Introduction to Machine Learning
 Measures of Accuracy

Andres Mendez-Vazquez

August 21, 2020

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) Confusion Matrix
- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
(3) Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Other Measures: F_{1}-Measure

4 K-Cross Validation

- Introduction
- How to choose K

Outline

（1）Bias－Variance Dilemma

－Introduction
－Measuring the difference between optimal and learned
－The Bias－Variance
－＂Extreme＂Example

2．Confusion Matrix
－Introduction
－The α and β errors
－The Initial Confusion Matrix
－Metrics from the Confusion Matrix
（3）Receiver Operator Curves（ROC）
－Introduction
－Example
－Algorithm for the ROC Curve
－Area Under the Curve（AUC）
－Other Measures：F_{1}－Measure
（4）K－Cross ValidationIntroduction
－How to choose K

Introduction

What did we see until now?

The design of learning machines from two main points:

Introduction

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View

Introduction

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View
- Linear Algebra and Optimization Point of View

Introduction

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View
- Linear Algebra and Optimization Point of View

Going back to the probability models

We might think in the machine to be learned as a function $g(\boldsymbol{x} \mid \mathcal{D}) \ldots$.

Introduction

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View
- Linear Algebra and Optimization Point of View

Going back to the probability models

We might think in the machine to be learned as a function $g(\boldsymbol{x} \mid \mathcal{D}) \ldots$.

- Something as curve fitting...

Introduction

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View
- Linear Algebra and Optimization Point of View

Going back to the probability models

We might think in the machine to be learned as a function $g(\boldsymbol{x} \mid \mathcal{D}) \ldots$

- Something as curve fitting...

Under a data set

$$
\begin{equation*}
\mathcal{D}=\left\{\left(\boldsymbol{x}_{i}, y_{i}\right) \mid i=1,2, \ldots, N\right\} \tag{1}
\end{equation*}
$$

Introduction

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View
- Linear Algebra and Optimization Point of View

Going back to the probability models

We might think in the machine to be learned as a function $g(\boldsymbol{x} \mid \mathcal{D}) \ldots$.

- Something as curve fitting...

Under a data set

$$
\begin{equation*}
\mathcal{D}=\left\{\left(\boldsymbol{x}_{i}, y_{i}\right) \mid i=1,2, \ldots, N\right\} \tag{1}
\end{equation*}
$$

Remark: Where the $\boldsymbol{x}_{i} \sim p(\boldsymbol{x} \mid \Theta)!!!$

Thus, we have that

Two main functions

- A function $g(x \mid \mathcal{D})$ obtained using some algorithm!!!

Thus, we have that

Two main functions

- A function $g(\boldsymbol{x} \mid \mathcal{D})$ obtained using some algorithm!!!
- $E[y \mid \boldsymbol{x}]$ the optimal regression...

Thus, we have that

Two main functions

- A function $g(x \mid \mathcal{D})$ obtained using some algorithm!!!
- $E[y \mid \boldsymbol{x}]$ the optimal regression...

Important

The key factor here is the dependence of the approximation on \mathcal{D}.

Thus, we have that

Two main functions

- A function $g(x \mid \mathcal{D})$ obtained using some algorithm!!!
- $E[y \mid \boldsymbol{x}]$ the optimal regression...

Important

The key factor here is the dependence of the approximation on \mathcal{D}.

Why?

The approximation may be very good for a specific training data set but very bad for another.

Thus, we have that

Two main functions

- A function $g(\boldsymbol{x} \mid \mathcal{D})$ obtained using some algorithm!!!
- $E[y \mid \boldsymbol{x}]$ the optimal regression...

Important

The key factor here is the dependence of the approximation on \mathcal{D}.

Why?

The approximation may be very good for a specific training data set but very bad for another.

- This is the reason of studying fusion of information at decision level...

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example

2) Confusion Matrix

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
(3) Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Other Measures: F_{1}-Measure
(4) K-Cross ValidationIntroduction
- How to choose K

How do we measure the difference

We have that

$$
\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)
$$

How do we measure the difference
We have that

$$
\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)
$$

We can do that for our data

$$
\operatorname{Var}_{\mathcal{D}}(g(\boldsymbol{x} \mid \mathcal{D}))=E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right)
$$

How do we measure the difference
We have that

$$
\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)
$$

We can do that for our data

$$
\operatorname{Var}_{\mathcal{D}}(g(\boldsymbol{x} \mid \mathcal{D}))=E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right)
$$

Now, if we add and subtract

$$
\begin{equation*}
E_{D}[g(\boldsymbol{x} \mid \mathcal{D})] \tag{2}
\end{equation*}
$$

How do we measure the difference

We have that

$$
\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)
$$

We can do that for our data

$$
\operatorname{Var}_{\mathcal{D}}(g(\boldsymbol{x} \mid \mathcal{D}))=E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right)
$$

Now, if we add and subtract

$$
\begin{equation*}
E_{D}[g(\boldsymbol{x} \mid \mathcal{D})] \tag{2}
\end{equation*}
$$

Remark: The expected output of the machine $g(\boldsymbol{x} \mid \mathcal{D})$

Thus, we have that

Or Original variance

$\operatorname{Var}_{\mathcal{D}}(g(x \mid \mathcal{D}))=E_{D}\left((g(x \mid \mathcal{D})-E[y \mid x])^{2}\right)$

Thus, we have that

Or Original variance

$$
\begin{aligned}
\operatorname{Var}_{\mathcal{D}}(g(\boldsymbol{x} \mid \mathcal{D})) & =E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right) \\
& =E_{D}\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]+E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}\right)
\end{aligned}
$$

Thus, we have that

Or Original variance

$$
\begin{aligned}
\operatorname{Var}_{\mathcal{D}}(g(\boldsymbol{x} \mid \mathcal{D})) & =E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right) \\
& =E_{D}\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]+E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}\right) \\
& =E_{D}\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]\right)^{2}+\ldots\right. \\
& \ldots 2\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]\right)\right)\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)+\ldots \\
& \left.\ldots\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}\right)
\end{aligned}
$$

Finally

Thus, we have that

Or Original variance

$$
\begin{aligned}
\operatorname{Var}_{\mathcal{D}}(g(\boldsymbol{x} \mid \mathcal{D})) & =E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right) \\
& =E_{D}\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]+E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}\right) \\
& =E_{D}\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]\right)^{2}+\ldots\right. \\
& \ldots 2\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]\right)\right)\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)+\ldots \\
& \left.\ldots\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}\right)
\end{aligned}
$$

Finally

$$
\begin{equation*}
E_{D}\left(\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]\right)\right)\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)\right)=? \tag{3}
\end{equation*}
$$

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) Confusion Matrix
- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
(3) Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Other Measures: F_{1}-Measure
(4) K-Cross ValidationIntroduction
- How to choose K

We have the Bias-Variance

Our Final Equation

$$
E_{D}\left((g(x \mid \mathcal{D})-E[y \mid x])^{2}\right)=\underbrace{E_{D}\left(\left(g(x \mid \mathcal{D})-E_{D}[g(x \mid \mathcal{D})]\right)^{2}\right)}_{\text {VARIANCE }}+\underbrace{\left(E_{D}[g(x \mid \mathcal{D})]-E[y \mid x]\right)^{2}}_{\text {BIAS }}
$$

We have the Bias-Variance

Our Final Equation

$$
E_{D}\left((g(x \mid \mathcal{D})-E[y \mid x])^{2}\right)=\underbrace{E_{D}\left(\left(g(x \mid \mathcal{D})-E_{D}[g(x \mid \mathcal{D})]\right)^{2}\right)}_{\text {VARIANCE }}+\underbrace{\left(E_{D}[g(x \mid \mathcal{D})]-E[y \mid x]\right)^{2}}_{\text {BIAS }}
$$

Where the variance

It represents the measure of the error between our machine $g(\boldsymbol{x} \mid \mathcal{D})$ and the expected output of the machine under $\boldsymbol{x}_{i} \sim p(\boldsymbol{x} \mid \Theta)$.

We have the Bias-Variance

Our Final Equation

$$
E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right)=\underbrace{E_{D}\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]\right)^{2}\right)}_{\text {VARIANCE }}+\underbrace{\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}}_{\text {BIAS }}
$$

Where the variance

It represents the measure of the error between our machine $g(\boldsymbol{x} \mid \mathcal{D})$ and the expected output of the machine under $\boldsymbol{x}_{i} \sim p(\boldsymbol{x} \mid \Theta)$.

Where the bias

It represents the quadratic error between the expected output of the machine under $\boldsymbol{x}_{i} \sim p(\boldsymbol{x} \mid \Theta)$ and the expected output of the optimal regression.

We have the Bias-Variance

Our Final Equation

$$
E_{D}\left((g(\boldsymbol{x} \mid \mathcal{D})-E[y \mid \boldsymbol{x}])^{2}\right)=\underbrace{E_{D}\left(\left(g(\boldsymbol{x} \mid \mathcal{D})-E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]\right)^{2}\right)}_{\text {VARIANCE }}+\underbrace{\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}}_{\text {BIAS }}
$$

Where the variance

It represents the measure of the error between our machine $g(\boldsymbol{x} \mid \mathcal{D})$ and the expected output of the machine under $\boldsymbol{x}_{i} \sim p(\boldsymbol{x} \mid \Theta)$.

Where the bias

It represents the quadratic error between the expected output of the machine under $\boldsymbol{x}_{i} \sim p(\boldsymbol{x} \mid \Theta)$ and the expected output of the optimal regression.

Remarks

We have then

Even if the estimator is unbiased, it can still result in a large mean square error due to a large variance term.

Remarks

We have then

Even if the estimator is unbiased, it can still result in a large mean square error due to a large variance term.

The situation is more dire in a finite set of data \mathcal{D}
We have then a trade-off:

Remarks

We have then

Even if the estimator is unbiased, it can still result in a large mean square error due to a large variance term.

The situation is more dire in a finite set of data \mathcal{D}
We have then a trade-off:
(1) Increasing the bias decreases the variance and vice versa.

Remarks

We have then

Even if the estimator is unbiased, it can still result in a large mean square error due to a large variance term.

The situation is more dire in a finite set of data \mathcal{D}
We have then a trade-off:
(1) Increasing the bias decreases the variance and vice versa.
(2) This is known as the bias-variance dilemma.

Similar to...

Curve Fitting

If, for example, the adopted model is complex (many parameters involved) with respect to the number N, the model will fit the idiosyncrasies of the specific data set.

Similar to...

Curve Fitting

If, for example, the adopted model is complex (many parameters involved) with respect to the number N, the model will fit the idiosyncrasies of the specific data set.

Thus

Thus, it will result in low bias but will yield high variance, as we change from one data set to another data set.

Similar to...

Curve Fitting

If, for example, the adopted model is complex (many parameters involved) with respect to the number N, the model will fit the idiosyncrasies of the specific data set.

Thus

Thus, it will result in low bias but will yield high variance, as we change from one data set to another data set.

Furthermore

If N grows we can have a more complex model to be fitted which reduces bias and ensures low variance.

Similar to...

Curve Fitting

If, for example, the adopted model is complex (many parameters involved) with respect to the number N, the model will fit the idiosyncrasies of the specific data set.

Thus

Thus, it will result in low bias but will yield high variance, as we change from one data set to another data set.

Furthermore

If N grows we can have a more complex model to be fitted which reduces bias and ensures low variance.

- However, N is always finite!!!

Thus

You always need to compromise

However, you always have some a priori knowledge about the data

Thus

You always need to compromise

However, you always have some a priori knowledge about the data

Allowing you to impose restrictions
 Lowering the bias and the variance

Thus

You always need to compromise

However, you always have some a priori knowledge about the data

Allowing you to impose restrictions
 Lowering the bias and the variance

Nevertheless
We have the following example to grasp better the bothersome bias-variance dilemma.

For this

Assume

The data is generated by the following function

$$
\begin{aligned}
& y=f(x)+\epsilon \\
& \epsilon \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right)
\end{aligned}
$$

For this

Assume

The data is generated by the following function

$$
\begin{aligned}
& y=f(x)+\epsilon \\
& \epsilon \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right)
\end{aligned}
$$

We know that

The optimum regressor is $E[y \mid x]=f(x)$

For this

Assume

The data is generated by the following function

$$
\begin{aligned}
& y=f(x)+\epsilon, \\
& \epsilon \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right)
\end{aligned}
$$

We know that

The optimum regressor is $E[y \mid x]=f(x)$

Furthermore

Assume that the randomness in the different training sets, \mathcal{D}, is due to the y_{i} 's (Affected by noise), while the respective points, x_{i}, are fixed.

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example

2. Confusion Matrix

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
(3) Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Other Measures: F_{1}-Measure
(4) K-Cross ValidationIntroduction
- How to choose K

Sampling the Space

Imagine that $\mathcal{D} \subset\left[x_{1}, x_{2}\right]$ in which x lies

For example, you can choose $x_{i}=x_{1}+\frac{x_{2}-x_{1}}{N-1}(i-1)$ with $i=1,2, \ldots, N$

Case 1

Choose the estimate of $f(x), g(x \mid \mathcal{D})$, to be independent of \mathcal{D}
For example, $g(x)=w_{1} x+w_{0}$

Case 1

Choose the estimate of $f(x), g(x \mid \mathcal{D})$, to be independent of \mathcal{D}
For example, $g(x)=w_{1} x+w_{0}$

For example, the points are spread around $(x, f(x))$

Case 1

Since $g(x)$ is fixed

$$
\begin{equation*}
E_{\mathcal{D}}[g(x \mid \mathcal{D})]=g(x \mid \mathcal{D}) \equiv g(x) \tag{4}
\end{equation*}
$$

Case 1

Since $g(x)$ is fixed

$$
\begin{equation*}
E_{\mathcal{D}}[g(x \mid \mathcal{D})]=g(x \mid \mathcal{D}) \equiv g(x) \tag{4}
\end{equation*}
$$

With

$$
\begin{equation*}
\operatorname{Var}_{\mathcal{D}}[g(x \mid \mathcal{D})]=0 \tag{5}
\end{equation*}
$$

Case 1

Since $g(x)$ is fixed

$$
\begin{equation*}
E_{\mathcal{D}}[g(x \mid \mathcal{D})]=g(x \mid \mathcal{D}) \equiv g(x) \tag{4}
\end{equation*}
$$

With

$$
\begin{equation*}
\operatorname{Var}_{\mathcal{D}}[g(x \mid \mathcal{D})]=0 \tag{5}
\end{equation*}
$$

On the other hand

Because $g(x)$ was chosen arbitrarily the expected bias must be large.

$$
\begin{equation*}
\underbrace{\left(E_{D}[g(\boldsymbol{x} \mid \mathcal{D})]-E[y \mid \boldsymbol{x}]\right)^{2}}_{B I A S} \tag{6}
\end{equation*}
$$

Case 2

In the other hand

Now, $g_{1}(x)$ corresponds to a polynomial of high degree so it can pass through each training point in \mathcal{D}.

Case 2

In the other hand

Now, $g_{1}(x)$ corresponds to a polynomial of high degree so it can pass through each training point in \mathcal{D}.

Example of $g_{1}(x)$

Case 2

Due to the zero mean of the noise source

$$
\begin{equation*}
E_{D}\left[g_{1}(\boldsymbol{x} \mid \mathcal{D})\right]=f(x)=E[y \mid x] \text { for any } x=x_{i} \tag{7}
\end{equation*}
$$

Remark: At the training points the bias is zero.

Case 2

Due to the zero mean of the noise source

$$
\begin{equation*}
E_{D}\left[g_{1}(\boldsymbol{x} \mid \mathcal{D})\right]=f(x)=E[y \mid x] \text { for any } x=x_{i} \tag{7}
\end{equation*}
$$

Remark: At the training points the bias is zero.

However the variance increases

$$
\begin{aligned}
E_{D}\left[\left(g_{1}(\boldsymbol{x} \mid \mathcal{D})-E_{D}\left[g_{1}(\boldsymbol{x} \mid \mathcal{D})\right]\right)^{2}\right] & =E_{D}\left[(f(x)+\epsilon-f(x))^{2}\right] \\
& =\sigma_{\epsilon}^{2}, \text { for } x=x_{i}, i=1,2, \ldots, N
\end{aligned}
$$

Case 2

Due to the zero mean of the noise source

$$
\begin{equation*}
E_{D}\left[g_{1}(\boldsymbol{x} \mid \mathcal{D})\right]=f(x)=E[y \mid x] \text { for any } x=x_{i} \tag{7}
\end{equation*}
$$

Remark: At the training points the bias is zero.

However the variance increases

$$
\begin{aligned}
E_{D}\left[\left(g_{1}(\boldsymbol{x} \mid \mathcal{D})-E_{D}\left[g_{1}(\boldsymbol{x} \mid \mathcal{D})\right]\right)^{2}\right] & =E_{D}\left[(f(x)+\epsilon-f(x))^{2}\right] \\
& =\sigma_{\epsilon}^{2}, \text { for } x=x_{i}, i=1,2, \ldots, N
\end{aligned}
$$

In other words

The bias becomes zero (or approximately zero) but the variance is now equal to the variance of the noise source.

Observations

First
Everything that has been said so far applies to both the regression and the classification tasks.

Observations

First

Everything that has been said so far applies to both the regression and the classification tasks.

However

Mean squared error is not the best way to measure the power of a classifier.

Observations

First

Everything that has been said so far applies to both the regression and the classification tasks.

However

Mean squared error is not the best way to measure the power of a classifier.

```
Think about
A classifier that sends everything far away of the hyperplane!!! Away from
the values + - 1!!!
```


Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) Confusion Matrix
- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
(3) Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Other Measures: F_{1}-Measure
(4) K-Cross ValidationIntroduction
- How to choose K

Sooner of Latter you need to know how efficient is your algorithm

Thus, we need a measures of accuracy
Thus, we begin with the classic classifier for two classes

Sooner of Latter you need to know how efficient is your algorithm

Thus, we need a measures of accuracy
Thus, we begin with the classic classifier for two classes

Here

A dataset used for performance evaluation is called a test dataset.

Therefore

It is a good idea to build a measure of performance
For this, we can use the idea of error in statistics.

Therefore

It is a good idea to build a measure of performance
For this, we can use the idea of error in statistics.

Do you remember?

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) Confusion Matrix
- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
(3) Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Other Measures: F_{1}-Measure
(4) K-Cross ValidationIntroduction
- How to choose K

α error

Definition (Type I Error - False Positive)

α is the probability that the test will lead to the rejection of the hypothesis H_{0} when that hypothesis is true.

α error

Definition (Type I Error - False Positive)

α is the probability that the test will lead to the rejection of the hypothesis H_{0} when that hypothesis is true.

Example

(1) H_{0} : "You have a device that produce circuits with no error"

α error

Definition (Type I Error - False Positive)

α is the probability that the test will lead to the rejection of the hypothesis H_{0} when that hypothesis is true.

Example

(1) H_{0} : "You have a device that produce circuits with no error"
(2) You have a device that fails $\alpha=0.05$ meaning that it fails 5 of the time.

α error

Definition (Type I Error - False Positive)

α is the probability that the test will lead to the rejection of the hypothesis H_{0} when that hypothesis is true.

Example

(1) H_{0} : "You have a device that produce circuits with no error"
(2) You have a device that fails $\alpha=0.05$ meaning that it fails 5 of the time.
(3) This says that you ha low chance of a wrong circuit.

Basically

We have

Definition (Type II Error - False Negative)

β is the probability that the test will lead to the rejection of the hypothesis H_{1} when that hypothesis is true.

Definition (Type II Error - False Negative)

β is the probability that the test will lead to the rejection of the hypothesis H_{1} when that hypothesis is true.

Example

(1) H_{1} : "Adding fluoride to toothpaste protects against cavities."

Definition (Type II Error - False Negative)

β is the probability that the test will lead to the rejection of the hypothesis H_{1} when that hypothesis is true.

Example

(1) H_{1} : "Adding fluoride to toothpaste protects against cavities."
(2) Then $\beta=0.05$ meaning that you have a chance of 5 of the time.

Definition (Type II Error - False Negative)

β is the probability that the test will lead to the rejection of the hypothesis H_{1} when that hypothesis is true.

Example

(1) H_{1} : "Adding fluoride to toothpaste protects against cavities."
(2) Then $\beta=0.05$ meaning that you have a chance of 5 of the time.
(3) This says that you ha low chance of having a cavity using fluoride in the water.

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) Confusion Matrix
- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
(3) Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Other Measures: F_{1}-Measure
(4) K-Cross ValidationIntroduction
- How to choose K

This can be seen as a table

Confusion Matrix

Table of error types		Null Hypothesis H_{0}	
	True	False	
Decision about H_{0}	Reject	Type I Error $-\alpha$ False Positive	Correct Inference True Positive
	Fail to reject	Correct Inference True Negative	Type II Error $-\beta$ False Negative

In the case of two classes, we have

We have the following

		Actual Class	
		Positive	Negative
Predicted	Positive	True Positive (TP)	False Positives (FP)
Classes	Negative	False Negatives (FN)	True Negatives (TN)

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) Confusion Matrix
- Introduction

The α and β errors

- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
(3) Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Other Measures: F_{1}-Measure
(4) K-Cross ValidationIntroduction
- How to choose K

Accuracy

Definition

The proportion of getting correct classification of the Positive and Negative classes.

Accuracy

Definition

The proportion of getting correct classification of the Positive and Negative classes.

Thus

$$
\text { Accuracy }=\frac{T P+T N}{T P+F P+F N+T N}
$$

Accuracy

Definition

The proportion of getting correct classification of the Positive and Negative classes.

Thus

$$
\text { Accuracy }=\frac{T P+T N}{T P+F P+F N+T N}
$$

Problem - accuracy assumes equal cost for both kinds of errors
Is 99% accuracy good, bad or terrible? It depends on the problem.

True Positive Rate

Also called
Sensitivity or Recall Rate

True Positive Rate

Also called

Sensitivity or Recall Rate

Defined as

True Positive Rate is the proportion of getting a correct classification of the Positive Class vs the True Positive and False Negatives.

$$
\text { True Positive Rate }=\frac{T P}{T P+F N}
$$

True Negative Rate

Also known as
Specificity

True Negative Rate

Also known as
 Specificity

Defined as

It is the proportion of True Negative vs the elements classified as True negatives.

$$
\text { True Negative Rate }=\frac{T N}{F P+T N}
$$

Precision

Also known as
Positive Predictive Value

Precision

Also known as

Positive Predictive Value

Defined as

The proportion of the elements classified as true positive vs the total of all the real true positives.

$$
\text { Precision Predicted Value }=\frac{T P}{F P+T P}
$$

Significance Level

Also known as
False Positive Rate.

Significance Level

Also known as

False Positive Rate.

Defined as

False Positive Rate is the probability of getting an incorrect classification of the Positive Class vs the True Negative and the False Positive.

$$
\text { False positive rate }=\frac{F P}{T N+F P}
$$

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) Confusion Matrix
- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
(3) Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Other Measures: F_{1}-Measure
(4) K-Cross ValidationIntroduction
0
How to choose K

We can do better than these simple measures of accuracy

Given these initial measures of validity

it is possible to obtain a more precise model evaluation, the ROC curves.

We can do better than these simple measures of accuracy

Given these initial measures of validity

it is possible to obtain a more precise model evaluation, the ROC curves.

The ROC Curves plot

It is a model-wide evaluation measure that is based on two basic evaluation measures:
(1) Specificity is a performance measure of the whole negative part of a dataset.
(2) Sensitivity is a performance measure of the whole positive part.

What the ROC Curves uses

We have a plot where

The ROC plot uses specificity on the x-axis and sensitivity on the y-axis.

What the ROC Curves uses

We have a plot where

The ROC plot uses specificity on the x-axis and sensitivity on the y-axis.

Basically

False Positive Rate (FPR) is identical with specificity, and True Positive Rate (TPR) is identical with sensitivity.

What the ROC Curves uses

We have a plot where

The ROC plot uses specificity on the x-axis and sensitivity on the y-axis.

Basically

False Positive Rate (FPR) is identical with specificity, and True Positive Rate (TPR) is identical with sensitivity.

Then

(1) A ROC curve is created by connecting all ROC points of a classier in the ROC space.

What the ROC Curves uses

We have a plot where

The ROC plot uses specificity on the x-axis and sensitivity on the y-axis.

Basically

False Positive Rate (FPR) is identical with specificity, and True Positive Rate (TPR) is identical with sensitivity.

Then

(1) A ROC curve is created by connecting all ROC points of a classier in the ROC space.
(2) Two adjacent ROC points can be connected by a straight line.

What the ROC Curves uses

We have a plot where

The ROC plot uses specificity on the x-axis and sensitivity on the y-axis.

Basically

False Positive Rate (FPR) is identical with specificity, and True Positive Rate (TPR) is identical with sensitivity.

Then

(1) A ROC curve is created by connecting all ROC points of a classier in the ROC space.
(2) Two adjacent ROC points can be connected by a straight line.
(3) The curve starts at $(0.0,0.0)$ and ends at (1.0, 1.0).

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) Confusion Matrix
- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
(3) Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Other Measures: F_{1}-Measure
(4) K-Cross ValidationIntroduction
- How to choose K

For Example

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) Confusion Matrix
- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
(3) Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Other Measures: F_{1}-Measure
(4) K-Cross ValidationIntroduction
- How to choose K

We have

Algorithm ROC point generation

Input: L, the set of test examples; $f(i)$, the probabilistic classifier estimate that example i is positive; P and N , the number of positive and negative examples.

We have

Algorithm ROC point generation

Input: L, the set of test examples; $f(i)$, the probabilistic classifier estimate that example i is positive; P and N , the number of positive and negative examples.

Ouput: R, a list of ROC points increasing by false positive rate.

We have

Algorithm ROC point generation

Input: L, the set of test examples; $f(i)$, the probabilistic classifier estimate that example i is positive; P and N , the number of positive and negative examples.

Ouput: R, a list of ROC points increasing by false positive rate.
(1) $L_{\text {sorted }} \leftarrow L$ sorted decreasing by f scores

We have

Algorithm ROC point generation

Input: L, the set of test examples; $f(i)$, the probabilistic classifier estimate that example i is positive; P and N , the number of positive and negative examples.

Ouput: R, a list of ROC points increasing by false positive rate.
(1) $L_{\text {sorted }} \leftarrow L$ sorted decreasing by f scores
(2) $F P \leftarrow T P \leftarrow 0 ; R \leftarrow\langle \rangle ;$ fprev $\leftarrow-\infty ; i \leftarrow 1$

We have

Algorithm ROC point generation

Input: L, the set of test examples; $f(i)$, the probabilistic classifier estimate that example i is positive; P and N , the number of positive and negative examples.

Ouput: R, a list of ROC points increasing by false positive rate.
(1) $L_{\text {sorted }} \leftarrow L$ sorted decreasing by f scores
(2) $F P \leftarrow T P \leftarrow 0 ; R \leftarrow\langle \rangle ;$ fprev $\leftarrow-\infty ; i \leftarrow 1$
(3) while $i \leq\left|L_{\text {sorted }}\right|$

We have

Algorithm ROC point generation

Input: L, the set of test examples; $f(i)$, the probabilistic classifier estimate that example i is positive; P and N , the number of positive and negative examples.

Ouput: R, a list of ROC points increasing by false positive rate.
(1) $L_{\text {sorted }} \leftarrow L$ sorted decreasing by f scores
(2) $F P \leftarrow T P \leftarrow 0 ; R \leftarrow\langle \rangle ;$ fprev $\leftarrow-\infty ; i \leftarrow 1$
(3) while $i \leq\left|L_{\text {sorted }}\right|$
(4) if $f(i) \neq f_{\text {prev }}$ then

We have

Algorithm ROC point generation

Input: L, the set of test examples; $f(i)$, the probabilistic classifier estimate that example i is positive; P and N , the number of positive and negative examples.

Ouput: R, a list of ROC points increasing by false positive rate.
(1) $L_{\text {sorted }} \leftarrow L$ sorted decreasing by f scores
(2) $F P \leftarrow T P \leftarrow 0 ; R \leftarrow\langle \rangle ;$ fprev $\leftarrow-\infty ; i \leftarrow 1$
(3) while $i \leq\left|L_{\text {sorted }}\right|$
(4)
if $f(i) \neq f_{\text {prev }}$ then
(5)

$$
\text { R.append }\left(\frac{F P}{N}, \frac{T P}{P}\right)
$$

We have

Algorithm ROC point generation

Input: L, the set of test examples; $f(i)$, the probabilistic classifier estimate that example i is positive; P and N , the number of positive and negative examples.

Ouput: R, a list of ROC points increasing by false positive rate.
(1) $L_{\text {sorted }} \leftarrow L$ sorted decreasing by f scores
(2) $F P \leftarrow T P \leftarrow 0 ; R \leftarrow\langle \rangle ;$ fprev $\leftarrow-\infty ; i \leftarrow 1$
(3) while $i \leq\left|L_{\text {sorted }}\right|$
(4)
if $f(i) \neq f_{\text {prev }}$ then
(5)
R.append $\left(\frac{F P}{N}, \frac{T P}{P}\right)$
fprev $\leftarrow f(i)$

We have

Algorithm ROC point generation

Input: L, the set of test examples; $f(i)$, the probabilistic classifier estimate that example i is positive; P and N , the number of positive and negative examples.

Ouput: R, a list of ROC points increasing by false positive rate.
(1) $L_{\text {sorted }} \leftarrow L$ sorted decreasing by f scores
(2) $F P \leftarrow T P \leftarrow 0 ; R \leftarrow\langle \rangle ;$ fprev $\leftarrow-\infty ; i \leftarrow 1$
(3) while $i \leq\left|L_{\text {sorted }}\right|$
(4)
if $f(i) \neq f_{\text {prev }}$ then
R.append $\left(\frac{F P}{N}, \frac{T P}{P}\right)$
fprev $\leftarrow f(i)$
(1)
if $L_{\text {sorted }}$ is a positive example then $T P=T P+1$

We have

Algorithm ROC point generation

Input: L, the set of test examples; $f(i)$, the probabilistic classifier estimate that example i is positive; P and N , the number of positive and negative examples.

Ouput: R, a list of ROC points increasing by false positive rate.
(1) $L_{\text {sorted }} \leftarrow L$ sorted decreasing by f scores
(2) $F P \leftarrow T P \leftarrow 0 ; R \leftarrow\langle \rangle ;$ fprev $\leftarrow-\infty ; i \leftarrow 1$
(3) while $i \leq\left|L_{\text {sorted }}\right|$
(4)
if $f(i) \neq f_{\text {prev }}$ then
R.append $\left(\frac{F P}{N}, \frac{T P}{P}\right)$
fprev $\leftarrow f(i)$
if $L_{\text {sorted }}$ is a positive example then $T P=T P+1$
B
else $F P=F P+1$

We have

Algorithm ROC point generation

Input: L, the set of test examples; $f(i)$, the probabilistic classifier estimate that example i is positive; P and N , the number of positive and negative examples.

Ouput: R, a list of ROC points increasing by false positive rate.
(1) $L_{\text {sorted }} \leftarrow L$ sorted decreasing by f scores
(2) $F P \leftarrow T P \leftarrow 0 ; R \leftarrow\langle \rangle ;$ fprev $\leftarrow-\infty ; i \leftarrow 1$
(3) while $i \leq\left|L_{\text {sorted }}\right|$
(4)
if $f(i) \neq f_{\text {prev }}$ then

$$
\text { R.append }\left(\frac{F P}{N}, \frac{T P}{P}\right)
$$

$$
\text { fprev } \leftarrow f(i)
$$

(8) else $F P=F P+1$
(9) $i \leftarrow i+1$

We have

Algorithm ROC point generation

Input: L, the set of test examples; $f(i)$, the probabilistic classifier estimate that example i is positive; P and N , the number of positive and negative examples.

Ouput: R, a list of ROC points increasing by false positive rate.
(1) $L_{\text {sorted }} \leftarrow L$ sorted decreasing by f scores
(2) $F P \leftarrow T P \leftarrow 0 ; R \leftarrow\langle \rangle ;$ fprev $\leftarrow-\infty ; i \leftarrow 1$
(3) while $i \leq\left|L_{\text {sorted }}\right|$
(4)
(5)
©
(7
(8) else $F P=F P+1$

9
$i \leftarrow i+1$
(10) R.append $\left(\frac{F P}{N}, \frac{T P}{P}\right)$, this is $(1,1)$

Thus

Thus

Thus, after generating the ROC Curve it is possible to use several metrics to validate using the ROC curves.

Thus

Thus

Thus, after generating the ROC Curve it is possible to use several metrics to validate using the ROC curves.

A Partial List is

(1) Area Under the Curve (AUC)
(2) Equal Error Rate (EER)
(3) Likelihood Ratio

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) Confusion Matrix
- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
(3) Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Other Measures: F_{1}-Measure
(4) K-Cross ValidationIntroduction
- How to choose K

A Simple Defintion

We have

$$
A U C=\int R O C(p) d p=\sum_{i=1}^{N} R O C\left(f\left(\frac{1}{i}\right)\right)\left[\frac{i}{N}-\frac{i-1}{N}\right]
$$

A Simple Defintion

We have

$$
A U C=\int R O C(p) d p=\sum_{i=1}^{N} R O C\left(f\left(\frac{1}{i}\right)\right)\left[\frac{i}{N}-\frac{i-1}{N}\right]
$$

This equation has the following meaning

- The probability that a randomly selected observation X from the positive class would have a higher score than a randomly selected observation Y from the negative class.

$$
P(X>Y)
$$

A Simple Defintion

We have

$$
A U C=\int R O C(p) d p=\sum_{i=1}^{N} R O C\left(f\left(\frac{1}{i}\right)\right)\left[\frac{i}{N}-\frac{i-1}{N}\right]
$$

This equation has the following meaning

- The probability that a randomly selected observation X from the positive class would have a higher score than a randomly selected observation Y from the negative class.

$$
P(X>Y)
$$

Thus

The AUC gives the mean true positive rate averaged uniformly across the false positive rate.

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) Confusion Matrix
- Introduction
- The α and β érrors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
(3) Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Other Measures: F_{1}-Measure
(4) K-Cross ValidationIntroduction
- How to choose K

Also known as F_{1} score

It is a measure of a test's accuracy
It considers both the precision P and the recall R of the test to compute the score.

Also known as F_{1} score

It is a measure of a test's accuracy

It considers both the precision P and the recall R of the test to compute the score.

An interesting fact

It computes some average of the information retrieval precision and recall.

Comparison of Measures

Something Notable

$$
\begin{aligned}
\text { Average } & =\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
\text { Harmonic } & =\frac{N}{\sum_{i=1}^{N} \frac{1}{x_{i}}}
\end{aligned}
$$

Comparison of Measures

Something Notable

$$
\begin{aligned}
\text { Average } & =\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
\text { Harmonic } & =\frac{N}{\sum_{i=1}^{N} \frac{1}{x_{i}}}
\end{aligned}
$$

When $x_{1}=$ Precision and $x_{2}=$ Recall

$$
\begin{aligned}
\text { Average } & =\frac{1}{2}(P+R) \\
\text { Harmonic } & =\frac{2}{\frac{1}{P}+\frac{1}{R}}=\frac{2 P R}{P+R}
\end{aligned}
$$

Thus

Important

- The harmonic mean is more intuitive than the arithmetic mean when computing a mean of ratios.

Thus

Important

- The harmonic mean is more intuitive than the arithmetic mean when computing a mean of ratios.

Example

- Suppose that you have a finger print recognition system and its precision and recall be 1.0 and 0.2

How is this Computed?

Then for Precision and Recall, we have a general function

$$
F_{\beta}=\frac{\left(\beta^{2}+1\right) \text { Precision } \times \text { Recall }}{\beta^{2} \text { Precision }+ \text { Recall }}(0 \leq \beta \leq+\infty)
$$

How is this Computed?

Then for Precision and Recall, we have a general function

$$
F_{\beta}=\frac{\left(\beta^{2}+1\right) \text { Precision } \times \text { Recall }}{\beta^{2} \text { Precision }+ \text { Recall }}(0 \leq \beta \leq+\infty)
$$

Thus, for the basic case F_{1}

$$
F_{1}=2 \frac{\text { Precision } \times \text { Recall }}{\text { Precision }+ \text { Recall }}
$$

Outline

(1) Bias-Variance Dilemma

- Introduction
- Measuring the difference between optimal and learned
- The Bias-Variance
- "Extreme" Example
(2) Confusion Matrix
- Introduction
- The α and β èrrors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
(3) Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Other Measures: F_{1}-Measure

4) K-Cross Validation

Introduction

- How to choose K

What we want

We want to measure
A quality measure to measure different classifiers (for different parameter values).

What we want

We want to measure

A quality measure to measure different classifiers (for different parameter values).

We call that as

$$
\begin{equation*}
R(f)=E_{\mathcal{D}}[L(y, f(\boldsymbol{x}))] . \tag{8}
\end{equation*}
$$

Example: $L(y, f(x))=\|y-f(\boldsymbol{x})\|_{2}^{2}$

What we want

We want to measure

A quality measure to measure different classifiers (for different parameter values).

We call that as

$$
\begin{equation*}
R(f)=E_{\mathcal{D}}[L(y, f(\boldsymbol{x}))] . \tag{8}
\end{equation*}
$$

Example: $L(y, f(x))=\|y-f(\boldsymbol{x})\|_{2}^{2}$

More precisely

For different values γ_{j} of the parameter, we train a classifier $f\left(\boldsymbol{x} \mid \gamma_{j}\right)$ on the training set.

Then, calculate the empirical Risk

Do you have any ideas?

Give me your best shot!!!

Then, calculate the empirical Risk

Do you have any ideas?
Give me your best shot!!!

Empirical Risk

We use the validation set to estimate

$$
\begin{equation*}
\hat{R}(f(x \mid \gamma))=\frac{1}{N_{v}} \sum_{i=1}^{N_{v}} L\left(y_{i}, f\left(\boldsymbol{x}_{i} \mid \gamma\right)\right) \tag{9}
\end{equation*}
$$

Then, calculate the empirical Risk

Do you have any ideas?
Give me your best shot!!!

Empirical Risk

We use the validation set to estimate

$$
\begin{equation*}
\hat{R}(f(x \mid \gamma))=\frac{1}{N_{v}} \sum_{i=1}^{N_{v}} L\left(y_{i}, f\left(\boldsymbol{x}_{i} \mid \gamma\right)\right) \tag{9}
\end{equation*}
$$

Thus, you follow the following procedure

(1) Select the value γ^{*} which achieves the smallest estimated error.

Then, calculate the empirical Risk

Do you have any ideas?

Give me your best shot!!!

Empirical Risk

We use the validation set to estimate

$$
\begin{equation*}
\hat{R}(f(x \mid \gamma))=\frac{1}{N_{v}} \sum_{i=1}^{N_{v}} L\left(y_{i}, f\left(\boldsymbol{x}_{i} \mid \gamma\right)\right) \tag{9}
\end{equation*}
$$

Thus, you follow the following procedure
(1) Select the value γ^{*} which achieves the smallest estimated error.
(2) Re-train the classifier with parameter γ^{*} on all data except the test set (i.e. train + validation data).

Then, calculate the empirical Risk

Do you have any ideas?

Give me your best shot!!!

Empirical Risk

We use the validation set to estimate

$$
\begin{equation*}
\hat{R}(f(x \mid \gamma))=\frac{1}{N_{v}} \sum_{i=1}^{N_{v}} L\left(y_{i}, f\left(\boldsymbol{x}_{i} \mid \gamma\right)\right) \tag{9}
\end{equation*}
$$

Thus, you follow the following procedure
(1) Select the value γ^{*} which achieves the smallest estimated error.
(2) Re-train the classifier with parameter γ^{*} on all data except the test set (i.e. train + validation data).
(3) Report error estimate $\hat{R}\left(f\left(x \mid \gamma_{i}\right)\right)$ computed on the test set.

Idea

Something Notable

- Each of the error estimates computed on validation set is computed from a single example of a trained classifier.
- Can we improve the estimate?

Idea

Something Notable

- Each of the error estimates computed on validation set is computed from a single example of a trained classifier.
- Can we improve the estimate?
K-fold Cross Validation
To estimate the risk of a classifier f :

Idea

Something Notable

- Each of the error estimates computed on validation set is computed from a single example of a trained classifier.
- Can we improve the estimate?

K-fold Cross Validation

To estimate the risk of a classifier f :
(1) Split data into K equally sized parts (called "folds"), N_{v}.

Idea

Something Notable

- Each of the error estimates computed on validation set is computed from a single example of a trained classifier.
- Can we improve the estimate?

K-fold Cross Validation

To estimate the risk of a classifier f :
(1) Split data into K equally sized parts (called "folds"), N_{v}.
(2) Train an instance f_{k} of the classifier, using all folds except fold k as training data.

Idea

Something Notable

- Each of the error estimates computed on validation set is computed from a single example of a trained classifier.
- Can we improve the estimate?

K-fold Cross Validation

To estimate the risk of a classifier f :
(1) Split data into K equally sized parts (called "folds"), N_{v}.
(2) Train an instance f_{k} of the classifier, using all folds except fold k as training data.
(3) Compute the Cross Validation (CV) estimate:

$$
\begin{equation*}
\hat{R}_{C V}(f(x \mid \gamma))=\frac{1}{N_{v}} \sum_{k=1}^{N_{v}} L\left(y_{i}, f_{k}\left(\boldsymbol{x}_{k(i)} \mid \gamma\right)\right) \tag{10}
\end{equation*}
$$

where $k(i)$ is the fold containing \boldsymbol{x}_{i}.

Example

$K=5, k=3$

Train	Train	Testing	Train	Train
1	2	3	4	5

Example

$K=5, k=3$

Train	Train	Testing	Train	Train
1	2	3	4	5

Actually, we have

Cross validation procedure does not involve the test data.

$\overbrace{\text { Train Data }+ \text { Validation Data }}^{\text {SPLIT All Train Set }}$	Test

Outline

```
1. Bias-Variance Dilemma
    - Introduction
    - Measuring the difference between optimal and learned
    - The Bias-Variance
    - "Extreme" Example
```

(2) Confusion Matrix
- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
(3) Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Other Measures: F_{1}-Measure
(4) K-Cross Validation

- Introduction
- How to choose K

How to choose K

Extremal cases

- $K=N$, called leave one out cross validation (loocv)

How to choose K

Extremal cases

- $K=N$, called leave one out cross validation (loocv)
- $K=2$

How to choose K

Extremal cases

- $K=N$, called leave one out cross validation (loocv)
- $K=2$

An often-cited problem with loocv is that we have to train many ($=N$) classifiers, but there is also a deeper problem.

How to choose K

Extremal cases

- $K=N$, called leave one out cross validation (loocv)
- $K=2$

An often-cited problem with loocv is that we have to train many ($=N$) classifiers, but there is also a deeper problem.

Argument 1: K should be small, e.g. $K=2$

(1) Unless we have a lot of data, variance between two distinct training sets may be considerable.

How to choose K

Extremal cases

- $K=N$, called leave one out cross validation (loocv)
- $K=2$

An often-cited problem with loocv is that we have to train many ($=N$) classifiers, but there is also a deeper problem.

Argument 1: K should be small, e.g. $K=2$

(1) Unless we have a lot of data, variance between two distinct training sets may be considerable.
(2) Important concept: By removing substantial parts of the sample in turn and at random, we can simulate this variance.

How to choose K

Extremal cases

- $K=N$, called leave one out cross validation (loocv)
- $K=2$

An often-cited problem with loocv is that we have to train many ($=N$) classifiers, but there is also a deeper problem.

Argument 1: K should be small, e.g. $K=2$

(1) Unless we have a lot of data, variance between two distinct training sets may be considerable.
(2) Important concept: By removing substantial parts of the sample in turn and at random, we can simulate this variance.
(3) By removing a single point (loocv), we cannot make this variance visible.

How to choose K

Argument 2: K should be large, e.g. $K=N$

(1) Classifiers generally perform better when trained on larger data sets.

How to choose K

Argument 2: K should be large, e.g. $K=N$

(1) Classifiers generally perform better when trained on larger data sets.
(2) A small K means we substantially reduce the amount of training data used to train each f_{k}, so we may end up with weaker classifiers.

How to choose K

Argument 2: K should be large, e.g. $K=N$

(1) Classifiers generally perform better when trained on larger data sets.
(2) A small K means we substantially reduce the amount of training data used to train each f_{k}, so we may end up with weaker classifiers.
(3) This way, we will systematically overestimate the risk.

How to choose K

Argument 2: K should be large, e.g. $K=N$

(1) Classifiers generally perform better when trained on larger data sets.
(2) A small K means we substantially reduce the amount of training data used to train each f_{k}, so we may end up with weaker classifiers.
(3) This way, we will systematically overestimate the risk.

Common recommendation: $K=5$ to $K=10$

Intuition:

How to choose K

Argument 2: K should be large, e.g. $K=N$

(1) Classifiers generally perform better when trained on larger data sets.
(2) A small K means we substantially reduce the amount of training data used to train each f_{k}, so we may end up with weaker classifiers.
(3) This way, we will systematically overestimate the risk.

Common recommendation: $K=5$ to $K=10$

Intuition:
(1) $K=10$ means number of samples removed from training is one order of magnitude below training sample size.

How to choose K

Argument 2: K should be large, e.g. $K=N$

(1) Classifiers generally perform better when trained on larger data sets.
(2) A small K means we substantially reduce the amount of training data used to train each f_{k}, so we may end up with weaker classifiers.
(3) This way, we will systematically overestimate the risk.

Common recommendation: $K=5$ to $K=10$

Intuition:
(1) $K=10$ means number of samples removed from training is one order of magnitude below training sample size.
(2) This should not weaken the classifier considerably, but should be large enough to make measure variance effects.

