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History
Invented by Vladimir Vapnik and Alexey Ya. Chervonenkis in 1963

At the Institute of Control Sciences, Moscow
On the paper “Estimation of dependencies based on empirical data”

Corinna Cortes and Vladimir Vapnik in 1995
They Invented their Current Incarnation - Soft Margins
At the AT&T Labs

BTW Corinna Cortes
Danish computer scientist who is known for her contributions to the
field of machine learning.
She is currently the Head of Google Research, New York.
Cortes is a recipient of the Paris Kanellakis Theory and Practice
Award (ACM) for her work on theoretical foundations of support
vector machines.
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In addition

Alexey Yakovlevich Chervonenkis
He was a Soviet and Russian mathematician, and, with Vladimir Vapnik,
was one of the main developers of the Vapnik–Chervonenkis theory, also
known as the "fundamental theory of learning" an important part of
computational learning theory.

He died in September 22nd, 2014
At Losiny Ostrov National Park on 22 September 2014.
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Applications
Partial List

1 Predictive Control
I Control of chaotic systems.

2 Inverse Geosounding Problem
I It is used to understand the internal structure of our planet.

3 Environmental Sciences
I Spatio-temporal environmental data analysis and modeling.

4 Protein Fold and Remote Homology Detection
I In the recognition if two different species contain similar genes.

5 Facial expression classification
6 Texture Classification
7 E-Learning
8 Handwritten Recognition
9 AND counting....
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Separable Classes

Given

xi, i = 1, · · · , N

A set of samples belonging to two classes ω1, ω2.

Objective
We want to obtain a decision function as simple as

g (x) = wTx+ w0
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Such that we can do the following

A linear separation function g (x) = wtx+ w0
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In other words ...

We have the following samples
For x1, · · · ,xm ∈ C1

For x1, · · · ,xn ∈ C2

We want the following decision surfaces
wTxi + w0 ≥ 0 for di = +1 if xi ∈ C1

wTxj + w0 ≤ 0 for dj = −1 if xj ∈ C2
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What do we want?
Our goal is to search for a direction w that gives the maximum possible margin

direction 2

MARGINSdirection 1
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Remember

We have the following

d

Projection r distance

0
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A Little of Geometry
Thus

r

d

A

B

C

Then

d = |w0|√
w2

1 + w2
2

, r = |g (x)|√
w2

1 + w2
2

(1)
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First d = |w0|√
w2

1+w2
2

We can use the following rule in a triangle with a 90o angle

Area = 1
2Cd (2)

In addition, the area can be calculated also as

Area = 1
2AB (3)

Thus

d = AB

C

Remark: Can you get the rest of values?
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What about r = |g(x)|√
w2

1+w2
2
?

First, remember
g (xp) = 0 and x = xp + r

w

‖w‖ (4)

Thus, we have

g (x) =wT

[
xp + r

w

‖w‖

]
+ w0

=wTxp + w0 + r
wTw

‖w‖

=wTxp + w0 + r
‖w‖2

‖w‖
=g (xp) + r ‖w‖

Then
r = g(x)

||w||
16 / 95



What about r = |g(x)|√
w2

1+w2
2
?

First, remember
g (xp) = 0 and x = xp + r

w

‖w‖ (4)

Thus, we have

g (x) =wT

[
xp + r

w

‖w‖

]
+ w0

=wTxp + w0 + r
wTw

‖w‖

=wTxp + w0 + r
‖w‖2

‖w‖
=g (xp) + r ‖w‖

Then
r = g(x)

||w||
16 / 95



What about r = |g(x)|√
w2

1+w2
2
?

First, remember
g (xp) = 0 and x = xp + r

w

‖w‖ (4)

Thus, we have

g (x) =wT

[
xp + r

w

‖w‖

]
+ w0

=wTxp + w0 + r
wTw

‖w‖

=wTxp + w0 + r
‖w‖2

‖w‖
=g (xp) + r ‖w‖

Then
r = g(x)

||w||
16 / 95



What about r = |g(x)|√
w2

1+w2
2
?

First, remember
g (xp) = 0 and x = xp + r

w

‖w‖ (4)

Thus, we have

g (x) =wT

[
xp + r

w

‖w‖

]
+ w0

=wTxp + w0 + r
wTw

‖w‖

=wTxp + w0 + r
‖w‖2

‖w‖
=g (xp) + r ‖w‖

Then
r = g(x)

||w||
16 / 95



What about r = |g(x)|√
w2

1+w2
2
?

First, remember
g (xp) = 0 and x = xp + r

w

‖w‖ (4)

Thus, we have

g (x) =wT

[
xp + r

w

‖w‖

]
+ w0

=wTxp + w0 + r
wTw

‖w‖

=wTxp + w0 + r
‖w‖2

‖w‖
=g (xp) + r ‖w‖

Then
r = g(x)

||w||
16 / 95



What about r = |g(x)|√
w2

1+w2
2
?

First, remember
g (xp) = 0 and x = xp + r

w

‖w‖ (4)

Thus, we have

g (x) =wT

[
xp + r

w

‖w‖

]
+ w0

=wTxp + w0 + r
wTw

‖w‖

=wTxp + w0 + r
‖w‖2

‖w‖
=g (xp) + r ‖w‖

Then
r = g(x)

||w||
16 / 95



This has the following interpretation

The distance from the projection

0
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Now

We know that the straight line that we are looking for looks like

wTx+ w0 = 0 (5)

What about something like this

wTx+ w0 = δ (6)

Clearly
This will be above or below the initial line wTx+ w0 = 0.
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Come back to the hyperplanes
We have then for each border support line an specific bias!!!

Support Vectors

19 / 95



Then, normalize by δ

The new margin functions
w′Tx + w10 = 1
w′Tx + w01 = −1

where w′ = w
δ
, w10 = w′

0
δ ,and w01 = w′′

0
δ

Now, we come back to the middle separator hyperplane, but with the
normalized term

wTxi + w0 ≥ w′Tx + w10 for di = +1
wTxi + w0 ≤ w′Tx + w01 for di = −1

I Where w0 is the bias of that central hyperplane!! And the w is the
normalized direction of w′
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Come back to the hyperplanes
The meaning of what I am saying!!!

21 / 95
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A little about Support Vectors

They are the vectors (Here, we assume that w)
xi such that wTxi + w0 = 1 or wTxi + w0 = −1

Properties
The vectors nearest to the decision surface and the most difficult to
classify.
Because of that, we have the name “Support Vector Machines”.
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Now, we can resume the decision rule for the hyperplane

For the support vectors

g (xi) = wTxi + w0 = −(+)1 for di = −(+)1 (7)

Implies
The distance to the support vectors is:

r = g (xi)
||w||

=


1
||w|| if di = +1
− 1
||w|| if di = −1
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Therefore ...

We want the optimum value of the margin of separation as

ρ = 1
||w||

+ 1
||w||

= 2
||w||

(8)

And the support vectors define the value of ρ
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Thus

If we want to maximize

ρ = 2
||w||

We instead to minimize

||w|| =
√
wTw

Or to minimize, after all we only need the direction of the vector w
1
2w

Tw
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Under the restrictions

Then, we have the samples with labels
T = {(xi, di)}Ni=1

Then we can put the decision rule as
di
(
wTxi + w0

)
≥ 1 i = 1, · · · , N
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Then, we have the optimization problem

The optimization problem
minwΦ (w) = 1

2w
Tw

s.t. di(wTxi + w0) ≥ 1 i = 1, · · · , N

Observations
The cost functions Φ (w) is convex.
The constrains are linear with respect to w.
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Then, Rewriting The Optimization Problem

The optimization with equality constraints
minwΦ (w) = 1

2w
Tw

s.t. di(wTxi + w0) ≥ 1 i = 1, · · · , N
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Then, for our problem

Using the Lagrange Multipliers (We will call them αi)
We obtain the following cost function that we want to minimize

J(w, w0,α) = 1
2w

Tw −
N∑
i=1

αi[di(wTxi + w0)− 1]

Observation
Minimize with respect to w and w0.
Maximize with respect to α because it dominates

−
N∑
i=1

αi[di(wTxi + w0)− 1]. (9)
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Karush-Kuhn-Tucker Conditions

First An Inequality Constrained Problem P

min f (x)
s.t g1 (x) = 0

...
gN (x) = 0

A really minimal version!!! Hey, it is a patch work!!!
A point x is a local minimum of an equality constrained problem P only if
a set of non-negative αj ’s may be found such that:

∇L (x,α) = ∇f (x)−
N∑
i=1

αi∇gi (x) = 0
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Karush-Kuhn-Tucker Conditions

Important
Think about this each constraint correspond to a sample in both classes,
thus

The corresponding αi’s are going to be zero after optimization, if a
constraint is not active i.e. di

(
wTxi + w0

)
− 1 6= 0 (Remember

Maximization).

Again the Support Vectors
This actually defines the idea of support vectors!!!

Thus
Only the αi’s with active constraints (Support Vectors) will be different
from zero when di

(
wTxi + w0

)
− 1 = 0.
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The necessary conditions for optimality

Condition 1
∂J (w, w0,α)

∂w
= 0

Condition 2
∂J (w, w0,α)

∂w0
= 0
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Using the conditions

We have the first condition

∂J(w, w0, α)
∂w

=
∂ 1

2w
Tw

∂w
−
∂
N∑
i=1

αi[di(wTxi + w0)− 1]

∂w
= 0

∂J(w, w0, α)
∂w

= 1
2(w +w)−

N∑
i=1

αidixi

Thus

w =
N∑
i=1

αidixi (10)
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In a similar way ...

We have by the second optimality condition
N∑
i=1

αidi = 0

Note

αi
[
di
(
wTxi + w0

)
− 1

]
= 0

Because the constraint vanishes in the optimal solution i.e. αi = 0 or
di
(
wTxi + w0

)
− 1 = 0.
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Thus

We need something extra
Our classic trick of transforming a problem into another problem

In this case
We use the Primal-Dual Problem for Lagrangian

Where
We move from a minimization to a maximization!!!
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Duality Theorem

First Property
If the Primal has an optimal solution (w ∗ and α∗), the dual too.

Thus
In order to w ∗ and α∗ to be optimal solutions for the primal and dual
problem respectively, It is necessary and sufficient that w∗:

It is a feasible solution for the primal problem and

Φ(w∗) = J (w∗, w0∗,α∗)
= min

w
J (w∗, w0∗,α∗)
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Reformulate our Equations

We have then

J (w, w0,α) = 1
2w

Tw −
N∑
i=1

αidiw
Txi − w0

N∑
i=1

αidi +
N∑
i=1

αi

Now for our 2nd optimality condition

J (w, w0,α) = 1
2w

Tw −
N∑
i=1

αidiw
Txi +

N∑
i=1

αi
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We have finally for the 1st Optimality Condition:

First

wTw =
N∑
i=1

αidiw
Txi =

N∑
i=1

N∑
j=1

αiαjdidjx
T
j xi

Second, setting J (w, w0,α) = Q (α)

Q (α) =
N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjdidjx
T
j xi
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From here, we have the problem
This is the problem that we really solve
Given the training sample {(xi, di)}Ni=1, find the Lagrange multipliers
{αi}Ni=1 that maximize the objective function

Q(α) =
N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjdidjx
T
j xi

subject to the constraints

N∑
i=1

αidi = 0 (11)

αi ≥ 0 for i = 1, · · · , N (12)

Note
In the Primal, we were trying to minimize the cost function, for this it is
necessary to maximize α. That is the reason why we are maximizing
Q (α). 44 / 95
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Solving for α

We can compute w∗ once we get the optimal α∗i by using (Eq. 10)

w∗ =
N∑
i=1

α∗i dixi

In addition, we can compute the optimal bias w∗0 using the optimal
weight, w∗
For this, we use the positive margin equation:

g
(
x(s)

)
= wTx(s) + w0 = 1

corresponding to a positive support vector.

Then

w0 = 1− (w∗)T x(s) for d(s) = 1 (13)
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What do we need?

Until now, we have only a maximal margin algorithm
All this work fine when the classes are separable
Problem, What when they are not separable?
What we can do?
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Map to a higher Dimensional Space

Assume that exist a mapping

x ∈ Rl → y ∈ Rk

Then, it is possible to define the following mapping
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Define a map to a higher Dimension

Nonlinear transformations
Given a series of nonlinear transformations

{φi (x)}mi=1

from input space to the feature space.

We can define the decision surface as
m∑
i=1

wiφi (x) + w0 = 0
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This allows us to define

The following vector

φ (x) = (φ0 (x) , φ1 (x) , · · · , φm (x)) T

that represents the mapping.

From this mapping
We can define the following kernel function

K : X×X→ R

K (xi,xj) = φ (xi)T φ (xj)
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Basic Idea

Something Notable
The SVM uses the scalar product 〈xi,xj〉 as a measure of similarity
between xi and xj , and of distance to the hyperplane.
Since the scalar product is linear, the SVM is a linear method.

But
Using a nonlinear function instead, we can make the classifier nonlinear.
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We do this by defining the following map

Nonlinear transformations
Given a series of nonlinear transformations

{φi (x)}mi=1

from input space to the feature space.

We can define the decision surface as
m∑
i=1

wiφi (x) + w0 = 0

.
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This allows us to define

The following vector

φ (x) = (φ0 (x) , φ1 (x) , · · · , φm (x)) T

That represents the mapping.
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Finally

We define the decision surface as

wTφ (x) = 0 (14)

We now seek "linear" separability of features, we may write

w =
N∑
i=1

αidiφ (xi) (15)

Thus, we finish with the following decision surface
N∑
i=1

αidiφ
T (xi)φ (x) = 0 (16)
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Thus

The term φT (xi)φ (x)
It represents the inner product of two vectors induced in the feature space
induced by the input patterns.

We can introduce the inner-product kernel

K (xi,x) = φT (xi)φ (x) =
m∑
j=0

φj (xi)φj (x) (17)

Property: Symmetry

K (xi,x) = K (x,xi) (18)
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This allows to redefine the optimal hyperplane

We get
N∑
i=1

αidiK (xi,x) = 0 (19)

Something Notable
Using kernels, we can avoid to go from:

Input Space =⇒ Mapping Space =⇒ Inner Product (20)

By directly going from

Input Space =⇒ Inner Product (21)
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Important

Something Notable
The expansion of (Eq. 17) for the inner-product kernel K (xi,x) is an
important special case of that arises in functional analysis.
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Mercer’s Theorem

Mercer’s Theorem
Let K (x,x′) be a continuous symmetric kernel that is defined in the
closed interval a ≤ x ≤ b and likewise for x′. The kernel K (x,x′) can be
expanded in the series

K
(
x,x′) =

∞∑
i=1

λiφi (x)φi
(
x′
)

(22)

With
Positive coefficients, λi > 0 for all i.

62 / 95



Mercer’s Theorem

Mercer’s Theorem
Let K (x,x′) be a continuous symmetric kernel that is defined in the
closed interval a ≤ x ≤ b and likewise for x′. The kernel K (x,x′) can be
expanded in the series

K
(
x,x′) =

∞∑
i=1

λiφi (x)φi
(
x′
)

(22)

With
Positive coefficients, λi > 0 for all i.

62 / 95



Mercer’s Theorem

For this expression to be valid and or it to converge absolutely and
uniformly
It is necessary and sufficient that the condition∫ b

a

∫ b

a
K
(
x,x′)ψ (x)ψ

(
x′) dxdx′ ≥ 0 (23)

holds for all ψ such that
∫ b
a ψ

2 (x) dx <∞(Example of a quadratic norm
for functions).
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Remarks

First
The functions φi (x) are called eigenfunctions of the expansion and the
numbers λi are called eigenvalues.

Second
The fact that all of the eigenvalues are positive means that the kernel
K (x,x′) is positive definite.
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Not only that

We have that
For λi 6= 1, the ith image of

√
λiφi (x) induced in the feature space by the

input vector x is an eigenfunction of the expansion.

In theory
The dimensionality of the feature space (i.e., the number of eigenvalues/
eigenfunctions) can be infinitely large.
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Example

Assume

x ∈ R→ y =

 x2
1√

2x1x2
x2

2


We can show that

yTi yj =
(
xTi xj

)
2
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Example of Kernels

Polynomials

k (x, z) = (xTz + 1)q q > 0

Radial Basis Functions

k (x, z) = exp
(
−||x− z||

2

σ2

)

Hyperbolic Tangents

k (x, z) = tanh
(
βxTz + γ

)
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Now, How to select a Kernel?

We have a problem
Selecting a specific kernel and parameters is usually done in a try-and-see
manner.

Thus
In general, the Radial Basis Functions kernel is a reasonable first choice.

Then
if this fails, we can try the other possible kernels.
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Thus, we have something like this

Step 1
Normalize the data.

Step 2
Use cross-validation to adjust the parameters of the selected kernel.

Step 3
Train against the entire dataset.
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Optimal Hyperplane for non-separable patterns

Important
We have been considering only problems where the classes are linearly
separable.

Now
What happen when the patterns are not separable?

Thus, we can still build a separating hyperplane
But errors will happen in the classification... We need to minimize them...
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What if the following happens
Some data points invade the “margin” space

Optimal Hyperplane

Data Point
Violating Property
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Fixing the Problem - Corinna’s Style

The margin of separation between classes is said to be soft if a data
point (xi, di) violates the following condition

di
(
wTxi + b

)
≥ +1 i = 1, 2, ..., N (24)

This violation can arise in one of two ways
The data point (xi, di) falls inside the region of separation but on the
right side of the decision surface - still correct classification.
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We have then

Example

Optimal Hyperplane

Data Point
Violating Property
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Or...

This violation can arise in one of two ways
The data point (xi, di) falls on the wrong side of the decision surface -
incorrect classification.

Example
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Solving the problem

What to do?
We introduce a set of nonnegative scalar values {ξi}Ni=1.

Introduce this into the decision rule

di
(
wTxi + b

)
≥ 1− ξi i = 1, 2, ..., N (25)
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The ξi are called slack variables

What?
In 1995, Corinna Cortes and Vladimir N. Vapnik suggested a modified
maximum margin idea that allows for mislabeled examples.

Ok!!!
Instead of expecting to have constant margin for all the samples, the
margin can change depending of the sample.

What do we have?
ξi measures the deviation of a data point from the ideal condition of
pattern separability.
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Properties of ξi

What if?
You have 0 ≤ ξi ≤ 1

We have
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Properties of ξi

What if?
You have ξi > 1

We have
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Support Vectors

We want
Support vectors that satisfy equation (Eq. 25) even when ξi > 0

di
(
wTxi + b

)
≥ 1− ξi i = 1, 2, ..., N
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We want the following

We want to find an hyperplane
Such that average error is misclassified over all the samples

1
N

N∑
i=1

e2 (26)
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First Attempt Into Minimization

We can try the following
Given

I (x) =
{

0 if x ≤ 0
1 if x > 0

(27)

Minimize the following

Φ (ξ) =
N∑
i=1

I (ξi − 1) (28)

with respect to the weight vector w subject to
1 di

(
wTxi + b

)
≥ 1− ξi i = 1, 2, ..., N

2 ‖w‖ 2 ≤ C for a given C.
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Problem

Using this first attempt
Minimization of Φ (ξ) with respect to w is a non-convex optimization
problem that is NP-complete.

Thus, we need to use an approximation, maybe

Φ (ξ) =
N∑
i=1

ξi (29)

Now, we simplify the computations by integrating the vector w

Φ (w, ξ) = 1
2w

Tw + C
N∑
i=1

ξi (30)
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Important

First
Minimizing the first term in (Eq. 30) is related to minimize the
Vapnik–Chervonenkis dimension.

Which is a measure of the capacity (complexity, expressive power,
richness, or flexibility) of a statistical classification algorithm.

Second
The second term ∑N

i=1 ξi is an upper bound on the number of test errors.
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Some problems for the Parameter C

Little Problem
The parameter C has to be selected by the user.

This can be done in two ways
1 The parameter C is determined experimentally via the standard use of

a training! (validation) test set.
2 It is determined analytically by estimating the Vapnik–Chervonenkis

dimension.
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Primal Problem

Problem, given samples {(xi, di)}Ni=1

min
w,ξ

Φ (w, ξ) = min
w,ξ

{
1
2w

Tw + C
N∑
i=1

ξi

}
s.t. di(wTxi + w0) ≥ 1− ξi for i = 1, · · · , N

ξi ≥ 0 for all i

With C a user-specified positive parameter.
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Final Setup

Using Lagrange Multipliers and dual-primal method is possible to
obtain the following setup
Given the training sample {(xi, di)}Ni=1, find the Lagrange multipliers
{αi}Ni=1 that maximize the objective function

min
α
Q(α) = min

α


N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjdidjx
T
j xi


subject to the constraints

N∑
i=1

αidi = 0 (31)

0 ≤ αi ≤ C for i = 1, · · · , N (32)

where C is a user-specified positive parameter.
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Remarks

Something Notable
Note that neither the slack variables nor their Lagrange multipliers
appear in the dual problem.
The dual problem for the case of non-separable patterns is thus
similar to that for the simple case of linearly separable patterns

The only big difference
Instead of using the constraint αi ≥ 0, the new problem use the more
stringent constraint 0 ≤ αi ≤ C.

Note the following

ξi = 0 if αi < C (33)
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Finally

The optimal solution for the weight vector w∗

w∗ =
Ns∑
i=1

α∗i dixi

Where Ns is the number of support vectors.

In addition
The determination of the optimum values to that described before.

The KKT conditions are as follow
αi
[
di
(
wTxi + wo

)
− 1 + ξi

]
= 0 for i = 1, 2, ..., N .

µiξi = 0 for i = 1, 2, ..., N .
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Where...

The µi are Lagrange multipliers
They are used to enforce the non-negativity of the slack variables ξi for all
i.

Something Notable
At saddle point, the derivative of the Lagrangian function for the primal
problem:

1
2w

Tw + C
N∑
i=1

ξi −
N∑
i=1

αi
[
di
(
wTxi + wo

)
− 1 + ξi

]
−

N∑
i=1

µiξi (34)
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Thus

We get

αi + µi = C (35)

Thus, we get if αi < C

Then µi > 0⇒ ξi = 0

We may determine w0

Using any data point (xi, di) in the training set such that 0 ≤ α∗i ≤ C.
Then, given ξi = 0,

w∗0 = 1
di
− (w∗)T xi (36)
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Nevertheless

It is better
To take the mean value of w∗0 from all such data points in the training
sample (Burges, 1998).

BTW He has a great book in SVM’s “An Introduction to Support
Vector Machines and Other Kernel-based Learning Methods”
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