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History

At the beginning of Neural Networks (1943 - 1958)
McCulloch and Pitts (1943) [1] for introducing the idea of neural
networks as computing machines.
Hebb (1949) [2] for postulating the first rule for self-organized
learning.
Rosenblatt (1958) [3] for proposing the perceptron as the first model
for learning with a teacher (i.e., supervised learning).

In this chapter, we are interested in the perceptron
The perceptron is the simplest form of a neural network used for the
classifica tion of patterns said to be linearly separable (i.e., patterns that
lie on opposite sides of a hyperplane).

4 / 98



History

At the beginning of Neural Networks (1943 - 1958)
McCulloch and Pitts (1943) [1] for introducing the idea of neural
networks as computing machines.
Hebb (1949) [2] for postulating the first rule for self-organized
learning.
Rosenblatt (1958) [3] for proposing the perceptron as the first model
for learning with a teacher (i.e., supervised learning).

In this chapter, we are interested in the perceptron
The perceptron is the simplest form of a neural network used for the
classifica tion of patterns said to be linearly separable (i.e., patterns that
lie on opposite sides of a hyperplane).

4 / 98



History

At the beginning of Neural Networks (1943 - 1958)
McCulloch and Pitts (1943) [1] for introducing the idea of neural
networks as computing machines.
Hebb (1949) [2] for postulating the first rule for self-organized
learning.
Rosenblatt (1958) [3] for proposing the perceptron as the first model
for learning with a teacher (i.e., supervised learning).

In this chapter, we are interested in the perceptron
The perceptron is the simplest form of a neural network used for the
classifica tion of patterns said to be linearly separable (i.e., patterns that
lie on opposite sides of a hyperplane).

4 / 98



History

At the beginning of Neural Networks (1943 - 1958)
McCulloch and Pitts (1943) [1] for introducing the idea of neural
networks as computing machines.
Hebb (1949) [2] for postulating the first rule for self-organized
learning.
Rosenblatt (1958) [3] for proposing the perceptron as the first model
for learning with a teacher (i.e., supervised learning).

In this chapter, we are interested in the perceptron
The perceptron is the simplest form of a neural network used for the
classifica tion of patterns said to be linearly separable (i.e., patterns that
lie on opposite sides of a hyperplane).

4 / 98



In addition

Something Notable
The single neuron also forms the basis of an adaptive filter.
A functional block that is basic to the ever-expanding subject of
signal processing.

Furthermore
The development of adaptive filtering owes much to the classic paper of
Widrow and Hoff (1960) for pioneering the so-called least-mean-square
(LMS) algorithm, also known as the delta rule.
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Adapting Filtering Problem

Consider a dynamical system

Unknown 

dynamical

system

Output

IN
P
U
T
S
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Signal-Flow Graph of Adaptive Model

We have the following equivalence

-1
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Description of the Behavior of the System

We have the data set

T = {(x (i) , d (i)) |i = 1, 2, ..., n, ...} (1)

Where

x (i) = (x1 (i) , x2 (i) ..., xm (i))T (2)
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The Stimulus x (i)
The stimulus x(i) can arise from
The m elements of x(i) originate at different points in space (spatial)
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The Stimulus x (i)

The stimulus x(i) can arise from
The m elements of x(i) represent the set of present and (m− 1) past
values of some excitation that are uniformly spaced in time (temporal).

Time
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Problem

Quite important
How do we design a multiple input-single output model of the unknown
dynamical system?

It is more
We want to build this around a single neuron!!!
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Thus, we have the following...

We need an algorithm to control the weight adjustment of the neuron

Control Algorithm
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Which steps do you need for the algorithm?

First
The algorithms starts from an arbitrary setting of the neuron’s synaptic
weight.

Second
Adjustments, with respect to changes on the environment, are made on a
continuous basis.

Time is incorporated to the algorithm.

Third
Computation of adjustments to synaptic weights are completed inside a
time interval that is one sampling period long.
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Signal-Flow Graph of Adaptive Model

We have the following equivalence
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Thus, This Neural Model ≈ Adaptive Filter with two
continous processes
Filtering processes

1 An output, denoted by y(i), that is produced in response to the m
elements of the stimulus vector x (i).

2 An error signal, e (i), that is obtained by comparing the output y(i)
to the corresponding desired output d(i) produced by the unknown
system.

Adaptive Process
It involves the automatic adjustment of the synaptic weights of the neuron
in accordance with the error signal e(i)

Remark
The combination of these two processes working together constitutes a
feedback loop acting around the neuron.
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Thus

The output y(i) is exactly the same as the induced local field v(i)

y (i) = v (i) =
m∑

i=1
wk (i)xk (i) (3)

In matrix form, we have - remember we only have a neuron, so we do
not have neuron k

y (i) = xT (i)w (i) (4)

Error

e (i) = d (i)− y (i) (5)
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Consider

A continuous differentiable function J (w)
We want to find an optimal solution w∗ such that

J (w∗) ≤ J (w) , ∀w (6)

We want to
Minimize the cost function J(w) with respect to the weight vector w.

For this

∇J (w) = 0 (7)
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Where

∇ is the gradient operator

∇ =
[
∂

∂w1
,
∂

∂w2
, ...,

∂

∂wm

]T

(8)

Thus

∇J (w) =
[
∂J (w)
∂w1

,
∂J (w)
∂w2

, ...,
∂J (w)
∂wm

]T

(9)
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Thus

Starting with an initial guess denoted by w(0),
Then, generate a sequence of weight vectors w (1) ,w (2) , ...

Such that you can reduce J (w) at each iteration

J (w (n+ 1)) < J (w (n)) (10)

Where: w (n) is the old value and w (n+ 1) is the new value.
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The Three Main Methods for Unconstrained Optimization

We will look at
1 Steepest Descent.
2 Newton’s Method
3 Gauss-Newton Method
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Steepest Descent [4]

In the method of steepest descent, we have a cost function J (w)
where

w (n+ 1) = w (n)− η∇J (w (n))

How, we prove that J (w (n+ 1)) < J (w (n))?
We use the first-order Taylor series expansion around w (n)

J (w (n+ 1)) ≈ J (w (n)) +∇JT (w (n)) ∆w (n) (11)

Remark: This is quite true when the step size is quite small!!! In
addition, ∆w (n) = w (n+ 1)−w (n)
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Why? Look at the case in R

The equation of the tangent line to the curve y = J (w (n))

L (w (n)) = J ′ (w (n)) [w (n+ 1)− w (n)] + J (w (n)) (12)

Example

26 / 98



Why? Look at the case in R

The equation of the tangent line to the curve y = J (w (n))

L (w (n)) = J ′ (w (n)) [w (n+ 1)− w (n)] + J (w (n)) (12)

Example

26 / 98



Thus, we have that in R

Remember Something quite Classic

tan θ =J (w (n+ 1))− J (w (n))
w (n+ 1)− w (n)

tan θ (w (n+ 1)− w (n)) =J (w (n+ 1))− J (w (n))
J ′ (w (n)) (w (n+ 1)− w (n)) = J (w (n+ 1))− J (w (n))
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Thus, we have that

Using the First Taylor expansion

J (w (n)) ≈ J (w (n)) + J ′ (w (n)) [w (n+ 1)− w (n)] (13)
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Now, for Many Variables

An hyperplane in Rn is a set of the form

H =
{
x|aTx = b

}
(14)

Given x ∈ H and x0 ∈ H

b = aTx = aTx0

Thus, we have that

H =
{
x|aT (x− x0) = 0

}
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Thus, we have the following definition

Definition (Differentiability)
Assume that J is defined in a disk D containing w (n). We say that J is
differentiable at w (n) if:

1 ∂J(w(n))
∂wi

exist for all i = 1, ..., n.
2 J is locally linear at w (n).
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Thus, given J (w (n))

We know that we have the following operator

∇ =
(

∂

∂w1
,
∂

∂w2
, ...,

∂

∂wm

)
(15)

Thus, we have

∇J (w (n)) =
(
∂J (w (n))

∂w1
,
∂J (w (n))

∂w2
, ...,

∂J (w (n))
∂wm

)
=

m∑
i=1

ŵi
∂J (w (n))

∂wi

Where: ŵT
i = (1, 0, ..., 0) ∈ R
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Now

Given a curve function r (t) that lies on the level set J (w (n)) = c
(When is in R3)
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Level Set

Definition

{(w1, w2, ..., wm) ∈ Rm|J (w1, w2, ..., wm) = c} (16)

Remark: In a normal Calculus course we will use x and f instead of w
and J .
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Where
Any curve has the following parametrization

r : [a, b]→ Rm

r(t) = (w1 (t) , ..., wm (t))

With r(n+ 1) = (w1 (n+ 1) , ..., wm (n+ 1))

We can write the parametrized version of it

z(t) = J (w1 (t) , w2 (t) , ..., wm (t)) = c (17)

Differentiating with respect to t and using the chain rule for multiple
variables

dz(t)
dt

=
m∑

i=1

∂J (w (t))
∂wi

· dwi(t)
dt

= 0 (18)
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Note

First
Given y = f (u) = (f1 (u) , ..., fl (u)) and
u = g (x) = (g1 (x) , ..., gm (x)).

We have then that
∂ (f1, f2, ..., fl)
∂ (x1, x2, ..., xk) = ∂ (f1, f2, ..., fl)

∂ (g1, g2, ..., gm) ·
∂ (g1, g2, ..., gm)
∂ (x1, x2, ..., xk) (19)

Thus
∂ (f1, f2, ..., fl)

∂xi
= ∂ (f1, f2, ..., fl)
∂ (g1, g2, ..., gm) ·

∂ (g1, g2, ..., gm)
∂xi

=
m∑

k=1

∂ (f1, f2, ..., fl)
∂gk

∂gk

∂xi
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Thus

Evaluating at t = n
m∑

i=1

∂J (w (n))
∂wi

· dwi(n)
dt

= 0

We have that

∇J (w (n)) · r′ (n) = 0 (20)

This proves that for every level set the gradient is perpendicular to
the tangent to any curve that lies on the level set
In particular to the point w (n).
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Now the tangent plane to the surface can be described
generally

Thus
L (w (n+ 1)) = J (w (n)) +∇JT (w (n)) [w (n+ 1)−w (n)] (21)

This looks like
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Proving the fact about the Steepest Descent

We want the following

J (w (n+ 1)) < J (w (n))

Using the first-order Taylor approximation

J (w (n+ 1))− J (w (n)) ≈ ∇JT (w (n)) ∆w (n)

So, we ask the following

∆w (n) ≈ −η∇J (w (n)) with η > 0

38 / 98



Proving the fact about the Steepest Descent

We want the following

J (w (n+ 1)) < J (w (n))

Using the first-order Taylor approximation

J (w (n+ 1))− J (w (n)) ≈ ∇JT (w (n)) ∆w (n)

So, we ask the following

∆w (n) ≈ −η∇J (w (n)) with η > 0

38 / 98



Proving the fact about the Steepest Descent

We want the following

J (w (n+ 1)) < J (w (n))

Using the first-order Taylor approximation

J (w (n+ 1))− J (w (n)) ≈ ∇JT (w (n)) ∆w (n)

So, we ask the following

∆w (n) ≈ −η∇J (w (n)) with η > 0

38 / 98



Then

We have that

J (w (n+ 1))− J (w (n)) ≈ −η∇JT (w (n))∇J (w (n)) = −η ‖∇J (w (n))‖2

Thus

J (w (n+ 1))− J (w (n)) < 0

Or

J (w (n+ 1)) < J (w (n))
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Newton’s Method
Here
The basic idea of Newton’s method is to minimize the quadratic approximation of
the cost function J (w) around the current point w (n).

Using a second-order Taylor series expansion of the cost function
around the point w (n)

∆J (w (n)) = J (w (n+ 1))− J (w (n))

≈ ∇JT (w (n)) ∆w (n) + 1
2∆wT (n)H (n) ∆w (n)

Where given that w (n) is a vector with dimension m

H = ∇2J (w) =


∂2J(w)

∂w2
1

∂2J(w)
∂w1∂w2

· · · ∂2J(w)
∂w1∂wm

∂2J(w)
∂w2∂w1

∂2J(w)
∂w2

2
· · · ∂2J(w)

∂w2∂wm

...
...

...
∂2J(w)

∂wm∂w1

∂2J(w)
∂wm∂w2

· · · ∂2J(w)
∂w2

m


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Now, we want to minimize J (w (n+ 1))

Do you have any idea?
Look again

J (w (n)) +∇JT (w (n)) ∆w (n) + 1
2∆wT (n)H (n) ∆w (n) (22)

Derive with respect to ∆w (n)

∇J (w (n)) +H (n) ∆w (n) = 0 (23)

Thus

∆w (n) = −H−1 (n)∇J (w (n))
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The Final Method

Define the following

J (w (n+ 1))− J (w (n)) = −H−1 (n)∇J (w (n))

Then

J (w (n+ 1)) = J (w (n))−H−1 (n)∇J (w (n))
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We have then an error

Something Notable

J (w) = 1
2

n∑
i=1

e2 (i)

Thus using the first order Taylor expansion

e (i,w) = e (i) +
[
∂e (i)
∂w

]T

[w −w (n)]

In matrix form

e (n,w) = e (n) +∇J (n) [w −w (n)]
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Where

The error vector is equal to

e (n) = [e (1) , e (2) , ..., e (n)]T (24)

Thus, we get the famous Jacobian once we derive ∂e(i)
∂w

∇J (n) =


∂e(1)
∂w1

∂e(1)
∂w2

· · · ∂e(1)
∂wm

∂e(2)
∂w1

∂e(2)
∂w2

· · · ∂e(2)
∂wm...

...
...

∂e(n)
∂w1

∂e(n)
∂w2

· · · ∂e(n)
∂wm



46 / 98



Where

The error vector is equal to

e (n) = [e (1) , e (2) , ..., e (n)]T (24)

Thus, we get the famous Jacobian once we derive ∂e(i)
∂w

∇J (n) =


∂e(1)
∂w1

∂e(1)
∂w2

· · · ∂e(1)
∂wm

∂e(2)
∂w1

∂e(2)
∂w2

· · · ∂e(2)
∂wm...

...
...

∂e(n)
∂w1

∂e(n)
∂w2

· · · ∂e(n)
∂wm



46 / 98



Where

We want the following

w (n+ 1) = argmin
w

{1
2 ‖el (n,w)‖2

}

Ideas
What if we expand out the equation?
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Expanded Version

We get

1
2 ‖el (n,w)‖2 =1

2 ‖e (n)‖2 + eT (n)∇J (n) (w −w (n)) + ...

1
2 (w −w (n))T ∇TJ (n)∇J (n) (w −w (n))
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Therefore

Differentiating the equation with respect to w

∇TJ (n) e (n) +∇TJ (n)∇J (n) [w −w (n)] = 0

We get finally

w (n+ 1) = w (n)−
(
∇TJ (n)∇J (n)

)−1
∇J (n) e (n) (25)
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Remarks

We have that
The Newton’s method that requires knowledge of the Hessian matrix
of the cost function.
The Gauss-Newton method only requires the Jacobian matrix of the
error vector e (n).

However
The Gauss-Newton iteration to be computable, the matrix product
∇TJ (n)∇J (n) must be nonsingular.
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Introduction

A linear least-squares filter has two distinctive characteristics [5]
First, the single neuron around which it is built is linear.
The cost function J (w) used to design the filter consists of the sum
of error squares.

Thus, expressing the error

e (n) = d (n)− (x (1) , ...,x (n))T w (n)

Short Version - error is linear in the weight vector w (n)

e (n) = d (n)−X (n)w (n)

Where d (n) is a n× 1 desired response vector.
Where X(n) is the n×m data matrix.
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Now, differentiate e (n) with respect to w (n)

Thus

∇e (n) = −XT (n)

Correspondingly, the Jacobian of e(n) is

∇J (n) = −X (n)

Let us to use the Gaussian-Newton

w (n+ 1) = w (n)−
(
∇TJ (n)∇J (n)

)−1
∇TJ (n) e (n)
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Thus

We have the following

w (n+ 1) = w (n)−
(
−XT (n)×−X (n)

)−1 ×−XT (n) [d (n)−X (n)w (n)]

We have then

w (n+ 1) =w (n) +
(
XT (n)X (n)

)−1
XT (n) d (n)− ...(

XT (n)X (n)
)−1

XT (n)X (n)w (n)

Thus, we have

w (n+ 1) =w (n) +
(
XT (n)X (n)

)−1
XT (n) d (n)−w (n)

=
(
XT (n)X (n)

)−1
XT (n) d (n)

54 / 98



Thus

We have the following

w (n+ 1) = w (n)−
(
−XT (n)×−X (n)

)−1 ×−XT (n) [d (n)−X (n)w (n)]

We have then

w (n+ 1) =w (n) +
(
XT (n)X (n)

)−1
XT (n) d (n)− ...(

XT (n)X (n)
)−1

XT (n)X (n)w (n)

Thus, we have

w (n+ 1) =w (n) +
(
XT (n)X (n)

)−1
XT (n) d (n)−w (n)

=
(
XT (n)X (n)

)−1
XT (n) d (n)

54 / 98



Thus

We have the following

w (n+ 1) = w (n)−
(
−XT (n)×−X (n)

)−1 ×−XT (n) [d (n)−X (n)w (n)]

We have then

w (n+ 1) =w (n) +
(
XT (n)X (n)

)−1
XT (n) d (n)− ...(

XT (n)X (n)
)−1

XT (n)X (n)w (n)

Thus, we have

w (n+ 1) =w (n) +
(
XT (n)X (n)

)−1
XT (n) d (n)−w (n)

=
(
XT (n)X (n)

)−1
XT (n) d (n)

54 / 98



Outline
1 Introduction

History

2 Adapting Filtering Problem
Definition
Description of the Behavior of the System

3 Unconstrained Optimization
Introduction
Method of Steepest Descent
Newton’s Method
Gauss-Newton Method

4 Linear Least-Squares Filter
Introduction
Least-Mean-Square (LMS) Algorithm

5 Perceptron
Objective
Perceptron: Local Field of a Neuron
Perceptron: One Neuron Structure
Deriving the Algorithm
Under Linear Separability - Convergence happens!!!
Proof
Algorithm Using Error-Correcting
Final Perceptron Algorithm (One Version)
The Winnow Algorithm
Parallel Implementations

55 / 98



Again Our Error Cost function

We have

J (w) = 1
2e

2 (n)

where e (n) is the error signal measured at time n.

Again differentiating against the vector w
∂J (w)
∂w

= e (n) ∂e (n)
∂w

LMS algorithm operates with a linear neuron so we may express the
error signal as

e (n) = d (n)− xT (n)w (n) (26)
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We have

Something Notable
∂e (n)
∂w

= −x (n)

Then
∂J (w)
∂w

= −x (n) e (n)

Using this as an estimate for the gradient vector, we have for the
gradient descent

ŵ (n+ 1) = ŵ (n) + ηx (n) e (n) (27)
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Remarks

The feedback loop around the weight vector low-pass filter
It behaves like a low-pass filter.
It passes the low frequency component of the error signal and
attenuating its high frequency component.

Low-Pass filter
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Learning of the data

Thus
The average time constant of this filtering action is inversely
proportional to the learning-rate parameter η.

Assigning a small value to η,
The adaptive process progresses slowly.

More of the past data is used by the LMS algorithm
The more the LMS is a more accurate filter.
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Virtues and Limitations of the LMS Algorithm
Virtues

An important virtue of the LMS algorithm is its simplicity.
The model is independent and robust to the error (small disturbances
= small estimation error).

Not only that, the LMS algorithm is optimal in accordance with the
minimax criterion
If you do not know what you are up against, plan for the worst and
optimize.

Primary Limitation
The slow rate of convergence and sensitivity to variations in the
eigenstructure of the input.
The LMS algorithms requires about 10 times the dimensionality of
the input space for convergence.
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More of this in...

Simon Haykin
Simon Haykin - Adaptive Filter Theory (3rd Edition)
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Objective

Goal
Correctly classify a series of samples (External applied stimuli)
x1, x2, x3, ..., xm into one of two classes, C1 and C2.

Output of each input
1 Class C1 output y +1.
2 Class C2 output y -1.
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History

Frank Rosenblatt
The perceptron algorithm was invented in 1957 at the Cornell Aeronautical
Laboratory by Frank Rosenblatt.

Something Notable
Frank Rosenblatt was a Psychologist!!! Working at a militar R&D!!!

Frank Rosenblatt
He helped to develop the Mark I Perceptron - a new machine based in the
connectivity of neural networks!!!

Some problems with it
The most important is the impossibility to use the perceptron with a
single neuron to solve the XOR problem
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Perceptron: Local Field of a Neuron

Signal-Flow
Bias

Inputs

Induced local field of a neuron

v =
m∑

i=1
wixi + b (28)
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Perceptron: One Neuron Structure

Based in the previous induced local field
In the simplest form of the perceptron there are two decision regions
separated by an hyperplane:

m∑
i=1

wixi + b = 0 (29)

Example with two signals
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Deriving the Algorithm

First, you put signals together

x (n) = [1, x1 (n) , x2 (n) , ..., xm (n)]T (30)

Weights

v(n) =
m∑

i=0
wi (n)xi (n) = wT (n)x (n) (31)

Note IMPORTANT - Perceptron works only if C1 and C2 are linearly separable
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Rule for Linear Separable Classes

There must exist a vector w
1 wTx > 0 for every input vector x belonging to class C1.
2 wTx ≤ 0 for every input vector x belonging to class C2.

What is the derivative of dv(n)
dw

?
dv (n)
dw

= x (n) (32)
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Finally

No correction is necessary
1 w(n+ 1) = w(n) if wTx(n) > 0 and x(n) belongs to class C1.
2 w(n+ 1) = w(n) if and wTx(n) ≤ 0 and x(n) > 0 belongs to class
C2.

Correction is necessary
1 w(n+ 1) = w(n)− η (n)x (n) if wT (n)x(n) > 0 and x(n) belongs

to class C2.
2 w(n+ 1) = w(n) + η (n)x (n) if and wT (n)x(n) ≤ 0 and x(n)

belongs to class C1.

Where η (n) is a learning parameter adjusting the learning rate.
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A little bit on the Geometry
For Example, w(n+ 1) = w(n)− η (n)x (n)
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Under Linear Separability - Convergence happens!!!

If we assume
Linear Separabilty for the classes C1 and C2.

Rosenblatt - 1962
Let the subsets of training vectors C1 and C2 be linearly separable. Let
the inputs presented to the perceptron originate from these two subsets.
The perceptron converges after some n0 iterations, in the sense that is a
solution vector for

w(n0) = w(n0 + 1) = w(n0 + 2) = ... (33)

is a solution vector for n0 ≤ nmax
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Proof I

Initialization

w (0) = 0 (34)

Now assume for time n = 1, 2, 3, ...

wT (n)x (n) < 0 (35)

with x(n) belongs to class C1.

PERCEPTRON INCORRECTLY CLASSIFY THE VECTORS
x (1) ,x (2) , ...

Apply the correction formula

w (n+ 1) = w (n) + x (n) (36)
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Proof II

Apply the correction iteratively

w (n+ 1) = x (1) + x (2) + ...+ x (n) (37)

We know that there is a solution w0(Linear Separability)

α = min
x(n)∈C1

wT
0 x (n) (38)

Then, we have

wT0w (n+ 1) = wT0x (1) +wT
0 x (2) + ...+wT0x (n) (39)
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Proof III

Apply the correction iteratively
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Proof IV

Thus we use the α

wT0w (n+ 1) ≥ nα (43)

Thus using the Cauchy-Schwartz Inequality∥∥∥wT
0

∥∥∥2
‖w (n+ 1)‖2 ≥

[
wT0w (n+ 1)

]2
(44)

‖·‖ is the Euclidean distance.

Thus

∥∥∥wT
0

∥∥∥2
‖w (n+ 1)‖2 ≥ n2α2

‖w (n+ 1)‖2 ≥ n2α2∥∥wT
0
∥∥2
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Proof V

Now rewritte equation 36

w (k + 1) = w (k) + x (k) (45)

for k = 1, 2, ..., n and x (k) ∈ C1

Squaring the Euclidean norm of both sides

‖w (k + 1)‖2 = ‖w (k)‖2 + ‖x (k)‖2 + 2wT (k)x (k) (46)

Now taking that wT (k)x (k) < 0

‖w (k + 1)‖2 ≤ ‖w (k)‖2 + ‖x (k)‖2

‖w (k + 1)‖2 − ‖w (k)‖2 ≤ ‖x (k)‖2
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Proof VI

Use the telescopic sum
n∑

k=0

[
‖w (k + 1)‖2 − ‖w (k)‖2

]
≤

n∑
k=0
‖x (k)‖2 (47)

Assume

w (0) = 0
x (0) = 0

Thus

‖w (n+ 1)‖2 ≤
∑n

k=1 ‖x (k)‖2
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Proof VII

Then, we can define a positive number

β = max
x(k)∈C1

‖x (k)‖2 (48)

Thus

‖w (k + 1)‖2 ≤
∑n

k=1 ‖x (k)‖2 ≤ nβ

Thus, we satisfies the equations only when exists a nmax

n2
maxα

2

‖w0‖2
= nmaxβ (49)

83 / 98



Proof VII

Then, we can define a positive number

β = max
x(k)∈C1

‖x (k)‖2 (48)

Thus

‖w (k + 1)‖2 ≤
∑n

k=1 ‖x (k)‖2 ≤ nβ

Thus, we satisfies the equations only when exists a nmax

n2
maxα

2

‖w0‖2
= nmaxβ (49)

83 / 98



Proof VII

Then, we can define a positive number

β = max
x(k)∈C1

‖x (k)‖2 (48)

Thus

‖w (k + 1)‖2 ≤
∑n

k=1 ‖x (k)‖2 ≤ nβ

Thus, we satisfies the equations only when exists a nmax

n2
maxα

2

‖w0‖2
= nmaxβ (49)

83 / 98



Proof VIII

Solving

nmax = β ‖w0‖2

α2 (50)

Thus
For η (n) = 1 for all n, w (0) = 0 and a solution vector w0:

The rule for adaptying the synaptic weights of the perceptron must
terminate after at most nmax steps.

In addition
Because w0 the solution is not unique.
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Algorithm Using Error-Correcting

Now, if we use the 1
2ek (n)2

We can actually simplify the rules and the final algorithm!!!

Thus, we have the following Delta Value

∆w (n) = η ((dj − yj (n)))x (n) (51)
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Final Algorithm

Algorithm - Offline/Batch Learning
1 Set n = 0.

2 Set dj =
{

+1 if xj (n) ∈ Class 1
−1 if xj (n) ∈ Class 2

for all j = 1, 2, ...,m.

3 Initialize the weights, wT = (w1 (n) , w2 (n) , ..., wn (n)).
I Weights may be initialized to 0 or to a small random value.

4 Initialize Dummy outputs so you can enter loop yt = 〈y1 (n) ., y2 (n) , ..., ym (n)〉
5 Initialize Stopping error ε > 0.
6 Initialize learning error η.
7 While 1

m

∑m

j=1 ‖dj − yj (n)‖ > ε

I For each sample (xj , dj) for j = 1, ...,m:
F Calculate output yj = ϕ

(
wT (n) · xj

)
F Update weights wi (n+ 1) = wi (n) + η (dj − yj (n))xij .

I n = n+ 1
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However, if we limit our features!!!

The Winnow Algorithm!!!
It converges even with no-linear separability.

Feature Vector
A Boolean-valued features X = {0, 1}d

Weight Vector w
1 wt = (w1, w2, ..., wp) for all wi ∈ R
2 For all i, wi ≥ 0.
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Classification Scheme

We use a specific θ
1 wTx ≥ θ ⇒ positive classification Class 1
2 wTx < θ ⇒ positive classification Class 2

Rule
We use two possible Rules for training!!! With a learning rate of α > 1.

Rule 1
When misclassifying a positive training example x ∈Class 1 i.e.
wTx < θ

∀xi = 1 : wi ← αwi (52)
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Classification Scheme

Rule 2
When misclassifying a negative training example x ∈Class 1 i.e.
wTx ≥ θ

∀xi = 1 : wi ←
wi

α
(53)

Rule 3
If samples are correctly classified do nothing!!!
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Properties of Winnow

Property
If there are many irrelevant variables Winnow is better than the
Perceptron.

Drawback
Sensitive to the learning rate α.
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Parallel Implementations

Because for the Perceptron, we have this
Iterative Parameter Mixing

Parameter Mixing
It is a distributed training through parameter mixing is a straight-forward
way of training classifiers in parallel.

Basic Ideas
Take the data set {xi, yi}Ni=1 , then:

1 Split it into S disjoint shards T = {T1, T2, ..., TS}.
2 Train each parallel machine using one of the shards.
3 After Trainning, you get the set of parameters {Θ1,Θ2, ...,ΘS}

1 Obtain Θ̂ =
∑S

i=1 µiΘi
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What about the code for the Perceptron?

PerceptronIterParamMix
(
T = {(xt, yt)} |T |

t=1

)
1 Shard T into S pieces T = {T1, ..., TS}
2 w = 0
3 # Here the parallel epochs!!!
4 for j = 1 to N
5 Parallel computation Part for i = 1, ..., S
6 w(i,j) = OneEpochPerceptron(Ti,w)
7 w =

∑
i µijw

(i,j)

8 return w

Here, we have for the µ’s
For µj = {µ1j , µ2j , ..., µSj}, µij ≥ 0 and ∀j

∑
i µij = 1.
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What about the code for the Perceptron?

OneEpochPerceptron(Ti,w∗)
1 w0 = w∗; k = 0
2 w = 0
3 for t = 1 to |T |
4 Let y′ = arg maxy {wt

kf (xt, y)}
5 w(k+1) = w(k) + [f (xt, yt)− f (xt, y

′)]
6 k = k + 1
7 return w

Where f (xt, y)
It is the high dimensional representation of the pair (xt, y).
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