
Introduction to Neural Networks and Deep Learning
Multilayer Perceptron

Andres Mendez-Vazquez

September 15, 2019

1 / 143



Outline
1 Multi-Layer Perceptron

The XOR Problem
Architecture
The Forward and Backward Propagation
The Quadratic Learning Error Function
Hidden–to-Output Weights
Input-to-Hidden Weights
Total Training Error
About Stopping Criteria
Final Basic Batch Algorithm

2 Implementing Using Matrix Operations
Using Matrix Operations to Simplify the Pseudo-Code
Generating the Output zk
Generating the Weights from Hidden to Output Layer
Generating the Weights from Input to Hidden Layer

3 Policies for Multilayer Perceptron
Maximizing information content
Activation Functions
Target Values
Normalizing the inputs
Virtues and limitations of Back-Propagation Algorithm

4 The Universal Approximation Theorem
Introduction
Topology
Compactness
About Density in a Topology
Hausdorff Space
Measure
Discriminatory Functions
Universal Representation Theorem

2 / 143



Outline
1 Multi-Layer Perceptron

The XOR Problem
Architecture
The Forward and Backward Propagation
The Quadratic Learning Error Function
Hidden–to-Output Weights
Input-to-Hidden Weights
Total Training Error
About Stopping Criteria
Final Basic Batch Algorithm

2 Implementing Using Matrix Operations
Using Matrix Operations to Simplify the Pseudo-Code
Generating the Output zk
Generating the Weights from Hidden to Output Layer
Generating the Weights from Input to Hidden Layer

3 Policies for Multilayer Perceptron
Maximizing information content
Activation Functions
Target Values
Normalizing the inputs
Virtues and limitations of Back-Propagation Algorithm

4 The Universal Approximation Theorem
Introduction
Topology
Compactness
About Density in a Topology
Hausdorff Space
Measure
Discriminatory Functions
Universal Representation Theorem

3 / 143



Do you remember?

The Perceptron has the following problem
Given that the perceptron is a linear classifier

It is clear that

It will never be able to classify stuff that is not linearly separable
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Example: XOR Problem

The Problem

0

1

1

Class 1

Class 2
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The Perceptron cannot solve it

Because
The perceptron is a linear classifier!!!

Thus
Something needs to be done!!!

Maybe
Add an extra layer!!!
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A little bit of history
It was first cited by Vapnik
Vapnik cites (Bryson, A.E.; W.F. Denham; S.E. Dreyfus. Optimal
programming problems with inequality constraints. I: Necessary conditions
for extremal solutions. AIAA J. 1, 11 (1963) 2544-2550 [1]) as the first
publication of the backpropagation algorithm in his book "Support Vector
Machines."

It was first used by
Arthur E. Bryson and Yu-Chi Ho described it as a multi-stage dynamic
system optimization method in 1969.

However
It was not until 1974 and later, when applied in the context of neural
networks and through the work of Paul Werbos, David E. Rumelhart,
Geoffrey E. Hinton and Ronald J. Williams that it gained recognition
[2, 3, 4].
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Then

Something Notable
It led to a “renaissance” in the field of artificial neural network research.

Nevertheless
During the 2000s it fell out of favor but has returned again in the 2010s,
now able to train much larger networks using huge modern computing
power such as GPUs.
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Multi-Layer Perceptron (MLP) [5]
Multi-Layer Architecture·

Output

Input

Target

Hidden

Sigmoid Activation
function

Identity Activation
function
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What do we believe happens in the MLP

We have something like this
Layer 1

(0,0,1)

(1,0,0)

(1,0,0)

Layer 2
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Information Flow

We have the following information flow

Function Signals

Error Signal Correction
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Based in the Previous Idea

People noticed that you require a way to get the info
In order to build the error signal...

This can be done by simply
Evaluating the function composition to get the error

x −→ fn ◦ fn−1 ◦ · · · f1 (x) = y −→ e = t− y
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Now, if we want to use the gradient descent

We have a small problem
If you have the derivative of the cost function by weights that are
deep into the network from the cost function

∂F (x)
∂w

= ∂ (t− fn ◦ fn−1 ◦ · · · f1 (x))2

∂w

Therefore, we need to use the chain rule of derivatives
To reach those functions to build the gradient descent for weights
deep into the network
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Chain Rule

Definition
Given a composition of differentiable functions

F (x) = fn ◦ fn−1 ◦ · · · f1 (x)

Then

∂F (x)
∂x

= ∂fn

∂fn−1
× ∂fn−1
∂fn−2

× ∂fn−2
∂fn−3

× · · · × ∂f1
∂x

16 / 143



Therefore
If we derivate with respect to weights at each level, we are actually
back-propagating the error

J (W ) = 1
2 (t− z)2

z = f
(
wT

1 y
)

y = g
(
wT

2 x
)

Therefore, for the first layer

∂J (W )
∂w1

= ∂J (W )
∂z

×
∂f
(
wT

1 y
)

∂wT
1 y

× ∂wT
1 y

∂w1

What about the second layer?
We go to the blackboard!!!
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The Quadratic Learning Error Function

Cost Function our well know error at pattern m

J (m) = 1
2e

2
k (m) (1)

Delta Rule or Widrow-Hoff Rule

∆wkj (m) = −ηek (m)xj(m) (2)

Actually this is know as Gradient Descent

wkj (m+ 1) = wkj (m) + ∆wkj (m) (3)
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Back-propagation

Setup
Let tk be the k-th target (or desired) output and zk be the k-th computed
output with k = 1, . . . , d and w represents all the weights of the network

Training Error for a single Pattern or Sample!!!

J (w) = 1
2

c∑
k=1

(tk − zk)2 = 1
2 ‖t− z‖2 (4)
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Multilayer Architecture
Multilayer Architecture: hidden–to-output weights

Output

Input

Target

Hidden
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Observation about the activation function

Hidden Output is equal to

yj = f

(
d∑

i=1
wjixi

)

Output is equal to

zk = f

ynH∑
j=1

wkjyj
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Hidden–to-Output Weights

netk
It describes how the overall error changes with the activation of the
unit’s net:

netk =
ynH∑
j=1

wkjyj = wT
k · y (5)

Which is composed with an activation function f

zk = f (netk) (6)

Thus
∂zk

∂netk
= f ′ (netk) (7)
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Now, we have the cost function J

Thus, we can apply the chain rule to the cost function

∂J (zk)
∂wkj

= ∂J (zk)
∂netk

· ∂netk
∂wkj

= −δk ·
∂netk
∂wkj

(8)

Still, we need to apply the same for ∂J(zk)
∂netk

∂J (zk)
∂netk

= ∂J (zk)
∂zk

· ∂zk

∂netk
= − (tk − zk) f ′ (netk) (9)
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Then

We create a new variable

δk = −∂J (zk)
∂netk

= (tk − zk) f ′ (netk)

Not only that, but we need
∂netk
∂wkj

Since netk = wT
k · y therefore:

∂netk
∂wkj

= yj (10)
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Finally

The weight update (or learning rule) for the hidden-to-output weights
is:

4wkj = ηδkyj = η (tk − zk) f ′ (netk) yj (11)
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Multi-Layer Architecture
Going deeper into the network

Output

Input

Target

Hidden
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Input–to-Hidden Weights
Chain rule on the Input–to-Hidden weights

∂J

∂wji
= ∂J

∂yj
· ∂yj

∂netj
· ∂netj
∂wji

(12)

Thus

∂J

∂yj
= ∂

∂yj

[
1
2

c∑
k=1

(tk − zk)2
]

= −
c∑

k=1
(tk − zk) ∂zk

∂yj

= −
c∑

k=1
(tk − zk) ∂zk

∂netk
· ∂netk
∂yj

= −
c∑

k=1
(tk − zk) ∂f (netk)

∂netk
· wkj
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Input–to-Hidden Weights

Finally
∂J

∂yj
= −

c∑
k=1

(tk − zk) f ′ (netk) · wkj (13)

Remember

δk = − ∂J

∂netk
= (tk − zk) f ′ (netk) (14)
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What is ∂yj
∂netj

?

First

netj =
d∑

i=1
wjixi = wT

j · x (15)

Then

yj = f (netj)

Then
∂yj

∂netj
= ∂f (netj)

∂netj
= f ′ (netj)
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Then, we can define δj

By defying the sensitivity for a hidden unit:

δj = f ′ (netj)
c∑

k=1
wkjδk (16)

Which means that:
“The sensitivity at a hidden unit is simply the sum of the individual
sensitivities at the output units weighted by the hidden-to-output
weights wkj ; all multiplied by f ′ (netj)”
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What about ∂netj
∂wji

?

We have that
∂netj
∂wji

=
∂wT

j · x
∂wji

= ∂
∑d

i=1wjixi

∂wji
= xi
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Finally

The learning rule for the input-to-hidden weights is:

∆wji = ηxiδj = η

[
c∑

k=1
wkjδk

]
f ′ (netj)xi (17)
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Basically, the entire training process has the following steps

Initialization
Assuming that no prior information is available, pick the synaptic weights
and thresholds

Forward Computation
Compute the induced function signals of the network by proceeding
forward through the network, layer by layer.

Backward Computation
Compute the local gradients of the network.

Finally
Adjust the weights!!!
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However, you have a problem

Problems with Hidden Layers
1 Increase complexity of Training
2 It is necessary to think about “Long and Narrow” network vs “Short

and Fat” network.

Intuition for a One Hidden Layer
1 For every input case of region, that region can be delimited by

hyperplanes on all sides using hidden units on the first hidden layer.
2 A hidden unit in the second layer than ANDs them together to bound

the region.

Advantages
It has been proven that an MLP with one hidden layer can learn any
nonlinear function of the input.
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Now, Calculating Total Change

We have for that
The Total Training Error is the sum over the errors of N individual
patterns

The Total Training Error

J =
N∑

p=1
Jp = 1

2

N∑
p=1

d∑
k=1

(
tpk − z

p
k

)2 = 1
2

n∑
p=1
‖tp − zp‖2 (18)
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About the Total Training Error

Remarks
A weight update may reduce the error on the single pattern being
presented but can increase the error on the full training set.
However, given a large number of such individual updates, the total
error of equation (18) decreases.
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Now, we want the training to stop

Therefore
It is necessary to have a way to stop when the change of the weights is
enough!!!

A simple way to stop the training
The algorithm terminates when the change in the criterion function
J(w) is smaller than some preset value Θ.

∆J (w) = |J (w (t+ 1))− J (w (t))| (19)

There are other stopping criteria that lead to better performance than
this one.
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Other Stopping Criteria

Norm of the Gradient
The back-propagation algorithm is considered to have converged when the
Euclidean norm of the gradient vector reaches a sufficiently small gradient
threshold.

‖∇wJ (m)‖ < Θ (20)

Rate of change in the average error per epoch
The back-propagation algorithm is considered to have converged when the
absolute rate of change in the average squared error per epoch is
sufficiently small. ∣∣∣∣∣∣ 1

N

N∑
p=1

Jp

∣∣∣∣∣∣ < Θ (21)
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About the Stopping Criteria

Observations
1 Before training starts, the error on the training set is high.

I Through the learning process, the error becomes smaller.
2 The error per pattern depends on the amount of training data and the

expressive power (such as the number of weights) in the network.
3 The average error on an independent test set is always higher than on

the training set, and it can decrease as well as increase.
4 A validation set is used in order to decide when to stop training.

I We do not want to over-fit the network and decrease the power of the
classifier generalization “we stop training at a minimum of the error on
the validation set”
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Some More Terminology

Epoch
As with other types of backpropagation, ’learning’ is a supervised process
that occurs with each cycle or ’epoch’ through a forward activation flow of
outputs, and the backwards error propagation of weight adjustments.

In our case
I am using the batch sum of all correcting weights to define that epoch.
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Final Basic Batch Algorithm
Perceptron(X)

1 Initialize random w, number of hidden units nH , number of outputs z, stopping criterion Θ, learning rateη, epoch

m = 0

2 do

3 m = m + 1

4 for s = 1 to N

5 x (m) = X (:, s)

6 for k = 1 to c

7 δk = (tk − zk) f ′
(

wT
k
· y
)

8 for j = 1 to nH

9 netj = wT
j · x;yj = f

(
netj

)
10 wkj (m) = wkj (m) + ηδkyj (m)

11 for j = 1 to nH

12 δj = f ′
(
netj

)∑c

k=1
wkjδk

13 for i = 1 to d

14 wji (m) = wji (m) + ηδjxi (m)

15 until ‖∇wJ (m)‖ < Θ

16 return w (m) 47 / 143
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Example of Architecture to be used
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Generating the output zk

Given the input

X =
[

x1 x2 · · · xN

]
(22)

Where
xi is a vector of features

xi =


x1i

x2i
...
xdi

 (23)
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Therefore
We must have the following matrix for the input to hidden inputs

W IH =


w11 w12 · · · w1d
w21 w22 · · · w2d
...

...
. . .

...
wnH1 wnH2 · · · wnHd

 =


wT

1
wT

2
...

wT
nH

 (24)

Given that wj =


wj1
wj2
...

wjd


Thus
We can create the netj for all the inputs by simply

netj = W IHX =


wT

1 x1 wT
1 x2 · · · wT

1 xN
wT

2 x1 wT
2 x2 · · · wT

2 xN
...

...
. . .

...
wT
nH

x1 wT
nH

x2 · · · wT
nH

xN

 (25)
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Now, we need to generate the yk

We apply the activation function element by element in netj

y1 =


f
(
wT

1 x1
)

f
(
wT

1 x2
)
· · · f

(
wT

1 xN

)
f
(
wT

2 x1
)

f
(
wT

2 x2
)
· · · f

(
wT

2 xN

)
...

... . . . ...
f
(
wT

nH
x1
)

f
(
wT

nH
x2
)
· · · f

(
wT

nH
xN

)

 (26)

IMPORTANT about overflows!!!
Be careful about the numeric stability of the activation function.
I the case of python, we can use the ones provided by scipy.special
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However, We can create a Sigmoid function

It is possible to use the following pseudo-code
Sigmoid(x)

1 if try
{

1.0
1.0+exp{−αx}

}
catch {OV ERFLOW} / I will use a

/ try-and-catch to catch
/ the overflow

2 if x < 0
3 return 0
4 else
5 return 1
6 else
7 return 1.0

1.0+exp{−αx}/ 1.0 refers to the floating point (Rationals
/ trying to represent Reals)

54 / 143



However, We can create a Sigmoid function

It is possible to use the following pseudo-code
Sigmoid(x)

1 if try
{

1.0
1.0+exp{−αx}

}
catch {OV ERFLOW} / I will use a

/ try-and-catch to catch
/ the overflow

2 if x < 0
3 return 0
4 else
5 return 1
6 else
7 return 1.0

1.0+exp{−αx}/ 1.0 refers to the floating point (Rationals
/ trying to represent Reals)

54 / 143



However, We can create a Sigmoid function

It is possible to use the following pseudo-code
Sigmoid(x)

1 if try
{

1.0
1.0+exp{−αx}

}
catch {OV ERFLOW} / I will use a

/ try-and-catch to catch
/ the overflow

2 if x < 0
3 return 0
4 else
5 return 1
6 else
7 return 1.0

1.0+exp{−αx}/ 1.0 refers to the floating point (Rationals
/ trying to represent Reals)

54 / 143



However, We can create a Sigmoid function

It is possible to use the following pseudo-code
Sigmoid(x)

1 if try
{

1.0
1.0+exp{−αx}

}
catch {OV ERFLOW} / I will use a

/ try-and-catch to catch
/ the overflow

2 if x < 0
3 return 0
4 else
5 return 1
6 else
7 return 1.0

1.0+exp{−αx}/ 1.0 refers to the floating point (Rationals
/ trying to represent Reals)

54 / 143



For this, we get netk

For this, we obtain the W HO

W HO =
(
wo

11 wo
12 · · · wo

1nH

)
=
(
wT

o

)
(27)

Thus

netk =
(
wo

11 wo
12 · · · wo

1nH

)


f
(

wT
1 x1
)

f
(

wT
1 x2
)

· · · f
(

wT
1 xN

)
f
(

wT
2 x1
)

f
(

wT
2 x2
)

· · · f
(

wT
2 xN

)
...

...
. . .

...
f
(

w
T
nH

x1
)︸ ︷︷ ︸ f

(
w

T
nH

x2
)︸ ︷︷ ︸ · · · f

(
w

T
nH

xN

)︸ ︷︷ ︸


yk1 yk2 · · · ykN

(28)

In matrix notation
netk =

(
wT
o yk1 wT

o yk2 · · · wT
o ykN

)
(29)
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Now, we have

Thus, we have zk (In our case k = 1, but it could be a range of
values)

zk =
(
f
(
wT

o yk1

)
f
(
wT

o yk2

)
· · · f

(
wT

o ykN

) )
(30)

Thus, we generate a vector of differences

d = t − zk =
(

t1 − f
(
wT
o yk1

)
t2 − f

(
wT
o yk2

)
· · · tN − f

(
wT
o ykN

) )
(31)

where t =
(
t1 t2 · · · tN

)
is a row vector of desired outputs for each

sample.
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Now, we multiply element wise

We have the following vector of derivatives of net

Df =
(
ηf ′

(
wT

o yk1

)
ηf ′

(
wT

o yk2

)
· · · ηf ′

(
wT

o ykN

) )
(32)

where η is the step rate.

Finally, by element wise multiplication (Hadamard Product)

d =
(
η
[
t1 − f

(
wT
o yk1

)]
f ′
(
wT
o yk1

)
η
[
t2 − f

(
wT
o yk2

)]
f ′
(
wT
o yk2

)
· · ·

η
[
tN − f

(
wT
o ykN

)]
f ′
(
wT
o ykN

))
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Tile d

Tile downward

dtile = nH rows




d
d
...
d

 (33)

Finally, we multiply element wise against y1 (Hadamard Product)

∆wtemp
1j = y1 ◦ dtile (34)
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We obtain the total ∆w1j

We sum along the rows of ∆wtemp
1j

∆w1j =

 η
[
t1 − f

(
wT

o yk1

)]
f ′
(

wT
o yk1

)
y11 + η

[
t1 − f

(
wT

o yk1

)]
f ′
(

wT
o yk1

)
y1N

...
η
[
t1 − f

(
wT

o yk1

)]
f ′
(

wT
o yk1

)
ynH 1 + η

[
t1 − f

(
wT

o yk1

)]
f ′
(

wT
o yk1

)
ynH N


(35)

where yhm = f
(
wT

h xm

)
with h = 1, 2, ..., nH and m = 1, 2, ..., N .
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Finally, we update the first weights

We have then

W HO (t+ 1) = W HO (t) + ∆wT
1j (t) (36)
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First

We multiply element wise the W HO and ∆w1j

T = ∆wT
1j ◦W T

HO (37)

Now, we obtain the element wise derivative of netj

Dnetj =


f ′
(
wT

1 x1
)

f ′
(
wT

1 x2
)
· · · f ′

(
wT

1 xN

)
f ′
(
wT

2 x1
)

f ′
(
wT

2 x2
)
· · · f ′

(
wT

2 xN

)
...

... . . . ...
f ′
(
wT

nH
x1
)

f ′
(
wT

nH
x2
)
· · · f ′

(
wT

nH
xN

)

 (38)
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Thus

We tile to the right T

T tile =
(

T T · · · T
)

︸ ︷︷ ︸
N Columns

(39)

Now, we multiply element wise together with η

P t = η (Dnetj ◦ T tile) (40)

where η is constant multiplied against the result the Hadamar Product
(Result a nH ×N matrix)
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Finally

We get use the transpose of X which is a N × d matrix

XT =


xT

1
xT

2
...

xT
N

 (41)

Finally, we get a nH × d matrix

∆wij = P tX
T (42)

Thus, given W IH

W IH (t+ 1) = W HO (t) + ∆wT
ij (t) (43)
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Maximizing information content

Two ways of achieving this, LeCun 1993
The use of an example that results in the largest training error.
The use of an example that is radically different from all those
previously used.

For this
Randomized the samples presented to the multilayer perceptron when not
doing batch training.

Or use an emphasizing scheme
By using the error identify the difficult vs. easy patterns:

Use them to train the neural network
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However

Be careful about emphasizing scheme
The distribution of examples within an epoch presented to the
network is distorted.
The presence of an outlier or a mislabeled example can have a
catastrophic consequence on the performance of the algorithm.

Definition of Outlier
An outlier is an observation that lies outside the overall pattern of a
distribution (Moore and McCabe 1999).
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Activation Functions [5]

We say that
An activation function f (v) is antisymmetric if f (−v) = −f (v)

It seems to be
That the multilayer perceptron learns faster using an antisymmetric
function.

For example, the hyperbolic tangent function
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Hyperbolic tangent function

Another commonly used form of sigmoid non linearity is the
hyperbolic tangent function

fj (vj (n)) = a tanh (bvj (n)) (44)

Example
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The differential of the hyperbolic tangent

We have

fj (vj (n)) =absech2 (bvj (n))

=ab
(
1− tanh2 (bvj (n))

)
BTW
I leave to you to figure out the outputs.
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Logistic Function

This non-linear function has the following definition for a neuron j

fj (vj (n)) = 1
1 + exp {−avj (n)} a > 0 and −∞ < vj (n) <∞ (45)

Example
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The differential of the sigmoid function

Now, if we differentiate it, we have

f ′j (vj (n)) =
[

1
1 + exp {−avj (n)}

] [
1− 1

1 + exp {−avj (n)}

]

= exp {−avj (n)}
(1 + exp {−avj (n)})2
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The outputs finish as

For the output neurons

δk = (tk − zk) f ′ (netk)
= (tk − fk (vk (n))) fk (vk (n)) (1− fk (vk (n)))

For the hidden neurons

δj =fj (vj (n)) (1− fj (vj (n)))
c∑

k=1
wkjδk
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Problems

It is clear from our first class
The problems of the sigmoid activation function, the vanishing
gradient

Not only that, we want activation functions
That accelerate the learning
That can control the previous problem
An any other possible properties
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ReLU

Something Notable
This activation function was first introduced to a dynamical network
by Hahnloser et al. [6].

Finally eleven years after
It was proved that the ReLU function could accelerate the training of
deep networks [7].
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Definition

Rectified Linear Unit (ReLU)

ReLU : R −→ R
ReLU (x) = max (0, x) , x ∈ R

Plotting ReLU

78 / 143



Definition
Rectified Linear Unit (ReLU)

ReLU : R −→ R
ReLU (x) = max (0, x) , x ∈ R

Plotting ReLU

78 / 143



Noisy ReLUs

Definition

f (x) = max (0, x+ Y ) with Y ∼ N (0, σ (x))

They have been used
In restricted Boltzmann machines for computer-vision tasks.
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We have

Plot
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Leaky ReLU

Definition

f (x) =
{
x if x > 0
0.01x otherwise

Plotting
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Furthermore

The Parametric ReLU

f (x) =
{
x if x > 0
ax otherwise

with a ≤ 1
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ELU

Definition

f (x) =
{
x if x > 0
a (ex − 1) otherwise

where a is a hyper-parameter to be tuned, and a ≥ 0.

Plotting
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Target Values

Important
It is important that the target values be chosen within the range of the
sigmoid activation function.

Specifically
The desired response for neuron in the output layer of the multilayer
perceptron should be offset by some amount ε
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For example

Given the a limiting value

We have then
If we have a limiting value +a, we set t = a− ε.
If we have a limiting value −a, we set t = −a+ ε.
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Normalizing the inputs

Something Important (LeCun, 1993)
Each input variable should be preprocessed so that:

The mean value, averaged over the entire training set, is close to zero.
Or it is small compared to its standard deviation.

Example
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Normalizing the inputs

Something Important (LeCun, 1993)
Each input variable should be preprocessed so that:

The mean value, averaged over the entire training set, is close to zero.
Or it is small compared to its standard deviation.

Example
Mean Value
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The normalization must include two other measures

Uncorrelated
We can use the principal component analysis

Example
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In addition

Quite interesting
The decorrelated input variables should be scaled so that their
covariances are approximately equal.

Why
Ensuring that the different synaptic weights learn at approximately
the same speed.
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There are other heuristics

As
Initialization
Learning form hints
Learning rates
etc
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In addition

In section 4.15, Simon Haykin
We have the following techniques:

Network growing
I You start with a small network and add neurons and layers to

accomplish the learning task.

Network pruning
I Start with a large network, then prune weights that are not necessary in

an orderly fashion.

92 / 143



In addition

In section 4.15, Simon Haykin
We have the following techniques:

Network growing
I You start with a small network and add neurons and layers to

accomplish the learning task.

Network pruning
I Start with a large network, then prune weights that are not necessary in

an orderly fashion.

92 / 143



In addition

In section 4.15, Simon Haykin
We have the following techniques:

Network growing
I You start with a small network and add neurons and layers to

accomplish the learning task.

Network pruning
I Start with a large network, then prune weights that are not necessary in

an orderly fashion.

92 / 143



Outline
1 Multi-Layer Perceptron

The XOR Problem
Architecture
The Forward and Backward Propagation
The Quadratic Learning Error Function
Hidden–to-Output Weights
Input-to-Hidden Weights
Total Training Error
About Stopping Criteria
Final Basic Batch Algorithm

2 Implementing Using Matrix Operations
Using Matrix Operations to Simplify the Pseudo-Code
Generating the Output zk
Generating the Weights from Hidden to Output Layer
Generating the Weights from Input to Hidden Layer

3 Policies for Multilayer Perceptron
Maximizing information content
Activation Functions
Target Values
Normalizing the inputs
Virtues and limitations of Back-Propagation Algorithm

4 The Universal Approximation Theorem
Introduction
Topology
Compactness
About Density in a Topology
Hausdorff Space
Measure
Discriminatory Functions
Universal Representation Theorem

93 / 143



Virtues and limitations of Back-Propagation Algorithm

Something Notable
The back-propagation algorithm has emerged as the most popular
algorithm for the training of multilayer perceptrons.

It has two distinct properties
It is simple to compute locally.
It performs stochastic gradient descent in weight space when doing
pattern-by-pattern training
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Connectionism

Back-propagation
t is an example of a connectionist paradigm that relies on local
computations to discover the processing capabilities of neural networks.

This form of restriction
It is known as the locality constraint
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Why this is advocated in Artificial Neural Networks

First
Artificial neural networks that perform local computations are often held
up as metaphors for biological neural networks.

Second
The use of local computations permits a graceful degradation in
performance due to hardware errors, and therefore provides the basis for a
fault-tolerant network design.

Third
Local computations favor the use of parallel architectures as an efficient
method for the implementation of artificial neural networks.
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However, all this has been seriously questioned [8, 9, 10]

First
The reciprocal synaptic connections between the neurons of a
multilayer perceptron may assume weights that are excitatory or
inhibitory.
In the real nervous system, neurons usually appear to be the one or
the other.

Second
In a multilayer perceptron, hormonal and other types of global
communications are ignored.
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However, all this has been seriously questioned [8, 9, 10]

Third
In back-propagation learning, a synaptic weight is modified by a
presynaptic activity and an error (learning) signal independent of
postsynaptic activity.
There is evidence from neurobiology to suggest otherwise.

Fourth
In a neurobiological sense, the implementation of back-propagation
learning requires the rapid transmission of information backward along
an axon.
It appears highly unlikely that such an operation actually takes place
in the brain.

98 / 143



However, all this has been seriously questioned [8, 9, 10]

Third
In back-propagation learning, a synaptic weight is modified by a
presynaptic activity and an error (learning) signal independent of
postsynaptic activity.
There is evidence from neurobiology to suggest otherwise.

Fourth
In a neurobiological sense, the implementation of back-propagation
learning requires the rapid transmission of information backward along
an axon.
It appears highly unlikely that such an operation actually takes place
in the brain.

98 / 143



However, all this has been seriously questioned [8, 9, 10]

Third
In back-propagation learning, a synaptic weight is modified by a
presynaptic activity and an error (learning) signal independent of
postsynaptic activity.
There is evidence from neurobiology to suggest otherwise.

Fourth
In a neurobiological sense, the implementation of back-propagation
learning requires the rapid transmission of information backward along
an axon.
It appears highly unlikely that such an operation actually takes place
in the brain.

98 / 143



However, all this has been seriously questioned [8, 9, 10]

Third
In back-propagation learning, a synaptic weight is modified by a
presynaptic activity and an error (learning) signal independent of
postsynaptic activity.
There is evidence from neurobiology to suggest otherwise.

Fourth
In a neurobiological sense, the implementation of back-propagation
learning requires the rapid transmission of information backward along
an axon.
It appears highly unlikely that such an operation actually takes place
in the brain.

98 / 143



However, all this has been seriously questioned [8, 9, 10]

Fifth
Back-propagation learning implies the existence of a "teacher," which
in the con text of the brain would presumably be another set of
neurons with novel properties.
The existence of such neurons is biologically implausible.
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Computational Efficiency

Something Notable
The computational complexity of an algorithm is usually measured in
terms of the number of multiplications, additions, and storage involved in
its implementation.

This is the electrical engineering approach!!!

Taking in account the total number of synapses, W including biases
We have 4wkj = ηδkyj = η (tk − zk) f ′ (netk) yj (Backward Pass)

We have that for this step
1 We need to calculate netk linear in the number of weights.
2 We need to calculate yj = f (netj) which is linear in the number of

weights.
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Computational Efficiency

Now the Forward Pass

∆wji = ηxiδj = ηf ′ (netj)
[

c∑
k=1

wkjδk

]
xi

We have that for this step
[
∑c

k=1wkjδk] takes, because of the previous calculations of δk’s, linear on
the number of weights

Clearly all this takes to have memory
In addition the calculation of the derivatives of the activation functions,
but assuming a constant time.
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We have that

The Complexity of the multi-layer perceptron is

O (W ) Complexity
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Exercises

We have from NN by Haykin
4.2, 4.3, 4.6, 4.8, 4.16, 4.17, 3.7
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Introduction

Representation of functions
The main result in multi-layer perceptron is its power of representation.

Furthermore
After all, it is quite striking if we can represent continuous functions of the
form f : Rn 7−→ R as a finite sum of simple functions.

105 / 143



Introduction

Representation of functions
The main result in multi-layer perceptron is its power of representation.

Furthermore
After all, it is quite striking if we can represent continuous functions of the
form f : Rn 7−→ R as a finite sum of simple functions.

105 / 143



Therefore

Our main goal
We want to know under which conditions the sum of the form:

G (x) =
N∑

j=1
αjf

(
wT x + θj

)
(46)

can represent continuous functions in a specific domain.
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Setup of the problem

Definition of In

It is an n-dimensional unit cube [0, 1]n

In addition, we have the following set of functions

C (In) = {f : In → R|f is a continous function} (47)
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Now, some important definitions

Definition (Topological Space)
A topological space is then a set X together with a collection of subsets of
X, called open sets and satisfying the following axioms:

1 The empty set and X itself are open.
2 Any union of open sets is open.
3 The intersection of any finite number of open sets is open.

Examples
Given the set {1, 2, 3, 4} we have that the following set is a topology
{∅, {1} , {1, 2} , {1, 2, 3, 4}}.

Remark
This is quite axiomatic... because any set in the collection of X is
open...
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Then

We are interested in defining open and close sets in metric spaces
After all this will allow to define the concept of closed set

Definition
A subset U of a metric space (M,d) is called open if, given any point
x ∈ U , there exists a real number ε > 0 such that, given any point
y ∈M with d(x, y) < ε, y also belongs to U .

Therefore
A set V ⊂M is closed if M − V is open.
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Now

Theorem
A compact set is closed and bounded.

Thus
In is a compact set in Rn.

Definition (Continuous functions)
A function f : X → Y where the pre-image of every open set in Y is open
in X.
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Thus

We have the following statement
Let K be a nonempty subset of Rn, where n > 1. Then If K is compact,
then every continuous real-valued function defined on K is bounded.

Definition (Supremum Norm)
Let X be a topological space and let F be the space of all bounded
complex-valued continuous functions defined on K. The supremum norm
is the norm defined on F by

‖f‖ = sup
x∈X
|f (x)| (48)
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Limit Points

Definition
If X is a topological space and p is a point in X, a neighborhood of p is a
subset V of X that includes an open set U containing p, p ∈ U ⊆ V .

This is also equivalent to p ∈ X being in the interior of V .

Example in a metric space
In a metric space (X, d), a set V is a neighborhood of a point p if there
exists an open ball with center at p and radius r > 0, such that

Br (p) = B (p; r) = {x ∈ X|d (x, p) < r} (49)

is contained in V .
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Limit Points

Definition of a Limit Point
Let S be a subset of a topological space X. A point x ∈ X is a limit point
of S if every neighborhood of x contains at least one point of S different
from x itself.

Example in R

Which are the limit points of the set
{

1
n

}∞
n=1

?
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This allows to define the idea of density

Something Notable
A subset A of a topological space X is dense in X, if for any point x ∈ X,
any neighborhood of x contains at least one point from A.

Classic Example
The real numbers with the usual topology have the rational numbers as a
countable dense subset.

Why do you believe the floating-point numbers are rational?

In addition
Also the irrational numbers.
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From this, you have the idea of closure

Definition
The closure of a set S is the set of all points of closure of S, that is, the
set S together with all of its limit points.

Example
The closure of the following set (0, 1) ∪ {2}

Meaning
Not all points in the closure are limit points.
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Hausdorff Space

Definition of Separation
Points x and y in a topological space X can be separated by
neighborhoods if there exists a neighborhood U of x and a neighborhood
V of y such that U and V are disjoint.

Definition
X is a Hausdorff space if any two distinct points of X can be separated by
neighborhoods.
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We have then

Look at what we have
1 C (In) is compact
2 The continuous functions there are bounded!!!
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Now, the Measure Concept

Definition of σ−algebra
Let A ⊂ P (X), we say that A to be an algebra if

1 ∅, X ∈ A.
2 A,B ∈ A then A ∪B ∈ A.
3 A ∈ A then Ac ∈ A.

Definition
An algebra A in P (X) is said to be a σ−algebra, if for any sequence
{An} of elements in A, we have ∪∞n=1An ∈ A

Example
In X = [0, 1), the class A0 consisting of ∅, and all finite unions
A = ∪n

i=1 [ai, bi) with 0 ≤ ai < bi ≤ ai+1 ≤ 1 is an algebra.
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Now, the Measure Concept

Definition of additivity
Let µ : A → [0,+∞] be such that µ (∅) = 0, we say that µ is σ−additive
if for any {Ai}i∈I ⊂ A (Where I can be finite of infinite countable) of
mutually disjoint sets such that ∪i∈IAi ∈ A, we have that

µ (∪i∈IAi) =
∑
i∈I

µ (Ai) (50)

Definition of Measurability
Let A be a σ−algebra of subsets of X, we say that the [air (X,A) is a
measurable space where a σ−additive function µ : A → [0,+∞] is called a
measure on (X,A).
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A Borel Measure

Definition
The Borel σ-algebra is defined to be the σ-algebra generated by the open
sets (or equivalently, by the closed sets).

Definition of a Borel Measure
If F is the Borel σ-algebra on some topological space, then a measure
µ : F → R is said to be a Borel measure (or Borel probability measure).
For a Borel measure, all continuous functions are measurable.

Definition of a signed Borel Measure
A signed Borel measure µ : B (X)→ is a measure such that

1 µ (∅) = 0.
2 µis σ-additive.
3 supA∈B(X) |µ (A)| <∞
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A Borel Measure

Regularity
A measure µ is Borel regular measure:

1 For every Borel set B ⊆ Rn and A ⊆ Rn,
µ (A) = µ (A ∩B) + µ (A−B).

2 For every A ⊆ Rn, there exists a Borel set B ⊆ Rn such that A ⊆ B
and µ (A) = µ (B).
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Discriminatory Functions

Definition
Given the set M (In) of signed regular Borel measures, a function f is
discriminatory if for a measure µ ∈M (In)∫

In
f
(
wT x + θ

)
dµ = 0 (51)

for all w ∈ Rn and θ ∈ R implies that µ = 0

Definition
We say that f is sigmoidal if

f (t)→
{

1 as t→ +∞
0 as t→ −∞
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The Important Theorem

Theorem 1
Let f a be any continuous discriminatory function. Then finite sums of the
form

G (x) =
N∑

j=1
αjf

(
wT

j x + θj

)
, (52)

where wj ∈ Rn and αj , θj ∈ R are fixed, are dense in C (In)

Meaning
Basically given any function g ∈ C (In) and any neighborhood V of g, you
have a G ∈ V .
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Furthermore

In other words
Given any g ∈ C (In) and ε > 0, there is a sum, G (x), of the above form,
for which

|G (x)− g (x)| < ε ∀x ∈ In (53)
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Proof

Let S ⊂ C (In) be the set of functions of the form G(x)
First, S is a linear subspace of C (In)

Definition
A subset V of Rn is called a linear subspace of Rn if V contains the zero
vector, and is closed under vector addition and scaling. That is, for
X,Y ∈ V and c ∈ R, we have X + Y ∈ V and cX ∈ V .

We claim that the closure of S is all of C (In)
Assume that the closure of S is not all of C (In)
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Proof

Then
The closure of S, say R, is a closed proper subspace of C (I)

We use the Hahn-Banach Theorem
If p : V → R is a sublinear function

I p (x+ y) ≤ p (x) + p (y)
I p (αx) = αp (x)

And ϕ : U → R is a linear functional on a linear subspace U ⊆ V

It is dominated by p on U , i.e. ϕ (x) ≤ p (x) ∀x ∈ U .
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Hahn-Banach Theorem

Then
There exists a linear extension ψ : V → R of ϕ to the whole space V ,
i.e., there exists a linear functional ψ such that

1 ψ (x) = ϕ (x) ∀x ∈ U .
2 ψ (x) ≤ p (x) ∀x ∈ V .
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Proof

It is possible to construct sublinear function defined as follow
We define the following linear functional

T (f) =
{
f if f ∈ C (In)−R
0 if f ∈ R

(54)

Then
We have there is a bounded linear functional (Using T as p and ϕ, and
V ∈ C (In) and U = R) called L 6= 0 with L (R) = L (S) = 0.
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Proof
Now, we use the Riesz Representation Theorem
Let X be a locally compact Hausdorff space. For any positive linear
functional ψ on C(X), there is a unique regular Borel measure µ on X
such that

ψ =
∫

X
f (x) dµ (x) (55)

for all f in C(X)

We can then do the following

L (h) =
∫

In
h (x) dµ (x) (56)

Where?
For some µ ∈M (In), for all h ∈ C (In)
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Proof

In particular
Given that f

(
wT x + θ

)
is in R for all w and θ

We must have that ∫
In
f
(
wT x + θ

)
dµ (x) = 0 (57)

for all w and θ

But we assumed that f is discriminatory!!!
Then... µ = 0 contradicting the fact that L 6= 0!!! We have a
contradiction!!!
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Proof

Finally
The subspace S of sums of the form G is dense!!!
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Now, we deal with the sigmoidal function

Lemma 1
Any bounded, measurable sigmoidal function, f , is discriminatory. In
particular, any continuous sigmoidal function is discriminatory.

Proof
I will leave this to you... it is possible I will get a question from this proof
for the firs midterm.
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We have the theorem finally!!!

Universal Representation Theorem for the multi-layer perceptron
Let f be any continuous sigmoid function. Then finite sums of the form

G (x) =
N∑

j=1
αjf

(
wT x + θj

)
(58)

are dense in C (In).

In other words
Given any g ∈ C (In) and ε > 0, there is a sum G (x) of the above form,
for which

|G (x)− g (x)| < ε ∀x ∈ In (59)

140 / 143



We have the theorem finally!!!

Universal Representation Theorem for the multi-layer perceptron
Let f be any continuous sigmoid function. Then finite sums of the form

G (x) =
N∑

j=1
αjf

(
wT x + θj

)
(58)

are dense in C (In).

In other words
Given any g ∈ C (In) and ε > 0, there is a sum G (x) of the above form,
for which

|G (x)− g (x)| < ε ∀x ∈ In (59)

140 / 143



Poof

Simple
Combine the theorem and lemma 1... and because the continuous sigmoid
satisfy the conditions of the lemma... we have our representation!!!
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