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Introduction

Representation of functions
The main result in multi-layer perceptron is its power of representation.

Furthermore
After all, it is quite striking if we can represent continuous functions of the
form f : Rn 7−→ R as a finite sum of simple functions.
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Therefore

Our main goal
We want to know under which conditions the sum of the form:

G (x) =
N∑

j=1
αjf

(
wT x + θj

)
(1)

can represent continuous functions in a specific domain.

5 / 55



Setup of the problem

Definition of In

It is an n-dimensional unit cube [0, 1]n

In addition, we have the following set of functions

C (In) = {f : In → R|f is a continous function} (2)
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Topology

Definition (Topological Space)
A topological space is then a set X together with a collection of subsets of X,
called open sets and satisfying the following axioms:

1 The empty set and X itself are open.
2 Any union of open sets is open.
3 The intersection of any finite number of open sets is open.

Remark
This is quite axiomatic... because any set in the collection of X is
open...
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Example

We have
Given any set X, one can define a topology on X where every subset
of X is an open set.

Also
Let (X, d) be a metric space. The sets (called open Balls) are a
Topology

S (x0, r) = {x ∈ X|d (x0, x) < r} where r > 0 and x0 ∈ X
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Definition

Open Cover Definition
A topological space X is called compact if each of its open covers has
a finite subcover.

In Our Case
In is compact
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Compactness

Theorem
A compact set is closed and bounded.

Thus
In is a compact set in Rn.

12 / 55



Compactness

Theorem
A compact set is closed and bounded.

Thus
In is a compact set in Rn.

12 / 55



Why Compactness?

Basically
Given that in Topology we care in how something behaves in open
sets!!!

Compactness
Establish some sort of “fitness” in a Topological sense

Therefore
There are only finitely many possible behaviors.
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Continuous Functions

Theorem
A function f from a topological space X into another topological space Y is
continuous if and only if every open set V in Y ,

f−1 (V ) = {x|f (x) ∈ V }

Example, Is f : [0, 1] −→ R, f (x) = 1/x a continuous function in
[0, 1]?
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It is not!!

Define with g a continuous function

BR (ε, g (x0)) = {y ∈ R| ‖y − f (x0)‖ < ε}

Therefore, its pre-image is open

f−1 (BR (ε, g (x0)))

Therefore exist a ball around B[0,1] (δ, x0)

B[0,1] (δ, x0) ⊆ f−1 (BR (ε, g (x0)))
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The well know ε− δ definition

What about the +∞ and our original f
You need to use a sequence {xn} such that xn → +∞ when n→∞

Therefore, we have for some ε >
We have that limn→∞B (ε, f (xn)) = limn→∞ xn

Therefore

lim
n→∞

f−1 (BR (ε, g (xn))) = {0}
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Therefore

The pre-image is closed
The function f is not continuous!!!
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All the continuous functions are bounded

For Example
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Thus

Theorem
Let K be a nonempty subset of Rn, where n > 1. If K is compact, then
every continuous real-valued function defined on K is bounded.

Definition (Supremum Norm)
Let X be a topological space and let F be the space of all bounded
complex-valued continuous functions defined on K.

I The supremum norm is the norm defined on F by
‖f‖ = sup

x∈X
|f (x)| (3)
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I give you an idea

We would like, given C (In)
To prove that there is a function

N∑
j=1

αjf
(
wT x + θj

)

Nearby any f (x) ∈ C [In]
Basically, we want a set

R =

G (x) |G (x) =
N∑

j=1
αjf

(
wT x + θj

)
such that R ⊆ C [In] and given G ∈ R, for all ε > 0,
supx∈In

|G (x)− f (x)| < ε.
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Limit Points

Definition
If X is a topological space and p is a point in X, a neighborhood of p is a subset
V of X that includes an open set U containing p, p ∈ U ⊆ V .

This is also equivalent to p ∈ X being in the interior of V .

Example in a metric space
In a metric space (X, d), a set V is a neighborhood of a point p if there exists an
open ball with center at p and radius r > 0, such that

Br (p) = B (p; r) = {x ∈ X|d (x, p) < r} (4)

is contained in V .
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Limit Points

Definition of a Limit Point
Let S be a subset of a topological space X. A point x ∈ X is a limit point
of S if every neighborhood of x contains at least one point of S different
from x itself.

Example in R

Which are the limit points of the set
{

1
n

}∞
n=1

?
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This allows to define the idea of density

Something Notable
A subset A of a topological space X is dense in X, if for any point x ∈ X,
any neighborhood of x contains at least one point from A.

Classic Example
The real numbers with the usual topology have the rational numbers as a
countable dense subset.

Why do you believe the floating-point numbers are rational?

In addition
Also the irrational numbers.
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From this, you have the idea of closure

Definition
The closure of a set S is the set of all points of closure of S, that is, the
set S together with all of its limit points.

Example
The closure of the following set (0, 1) ∪ {2}

Meaning
Not all points in the closure are limit points.
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What Characteristics we would like to have

First
We would love to be able to say that separation exist!!!
Given two functions, we can say they are different if their mappings
are different!!!

Second
We want to define a way to measure the open spaces and their
pre-images under continuous functions:

I So we can integrate them!!!
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Hausdorff Space

Definition of Separation
Points x and y in a topological space X can be separated by neighborhoods if
there exists a neighborhood U of x and a neighborhood V of y such that U and
V are disjoint.

Definition
X is a Hausdorff space if any two distinct points of X can be separated by
neighborhoods.

This solve the first issue!!!
We can identify different functions... by open sets
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We have then

Look at what we have
1 C (In) is compact
2 The continuous functions there are bounded!!!
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Therefore

We can integrate f ∈ C (In)
However, we need to have a measure µ to integrate such functions

Why?
We want to construct an existence theorem by contradiction and
integration is necessary
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Now, the Measure Concept

Definition of σ−algebra
Let A ⊂ P (X), we say that A to be an algebra if

1 ∅, X ∈ A.
2 A,B ∈ A then A ∪B ∈ A.
3 A ∈ A then Ac ∈ A.

Definition
An algebra A in P (X) is said to be a σ−algebra, if for any sequence
{An} of elements in A, we have ∪∞n=1An ∈ A

Example
In X = [0, 1), the class A0 consisting of ∅, and all finite unions
A = ∪n

i=1 [ai, bi) with 0 ≤ ai < bi ≤ ai+1 ≤ 1 is an algebra.
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Now, the Measure Concept

Definition of additivity
Let µ : A → [0,+∞] be such that µ (∅) = 0, we say that µ is σ−additive
if for any {Ai}i∈I ⊂ A (Where I can be finite of infinite countable) of
mutually disjoint sets such that ∪i∈IAi ∈ A, we have that

µ (∪i∈IAi) =
∑
i∈I

µ (Ai) (5)

Definition of Measurability
Let A be a σ−algebra of subsets of X, we say that the [air (X,A) is a
measurable space where a σ−additive function µ : A → [0,+∞] is called a
measure on (X,A).
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A Borel Measure

Definition
The Borel σ-algebra is defined to be the σ-algebra generated by the open
sets (or equivalently, by the closed sets).

Definition of a Borel Measure
If F is the Borel σ-algebra on some topological space, then a measure
µ : F → R is said to be a Borel measure (or Borel probability measure).
For a Borel measure, all continuous functions are measurable.

Definition of a signed Borel Measure
A signed Borel measure µ : B (X)→ is a measure such that

1 µ (∅) = 0.
2 µ is σ-additive.
3 supA∈B(X) |µ (A)| <∞
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3 supA∈B(X) |µ (A)| <∞
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A Borel Measure

Regularity
A measure µ is Borel regular measure:

1 For every Borel set B ⊆ Rn and A ⊆ Rn,
µ (A) = µ (A ∩B) + µ (A−B).

2 For every A ⊆ Rn, there exists a Borel set B ⊆ Rn such that A ⊆ B
and µ (A) = µ (B).
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Discriminatory Functions

Definition
Given the set M (In) of signed regular Borel measures, a function f is
discriminatory if for a measure µ ∈M (In)∫

In

f
(
wT x + θ

)
dµ = 0 (6)

for all w ∈ Rn and θ ∈ R implies that µ = 0

Definition
We say that f is sigmoidal if

f (t)→
{

1 as t→ +∞
0 as t→ −∞
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The Important Theorem

Theorem 1
Let f a be any continuous discriminatory function. Then finite sums of the form

G (x) =
N∑

j=1
αjf

(
wT

j x + θj

)
, (7)

where wj ∈ Rn and αj , θj ∈ R are fixed, are dense in C (In)
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Meaning

In other words
Given any g ∈ C (In) and ε > 0, there is a sum, G (x), of the above form,
for which

|G (x)− g (x)| < ε ∀x ∈ In (8)
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Proof

Let S ⊂ C (In) be the set of functions of the form G(x)
First, S is a linear subspace of C (In)

Definition
A subset V of Rn is called a linear subspace of Rn if V contains the zero
vector, and is closed under vector addition and scaling. That is, for
X,Y ∈ V and c ∈ R, we have X + Y ∈ V and cX ∈ V .

We claim that the closure of S is all of C (In)
Assume that the closure of S is not all of C (In)
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Proof

Then
The closure of S, say R, is a closed proper subspace of C (In)

We use the Hahn-Banach Theorem
If p : V → R is a sub-linear function (i.e. you have
p (x+ y) ≤ p (x) + p (y) and the product against scalar is the same), and
ϕ : U → R is a linear functional on a linear subspace U ⊆ V which is
dominated by p on U , i.e. ϕ (x) ≤ p (x) ∀x ∈ U .

Then
There exists a linear extension ψ : V → R of ϕ to the whole space V , i.e.,
there exists a linear functional ψ such that

1 ψ (x) = ϕ (x) ∀x ∈ U .
2 ψ (x) ≤ p (x) ∀x ∈ V .
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Proof

It is possible to construct sub-linear function defined as follow
We define the following linear functional

T (f) =
{
f if f ∈ C (In)−R
0 if f ∈ R

(9)

Then
Using T as p and ϕ
V = C (In)
U = R
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Therefore

We have
There is a bounded linear functional called L 6= 0

The ψ in the Hahn-Banach Theorem
With L (R) = L (S) = 0, but L (C (In)−R) 6= 0
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Proof
Now, we use the Riesz Representation Theorem
Let X be a locally compact Hausdorff space. For any positive linear
functional ψ on C(X), there is a unique regular Borel measure µ on X
such that

ψ =
∫

X
f (x) dµ (x) (10)

for all f in C(X)

We can then do the following

L (h) =
∫

In

h (x) dµ (x) (11)

Where?
For some µ ∈M (In), for all h ∈ C (In)
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Proof

In particular
Given that f

(
wT x + θ

)
is in R for all w and θ

We must have that ∫
In

f
(
wT x + θ

)
dµ (x) = 0 (12)

for all w and θ

But we assumed that f is discriminatory!!!
Then... µ = 0 contradicting the fact that L 6= 0!!! In f ∈ C (In)−R
We have a contradiction!!!
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Proof

Finally
The subspace S of sums of the form G is dense!!!
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Now, we deal with the sigmoidal function

Lemma 1
Any bounded, measurable sigmoidal function, f , is discriminatory. In
particular, any continuous sigmoidal function is discriminatory.

Proof
I will leave this to you... it is possible I will get a question from this proof
for the firs midterm.
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We have the theorem finally!!!

Universal Representation Theorem for the multi-layer perceptron
Let f be any continuous sigmoidal function. Then finite sums of the form

G (x) =
N∑

j=1
αjf

(
wT x + θj

)
(13)

are dense in C (In).

In other words
Given any g ∈ C (In) and ε > 0, there is a sum G (x) of the above form,
for which

|G (x)− g (x)| < ε ∀x ∈ In (14)
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Proof

Simple
Combine the theorem and lemma 1... and because the continuous
sigmoidals satisfy the conditions of the lemma

We have our representation!!!
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