Introduction to Machine Learning
 Vapnik-Chervonenkis Dimension

Andres Mendez-Vazquez

July 22, 2018

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

(2) Vapnik-Chervonenkis Dimension

- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the $V C_{d i m}$
- VC Generalization Bound Theorem

Multi-Layer Perceptron

Outline

(1) Is Learning Feasible?

- Introduction
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error
(2) Vapnik-Chervonenkis Dimension
- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the V $C_{\text {dim }}$
- VC Generalization Bound Theorem
(3) ExampleMulti-Layer Perceptron

Until Now

We have been learning

- A Lot of functions to approximate the models f of a given data set \mathcal{D}. Data Observation/Data Collection
underlying model

 Samples

D
What we can observe

The Question

But Never asked ourselves if

- Are we able to really learn f from \mathcal{D} ?

Example

Consider the following data set \mathcal{D}

- Consider a Boolean target function over a three-dimensional input space $\mathcal{X}=\{0,1\}^{3}$

Example

Consider the following data set \mathcal{D}

- Consider a Boolean target function over a three-dimensional input space $\mathcal{X}=\{0,1\}^{3}$

With a data set \mathcal{D}

n	\boldsymbol{x}_{n}	y_{n}
1	000	0
2	001	1
3	010	1
4	011	0
5	100	1

We have the following

We have the space of input has 2^{3} possibilities

- Therefore, we have $2^{2^{3}}$ possible functions for f

We have the following
We have the space of input has 2^{3} possibilities

- Therefore, we have $2^{2^{3}}$ possible functions for f

Learning outside the data \mathcal{D}, basically we want a g that generalize outside \mathcal{D}

n	\boldsymbol{x}_{n}	y_{n}	g	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}	f_{8}
1	000	0	$\mathbf{0}$	0	0	0	0	0	0	0	0
2	001	1	$\mathbf{1}$	1	1	1	1	1	1	1	1
3	010	1	$\mathbf{1}$	1	1	1	1	1	1	1	1
4	011	0	$\mathbf{0}$	0	0	0	0	0	0	0	0
5	100	1	$\mathbf{1}$	1	1	1	1	1	1	1	1
6	101		$\mathbf{?}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
7	110		$\mathbf{?}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
7	110		$\mathbf{?}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

Outline

（1）Is Learning Feasible？
－Introduction
－The Dilemma
－A Binary Problem，Solving the Dilemma
－Hoeffding＇s Inequality
－Error in the Sample and Error in the Phenomena －Formal Definitions
－Back to the Hoeffding＇s Inequality
－The Learning Process
－Feasibility of Learning
－Example
－Overall Error
（2）Vapnik－Chervonenkis Dimension
－Theory of Generalization
－Generalization Error
－Reinterpretation
－Subtlety
－A Problem with M
－Dichotomies
－Shattering
－Example of Computing $m_{\mathcal{H}}(N)$
What are we looking for？
－Break Point
－VC－Dimension
－Partition $B(N, k)$
－Connecting the Growth Function with the V $C_{d i m}$
－VC Generalization Bound Theorem
（3）Example
－Multi－Layer Perceptron

Here is the Dilemma!!!

Each of the $f_{1}, f_{2}, \ldots, f_{8}$

- It is a possible real f, the true f.
- Any of them is a possible good f

Here is the Dilemma!!!

Each of the $f_{1}, f_{2}, \ldots, f_{8}$

- It is a possible real f, the true f.
- Any of them is a possible good f

Therefore

- The quality of the learning will be determined by how close our prediction is to the true value.

Therefore, we have

In order to select a g, we need to have an hypothesis \mathcal{H}

- To be able to select such g by our training procedure.

Therefore, we have

In order to select a g, we need to have an hypothesis \mathcal{H}

- To be able to select such g by our training procedure.

Further, any of the $f_{1}, f_{2}, \ldots, f_{8}$ is a good choice for f

- Therefore, it does not matter how near we are to the bits in \mathcal{D}

In order to select a g, we need to have an hypothesis \mathcal{H}

- To be able to select such g by our training procedure.

Further, any of the $f_{1}, f_{2}, \ldots, f_{8}$ is a good choice for f

- Therefore, it does not matter how near we are to the bits in \mathcal{D}

Our problem, we want to generalize to the data outside \mathcal{D}

- However, it does not make any difference if our Hypothesis is correct or incorrect in \mathcal{D}

We want to Generalize

But, If we want to use only a deterministic approach to \mathcal{H}

- Our Attempts to use \mathcal{H} to learn g is a waste of time!!!

Outline

(1) Is Learning Feasible?

- Introduction
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error
(2) Vapnik-Chervonenkis Dimension
- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the V $C_{d i m}$
- VC Generalization Bound Theorem
(3) Example
- Multi-Layer Perceptron

Consider a "bin" with red and green marbles

Going back to our example

Real $\mu=$ Probability of Red Marbles

Therefore

We have the "Real Probabilities"

- $P[$ Pick a Red marble $]=\mu$
- $P[$ Pick a Blue marble $]=1-\mu$

Therefore

We have the "Real Probabilities"

- $P[$ Pick a Red marble $]=\mu$
- P [Pick a Blue marble $]=1-\mu$

However, the value of μ is not know

- Thus, we sample the space for N samples in an independent way.

Therefore

We have the "Real Probabilities"

- $P[$ Pick a Red marble $]=\mu$
- P [Pick a Blue marble $]=1-\mu$

However, the value of μ is not know

- Thus, we sample the space for N samples in an independent way.

Here, the fraction of real marbles is equal to ν

- Question: Can ν can be used to know about μ ?

Two Answers... Possible vs. Probable

No!!! Because we can see only the samples

- For example, Sample an be mostly blue while bin is mostly red.

Two Answers... Possible vs. Probable

No!!! Because we can see only the samples

- For example, Sample an be mostly blue while bin is mostly red.

Yes!!!

- Sample frequency ν is likely close to bin frequency μ.

What does ν say about μ ?

We have the following hypothesis

- In a big sample (large N), ν is probably close to μ (within ϵ).

What does ν say about μ ?

We have the following hypothesis

- In a big sample (large N), ν is probably close to μ (within ϵ).

How?

- Hoeffding's Inequality .

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error
(2) Vapnik-Chervonenkis Dimension
- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the $V C_{d i m}$
- VC Generalization Bound Theorem
(3) Example

Multi-Layer Perceptron

We have the following theorem

Theorem (Hoeffding's inequality)

- Let Z_{1}, \ldots, Z_{n} be independent bounded random variables with $Z_{i} \in[a, b]$ for all i, where $-\infty<a \leq b<\infty$. Then

$$
P\left(\frac{1}{N} \sum_{i=1}^{N}\left(Z_{i}-E\left[Z_{i}\right]\right) \geq t\right) \leq \exp ^{-\frac{2 N t^{2}}{(b-a)^{2}}}
$$

and

$$
P\left(\frac{1}{N} \sum_{i=1}^{N}\left(Z_{i}-E\left[Z_{i}\right]\right) \leq-t\right) \leq \exp ^{-\frac{2 N t^{2}}{(b-a)^{2}}}
$$

for all $t \geq 0$.

Therefore

Assume that the Z_{i} are the random variables from the N samples

- Then, we have that values for $Z_{i} \in\{0,1\}$ therefore we have that...

Therefore

Assume that the Z_{i} are the random variables from the N samples

- Then, we have that values for $Z_{i} \in\{0,1\}$ therefore we have that...

First inequality, for any $\epsilon>0$ and N

$$
P\left[\left(\frac{1}{N} \sum_{i=1}^{N} Z_{i}\right)-\mu \geq \epsilon\right] \leq \exp ^{-2 N \epsilon^{2}}
$$

Therefore

Assume that the Z_{i} are the random variables from the N samples

- Then, we have that values for $Z_{i} \in\{0,1\}$ therefore we have that...

First inequality, for any $\epsilon>0$ and N

$$
P\left[\left(\frac{1}{N} \sum_{i=1}^{N} Z_{i}\right)-\mu \geq \epsilon\right] \leq \exp ^{-2 N \epsilon^{2}}
$$

Second inequality, for $\epsilon>0$ and N

$$
P\left[\left(\frac{1}{N} \sum_{i=1}^{N} Z_{i}\right)-\mu \leq \epsilon\right] \leq \exp ^{-2 N \epsilon^{2}}
$$

Here

We can use the fact that

$$
\nu=\frac{1}{N} \sum_{i=1}^{N} Z_{i}
$$

Here

We can use the fact that

$$
\nu=\frac{1}{N} \sum_{i=1}^{N} Z_{i}
$$

Putting all together, we have

$$
P(\nu-\mu \geq \epsilon \text { or } \nu-\mu \leq \epsilon) \leq P(\nu-\mu \geq \epsilon)+P(\nu-\mu \leq \epsilon)
$$

Here

We can use the fact that

$$
\nu=\frac{1}{N} \sum_{i=1}^{N} Z_{i}
$$

Putting all together, we have

$$
P(\nu-\mu \geq \epsilon \text { or } \nu-\mu \leq \epsilon) \leq P(\nu-\mu \geq \epsilon)+P(\nu-\mu \leq \epsilon)
$$

Finally

$$
P(|\nu-\mu| \geq \epsilon) \leq 2 \exp ^{-2 N \epsilon^{2}}
$$

Therefore

We have the following

- If ϵ is small enough and as long as N is large

Making Possible

Possible to estimate $\nu \approx \mu$

- How do we connect with Learning?

Making Possible

Possible to estimate $\nu \approx \mu$

- How do we connect with Learning?

Learning

- We want to find a function $f: \mathcal{X} \longrightarrow \mathcal{Y}$ which is unknown!!!

Making Possible

Possible to estimate $\nu \approx \mu$

- How do we connect with Learning?

Learning

- We want to find a function $f: \mathcal{X} \longrightarrow \mathcal{Y}$ which is unknown!!!
- Here we assume that each ball in the bin is a sample $\boldsymbol{x} \in \mathcal{X}$.

Making Possible

Possible to estimate $\nu \approx \mu$

- How do we connect with Learning?

Learning

- We want to find a function $f: \mathcal{X} \longrightarrow \mathcal{Y}$ which is unknown!!!
- Here we assume that each ball in the bin is a sample $\boldsymbol{x} \in \mathcal{X}$.

Thus, it is necessary to select an hypothesis

Basically, we want to have an hypothesis h :

Making Possible

Possible to estimate $\nu \approx \mu$

- How do we connect with Learning?

Learning

- We want to find a function $f: \mathcal{X} \longrightarrow \mathcal{Y}$ which is unknown!!!
- Here we assume that each ball in the bin is a sample $\boldsymbol{x} \in \mathcal{X}$.

Thus, it is necessary to select an hypothesis

Basically, we want to have an hypothesis h :

- $h(\boldsymbol{x})=f(\boldsymbol{x})$ we color the sample blue.

Making Possible

Possible to estimate $\nu \approx \mu$

- How do we connect with Learning?

Learning

- We want to find a function $f: \mathcal{X} \longrightarrow \mathcal{Y}$ which is unknown!!!
- Here we assume that each ball in the bin is a sample $\boldsymbol{x} \in \mathcal{X}$.

Thus, it is necessary to select an hypothesis

Basically, we want to have an hypothesis h :

- $h(\boldsymbol{x})=f(\boldsymbol{x})$ we color the sample blue.
- $h(\boldsymbol{x}) \neq f(\boldsymbol{x})$ we color the sample red.

Here a Small Remark

Here, we are not talking about classes

- When talking about blue and red balls, but if we are able to identify the correct label:

$$
\begin{gathered}
\widehat{y}_{h}=h(\boldsymbol{x})=f(\boldsymbol{x})=y \\
\text { or } \\
\widehat{y}_{h}=h(\boldsymbol{x}) \neq f(\boldsymbol{x})=y
\end{gathered}
$$

Here a Small Remark

Here, we are not talking about classes

- When talking about blue and red balls, but if we are able to identify the correct label:

$$
\begin{gathered}
\widehat{y}_{h}=h(\boldsymbol{x})=f(\boldsymbol{x})=y \\
\text { or } \\
\widehat{y}_{h}=h(\boldsymbol{x}) \neq f(\boldsymbol{x})=y
\end{gathered}
$$

Still, the use of blue and red balls allows

- to see our Learning Problem as a Bernoulli distribution

Swiss mathematician Jacob Bernoulli

Definition

- The Bernoulli distribution is a discrete distribution having two possible outcomes $X=0$ or $X=1$.

Swiss mathematician Jacob Bernoulli

Definition

- The Bernoulli distribution is a discrete distribution having two possible outcomes $X=0$ or $X=1$.

With the following probabilities

$$
P(X \mid p)= \begin{cases}1-p & \text { if } X=0 \\ p & \text { if } X=1\end{cases}
$$

Swiss mathematician Jacob Bernoulli

Definition

- The Bernoulli distribution is a discrete distribution having two possible outcomes $X=0$ or $X=1$.

With the following probabilities

$$
P(X \mid p)= \begin{cases}1-p & \text { if } X=0 \\ p & \text { if } X=1\end{cases}
$$

Also expressed as

$$
P(X=k \mid p)=(p)^{k}(1-p)^{1-k}
$$

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error
(2) Vapnik-Chervonenkis Dimension
- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the $V C_{\text {dim }}$
- VC Generalization Bound Theorem
(3) Example
- Multi-Layer Perceptron

Thus

We define $E_{\text {in }}$ (in-sample error)

$$
E_{i n}(h)=\frac{1}{N} \sum_{n=1}^{N} I\left(h\left(\boldsymbol{x}_{n}\right) \neq f\left(\boldsymbol{x}_{n}\right)\right)
$$

- We have made explicit the dependency of $E_{i n}$ on the particular h that we are considering.

Thus

We define $E_{\text {in }}$ (in-sample error)

$$
E_{i n}(h)=\frac{1}{N} \sum_{n=1}^{N} I\left(h\left(\boldsymbol{x}_{n}\right) \neq f\left(\boldsymbol{x}_{n}\right)\right)
$$

- We have made explicit the dependency of $E_{i n}$ on the particular h that we are considering.

Now $E_{\text {out }}$ (out-of-sample error)

$$
E_{\text {out }}(h)=P(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))=\mu
$$

Thus

We define $E_{i n}$ (in-sample error)

$$
E_{i n}(h)=\frac{1}{N} \sum_{n=1}^{N} I\left(h\left(\boldsymbol{x}_{n}\right) \neq f\left(\boldsymbol{x}_{n}\right)\right)
$$

- We have made explicit the dependency of $E_{i n}$ on the particular h that we are considering.

Now $E_{\text {out }}$ (out-of-sample error)

$$
E_{\text {out }}(h)=P(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))=\mu
$$

Where

- The probability is based on the distribution P over \mathcal{X} which is used to sample the data points \boldsymbol{x}.

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal DefinitionsBack to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error
(2) Vapnik-Chervonenkis Dimension
- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the $V C_{\text {dim }}$
- VC Generalization Bound Theorem
(3) Example

Multi-Layer Perceptron

Generalization Error

Definition (Generalization Error/out-of-sample error)

Given a hypothesis/proposed model $h \in \mathcal{H}$, a target concept/real model $f \in \mathcal{F}$, and an underlying distribution \mathcal{D}, the generalization error or risk of h is defined by

$$
R(h)=P_{\boldsymbol{x} \sim \mathcal{D}}(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))=E_{\boldsymbol{x} \sim \mathcal{D}}\left[I_{h(\boldsymbol{x}) \neq f(\boldsymbol{x})}\right]
$$

a
where I_{ω} is the indicator function of the event ω.

$$
{ }^{\text {a}} \text { This comes the fact that } 1 * P(A)+0 * P(\bar{A})=E\left[I_{A}\right]
$$

Empirical Error

Definition (Empirical Error/in-sample error)

Given a hypothesis/proposed model $h \in \mathcal{H}$, a target concept/real model $f \in \mathcal{F}$, a sample $\mathcal{X}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}$, the empirical error or empirical risk of h is defined by:

$$
\widehat{R}=\frac{1}{N} \sum_{i=1}^{N} I_{h\left(\boldsymbol{x}_{i}\right) \neq f\left(\boldsymbol{x}_{i}\right)}
$$

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena

Formal Definitions

- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error
(2) Vapnik-Chervonenkis Dimension
- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the V $C_{d i m}$
- VC Generalization Bound Theorem
(3) Example
- Multi-Layer Perceptron

Basically

We have

$$
P\left(\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right| \geq \epsilon\right) \leq 2 \exp ^{-2 N t^{2}}
$$

Basically

We have

$$
P\left(\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right| \geq \epsilon\right) \leq 2 \exp ^{-2 N t^{2}}
$$

Now, we need to consider an entire set of hypothesis, \mathcal{H}

$$
\mathcal{H}=\left\{h_{1}, h_{2}, \ldots, h_{M}\right\}
$$

Therefore

Each Hypothesis is a scenario in the bin space

Remark

The Hoeffding Inequality still applies to each bin individually

- Now, we need to consider all the bins simultaneously.

Remark

The Hoeffding Inequality still applies to each bin individually

- Now, we need to consider all the bins simultaneously.

Here, we have the following situation

- h is fixed before the data set is generated!!!

Remark

The Hoeffding Inequality still applies to each bin individually

- Now, we need to consider all the bins simultaneously.

Here, we have the following situation

- h is fixed before the data set is generated!!!

If you are allowed to change h after you generate the data set

- The Hoeffding Inequality no longer holds

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error
(2) Vapnik-Chervonenkis Dimension
- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the V $C_{d i m}$
- VC Generalization Bound Theorem
(3) Example
- Multi-Layer Perceptron

Therefore

With multiple hypotheses in \mathcal{H}

- The Learning Algorithm chooses the final hypothesis g based on \mathcal{D} after generating the data.

Therefore

With multiple hypotheses in \mathcal{H}

- The Learning Algorithm chooses the final hypothesis g based on \mathcal{D} after generating the data.

The statement we would like to make is not

$$
P\left(\left|E_{\text {in }}\left(h_{m}\right)-E_{\text {out }}\left(h_{m}\right)\right| \geq \epsilon\right) \text { is small. }
$$

Therefore

With multiple hypotheses in \mathcal{H}

- The Learning Algorithm chooses the final hypothesis g based on \mathcal{D} after generating the data.

The statement we would like to make is not

$$
P\left(\left|E_{\text {in }}\left(h_{m}\right)-E_{\text {out }}\left(h_{m}\right)\right| \geq \epsilon\right) \text { is small. }
$$

We would rather

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right| \geq \epsilon\right) \text { is small for the final hypothesis } g .
$$

Therefore

Something Notable

- The hypothesis g is not fixed ahead of time before generating the data

Therefore

Something Notable

- The hypothesis g is not fixed ahead of time before generating the data

Thus we need to bound

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right| \geq \epsilon\right)
$$

- Which it does not depend on which g the algorithm picks.

We have two rules

First one
if $A_{1} \Longrightarrow A_{2}$, then $P\left(A_{1}\right) \leq P\left(A_{2}\right)$

We have two rules

First one

$$
\text { if } A_{1} \Longrightarrow A_{2} \text {, then } P\left(A_{1}\right) \leq P\left(A_{2}\right)
$$

If you have any set of events $A_{1}, A_{2}, \ldots, A_{M}$

$$
P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{M}\right) \leq \sum_{m=1}^{M} P\left(A_{m}\right)
$$

Therefore

Now assuming independence between hypothesis

$$
\begin{aligned}
\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right| \geq \epsilon \Longrightarrow & \left|E_{\text {in }}\left(h_{1}\right)-E_{\text {out }}\left(h_{1}\right)\right| \geq \epsilon \\
& \text { or }\left|E_{\text {in }}\left(h_{2}\right)-E_{\text {out }}\left(h_{2}\right)\right| \geq \epsilon \\
& \cdots \\
& \quad \text { or }\left|E_{\text {in }}\left(h_{M}\right)-E_{\text {out }}\left(h_{M}\right)\right| \geq \epsilon
\end{aligned}
$$

Thus

We have

$$
\begin{aligned}
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right| \geq \epsilon\right) \leq & P\left[\left|E_{\text {in }}\left(h_{1}\right)-E_{\text {out }}\left(h_{1}\right)\right| \geq \epsilon\right. \\
& \text { or }\left|E_{\text {in }}\left(h_{2}\right)-E_{\text {out }}\left(h_{2}\right)\right| \geq \epsilon \\
& \cdots \\
& \left.\quad \text { or }\left|E_{\text {in }}\left(h_{M}\right)-E_{\text {out }}\left(h_{M}\right)\right| \geq \epsilon\right]
\end{aligned}
$$

Then

We have

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right| \geq \epsilon\right) \leq \sum_{m=1}^{M}\left[\left|E_{\text {in }}\left(h_{m}\right)-E_{\text {out }}\left(h_{m}\right)\right| \geq \epsilon\right]
$$

Then

We have

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right| \geq \epsilon\right) \leq \sum_{m=1}^{M}\left[\left|E_{\text {in }}\left(h_{m}\right)-E_{\text {out }}\left(h_{m}\right)\right| \geq \epsilon\right]
$$

Thus

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right| \geq \epsilon\right) \leq 2 M \exp ^{-2 N \epsilon^{2}}
$$

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error
(2) Vapnik-Chervonenkis Dimension
- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the V $C_{d i m}$
- VC Generalization Bound Theorem
(3) Example
- Multi-Layer Perceptron

We have

Something Notable

- We have introduced two apparently conflicting arguments about the feasibility of learning.

We have

Something Notable

- We have introduced two apparently conflicting arguments about the feasibility of learning.

We have two possibilities

- One argument says that we cannot learn anything outside of \mathcal{D}.

We have

Something Notable

- We have introduced two apparently conflicting arguments about the feasibility of learning.

We have two possibilities

- One argument says that we cannot learn anything outside of \mathcal{D}.
- The other say it is possible!!!

We have

Something Notable

- We have introduced two apparently conflicting arguments about the feasibility of learning.

We have two possibilities

- One argument says that we cannot learn anything outside of \mathcal{D}.
- The other say it is possible!!!

Here, we introduce the probabilistic answer

- This will solve our conundrum!!!

Then

The Deterministic Answer

- Do we have something to say about f outside of \mathcal{D} ? The answer is NO.

Then

The Deterministic Answer

- Do we have something to say about f outside of \mathcal{D} ? The answer is NO.

The Probabilistic Answer

- Is \mathcal{D} telling us something likely about f outside of \mathcal{D} ? The answer is YES

Then

The Deterministic Answer

- Do we have something to say about f outside of \mathcal{D} ? The answer is NO.

The Probabilistic Answer

- Is \mathcal{D} telling us something likely about f outside of \mathcal{D} ? The answer is YES

The reason why

- We approach our Learning from a Probabilistic point of view!!!

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example

Overall Error
(2) Vapnik-Chervonenkis Dimension

- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the V $C_{d i m}$
- VC Generalization Bound Theorem
(3) ExampleMulti-Layer Perceptron

For example

We could have hypothesis based in hyperplanes

- Linear regression output:

$$
h(\boldsymbol{x})=\sum_{i=1}^{d} w_{i} x_{i}=\boldsymbol{w}^{T} \boldsymbol{x}
$$

For example

We could have hypothesis based in hyperplanes

- Linear regression output:

$$
h(\boldsymbol{x})=\sum_{i=1}^{d} w_{i} x_{i}=\boldsymbol{w}^{T} \boldsymbol{x}
$$

Therefore

$$
E_{i n}(\boldsymbol{x})=\frac{1}{N} \sum_{i=1}^{N}\left(h\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2}
$$

Clearly, we have used loss functions

Mostly to give meaning $h \approx f$

- By Error Measures $E(h, f)$

Clearly, we have used loss functions

Mostly to give meaning $h \approx f$

- By Error Measures $E(h, f)$

By using pointwise definitions

$$
e(h(\boldsymbol{x}), f(\boldsymbol{x}))
$$

Clearly, we have used loss functions

Mostly to give meaning $h \approx f$

- By Error Measures $E(h, f)$

By using pointwise definitions

$$
e(h(\boldsymbol{x}), f(\boldsymbol{x}))
$$

Examples

- Squared Error $e(h(\boldsymbol{x}), f(\boldsymbol{x}))=[h(\boldsymbol{x})-f(\boldsymbol{x})]^{2}$
- Binary Error $e(h(\boldsymbol{x}), f(\boldsymbol{x}))=I[h(\boldsymbol{x}) \neq f(\boldsymbol{x})]$

Outline

（1）Is Learning Feasible？
－Introduction
－The Dilemma
－A Binary Problem，Solving the Dilemma
－Hoeffding＇s Inequality
－Error in the Sample and Error in the Phenomena －Formal Definitions
－Back to the Hoeffding＇s Inequality
－The Learning Process
－Feasibility of Learning
－Example
－Overall Error
（2）Vapnik－Chervonenkis Dimension
－Theory of Generalization
－Generalization Error
－Reinterpretation
－Subtlety
－A Problem with M
－Dichotomies
－Shattering
－Example of Computing $m_{\mathcal{H}}(N)$
What are we looking for？
－Break Point
－VC－Dimension
－Partition $B(N, k)$
－Connecting the Growth Function with the $V C_{d i m}$
－VC Generalization Bound Theorem
（3）ExampleMulti－Layer Perceptron

Therefore, we have

The Overall Error
$E(h, f)=$ Average of pointwise errors $e(h(\boldsymbol{x}), f(\boldsymbol{x}))$

Therefore, we have

The Overall Error

$$
E(h, f)=\text { Average of pointwise errors } e(h(\boldsymbol{x}), f(\boldsymbol{x}))
$$

In-Sample Error

$$
E_{\text {in }}(h)=\frac{1}{N} \sum_{i=1}^{N} e\left(h\left(\boldsymbol{x}_{i}\right), f\left(\boldsymbol{x}_{i}\right)\right)
$$

Therefore, we have

The Overall Error

$$
E(h, f)=\text { Average of pointwise errors } e(h(\boldsymbol{x}), f(\boldsymbol{x}))
$$

In-Sample Error

$$
E_{i n}(h)=\frac{1}{N} \sum_{i=1}^{N} e\left(h\left(\boldsymbol{x}_{i}\right), f\left(\boldsymbol{x}_{i}\right)\right)
$$

Out-of-sample error

$$
E_{i n}(h)=E_{\mathcal{X}}[e(h(\boldsymbol{x}), f(\boldsymbol{x}))]
$$

We have the following Process

Assuming $P(y \mid \boldsymbol{x})$ instead of $y=f(\boldsymbol{x})$

- Then a data point (\boldsymbol{x}, y) is now generated by the joint distribution $P(\boldsymbol{x}, y)=P(\boldsymbol{x}) P(y \mid \boldsymbol{x})$

We have the following Process

Assuming $P(y \mid \boldsymbol{x})$ instead of $y=f(\boldsymbol{x})$

- Then a data point (\boldsymbol{x}, y) is now generated by the joint distribution $P(\boldsymbol{x}, y)=P(\boldsymbol{x}) P(y \mid \boldsymbol{x})$

Therefore

- Noisy target is a deterministic target plus added noise.

$$
f(\boldsymbol{x}) \approx E[y \mid \boldsymbol{x}]+(y-f(\boldsymbol{x}))
$$

Finally, we have as Learning Process

Therefore

Distinction between $P(y \mid \boldsymbol{x})$ and $P(\boldsymbol{x})$

- Both convey probabilistic aspects of \boldsymbol{x} and y.

Therefore

Distinction between $P(y \mid \boldsymbol{x})$ and $P(\boldsymbol{x})$

- Both convey probabilistic aspects of \boldsymbol{x} and y.

Therefore

(1) The Target distribution $P(y \mid \boldsymbol{x})$ is what we are trying to learn.
(2) The Input distribution $P(\boldsymbol{x})$ quantifies relative importance of \boldsymbol{x}.

Therefore

Distinction between $P(y \mid \boldsymbol{x})$ and $P(\boldsymbol{x})$

- Both convey probabilistic aspects of \boldsymbol{x} and y.

Therefore

(1) The Target distribution $P(y \mid \boldsymbol{x})$ is what we are trying to learn.
(2) The Input distribution $P(\boldsymbol{x})$ quantifies relative importance of \boldsymbol{x}.

Finally

- Merging $P(\boldsymbol{x}, y)=P(y \mid \boldsymbol{x}) P(\boldsymbol{x})$ mixes the two concepts

Therefore

Learning is feasible because It is likely that

$$
E_{\text {out }}(g) \approx E_{\text {in }}(g)
$$

Therefore

Learning is feasible because It is likely that

$$
E_{\text {out }}(g) \approx E_{\text {in }}(g)
$$

Therefore, we need $g \approx f$

$$
E_{\text {out }}(g)=P(g(\boldsymbol{x}) \neq f(\boldsymbol{x})) \approx 0
$$

Therefore

Learning is feasible because It is likely that

$$
E_{\text {out }}(g) \approx E_{\text {in }}(g)
$$

Therefore, we need $g \approx f$

$$
E_{\text {out }}(g)=P(g(\boldsymbol{x}) \neq f(\boldsymbol{x})) \approx 0
$$

How do we achieve this?

$$
E_{\text {out }}(g) \approx E_{\text {in }}(g)=\frac{1}{N} \sum_{n=1}^{N} I\left(g\left(\boldsymbol{x}_{n}\right) \neq f\left(\boldsymbol{x}_{n}\right)\right)
$$

Then

We make at the same time

$$
E_{i n}(g) \approx 0
$$

- To Make the Error in our selected hypothesis g with respect to the real function f

Then

We make at the same time

$$
E_{i n}(g) \approx 0
$$

- To Make the Error in our selected hypothesis g with respect to the real function f

Learning splits in two questions
(1) Can we make $E_{\text {out }}(g)$ is close enough $E_{\text {in }}(g)$?
(2) Can we make $E_{\text {in }}(g)$ small enough?

Therefore, we have

Nice Connection with Bias-Variance Trade-off

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

(2) Vapnik-Chervonenkis Dimension
 - Theory of Generalization

- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the V $C_{d i m}$
- VC Generalization Bound Theorem
(3) Example
- Multi-Layer Perceptron

We have that

The out-of-sample error

$$
E_{\text {out }}(h)=P(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))
$$

We have that

The out-of-sample error

$$
E_{\text {out }}(h)=P(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))
$$

It Measures how well our training on \mathcal{D}

- It has generalized to data that we have not seen before.

We have that

The out-of-sample error

$$
E_{\text {out }}(h)=P(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))
$$

It Measures how well our training on \mathcal{D}

- It has generalized to data that we have not seen before.

Remark

- $E_{\text {out }}$ is based on the performance over the entire input space \mathcal{X}.

Testing Data Set

Intuitively

- we want to estimate the value of $E_{\text {out }}$ using a sample of data points.

Testing Data Set

Intuitively

- we want to estimate the value of $E_{\text {out }}$ using a sample of data points.

Something Notable

- These points must be 'fresh' test points that have not been used for training.

Testing Data Set

Intuitively

- we want to estimate the value of $E_{\text {out }}$ using a sample of data points.

Something Notable

- These points must be 'fresh' test points that have not been used for training.

Basically

- Out Testing Set.

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

(2) Vapnik-Chervonenkis Dimension

- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the V $C_{d i m}$
- VC Generalization Bound Theorem
(3) Example
- Multi-Layer Perceptron

Thus

It is possible to define

- The generalization error as the discrepancy between $E_{\text {in }}$ and $E_{o u t}$

Thus

It is possible to define

- The generalization error as the discrepancy between $E_{\text {in }}$ and $E_{\text {out }}$

Therefore

- The Hoeffding Inequality is a way to characterize the generalization error with a probabilistic bound

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right| \geq \epsilon\right) \leq 2 M \exp ^{-2 N \epsilon^{2}}
$$

- For any $\epsilon>0$.

Outline

(1) Is Learning Feasible?

0
duction

- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

(2) Vapnik-Chervonenkis Dimension

- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the $V C_{d i m}$
- VC Generalization Bound Theorem
(3) Example
- Multi-Layer Perceptron

Reinterpreting This

Assume a Tolerance Level δ, for example $\delta=0.0005$

- It is possible to say that with probability $1-\delta$:

$$
E_{\text {out }}(g)<E_{\text {in }}(g)+\sqrt{\frac{1}{2 N} \ln \frac{2 M}{\delta}}
$$

Proof

We have the complement Hoeffding Probability using the absolute value

$$
P\left(\left|E_{\text {out }}(g)-E_{\text {in }}(g)\right|<\epsilon\right) \leq 1-2 M \exp ^{-2 N \epsilon^{2}}
$$

Proof

We have the complement Hoeffding Probability using the absolute value

$$
P\left(\left|E_{\text {out }}(g)-E_{\text {in }}(g)\right|<\epsilon\right) \leq 1-2 M \exp ^{-2 N \epsilon^{2}}
$$

Therefore, we have

$$
P\left(-\epsilon<E_{\text {out }}(g)-E_{\text {in }}(g)<\epsilon\right) \leq 1-2 M \exp ^{-2 N \epsilon^{2}}
$$

Proof

We have the complement Hoeffding Probability using the absolute value

$$
P\left(\left|E_{\text {out }}(g)-E_{\text {in }}(g)\right|<\epsilon\right) \leq 1-2 M \exp ^{-2 N \epsilon^{2}}
$$

Therefore, we have

$$
P\left(-\epsilon<E_{\text {out }}(g)-E_{\text {in }}(g)<\epsilon\right) \leq 1-2 M \exp ^{-2 N \epsilon^{2}}
$$

This imply

$$
E_{\text {out }}(g)<E_{\text {in }}(g)+\epsilon
$$

Therefore

We simply use

$$
\delta=2 M \exp ^{-2 N \epsilon^{2}}
$$

Therefore

We simply use

$$
\delta=2 M \exp ^{-2 N \epsilon^{2}}
$$

Then

$$
\ln 1-\ln \frac{\delta}{2 M}=2 N \epsilon^{2}
$$

Therefore

We simply use

$$
\delta=2 M \exp ^{-2 N \epsilon^{2}}
$$

Then

$$
\ln 1-\ln \frac{\delta}{2 M}=2 N \epsilon^{2}
$$

Therefore

$$
\epsilon=\sqrt{\frac{1}{2 N} \ln \frac{2 M}{\delta}}
$$

Generalization Bound

This inequality is know as a generalization Bound

$$
E_{\text {in }}(g)<E_{\text {out }}(g)+\sqrt{\frac{1}{2 N} \ln \frac{2 M}{\delta}}
$$

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

(2) Vapnik-Chervonenkis Dimension

- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the $V C_{\text {dim }}$
- VC Generalization Bound Theorem
(3) Example
- Multi-Layer Perceptron

We have

The following inequality also holds

$$
-\epsilon<E_{\text {out }}(g)-E_{\text {in }}(g) \Rightarrow E_{\text {out }}(g)>E_{\text {in }}(g)-\epsilon
$$

We have

The following inequality also holds

$$
-\epsilon<E_{\text {out }}(g)-E_{\text {in }}(g) \Rightarrow E_{\text {out }}(g)>E_{\text {in }}(g)-\epsilon
$$

Thus

- Not only we want our hypothesis g to do well int the out samples, $E_{\text {out }}(g)<E_{\text {in }}(g)+\epsilon$

We have

The following inequality also holds

$$
-\epsilon<E_{\text {out }}(g)-E_{\text {in }}(g) \Rightarrow E_{\text {out }}(g)>E_{\text {in }}(g)-\epsilon
$$

Thus

- Not only we want our hypothesis g to do well int the out samples, $E_{\text {out }}(g)<E_{\text {in }}(g)+\epsilon$

But, we want to know how well we did with our \mathcal{H}

- Thus, $E_{\text {out }}(g)>E_{\text {in }}(g)-\epsilon$ assures that it is not possible to do better!!!
- Given any hypothesis with higher

$$
E_{i n}(h)=\frac{1}{N} \sum_{n=1}^{N} I\left(h\left(\boldsymbol{x}_{n}\right) \neq f\left(\boldsymbol{x}_{n}\right)\right)
$$

than g.

Therefore

But, we want to know how well we did with our \mathcal{H}

- Thus, $E_{\text {out }}(g)>E_{\text {in }}(g)-\epsilon$ assures that it is not possible to do better!!!

Therefore

But, we want to know how well we did with our \mathcal{H}

- Thus, $E_{\text {out }}(g)>E_{\text {in }}(g)-\epsilon$ assures that it is not possible to do better!!!

Given any hypothesis h with higher than g

$$
E_{i n}(h)=\frac{1}{N} \sum_{n=1}^{N} I\left(h\left(\boldsymbol{x}_{n}\right) \neq f\left(\boldsymbol{x}_{n}\right)\right)
$$

Therefore

But, we want to know how well we did with our \mathcal{H}

- Thus, $E_{\text {out }}(g)>E_{\text {in }}(g)-\epsilon$ assures that it is not possible to do better!!!

Given any hypothesis h with higher than g

$$
E_{i n}(h)=\frac{1}{N} \sum_{n=1}^{N} I\left(h\left(\boldsymbol{x}_{n}\right) \neq f\left(\boldsymbol{x}_{n}\right)\right)
$$

It will have a higher $E_{\text {out }}(h)$ given

$$
E_{\text {out }}(h)>E_{\text {in }}(h)-\epsilon
$$

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

(2) Vapnik-Chervonenkis Dimension

Theory of Generalization

- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the $V C_{\text {dim }}$
- VC Generalization Bound Theorem
(3) Example
- Multi-Layer Perceptron

The Infiniteness of \mathcal{H}

A Problem with the Error Bound given its dependency on M

$$
\sqrt{\frac{1}{2 N} \ln \frac{2 M}{\delta}}
$$

The Infiniteness of \mathcal{H}

A Problem with the Error Bound given its dependency on M

$$
\sqrt{\frac{1}{2 N} \ln \frac{2 M}{\delta}}
$$

What happens when M becomes infinity

- The number of hypothesis in \mathcal{H} becomes infinity.

The Infiniteness of \mathcal{H}

A Problem with the Error Bound given its dependency on M

$$
\sqrt{\frac{1}{2 N} \ln \frac{2 M}{\delta}}
$$

What happens when M becomes infinity

- The number of hypothesis in \mathcal{H} becomes infinity.

Thus, the bound becomes infinity

- Problem, almost all interesting learning models have infinite $\mathcal{H} \ldots$...
- For Example... in our linear Regression... $f(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}$

Therefore, we need to replace M

We need to find a finite substitute with finite range values

- For this, we notice that

$$
\begin{gathered}
\left|E_{\text {in }}\left(h_{1}\right)-E_{\text {out }}\left(h_{1}\right)\right| \geq \epsilon \text { or }\left|E_{\text {in }}\left(h_{2}\right)-E_{\text {out }}\left(h_{2}\right)\right| \geq \epsilon \cdots \\
\text { or }\left|E_{\text {in }}\left(h_{M}\right)-E_{\text {out }}\left(h_{M}\right)\right| \geq \epsilon
\end{gathered}
$$

We have

This guarantee $\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right| \geq \epsilon$

- Thus, we can take a look at the events \mathcal{B}_{m} events for which you have $\left|E_{\text {in }}\left(h_{m}\right)-E_{\text {out }}\left(h_{m}\right)\right| \geq \epsilon$

We have

This guarantee $\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right| \geq \epsilon$

- Thus, we can take a look at the events \mathcal{B}_{m} events for which you have $\left|E_{\text {in }}\left(h_{m}\right)-E_{\text {out }}\left(h_{m}\right)\right| \geq \epsilon$

Then

$$
P\left[\begin{array}{llll}
\mathcal{B}_{1} & \text { or } \mathcal{B}_{2} & \cdots & \text { or } \mathcal{B}_{M}
\end{array}\right] \leq \sum_{m=1}^{M} P\left[\mathcal{B}_{m}\right]
$$

Now, we have the following
Example

Now, we have the following

Example

We have a gross overestimate

- Basically, if h_{i} and h_{j} are quite similar the two events

$$
\left|E_{\text {in }}\left(h_{i}\right)-E_{\text {out }}\left(h_{i}\right)\right| \geq \epsilon \text { and }\left|E_{\text {in }}\left(h_{j}\right)-E_{\text {out }}\left(h_{j}\right)\right| \geq \epsilon
$$

are likely to coincide!!!

We have

Something Notable

- In a typical learning model, many hypotheses are indeed very similar.

We have

Something Notable

- In a typical learning model, many hypotheses are indeed very similar.

The mathematical theory of generalization hinges on this observation

- We only need to account for the overlapping on different hypothesis to substitute M.

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

(2) Vapnik-Chervonenkis Dimension

- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the V $C_{d i m}$
- VC Generalization Bound Theorem
(3) Example
- Multi-Layer Perceptron

Consider

A finite data set

$$
\mathcal{X}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}
$$

Consider

A finite data set

$$
\mathcal{X}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}
$$

And we consider a set of hypothesis $h \in \mathcal{H}$ such that $h: \mathcal{X} \rightarrow\{-1,+1\}$

- We get a N-tuple, when applied to $\mathcal{X}, h\left(\boldsymbol{x}_{1}\right), h\left(\boldsymbol{x}_{2}\right), \ldots, h\left(\boldsymbol{x}_{N}\right)$ of ± 1.

Consider

A finite data set

$$
\mathcal{X}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}
$$

And we consider a set of hypothesis $h \in \mathcal{H}$ such that $h: \mathcal{X} \rightarrow\{-1,+1\}$

- We get a N-tuple, when applied to $\mathcal{X}, h\left(\boldsymbol{x}_{1}\right), h\left(\boldsymbol{x}_{2}\right), \ldots, h\left(\boldsymbol{x}_{N}\right)$ of ± 1.

Such N-tuple is called a Dichotomy

- Given that it splits $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}$ into two groups...

Dichotomy

Definition

- Given a hypothesis set \mathcal{H}, a dichotomy of a set \mathcal{X} is one of the possible ways of labeling the points of \mathcal{X} using a hypothesis in \mathcal{H}.

Examples of Dichotomies

Here the first Dichotomy can be generated by a perceptron

Class +1
Class -1

The Dichotomy Generated By a Perceptron

Something Important

Each $h \in \mathcal{H}$ generates a dichotomy on $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}$

- However, two different h 's may generate the same dichotomy if they generate the same pattern

Remark

Definition

- Let $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n} \in \mathcal{X}$. The dichotomies generated by \mathcal{H} on these points are defined by

$$
\mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)=\left\{\left(h\left[\boldsymbol{x}_{1}\right], h\left[\boldsymbol{x}_{2}\right], \ldots, h\left[\boldsymbol{x}_{N}\right]\right) \mid h \in \mathcal{H}\right\}
$$

Remark

Definition

- Let $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n} \in \mathcal{X}$. The dichotomies generated by \mathcal{H} on these points are defined by

$$
\mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)=\left\{\left(h\left[\boldsymbol{x}_{1}\right], h\left[\boldsymbol{x}_{2}\right], \ldots, h\left[\boldsymbol{x}_{N}\right]\right) \mid h \in \mathcal{H}\right\}
$$

Therefore

- We can see $\mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)$ as a set of hypothesis by using the geometry of the points.

Remark

Definition

- Let $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n} \in \mathcal{X}$. The dichotomies generated by \mathcal{H} on these points are defined by

$$
\mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)=\left\{\left(h\left[\boldsymbol{x}_{1}\right], h\left[\boldsymbol{x}_{2}\right], \ldots, h\left[\boldsymbol{x}_{N}\right]\right) \mid h \in \mathcal{H}\right\}
$$

Therefore

- We can see $\mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)$ as a set of hypothesis by using the geometry of the points.

Thus

- A large $\mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)$ means \mathcal{H} is more diverse.

Growth function, Our Replacement of M

Definition

- The growth function is defined for a hypothesis set \mathcal{H} by

$$
m_{\mathcal{H}}(N)=\max _{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N} \in \mathcal{X}} \# \mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)
$$

- where \# denotes the cardinality (number of elements) of a set.

Growth function, Our Replacement of M

Definition

- The growth function is defined for a hypothesis set \mathcal{H} by

$$
m_{\mathcal{H}}(N)=\max _{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N} \in \mathcal{X}} \# \mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)
$$

- where \# denotes the cardinality (number of elements) of a set.

Therefore

- $m_{\mathcal{H}}(N)$ is the maximum number of dichotomies that be generated by \mathcal{H} on any N points.
- We remove dependency on the entire \mathcal{X}

Therefore

We have that

- M and $m_{\mathcal{H}}(N)$ is a measure of the of the number of hypothesis in \mathcal{H}

Therefore

We have that

- M and $m_{\mathcal{H}}(N)$ is a measure of the of the number of hypothesis in \mathcal{H}

However, we avoid considering all of \mathcal{X}

- Now we only consider N points instead of the entire \mathcal{X}.

Upper Bound for $m_{\mathcal{H}}(N)$

First, we know that

$$
\mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right) \subseteq\{-1,+1\}^{N}
$$

Upper Bound for $m_{\mathcal{H}}(N)$

First, we know that

$$
\mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right) \subseteq\{-1,+1\}^{N}
$$

Hence, we have the value of $m_{\mathcal{H}}(N)$ is at most $\#\{-1,+1\}^{N}$

$$
m_{\mathcal{H}}(N) \leq 2^{N}
$$

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

(2) Vapnik-Chervonenkis Dimension

- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the $V C_{\text {dim }}$
- VC Generalization Bound Theorem
(3) ExampleMulti-Layer Perceptron

Therefore

If \mathcal{H} is capable of generating all possible dichotomies on $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}$

- Then,
- $\mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)=\{-1,+1\}^{N}$ and $\# \mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)=2^{N}$

Therefore

If \mathcal{H} is capable of generating all possible dichotomies on $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}$

- Then,
- $\mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)=\{-1,+1\}^{N}$ and $\# \mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)=2^{N}$

We can say that

- \mathcal{H} can shatter $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}$

Therefore

If \mathcal{H} is capable of generating all possible dichotomies on $x_{1}, x_{2}, \ldots, x_{N}$

- Then,
- $\mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)=\{-1,+1\}^{N}$ and $\# \mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)=2^{N}$

We can say that

- \mathcal{H} can shatter $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}$

Meaning

- \mathcal{H} is as diverse as can be on this particular sample.

Shattering

Definition

- A set \mathcal{X} of $N \geq 1$ points is said to be shattered by a hypothesis set \mathcal{H} when \mathcal{H} realizes all possible dichotomies of \mathcal{X}, that is when

$$
m_{\mathcal{H}}(N)=2^{N}
$$

Outline

(1) Is Learning Feasible?
-
Introduction

- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

(2) Vapnik-Chervonenkis Dimension

- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the V $C_{\text {dim }}$
- VC Generalization Bound Theorem
(3) Example
- Multi-Layer Perceptron

Example

Positive Rays

- Imagine a input space on \mathbb{R}, with \mathcal{H} consisting of all hypotheses $h: \mathbb{R} \rightarrow\{-1,+1\}$ of the form

$$
h(x)=\operatorname{sign}(x-a)
$$

Example

Positive Rays

- Imagine a input space on \mathbb{R}, with \mathcal{H} consisting of all hypotheses $h: \mathbb{R} \rightarrow\{-1,+1\}$ of the form

$$
h(x)=\operatorname{sign}(x-a)
$$

Example

Thus, we have that

As we change a, we get $N+1$ different dichotomies

$$
m_{\mathcal{H}}(N)=N+1
$$

Thus, we have that

As we change a, we get $N+1$ different dichotomies

$$
m_{\mathcal{H}}(N)=N+1
$$

Now, we have the case of positive intervals

- \mathcal{H} consists of all hypotheses in one dimension that return +1 within some interval and -1 otherwise.

Therefore

We have

- The line is again split by the points into $N+1$ regions.

Therefore

We have

- The line is again split by the points into $N+1$ regions.

Furthermore

- The dichotomy we get is decided by which two regions contain the end values of the interval

Therefore

We have

- The line is again split by the points into $N+1$ regions.

Furthermore

- The dichotomy we get is decided by which two regions contain the end values of the interval

Therefore, we have the number of possible dichotomies

$$
\binom{N+1}{2}
$$

Additionally

If the two points fall in the same region, the $\mathcal{H}=-1$

- Then

$$
m_{\mathcal{H}}(N)=\binom{N+1}{2}+1=\frac{1}{2} N^{2}+\frac{1}{2} N+1
$$

Finally

In the case of a Convex Set in \mathbb{R}^{2}

- \mathcal{H} consists of all hypothesis in two dimensions that are positive inside some convex set and negative elsewhere.

Therefore

We have the following

$$
m_{\mathcal{H}}(N)=2^{N}
$$

By using the "Radon's theorem"

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

(2) Vapnik-Chervonenkis Dimension

- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the V $C_{\text {dim }}$
- VC Generalization Bound Theorem
(3) Example
- Multi-Layer Perceptron

Remember

We have that

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right| \geq \epsilon\right) \leq 2 M \exp ^{-2 N \epsilon^{2}}
$$

Remember

We have that

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right| \geq \epsilon\right) \leq 2 M \exp ^{-2 N \epsilon^{2}}
$$

What if $m_{\mathcal{H}}(N)$ replaces M

- If $m_{\mathcal{H}}(N)$ is polynomial, we have an excellent case!!!

Remember

We have that

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right| \geq \epsilon\right) \leq 2 M \exp ^{-2 N \epsilon^{2}}
$$

What if $m_{\mathcal{H}}(N)$ replaces M

- If $m_{\mathcal{H}}(N)$ is polynomial, we have an excellent case!!!

Therefore, we need to prove that

- $m_{\mathcal{H}}(N)$ is polynomial

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

(2) Vapnik-Chervonenkis Dimension

- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the V $C_{d i m}$
- VC Generalization Bound Theorem
(3) ExampleMulti-Layer Perceptron

Break Point

Definition

- If no data set of size k can be shattered by \mathcal{H}, then k is said to be a break point for \mathcal{H} :

$$
m_{\mathcal{H}}(k)<2^{k}
$$

Example

For the Perceptron, we have $k=4$

Shatter

Non-Shatter

Important

Something Notable

- In general, it is easier to find a break point for \mathcal{H} than to compute the full growth function for that \mathcal{H}.

Important

Something Notable

- In general, it is easier to find a break point for \mathcal{H} than to compute the full growth function for that \mathcal{H}.

Using this concept

We are ready to define the concept of Vapnik-Chervonenkis (VC) dimension.

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena - Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

(2) Vapnik-Chervonenkis Dimension

- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the $V C_{d i m}$
- VC Generalization Bound Theorem

3. Example

- Multi-Layer Perceptron

VC-Dimension

Definition

- The VC-dimension of a hypothesis set \mathcal{H} is the size of the largest set that can be fully shattered by \mathcal{H} (Those points need to be in "General Position"):

$$
V C_{\operatorname{dim}}(\mathcal{H})=\max \left\{k \mid m_{\mathcal{H}}(k)=2^{k}\right\}
$$

- A set containing k points, for arbitrary k, is in general linear position if and only if no $(k-1)$-dimensional flat contains them all

Important Remarks

Remark 1

- if $V C_{\operatorname{dim}}(\mathcal{H})=d$, there exists a set of size d that can be fully shattered.

Important Remarks

Remark 1

- if $V C_{\operatorname{dim}}(\mathcal{H})=d$, there exists a set of size d that can be fully shattered.

Remark2

- This does not imply that all sets of size d or less are fully shattered
- This is typically the case!!!

Why? General Linear Position

For example in the Perceptron

No General Position

Now, we define $B(N, k)$

Definition

- $B(N, k)$ is the maximum number of dichotomies on N points such that no subset of size k of the N points can be shattered by these dichotomies.

Now, we define $B(N, k)$

Definition

- $B(N, k)$ is the maximum number of dichotomies on N points such that no subset of size k of the N points can be shattered by these dichotomies.

Something Notable

- The definition of $B(N, k)$ assumes a break point $k!!!$

Further

Since $B(N, k)$ is a maximum

- It is an upper bound for $m_{\mathcal{H}}(N)$ under a break point k.

$$
m_{\mathcal{H}}(N) \leq B(N, k) \text { if } k \text { is a break point for } \mathcal{H} .
$$

Further

Since $B(N, k)$ is a maximum

- It is an upper bound for $m_{\mathcal{H}}(N)$ under a break point k.

$$
m_{\mathcal{H}}(N) \leq B(N, k) \text { if } k \text { is a break point for } \mathcal{H} .
$$

Then

- We need to find a Bound for $B(N, k)$ to prove that $m_{\mathcal{H}}(k)$ is polynomial.

Therefore

Thus, we start with two boundary conditions $k=1$ and $N=1$

$$
\begin{aligned}
B(N, 1) & =1 \\
B(1, k) & =2 k>1
\end{aligned}
$$

Why?

Something Notable

- $B(N, 1)=1$ for all N since if no subset of size $\mathbf{1}$ can be shattered

Why?

Something Notable

- $B(N, 1)=1$ for all N since if no subset of size 1 can be shattered
- Then only one dichotomy can be allowed.

Why?

Something Notable

- $B(N, 1)=1$ for all N since if no subset of size 1 can be shattered
- Then only one dichotomy can be allowed.
- Because a second different dichotomy must differ on at least one point and then that subset of size 1 would be shattered.

Why?

Something Notable

- $B(N, 1)=1$ for all N since if no subset of size 1 can be shattered
- Then only one dichotomy can be allowed.
- Because a second different dichotomy must differ on at least one point and then that subset of size 1 would be shattered.

Second

- $B(1, k)=2$ for $k>1$ since there do not even exist subsets of size k.

Why?

Something Notable

- $B(N, 1)=1$ for all N since if no subset of size 1 can be shattered
- Then only one dichotomy can be allowed.
- Because a second different dichotomy must differ on at least one point and then that subset of size 1 would be shattered.

Second

- $B(1, k)=2$ for $k>1$ since there do not even exist subsets of size k.
- Because the constraint is vacuously true and we have 2 possible dichotomies +1 and -1 .

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

(2) Vapnik-Chervonenkis Dimension

- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the $V C_{d i m}$
- VC Generalization Bound Theorem
(3) ExampleMulti-Layer Perceptron
$B(N, k)$ Dichotomies，$N \geq 2$ and $k \geq 2$

		\＃of rows	\boldsymbol{x}_{1}	\boldsymbol{x}_{2}	\cdots	\boldsymbol{x}_{N-1}	\boldsymbol{x}_{N}	
S_{1}		α	＋1	＋1		＋1	＋1	
		－1	＋1		＋1	－1		
		＋1	－1		－1	－1		
		－1	＋1		－1	＋1		
S_{2}	S_{2}^{+}		β	＋1	－1		＋1	＋1
				－1	－1		＋1	＋1
				＋1	－1		＋1	＋1
		－1		＋1		－1	＋1	
	S_{2}^{-}	β	＋1	－1	\cdots	＋1	－1	
			－1	－1		＋1	－1	
			＋1	－1		＋1	－1	
			－1	＋1		跇－1号	，匆	

What is this partition mean

First, Consider the dichotomies on $x_{1} x_{2} \cdots x_{N-1}$

- Some appear once (Either +1 or -1 at x_{N}), but only ONCE!!!

What is this partition mean

First, Consider the dichotomies on $x_{1} x_{2} \cdots x_{N-1}$

- Some appear once (Either +1 or -1 at x_{N}), but only ONCE!!!
- We collect them in S_{1}

What is this partition mean

First, Consider the dichotomies on $x_{1} x_{2} \cdots x_{N-1}$

- Some appear once (Either +1 or -1 at x_{N}), but only ONCE!!!
- We collect them in S_{1}

The Remaining Dichotomies appear Twice

- Once with +1 and once with -1 in the \boldsymbol{x}_{N} column.

Therefore, we collect them in three sets

The ones with only one Dichotomy

- We use the set S_{1}

Therefore, we collect them in three sets

The ones with only one Dichotomy

- We use the set S_{1}

The other in two different sets

- S_{2}^{+}the ones with $x_{N}=+1$.
- S_{2}^{-}the ones with $x_{N}=-1$.

Therefore

We have the following

$$
B(N, k)=\alpha+2 \beta
$$

Therefore

We have the following

$$
B(N, k)=\alpha+2 \beta
$$

The total number of different dichotomies on the first $N-1$ points

- They are $\alpha+\beta$.

Therefore

We have the following

$$
B(N, k)=\alpha+2 \beta
$$

The total number of different dichotomies on the first $N-1$ points

- They are $\alpha+\beta$.

Additionally, no subset of k of these first $N-1$ points can be shattered

- Since no k-subset of all N points can be shattered:

$$
\alpha+\beta \leq B(N-1, k)
$$

By definition of B.

Then

Further, no subset of size $k-1$ of the first $N-1$ points can be shattered by the dichotomies in S_{2}^{+}

- If there existed such a subset, then taking the corresponding set of dichotomies in S_{2}^{-}and \boldsymbol{x}_{N}

Then

Further, no subset of size $k-1$ of the first $N-1$ points can be shattered by the dichotomies in S_{2}^{+}

- If there existed such a subset, then taking the corresponding set of dichotomies in S_{2}^{-}and \boldsymbol{x}_{N}
- You finish with a subset of size k that can be shattered a contradiction given the definition of $B(N, k)$.

Then

Further, no subset of size $k-1$ of the first $N-1$ points can be shattered by the dichotomies in S_{2}^{+}

- If there existed such a subset, then taking the corresponding set of dichotomies in S_{2}^{-}and \boldsymbol{x}_{N}
- You finish with a subset of size k that can be shattered a contradiction given the definition of $B(N, k)$.

Therefore

$$
\beta \leq B(N-1, k-1)
$$

Then

Further, no subset of size $k-1$ of the first $N-1$ points can be shattered by the dichotomies in S_{2}^{+}

- If there existed such a subset, then taking the corresponding set of dichotomies in S_{2}^{-}and \boldsymbol{x}_{N}
- You finish with a subset of size k that can be shattered a contradiction given the definition of $B(N, k)$.

Therefore

$$
\beta \leq B(N-1, k-1)
$$

Then, we have

$$
B(N, k) \leq B(N-1, k)+B(N-1, k-1)
$$

Outline

(1) Is Learning Feasible?

0
duction

- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

(2) Vapnik-Chervonenkis Dimension

Theory of Generalization

- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the $V C_{d i m}$
- VC Generalization Bound Theorem
(3) Example

Multi-Layer Perceptron

Connecting the Growth Function with the $V C_{d i m}$

Sauer's Lemma

- For all $k \in \mathbb{N}$, the following inequality holds:

$$
B(N, k) \leq \sum_{i=0}^{k-1}\binom{N}{i}
$$

Proof

Proof

- For $k=1$

$$
B(N, 1) \leq B(N-1,1)+B(N-1,0)=1+0=\binom{N}{0}
$$

Proof

Proof

- For $k=1$

$$
B(N, 1) \leq B(N-1,1)+B(N-1,0)=1+0=\binom{N}{0}
$$

Then, by induction

- We assume that the statement is true for $N \leq N_{0}$ and all k.

Now

We need to prove this for $N=N_{0}+1$ and all k

- Observation: This is true for $k=1$ given

$$
B(N, 1)=1
$$

Now

We need to prove this for $N=N_{0}+1$ and all k

- Observation: This is true for $k=1$ given

$$
B(N, 1)=1
$$

Now, consider $k \geq 2$

$$
B\left(N_{0}, k\right)+B\left(N_{0}, k-1\right)
$$

Now

We need to prove this for $N=N_{0}+1$ and all k

- Observation: This is true for $k=1$ given

$$
B(N, 1)=1
$$

Now, consider $k \geq 2$

$$
B\left(N_{0}, k\right)+B\left(N_{0}, k-1\right)
$$

Therefore

$$
B\left(N_{0}+1, k\right) \leq \sum_{i=0}^{k-1}\binom{N_{0}}{i}+\sum_{i=0}^{k-2}\binom{N_{0}}{i}
$$

Therefore

We have the following

$$
B\left(N_{0}+1, k\right) \leq 1+\sum_{i=1}^{k-1}\binom{N_{0}}{i}+\sum_{i=1}^{k-1}\binom{N_{0}}{i-1}
$$

Therefore

We have the following

$$
\begin{aligned}
B\left(N_{0}+1, k\right) & \leq 1+\sum_{i=1}^{k-1}\binom{N_{0}}{i}+\sum_{i=1}^{k-1}\binom{N_{0}}{i-1} \\
& =1+\sum_{i=1}^{k-1}\left[\binom{N_{0}}{i}+\binom{N_{0}}{i-1}\right]
\end{aligned}
$$

Therefore

We have the following

$$
\begin{aligned}
B\left(N_{0}+1, k\right) & \leq 1+\sum_{i=1}^{k-1}\binom{N_{0}}{i}+\sum_{i=1}^{k-1}\binom{N_{0}}{i-1} \\
& =1+\sum_{i=1}^{k-1}\left[\binom{N_{0}}{i}+\binom{N_{0}}{i-1}\right] \\
& =1+\sum_{i=1}^{k-1}\binom{N_{0}+1}{i}=\sum_{i=0}^{k-1}\binom{N_{0}+1}{i}
\end{aligned}
$$

Therefore

We have the following

$$
\begin{aligned}
B\left(N_{0}+1, k\right) & \leq 1+\sum_{i=1}^{k-1}\binom{N_{0}}{i}+\sum_{i=1}^{k-1}\binom{N_{0}}{i-1} \\
& =1+\sum_{i=1}^{k-1}\left[\binom{N_{0}}{i}+\binom{N_{0}}{i-1}\right] \\
& =1+\sum_{i=1}^{k-1}\binom{N_{0}+1}{i}=\sum_{i=0}^{k-1}\binom{N_{0}+1}{i}
\end{aligned}
$$

- Because $\binom{N_{0}}{i}+\binom{N_{0}}{i-1}=\binom{N_{0}+1}{i}$

Now

We have in conclusion for all k

$$
B(N, k) \leq \sum_{i=0}^{k-1}\binom{N}{i}
$$

Now

We have in conclusion for all k

$$
B(N, k) \leq \sum_{i=0}^{k-1}\binom{N}{i}
$$

Therefore

$$
m_{\mathcal{H}}(N) \leq B(N, k) \leq \sum_{i=0}^{k-1}\binom{N}{i}
$$

Then

Theorem

- If $m_{\mathcal{H}}(k)<2^{k}$ for some value k, then

$$
m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1}\binom{N}{i}
$$

Finally

Corollary

- Let \mathcal{H} be a hypothesis set with $V C_{\operatorname{dim}}(\mathcal{H})=k$. Then, for all $N \geq k$

$$
m_{\mathcal{H}}(N) \leq\left(\frac{e N}{k}\right)^{k-1}=O\left(N^{k}\right)
$$

We have

Proof

$$
m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k}\binom{N}{i}
$$

We have

Proof

$$
\begin{aligned}
m_{\mathcal{H}}(N) & \leq \sum_{i=0}^{k}\binom{N}{i} \\
& \leq \sum_{i=0}^{k}\binom{N}{i}\left[\frac{N}{k}\right]^{k-i}
\end{aligned}
$$

We have

Proof

$$
\begin{aligned}
m_{\mathcal{H}}(N) & \leq \sum_{i=0}^{k}\binom{N}{i} \\
& \leq \sum_{i=0}^{k}\binom{N}{i}\left[\frac{N}{k}\right]^{k-i} \\
& \leq \sum_{i=0}^{N}\binom{N}{i}\left[\frac{N}{k}\right]^{k-i}
\end{aligned}
$$

We have

Proof

$$
\begin{aligned}
m_{\mathcal{H}}(N) & \leq \sum_{i=0}^{k}\binom{N}{i} \\
& \leq \sum_{i=0}^{k}\binom{N}{i}\left[\frac{N}{k}\right]^{k-i} \\
& \leq \sum_{i=0}^{N}\binom{N}{i}\left[\frac{N}{k}\right]^{k-i} \\
& {\left[\frac{N}{k}\right]^{k} \sum_{i=0}^{N}\binom{N}{i}\left[\frac{k}{N}\right]^{i} }
\end{aligned}
$$

Therefore

We have

$$
m_{\mathcal{H}}(N) \leq\left[\frac{N}{k}\right]^{k} \sum_{i=0}^{N}\binom{N}{i}\left[\frac{k}{N}\right]^{i}
$$

Therefore

We have

$$
\begin{aligned}
m_{\mathcal{H}}(N) & \leq\left[\frac{N}{k}\right]^{k} \sum_{i=0}^{N}\binom{N}{i}\left[\frac{k}{N}\right]^{i} \\
& =\left[\frac{N}{k}\right]^{k}\left[1+\frac{k}{N}\right]^{N}
\end{aligned}
$$

Given that $(1-x)=e^{-x}$

Therefore

We have

$$
\begin{aligned}
m_{\mathcal{H}}(N) & \leq\left[\frac{N}{k}\right]^{k} \sum_{i=0}^{N}\binom{N}{i}\left[\frac{k}{N}\right]^{i} \\
& =\left[\frac{N}{k}\right]^{k}\left[1+\frac{k}{N}\right]^{N}
\end{aligned}
$$

Given that $(1-x)=e^{-x}$

$$
m_{\mathcal{H}}(N) \leq\left[\frac{N}{k}\right]^{k} e^{\frac{k}{N}}
$$

Therefore

We have

$$
\begin{aligned}
m_{\mathcal{H}}(N) & \leq\left[\frac{N}{k}\right]^{k} \sum_{i=0}^{N}\binom{N}{i}\left[\frac{k}{N}\right]^{i} \\
& =\left[\frac{N}{k}\right]^{k}\left[1+\frac{k}{N}\right]^{N}
\end{aligned}
$$

Given that $(1-x)=e^{-x}$

$$
\begin{aligned}
m_{\mathcal{H}}(N) & \leq\left[\frac{N}{k}\right]^{k} e^{\frac{k}{N}} \\
& \leq\left[\frac{N}{k}\right]^{k-1} e^{k-1}=\left[\frac{e}{k}\right]^{k} N^{k}=O\left(N^{k}\right)
\end{aligned}
$$

Therefore

We have that

- $m_{\mathcal{H}}(N)$ is bounded by N^{k-1} i.e. if $m_{\mathcal{H}}(k)<2^{k}$ we have that $m_{\mathcal{H}}(N)$ is polynomial

Therefore

We have that

- $m_{\mathcal{H}}(N)$ is bounded by N^{k-1} i.e. if $m_{\mathcal{H}}(k)<2^{k}$ we have that $m_{\mathcal{H}}(N)$ is polynomial
- We are not depending on the number of hypothesis!!!!

Therefore

We have that

- $m_{\mathcal{H}}(N)$ is bounded by N^{k-1} i.e. if $m_{\mathcal{H}}(k)<2^{k}$ we have that $m_{\mathcal{H}}(N)$ is polynomial
- We are not depending on the number of hypothesis!!!!

Outline

(1) Is Learning Feasible?

- Introduction
- The Dilemma
- A Binary Problem, Solving the Dilemma
- Hoeffding's Inequality
- Error in the Sample and Error in the Phenomena
- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error

(2) Vapnik-Chervonenkis Dimension

Theory of Generalization

- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the VCdim
- VC Generalization Bound Theorem
(3) ExampleMulti-Layer Perceptron

Remark about $m_{\mathcal{H}}(k)$

We have bounded the number of effective hypothesis

- Yes!!! we can have M hypotheses but the number of dichotomies generated by them is bounded by $m_{\mathcal{H}}(k)$

VC-Dimension Again

Definition

- The VC-dimension of a hypothesis set \mathcal{H} is the size of the largest set that can be fully shattered by \mathcal{H} (Those points need to be in "General Position"):

$$
V C_{d i m}(\mathcal{H})=\max \left\{k \mid m_{\mathcal{H}}(k)=2^{k}\right\}
$$

VC-Dimension Again

Definition

- The VC-dimension of a hypothesis set \mathcal{H} is the size of the largest set that can be fully shattered by \mathcal{H} (Those points need to be in "General Position"):

$$
V C_{\operatorname{dim}}(\mathcal{H})=\max \left\{k \mid m_{\mathcal{H}}(k)=2^{k}\right\}
$$

Something Notable

- If $m_{\mathcal{H}}(N)=2^{N}$ for all $N, V C_{\operatorname{dim}}(\mathcal{H})=\infty$

Remember

We have the following

$$
E_{\text {in }}(g)<E_{\text {out }}(g)+\sqrt{\frac{1}{2 N} \ln \frac{2 M}{\delta}}
$$

Remember

We have the following

$$
E_{\text {in }}(g)<E_{\text {out }}(g)+\sqrt{\frac{1}{2 N} \ln \frac{2 M}{\delta}}
$$

We instead of using M, we use $m_{\mathcal{H}}(N)$

- We can use our growth function as the effective way to bound

$$
E_{\text {in }}(g)<E_{\text {out }}(g)+\sqrt{\frac{1}{2 N} \ln \frac{2 m_{\mathcal{H}}(N)}{\delta}}
$$

VC Generalized Bound

Theorem (VC Generalized Bound)

- For any tolerance $\delta>0$ and \mathcal{H} be a hypothesis set with $V C_{\text {dim }}(\mathcal{H})=k$.,

$$
E_{\text {in }}(g)<E_{\text {out }}(g)+\sqrt{\frac{2 k}{N} \ln \frac{e N}{k}}+\sqrt{\frac{1}{2 N} \ln \frac{1}{\delta}}
$$

- with probability $\geq 1-\delta$

VC Generalized Bound

Theorem (VC Generalized Bound)

- For any tolerance $\delta>0$ and \mathcal{H} be a hypothesis set with $V C_{\text {dim }}(\mathcal{H})=k$.,

$$
E_{\text {in }}(g)<E_{\text {out }}(g)+\sqrt{\frac{2 k}{N} \ln \frac{e N}{k}}+\sqrt{\frac{1}{2 N} \ln \frac{1}{\delta}}
$$

- with probability $\geq 1-\delta$

Something Notable

This Bound only fails when $V C_{d i m}(\mathcal{H})=\infty!!!$

Proof

Although we will not talk about it

- We will remark the that is possible to use the Rademacher complexity
- To manage the number of overlapping hypothesis (Which can be infinite)

Proof

Although we will not talk about it

- We will remark the that is possible to use the Rademacher complexity
- To manage the number of overlapping hypothesis (Which can be infinite)

We will stop here, but

- But I will encourage to look at more about the proof...

About the Proof

For More, take a look at

- "A Probabilistic Theory of Pattern Recognition" by Luc Devroye et al.
- "Foundations of Machine Learning" by Mehryar Mohori et al.

About the Proof

For More, take a look at

- "A Probabilistic Theory of Pattern Recognition" by Luc Devroye et al.
- "Foundations of Machine Learning" by Mehryar Mohori et al.

This is the equivalent to use Measure Theory to understand the innards of Probability

- We are professionals, we must understand!!!

Outline

```
(1) Is Learning Feasible?
    - Introduction
    - The Dilemma
    - A Binary Problem, Solving the Dilemma
    - Hoeffding's Inequality
    - Error in the Sample and Error in the Phenomena
    O-Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
- Overall Error
```

(2) Vapnik-Chervonenkis Dimension

- Theory of Generalization
- Generalization Error
- Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing $m_{\mathcal{H}}(N)$

What are we looking for?

- Break Point
- VC-Dimension
- Partition $B(N, k)$
- Connecting the Growth Function with the V $C_{d i m}$
- VC Generalization Bound Theorem
- Multi-Layer Perceptron

As you remember from previous classes

We have architectures like

G-composition of \mathcal{H}

Let G be a layered directed acyclic graph

Where directed edges go from one layer l to the next layer $l+1$.

G-composition of \mathcal{H}

Let G be a layered directed acyclic graph

Where directed edges go from one layer l to the next layer $l+1$.

Now, we have a set of hypothesis \mathcal{H}

- NInput Nodes with in-degree 0

G-composition of \mathcal{H}

Let G be a layered directed acyclic graph

Where directed edges go from one layer l to the next layer $l+1$.

Now, we have a set of hypothesis \mathcal{H}

- NInput Nodes with in-degree 0
- Intermediate Nodes with in-degree r

G-composition of \mathcal{H}

Let G be a layered directed acyclic graph

Where directed edges go from one layer l to the next layer $l+1$.

Now, we have a set of hypothesis \mathcal{H}

- NInput Nodes with in-degree 0
- Intermediate Nodes with in-degree r
- Single Output node with out-degree 0

G-composition of \mathcal{H}

Let G be a layered directed acyclic graph

Where directed edges go from one layer l to the next layer $l+1$.

Now, we have a set of hypothesis \mathcal{H}

- NInput Nodes with in-degree 0
- Intermediate Nodes with in-degree r
- Single Output node with out-degree 0
\mathcal{H} our hypothesis over the space Euclidean space \mathbb{R}^{r}
- Basically each node represent the hypothesis $c_{i}: \mathbb{R}^{r} \rightarrow\{-1,1\}$ by mean of tanh.

Therefore

We have that

- The Neural concept represent an hypothesis from \mathbb{R}^{N} to $\{-1,1\}$

Therefore

We have that

- The Neural concept represent an hypothesis from \mathbb{R}^{N} to $\{-1,1\}$

Therefore the entire hypothesis is a composition of concepts

- This is called a G-composition of \mathcal{H}.

We have the following theorem

Theorem (Kearns and Vazirani, 1994)

- Let G be a layered directed acyclic graph with N input nodes and $r \geq 2$ internal nodes each of indegree r.

We have the following theorem

Theorem (Kearns and Vazirani, 1994)

- Let G be a layered directed acyclic graph with N input nodes and $r \geq 2$ internal nodes each of indegree r.
- Let \mathcal{H} hypothesis set over \mathbb{R}^{r} of $V C_{\operatorname{dim}}(\mathcal{H})=d$, and let G-composition of \mathcal{H}. then

$$
V C_{d i m}\left(\mathcal{H}_{G}\right) \leq 2 d s \log _{2}(e s)
$$

