Introduction to Machine Learning Introduction to Support Vector Machines

Andres Mendez-Vazquez

June 13, 2018

Outline

Support Vectors

Support Vectors

- Quadratic Optimization
- Rewriting The Optimization Problem
- Karush-Kuhn-Tucker Conditions
- Properties of the Dual

Kernels

- Introduction Kernel Idea
- Higher Dimensional Space
- The Mercer Theorem for Kernels
 - Basic Idea
- From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

Introduction

The Soft Margin Solution

イロト イヨト イヨト

Outline

History • The Beginning

3 Support Vector

- Support Vectors
- Quadratic Optimization
- Rewriting The Optimization Problem
- Karush-Kuhn-Tucker Conditions
- Properties of the Dual

Kernels

- Introduction Kernel Idea
- Higher Dimensional Space
- The Mercer Theorem for Kernels
 - Basic Idea
- From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

Soft Margins

Introduction

The Soft Margin Solution

< ロ > < 回 > < 回 > < 回 > < 回 >

Invented by Vladimir Vapnik and Alexey Ya. Chervonenkis in 1963

• At the Institute of Control Sciences, Moscow

On the paper "Estimation of dependencies based on empirical data"

Invented by Vladimir Vapnik and Alexey Ya. Chervonenkis in 1963

- At the Institute of Control Sciences, Moscow
- On the paper "Estimation of dependencies based on empirical data"

Corinna Cortes and Vladimir Vapnik in 1995

- They Invented their Current Incarnation Soft Margins
- At the AT&T Labs

Invented by Vladimir Vapnik and Alexey Ya. Chervonenkis in 1963

- At the Institute of Control Sciences, Moscow
- On the paper "Estimation of dependencies based on empirical data"

Corinna Cortes and Vladimir Vapnik in 1995

• They Invented their Current Incarnation - Soft Margins

- Danish computer scientist who is known for her contributions to the field of machine learning.
- She is currently the Head of Google Research, New York.
- Cortes is a recipient of the Paris Kanellakis Theory and Practice Award (ACM) for her work on theoretical foundations of support vector machines.

Invented by Vladimir Vapnik and Alexey Ya. Chervonenkis in 1963

- At the Institute of Control Sciences, Moscow
- On the paper "Estimation of dependencies based on empirical data"

Corinna Cortes and Vladimir Vapnik in 1995

- They Invented their Current Incarnation Soft Margins
- At the AT&T Labs

- Danish computer scientist who is known for her contributions to the field of machine learning.
- She is currently the Head of Google Research, New York.
- Cortes is a recipient of the Paris Kanellakis Theory and Practice Award (ACM) for her work on theoretical foundations of support vector machines.

Invented by Vladimir Vapnik and Alexey Ya. Chervonenkis in 1963

- At the Institute of Control Sciences, Moscow
- On the paper "Estimation of dependencies based on empirical data"

Corinna Cortes and Vladimir Vapnik in 1995

- They Invented their Current Incarnation Soft Margins
- At the AT&T Labs

- Danish computer scientist who is known for her contributions to the field of machine learning.
 - She is currently the Head of Google Research, New York.
- Cortes is a recipient of the Paris Kanellakis Theory and Practice Award (ACM) for her work on theoretical foundations of support vector machines.

Invented by Vladimir Vapnik and Alexey Ya. Chervonenkis in 1963

- At the Institute of Control Sciences, Moscow
- On the paper "Estimation of dependencies based on empirical data"

Corinna Cortes and Vladimir Vapnik in 1995

- They Invented their Current Incarnation Soft Margins
- At the AT&T Labs

BTW Corinna Cortes

- Danish computer scientist who is known for her contributions to the field of machine learning.
- She is currently the Head of Google Research, New York.

Award (ACM) for her work on theoretical foundations of support vector machines.

Invented by Vladimir Vapnik and Alexey Ya. Chervonenkis in 1963

- At the Institute of Control Sciences, Moscow
- On the paper "Estimation of dependencies based on empirical data"

Corinna Cortes and Vladimir Vapnik in 1995

- They Invented their Current Incarnation Soft Margins
- At the AT&T Labs

- Danish computer scientist who is known for her contributions to the field of machine learning.
- She is currently the Head of Google Research, New York.
- Cortes is a recipient of the Paris Kanellakis Theory and Practice Award (ACM) for her work on theoretical foundations of support vector machines.

In addition

Alexey Yakovlevich Chervonenkis

He was a Soviet and Russian mathematician, and, with Vladimir Vapnik, was one of the main developers of the Vapnik–Chervonenkis theory, also known as the "**fundamental theory of learning**" an important part of computational learning theory.

He died in September 22nd, 2014

At Losiny Ostrov National Park on 22 September 2014.

In addition

Alexey Yakovlevich Chervonenkis

He was a Soviet and Russian mathematician, and, with Vladimir Vapnik, was one of the main developers of the Vapnik–Chervonenkis theory, also known as the **"fundamental theory of learning"** an important part of computational learning theory.

He died in September 22nd, 2014

At Losiny Ostrov National Park on 22 September 2014.

< ロ > < 同 > < 回 > < 回 >

Partial List

Predictive Control

• Control of chaotic systems.

Inverse Geosounding Problem

▶ It is used to understand the internal structure of our planet.

Environmental Sciences

Spatio-temporal environmental data analysis and modeling.

Protein Fold and Remote Homology Detection

- In the recognition if two different species contain similar genes.
- Facial expression classification
- O Texture Classification
- E-Learning
- Handwritten Recognition
- AND counting....

Partial List

Predictive Control

- Control of chaotic systems.
- Inverse Geosounding Problem
 - It is used to understand the internal structure of our planet.

Environmental Sciences

- Spatio-temporal environmental data analysis and modeling.
- Protein Fold and Remote Homology Detection
 - In the recognition if two different species contain similar genes.
- Facial expression classification
- O Texture Classification
- E-Learning
- Handwritten Recognition
- AND counting....

- Predictive Control
 - Control of chaotic systems.
- Inverse Geosounding Problem
 - It is used to understand the internal structure of our planet.
- Invironmental Sciences
 - Spatio-temporal environmental data analysis and modeling.
- Protein Fold and Remote Homology Detection
 - ▶ In the recognition if two different species contain similar genes
- Facial expression classification
- O Texture Classification
- E-Learning
- Handwritten Recognition
- AND counting....

- Predictive Control
 - Control of chaotic systems.
- Inverse Geosounding Problem
 - It is used to understand the internal structure of our planet.
- Invironmental Sciences
 - Spatio-temporal environmental data analysis and modeling.
- Protein Fold and Remote Homology Detection
 - In the recognition if two different species contain similar genes.
- Facial expression classification
- Texture Classification
- E-Learning
- Handwritten Recognition
- AND counting....

- Predictive Control
 - Control of chaotic systems.
- Inverse Geosounding Problem
 - It is used to understand the internal structure of our planet.
- Invironmental Sciences
 - Spatio-temporal environmental data analysis and modeling.
- Protein Fold and Remote Homology Detection
 - In the recognition if two different species contain similar genes.
- Facial expression classification
 - Texture Classification
- E-Learning
- Handwritten Recognition
- AND counting....

- Predictive Control
 - Control of chaotic systems.
- Inverse Geosounding Problem
 - It is used to understand the internal structure of our planet.
- Invironmental Sciences
 - Spatio-temporal environmental data analysis and modeling.
- Protein Fold and Remote Homology Detection
 - In the recognition if two different species contain similar genes.
- Facial expression classification
- Texture Classification
- E-Learning
- Handwritten Recognition
- AND counting....

- Predictive Control
 - Control of chaotic systems.
- Inverse Geosounding Problem
 - It is used to understand the internal structure of our planet.
- Invironmental Sciences
 - Spatio-temporal environmental data analysis and modeling.
- Protein Fold and Remote Homology Detection
 - In the recognition if two different species contain similar genes.
- Facial expression classification
- Texture Classification
- E-Learning
 - Handwritten Recognition
- AND counting...

Partial List

- Predictive Control
 - Control of chaotic systems.
- Inverse Geosounding Problem
 - It is used to understand the internal structure of our planet.
- Invironmental Sciences
 - Spatio-temporal environmental data analysis and modeling.
- Protein Fold and Remote Homology Detection
 - In the recognition if two different species contain similar genes.
- Facial expression classification
- Texture Classification
- E-Learning
- 8 Handwritten Recognition

AND counting...

- Predictive Control
 - Control of chaotic systems.
- Inverse Geosounding Problem
 - It is used to understand the internal structure of our planet.
- Invironmental Sciences
 - Spatio-temporal environmental data analysis and modeling.
- Protein Fold and Remote Homology Detection
 - In the recognition if two different species contain similar genes.
- Sacial expression classification
- Texture Classification
- E-Learning
- 8 Handwritten Recognition
- AND counting....

Outline

History The Beginning

3 Support Vector

- Support Vectors
- Quadratic Optimization
- Rewriting The Optimization Problem
- Karush-Kuhn-Tucker Conditions
- Properties of the Dual

Kernels

- Introduction Kernel Idea
- Higher Dimensional Space
- The Mercer Theorem for Kernels
 - Basic Idea
- From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

Soft Margins

Introduction

The Soft Margin Solution

< ロ > < 回 > < 回 > < 回 > < 回 >

Separable Classes

Given

$$\boldsymbol{x}_i, \ i=1,\cdots,N$$

A set of samples belonging to two classes ω_1 , ω_2 .

Separable Classes

Given

$$\boldsymbol{x}_i, \ i=1,\cdots,N$$

A set of samples belonging to two classes ω_1 , ω_2 .

Objective

We want to obtain a decision function as simple as

$$g\left(\boldsymbol{x}\right) = \boldsymbol{w}^T \boldsymbol{x} + w_0$$

イロト イヨト イヨト イヨト

Such that we can do the following

9 / 95

Outline

History The Beginning

3 Support Vectors

- Support Vectors
- Quadratic Optimization
- Rewriting The Optimization Problem
- Karush-Kuhn-Tucker Conditions
- Properties of the Dual

Kernels

- Introduction Kernel Idea
- Higher Dimensional Space
- The Mercer Theorem for Kernels
 - Basic Idea
- From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

Soft Margins

Introduction

The Soft Margin Solution

< ロ > < 回 > < 回 > < 回 > < 回 >

We have the following samples

- For $oldsymbol{x}_1,\cdots,oldsymbol{x}_m\in C_1$
- For $x_1, \cdots, x_n \in C_2$

We have the following samples

- For $\boldsymbol{x}_1,\cdots,\boldsymbol{x}_m\in C_1$
- For $\boldsymbol{x}_1,\cdots,\boldsymbol{x}_n\in C_2$

We want the following decision surfaces

• $oldsymbol{w}^Toldsymbol{x}_i+w_0\geq 0$ for $d_i=+1$ if $oldsymbol{x}_i\in C_1$

• $oldsymbol{w}^Toldsymbol{x}_j+w_0\leq 0$ for $d_j=-1$ if $oldsymbol{x}_j\in C_2$

We have the following samples

- For $\boldsymbol{x}_1,\cdots,\boldsymbol{x}_m\in C_1$
- For $\boldsymbol{x}_1,\cdots,\boldsymbol{x}_n\in C_2$

We want the following decision surfaces

•
$$\boldsymbol{w}^T \boldsymbol{x}_i + w_0 \geq 0$$
 for $d_i = +1$ if $\boldsymbol{x}_i \in C_1$

We have the following samples

- For $\boldsymbol{x}_1,\cdots,\boldsymbol{x}_m\in C_1$
- For $oldsymbol{x}_1,\cdots,oldsymbol{x}_n\in C_2$

We want the following decision surfaces

•
$$oldsymbol{w}^Toldsymbol{x}_i+w_0\geq 0$$
 for $d_i=+1$ if $oldsymbol{x}_i\in C_1$

•
$$oldsymbol{w}^Toldsymbol{x}_j+w_0\leq 0$$
 for $d_j=-1$ if $oldsymbol{x}_j\in C_2$

イロト イロト イヨト イヨト

What do we want?

12/95

Remember

We have the following

13/95

A Little of Geometry

l hen

$$d = rac{|w_0|}{\sqrt{w_1^2 + w_2^2}}, \; r = rac{|g\left(x
ight)|}{\sqrt{w_1^2 + w_2^2}}$$

A Little of Geometry

Then

$$d = \frac{|w_0|}{\sqrt{w_1^2 + w_2^2}}, \ r = \frac{|g(\boldsymbol{x})|}{\sqrt{w_1^2 + w_2^2}}$$
(1)

First
$$d = \frac{|w_0|}{\sqrt{w_1^2 + w_2^2}}$$

We can use the following rule in a triangle with a $90^o \ {\rm angle}$

$$Area = \frac{1}{2}Cd\tag{2}$$

In addition, the area can be calculated also as

$$Area = \frac{1}{2}AB$$

Thus

$$d = \frac{AB}{C}$$

Remark: Can you get the rest of values?

First
$$d = rac{|w_0|}{\sqrt{w_1^2 + w_2^2}}$$

We can use the following rule in a triangle with a $90^o \ {\rm angle}$

$$Area = \frac{1}{2}Cd\tag{2}$$

In addition, the area can be calculated also as

$$Area = \frac{1}{2}AB$$

$$d = \frac{AB}{C}$$

Remark: Can you get the rest of values?

(3
First
$$d = rac{|w_0|}{\sqrt{w_1^2 + w_2^2}}$$

We can use the following rule in a triangle with a $90^o \ {\rm angle}$

$$Area = \frac{1}{2}Cd\tag{2}$$

In addition, the area can be calculated also as

$$Area = \frac{1}{2}AB$$

Thus

$$d = \frac{AB}{C}$$

Remark: Can you get the rest of values?

イロン イヨン イヨン イヨン 三日

(3

What about $\ r=rac{|g(m{x})|}{\sqrt{w_1^2+w_2^2}}$?

First, remember

$$g(\boldsymbol{x}_p) = 0 \text{ and } \boldsymbol{x} = \boldsymbol{x}_p + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}$$
 (4)

What about $r=rac{|g(\pmb{x})|}{\sqrt{w_1^2+w_2^2}}$?

First, remember

$$g(\boldsymbol{x}_p) = 0 \text{ and } \boldsymbol{x} = \boldsymbol{x}_p + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}$$
 (4)

$$g(\boldsymbol{x}) = \boldsymbol{w}^{T} \left[\boldsymbol{x}_{p} + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|} \right] + w_{0}$$

What about $r=rac{|g(m{x})|}{\sqrt{w_1^2+w_2^2}}$?

First, remember

$$g(\boldsymbol{x}_p) = 0 \text{ and } \boldsymbol{x} = \boldsymbol{x}_p + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}$$
 (4)

16/95

$$g(\boldsymbol{x}) = \boldsymbol{w}^{T} \left[\boldsymbol{x}_{p} + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|} \right] + w_{0}$$
$$= \boldsymbol{w}^{T} \boldsymbol{x}_{p} + w_{0} + r \frac{\boldsymbol{w}^{T} \boldsymbol{w}}{\|\boldsymbol{w}\|}$$

What about $r=rac{|g(m{x})|}{\sqrt{w_1^2+w_2^2}}$?

First, remember

$$g(\boldsymbol{x}_p) = 0 \text{ and } \boldsymbol{x} = \boldsymbol{x}_p + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}$$
 (4)

$$g(\boldsymbol{x}) = \boldsymbol{w}^{T} \left[\boldsymbol{x}_{p} + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|} \right] + w_{0}$$
$$= \boldsymbol{w}^{T} \boldsymbol{x}_{p} + w_{0} + r \frac{\boldsymbol{w}^{T} \boldsymbol{w}}{\|\boldsymbol{w}\|}$$
$$= \boldsymbol{w}^{T} \boldsymbol{x}_{p} + w_{0} + r \frac{\|\boldsymbol{w}\|^{2}}{\|\boldsymbol{w}\|}$$

What about $r=rac{|g(\pmb{x})|}{\sqrt{w_1^2+w_2^2}}$?

First, remember

$$g(\boldsymbol{x}_p) = 0 \text{ and } \boldsymbol{x} = \boldsymbol{x}_p + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}$$
 (4)

Thus, we have

$$g(\boldsymbol{x}) = \boldsymbol{w}^{T} \left[\boldsymbol{x}_{p} + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|} \right] + w_{0}$$
$$= \boldsymbol{w}^{T} \boldsymbol{x}_{p} + w_{0} + r \frac{\boldsymbol{w}^{T} \boldsymbol{w}}{\|\boldsymbol{w}\|}$$
$$= \boldsymbol{w}^{T} \boldsymbol{x}_{p} + w_{0} + r \frac{\|\boldsymbol{w}\|^{2}}{\|\boldsymbol{w}\|}$$
$$= g(\boldsymbol{x}_{p}) + r \|\boldsymbol{w}\|$$

Then

What about $r=rac{|g(\pmb{x})|}{\sqrt{w_1^2+w_2^2}}$?

First, remember

$$g(\boldsymbol{x}_p) = 0 \text{ and } \boldsymbol{x} = \boldsymbol{x}_p + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}$$
 (4)

Thus, we have

$$g(\boldsymbol{x}) = \boldsymbol{w}^{T} \left[\boldsymbol{x}_{p} + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|} \right] + w_{0}$$
$$= \boldsymbol{w}^{T} \boldsymbol{x}_{p} + w_{0} + r \frac{\boldsymbol{w}^{T} \boldsymbol{w}}{\|\boldsymbol{w}\|}$$
$$= \boldsymbol{w}^{T} \boldsymbol{x}_{p} + w_{0} + r \frac{\|\boldsymbol{w}\|^{2}}{\|\boldsymbol{w}\|}$$
$$= g(\boldsymbol{x}_{p}) + r \|\boldsymbol{w}\|$$

Then

$$r = \frac{g(\mathbf{x})}{||\mathbf{w}||}$$

This has the following interpretation

э

< ロ > < 回 > < 回 > < 回 > < 回 >

Now

We know that the straight line that we are looking for looks like

$$\boldsymbol{w}^T \boldsymbol{x} + \boldsymbol{w}_0 = \boldsymbol{0}$$

What about something like this

$$\boldsymbol{w}^T \boldsymbol{x} + \boldsymbol{w}_0 = \boldsymbol{\delta}$$

Clearly

This will be above or below the initial line $oldsymbol{w}^Tx+oldsymbol{w}_0=0$

イロン イロン イヨン イヨン

(5)

Now

We know that the straight line that we are looking for looks like

$$\boldsymbol{w}^T \boldsymbol{x} + \boldsymbol{w}_0 = \boldsymbol{0}$$

What about something like this

$$\boldsymbol{w}^T \boldsymbol{x} + \boldsymbol{w}_0 = \boldsymbol{\delta}$$

(6)

(5)

Clearly

This will be above or below the initial line $oldsymbol{w}^Tx+oldsymbol{w}_0=0.$

イロン イロン イヨン イヨン

Now

We know that the straight line that we are looking for looks like

$$\boldsymbol{w}^T \boldsymbol{x} + \boldsymbol{w}_0 = \boldsymbol{0}$$

What about something like this

$$\boldsymbol{w}^T \boldsymbol{x} + \boldsymbol{w}_0 = \boldsymbol{\delta}$$

(6)

Clearly

This will be above or below the initial line $w^T x + w_0 = 0$.

Come back to the hyperplanes

We have then for each border support line an specific bias!!!

The new margin functions

•
$$w'^T \mathbf{x} + w_{10} = 1$$

- $w'^T \mathbf{x} + w_{01} = -1$
- where $w'=rac{w}{\delta}$, $w_{10}=rac{w_0'}{\delta}$, and $w_{01}=rac{w_0'}{\delta}$

20 / 95

The new margin functions

•
$$w'^T \mathbf{x} + w_{10} = 1$$

•
$$w'^T \mathbf{x} + w_{01} = -1$$

where $w'=rac{w}{\delta}$, $w_{10}=rac{w_0}{\delta}$, and $w_{01}=rac{w_0}{\delta}$

Now, we come back to the middle separator hyperplane, but with the normalized term

•
$$oldsymbol{w}^T\mathbf{x}_i+w_0\geq oldsymbol{w}'^T\mathbf{x}+w_{10}$$
 for $d_i=+1$

- ullet ullet $oldsymbol{w}^T \mathbf{x}_i + w_0 \leq oldsymbol{w}^{\prime T} \mathbf{x} + w_{01}$ for $d_i = -1$
 - · Where w_0 is the bias of that central hyperplane!! And the $m{w}$ is the normalized direction of $m{w}'$

イロト イロト イヨト イヨト

The new margin functions

•
$$w'^T \mathbf{x} + w_{10} = 1$$

•
$$w'^T \mathbf{x} + w_{01} = -1$$

where
$$m{w'}=rac{w}{\delta}$$
, $w_{10}=rac{w'_0}{\delta}$, and $w_{01}=rac{w''_0}{\delta}$

Now, we come back to the middle separator hyperplane, but with the normalized term • $w^T \mathbf{x}_i + w_0 \ge w'^T \mathbf{x} + w_{10}$ for $d_i = +1$ • $w^T \mathbf{x}_i + w_0 \le w'^T \mathbf{x} + w_{01}$ for $d_i = -1$ • Where w_0 is the bias of that central hyperplanel! And the w is the normalized direction of w'

The new margin functions

•
$$w'^T \mathbf{x} + w_{10} = 1$$

•
$$w'^T \mathbf{x} + w_{01} = -1$$

where
$$m{w'}=rac{w}{\delta}$$
, $w_{10}=rac{w'_0}{\delta}$, and $w_{01}=rac{w''_0}{\delta}$

Now, we come back to the middle separator hyperplane, but with the normalized term

•
$$\boldsymbol{w}^T \mathbf{x}_i + w_0 \geq \boldsymbol{w}'^T \mathbf{x} + w_{10}$$
 for $d_i = +1$

イロト 不得 とくき とくきとう き

The new margin functions

•
$$w'^T \mathbf{x} + w_{10} = 1$$

•
$$w'^T \mathbf{x} + w_{01} = -1$$

where
$$m{w'}=rac{w}{m{\delta}}$$
, $w_{10}=rac{w'_0}{\delta}$, and $w_{01}=rac{w''_0}{\delta}$

Now, we come back to the middle separator hyperplane, but with the normalized term

•
$$\boldsymbol{w}^T \mathbf{x}_i + w_0 \geq \boldsymbol{w}'^T \mathbf{x} + w_{10}$$
 for $d_i = +1$

•
$$\boldsymbol{w}^T \mathbf{x}_i + w_0 \leq \boldsymbol{w}'^T \mathbf{x} + w_{01}$$
 for $d_i = -1$

< ロ > < 回 > < 回 > < 回 > < 回 >

The new margin functions

•
$$w'^T \mathbf{x} + w_{10} = 1$$

•
$$w'^T \mathbf{x} + w_{01} = -1$$

where
$$m{w'}=rac{w}{m{\delta}}$$
, $w_{10}=rac{w'_0}{\delta}$, and $w_{01}=rac{w''_0}{\delta}$

Now, we come back to the middle separator hyperplane, but with the normalized term

•
$$oldsymbol{w}^T \mathbf{x}_i + w_0 \geq oldsymbol{w}'^T \mathbf{x} + w_{10}$$
 for $d_i = +1$

•
$$oldsymbol{w}^T \mathbf{x}_i + w_0 \leq oldsymbol{w}'^T \mathbf{x} + w_{01}$$
 for $d_i = -1$

► Where w₀ is the bias of that central hyperplane!! And the w is the normalized direction of w'

イロト イヨト イヨト

Come back to the hyperplanes

The meaning of what I am saying!!!

Outline

History The Beginning

3 Support Vectors • Support Vectors

- Quadratic Optimization
- Rewriting The Optimization Problem
- Karush-Kuhn-Tucker Conditions
- Properties of the Dual

Kernels

- Introduction Kernel Idea
- Higher Dimensional Space
- The Mercer Theorem for Kernels
 - Basic Idea
- From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

Soft Margins

Introduction

The Soft Margin Solution

< ロ > < 回 > < 回 > < 回 > < 回 >

A little about Support Vectors

They are the vectors (Here, we assume that w)

 $oldsymbol{x}_i$ such that $oldsymbol{w}^Toldsymbol{x}_i+w_0=1$ or $oldsymbol{w}^Toldsymbol{x}_i+w_0=-1$

A little about Support Vectors

They are the vectors (Here, we assume that w)

 $oldsymbol{x}_i$ such that $oldsymbol{w}^Toldsymbol{x}_i+w_0=1$ or $oldsymbol{w}^Toldsymbol{x}_i+w_0=-1$

Properties

• The vectors nearest to the decision surface and the most difficult to classify.

Because of that, we have the name "Support Vector Machines".

A little about Support Vectors

They are the vectors (Here, we assume that w)

 $oldsymbol{x}_i$ such that $oldsymbol{w}^Toldsymbol{x}_i+w_0=1$ or $oldsymbol{w}^Toldsymbol{x}_i+w_0=-1$

Properties

- The vectors nearest to the decision surface and the most difficult to classify.
- Because of that, we have the name "Support Vector Machines".

イロト イロト イヨト イヨト

Now, we can resume the decision rule for the hyperplane

For the support vectors

$$g\left(oldsymbol{x}_{i}
ight)=oldsymbol{w}^{T}oldsymbol{x}_{i}+w_{0}=-(+)1$$
 for $d_{i}=-(+)1$

Implies

The distance to the support vectors is:

$$r = \frac{g(x_i)}{||w||} = \begin{cases} \frac{1}{||w||} & \text{if } d_i = +1 \\ -\frac{1}{||w||} & \text{if } d_i = -1 \end{cases}$$

< ロ > < 回 > < 回 > < 回 > < 回 >

(7

Now, we can resume the decision rule for the hyperplane

For the support vectors

$$g\left(oldsymbol{x}_{i}
ight)=oldsymbol{w}^{T}oldsymbol{x}_{i}+w_{0}=-(+)1$$
 for $d_{i}=-(+)1$

Implies

The distance to the support vectors is:

$$r = \frac{g\left(\boldsymbol{x}_{i}\right)}{\left|\left|\boldsymbol{w}\right|\right|} = \begin{cases} \frac{1}{\left|\left|\boldsymbol{w}\right|\right|} & \text{if } d_{i} = +1\\ -\frac{1}{\left|\left|\boldsymbol{w}\right|\right|} & \text{if } d_{i} = -1 \end{cases}$$

イロト イヨト イヨト

(7

Therefore ...

We want the optimum value of the margin of separation as

$$\rho = \frac{1}{||\bm{w}||} + \frac{1}{||\bm{w}||} = \frac{2}{||\bm{w}||}$$

And the support vectors define the value of ,

(8)

Therefore ...

We want the optimum value of the margin of separation as

$$\rho = \frac{1}{||\boldsymbol{w}||} + \frac{1}{||\boldsymbol{w}||} = \frac{2}{||\boldsymbol{w}||}$$
(8)

And the support vectors define the value of ρ

Outline

History The Beginning

Support Vectors

Quadratic Optimization

Rewriting The Optimization Problem

- Karush-Kuhn-Tucker Conditions
- Properties of the Dual

Kernels

- Introduction Kernel Idea
- Higher Dimensional Space
- The Mercer Theorem for Kernels
 - Basic Idea
- From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

Soft Margins

Introduction

The Soft Margin Solution

< ロ > < 回 > < 回 > < 回 > < 回 >

Thus

If we want to maximize

$$\rho = \frac{2}{||\boldsymbol{w}||}$$

We instead to minimize

$$||\boldsymbol{w}|| = \sqrt{\boldsymbol{w}^T \boldsymbol{w}}$$

Or to minimize, after all we only need the direction of the vector $m{w}$

$$\frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}$$

Thus

If we want to maximize

$$\rho = \frac{2}{||\boldsymbol{w}||}$$

We instead to minimize

$$||\boldsymbol{w}|| = \sqrt{\boldsymbol{w}^T \boldsymbol{w}}$$

Or to minimize, after all we only need the direction of the vector $m{w}$

$$\frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}$$

Thus

If we want to maximize

$$\rho = \frac{2}{||\boldsymbol{w}||}$$

We instead to minimize

$$||w|| = \sqrt{w^T w}$$

Or to minimize, after all we only need the direction of the vector $oldsymbol{w}$

$$\frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Under the restrictions

Then, we have the samples with labels

 $T = \{(\boldsymbol{x}_i, d_i)\}_{i=1}^N$

Then we can put the decision rule as

 $d_i\left(\boldsymbol{w}^T\boldsymbol{x}_i + w_0\right) \ge 1 \ i = 1, \cdots, N$

イロト イロト イヨト イヨト

Under the restrictions

Then, we have the samples with labels

$$T = \{(x_i, d_i)\}_{i=1}^N$$

Then we can put the decision rule as

$$d_i\left(\boldsymbol{w}^T\boldsymbol{x}_i+w_0\right) \geq 1 \ i=1,\cdots,N$$

イロト イロト イヨト イヨト

Then, we have the optimization problem

The optimization problem

$$min_{\boldsymbol{w}}\Phi\left(\boldsymbol{w}\right) = \frac{1}{2}\boldsymbol{w}^{T}\boldsymbol{w}$$

s.t.
$$d_i(w^T x_i + w_0) \ge 1$$
 $i = 1, \cdots, N$

Then, we have the optimization problem

The optimization problem

$$min_{\boldsymbol{w}}\Phi\left(\boldsymbol{w}\right) = \frac{1}{2}\boldsymbol{w}^{T}\boldsymbol{w}$$

s.t.
$$d_i(w^T x_i + w_0) \ge 1$$
 $i = 1, \cdots, N$

Observations

• The cost functions $\Phi(\boldsymbol{w})$ is convex.

The constrains are linear with respect to \boldsymbol{w} .

イロト イヨト イヨト

Then, we have the optimization problem

The optimization problem

$$min_{\boldsymbol{w}}\Phi\left(\boldsymbol{w}\right) = \frac{1}{2}\boldsymbol{w}^{T}\boldsymbol{w}$$

s.t.
$$d_i(w^T x_i + w_0) \ge 1$$
 $i = 1, \cdots, N$

Observations

- The cost functions $\Phi(\boldsymbol{w})$ is convex.
- The constrains are linear with respect to w.

Outline

History The Beginning

Support Vectors

Quadratic Optimization

Rewriting The Optimization Problem

Karush-Kuhn-Tucker Conditions

Properties of the Dual

Kernels

- Introduction Kernel Idea
- Higher Dimensional Space
- The Mercer Theorem for Kernels
 - Basic Idea
- From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

Soft Margins

Introduction

The Soft Margin Solution

< ロ > < 回 > < 回 > < 回 > < 回 >

Then, Rewriting The Optimization Problem

The optimization with equality constraints

$$min_{\boldsymbol{w}}\Phi\left(\boldsymbol{w}\right) = \frac{1}{2}\boldsymbol{w}^{T}\boldsymbol{w}$$

s.t.
$$d_i(\boldsymbol{w}^T \boldsymbol{x}_i + w_0) \geq 1 \ i = 1, \cdots, N$$

Using the Lagrange Multipliers (We will call them α_i)

We obtain the following cost function that we want to minimize

$$J(\boldsymbol{w}, w_0, \boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} - \sum_{i=1}^N \alpha_i [d_i(\boldsymbol{w}^T \mathbf{x}_i + w_0) - 1]$$

Using the Lagrange Multipliers (We will call them $lpha_i)$

We obtain the following cost function that we want to minimize

$$J(\boldsymbol{w}, w_0, \boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} - \sum_{i=1}^N \alpha_i [d_i(\boldsymbol{w}^T \mathbf{x}_i + w_0) - 1]$$

イロト イヨト イヨト

32 / 95

Observation

• Minimize with respect to \mathbf{w} and w_0 .

• Maximize with respect to α because it dominates

Using the Lagrange Multipliers (We will call them $lpha_i)$

We obtain the following cost function that we want to minimize

$$J(\boldsymbol{w}, w_0, \boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} - \sum_{i=1}^N \alpha_i [d_i(\boldsymbol{w}^T \mathbf{x}_i + w_0) - 1]$$

イロト イヨト イヨト

32 / 95

Observation

• Minimize with respect to \mathbf{w} and w_0 .

• Maximize with respect to α because it dominates

Using the Lagrange Multipliers (We will call them α_i)

We obtain the following cost function that we want to minimize

$$J(\boldsymbol{w}, w_0, \boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} - \sum_{i=1}^N \alpha_i [d_i(\boldsymbol{w}^T \mathbf{x}_i + w_0) - 1]$$

Observation

- Minimize with respect to \mathbf{w} and w_0 .
- Maximize with respect to α because it dominates

$$-\sum_{i=1}^{N} \alpha_i [d_i (\boldsymbol{w}^T \boldsymbol{x}_i + w_0) - 1].$$
(9)

イロト イヨト イヨト

32 / 95

Outline

History The Beginning

Separable Classe Separable Classes Hyperplanes

3 Support Vectors

Support Vectors

- Quadratic Optimization
- Rewriting The Optimization Problem

Karush-Kuhn-Tucker Conditions

Properties of the Dual

Kernels

- Introduction Kernel Idea
- Higher Dimensional Space
- The Mercer Theorem for Kernels
 - Basic Idea
- From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

Soft Margins

Introduction

The Soft Margin Solution

< ロ > < 回 > < 回 > < 回 > < 回 >

First An Inequality Constrained Problem P

$$\begin{array}{ll} \min & f\left(\boldsymbol{x}\right) \\ s.t & g_{1}\left(\boldsymbol{x}\right) &= 0 \\ & \vdots \\ & g_{N}\left(\boldsymbol{x}\right) &= 0 \end{array}$$

A really minimal version!!! Hey, it is a patch work!!!

A point \boldsymbol{x} is a local minimum of an equality constrained problem P only if a set of non-negative α_i 's may be found such that:

$$abla L(\boldsymbol{x}, \boldsymbol{\alpha}) =
abla f(\boldsymbol{x}) - \sum_{i=1}^{N} \alpha_i \nabla g_i(\boldsymbol{x}) = 0$$

CINVESTAV

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (~ 34 / 95

First An Inequality Constrained Problem P

$$\begin{array}{ll} \min & f\left(\boldsymbol{x}\right) \\ s.t & g_{1}\left(\boldsymbol{x}\right) &= 0 \\ & \vdots \\ & g_{N}\left(\boldsymbol{x}\right) &= 0 \end{array}$$

A really minimal version!!! Hey, it is a patch work!!!

A point x is a local minimum of an equality constrained problem P only if a set of non-negative α_i 's may be found such that:

$$\nabla L(\boldsymbol{x}, \boldsymbol{\alpha}) = \nabla f(\boldsymbol{x}) - \sum_{i=1}^{N} \alpha_i \nabla g_i(\boldsymbol{x}) = 0$$

CINVESTAV

ペロト (個) (言) (言) (言) (つ) (0) (34/95) (34/9

Important

Think about this each constraint correspond to a sample in both classes, thus

• The corresponding α_i 's are going to be zero after optimization, if a constraint is not active i.e. $d_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + w_0 \right) - 1 \neq 0$ (Remember Maximization).

Again the Support Vectors

This actually defines the idea of support vectors!!!

Thus

Only the $lpha_i$'s with active constraints (Support Vectors) will be different from zero when $d_i\left(m{w}^Tm{x}_i+m{w}_0
ight)-1=0.$

Cinvestav < ロ > く 合 > く き > く き > き ぐう Q (~ 35 / 95

Important

Think about this each constraint correspond to a sample in both classes, thus

• The corresponding α_i 's are going to be zero after optimization, if a constraint is not active i.e. $d_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + w_0 \right) - 1 \neq 0$ (Remember Maximization).

Again the Support Vectors

This actually defines the idea of support vectors!!!

Only the $lpha_i$'s with active constraints (Support Vectors) will be different from zero when $d_i\left(m{w}^Tm{x}_i+m{w}_0
ight)-1=0.$

Cinvestav イロトイ団トイミトイミト ミークへで 35/95

Important

Think about this each constraint correspond to a sample in both classes, thus

• The corresponding α_i 's are going to be zero after optimization, if a constraint is not active i.e. $d_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + w_0 \right) - 1 \neq 0$ (Remember Maximization).

Again the Support Vectors

This actually defines the idea of support vectors!!!

Thus

Only the α_i 's with active constraints (Support Vectors) will be different from zero when $d_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + w_0 \right) - 1 = 0.$

The necessary conditions for optimality

The necessary conditions for optimality

Condition 1 $\frac{\partial J(\boldsymbol{w}, w_0, \boldsymbol{\alpha})}{\partial \boldsymbol{w}} = 0$ Condition 2 $\frac{\partial J(\boldsymbol{w}, w_0, \boldsymbol{\alpha})}{\partial w_0} = 0$

Using the conditions

37 / 95

Using the conditions

We have the first condition

$$\frac{\partial J(\boldsymbol{w}, w_0, \alpha)}{\partial \boldsymbol{w}} = \frac{\partial \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}}{\partial \boldsymbol{w}} - \frac{\partial \sum_{i=1}^N \alpha_i [d_i(\boldsymbol{w}^T \boldsymbol{x}_i + w_0) - 1]}{\partial \boldsymbol{w}} = 0$$
$$\frac{\partial J(\boldsymbol{w}, w_0, \alpha)}{\partial \boldsymbol{w}} = \frac{1}{2} (\boldsymbol{w} + \boldsymbol{w}) - \sum_{i=1}^N \alpha_i d_i \boldsymbol{x}_i$$

Cinvestav

37 / 95

э

イロト イロト イヨト イヨト

Thus

Using the conditions

We have the first condition

$$\frac{\partial J(\boldsymbol{w}, w_0, \alpha)}{\partial \boldsymbol{w}} = \frac{\partial \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}}{\partial \boldsymbol{w}} - \frac{\partial \sum_{i=1}^N \alpha_i [d_i(\boldsymbol{w}^T \boldsymbol{x}_i + w_0) - 1]}{\partial \boldsymbol{w}} = 0$$
$$\frac{\partial J(\boldsymbol{w}, w_0, \alpha)}{\partial \boldsymbol{w}} = \frac{1}{2} (\boldsymbol{w} + \boldsymbol{w}) - \sum_{i=1}^N \alpha_i d_i \boldsymbol{x}_i$$

Thus

$$\boldsymbol{w} = \sum_{i=1}^{N} \alpha_i d_i \mathbf{x}_i \tag{10}$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Cinvestav

37 / 95

2

In a similar way ...

We have by the second optimality condition

$$\sum_{i=1}^{N} \alpha_i d_i = 0$$

Note

$$\alpha_i \left[d_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + \boldsymbol{w}_0 \right) - 1 \right] = 0$$

Because the constraint vanishes in the optimal solution i.e. $\alpha_i = 0$ or $d_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + \boldsymbol{w}_0 \right) - 1 = 0.$

In a similar way ...

We have by the second optimality condition

$$\sum_{i=1}^{N} \alpha_i d_i = 0$$

Note

$$\alpha_i \left[d_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + w_0 \right) - 1 \right] = 0$$

Because the constraint vanishes in the optimal solution i.e. $\alpha_i = 0$ or $d_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + w_0 \right) - 1 = 0.$

We need something extra

Our classic trick of transforming a problem into another problem

In this case

We use the Primal-Dual Problem for Lagrangian

Where

We move from a minimization to a maximization!!!

We need something extra

Our classic trick of transforming a problem into another problem

In this case

We use the Primal-Dual Problem for Lagrangian

Where

We move from a minimization to a maximization!!!

We need something extra

Our classic trick of transforming a problem into another problem

In this case

We use the Primal-Dual Problem for Lagrangian

Where

We move from a minimization to a maximization!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

History The Beginning

3 Support Vectors

Support Vectors

- Quadratic Optimization
- Rewriting The Optimization Problem
- Karush-Kuhn-Tucker Conditions
- Properties of the Dual

Kernels

- Introduction Kernel Idea
- Higher Dimensional Space
- The Mercer Theorem for Kernels
 - Basic Idea
- From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

Soft Margins

Introduction

The Soft Margin Solution

< ロ > < 回 > < 回 > < 回 > < 回 >

Duality Theorem

First Property

If the Primal has an optimal solution (w* and $\alpha*$), the dual too.

In order to *w* * and *α** to be optimal solutions for the primal and dual problem respectively, It is necessary and sufficient that *w**:

 $\begin{aligned} \Phi(\boldsymbol{w}*) &= J\left(\boldsymbol{w}*, w_0*, \boldsymbol{\alpha}*\right) \\ &= \min_{\boldsymbol{w}} J\left(\boldsymbol{w}*, w_0*, \boldsymbol{\alpha}*\right) \end{aligned}$

イロン イロン イヨン イヨン

Duality Theorem

First Property

If the Primal has an optimal solution (w* and $\alpha*)$, the dual too.

Thus

In order to w* and $\alpha*$ to be optimal solutions for the primal and dual problem respectively, It is necessary and sufficient that w*:

• It is a feasible solution for the primal problem and

$$\Phi(\boldsymbol{w}*) = J(\boldsymbol{w}*, w_0*, \boldsymbol{\alpha}*)$$
$$= \min_{\boldsymbol{w}} J(\boldsymbol{w}*, w_0*, \boldsymbol{\alpha}*)$$

イロト イヨト イヨト

Reformulate our Equations

We have then

$$J(\boldsymbol{w}, w_0, \boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} - \sum_{i=1}^N \alpha_i d_i \boldsymbol{w}^T \mathbf{x}_i - w_0 \sum_{i=1}^N \alpha_i d_i + \sum_{i=1}^N \alpha_i$$

Now for our 2nd optimality condition

イロン イロン イヨン イヨン

Reformulate our Equations

We have then

$$J(\boldsymbol{w}, w_0, \boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} - \sum_{i=1}^N \alpha_i d_i \boldsymbol{w}^T \mathbf{x}_i - w_0 \sum_{i=1}^N \alpha_i d_i + \sum_{i=1}^N \alpha_i$$

Now for our 2nd optimality condition

$$J(\boldsymbol{w}, w_0, \boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} - \sum_{i=1}^N \alpha_i d_i \boldsymbol{w}^T \boldsymbol{x}_i + \sum_{i=1}^N \alpha_i$$

イロト イロト イヨト イヨト

We have finally for the 1st Optimality Condition:

Second, setting $J(\boldsymbol{w}, w_0, \boldsymbol{\alpha}) = Q(\boldsymbol{\alpha})$

 $Q\left(\boldsymbol{\alpha}\right) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} d_{i} d_{j} \boldsymbol{x}_{j}^{T} \boldsymbol{x}_{i}$

We have finally for the 1st Optimality Condition:

First

$$\boldsymbol{w}^T \boldsymbol{w} = \sum_{i=1}^N \alpha_i d_i \boldsymbol{w}^T \boldsymbol{x}_i = \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j d_i d_j \boldsymbol{x}_j^T \boldsymbol{x}_i$$

Second, setting $J(\boldsymbol{w}, w_0, \boldsymbol{\alpha}) = Q(\boldsymbol{\alpha})$

$$Q(\boldsymbol{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \boldsymbol{x}_j^T \boldsymbol{x}_i$$

< ロ > < 回 > < 回 > < 回 > < 回 >

From here, we have the problem

This is the problem that we really solve

Given the training sample $\{(\mathbf{x}_i, d_i)\}_{i=1}^N$, find the Lagrange multipliers $\{\alpha_i\}_{i=1}^N$ that maximize the objective function

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \boldsymbol{x}_j^T \boldsymbol{x}_i$$

subject to the constraints

$$\sum_{i=1}^{N} \alpha_i d_i = 0 \tag{11}$$

$$\alpha_i \ge 0 \text{ for } i = 1, \cdots, N \tag{12}$$

Note

In the Primal, we were trying to minimize the cost function, for this it is necessary to maximize α . That is the reason why we are maximizing $Q(\alpha)$.

From here, we have the problem

This is the problem that we really solve

Given the training sample $\{(\mathbf{x}_i, d_i)\}_{i=1}^N$, find the Lagrange multipliers $\{\alpha_i\}_{i=1}^N$ that maximize the objective function

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \boldsymbol{x}_j^T \boldsymbol{x}_i$$

subject to the constraints

$$\sum_{i=1}^{N} \alpha_i d_i = 0 \tag{11}$$

$$\alpha_i \ge 0 \text{ for } i = 1, \cdots, N \tag{12}$$

Note

In the Primal, we were trying to minimize the cost function, for this it is necessary to maximize α . That is the reason why we are maximizing $Q(\alpha)$.

Solving for lpha

We can compute w^* once we get the optimal α_i^* by using (Eq. 10)

$$\boldsymbol{w}^* = \sum_{i=1}^N \alpha_i^* d_i \boldsymbol{x}_i$$

In addition, we can compute the optimal bias w^*_0 using the optimal weight, $oldsymbol{w}^*$

For this, we use the positive margin equation:

$$g\left(oldsymbol{x}^{(s)}
ight) = oldsymbol{w}^Toldsymbol{x}^{(s)} + w_0 = 1$$

45 / 95

corresponding to a positive support vector.

Then

Solving for lpha

We can compute w^* once we get the optimal α_i^* by using (Eq. 10)

$$oldsymbol{w}^* = \sum_{i=1}^N lpha_i^* d_i oldsymbol{x}_i$$

In addition, we can compute the optimal bias w_0^* using the optimal weight, ${\bm w}^*$

For this, we use the positive margin equation:

$$g\left(\boldsymbol{x}^{(s)}\right) = \boldsymbol{w}^T \boldsymbol{x}^{(s)} + w_0 = 1$$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

45 / 95

corresponding to a positive support vector.

Solving for lpha

We can compute w^* once we get the optimal α_i^* by using (Eq. 10)

$$oldsymbol{w}^* = \sum_{i=1}^N lpha_i^* d_i oldsymbol{x}_i$$

In addition, we can compute the optimal bias w_0^* using the optimal weight, ${\bm w}^*$

For this, we use the positive margin equation:

$$g\left(\boldsymbol{x}^{(s)}\right) = \boldsymbol{w}^T \boldsymbol{x}^{(s)} + w_0 = 1$$

corresponding to a positive support vector.

Then

$$w_0 = 1 - (\boldsymbol{w}^*)^T \, \boldsymbol{x}^{(s)}$$
 for $d^{(s)} = 1$ (13)

イロト イポト イヨト イヨト

45 / 95

Outline

History The Beginning

Separable Classe Separable Classes Hyperplanes

3 Support Vector

Support Vectors

- Quadratic Optimization
- Rewriting The Optimization Problem
- Karush-Kuhn-Tucker Conditions
- Properties of the Dual

Kernels

Introduction Kernel Idea

- Higher Dimensional Space
- The Mercer Theorem for Kernels
 - Basic Idea
- From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

Soft Margins

Introduction

The Soft Margin Solution

< ロ > < 回 > < 回 > < 回 > < 回 >

What do we need?

Until now, we have only a maximal margin algorithm

• All this work fine when the classes are separable

- Problem, What when they are not separable?
- What we can do?

Until now, we have only a maximal margin algorithm

- All this work fine when the classes are separable
- Problem, What when they are not separable?

Until now, we have only a maximal margin algorithm

- All this work fine when the classes are separable
- Problem, What when they are not separable?
- What we can do?

Outline

History The Beginning

Separable Classe Separable Classes Hyperplanes

3 Support Vector

Support Vectors

- Quadratic Optimization
- Rewriting The Optimization Problem
- Karush-Kuhn-Tucker Conditions
- Properties of the Dual

Kernels

Introduction Kernel Idea

Higher Dimensional Space

- The Mercer Theorem for Kernels
 - Basic Idea
- From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

Soft Margins

Introduction

The Soft Margin Solution

< ロ > < 回 > < 回 > < 回 > < 回 >

Map to a higher Dimensional Space

Assume that exist a mapping

$$oldsymbol{x} \in \mathbb{R}^l o oldsymbol{y} \in \mathbb{R}^k$$

Then, it is possible to define the following mapping

Map to a higher Dimensional Space

Assume that exist a mapping

$$oldsymbol{x} \in \mathbb{R}^l o oldsymbol{y} \in \mathbb{R}^k$$

Then, it is possible to define the following mapping

Define a map to a higher Dimension

Nonlinear transformations

Given a series of nonlinear transformations

 $\{\phi_i\left(\boldsymbol{x}\right)\}_{i=1}^m$

from input space to the feature space.

We can define the decision surface as

 $\sum_{i=1}^{m} w_i \phi_i\left(x\right) + w_0 = 0$

イロト イヨト イヨト

Define a map to a higher Dimension

Nonlinear transformations

Given a series of nonlinear transformations

 $\{\phi_i(\boldsymbol{x})\}_{i=1}^m$

from input space to the feature space.

We can define the decision surface as

$$\sum_{i=1}^{m} w_i \phi_i\left(\boldsymbol{x}\right) + w_0 = 0$$

イロト イヨト イヨト

This allows us to define

The following vector

$$\phi\left(\boldsymbol{x}\right) = \left(\phi_{0}\left(\boldsymbol{x}\right), \phi_{1}\left(\boldsymbol{x}\right), \cdots, \phi_{m}\left(\boldsymbol{x}\right)\right)^{T}$$

that represents the mapping.

From this mapping

We can define the following kernel function

 $K:\mathbf{X}\times\mathbf{X}\to\mathbb{R}$

$$K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) = \phi\left(\boldsymbol{x}_{i}\right)^{T} \phi\left(\boldsymbol{x}_{j}\right)$$

イロト イロト イヨト イヨト

This allows us to define

The following vector

$$\phi\left(\boldsymbol{x}\right) = \left(\phi_{0}\left(\boldsymbol{x}\right), \phi_{1}\left(\boldsymbol{x}\right), \cdots, \phi_{m}\left(\boldsymbol{x}\right)\right)^{T}$$

that represents the mapping.

From this mapping

We can define the following kernel function

$$K:\mathbf{X}\times\mathbf{X}\to\mathbb{R}$$

$$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \phi(\boldsymbol{x}_i)^T \phi(\boldsymbol{x}_j)$$

イロト イヨト イヨト イヨト

Outline

History The Beginning

Separable Classe Separable Classes Hyperplanes

3 Support Vector

Support Vectors

- Quadratic Optimization
- Rewriting The Optimization Problem
- Karush-Kuhn-Tucker Conditions
- Properties of the Dual

Kernels

- Introduction Kernel Idea
- Higher Dimensional Space

The Mercer Theorem for Kernels

- Basic Idea
- From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

Soft Margins

Introduction

The Soft Margin Solution

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

History The Beginning

Separable Classe Separable Classes Hyperplanes

3 Support Vector

Support Vectors

- Quadratic Optimization
- Rewriting The Optimization Problem
- Karush-Kuhn-Tucker Conditions
- Properties of the Dual

Kernels

- Introduction Kernel Idea
- Higher Dimensional Space
- The Mercer Theorem for Kernels
 Basic Idea
 - From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

Soft Margin

Introduction

The Soft Margin Solution

< ロ > < 回 > < 回 > < 回 > < 回 >

Basic Idea

Something Notable

• The SVM uses the scalar product $\langle x_i, x_j \rangle$ as a measure of similarity between x_i and x_j , and of distance to the hyperplane.

Basic Idea

Something Notable

- The SVM uses the scalar product $\langle x_i, x_j \rangle$ as a measure of similarity between x_i and x_j , and of distance to the hyperplane.
- Since the scalar product is linear, the SVM is a linear method.

Using a nonlinear function instead, we can make the classifier nonlinear.

イロン イロン イヨン イヨン

Basic Idea

Something Notable

- The SVM uses the scalar product $\langle x_i, x_j \rangle$ as a measure of similarity between x_i and x_j , and of distance to the hyperplane.
- Since the scalar product is linear, the SVM is a linear method.

But

Using a nonlinear function instead, we can make the classifier nonlinear.

イロト イボト イヨト イヨト

We do this by defining the following map

Nonlinear transformations

Given a series of nonlinear transformations

 $\left\{\phi_{i}\left(\boldsymbol{x}\right)\right\}_{i=1}^{m}$

from input space to the feature space.

We can define the decision surface as

 $\sum_{i=1}^{m}w_{i}\phi_{i}\left(oldsymbol{x}
ight)+w_{0}=0$.

< ロ > < 回 > < 回 > < 回 > < 回 >

We do this by defining the following map

Nonlinear transformations

Given a series of nonlinear transformations

$$\left\{\phi_{i}\left(\boldsymbol{x}\right)\right\}_{i=1}^{m}$$

from input space to the feature space.

We can define the decision surface as

$$\sum_{i=1}^{m} w_i \phi_i\left(\boldsymbol{x}\right) + w_0 = 0$$

イロト イヨト イヨト

This allows us to define

The following vector

$$\phi(\boldsymbol{x}) = (\phi_0(\boldsymbol{x}), \phi_1(\boldsymbol{x}), \cdots, \phi_m(\boldsymbol{x}))^T$$

That represents the mapping.

Outline

History The Beginning

Separable Classe Separable Classes Hyperplanes

3 Support Vector

Support Vectors

- Quadratic Optimization
- Rewriting The Optimization Problem
- Karush-Kuhn-Tucker Conditions
- Properties of the Dual

Kernels

- Introduction Kernel Idea
- Higher Dimensional Space
- The Mercer Theorem for Kernels
 - Basic Idea
 - From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

Soft Margin

Introduction

The Soft Margin Solution

イロト イヨト イヨト

Finally

We define the decision surface as

$$\boldsymbol{w}^{T}\boldsymbol{\phi}\left(\boldsymbol{x}\right)=0\tag{14}$$

We now seek "linear" separability of features, we may write

$$\boldsymbol{w} = \sum_{i=1}^{N} \alpha_i d_i \phi\left(\boldsymbol{x}_i\right) \tag{15}$$

イロン イロン イヨン イヨン

Thus, we finish with the following decision surface

$$\sum_{i=1}^{N} \alpha_{i} d_{i} \phi^{T}\left(\boldsymbol{x}_{i}\right) \phi\left(\boldsymbol{x}\right) = 0$$

Finally

We define the decision surface as

$$\boldsymbol{w}^{T}\boldsymbol{\phi}\left(\boldsymbol{x}\right)=0\tag{14}$$

We now seek "linear" separability of features, we may write

$$\boldsymbol{w} = \sum_{i=1}^{N} \alpha_i d_i \phi\left(\boldsymbol{x}_i\right) \tag{15}$$

イロト イロト イヨト イヨト

Thus, we finish with the following decision surface

$$\sum_{i=1}^{N} \alpha_{i} d_{i} \phi^{T}\left(x_{i}\right) \phi\left(x\right) = 0$$

Finally

We define the decision surface as

$$\boldsymbol{w}^{T}\boldsymbol{\phi}\left(\boldsymbol{x}\right)=0\tag{14}$$

We now seek "linear" separability of features, we may write

$$\boldsymbol{w} = \sum_{i=1}^{N} \alpha_i d_i \phi\left(\boldsymbol{x}_i\right) \tag{15}$$

Thus, we finish with the following decision surface

$$\sum_{i=1}^{N} \alpha_{i} d_{i} \phi^{T} \left(\boldsymbol{x}_{i} \right) \phi \left(\boldsymbol{x} \right) = 0$$
(16)

イロト イヨト イヨト イヨト

Thus

The term $\phi^{T}\left(oldsymbol{x}_{i} ight)\overline{\phi\left(oldsymbol{x} ight)}$

It represents the inner product of two vectors induced in the feature space induced by the input patterns.

We can introduce the inner-product kernel

$$K\left(\boldsymbol{x_{i}}, \boldsymbol{x}\right) = \phi^{T}\left(\boldsymbol{x_{i}}\right)\phi\left(\boldsymbol{x}\right) = \sum_{j=0}^{m} \phi_{j}\left(\boldsymbol{x_{i}}\right)\phi_{j}\left(\boldsymbol{x}\right)$$

Property: Symmetry

$$K(\boldsymbol{x}_i, \boldsymbol{x}) = K(\boldsymbol{x}, \boldsymbol{x}_i)$$

イロン イロン イヨン イヨン

Thus

The term $\phi^{T}\left(\boldsymbol{x}_{i}\right)\phi\left(\boldsymbol{x}\right)$

It represents the inner product of two vectors induced in the feature space induced by the input patterns.

We can introduce the inner-product kernel

$$K(\boldsymbol{x}_{i},\boldsymbol{x}) = \phi^{T}(\boldsymbol{x}_{i})\phi(\boldsymbol{x}) = \sum_{j=0}^{m} \phi_{j}(\boldsymbol{x}_{i})\phi_{j}(\boldsymbol{x})$$
(17)

Property: Symmetry

$$K(\boldsymbol{x}_i, \boldsymbol{x}) = K(\boldsymbol{x}, \boldsymbol{x}_i)$$

イロン イロン イヨン イヨン

Thus

The term $\phi^{T}\left(\boldsymbol{x}_{i}\right)\phi\left(\boldsymbol{x}\right)$

It represents the inner product of two vectors induced in the feature space induced by the input patterns.

We can introduce the inner-product kernel

$$K(\boldsymbol{x}_{i},\boldsymbol{x}) = \phi^{T}(\boldsymbol{x}_{i})\phi(\boldsymbol{x}) = \sum_{j=0}^{m} \phi_{j}(\boldsymbol{x}_{i})\phi_{j}(\boldsymbol{x})$$
(17)

Property: Symmetry

$$K(\boldsymbol{x}_i, \boldsymbol{x}) = K(\boldsymbol{x}, \boldsymbol{x}_i)$$

Cinvestav 9 < ? 59 / 95

(18)

イロト イロト イヨト イヨト

This allows to redefine the optimal hyperplane

We get N $\sum \alpha_i d_i K\left(\boldsymbol{x}_i, \boldsymbol{x}\right) = 0$ (19)i=1

nput Space \implies Inner Product

A D > A D > A D > A D >

This allows to redefine the optimal hyperplane

We get

$$\sum_{i=1}^{N} \alpha_{i} d_{i} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right) = 0$$
(19)

Something Notable

Using kernels, we can avoid to go from:

$$\mathsf{Input Space} \Longrightarrow \mathsf{Mapping Space} \Longrightarrow \mathsf{Inner Product} \tag{20}$$

By directly going from

nput Space \implies Inner Product

This allows to redefine the optimal hyperplane

We get

$$\sum_{i=1}^{N} \alpha_{i} d_{i} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right) = 0$$
(19)

イロト イボト イヨト イヨト

Something Notable

Using kernels, we can avoid to go from:

Input Space
$$\implies$$
 Mapping Space \implies Inner Product (20)

By directly going from

Input Space \implies Inner Product

(21)

60 / 95

Important

Something Notable

The expansion of (Eq. 17) for the inner-product kernel $K(x_i, x)$ is an important special case of that arises in functional analysis.

Mercer's Theorem

Mercer's Theorem

Let K(x, x') be a continuous symmetric kernel that is defined in the closed interval $a \le x \le b$ and likewise for x'. The kernel K(x, x') can be expanded in the series

$$K(\boldsymbol{x}, \boldsymbol{x'}) = \sum_{i=1}^{\infty} \lambda_i \phi_i(\boldsymbol{x}) \phi_i(\mathbf{x'})$$
(22)

イロト イヨト イヨト

With

Positive coefficients, $\lambda_i > 0$ for all i.

Mercer's Theorem

Mercer's Theorem

Let K(x, x') be a continuous symmetric kernel that is defined in the closed interval $a \le x \le b$ and likewise for x'. The kernel K(x, x') can be expanded in the series

$$K(\boldsymbol{x}, \boldsymbol{x'}) = \sum_{i=1}^{\infty} \lambda_i \phi_i(\boldsymbol{x}) \phi_i(\mathbf{x'})$$
(22)

イロト イヨト イヨト

With

Positive coefficients, $\lambda_i > 0$ for all i.

Mercer's Theorem

For this expression to be valid and or it to converge absolutely and uniformly

It is necessary and sufficient that the condition

$$\int_{a}^{b} \int_{a}^{b} K(\boldsymbol{x}, \boldsymbol{x'}) \psi(\boldsymbol{x}) \psi(\boldsymbol{x'}) d\boldsymbol{x} d\boldsymbol{x'} \ge 0$$
(23)

holds for all ψ such that $\int_{a}^{b} \psi^{2}(x) dx < \infty$ (Example of a quadratic norm for functions).

Remarks

First

The functions $\phi_i(x)$ are called eigenfunctions of the expansion and the numbers λ_i are called eigenvalues.

Second

The fact that all of the eigenvalues are positive means that the kernel $K\left(m{x},m{x}'
ight)$ is positive definite.

Remarks

First

The functions $\phi_i(x)$ are called eigenfunctions of the expansion and the numbers λ_i are called eigenvalues.

Second

The fact that all of the eigenvalues are positive means that the kernel $K\left(\pmb{x},\pmb{x}'\right)$ is positive definite.

イロン イロン イヨン イヨン

Not only that

We have that

For $\lambda_i \neq 1$, the *i*th image of $\sqrt{\lambda_i}\phi_i(x)$ induced in the feature space by the input vector x is an eigenfunction of the expansion.

In theory

The dimensionality of the feature space (i.e., the number of eigenvalues/ eigenfunctions) can be infinitely large.

< ロ > < 回 > < 回 > < 回 > < 回 >

Not only that

We have that

For $\lambda_i \neq 1$, the *i*th image of $\sqrt{\lambda_i}\phi_i(x)$ induced in the feature space by the input vector x is an eigenfunction of the expansion.

In theory

The dimensionality of the feature space (i.e., the number of eigenvalues/ eigenfunctions) can be infinitely large.

Outline

History The Beginning

Separable Classe Separable Classes Hyperplanes

3 Support Vector

- Support Vectors
- Quadratic Optimization
- Rewriting The Optimization Problem
- Karush-Kuhn-Tucker Conditions
- Properties of the Dual

Kernels

- Introduction Kernel Idea
- Higher Dimensional Space
- The Mercer Theorem for Kernels
 - Basic Idea
- From Inner products to Kernels

Examples

Now, How to select a Kernel?

Soft Margins

Introduction

The Soft Margin Solution

< ロ > < 回 > < 回 > < 回 > < 回 >
Example

Assume

$$oldsymbol{x} \in \mathbb{R} o oldsymbol{y} = \left[egin{array}{c} x_1^2 \ \sqrt{2} x_1 x_2 \ x_2^2 \end{array}
ight]$$

We can show that

 $oldsymbol{y}_i^Toldsymbol{y}_j = ig(oldsymbol{x}_i^Toldsymbol{x}_jig)^{ au}$

Example

Assume

$$oldsymbol{x} \in \mathbb{R} o oldsymbol{y} = \left[egin{array}{c} x_1^2 \ \sqrt{2} x_1 x_2 \ x_2^2 \end{array}
ight]$$

We can show that

$$oldsymbol{y}_i^Toldsymbol{y}_j = \left(oldsymbol{x}_i^Toldsymbol{x}_j
ight)^2$$

Example of Kernels

Polynomials

$$k\left(\boldsymbol{x},\boldsymbol{z}\right) = (\boldsymbol{x}^T\boldsymbol{z}+1)^q \ q > 0$$

Radial Basis Functions

$$k\left(\boldsymbol{x}, \boldsymbol{z}\right) = \exp\left(-\frac{||\boldsymbol{x} - \boldsymbol{z}||^2}{\sigma^2}\right)$$

Hyperbolic Tangents

$$k\left(oldsymbol{x},oldsymbol{z}
ight)= anh\left(etaoldsymbol{x}^{T}oldsymbol{z}+\gamma
ight)$$

イロト イロト イヨト イヨト

Example of Kernels

Polynomials

$$k\left(\boldsymbol{x},\boldsymbol{z}\right) = (\boldsymbol{x}^T\boldsymbol{z} + 1)^q \ q > 0$$

Radial Basis Functions

$$k\left(oldsymbol{x},oldsymbol{z}
ight)=\exp\left(-rac{||oldsymbol{x}-oldsymbol{z}||^2}{\sigma^2}
ight)$$

Hyperbolic Tangents

$$k\left(oldsymbol{x},oldsymbol{z}
ight) = anh\left(etaoldsymbol{x}^Toldsymbol{z}+\gamma
ight)$$

イロト イロト イヨト イヨト

Example of Kernels

Polynomials

$$k(\boldsymbol{x}, \boldsymbol{z}) = (\boldsymbol{x}^T \boldsymbol{z} + 1)^q \ q > 0$$

Radial Basis Functions

$$k\left(oldsymbol{x},oldsymbol{z}
ight)=\exp\left(-rac{||oldsymbol{x}-oldsymbol{z}||^2}{\sigma^2}
ight)$$

Hyperbolic Tangents

$$k\left(\boldsymbol{x}, \boldsymbol{z}\right) = \tanh\left(\beta \boldsymbol{x}^{T} \boldsymbol{z} + \gamma\right)$$

э

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Outline

History The Beginning

Separable Classe Separable Classes Hyperplanes

3 Support Vector

- Support Vectors
- Quadratic Optimization
- Rewriting The Optimization Problem
- Karush-Kuhn-Tucker Conditions
- Properties of the Dual

Kernels

- Introduction Kernel Idea
- Higher Dimensional Space
- The Mercer Theorem for Kernels
 - Basic Idea
- From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

Soft Margins

Introduction

The Soft Margin Solution

< ロ > < 回 > < 回 > < 回 > < 回 >

Now, How to select a Kernel?

We have a problem

Selecting a specific kernel and parameters is usually done in a try-and-see manner.

Thus

In general, the Radial Basis Functions kernel is a reasonable first choice.

Then

if this fails, we can try the other possible kernels.

Now, How to select a Kernel?

We have a problem

Selecting a specific kernel and parameters is usually done in a try-and-see manner.

Thus

In general, the Radial Basis Functions kernel is a reasonable first choice.

f this fails, we can try the other possible kernel

Now, How to select a Kernel?

We have a problem

Selecting a specific kernel and parameters is usually done in a try-and-see manner.

Thus

In general, the Radial Basis Functions kernel is a reasonable first choice.

Then

if this fails, we can try the other possible kernels.

Thus, we have something like this

Step 1

Normalize the data.

Step 2

Use cross-validation to adjust the parameters of the selected kernel.

Step 3

Train against the entire dataset.

Thus, we have something like this

Step 1

Normalize the data.

Step 2

Use cross-validation to adjust the parameters of the selected kernel.

Step 3

Train against the entire dataset.

Thus, we have something like this

Step 1

Normalize the data.

Step 2

Use cross-validation to adjust the parameters of the selected kernel.

Step 3

Train against the entire dataset.

イロト イヨト イヨト

Outline

History The Beginning

Separable Classe Separable Classes Hyperplanes

3 Support Vector

Support Vectors

- Quadratic Optimization
- Rewriting The Optimization Problem
- Karush-Kuhn-Tucker Conditions
- Properties of the Dual

Kernels

- Introduction Kernel Idea
- Higher Dimensional Space
- The Mercer Theorem for Kernels
 - Basic Idea
- From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

< ロ > < 回 > < 回 > < 回 > < 回 >

Optimal Hyperplane for non-separable patterns

Important

We have been considering only problems where the classes are linearly separable.

Now

What happen when the patterns are not separable?

Thus, we can still build a separating hyperplane

But errors will happen in the classification... We need to minimize them..

Optimal Hyperplane for non-separable patterns

Important

We have been considering only problems where the classes are linearly separable.

Now

What happen when the patterns are not separable?

Thus, we can still build a separating hyperplane.

But errors will happen in the classification... We need to minimize them...

< ロ > < 同 > < 回 > < 回 >

Optimal Hyperplane for non-separable patterns

Important

We have been considering only problems where the classes are linearly separable.

Now

What happen when the patterns are not separable?

Thus, we can still build a separating hyperplane

But errors will happen in the classification... We need to minimize them...

What if the following happens

Some data points invade the "margin" space

Fixing the Problem - Corinna's Style

The margin of separation between classes is said to be soft if a data point (x_i, d_i) violates the following condition

$$d_i\left(\boldsymbol{w}^T\boldsymbol{x}_i+b\right) \ge +1 \ i=1,2,...,N$$
(24)

I his violation can arise in one of two ways

The data point (x_i, d_i) falls inside the region of separation but on the right side of the decision surface - still correct classification.

Fixing the Problem - Corinna's Style

The margin of separation between classes is said to be soft if a data point (x_i, d_i) violates the following condition

$$d_i\left(\boldsymbol{w}^T\boldsymbol{x}_i+b\right) \ge +1 \ i=1,2,...,N$$
(24)

This violation can arise in one of two ways

The data point (x_i, d_i) falls inside the region of separation but on the right side of the decision surface - still correct classification.

< ロ > < 同 > < 回 > < 回 >

We have then

Example

This violation can arise in one of two ways

The data point (x_i, d_i) falls on the wrong side of the decision surface - incorrect classification.

Example

This violation can arise in one of two ways

The data point (x_i, d_i) falls on the wrong side of the decision surface - incorrect classification.

Example

Solving the problem

What to do?

We introduce a set of nonnegative scalar values {ξ_i}^N_{i=1}.

Introduce this into the decision rule

 $d_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + b \right) \ge 1 - \xi_i \ i = 1, 2, ..., N$

ヘロト ヘロト ヘヨト ヘヨト

Solving the problem

What to do?

• We introduce a set of nonnegative scalar values $\{\xi_i\}_{i=1}^N$.

Introduce this into the decision rule

 $d_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + b \right) \ge 1 - \xi_i \ i = 1, 2, ..., N$ (25)

Solving the problem

What to do?

• We introduce a set of nonnegative scalar values $\{\xi_i\}_{i=1}^N$.

Introduce this into the decision rule

$$d_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + b \right) \ge 1 - \xi_i \ i = 1, 2, ..., N$$
 (25)

イロト イヨト イヨト

The ξ_i are called slack variables

What?

In 1995, Corinna Cortes and Vladimir N. Vapnik suggested a modified maximum margin idea that allows for mislabeled examples.

Ok!!!

Instead of expecting to have constant margin for all the samples, the margin can change depending of the sample.

What do we have?

 ξ_i measures the deviation of a data point from the ideal condition of pattern separability.

The ξ_i are called slack variables

What?

In 1995, Corinna Cortes and Vladimir N. Vapnik suggested a modified maximum margin idea that allows for mislabeled examples.

Ok!!!

Instead of expecting to have constant margin for all the samples, the margin can change depending of the sample.

What do we have?

 ξ_i measures the deviation of a data point from the ideal condition of pattern separability.

イロト イヨト イヨト

The ξ_i are called slack variables

What?

In 1995, Corinna Cortes and Vladimir N. Vapnik suggested a modified maximum margin idea that allows for mislabeled examples.

Ok!!!

Instead of expecting to have constant margin for all the samples, the margin can change depending of the sample.

What do we have?

 ξ_i measures the deviation of a data point from the ideal condition of pattern separability.

What if?

• You have $0 \le \xi_i \le 1$

What if?

• You have $0 \le \xi_i \le 1$

What if?

• You have $\xi_i > 1$

What if?

• You have $\xi_i > 1$

Support Vectors

We want

• Support vectors that satisfy equation (Eq. 25) even when $\xi_i > 0$

$$d_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + b \right) \ge 1 - \xi_i \ i = 1, 2, ..., N$$

イロト イヨト イヨト

We want the following

We want to find an hyperplane

Such that average error is misclassified over all the samples

$$\frac{1}{N}\sum_{i=1}^{N}\mathsf{e}^2$$

イロト イヨト イヨト

(26)

First Attempt Into Minimization

We can try the following

Given

$$I\left(x\right) = \begin{cases} 0 & \text{ if } x \leq 0\\ 1 & \text{ if } x > 0 \end{cases}$$

Minimize the following

$$\Phi\left(\boldsymbol{\xi}\right) = \sum_{i=1}^{N} I\left(\xi_{i} - 1\right)$$

with respect to the weight vector w subject to • $d_i \left(w^T x_i + b \right) \ge 1 - \xi_i \ i = 1, 2, ..., N$ • $\|w\|^2 \le C$ for a given C.

> Cinvestav < ロ > < 団 > < ミ > < ミ > ミ シ 、 ミ > シ ミ ・ へ 〇 84 / 95

(27)

First Attempt Into Minimization

We can try the following

Given

$$I(x) = \begin{cases} 0 & \text{if } x \le 0\\ 1 & \text{if } x > 0 \end{cases}$$

Minimize the following

$$\Phi\left(\boldsymbol{\xi}\right) = \sum_{i=1}^{N} I\left(\xi_{i} - 1\right)$$
(28)

イロト イボト イヨト イヨト

(27)

Cinvestav

84 / 95

with respect to the weight vector ${\boldsymbol w}$ subject to

9
$$d_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + b \right) \ge 1 - \xi_i \ i = 1, 2, ..., N$$

 $\| \boldsymbol{w} \|^{2} \leq C \text{ for a given } C.$
Problem

Using this first attempt

Minimization of $\Phi\left(\boldsymbol{\xi}\right)$ with respect to \mathbf{w} is a non-convex optimization problem that is NP-complete.

Problem

Using this first attempt

Minimization of $\Phi\left(\boldsymbol{\xi}\right)$ with respect to \mathbf{w} is a non-convex optimization problem that is NP-complete.

Thus, we need to use an approximation, maybe

$$\Phi\left(\boldsymbol{\xi}\right) = \sum_{i=1}^{N} \xi_i$$

Now, we simplify the computations by integrating the vector $m{w}$

$$\Phi(\boldsymbol{w}, \boldsymbol{\xi}) = rac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^N \xi_i$$

(29)

Problem

Using this first attempt

Minimization of $\Phi(\boldsymbol{\xi})$ with respect to \mathbf{w} is a non-convex optimization problem that is NP-complete.

Thus, we need to use an approximation, maybe

$$\Phi\left(\boldsymbol{\xi}\right) = \sum_{i=1}^{N} \xi_i$$

Now, we simplify the computations by integrating the vector $oldsymbol{w}$

$$\Phi(\boldsymbol{w},\boldsymbol{\xi}) = \frac{1}{2}\boldsymbol{w}^{T}\boldsymbol{w} + C\sum_{i=1}^{N}\xi_{i}$$
(30)

(29)

85 / 95

Important

First

Minimizing the first term in (Eq. 30) is related to minimize the Vapnik–Chervonenkis dimension.

 Which is a measure of the capacity (complexity, expressive power, richness, or flexibility) of a statistical classification algorithm.

イロト イヨト イヨト イヨト

Important

First

Minimizing the first term in (Eq. 30) is related to minimize the Vapnik–Chervonenkis dimension.

• Which is a measure of the capacity (complexity, expressive power, richness, or flexibility) of a statistical classification algorithm.

The second term $\sum_{i=1}^N \xi_i$ is an upper bound on the number of test errors.

イロト イヨト イヨト

Important

First

Minimizing the first term in (Eq. 30) is related to minimize the Vapnik–Chervonenkis dimension.

• Which is a measure of the capacity (complexity, expressive power, richness, or flexibility) of a statistical classification algorithm.

Second

The second term $\sum_{i=1}^{N} \xi_i$ is an upper bound on the number of test errors.

Some problems for the Parameter C

Little Problem

The parameter C has to be selected by the user.

Some problems for the Parameter C

Little Problem

The parameter C has to be selected by the user.

This can be done in two ways

• The parameter C is determined experimentally via the standard use of a training! (validation) test set.

< ロト < 同ト < ヨト < ヨ)

Some problems for the Parameter C

Little Problem

The parameter C has to be selected by the user.

This can be done in two ways

- The parameter C is determined experimentally via the standard use of a training! (validation) test set.
- It is determined analytically by estimating the Vapnik–Chervonenkis dimension.

Primal Problem

Problem, given samples $\{(\boldsymbol{x}_i, d_i)\}_{i=1}^N$

$$\begin{split} \min_{\boldsymbol{w},\boldsymbol{\xi}} \Phi\left(\boldsymbol{w},\boldsymbol{\xi}\right) &= \min_{\boldsymbol{w},\boldsymbol{\xi}} \left\{ \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^N \xi_i \right\} \\ \text{s.t. } d_i(\boldsymbol{w}^T \boldsymbol{x}_i + w_0) \geq 1 - \xi_i \text{ for } i = 1, \cdots, N \\ \xi_i \geq 0 \text{ for all } i \end{split}$$

With C a user-specified positive parameter.

Outline

History The Beginning

Separable Classe Separable Classes Hyperplanes

3 Support Vector

Support Vectors

- Quadratic Optimization
- Rewriting The Optimization Problem
- Karush-Kuhn-Tucker Conditions
- Properties of the Dual

Kernels

- Introduction Kernel Idea
- Higher Dimensional Space
- The Mercer Theorem for Kernels
 - Basic Idea
- From Inner products to Kernels
- Examples
- Now, How to select a Kernel?

< ロ > < 回 > < 回 > < 回 > < 回 >

Final Setup

Using Lagrange Multipliers and dual-primal method is possible to obtain the following setup

Given the training sample $\{(\mathbf{x}_i, d_i)\}_{i=1}^N$, find the Lagrange multipliers $\{\alpha_i\}_{i=1}^N$ that maximize the objective function

$$\min_{\alpha} Q(\alpha) = \min_{\alpha} \left\{ \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \boldsymbol{x}_j^T \boldsymbol{x}_i \right\}$$

subject to the constraints

$$\sum_{i=1}^{N} \alpha_i d_i = 0 \tag{31}$$

90 / 95

$$0 \le \alpha_i \le C \text{ for } i = 1, \cdots, N \tag{32}$$

where C is a user-specified positive parameter.

Something Notable

- Note that neither the slack variables nor their Lagrange multipliers appear in the dual problem.
- The dual problem for the case of non-separable patterns is thus similar to that for the simple case of linearly separable patterns

Something Notable

- Note that neither the slack variables nor their Lagrange multipliers appear in the dual problem.
- The dual problem for the case of non-separable patterns is thus similar to that for the simple case of linearly separable patterns

Instead of using the constraint $\alpha_i \ge 0$, the new problem use the more stringent constraint $0 \le \alpha_i \le C$.

Something Notable

- Note that neither the slack variables nor their Lagrange multipliers appear in the dual problem.
- The dual problem for the case of non-separable patterns is thus similar to that for the simple case of linearly separable patterns

The only big difference

Instead of using the constraint $\alpha_i \ge 0$, the new problem use the more stringent constraint $0 \le \alpha_i \le C$.

Something Notable

- Note that neither the slack variables nor their Lagrange multipliers appear in the dual problem.
- The dual problem for the case of non-separable patterns is thus similar to that for the simple case of linearly separable patterns

The only big difference

Instead of using the constraint $\alpha_i \ge 0$, the new problem use the more stringent constraint $0 \le \alpha_i \le C$.

Note the following

$$\xi_i = 0$$
 if $\alpha_i < C$

イロト イヨト イヨト

(33)

The optimal solution for the weight vector $oldsymbol{w}^*$

$$oldsymbol{w}^* = \sum_{i=1}^{N_s} lpha_i^* d_i oldsymbol{x}_i$$

Where N_s is the number of support vectors.

The optimal solution for the weight vector $oldsymbol{w}^*$

$$oldsymbol{w}^* = \sum_{i=1}^{N_s} lpha_i^* d_i oldsymbol{x}_i$$

Where N_s is the number of support vectors.

In addition

The determination of the optimum values to that described before.

The optimal solution for the weight vector $oldsymbol{w}^*$

$$oldsymbol{w}^* = \sum_{i=1}^{N_s} lpha_i^* d_i oldsymbol{x}_i$$

Where N_s is the number of support vectors.

In addition

The determination of the optimum values to that described before.

The KKT conditions are as follow

•
$$\alpha_i \left[d_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + w_o \right) - 1 + \xi_i \right] = 0$$
 for $i = 1, 2, ..., N$.

Cinvestav 92/95

(日) (日) (日) (日) (日)

The optimal solution for the weight vector $oldsymbol{w}^*$

$$oldsymbol{w}^* = \sum_{i=1}^{N_s} lpha_i^* d_i oldsymbol{x}_i$$

Where N_s is the number of support vectors.

In addition

The determination of the optimum values to that described before.

The KKT conditions are as follow

•
$$\alpha_i \left[d_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + w_o \right) - 1 + \xi_i \right] = 0$$
 for $i = 1, 2, ..., N$.
• $\mu_i \xi_i = 0$ for $i = 1, 2, ..., N$.

イロト イヨト イヨト

The μ_i are Lagrange multipliers

They are used to enforce the non-negativity of the slack variables ξ_i for all i.

Something Notable

At saddle point, the derivative of the Lagrangian function for the primal problem:

$$\frac{1}{2}\boldsymbol{w}^{T}\boldsymbol{w} + C\sum_{i=1}^{N}\xi_{i} - \sum_{i=1}^{N}\alpha_{i}\left[d_{i}\left(\boldsymbol{w}^{T}\boldsymbol{x}_{i} + w_{o}\right) - 1 + \xi_{i}\right] - \sum_{i=1}^{N}\mu_{i}\xi_{i} \quad (34)$$

< ロ > < 回 > < 回 > < 回 > < 回 >

The μ_i are Lagrange multipliers

They are used to enforce the non-negativity of the slack variables ξ_i for all i.

Something Notable

At saddle point, the derivative of the Lagrangian function for the primal problem:

$$\frac{1}{2}\boldsymbol{w}^{T}\boldsymbol{w} + C\sum_{i=1}^{N}\xi_{i} - \sum_{i=1}^{N}\alpha_{i}\left[d_{i}\left(\boldsymbol{w}^{T}\boldsymbol{x}_{i} + w_{o}\right) - 1 + \xi_{i}\right] - \sum_{i=1}^{N}\mu_{i}\xi_{i} \quad (34)$$

イロト イヨト イヨト

Thus

We get

$$\alpha_i + \mu_i = C \tag{35}$$

Thus, we get if

Then $\mu_i > 0 \Rightarrow \xi_i = 0$

We may determine w_0

Using any data point (x_i, d_i) in the training set such that $0 \le \alpha_i^* \le C$. Then, given $\xi_i = 0$,

$$w_0^* = rac{1}{d_i} - \left(oldsymbol{w}^*
ight)^T oldsymbol{x}_i$$

We get

$$\alpha_i + \mu_i = C \tag{35}$$

Thus, we get if
$$\alpha_i < C$$

Then $\mu_i > 0 \Rightarrow \xi_i = 0$

We may determine w_0

Using any data point (\boldsymbol{x}_i, d_i) in the training set such that $0 \leq \alpha_i^* \leq C$. Then, given $\xi_i = 0$,

$$w_0^* = rac{1}{d_i} - \left(oldsymbol{w}^*
ight)^T oldsymbol{x}_i$$

Thus

We get

$$\alpha_i + \mu_i = C \tag{35}$$

Thus, we get if
$$\alpha_i < C$$

Then $\mu_i > 0 \Rightarrow \xi_i = 0$

We may determine w_0

Using any data point (\boldsymbol{x}_i, d_i) in the training set such that $0 \le \alpha_i^* \le C$. Then, given $\xi_i = 0$,

$$w_0^* = rac{1}{d_i} - \left(oldsymbol{w}^*
ight)^Toldsymbol{x}_i$$

(36)

Nevertheless

It is better

To take the mean value of w_0^* from all such data points in the training sample (Burges, 1998).

• BTW He has a great book in SVM's "An Introduction to Support Vector Machines and Other Kernel-based Learning Methods"

イロト イヨト イヨト