguments about the feasibility of learning.

We have two possibilities

- One argument says that we cannot learn anything outside of \mathcal{D} .
- The other say it is possible!!!

Here, we introduce the probabilistic answer

• This will solve our conundrum!!!

The Deterministic Answer

• Do we have something to say about f outside of \mathcal{D} ? The answer is NO.

 Is D telling us something likely about f outside of D? The answer is YES

The reason why

We approach our Learning from a Probabilistic point of view!!!

The Deterministic Answer

• Do we have something to say about f outside of \mathcal{D} ? The answer is NO.

The Probabilistic Answer

 $\bullet~$ Is ${\mathcal D}$ telling us something likely about f outside of ${\mathcal D}?~$ The answer is YES

イロト イヨト イヨト

43 / 135

We approach our Learning from a Probabilistic point of view!!!

The Deterministic Answer

• Do we have something to say about *f* outside of *D*? The answer is NO.

The Probabilistic Answer

• Is $\mathcal D$ telling us something likely about f outside of $\mathcal D?$ The answer is YES

The reason why

We approach our Learning from a Probabilistic point of view!!!

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\hfill {igstacless}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

For example

We could have hypothesis based in hyperplanes

• Linear regression output:

$$h\left(\boldsymbol{x}\right) = \sum_{i=1}^{d} w_{i} x_{i} = \boldsymbol{w}^{T} \boldsymbol{x}$$

$$E_{in}\left(oldsymbol{x}
ight)=rac{1}{N}\sum_{i=1}^{N}\left(h\left(oldsymbol{x}_{n}
ight)-y_{n}
ight)^{2}$$

For example

We could have hypothesis based in hyperplanes

• Linear regression output:

$$h\left(\boldsymbol{x}\right) = \sum_{i=1}^{d} w_{i} x_{i} = \boldsymbol{w}^{T} \boldsymbol{x}$$

Therefore

$$E_{in}(\boldsymbol{x}) = \frac{1}{N} \sum_{i=1}^{N} (h(\boldsymbol{x}_{n}) - y_{n})^{2}$$

 Clearly, we have used loss functions

Mostly to give meaning $h \approx f$

• By Error Measures $E\left(h,f\right)$

$e\left(h\left(oldsymbol{x} ight) ,f\left(oldsymbol{x} ight) ight)$

Examples

• Squared Error $e(h(x), f(x)) = [h(x) - f(x)]^2$ • Binary Error $e(h(x), f(x)) = I[h(x) \neq f(x)]$ Clearly, we have used loss functions

Mostly to give meaning $h \approx f$

• By Error Measures $E\left(h,f\right)$

By using pointwise definitions

 $e\left(h\left(\boldsymbol{x}\right),f\left(\boldsymbol{x}\right)\right)$

Squared Error $e(h(x), f(x)) = [h(x) - f(x)]^2$ Binary Error $e(h(x), f(x)) = I[h(x) \neq f(x)]$ Clearly, we have used loss functions

Mostly to give meaning $h \approx f$

• By Error Measures E(h, f)

By using pointwise definitions

$$e\left(h\left(\boldsymbol{x}\right),f\left(\boldsymbol{x}\right)\right)$$

Examples

- Squared Error $e(h(\boldsymbol{x}), f(\boldsymbol{x})) = [h(\boldsymbol{x}) f(\boldsymbol{x})]^2$
- Binary Error $e\left(h\left(\boldsymbol{x}\right),f\left(\boldsymbol{x}\right)\right)=I\left[h\left(\boldsymbol{x}\right)\neq f\left(\boldsymbol{x}\right)\right]$

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example

Overall Error

Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\hfill {igstacless}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

The Overall Error

$E\left(h,f\right)=\mathsf{Average} \text{ of pointwise errors } e\left(h\left(\boldsymbol{x}\right),f\left(\boldsymbol{x}\right)\right)$

$$E_{in}\left(h\right) = \frac{1}{N}\sum_{i=1}^{N}e\left(h\left(\boldsymbol{x}_{i}\right), f\left(\boldsymbol{x}_{i}\right)\right)$$

Out-of-sample error

 $E_{in}(h) = E_{\mathcal{X}}[e(h(\boldsymbol{x}), f(\boldsymbol{x}))]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Overall Error

$$E\left(h,f
ight)=$$
 Average of pointwise errors $e\left(h\left(\pmb{x}
ight),f\left(\pmb{x}
ight)
ight)$

In-Sample Error

$$E_{in}(h) = \frac{1}{N} \sum_{i=1}^{N} e(h(\boldsymbol{x}_i), f(\boldsymbol{x}_i))$$

$E_{in}(h) = E_{\mathcal{X}}[e(h(\boldsymbol{x}), f(\boldsymbol{x}))]$

<ロト < 回 ト < 目 ト < 目 ト < 目 ト 目 の Q () 48 / 135

The Overall Error

$$E\left(h,f
ight)=$$
 Average of pointwise errors $e\left(h\left(\pmb{x}
ight),f\left(\pmb{x}
ight)
ight)$

In-Sample Error

$$E_{in}(h) = \frac{1}{N} \sum_{i=1}^{N} e(h(\boldsymbol{x}_i), f(\boldsymbol{x}_i))$$

Out-of-sample error

$$E_{in}(h) = E_{\mathcal{X}}\left[e\left(h\left(\boldsymbol{x}\right), f\left(\boldsymbol{x}\right)\right)\right]$$

<ロト < 回 ト < 巨 ト < 巨 ト ミ シ へ C 48 / 135

We have the following Process

Assuming $P(y|\boldsymbol{x})$ instead of $y = f(\boldsymbol{x})$

• Then a data point (x, y) is now generated by the joint distribution P(x, y) = P(x) P(y|x)

Noisy target is a deterministic target plus added noise.

 $f(\boldsymbol{x}) \approx E[y|\boldsymbol{x}] + (y - f(\boldsymbol{x}))$

◆□ → ◆□ → ◆ ■ → ▲ ■ → への 49/135

We have the following Process

Assuming $P(y|\boldsymbol{x})$ instead of $y = f(\boldsymbol{x})$

• Then a data point (x, y) is now generated by the joint distribution P(x, y) = P(x) P(y|x)

Therefore

• Noisy target is a deterministic target plus added noise.

$$f(\boldsymbol{x}) \approx E[y|\boldsymbol{x}] + (y - f(\boldsymbol{x}))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

49/135

Finally, we have as Learning Process

Distinction between $P(y|\boldsymbol{x})$ and $P(\boldsymbol{x})$

• Both convey probabilistic aspects of \boldsymbol{x} and \boldsymbol{y} .

• The Target distribution P(y|x) is what we are trying to learn. • The Input distribution P(x) quantifies relative importance of x.

• Merging $P\left(oldsymbol{x},y ight)=P\left(y|oldsymbol{x} ight)P\left(oldsymbol{x} ight)$ mixes the two concepts

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≧ < ○ Q (○ 51/135

Distinction between P(y|x) and P(x)

• Both convey probabilistic aspects of \boldsymbol{x} and \boldsymbol{y} .

Therefore

- **(**) The Target distribution P(y|x) is what we are trying to learn.
- 2 The Input distribution P(x) quantifies relative importance of x.

 $P\left(oldsymbol{x},y
ight)=P\left(y|oldsymbol{x}
ight)P\left(oldsymbol{x}
ight)$ mixes the two concepts

Distinction between $P(y|\boldsymbol{x})$ and $P(\boldsymbol{x})$

• Both convey probabilistic aspects of \boldsymbol{x} and \boldsymbol{y} .

Therefore

- **1** The Target distribution P(y|x) is what we are trying to learn.
- 2 The Input distribution P(x) quantifies relative importance of x.

Finally

• Merging P(x, y) = P(y|x) P(x) mixes the two concepts

Learning is feasible because It is likely that

$E_{out}\left(g\right) \approx E_{in}\left(g\right)$

$E_{out}\left(g\right) = P\left(g\left(\boldsymbol{x}\right) \neq f\left(\boldsymbol{x}\right)\right) \approx 0$

$$E_{out}\left(g
ight) pprox E_{in}\left(g
ight) = rac{1}{N}\sum_{n=1}^{N}I\left(g\left(oldsymbol{x}_{n}
ight)
eq f\left(oldsymbol{x}_{n}
ight)
ight)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Learning is feasible because It is likely that

$$E_{out}\left(g\right) \approx E_{in}\left(g\right)$$

Therefore, we need $g \approx f$

$$E_{out}\left(g\right) = P\left(g\left(\boldsymbol{x}\right) \neq f\left(\boldsymbol{x}\right)\right) \approx 0$$

now do we achieve this?

$$E_{out}\left(g
ight) \approx E_{in}\left(g
ight) = rac{1}{N}\sum_{n=1}^{N}I\left(g\left(\boldsymbol{x}_{n}
ight) \neq f\left(\boldsymbol{x}_{n}
ight)
ight)$$

Learning is feasible because It is likely that

$$E_{out}\left(g\right) \approx E_{in}\left(g\right)$$

Therefore, we need $g \approx f$

$$E_{out}(g) = P(g(\boldsymbol{x}) \neq f(\boldsymbol{x})) \approx 0$$

How do we achieve this?

$$E_{out}(g) \approx E_{in}(g) = \frac{1}{N} \sum_{n=1}^{N} I\left(g\left(\boldsymbol{x}_{n}\right) \neq f\left(\boldsymbol{x}_{n}\right)\right)$$

We make at the same time

 $E_{in}\left(g\right) \approx 0$

 $\bullet\,$ To Make the Error in our selected hypothesis g with respect to the real function f

Can we make E_{out} (g) is close enough E_{in} (g)?
 Can we make E_{in} (g) small enough?

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We make at the same time

$$E_{in}\left(g\right) \approx 0$$

 $\bullet\,$ To Make the Error in our selected hypothesis g with respect to the real function f

Learning splits in two questions

- Can we make $E_{out}(g)$ is close enough $E_{in}(g)$?
- **2** Can we make $E_{in}(g)$ small enough?

<ロ > < 部 > < 書 > < 書 > き の Q @ 54 / 135

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

Vapnik-Chervonenkis Dimension Theory of Generalization

Generalization Error

- Reinterpretation
- Subtlety
- \bigcirc A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

We have that

The out-of-sample error

$$E_{out}(h) = P(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))$$

It has generalized to data that we have not seen before.

Remark

 $\ast ~ E_{out}$ is based on the performance over the entire input space ${\cal X}_+$

< □ > < ⑦ > < ≧ > < ≧ > < ≧ > ≧ のQで 56/135

We have that

The out-of-sample error

$$E_{out}(h) = P(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))$$

It Measures how well our training on $\ensuremath{\mathcal{D}}$

• It has generalized to data that we have not seen before.

 E_{out} is based on the performance over the entire input space \mathcal{X}_{+}

We have that

The out-of-sample error

$$E_{out}(h) = P(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))$$

It Measures how well our training on $\mathcal D$

• It has generalized to data that we have not seen before.

Remark

• E_{out} is based on the performance over the entire input space \mathcal{X} .

Testing Data Set

Intuitively

• we want to estimate the value of E_{out} using a sample of data points.

 These points must be 'fresh' test points that have not been used for training.

o Out Testing Se

Testing Data Set

Intuitively

• we want to estimate the value of E_{out} using a sample of data points.

Something Notable

• These points must be '**fresh**' test points that have not been used for training.

• Out Testing Set.

Testing Data Set

Intuitively

• we want to estimate the value of E_{out} using a sample of data points.

Something Notable

• These points must be '**fresh**' test points that have not been used for training.

Basically

• Out Testing Set.

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

Vapnik-Chervonenkis Dimension

Theory of Generalization

Generalization Error

- Reinterpretation
- Subtlety
- $\ensuremath{\bigcirc}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

Thus

It is possible to define

• The generalization error as the discrepancy between E_{in} and E_{out}

 The Hoeffding Inequality is a way to characterize the generalization error with a probabilistic bound

$P\left(\left|E_{in}\left(g\right) - E_{out}\left(g\right)\right| \ge \epsilon\right) \le 2M \exp^{-2N\epsilon^{\epsilon}}$

For any $\epsilon > 0$.

Thus

It is possible to define

• The generalization error as the discrepancy between E_{in} and E_{out}

Therefore

• The Hoeffding Inequality is a way to characterize the generalization error with a **probabilistic bound**

$$P\left(\left|E_{in}\left(g\right) - E_{out}\left(g\right)\right| \ge \epsilon\right) \le 2M \exp^{-2N\epsilon^{2}}$$

• For any $\epsilon > 0$.

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

Vapnik-Chervonenkis Dimension

Theory of Generalization

Generalization Error

Reinterpretation

- Subtlety
- \bigcirc A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

Reinterpreting This

Assume a Tolerance Level $\delta,$ for example $\delta=0.0005$

 $\bullet\,$ It is possible to say that with probability $1-\delta\,$:

$$E_{out}(g) < E_{in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

Proof

We have the complement Hoeffding Probability using the absolute value

$$P\left(\left|E_{out}\left(g\right) - E_{in}\left(g\right)\right| < \epsilon\right) \le 1 - 2M\exp^{-2N\epsilon^{2}}$$

$P\left(-\epsilon < E_{out}\left(g\right) - E_{in}\left(g\right) < \epsilon\right) \le 1 - 2M\exp^{-2N\epsilon^{2}}$

$E_{out}\left(g ight) < E_{in}\left(g ight) + \epsilon$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q () 62 / 135

Proof

We have the complement Hoeffding Probability using the absolute value

$$P\left(\left|E_{out}\left(g\right) - E_{in}\left(g\right)\right| < \epsilon\right) \le 1 - 2M\exp^{-2N\epsilon^{2}}$$

Therefore, we have

$$P\left(-\epsilon < E_{out}\left(g\right) - E_{in}\left(g\right) < \epsilon\right) \le 1 - 2M\exp^{-2N\epsilon^{2}}$$

$E_{out}\left(g ight) < E_{in}\left(g ight) + \epsilon$

Proof

We have the complement Hoeffding Probability using the absolute value

$$P\left(\left|E_{out}\left(g\right) - E_{in}\left(g\right)\right| < \epsilon\right) \le 1 - 2M\exp^{-2N\epsilon^{2}}$$

Therefore, we have

$$P\left(-\epsilon < E_{out}\left(g\right) - E_{in}\left(g\right) < \epsilon\right) \le 1 - 2M\exp^{-2N\epsilon^2}$$

This imply

$$E_{out}(g) < E_{in}(g) + \epsilon$$

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 通 > < 0 Q (0 62 / 135

We simply use

$$\delta = 2M \exp^{-2N\epsilon^2}$$

$$\ln 1 - \ln rac{\delta}{2M} = 2N\epsilon^2$$

Therefore

$$\epsilon = \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ 63/135

We simply use

$$\delta = 2M \exp^{-2N\epsilon^2}$$

Then

$$\ln 1 - \ln \frac{\delta}{2M} = 2N\epsilon^2$$

$$\epsilon = \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ 63/135

We simply use

$$\delta = 2M \exp^{-2N\epsilon^2}$$

Then

$$\ln 1 - \ln \frac{\delta}{2M} = 2N\epsilon^2$$

Therefore

$$\epsilon = \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

< □ ▶ < ⑦ ▶ < ≧ ▶ < ≧ ▶ ≣ 少 Q (~ 63/135

Generalization Bound

This inequality is know as a generalization Bound

$$E_{in}(g) < E_{out}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

Vapnik-Chervonenkis Dimension

Theory of Generalization

- Generalization Error
- Reinterpretation

Subtlety

- $\ensuremath{\bigcirc}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

The following inequality also holds

$$-\epsilon < E_{out}(g) - E_{in}(g) \Rightarrow E_{out}(g) > E_{in}(g) - \epsilon$$

 Not only we want our hypothesis g to do well int the out samples, E_{out} (g) < E_{in} (g) + ε

But we want to know how well we did with our H

- Thus, E_{out} (g) > E_{in} (g) ε assures that it is not possible to do better!!!
 - Given any hypothesis with higher

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} I(h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))$$

The following inequality also holds

$$-\epsilon < E_{out}(g) - E_{in}(g) \Rightarrow E_{out}(g) > E_{in}(g) - \epsilon$$

Thus

• Not only we want our hypothesis g to do well int the out samples, $E_{out}\left(g\right) < E_{in}\left(g\right) + \epsilon$

Thus, $E_{out}(g) > E_{in}(g) - \epsilon$ assures that it is not possible to do better!!!

Given any hypothesis with higher

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} I(h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))$$

The following inequality also holds

$$-\epsilon < E_{out}(g) - E_{in}(g) \Rightarrow E_{out}(g) > E_{in}(g) - \epsilon$$

Thus

• Not only we want our hypothesis g to do well int the out samples, $E_{out}\left(g\right) < E_{in}\left(g\right) + \epsilon$

But, we want to know how well we did with our $\ensuremath{\mathcal{H}}$

- Thus, $E_{out}\left(g\right) > E_{in}\left(g\right) \epsilon$ assures that it is not possible to do better!!!
 - Given any hypothesis with higher

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} I(h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))$$

than g.

But, we want to know how well we did with our $\ensuremath{\mathcal{H}}$

• Thus, $E_{out}\left(g\right) > E_{in}\left(g\right) - \epsilon$ assures that it is not possible to do better!!!

<ロト<部ト<語ト<語ト<語ト 67/135

But, we want to know how well we did with our $\ensuremath{\mathcal{H}}$

• Thus, $E_{out}\left(g\right) > E_{in}\left(g\right) - \epsilon$ assures that it is not possible to do better!!!

Given any hypothesis h with higher than g

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} I(h(\boldsymbol{x}_{n}) \neq f(\boldsymbol{x}_{n}))$$

$E_{out}\left(h ight) > E_{in}\left(h ight) - \epsilon$

But, we want to know how well we did with our $\ensuremath{\mathcal{H}}$

• Thus, $E_{out}(g) > E_{in}(g) - \epsilon$ assures that it is not possible to do better!!!

Given any hypothesis h with higher than g

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} I(h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))$$

It will have a higher $E_{out}(h)$ given

 $E_{out}(h) > E_{in}(h) - \epsilon$

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety

$\textcircled{\sc 0}$ A Problem with M

- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

The Infiniteness of $\ensuremath{\mathcal{H}}$

A Problem with the Error Bound given its dependency on ${\cal M}$

$$\sqrt{\frac{1}{2N}\ln\frac{2M}{\delta}}$$

The number of hypothesis in H becomes infinity.

Thus, the bound becomes infinity

Problem, almost all interesting learning models have infinite H....
 For Example... in our linear Regression... f (x) = w^Tx

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < の < の < 69 / 135

The Infiniteness of $\ensuremath{\mathcal{H}}$

A Problem with the Error Bound given its dependency on ${\cal M}$

$$\sqrt{\frac{1}{2N}\ln\frac{2M}{\delta}}$$

What happens when M becomes infinity

 $\bullet\,$ The number of hypothesis in ${\cal H}$ becomes infinity.

Problem, almost all interesting learning models have infinite *H*....
 ▶ For Example... in our linear Regression... *f*(*x*) = *w*^T*x*

The Infiniteness of $\ensuremath{\mathcal{H}}$

A Problem with the Error Bound given its dependency on ${\cal M}$

$$\sqrt{\frac{1}{2N}\ln\frac{2M}{\delta}}$$

What happens when M becomes infinity

• The number of hypothesis in $\mathcal H$ becomes infinity.

Thus, the bound becomes infinity

• Problem, almost all interesting learning models have infinite \mathcal{H}

• For Example... in our linear Regression... $f(x) = w^T x$

Therefore, we need to replace ${\cal M}$

We need to find a finite substitute with finite range values

• For this, we notice that

$$|E_{in}(h_1) - E_{out}(h_1)| \ge \epsilon \text{ or } |E_{in}(h_2) - E_{out}(h_2)| \ge \epsilon \cdots$$

or
$$|E_{in}(h_M) - E_{out}(h_M)| \ge \epsilon$$

This guarantee $|E_{in}(g) - E_{out}(g)| \ge \epsilon$

• Thus, we can take a look at the events \mathcal{B}_m events for which you have $|E_{in}(h_m) - E_{out}(h_m)| \ge \epsilon$

This guarantee $|E_{in}(g) - E_{out}(g)| \ge \epsilon$

• Thus, we can take a look at the events \mathcal{B}_m events for which you have $|E_{in}(h_m) - E_{out}(h_m)| \ge \epsilon$

Then

$$P\left[\begin{array}{ccc} \mathcal{B}_1 & \text{ or } \mathcal{B}_2 & \cdots & \text{ or } \mathcal{B}_M\end{array}
ight] \leq \sum_{m=1}^M P\left[\mathcal{B}_m
ight]$$

Now, we have the following

ullet Basically, if h_i and h_j are quite similar the two events

 $|E_{in}(h_i) - E_{out}(h_i)| \ge \epsilon \text{ and } |E_{in}(h_j) - E_{out}(h_j)| \ge \epsilon$ are likely to coincide!!!

Now, we have the following

We have a gross overestimate

• Basically, if h_i and h_j are quite similar the two events

$$|E_{in}(h_i) - E_{out}(h_i)| \ge \epsilon$$
 and $|E_{in}(h_j) - E_{out}(h_j)| \ge \epsilon$

are likely to coincide!!!

Something Notable

• In a typical learning model, many hypotheses are indeed very similar.

 We only need to account for the overlapping on different hypothesis to substitute M.

Something Notable

• In a typical learning model, many hypotheses are indeed very similar.

The mathematical theory of generalization hinges on this observation

• We only need to account for the overlapping on different hypothesis to substitute M.

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- \bigcirc A Problem with M

Dichotomies

- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

Consider

A finite data set

$$\mathcal{X} = \{oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N\}$$

We get a N-tuple, when applied to X, h(x₁), h(x₂), ..., h(x_N) of ±1.

Such a -tuple is called a Lichotomy

ullet Given that it splits $x_1, x_2, ..., x_N$ into two groups...

<ロ><回><一><一><一><一><一><一><一</td>75/135

Consider

A finite data set

$$\mathcal{X} = \{oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N\}$$

And we consider a set of hypothesis $h \in \mathcal{H}$ such that $h : \mathcal{X} \to \{-1, +1\}$

• We get a N-tuple, when applied to \mathcal{X} , $h\left(\bm{x}_{1}\right) ,h\left(\bm{x}_{2}\right) ,...,h\left(\bm{x}_{N}\right)$ of $\pm1.$

Given that it splits $oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N$ into two groups..

Consider

A finite data set

$$\mathcal{X} = \{oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N\}$$

And we consider a set of hypothesis $h \in \mathcal{H}$ such that $h : \mathcal{X} \to \{-1, +1\}$

• We get a N-tuple, when applied to \mathcal{X} , $h\left(\bm{x}_{1}\right) ,h\left(\bm{x}_{2}\right) ,...,h\left(\bm{x}_{N}\right)$ of $\pm1.$

Such *N*-tuple is called a Dichotomy

• Given that it splits $oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N$ into two groups...

Dichotomy

Definition

Given a hypothesis set *H*, a dichotomy of a set *X* is one of the possible ways of labeling the points of *X* using a hypothesis in *H*.

Examples of Dichotomies

Something Important

Each $h \in \mathcal{H}$ generates a dichotomy on $\boldsymbol{x}_1, ..., \boldsymbol{x}_N$

• However, two different *h*'s may generate the same dichotomy if they generate the same pattern

Remark

Definition

• Let $x_1, x_2, ..., x_n \in \mathcal{X}$. The dichotomies generated by \mathcal{H} on these points are defined by

 $\mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, ..., \boldsymbol{x}_{N}\right) = \left\{\left(h\left[\boldsymbol{x}_{1}\right], h\left[\boldsymbol{x}_{2}\right], ..., h\left[\boldsymbol{x}_{N}\right]\right) | h \in \mathcal{H}\right\}$

We can see $\mathcal{H}(x_1, x_2, ..., x_N)$ as a set of hypothesis by using the geometry of the points.

• A large $\mathcal{H}(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N)$ means $\mathcal H$ is more diverse.

Remark

Definition

• Let $x_1, x_2, ..., x_n \in \mathcal{X}$. The dichotomies generated by \mathcal{H} on these points are defined by

 $\mathcal{H}\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2},...,\boldsymbol{x}_{N}\right)=\left\{\left(h\left[\boldsymbol{x}_{1}\right],h\left[\boldsymbol{x}_{2}\right],...,h\left[\boldsymbol{x}_{N}\right]\right)|h\in\mathcal{H}\right\}$

Therefore

• We can see $\mathcal{H}(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N)$ as a set of hypothesis by using the geometry of the points.

 $ho \,$ A large $\mathcal{H}\left(x_{1}, x_{2}, ..., x_{N}
ight)$ means \mathcal{H} is more diverse.

Remark

Definition

• Let $x_1, x_2, ..., x_n \in \mathcal{X}$. The dichotomies generated by \mathcal{H} on these points are defined by

 $\mathcal{H}\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2},...,\boldsymbol{x}_{N}\right)=\left\{\left(h\left[\boldsymbol{x}_{1}\right],h\left[\boldsymbol{x}_{2}\right],...,h\left[\boldsymbol{x}_{N}\right]\right)|h\in\mathcal{H}\right\}$

Therefore

• We can see $\mathcal{H}(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N)$ as a set of hypothesis by using the geometry of the points.

Thus

• A large $\mathcal{H}(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N)$ means \mathcal{H} is more diverse.

Growth function, Our Replacement of ${\cal M}$

Definition

 $\bullet\,$ The growth function is defined for a hypothesis set ${\cal H}$ by

$$m_{\mathcal{H}}(N) = \max_{\boldsymbol{x}_{1},...,\boldsymbol{x}_{N} \in \mathcal{X}} \# \mathcal{H}(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, ..., \boldsymbol{x}_{N})$$

▶ where *#* denotes the cardinality (number of elements) of a set.

 m_H (N) is the maximum number of dichotomies that be generated by H on any N points.

 \blacktriangleright We remove dependency on the entire X

Growth function, Our Replacement of M

Definition

 $\bullet\,$ The growth function is defined for a hypothesis set ${\cal H}$ by

$$m_{\mathcal{H}}(N) = \max_{\boldsymbol{x}_{1},...,\boldsymbol{x}_{N} \in \mathcal{X}} \# \mathcal{H}(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, ..., \boldsymbol{x}_{N})$$

where # denotes the cardinality (number of elements) of a set.

Therefore

- $m_{\mathcal{H}}(N)$ is the **maximum number of dichotomies** that be generated by \mathcal{H} on any N points.
 - \blacktriangleright We remove dependency on the entire ${\cal X}$

We have that

• M and $m_{\mathcal{H}}(N)$ is a measure of the of the number of hypothesis in \mathcal{H}

Now we only consider N points instead of the entire ${\mathcal X}$

We have that

• M and $m_{\mathcal{H}}(N)$ is a measure of the of the number of hypothesis in \mathcal{H}

However, we avoid considering all of ${\mathcal X}$

• Now we only consider N points instead of the entire \mathcal{X} .

Upper Bound for $m_{\mathcal{H}}(N)$

First, we know that

$$\mathcal{H}\left(oldsymbol{x}_{1},oldsymbol{x}_{2},...,oldsymbol{x}_{N}
ight)\subseteq\left\{-1,+1
ight\}^{N}$$

<ロト < 部ト < 注ト < 注ト 目 の Q (C 82/135

Upper Bound for $m_{\mathcal{H}}\left(N\right)$

First, we know that

$$\mathcal{H}\left(oldsymbol{x}_{1},oldsymbol{x}_{2},...,oldsymbol{x}_{N}
ight)\subseteq\left\{-1,+1
ight\}^{N}$$

Hence, we have the value of $m_{\mathcal{H}}(N)$ is at most $\# \{-1, +1\}^N$

 $m_{\mathcal{H}}(N) \le 2^N$

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\hfill {f O}$ A Problem with M
- Dichotomies

Shattering

- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

If ${\mathcal H}$ is capable of generating all possible dichotomies on ${m x}_1, {m x}_2, ..., {m x}_N$

• Then,

•
$$\mathcal{H}(x_1, x_2, ..., x_N) = \{-1, +1\}^N$$
 and $\#\mathcal{H}(x_1, x_2, ..., x_N) = 2^N$

 $ho \,\, {\mathcal H}\,\, { ext{can shatter}}\,\, {m x}_1, {m x}_2, ..., {m x}_N$

Meaning

 ${\mathcal H}$ is as diverse as can be on this particular sample.

<ロト < 回 ト < 巨 ト < 巨 ト ミ の < C 84/135

If $\mathcal H$ is capable of generating all possible dichotomies on $oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N$

• Then,

•
$$\mathcal{H}(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N) = \{-1, +1\}^N$$
 and $\#\mathcal{H}(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N) = 2^N$

We can say that

• \mathcal{H} can shatter $oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N$

 ${\mathcal H}$ is as diverse as can be on this particular sample.

<ロト < 回 ト < 巨 ト < 巨 ト ミ の < C 84/135

If $\mathcal H$ is capable of generating all possible dichotomies on $oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N$

Then,

•
$$\mathcal{H}(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N) = \{-1, +1\}^N$$
 and $\#\mathcal{H}(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N) = 2^N$

We can say that

• ${\mathcal H}$ can shatter ${m x}_1, {m x}_2, ..., {m x}_N$

Meaning

• \mathcal{H} is as diverse as can be on this particular sample.

Shattering

Definition

• A set \mathcal{X} of $N \ge 1$ points is said to be shattered by a hypothesis set \mathcal{H} when \mathcal{H} realizes all possible dichotomies of \mathcal{X} , that is when

$$m_{\mathcal{H}}\left(N\right) = 2^{N}$$

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\hfill {f O}$ A Problem with M
- Dichotomies
- Shattering

• Example of Computing $m_{\mathcal{H}}\left(N ight)$

- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

Example

Positive Rays

• Imagine a input space on $\mathbb{R},$ with $\mathcal H$ consisting of all hypotheses $h:\mathbb{R}\to\{-1,+1\}$ of the form

$$h\left(x\right) = sign\left(x-a\right)$$

Example

Positive Rays

• Imagine a input space on \mathbb{R} , with \mathcal{H} consisting of all hypotheses $h: \mathbb{R} \to \{-1, +1\}$ of the form

$$h\left(x\right) = sign\left(x - a\right)$$

Thus, we have that

As we change a, we get N + 1 different dichotomies

 $m_{\mathcal{H}}\left(N\right) = N + 1$

Thus, we have that

As we change a, we get N + 1 different dichotomies

 $m_{\mathcal{H}}\left(N\right) = N + 1$

Now, we have the case of positive intervals

• \mathcal{H} consists of all hypotheses in one dimension that return +1 within some interval and -1 otherwise.

We have

• The line is again split by the points into ${\cal N}+1$ regions.

 The dichotomy we get is decided by which two regions contain the end values of the interval

Therefore, we have the number of possible dichotomics

$$\left(\begin{array}{c} N+1\\ 2\end{array}\right)$$

We have

• The line is again split by the points into N+1 regions.

Furthermore

• The dichotomy we get is decided by which two regions contain the end values of the interval

We have

• The line is again split by the points into N + 1 regions.

Furthermore

• The dichotomy we get is decided by which two regions contain the end values of the interval

Therefore, we have the number of possible dichotomies

$$\left(\begin{array}{c} N+1\\ 2\end{array}\right)$$

Additionally

If the two points fall in the same region, the $\mathcal{H}=-1$

• Then

$$m_{\mathcal{H}}(N) = \binom{N+1}{2} + 1 = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

Finally

In the case of a Convex Set in \mathbb{R}^2

• \mathcal{H} consists of all hypothesis in two dimensions that are positive inside some convex set and negative elsewhere.

We have the following

$$m_{\mathcal{H}}\left(N\right) = 2^{N}$$

By using the "Radon's theorem"

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\ensuremath{\bigcirc}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

Remember

We have that

$$P\left(\left|E_{in}\left(g\right) - E_{out}\left(g\right)\right| \ge \epsilon\right) \le 2M \exp^{-2N\epsilon^2}$$

• If $m_{\mathcal{H}}(N)$ is polynomial, we have an excellent case!!!

Therefore, we need to prove that

• $m_{\mathcal{H}}\left(N
ight)$ is polynomial.

<ロ > < 回 > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > の Q (~ 94/135

Remember

We have that

$$P\left(\left|E_{in}\left(g\right) - E_{out}\left(g\right)\right| \ge \epsilon\right) \le 2M \exp^{-2N\epsilon^2}$$

What if $m_{\mathcal{H}}(N)$ replaces M

• If $m_{\mathcal{H}}(N)$ is polynomial, we have an excellent case!!!

• $m_{\mathcal{H}}(N)$ is polynomial

Remember

We have that

$$P\left(\left|E_{in}\left(g\right) - E_{out}\left(g\right)\right| \ge \epsilon\right) \le 2M \exp^{-2N\epsilon^{2}}$$

What if $m_{\mathcal{H}}(N)$ replaces M

• If $m_{\mathcal{H}}(N)$ is polynomial, we have an excellent case!!!

Therefore, we need to prove that

• $m_{\mathcal{H}}\left(N
ight)$ is polynomial

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\ensuremath{\bigcirc}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?

Break Point

- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

Break Point

Definition

• If **no data set of size** k can be shattered by \mathcal{H} , then k is said to be a break point for \mathcal{H} :

$$\underline{m_{\mathcal{H}}\left(k\right)} < 2^{k}$$

Example

Important

Something Notable

• In general, it is easier to find a break point for \mathcal{H} than to compute the full growth function for that \mathcal{H} .

We are ready to define the concept of Vapnik–Chervonenkis (VC) dimension.

Important

Something Notable

• In general, it is easier to find a break point for $\mathcal H$ than to compute the full growth function for that $\mathcal H$.

Using this concept

We are ready to define the concept of Vapnik–Chervonenkis (VC) dimension.

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\ensuremath{\bigcirc}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point

VC-Dimension

- Partition B(N, k)
- \bullet Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example Multi-Layer Perceptron

VC-Dimension

Definition

• The VC-dimension of a hypothesis set \mathcal{H} is the size of the largest set that can be fully shattered by \mathcal{H} (Those points need to be in "General Position"):

$$VC_{dim}\left(\mathcal{H}\right) = \max\left\{k|m_{\mathcal{H}}\left(k\right) = 2^{k}\right\}$$

► A set containing k points, for arbitrary k, is in general linear position if and only if no (k - 1) -dimensional flat contains them all

Important Remarks

Remark 1

• if $VC_{dim}(\mathcal{H}) = d$, there exists a set of size d that can be fully shattered.

This does not imply that all sets of size d or less are fully shattered.
 This is typically the case!!!

Important Remarks

Remark 1

• if $VC_{dim}(\mathcal{H}) = d$, there exists a set of size d that can be fully shattered.

Remark2

- $\bullet\,$ This does not imply that all sets of size d or less are fully shattered
 - This is typically the case!!!

Why? General Linear Position

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ のQ (* 102/135)

Now, we define B(N,k)

Definition

• B(N,k) is the maximum number of dichotomies on N points such that no subset of size k of the N points can be shattered by these dichotomies.

) The definition of B(N,k) assumes a break point k!!!

Now, we define B(N,k)

Definition

• B(N,k) is the maximum number of dichotomies on N points such that no subset of size k of the N points can be shattered by these dichotomies.

Something Notable

• The definition of B(N,k) assumes a break point k!!!

Further

Since B(N,k) is a maximum

• It is an upper bound for $m_{\mathcal{H}}(N)$ under a break point k.

$m_{\mathcal{H}}(N) \leq B(N,k)$ if k is a break point for \mathcal{H} .

We need to find a Bound for B (N, k) to prove that m_H (k) is polynomial.

Further

Since B(N,k) is a maximum

• It is an upper bound for $m_{\mathcal{H}}(N)$ under a break point k.

 $m_{\mathcal{H}}(N) \leq B(N,k)$ if k is a break point for \mathcal{H} .

Then

• We need to find a Bound for B(N,k) to prove that $m_{\mathcal{H}}(k)$ is polynomial.

Thus, we start with two boundary conditions k=1 and ${\cal N}=1$

B(N, 1) = 1 $B(1, k) = 2 \ k > 1$

> <ロト < 回 ト < 巨 ト < 巨 ト ミ シ へ C 105 / 135

Something Notable

• B(N,1) = 1 for all N since if no subset of size 1 can be shattered

Something Notable

- B(N,1) = 1 for all N since if no subset of size 1 can be shattered
 - Then only one dichotomy can be allowed.

B(1, k) = 2 for k > 1 since there do not even exist subsets of size k. Because the constraint is vacuously true and we have 2 possible dichotomies +1 and -1.

Something Notable

• B(N,1) = 1 for all N since if no subset of size 1 can be shattered

- Then only one dichotomy can be allowed.
- Because a second different dichotomy must differ on at least one point and then that subset of size 1 would be shattered.

B(1, k) = 2 for k > 1 since there do not even exist subsets of size k. ▶ Because the constraint is vacuously true and we have 2 possible dichotomies +1 and -1.

Something Notable

• B(N,1) = 1 for all N since if no subset of size 1 can be shattered

- Then only one dichotomy can be allowed.
- Because a second different dichotomy must differ on at least one point and then that subset of size 1 would be shattered.

Second

• B(1,k) = 2 for k > 1 since there do not even exist subsets of size k.

Something Notable

• B(N,1) = 1 for all N since if no subset of size 1 can be shattered

- Then only one dichotomy can be allowed.
- Because a second different dichotomy must differ on at least one point and then that subset of size 1 would be shattered.

Second

- B(1,k) = 2 for k > 1 since there do not even exist subsets of size k.
 - ▶ Because the constraint is vacuously true and we have 2 possible dichotomies +1 and -1.

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\ensuremath{\bigcirc}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension

• Partition B(N, k)

- ${\small \bigcirc}$ Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

B(N,k) Dichotomies, $N\geq 2$ and $k\geq 2$

		# of rows	$oldsymbol{x}_1$	$oldsymbol{x}_2$	 x_{N-1}	$oldsymbol{x}_N$
	S_1	α	$^{+1}$	$^{+1}$	 $^{+1}$	$^{+1}$
			-1	$^{+1}$	 $^{+1}$	-1
			$^{+1}$	-1	 -1	-1
			-1	$^{+1}$	 -1	+1
S_2	S_{2}^{+}	β	+1	-1	 $^{+1}$	+1
			-1	-1	 $^{+1}$	+1
						:
			$^{+1}$	-1	 $^{+1}$	$^{+1}$
			-1	$^{+1}$	 -1	+1
	S_{2}^{-}	β	+1	-1	 $^{+1}$	-1
			-1	-1	 $^{+1}$	-1
			÷	÷		÷
			$^{+1}$	-1	 $^{+1}$	-1
			-1	$^{+1}$	 □ > -1 @ >	<

E ∽ Q C 108 / 135

What is this partition mean

First, Consider the dichotomies on $oldsymbol{x}_1 oldsymbol{x}_2 \cdots oldsymbol{x}_{N-1}$

• Some appear once (Either +1 or -1 at x_N), but only ONCE!!!

What is this partition mean

First, Consider the dichotomies on $oldsymbol{x}_1 oldsymbol{x}_2 \cdots oldsymbol{x}_{N-1}$

- Some appear once (Either +1 or -1 at x_N), but only ONCE!!!
- We collect them in S_1

Once with ± 1 and once with ± 1 in the x_N column.

What is this partition mean

First, Consider the dichotomies on $oldsymbol{x}_1 oldsymbol{x}_2 \cdots oldsymbol{x}_{N-1}$

- Some appear once (Either +1 or -1 at x_N), but only ONCE!!!
- We collect them in S_1

The Remaining Dichotomies appear Twice

• Once with +1 and once with -1 in the x_N column.

Therefore, we collect them in three sets

The ones with only one Dichotomy

• We use the set S_1

• S_2^+ the ones with $x_N = +1$. • S_2^- the ones with $x_N = -1$.

Therefore, we collect them in three sets

The ones with only one Dichotomy

• We use the set S_1

The other in two different sets

- S_2^+ the ones with $x_N = +1$.
- S_2^- the ones with $x_N = -1$.

We have the following

$$B\left(N,k\right) = \alpha + 2\beta$$

• They are
$$\alpha + \beta$$
.

Since no k-subset of all N points can be shattered:

$$\alpha + \beta \le B\left(N - 1, k\right)$$

By definition of *B*.

We have the following

$$B\left(N,k\right) = \alpha + 2\beta$$

The total number of different dichotomies on the first N-1 points

• They are $\alpha + \beta$.

Since no k-subset of all N points can be shattered:

$$\alpha + \beta \le B\left(N - 1, k\right)$$

By definition of B.

<ロト <回ト < 臣ト < 臣ト < 臣ト < 臣 > 臣 の Q (* 111/135

We have the following

$$B\left(N,k\right) = \alpha + 2\beta$$

The total number of different dichotomies on the first N-1 points

• They are $\alpha + \beta$.

Additionally, no subset of k of these first $N-1\ {\rm points}\ {\rm can}\ {\rm be}\ {\rm shattered}$

• Since no k-subset of all N points can be shattered:

$$\alpha + \beta \le B\left(N - 1, k\right)$$

By definition of B.

Further, no subset of size k-1 of the first N-1 points can be shattered by the dichotomies in S_2^+

 \bullet If there existed such a subset, then taking the corresponding set of dichotomies in S_2^- and ${\bm x}_N$

Further, no subset of size k-1 of the first N-1 points can be shattered by the dichotomies in S_2^+

- \bullet If there existed such a subset, then taking the corresponding set of dichotomies in S_2^- and ${\bm x}_N$
 - ▶ You finish with a subset of size *k* that can be shattered a contradiction given the definition of *B*(*N*, *k*).

Further, no subset of size k-1 of the first N-1 points can be shattered by the dichotomies in S_2^+

- \bullet If there existed such a subset, then taking the corresponding set of dichotomies in S_2^- and ${\pmb x}_N$
 - ➤ You finish with a subset of size k that can be shattered a contradiction given the definition of B (N, k).

Therefore

$$\beta \le B\left(N-1, k-1\right)$$

Further, no subset of size k-1 of the first N-1 points can be shattered by the dichotomies in S_2^+

- \bullet If there existed such a subset, then taking the corresponding set of dichotomies in S_2^- and ${\pmb x}_N$
 - ➤ You finish with a subset of size k that can be shattered a contradiction given the definition of B (N, k).

Therefore

$$\beta \le B\left(N-1, k-1\right)$$

Then, we have

$$B(N,k) \le B(N-1,k) + B(N-1,k-1)$$

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\ensuremath{\bigcirc}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)

${\small \bigcirc}$ Connecting the Growth Function with the VC_{dim}

VC Generalization Bound Theorem

Example

Multi-Layer Perceptron

Connecting the Growth Function with the VC_{dim}

Sauer's Lemma

• For all $k \in \mathbb{N}$, the following inequality holds:

$$B\left(N,k\right) \leq \sum_{i=0}^{k-1} \left(\begin{array}{c}N\\i\end{array}\right)$$

Proof

Proof

• For k=1

$$B(N,1) \le B(N-1,1) + B(N-1,0) = 1 + 0 = \begin{pmatrix} N \\ 0 \end{pmatrix}$$

Then by induction

• We assume that the statement is true for $N \leq N_0$ and all k.

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≧ の Q (~ 115 / 135 Proof

Proof

• For k=1

$$B(N,1) \le B(N-1,1) + B(N-1,0) = 1 + 0 = \begin{pmatrix} N \\ 0 \end{pmatrix}$$

Then, by induction

• We assume that the statement is true for $N \leq N_0$ and all k.

Now

We need to prove this for ${\cal N}={\cal N}_0+1$ and all k

\bullet Observation: This is true for k=1 given

 $B\left(N,1\right)=1$

$B(N_0, k) + B(N_0, k-1)$

$B\left(N_0+1,k\right) \le \sum_{i=0}^{k-1} \left(\begin{array}{c} N_0\\i\end{array}\right) + \sum_{i=0}^{k-2} \left(\begin{array}{c} N_0\\i\end{array}\right)$

Now

We need to prove this for ${\cal N}={\cal N}_0+1$ and all k

• Observation: This is true for k = 1 given

 $B\left(N,1\right)=1$

Now, consider $k \geq 2$

 $B(N_0, k) + B(N_0, k - 1)$

$B\left(N_{0}+1,k\right) \leq \sum_{i=0}^{k-1} \left(\begin{array}{c} N_{0} \\ i \end{array}\right) + \sum_{i=0}^{k-2} \left(\begin{array}{c} N_{0} \\ i \end{array}\right)$

Now

We need to prove this for ${\cal N}={\cal N}_0+1$ and all k

• Observation: This is true for k = 1 given

 $B\left(N,1\right)=1$

Now, consider $k \geq 2$

$$B(N_0, k) + B(N_0, k-1)$$

Therefore

$$B(N_0 + 1, k) \le \sum_{i=0}^{k-1} \binom{N_0}{i} + \sum_{i=0}^{k-2} \binom{N_0}{i}$$

<□ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≧ < ○ Q () 116/135

We have the following

$$B(N_0 + 1, k) \le 1 + \sum_{i=1}^{k-1} \binom{N_0}{i} + \sum_{i=1}^{k-1} \binom{N_0}{i-1}$$

We have the following

$$B(N_{0}+1,k) \leq 1 + \sum_{i=1}^{k-1} \binom{N_{0}}{i} + \sum_{i=1}^{k-1} \binom{N_{0}}{i-1} \\ = 1 + \sum_{i=1}^{k-1} \left[\binom{N_{0}}{i} + \binom{N_{0}}{i-1} \right]$$

۲

We have the following

$$B(N_0 + 1, k) \le 1 + \sum_{i=1}^{k-1} {\binom{N_0}{i}} + \sum_{i=1}^{k-1} {\binom{N_0}{i-1}} \\ = 1 + \sum_{i=1}^{k-1} \left[{\binom{N_0}{i}} + {\binom{N_0}{i-1}} \right] \\ = 1 + \sum_{i=1}^{k-1} {\binom{N_0+1}{i}} = \sum_{i=0}^{k-1} {\binom{N_0+1}{i}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• [

We have the following

$$\begin{split} B\left(N_{0}+1,k\right) &\leq 1 + \sum_{i=1}^{k-1} \binom{N_{0}}{i} + \sum_{i=1}^{k-1} \binom{N_{0}}{i-1} \\ &= 1 + \sum_{i=1}^{k-1} \left[\binom{N_{0}}{i} + \binom{N_{0}}{i-1} \right] \\ &= 1 + \sum_{i=1}^{k-1} \binom{N_{0}+1}{i} = \sum_{i=0}^{k-1} \binom{N_{0}+1}{i} \end{split}$$

Because $\binom{N_{0}}{i} + \binom{N_{0}}{i-1} = \binom{N_{0}+1}{i}$

<□> <問> <言> < 言> < 言> < 言> こののの 117/135

Now

We have in conclusion for all k

$$B\left(N,k\right) \leq \sum_{i=0}^{k-1} \left(\begin{array}{c} N\\ i \end{array}\right)$$

<ロ><回><一><一><一><一><一><一><一</td>118/135

Now

We have in conclusion for all k

$$B\left(N,k\right) \leq \sum_{i=0}^{k-1} \left(\begin{array}{c} N\\ i \end{array}\right)$$

Therefore

$$m_{\mathcal{H}}(N) \le B(N,k) \le \sum_{i=0}^{k-1} \left(\begin{array}{c} N\\ i \end{array}\right)$$

<ロ><回><一><一><一><一><一><一><一</td>118/135

Then

Theorem

• If $m_{\mathcal{H}}(k) < 2^k$ for some value k, then

$$m_{\mathcal{H}}(N) \le \sum_{i=0}^{k-1} \left(\begin{array}{c} N\\ i \end{array}\right)$$

Corollary

• Let \mathcal{H} be a hypothesis set with $VC_{dim}\left(\mathcal{H}\right)=k$. Then, for all $N\geq k$

$$m_{\mathcal{H}}(N) \le \left(\frac{eN}{k}\right)^{k-1} = O\left(N^k\right)$$

Proof

Proof

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k} \binom{N}{i}$$
$$\leq \sum_{i=0}^{k} \binom{N}{i} \left[\frac{N}{k}\right]^{k-i}$$

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≧ の Q (~ 121/135

Proof

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k} \binom{N}{i}$$
$$\leq \sum_{i=0}^{k} \binom{N}{i} \left[\frac{N}{k}\right]^{k-i}$$
$$\leq \sum_{i=0}^{N} \binom{N}{i} \left[\frac{N}{k}\right]^{k-i}$$

< □ > < □ > < ≧ > < ≧ > < ≧ > ≧ の Q (~ 121/135

 η

Proof

$$h_{\mathcal{H}}(N) \leq \sum_{i=0}^{k} \binom{N}{i}$$
$$\leq \sum_{i=0}^{k} \binom{N}{i} \left[\frac{N}{k}\right]^{k-i}$$
$$\leq \sum_{i=0}^{N} \binom{N}{i} \left[\frac{N}{k}\right]^{k-i}$$
$$\left[\frac{N}{k}\right]^{k} \sum_{i=0}^{N} \binom{N}{i} \left[\frac{N}{k}\right]^{i}$$

< □ > < □ > < ≧ > < ≧ > < ≧ > ≧ の Q (~ 121/135

We have

$$m_{\mathcal{H}}(N) \leq \left[\frac{N}{k}\right]^k \sum_{i=0}^N \binom{N}{i} \left[\frac{k}{N}\right]^i$$

We have

$$m_{\mathcal{H}}(N) \leq \left[\frac{N}{k}\right]^{k} \sum_{i=0}^{N} {N \choose i} \left[\frac{k}{N}\right]^{i}$$
$$= \left[\frac{N}{k}\right]^{k} \left[1 + \frac{k}{N}\right]^{N}$$

Given that
$$(1-x) = e^{-x}$$

We have

$$m_{\mathcal{H}}(N) \leq \left[\frac{N}{k}\right]^{k} \sum_{i=0}^{N} {\binom{N}{i}} \left[\frac{k}{N}\right]^{i}$$
$$= \left[\frac{N}{k}\right]^{k} \left[1 + \frac{k}{N}\right]^{N}$$

Given that
$$(1-x) = e^{-x}$$

$$m_{\mathcal{H}}(N) \le \left[\frac{N}{k}\right]^k e^{\frac{k}{N}}$$

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > 122/135

We have

$$m_{\mathcal{H}}(N) \leq \left[\frac{N}{k}\right]^{k} \sum_{i=0}^{N} {\binom{N}{i}} \left[\frac{k}{N}\right]^{i}$$
$$= \left[\frac{N}{k}\right]^{k} \left[1 + \frac{k}{N}\right]^{N}$$

Given that $(1-x) = e^{-x}$

$$m_{\mathcal{H}}(N) \leq \left[\frac{N}{k}\right]^{k} e^{\frac{k}{N}}$$
$$\leq \left[\frac{N}{k}\right]^{k-1} e^{k-1} = \left[\frac{e}{k}\right]^{k} N^{k} = O\left(N^{k}\right)$$

We have that

• $m_{\mathcal{H}}(N)$ is bounded by N^{k-1} i.e. if $m_{\mathcal{H}}(k) < 2^k$ we have that $m_{\mathcal{H}}(N)$ is polynomial

e not depending on the number of hypothesis!!!

We have that

- $m_{\mathcal{H}}(N)$ is bounded by N^{k-1} i.e. if $m_{\mathcal{H}}(k) < 2^k$ we have that $m_{\mathcal{H}}(N)$ is polynomial
- We are not depending on the number of hypothesis!!!!

We have that

- $m_{\mathcal{H}}(N)$ is bounded by N^{k-1} i.e. if $m_{\mathcal{H}}(k) < 2^k$ we have that $m_{\mathcal{H}}(N)$ is polynomial
- We are not depending on the number of hypothesis!!!!

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\ensuremath{\bigcirc}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

Remark about $m_{\mathcal{H}}(k)$

We have bounded the number of effective hypothesis

• Yes!!! we can have M hypotheses but the number of dichotomies generated by them is bounded by $m_{\mathcal{H}}(k)$

VC-Dimension Again

Definition

• The VC-dimension of a hypothesis set \mathcal{H} is the size of the largest set that can be fully shattered by \mathcal{H} (Those points need to be in "General Position"):

$$VC_{dim}\left(\mathcal{H}\right) = \max\left\{k|m_{\mathcal{H}}\left(k\right) = 2^{k}\right\}$$

If $m_{\mathcal{H}}\left(N
ight)=2^{N}$ for all N , $VC_{dim}\left(\mathcal{H}
ight)=\infty$

VC-Dimension Again

Definition

• The VC-dimension of a hypothesis set \mathcal{H} is the size of the largest set that can be fully shattered by \mathcal{H} (Those points need to be in "General Position"):

$$VC_{dim}\left(\mathcal{H}\right) = \max\left\{k|m_{\mathcal{H}}\left(k\right) = 2^{k}\right\}$$

イロト 不得 トイヨト イヨト

126 / 135

Something Notable

• If $m_{\mathcal{H}}(N) = 2^{N}$ for all N, $VC_{dim}(\mathcal{H}) = \infty$

Remember

We have the following

$$E_{in}(g) < E_{out}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

We can use our growth function as the effective way to bound

$$E_{in}\left(g\right) < E_{out}\left(g\right) + \sqrt{\frac{1}{2N}\ln\frac{2m_{\mathcal{H}}\left(N\right)}{\delta}}$$

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 127 / 135

Remember

We have the following

$$E_{in}\left(g\right) < E_{out}\left(g\right) + \sqrt{\frac{1}{2N}\ln\frac{2M}{\delta}}$$

We instead of using M, we use $m_{\mathcal{H}}(N)$

• We can use our growth function as the effective way to bound

$$E_{in}(g) < E_{out}(g) + \sqrt{\frac{1}{2N} \ln \frac{2m_{\mathcal{H}}(N)}{\delta}}$$

VC Generalized Bound

Theorem (VC Generalized Bound)

• For any tolerance $\delta > 0$ and \mathcal{H} be a hypothesis set with $VC_{dim}\left(\mathcal{H}\right) = k.$,

$$E_{in}\left(g\right) < E_{out}\left(g\right) + \sqrt{\frac{2k}{N}\ln\frac{eN}{k}} + \sqrt{\frac{1}{2N}\ln\frac{1}{\delta}}$$

• with probability $\geq 1 - \delta$

This Bound only fails when $VC_{dim}\left(\mathcal{H} ight)=\infty !!!$

VC Generalized Bound

Theorem (VC Generalized Bound)

• For any tolerance $\delta > 0$ and \mathcal{H} be a hypothesis set with $VC_{dim}(\mathcal{H}) = k.$,

$$E_{in}\left(g\right) < E_{out}\left(g\right) + \sqrt{\frac{2k}{N}\ln\frac{eN}{k}} + \sqrt{\frac{1}{2N}\ln\frac{1}{\delta}}$$

• with probability $\geq 1 - \delta$

Something Notable

This Bound only fails when $VC_{dim}(\mathcal{H}) = \infty!!!$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Proof

Although we will not talk about it

• We will remark the that is possible to use the Rademacher complexity

 To manage the number of overlapping hypothesis (Which can be infinite)

But I will encourage to look at more about the proof...

Proof

Although we will not talk about it

• We will remark the that is possible to use the Rademacher complexity

 To manage the number of overlapping hypothesis (Which can be infinite)

We will stop here, but

• But I will encourage to look at more about the proof...

About the Proof

For More, take a look at

- "A Probabilistic Theory of Pattern Recognition" by Luc Devroye et al.
- "Foundations of Machine Learning" by Mehryar Mohori et al.

We are professionals, we must understand!!!

About the Proof

For More, take a look at

- "A Probabilistic Theory of Pattern Recognition" by Luc Devroye et al.
- "Foundations of Machine Learning" by Mehryar Mohori et al.

This is the equivalent to use Measure Theory to understand the innards of Probability

• We are professionals, we must understand!!!

Outline

Is Learning Feasible?

- Introduction
 - The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
 - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
 - Generalization Error
 - Reinterpretation
 - Subtlety
- $\hfill {f O}$ A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- \blacksquare Connecting the Growth Function with the VC_{dim}
- VC Generalization Bound Theorem

As you remember from previous classes

Let ${\cal G}$ be a layered directed acyclic graph

Where directed edges go from one layer l to the next layer l + 1.

Let G be a layered directed acyclic graph

Where directed edges go from one layer l to the next layer l + 1.

Now, we have a set of hypothesis $\ensuremath{\mathcal{H}}$

• NInput Nodes with in-degree 0

Let G be a layered directed acyclic graph

Where directed edges go from one layer l to the next layer l + 1.

Now, we have a set of hypothesis $\ensuremath{\mathcal{H}}$

- NInput Nodes with in-degree 0
- Intermediate Nodes with in-degree r

• Basically each node represent the hypothesis $c_i : \mathbb{R}^r \to \{-1, 1\}$ by mean of tanh.

Let G be a layered directed acyclic graph

Where directed edges go from one layer l to the next layer l + 1.

Now, we have a set of hypothesis \mathcal{H}

- NInput Nodes with in-degree 0
- Intermediate Nodes with in-degree r
- Single Output node with out-degree 0

• Basically each node represent the hypothesis $c_i: \mathbb{R}^r \to \{-1, 1\}$ by mean of tanh.

Let G be a layered directed acyclic graph

Where directed edges go from one layer l to the next layer l + 1.

Now, we have a set of hypothesis $\ensuremath{\mathcal{H}}$

- NInput Nodes with in-degree 0
- Intermediate Nodes with in-degree r
- Single Output node with out-degree 0

$\overline{\mathcal{H}}$ our hypothesis over the space Euclidean space \mathbb{R}^r

• Basically each node represent the hypothesis $c_i : \mathbb{R}^r \to \{-1, 1\}$ by mean of tanh.

We have that

• The Neural concept represent an hypothesis from \mathbb{R}^N to $\{-1,1\}$

This is called a G-composition of \mathcal{H} .

We have that

• The Neural concept represent an hypothesis from \mathbb{R}^N to $\{-1,1\}$

Therefore the entire hypothesis is a composition of concepts

• This is called a G-composition of \mathcal{H} .

We have the following theorem

Theorem (Kearns and Vazirani, 1994)

• Let G be a layered directed acyclic graph with N input nodes and $r\geq 2$ internal nodes each of indegree r.

We have the following theorem

Theorem (Kearns and Vazirani, 1994)

- Let G be a layered directed acyclic graph with N input nodes and $r \ge 2$ internal nodes each of indegree r.
- Let \mathcal{H} hypothesis set over \mathbb{R}^r of $VC_{dim}(\mathcal{H}) = d$, and let G-composition of \mathcal{H} . then

 $VC_{dim}\left(\mathcal{H}_G\right) \le 2ds \log_2\left(es\right)$

イロト イボト イヨト イヨト

135 / 135