Introduction to Machine Learning
 Convolutional Networks

Andres Mendez-Vazquez

December 2, 2019

Outline

1 Introduction

- Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Definition of Convolution
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Feature Pooling and Subsampling Layer
- Subsampling=Skipping Layer
- A Little Linear Algebra
- Pooling Layer
- Finally, The Fully Connected Layer

4 An Example of CNN

- The Proposed Architecture
- Backpropagation

Outline

(1) Introduction

- Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Definition of Convolution
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Feature Pooling and Subsampling Layer
- Subsampling=Skipping Layer
- A Little Linear Algebra
- Pooling Layer
- Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed ArchitectureBackpropagation

Digital Images as pixels in a digitized matrix

Further

Pixel values typically represent

- Gray levels, colours, heights, opacities etc

Further

Pixel values typically represent

- Gray levels, colours, heights, opacities etc

Something Notable

- Remember digitization implies that a digital image is an approximation of a real scene

Images

Common image formats include

- On sample/pixel per point (B\&W or Grayscale)
- Three samples/pixel per point (Red, Green, and Blue)
- Four samples/pixel per point (Red, Green, Blue, and "Alpha")

Therefore, we have the following process

Low Level Process

Input	Processes	Output
Image	Noise Removal	Improved
	Image Image Sharpening	

Example

Edge Detection

ค

Example

Edge Detection

Mid Level Process

Input	Processes	Output
Image	Object Recognition Segmentation	Attributes

Example

Object Recognition

Example

Object Recognition

Therefore

It would be nice to automatize all these processes

- We would solve a lot of headaches when setting up such process

Therefore

It would be nice to automatize all these processes

- We would solve a lot of headaches when setting up such process

Why not to use the data sets

- By using a Neural Networks that replicates the process.

Outline

(1) Introduction

Image Processing

- Multilayer Neural Network Classification

Drawbacks

- Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Definition of Convolution
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
-
- Local Contrayt
- Local Contrast Normalization Layer
- Feature Pooling and Subsampling Layer
- Subsampling=Skipping Layer
- A Little Linear Algebra
- Pooling Layer
- Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed Architecture

O
Backpropagation

Multilayer Neural Network Classification

We have the following classification

| Structure | Types of
 Decision Regions | Exclusive-OR
 Problem |
| :---: | :---: | :---: | :---: | :---: |
| Single-Layer | Classes with
 Helf Plane
 Bounded By
 Hyper plane | Most General |

Outline

(1) Introduction

- Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution

2 Convolutional Networks

- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Definition of Convolution
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Feature Pooling and Subsampling Layer
- Subsampling=Skipping Layer
- A Little Linear Algebra
- Pooling Layer
- Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed Architecture
- Backpropagation

Drawbacks of previous neural networks

The number of trainable parameters becomes extremely large

Large N

Drawbacks of previous neural networks

In addition, little or no invariance to shifting, scaling, and other forms of distortion

Drawbacks of previous neural networks

In addition, little or no invariance to shifting, scaling, and other forms of distortion

> Large N
> $N \times N$

Shift to the Left

 H. . . - | \longrightarrow -

 $\longrightarrow \rightarrow$ áran $\square 1 / 1 \rightarrow$ - 4 ヤHAM H 1 H PH 1 Á
$\square+$

- $\lim _{1}$

คT ค \quad —— H \quad H

Drawbacks of previous neural networks

The topology of the input data is completely ignored

For Example

We have

- Black and white patterns: $2^{32 \times 32}=2^{1024}$
- Gray scale patterns: $256^{32 \times 32}=256^{1024}$

$32 * 32$ input image

For Example

If we have an element that the network has never seen

Possible Solution

We can minimize this drawbacks by getting
Fully connected network of sufficient size can produce outputs that are invariant with respect to such variations.

Possible Solution

We can minimize this drawbacks by getting

Fully connected network of sufficient size can produce outputs that are invariant with respect to such variations.

Problem!!!

- Training time
- Network size
- Free parameters

Outline

```
(1) Introduction
    - Image Processing
    - Multilayer Neural Network Classification
    - Drawbacks
    - Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity
O Sharing Parameters
(3) Layers
    - Convolutional Layer
    - Definition of Convolution
    Non-Linearity Layer
        - Fixing the Problem, ReLu function
        - Back to the Non-Linearity Layer
    O- Rectification Layer
    - Local Contrast Normalization Layer
    - Feature Pooling and Subsampling Layer
        - Subsampling=Skipping Layer
        - A Little Linear Algebra
        - Pooling Layer
    - Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed Architecture
- Backpropagation
```


Hubel/Wiesel Architecture

Something Notable
D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981)

Hubel/Wiesel Architecture

Something Notable

D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981)

They commented

The visual cortex consists of a hierarchy of simple, complex, and hyper-complex cells

Something Like

We have

Feature Hierarchy

History

Convolutional Neural Networks (CNN) were invented by

In 1989, Yann LeCun and Yoshua Bengio introduced the concept of Convolutional Neural networks.

About CNN's

Something Notable

CNN's Were neurobiologically motivated by the findings of locally sensitive and orientation-selective nerve cells in the visual cortex.

About CNN's

Something Notable

CNN's Were neurobiologically motivated by the findings of locally sensitive and orientation-selective nerve cells in the visual cortex.

In addition

They designed a network structure that implicitly extracts relevant features.

About CNN's

Something Notable

CNN's Were neurobiologically motivated by the findings of locally sensitive and orientation-selective nerve cells in the visual cortex.

In addition

They designed a network structure that implicitly extracts relevant features.

Properties

Convolutional Neural Networks are a special kind of multilayer neural networks.

About CNN's

In addition

- CNN is a feed-forward network that can extract topological properties from an image.

About CNN's

In addition

- CNN is a feed-forward network that can extract topological properties from an image.
- Like almost every other neural networks they are trained with a version of the back-propagation algorithm.

About CNN's

In addition

- CNN is a feed-forward network that can extract topological properties from an image.
- Like almost every other neural networks they are trained with a version of the back-propagation algorithm.
- Convolutional Neural Networks are designed to recognize visual patterns directly from pixel images with minimal preprocessing.

About CNN's

In addition

- CNN is a feed-forward network that can extract topological properties from an image.
- Like almost every other neural networks they are trained with a version of the back-propagation algorithm.
- Convolutional Neural Networks are designed to recognize visual patterns directly from pixel images with minimal preprocessing.
- They can recognize patterns with extreme variability.

Outline

(1) Introduction

- Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution

(2) Convolutional Networks

- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Definition of Convolution
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Feature Pooling and Subsampling Layer
- Subsampling=Skipping Layer
- A Little Linear Algebra
- Pooling Layer
- Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed ArchitectureBackpropagation

Local Connectivity

We have the following idea

Instead of using a full connectivity...

Local Connectivity

We have the following idea

Instead of using a full connectivity...

We would have something like this

$$
\begin{equation*}
y_{i}=f\left(\sum_{i=1}^{n} w_{i} x_{i}\right) \tag{1}
\end{equation*}
$$

Local Connectivity

We decide only to connect the neurons in a local way

- Each hidden unit is connected only to a subregion (patch) of the input image.

Local Connectivity

We decide only to connect the neurons in a local way

- Each hidden unit is connected only to a subregion (patch) of the input image.
- It is connected to all channels:

Local Connectivity

We decide only to connect the neurons in a local way

- Each hidden unit is connected only to a subregion (patch) of the input image.
- It is connected to all channels:
- 1 if gray scale

Local Connectivity

We decide only to connect the neurons in a local way

- Each hidden unit is connected only to a subregion (patch) of the input image.
- It is connected to all channels:
- 1 if gray scale
- 3 in the RGB case

Local Connectivity

We decide only to connect the neurons in a local way

- Each hidden unit is connected only to a subregion (patch) of the input image.
- It is connected to all channels:
- 1 if gray scale
- 3 in the RGB case

Example

For gray scale, we get something like this

Example

For gray scale, we get something like this

Then, our formula changes

$$
\begin{equation*}
y_{i}=f\left(\sum_{i \in L_{p}} w_{i} x_{i}\right) \tag{2}
\end{equation*}
$$

Example

In the case of the 3 channels

Example

In the case of the 3 channels

Input Image
Thus

$$
\begin{equation*}
y_{i}=f\left(\sum_{i \in L_{p}, c} w_{i} x_{i}^{c}\right) \tag{3}
\end{equation*}
$$

Solving the following problems...

First

Fully connected hidden layer would have an unmanageable number of parameters

Solving the following problems...

First

Fully connected hidden layer would have an unmanageable number of parameters

Second

Computing the linear activation of the hidden units would have been quite expensive

How this looks in the image...

We have

Receptive Field

Outline

(1) Introduction

- Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution

(2) Convolutional Networks

- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Definition of Convolution
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Feature Pooling and Subsampling Layer
- Subsampling=Skipping Layer
- A Little Linear Algebra
- Pooling Layer
- Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed Architecture
- Backpropagation

Parameter Sharing

Second Idea

Share matrix of parameters across certain units.

Parameter Sharing

Second Idea

Share matrix of parameters across certain units.

These units are organized into

- The same feature "map"
- Where the units share same parameters (For example, the same mask)

Example

We have something like this

Feature Map 1
Feature Map 2
Feature Map 3

Example

We have something like this

Feature Map 1
Feature Map 2
Feature Map 3

Now, in our notation

We have a collection of matrices representing this connectivity

- $W_{i j}$ is the connection matrix the i th input channel with the j th feature map.

Now, in our notation

We have a collection of matrices representing this connectivity

- $W_{i j}$ is the connection matrix the i th input channel with the j th feature map.
- In each cell of these matrices is the weight to be multiplied with the local input to the local neuron.

An now why the name of convolution

Yes!!! The definition is coming now.

Outline

(1) Introduction

- Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Definition of Convolution
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Feature Pooling and Subsampling Layer
- Subsampling=Skipping Layer
- A Little Linear Algebra
- Pooling Layer
- Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed ArchitectureBackpropagation

Digital Images

In computer vision

We usually operate on digital (discrete) images:

Digital Images

In computer vision

We usually operate on digital (discrete) images:

- Sample the 2D space on a regular grid.

Digital Images

In computer vision

We usually operate on digital (discrete) images:

- Sample the 2D space on a regular grid.
- Quantize each sample (round to nearest integer).

Digital Images

In computer vision

We usually operate on digital (discrete) images:

- Sample the 2D space on a regular grid.
- Quantize each sample (round to nearest integer).

The image can now be represented as a matrix of integer values, $f:[a, b] \times[c, d] \rightarrow I$
$i \downarrow\left[\begin{array}{cccccccc}79 & 5 & 6 & 90 & 12 & 34 & 2 & 1 \\ 8 & 90 & 12 & 34 & 26 & 78 & 34 & 5 \\ 8 & 1 & 3 & 90 & 12 & 34 & 11 & 61 \\ 77 & 90 & 12 & 34 & 200 & 2 & 9 & 45 \\ 1 & 3 & 90 & 12 & 20 & 1 & 6 & 23\end{array}\right]$

We can see the coordinate of f as follows

We have the following

$$
f=\left(\begin{array}{ccccc}
f_{-n,-n} & f_{-n,-n+1} & \cdots & f_{-n,(n-1)} & f_{-n, n} \tag{4}\\
\vdots & \ddots & \vdots & . & \vdots \\
\vdots & \ldots & f_{0,0} & \cdots & \vdots \\
\vdots & . \cdot & \vdots & \ddots & \vdots \\
f_{n \times-n} & f_{n \times-n+1} & \cdots & f_{n \times(n-1)} & f_{n, n}
\end{array}\right)
$$

Many times we want to eliminate noise in a image
By using for example a moving average

Many times we want to eliminate noise in a image

By using for example a moving average

This last moving average can be seen as

$$
\begin{equation*}
(f * g)(i)=\sum_{j=-n}^{n} f(j) g(i-j)=\frac{1}{N} \sum_{j=m}^{-m} f(j) \tag{5}
\end{equation*}
$$

With $f(j)$ representing the value of the pixel at position i,

$$
g(h)= \begin{cases}\frac{1}{N} & \text { if } h \in\{-m,-m+1, \ldots, 1,0,1, \ldots, m-1, m\} \\ 0 & \text { else }\end{cases}
$$

with $0<m<n$.

This can be generalized into the 2D images

Left f and Right $f * g$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0								

This can be generalized into the 2D images

Left f and Right $f * g$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

This can be generalized into the 2D images

Left f and Right $f * g$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20						

This can be generalized into the 2D images

Left f and Right $f * g$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10		
10	10	10	0	0	0	0	0		

Moving average in 2D

Basically in 2D

We have that we can define different types of filter using the idea of weighted average

$$
\begin{equation*}
(f * g)(i, j)=\sum_{k=n}^{-n} \sum_{l=-n}^{n} f(k, l) \times g(i-k, j-l) \tag{6}
\end{equation*}
$$

Moving average in 2D

Basically in 2D

We have that we can define different types of filter using the idea of weighted average

$$
\begin{equation*}
(f * g)(i, j)=\sum_{k=n}^{-n} \sum_{l=-n}^{n} f(k, l) \times g(i-k, j-l) \tag{6}
\end{equation*}
$$

What is this weight matrix also called a kernel of 3×3 moving average

$$
\frac{1}{9}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \text { "The Box Filter" }
$$

Outline

(1) Introduction

- Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity
- Sharing Parameters
(3) Layers

Convolutional Layer

- Definition of Convolution
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Feature Pooling and Subsampling Layer
- Subsampling=Skipping Layer
- A Little Linear Algebra
- Pooling Layer
- Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed ArchitectureBackpropagation

Convolution

Definition

Let $f:[a, b] \times[c, d] \rightarrow I$ be the image and $g:[e, f] \times[h, i] \rightarrow V$ be the kernel. The output of convolving f with g, denoted $f * g$ is

$$
\begin{equation*}
(f * g)[x, y]=\sum_{k=-n}^{n} \sum_{l=-n}^{n} f(k, l) g(x-k, y-l) \tag{8}
\end{equation*}
$$

- The Flipped Kernel

Back on the Convolutional Architecture

We have then something like this

Feature Maps

Thus

Each Feature Map forms a 2D grid of features

That can be computed with a discrete convolution $\left(^{*}\right)$ of a kernel matrix $k_{i j}$ which is the hidden weights matrix $W_{i j}$ with rows and columns with its rows and columns flipped.

Thus

Each Feature Map forms a 2D grid of features

That can be computed with a discrete convolution (*) of a kernel matrix $k_{i j}$ which is the hidden weights matrix $W_{i j}$ with rows and columns with its rows and columns flipped.

In addition

- x_{i} is the i th channel of input.

Thus

Each Feature Map forms a 2D grid of features

That can be computed with a discrete convolution $\left(^{*}\right)$ of a kernel matrix $k_{i j}$ which is the hidden weights matrix $W_{i j}$ with rows and columns with its rows and columns flipped.

In addition

- x_{i} is the i th channel of input.
- $k_{i j}$ is the convolution kernel.

Thus

Each Feature Map forms a 2D grid of features

That can be computed with a discrete convolution (*) of a kernel matrix $k_{i j}$ which is the hidden weights matrix $W_{i j}$ with rows and columns with its rows and columns flipped.

In addition

- x_{i} is the i th channel of input.
- $k_{i j}$ is the convolution kernel.
- y_{j} is the hidden layer output.

Thus

Each Feature Map forms a 2D grid of features

That can be computed with a discrete convolution $\left(^{*}\right)$ of a kernel matrix $k_{i j}$ which is the hidden weights matrix $W_{i j}$ with rows and columns with its rows and columns flipped.

In addition

- x_{i} is the i th channel of input.
- $k_{i j}$ is the convolution kernel.
- y_{j} is the hidden layer output.

Thus the total output

$$
\begin{equation*}
y_{j}=\sum_{i} k_{i j} * x_{i} \tag{9}
\end{equation*}
$$

Furthermore

Let layer l be a Convolutional Layer

Then, the input of layer l comprises $m_{1}^{(l-1)}$ feature maps from the previous layer.

Furthermore

Let layer l be a Convolutional Layer

Then, the input of layer l comprises $m_{1}^{(l-1)}$ feature maps from the previous layer.

Each input layer has a size of $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$
In the case where $l=1$, the input is a single image I consisting of one or more channels.

Furthermore

Let layer l be a Convolutional Layer

Then, the input of layer l comprises $m_{1}^{(l-1)}$ feature maps from the previous layer.

Each input layer has a size of $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$
In the case where $l=1$, the input is a single image I consisting of one or more channels.

Thus

The output of layer l consists of $m_{1}^{(l)}$ feature maps of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$.

Remark

We have that

- A Convolutional Neural Network (CNN) directly accepts raw images as input.

Remark

We have that

- A Convolutional Neural Network (CNN) directly accepts raw images as input.

Thus, their importance when training discrete filters

- Instead of assuming a certain comprehension of Computer Vision, one could think this is as a Silver Bullet.

Remark

We have that

- A Convolutional Neural Network (CNN) directly accepts raw images as input.

Thus, their importance when training discrete filters

- Instead of assuming a certain comprehension of Computer Vision, one could think this is as a Silver Bullet.

However, you still

- You still need to be aware of :
- The need of great quantities of data.
- And there is not an understanding why this work.

A Small Remark

We have the following

- $Y_{j}^{(l)}$ is a matrix representing the l layer and $j^{\text {th }}$ feature map.

A Small Remark

We have the following

- $Y_{j}^{(l)}$ is a matrix representing the l layer and $j^{\text {th }}$ feature map.

Therefore

- We can see the convolutional as a fusion of information from different feature maps.

$$
\sum_{j=1}^{m_{1}^{(l-1)}} K_{i j}^{(l)} * Y_{j}^{(l-1)}
$$

Thus

Given a specific layer l, we have that $i^{\text {th }}$ feature map in such layer equal to

$$
\begin{equation*}
Y_{i}^{(l)}=B_{i}^{(l)}+\sum_{j=1}^{m_{1}^{(l-1)}} K_{i j}^{(l)} * Y_{j}^{(l-1)} \tag{10}
\end{equation*}
$$

Thus

Given a specific layer l, we have that $i^{\text {th }}$ feature map in such layer equal to

$$
\begin{equation*}
Y_{i}^{(l)}=B_{i}^{(l)}+\sum_{j=1}^{m_{1}^{(l-1)}} K_{i j}^{(l)} * Y_{j}^{(l-1)} \tag{10}
\end{equation*}
$$

Where

- $Y_{i}^{(l)}$ is the $i^{\text {th }}$ feature map in layer l.
- $B_{i}^{(l)}$ is the bias matrix for output j.

Thus

Given a specific layer l, we have that $i^{\text {th }}$ feature map in such layer equal to

$$
\begin{equation*}
Y_{i}^{(l)}=B_{i}^{(l)}+\sum_{j=1}^{m_{1}^{(l-1)}} K_{i j}^{(l)} * Y_{j}^{(l-1)} \tag{10}
\end{equation*}
$$

Where

- $Y_{i}^{(l)}$ is the $i^{\text {th }}$ feature map in layer l.
- $B_{i}^{(l)}$ is the bias matrix for output j.
- $K_{i j}^{(l)}$ is the filter of size $\left[2 h_{1}^{(l)}+1\right] \times\left[2 h_{2}^{(l)}+1\right]$.

Thus

Given a specific layer l, we have that $i^{\text {th }}$ feature map in such layer equal to

$$
\begin{equation*}
Y_{i}^{(l)}=B_{i}^{(l)}+\sum_{j=1}^{m_{1}^{(l-1)}} K_{i j}^{(l)} * Y_{j}^{(l-1)} \tag{10}
\end{equation*}
$$

Where

- $Y_{i}^{(l)}$ is the $i^{\text {th }}$ feature map in layer l.
- $B_{i}^{(l)}$ is the bias matrix for output j.
- $K_{i j}^{(l)}$ is the filter of size $\left[2 h_{1}^{(l)}+1\right] \times\left[2 h_{2}^{(l)}+1\right]$.

Thus

The input of layer l comprises $m_{1}^{(l-1)}$ feature maps from the previous layer, each of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$

Therefore

Thew output of layer l

- It consists $m_{1}^{(l)}$ feature maps of size $m_{2}^{(l)} \times m_{3}^{(l)}$

Therefore

Thew output of layer l

- It consists $m_{1}^{(l)}$ feature maps of size $m_{2}^{(l)} \times m_{3}^{(l)}$

Something Notable

- $m_{2}^{(l)}$ and $m_{3}^{(l)}$ are influenced by border effects.
- Therefore, the output feature maps when the convolutional sum is defined properly have size

$$
\begin{aligned}
& m_{2}^{(l)}=m_{2}^{(l-1)}-2 h_{1}^{(l)} \\
& m_{3}^{(l)}=m_{3}^{(l-1)}-2 h_{2}^{(l)}
\end{aligned}
$$

Why?

Example

Convolutional Maps

h_{2}

Special Case

When $l=1$
The input is a single image I consisting of one or more channels.

Thus

We have

Each feature map $Y_{i}^{(l)}$ in layer l consists of $m_{1}^{(l)} \cdot m_{2}^{(l)}$ units arranged in a two dimensional array.

Thus

We have

Each feature map $Y_{i}^{(l)}$ in layer l consists of $m_{1}^{(l)} \cdot m_{2}^{(l)}$ units arranged in a two dimensional array.

Thus, the unit at position (r, s) computes

$$
\begin{aligned}
\left(Y_{i}^{(l)}\right)_{r, s} & =\left(B_{i}^{(l)}\right)_{r, s}+\sum_{j=1}^{m_{1}^{(l-1)}}\left(K_{i j}^{(l)} * Y_{j}^{(l-1)}\right)_{r, s} \\
& =\left(B_{i}^{(l)}\right)_{r, s}+\sum_{j=1}^{m_{1}^{(l-1)}} \sum_{k=-h_{1}^{(l)}}^{h_{1}^{(l)}} \sum_{t=-h_{2}^{(l)}}^{h_{2}^{(l)}}\left(K_{i j}^{(l)}\right)_{k, t}\left(Y_{j}^{(l-1)}\right)_{r+k, s+t}
\end{aligned}
$$

Example

A Convolutional Layer against a RGB Image using three masks/filters

Outline

(1) Introduction

- Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Definition of Convolution
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Feature Pooling and Subsampling Layer
- Subsampling=Skipping Layer
- A Little Linear Algebra
- Pooling Layer
- Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed Architecture
- Backpropagation

As in Multilayer Perceptron

We use a non-linearity

- However, there is a drawback when using Back-Propagation under a sigmoid function

$$
s(x)=\frac{1}{1+e^{-x}}
$$

As in Multilayer Perceptron

We use a non-linearity

- However, there is a drawback when using Back-Propagation under a sigmoid function

$$
s(x)=\frac{1}{1+e^{-x}}
$$

Because if we imagine a Convolutional Network as a series of layer functions f_{i}

$$
y(A)=f_{t} \circ f_{t-1} \circ \cdots \circ f_{2} \circ f_{1}(A)
$$

With f_{t} is the last layer.

As in Multilayer Perceptron

We use a non-linearity

- However, there is a drawback when using Back-Propagation under a sigmoid function

$$
s(x)=\frac{1}{1+e^{-x}}
$$

Because if we imagine a Convolutional Network as a series of layer functions f_{i}

$$
y(A)=f_{t} \circ f_{t-1} \circ \cdots \circ f_{2} \circ f_{1}(A)
$$

With f_{t} is the last layer.
Therefore, we finish with a sequence of derivatives

$$
\frac{\partial y(A)}{\partial w_{1 i}}=\frac{\partial f_{t}\left(f_{t-1}\right)}{\partial f_{t-1}} \cdot \frac{\partial f_{t-1}\left(f_{t-2}\right)}{\partial f_{t-2}} \cdots \cdots \frac{\partial f_{2}\left(f_{1}\right)}{\partial f_{2}} \cdot \frac{\partial f_{1}(A)}{\partial w_{1 i}}
$$

Therefore

Given the commutativity of the product

- You could put together the derivative of the sigmoid's

$$
f(x)=\frac{d s(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}
$$

Therefore

Given the commutativity of the product

- You could put together the derivative of the sigmoid's

$$
f(x)=\frac{d s(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}
$$

Therefore, deriving again

$$
\frac{d f(x)}{d x}=-\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}+\frac{2\left(e^{-x}\right)^{2}}{\left(1+e^{-x}\right)^{3}}
$$

Therefore

Given the commutativity of the product

- You could put together the derivative of the sigmoid's

$$
f(x)=\frac{d s(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}
$$

Therefore, deriving again

$$
\frac{d f(x)}{d x}=-\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}+\frac{2\left(e^{-x}\right)^{2}}{\left(1+e^{-x}\right)^{3}}
$$

After making $\frac{d f(x)}{d x}=0$

- We have the maximum is at $x=0$

Therefore

The maximum for the derivative of the sigmoid

- $f(0)=0.25$

Therefore

The maximum for the derivative of the sigmoid

- $f(0)=0.25$

Therefore, Given a Deep Convolutional Network

- We could finish with

$$
\lim _{k \rightarrow \infty}\left(\frac{d s(x)}{d x}\right)^{k}=\lim _{k \rightarrow \infty}(0.25)^{k} \rightarrow 0
$$

Therefore

The maximum for the derivative of the sigmoid

- $f(0)=0.25$

Therefore, Given a Deep Convolutional Network

- We could finish with

$$
\lim _{k \rightarrow \infty}\left(\frac{d s(x)}{d x}\right)^{k}=\lim _{k \rightarrow \infty}(0.25)^{k} \rightarrow 0
$$

A vanishing derivative

- Making quite difficult to do train a deeper network using this activation function

Thus

The need to introduce a new function

$$
f(x)=x^{+}=\max (0, x)
$$

Thus

The need to introduce a new function

$$
f(x)=x^{+}=\max (0, x)
$$

It is called ReLu or Rectifier

With a smooth approximation (Softplus function)

$$
f(x)=\frac{\ln \left(1+e^{k x}\right)}{k}
$$

Therefore, we have

When $k=1$
_- Softplus $k=1$
——ReLu

Increase k

When $k=10^{4}$

Non-Linearity Layer

If layer I is a non-linearity layer

Its input is given by $m_{1}^{(l)}$ feature maps.

Non-Linearity Layer

If layer I is a non-linearity layer

Its input is given by $m_{1}^{(l)}$ feature maps.

What about the output

Its output comprises again $m_{1}^{(l)}=m_{1}^{(l-1)}$ feature maps

Non-Linearity Layer

If layer I is a non-linearity layer

Its input is given by $m_{1}^{(l)}$ feature maps.

What about the output

Its output comprises again $m_{1}^{(l)}=m_{1}^{(l-1)}$ feature maps

Each of them of size

$$
\begin{equation*}
m_{2}^{(l-1)} \times m_{3}^{(l-1)} \tag{11}
\end{equation*}
$$

With $m_{2}^{(l)}=m_{2}^{(l-1)}$ and $m_{3}^{(l)}=m_{3}^{(l-1)}$.

Thus

With the final output

$$
\begin{equation*}
Y_{i}^{(l)}=f\left(Y_{i}^{(l-1)}\right) \tag{12}
\end{equation*}
$$

Thus

With the final output

$$
\begin{equation*}
Y_{i}^{(l)}=f\left(Y_{i}^{(l-1)}\right) \tag{12}
\end{equation*}
$$

Where

f is the activation function used in layer l and operates point wise.

Thus

With the final output

$$
\begin{equation*}
Y_{i}^{(l)}=f\left(Y_{i}^{(l-1)}\right) \tag{12}
\end{equation*}
$$

Where

f is the activation function used in layer l and operates point wise.
You can also add a gain

$$
\begin{equation*}
Y_{i}^{(l)}=g_{i} f\left(Y_{i}^{(l-1)}\right) \tag{13}
\end{equation*}
$$

Outline

(1) Introduction

- Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Definition of Convolution
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Feature Pooling and Subsampling Layer
- Subsampling=Skipping Layer
- A Little Linear Algebra
- Pooling Layer
- Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed ArchitectureBackpropagation

Rectification Layer, $R_{a b s}$

Now a rectification layer

Then its input comprises $m_{1}^{(l)}$ feature maps of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$.

Rectification Layer, $R_{a b s}$

Now a rectification layer

Then its input comprises $m_{1}^{(l)}$ feature maps of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$.
Then, the absolute value for each component of the feature maps is computed

$$
\begin{equation*}
Y_{i}^{(l)}=\left|Y_{i}^{(l)}\right| \tag{14}
\end{equation*}
$$

Rectification Layer, $R_{a b s}$

Now a rectification layer

Then its input comprises $m_{1}^{(l)}$ feature maps of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$.

Then, the absolute value for each component of the feature maps is computed

$$
\begin{equation*}
Y_{i}^{(l)}=\left|Y_{i}^{(l)}\right| \tag{14}
\end{equation*}
$$

Where the absolute value

It is computed point wise such that the output consists of $m_{1}^{(l)}=m_{1}^{(l-1)}$ feature maps unchanged in size.

Thus

$$
f(x)=\frac{\ln \left(1+e^{k x}\right)}{k}
$$

We have that

Experiments show that rectification plays a central role in achieving good performance.

Thus

$$
f(x)=\frac{\ln \left(1+e^{k x}\right)}{k}
$$

We have that

Experiments show that rectification plays a central role in achieving good performance.

You can find this in

K. Jarrett, K. Kavukcuogl, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In Computer Vision, International Conference on, pages 2146-2153, 2009.

Thus

$$
f(x)=\frac{\ln \left(1+e^{k x}\right)}{k}
$$

We have that

Experiments show that rectification plays a central role in achieving good performance.

You can find this in

K. Jarrett, K. Kavukcuogl, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In Computer Vision, International Conference on, pages 2146-2153, 2009.

Remark

- Rectification could be included in the non-linearity layer.

Thus

$$
f(x)=\frac{\ln \left(1+e^{k x}\right)}{k}
$$

We have that

Experiments show that rectification plays a central role in achieving good performance.

You can find this in

K. Jarrett, K. Kavukcuogl, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In Computer Vision, International Conference on, pages 2146-2153, 2009.

Remark

- Rectification could be included in the non-linearity layer.
- But also it can be seen as an independent layer.

Given that we are using Backpropagation

We need a soft approximation to $f(x)=|x|$

For this, we have

$$
\frac{\partial f}{\partial x}=\operatorname{sgn}(x)
$$

- When $x \neq 0$. Why?

Given that we are using Backpropagation

We need a soft approximation to $f(x)=|x|$

For this, we have

$$
\frac{\partial f}{\partial x}=\operatorname{sgn}(x)
$$

- When $x \neq 0$. Why?

We can use the following approximation

$$
\operatorname{sgn}(x)=2\left(\frac{\exp \{k x\}}{1+\exp \{k x\}}\right)-1
$$

Given that we are using Backpropagation

We need a soft approximation to $f(x)=|x|$

For this, we have

$$
\frac{\partial f}{\partial x}=\operatorname{sgn}(x)
$$

- When $x \neq 0$. Why?

We can use the following approximation

$$
\operatorname{sgn}(x)=2\left(\frac{\exp \{k x\}}{1+\exp \{k x\}}\right)-1
$$

Therefore, we have by integration and working the C

$$
f(x)=\frac{2}{k} \ln (1+\exp \{k x\})-x-\frac{2}{k} \ln (2)
$$

We get the following situation

Something Notable

$$
f(x)=\frac{2}{k} \ln (1+\exp \{k x\})-x-\frac{2}{k} \ln (2)
$$

Outline

（1）Introduction
－Image Processing
－Multilayer Neural Network Classification
－Drawbacks
－Possible Solution
（2）Convolutional Networks
－History
－Local Connectivity
－Sharing Parameters
（3）Layers
－Convolutional Layer
－Definition of Convolution
－Non－Linearity Layer
－Fixing the Problem，ReLu function
－Back to the Non－Linearity Layer
－Rectification Layer
－Local Contrast Normalization Layer
－Feature Pooling and Subsampling Layer
－Subsampling＝Skipping Layer
－A Little Linear Algebra
－Pooling Layer
－Finally，The Fully Connected Layer
（4）An Example of CNN
－The Proposed Architecture
－Backpropagation

5

っの 凤 $75 / 113$

Normalizing

Contrast normalization layer

The task of a local contrast normalization layer:

Normalizing

Contrast normalization layer

The task of a local contrast normalization layer:

- To enforce local competitiveness between adjacent units within a feature map.

Normalizing

Contrast normalization layer

The task of a local contrast normalization layer:

- To enforce local competitiveness between adjacent units within a feature map.
- To enforce competitiveness units at the same spatial location.

Normalizing

Contrast normalization layer

The task of a local contrast normalization layer:

- To enforce local competitiveness between adjacent units within a feature map.
- To enforce competitiveness units at the same spatial location.

We have two types of operations

- Subtractive Normalization.

Normalizing

Contrast normalization layer

The task of a local contrast normalization layer:

- To enforce local competitiveness between adjacent units within a feature map.
- To enforce competitiveness units at the same spatial location.

We have two types of operations

- Subtractive Normalization.
- Brightness Normalization.

Subtractive Normalization

Given $m_{1}^{(l-1)}$ feature maps of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$
The output of layer l comprises $m_{1}^{(l)}=m_{1}^{(l-1)}$ feature maps unchanged in size.

Subtractive Normalization

Given $m_{1}^{(l-1)}$ feature maps of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$
The output of layer l comprises $m_{1}^{(l)}=m_{1}^{(l-1)}$ feature maps unchanged in size.

With the operation

$$
\begin{equation*}
Y_{i}^{(l)}=Y_{i}^{(l-1)}-\sum_{j=1}^{m_{1}^{(l-1)}} K_{G(\sigma)} * Y_{j}^{(l-1)} \tag{15}
\end{equation*}
$$

Subtractive Normalization

Given $m_{1}^{(l-1)}$ feature maps of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$

The output of layer l comprises $m_{1}^{(l)}=m_{1}^{(l-1)}$ feature maps unchanged in size.

With the operation

$$
\begin{equation*}
Y_{i}^{(l)}=Y_{i}^{(l-1)}-\sum_{j=1}^{m_{1}^{(l-1)}} K_{G(\sigma)} * Y_{j}^{(l-1)} \tag{15}
\end{equation*}
$$

With

$$
\begin{equation*}
\left(K_{G(\sigma)}\right)_{r, s}=\frac{1}{\sqrt{2 \pi} \sigma^{2}} \exp \left\{\frac{r^{2}+s^{2}}{2 \sigma^{2}}\right\} \tag{16}
\end{equation*}
$$

Brightness Normalization

An alternative is to normalize the brightness in combination with the rectified linear units

$$
\begin{equation*}
\left(Y_{i}^{(l)}\right)_{r, s}=\frac{\left(Y_{i}^{(l-1)}\right)_{r, s}}{\left(\kappa+\lambda \sum_{j=1}^{m_{1}^{(l-1)}}\left(Y_{j}^{(l-1)}\right)_{r, s}^{2}\right)^{\mu}} \tag{17}
\end{equation*}
$$

Brightness Normalization

An alternative is to normalize the brightness in combination with the rectified linear units

$$
\begin{equation*}
\left(Y_{i}^{(l)}\right)_{r, s}=\frac{\left(Y_{i}^{(l-1)}\right)_{r, s}}{\left(\kappa+\lambda \sum_{j=1}^{m_{1}^{(l-1)}}\left(Y_{j}^{(l-1)}\right)_{r, s}^{2}\right)^{\mu}} \tag{17}
\end{equation*}
$$

Where

- κ, μ and λ are hyperparameters which can be set using a

$$
f(x)=\frac{\ln \left(1+e^{k x}\right)}{k}
$$

validation set.

Outline

(1) Introduction

- Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Definition of Convolution
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Feature Pooling and Subsampling Layer
- Subsampling=Skipping Layer
- A Little Linear Algebra
- Pooling LayerFinally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed Architecture
- Backpropagation

Subsampling Layer

Motivation

The motivation of subsampling the feature maps obtained by previous layers is robustness to noise and distortions.

Subsampling Layer

Motivation

The motivation of subsampling the feature maps obtained by previous layers is robustness to noise and distortions.

How?

- Normally, in traditional Convolutional Networks subsampling this is done by applying skipping factors!!!
- However, it is possible to combine subsampling with pooling and do it in a separate laye

Sub-sampling

The subsampling layer

- It seems to be acting as the well know sub-sampling pyramid

How is subsampling implemented?

We know that Image Pyramids

They were designed to find:

How is subsampling implemented?

We know that Image Pyramids

They were designed to find:
(1) filter-based representations to decompose images into information at multiple scales,

How is subsampling implemented?

We know that Image Pyramids

They were designed to find:
(1) filter-based representations to decompose images into information at multiple scales,
(2) To extract features/structures of interest,

How is subsampling implemented?

We know that Image Pyramids

They were designed to find:
(1) filter-based representations to decompose images into information at multiple scales,
(2) To extract features/structures of interest,
(3) To attenuate noise.

How is subsampling implemented?

We know that Image Pyramids

They were designed to find:
(1) filter-based representations to decompose images into information at multiple scales,
(2) To extract features/structures of interest,
(3) To attenuate noise.

Example of usage of this filters

- The SURF and SIFT filters

Projection Vectors

Let $I \in \mathbb{R}^{N}$ an image
And a projection transformation such that

$$
\boldsymbol{a}=P I
$$

Projection Vectors

Let $I \in \mathbb{R}^{N}$ an image

And a projection transformation such that

$$
\boldsymbol{a}=P I
$$

Where

$$
\boldsymbol{a}=\left[\begin{array}{llll}
\boldsymbol{a}_{0} & \boldsymbol{a}_{1} & \cdots & \boldsymbol{a}_{M-1}
\end{array}\right] \in \mathbb{R}^{M}
$$

- The transformation coefficients...

Projection Vectors

Let $I \in \mathbb{R}^{N}$ an image

And a projection transformation such that

$$
\boldsymbol{a}=P I
$$

Where

$$
\boldsymbol{a}=\left[\begin{array}{llll}
\boldsymbol{a}_{0} & \boldsymbol{a}_{1} & \cdots & \boldsymbol{a}_{M-1}
\end{array}\right] \in \mathbb{R}^{M}
$$

- The transformation coefficients...

Additionally, we have the projection vectors in P

$$
P=\left[\begin{array}{llll}
\boldsymbol{p}_{0} & \boldsymbol{p}_{1} & \cdots & \boldsymbol{p}_{M-1}
\end{array}\right]
$$

Thus, we have the following cases

When $M=N$

- Thus, the projection P is to be critically sampled (Relation with the rank of P)

Thus, we have the following cases

When $M=N$

- Thus, the projection P is to be critically sampled (Relation with the rank of P)

When $N<M$

- Over-sampled

Thus, we have the following cases

When $M=N$

- Thus, the projection P is to be critically sampled (Relation with the rank of P)

When $N<M$

- Over-sampled

When $M<N$

- Under-sampled

Therefore

We have that we can build a series of subsampled images

$$
\left\{\begin{array}{llll}
I_{0} & I_{1} & \cdots & I_{T}
\end{array}\right\}
$$

Therefore

We have that we can build a series of subsampled images

$$
\left\{\begin{array}{llll}
I_{0} & I_{1} & \cdots & I_{T}
\end{array}\right\}
$$

Usually constructed with a separable 1D kernel h

$$
I_{k+1}=P I_{k}=\underbrace{\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)}_{\text {down-sampling }} \underbrace{\left(\begin{array}{ccccc}
\ddots & & & & \\
- & h & - & & \\
& - & h & - & \\
& & - & h & - \\
& & & & \ddots
\end{array}\right)}_{\text {conv toplitz matrix }}
$$

There are also other ways of doing this

subsampling can be done using so called skipping factors

$s_{1}^{(l)}$ and $s_{2}^{(l)}$

There are also other ways of doing this

subsampling can be done using so called skipping factors

$$
s_{1}^{(l)} \text { and } s_{2}^{(l)}
$$

The basic idea is to skip a fixed number of pixels
Therefore the size of the output feature map is given by

$$
m_{2}^{(l)}=\frac{m_{2}^{(l-1)}-2 h_{1}^{(l)}}{s_{1}^{(l)}+1} \text { and } m_{3}^{(l)}=\frac{m_{3}^{(l-1)}-2 h_{2}^{(l)}}{s_{2}^{(l)}+1}
$$

What is Pooling?

Pooling
Spatial pooling is way to compute image representation based on encoded local features.

Pooling

Let l be a pooling layer
Its output comprises $m_{1}^{(l)}=m_{1}^{(l-1)}$ feature maps of reduced size.

Pooling

Let l be a pooling layer
Its output comprises $m_{1}^{(l)}=m_{1}^{(l-1)}$ feature maps of reduced size.

Pooling Operation

It operates by placing windows at non-overlapping positions in each feature map and keeping one value per window such that the feature maps are subsampled.

Example

If layer I is a pooling and subsampling layer and given $m_{1}^{(l-1)}=4$ feature maps

feature maps
layer ($l-1$)
feature maps layer l

Thus

In the previous example

All feature maps are pooled and subsampled individually.

Thus

In the previous example

All feature maps are pooled and subsampled individually.

Each unit

In one of the $m_{1}^{(l)}=4$ output feature maps represents the average or the maximum within a fixed window of the corresponding feature map in layer $(l-1)$.

We distinguish two types of pooling

Average pooling

When using a boxcar filter, the operation is called average pooling and the layer denoted by P_{A}.

We distinguish two types of pooling

Max pooling

For max pooling, the maximum value of each window is taken. The layer is denoted by P_{M}.

Outline

(1) Introduction

- Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Definition of Convolution
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Feature Pooling and Subsampling Layer
- Subsampling=Skipping Layer
- A Little Linear Algebra
- Pooling Layer
- Finally, The Fully Connected Layer
(4) An Example of CNN
- The Proposed Architecture
- Backpropagation

Fully Connected Layer

If a layer l is a fully connected layer

If layer $(l-1)$ is a fully connected layer, use the equation to compute the output of $i^{t h}$ unit at layer l :

$$
z_{i}^{(l)}=\sum_{k=0}^{m^{(l)}} w_{i, k}^{(l)} y_{k}^{(l)} \text { thus } y_{i}^{(l)}=f\left(z_{i}^{(l)}\right)
$$

Fully Connected Layer

If a layer l is a fully connected layer

If layer $(l-1)$ is a fully connected layer, use the equation to compute the output of $i^{t h}$ unit at layer l :

$$
z_{i}^{(l)}=\sum_{k=0}^{m^{(l)}} w_{i, k}^{(l)} y_{k}^{(l)} \text { thus } y_{i}^{(l)}=f\left(z_{i}^{(l)}\right)
$$

Otherwise

Layer l expects $m_{1}^{(l-1)}$ feature maps of size $m_{2}^{(l-1)} \times m_{3}^{(l-1)}$ as input.

Then

Thus, the $i^{\text {th }}$ unit in layer l computes

$$
\begin{aligned}
& y_{i}^{(l)}=f\left(z_{i}^{(l)}\right) \\
& z_{i}^{(l)}=\sum_{j=1}^{m_{1}^{(l-1)}} \sum_{r=1}^{m_{2}^{(l-1)}} \sum_{s=1}^{m_{3}^{(l-1)}} w_{i, j, r, s}^{(l)}\left(Y_{j}^{(l-1)}\right)_{r, s}
\end{aligned}
$$

Here

Where $w_{i, j, r, s}^{(l)}$

- It denotes the weight connecting the unit at position (r, s) in the $j^{\text {th }}$ feature map of layer $(l-1)$ and the $i^{\text {th }}$ unit in layer l.

Here

Where $w_{i, j, r, s}^{(l)}$

- It denotes the weight connecting the unit at position (r, s) in the $j^{\text {th }}$ feature map of layer $(l-1)$ and the $i^{\text {th }}$ unit in layer l.

Something Notable

- In practice, Convolutional Layers are used to learn a feature hierarchy and one or more fully connected layers are used for classification purposes based on the computed features.

Basically

We can use a loss function at the output of such layer

$$
\begin{aligned}
& L(\boldsymbol{W})=\sum_{n=1}^{N} E_{n}(\boldsymbol{W})=\sum_{n=1}^{N} \sum_{k=1}^{K}\left(y_{n k}^{(l)}-t_{n k}\right)^{2} \text { (Sum of Squared Error) } \\
& L(\boldsymbol{W})=\sum_{n=1}^{N} E_{n}(\boldsymbol{W})=\sum_{n=1}^{N} \sum_{k=1}^{K} t_{n k} \log \left(y_{n k}^{(l)}\right) \text { (Cross-Entropy Error) }
\end{aligned}
$$

Basically

We can use a loss function at the output of such layer

$$
\begin{aligned}
& L(\boldsymbol{W})=\sum_{n=1}^{N} E_{n}(\boldsymbol{W})=\sum_{n=1}^{N} \sum_{k=1}^{K}\left(y_{n k}^{(l)}-t_{n k}\right)^{2} \text { (Sum of Squared Error) } \\
& L(\boldsymbol{W})=\sum_{n=1}^{N} E_{n}(\boldsymbol{W})=\sum_{n=1}^{N} \sum_{k=1}^{K} t_{n k} \log \left(y_{n k}^{(l)}\right) \text { (Cross-Entropy Error) }
\end{aligned}
$$

Assuming W the tensor used to represent all the possible weights

- We can use the Backpropagation idea as long we can apply the corresponding derivatives.

Outline

 Introduction
 - Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution
(2) Convolutional Networks
- History
- Local Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Definition of Convolution
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
-
- Local Cont Layer
- Local Contrast Normalization Layer
- Feature Pooling and Subsampling Layer
- Subsampling=Skipping Layer
- A Little Linear Algebra
- Pooling LayerFinally, The Fully Connected Layer
4 An Example of CNN - The Proposed Architecture

[^0]
We have the following Architecture

Simplified Architecture by Jean LeCun "Backpropagation applied to handwritten zip code recognition"

$l=1$ Convolutional Layer
with SoftPlus/No-Linearities

$l=3$ Subsampling
Layer

Therefore, we have

Layer $l=1$

- This Layer is using a Softplus f with 1 channels $j=1$ Black and White

$$
f\left[\left(Y_{1}^{(1)}\right)_{r, s}\right]=f\left[\left(B_{1}^{(l)}\right)_{r, s}+\sum_{k=-h_{1}^{(1)}}^{h_{1}^{(1)}} \sum_{t=-h_{2}^{(1)}}^{h_{2}^{(1)}}\left(K_{i j}^{(1)}\right)_{k, t}\left(Y_{1}^{(0)}\right)_{r+k, s+t}\right]
$$

Now

We have the $l=2$ subsampling for each coordinate

$$
Y_{1}^{(3)}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) f\left[\left(Y_{1}^{(1)}\right)\right]\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)^{T}
$$

Then, you repeat the previous

Thus we obtain a reduced convoluted version $Y_{1}^{(6)}$ of the $Y_{1}^{(4)}$ convolution and subsampling

- Thus, we use those as inputs for the fully connected layer of input.

Then, you repeat the previous

Thus we obtain a reduced convoluted version $Y_{1}^{(6)}$ of the $Y_{1}^{(4)}$ convolution and subsampling

- Thus, we use those as inputs for the fully connected layer of input.

Now assuming a single $k=1$ neuron

$$
\begin{aligned}
& y_{1}^{(7)}=f\left(z_{1}^{(7)}\right) \\
& z_{1}^{(7)}=\sum_{r=1}^{m_{2}^{(6)}} \sum_{s=1}^{m_{3}^{(6)}} w_{r, s}^{(7)}\left(Y_{1}^{(6)}\right)_{r, s}
\end{aligned}
$$

We have

That our final cost function is equal to

$$
L(\boldsymbol{t})=\frac{1}{2}\left(y_{1}^{(7)}-t_{1}^{(7)}\right)^{2}
$$

Outline

(1) Introduction

- Image Processing
- Multilayer Neural Network Classification
- Drawbacks
- Possible Solution
(2) Convolutional Networks
- History
- Local' Connectivity
- Sharing Parameters
(3) Layers
- Convolutional Layer
- Definition of Convolution
- Non-Linearity Layer
- Fixing the Problem, ReLu function
- Back to the Non-Linearity Layer
- Rectification Layer
- Local Contrast Normalization Layer
- Feature Pooling and Subsampling Layer
- Subsampling=Skipping Layer
- A Little Linear Algebra
- Pooling LayerFinally, The Fully Connected Layer
4 An Example of CNN
- The Proposed Architecture
- Backpropagation

After collecting all input/output

Therefore

- We have using sum of squared errors (loss function):

$$
\min _{\boldsymbol{W}} H(\boldsymbol{W})=\frac{1}{2}\left(y_{1}^{(7)}-t_{1}^{(7)}\right)^{2}
$$

After collecting all input/output

Therefore

- We have using sum of squared errors (loss function):

$$
\min _{\boldsymbol{W}} H(\boldsymbol{W})=\frac{1}{2}\left(y_{1}^{(7)}-t_{1}^{(7)}\right)^{2}
$$

Therefore, we can obtain

$$
\frac{\partial H(\boldsymbol{W})}{\partial w_{1, r, s}^{(7)}}=\frac{1}{2} \times \frac{\partial\left(y_{1}^{(7)}-t_{1}^{(7)}\right)^{2}}{\partial w_{1, r, s}^{(7)}}
$$

Therefore

We get in the first part of the equation

$$
\frac{\partial\left(t_{1}-y_{1}^{(7)}\right)^{2}}{\partial w_{1, r, s}^{(7)}}=\left(y_{1}^{(7)}-t_{1}^{(7)}\right) \frac{\partial y_{1}^{(7)}}{\partial w_{1, r, s}^{(7)}}
$$

Therefore

We get in the first part of the equation

$$
\frac{\partial\left(t_{1}-y_{1}^{(7)}\right)^{2}}{\partial w_{1, r, s}^{(7)}}=\left(y_{1}^{(7)}-t_{1}^{(7)}\right) \frac{\partial y_{1}^{(7)}}{\partial w_{1, r, s}^{(7)}}
$$

With

$$
y_{1}^{(7)}=f\left(z_{1}^{(7)}\right)=\frac{\ln \left(1+e^{k z_{k}^{(7)}}\right)}{k}
$$

Therefore

We have

$$
\frac{\partial y_{1}^{(7)}}{\partial w_{1, r, s}^{(7)}}=\frac{\partial f\left(z_{1}^{(7)}\right)}{\partial z_{1}^{(7)}} \times \frac{\partial z_{1}^{(7)}}{\partial w_{1, r, s}^{(7)}}
$$

Therefore

We have

$$
\frac{\partial y_{1}^{(7)}}{\partial w_{1, r, s}^{(7)}}=\frac{\partial f\left(z_{1}^{(7)}\right)}{\partial z_{1}^{(7)}} \times \frac{\partial z_{1}^{(7)}}{\partial w_{1, r, s}^{(7)}}
$$

Therefore

$$
\frac{\partial f\left(z_{1}^{(7)}\right)}{\partial z_{1}^{(7)}}=\frac{e^{k z_{1}^{(7)}}}{\left(1+e^{k z_{1}^{(7)}}\right)}
$$

Therefore

We have

$$
\frac{\partial y_{1}^{(7)}}{\partial w_{1, r, s}^{(7)}}=\frac{\partial f\left(z_{1}^{(7)}\right)}{\partial z_{1}^{(7)}} \times \frac{\partial z_{1}^{(7)}}{\partial w_{1, r, s}^{(7)}}
$$

Therefore

$$
\frac{\partial f\left(z_{1}^{(7)}\right)}{\partial z_{1}^{(7)}}=\frac{e^{k z_{1}^{(7)}}}{\left(1+e^{k z_{1}^{(7)}}\right)}
$$

Finally

$$
\frac{\partial z_{1}^{(7)}}{\partial w_{1, r, s}^{(7)}}=\left(Y_{1}^{(6)}\right)_{r, s}
$$

Now

Given the pooling

$$
Y_{1}^{(6)}=S f\left[\left(Y_{1}^{(4)}\right)\right] S^{T}
$$

Now

Given the pooling

$$
Y_{1}^{(6)}=S f\left[\left(Y_{1}^{(4)}\right)\right] S^{T}
$$

We have that

$$
\left(Y_{1}^{(4)}\right)_{r, s}=\left(B_{1}^{(4)}\right)_{r, s}+\sum_{k=-h_{1}^{(l)}}^{h_{1}^{(l)}} \sum_{t=-h_{2}^{(l)}}^{h_{2}^{(l)}}\left(K_{11}^{(4)}\right)_{k, t}\left(Y^{(3)}\right)_{r+k, s+t}
$$

Therefore

We have then

$$
\frac{\partial H(\boldsymbol{W})}{\partial\left(K_{11}^{(4)}\right)_{k, t}}=\frac{1}{2} \times \frac{\partial\left(y_{1}^{(7)}-t_{1}\right)^{2}}{\partial\left(K_{11}^{(4)}\right)_{k, t}}
$$

Therefore

We have then

$$
\frac{\partial H(\boldsymbol{W})}{\partial\left(K_{11}^{(4)}\right)_{k, t}}=\frac{1}{2} \times \frac{\partial\left(y_{1}^{(7)}-t_{1}\right)^{2}}{\partial\left(K_{11}^{(4)}\right)_{k, t}}
$$

We have the following chain of derivations

$$
\frac{\partial H(\boldsymbol{W})}{\partial\left(K_{11}^{(4)}\right)_{k, t}}=\left(y_{i}^{(l)}-t_{i}\right) \frac{\partial f\left(z_{i}^{(7)}\right)}{\partial z_{i}^{(7)}} \times \frac{\partial z_{i}^{(7)}}{\partial\left(Y_{1}^{(6)}\right)_{r, s}} \times \frac{\partial\left(Y_{1}^{(6)}\right)_{r, s}}{\partial\left(K_{11}^{(4)}\right)_{k, t}}
$$

Therefore

We have

$$
\frac{\partial z_{i}^{(7)}}{\partial\left(Y_{1}^{(6)}\right)_{r, s}}=w_{r, s}^{(7)}
$$

Therefore

We have

$$
\frac{\partial z_{i}^{(7)}}{\partial\left(Y_{1}^{(6)}\right)_{r, s}}=w_{r, s}^{(7)}
$$

The final convolution is assuming that

$$
\frac{\partial\left(Y_{1}^{(6)}\right)_{r, s}}{\partial\left(K_{11}^{(4)}\right)_{k, t}}=\frac{\partial f\left[\left(Y_{1}^{(4)}\right)_{2(r-1), 2(s-1)}\right]}{\partial\left(K_{11}^{(4)}\right)_{k, t}}
$$

Therefore

We have

$$
\frac{\partial f\left[\left(Y_{1}^{(4)}\right)_{2(r-1), 2(s-1)}\right]}{\partial\left(K_{11}^{(4)}\right)_{k, t}}=\frac{\partial f\left[\left(Y_{1}^{(4)}\right)_{2(r-1), 2(s-1)}\right]}{\partial\left(Y_{1}^{(4)}\right)_{2(r-1), 2(s-1)}} \times \frac{\partial\left(Y_{1}^{(4)}\right)_{2(r-1), 2(s-1)}}{\partial\left(K_{11}^{(4)}\right)_{k, t}}
$$

Therefore

We have

$$
\frac{\partial f\left[\left(Y_{1}^{(4)}\right)_{2(r-1), 2(s-1)}\right]}{\partial\left(K_{11}^{(4)}\right)_{k, t}}=\frac{\partial f\left[\left(Y_{1}^{(4)}\right)_{2(r-1), 2(s-1)}\right]}{\partial\left(Y_{1}^{(4)}\right)_{2(r-1), 2(s-1)}} \times \frac{\partial\left(Y_{1}^{(4)}\right)_{2(r-1), 2(s-1)}}{\partial\left(K_{11}^{(4)}\right)_{k, t}}
$$

Then

$$
\frac{\partial f\left[\left(Y_{1}^{(4)}\right)_{2(r-1), 2(s-1)}\right]}{\partial\left(Y_{1}^{(4)}\right)_{2(r-1), 2(s-1)}}=f^{\prime}\left[\left(Y_{1}^{(4)}\right)_{2(r-1), 2(s-1)}\right]
$$

Finally, we have

The equation

$$
\frac{\partial\left(Y_{1}^{(4)}\right)_{2(r-1), 2(s-1)}}{\partial\left(K_{11}^{(4)}\right)_{k, t}}=\left(Y^{(3)}\right)_{2(r-1)+k, 2(s-1)+t}
$$

The Other Equations

I will leave you to devise them

- They are a repetitive procedure.

[^0]: - Backpropagation

