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Introduction

What did we see until now?
The design of learning machines from two main points:

Statistical Point of View
Linear Algebra and Optimization Point of View

Going back to the probability models
We might think in the machine to be learned as a function g (x|D)....

Something as curve fitting...

Under a data set

D = {(xi, yi) |i = 1, 2, ..., N} (1)

Remark: Where the xi ∼ p (x|Θ)!!!
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Thus, we have that

Two main functions
A function g (x|D) obtained using some algorithm!!!
E [y|x] the optimal regression...

Important
The key factor here is the dependence of the approximation on D.

Why?
The approximation may be very good for a specific training data set but
very bad for another.

This is the reason of studying fusion of information at decision level...

5 / 60



Images/cinvestav-1.jpg

Thus, we have that

Two main functions
A function g (x|D) obtained using some algorithm!!!
E [y|x] the optimal regression...

Important
The key factor here is the dependence of the approximation on D.

Why?
The approximation may be very good for a specific training data set but
very bad for another.

This is the reason of studying fusion of information at decision level...

5 / 60



Images/cinvestav-1.jpg

Thus, we have that

Two main functions
A function g (x|D) obtained using some algorithm!!!
E [y|x] the optimal regression...

Important
The key factor here is the dependence of the approximation on D.

Why?
The approximation may be very good for a specific training data set but
very bad for another.

This is the reason of studying fusion of information at decision level...

5 / 60



Images/cinvestav-1.jpg

Thus, we have that

Two main functions
A function g (x|D) obtained using some algorithm!!!
E [y|x] the optimal regression...

Important
The key factor here is the dependence of the approximation on D.

Why?
The approximation may be very good for a specific training data set but
very bad for another.

This is the reason of studying fusion of information at decision level...

5 / 60



Images/cinvestav-1.jpg

Thus, we have that

Two main functions
A function g (x|D) obtained using some algorithm!!!
E [y|x] the optimal regression...

Important
The key factor here is the dependence of the approximation on D.

Why?
The approximation may be very good for a specific training data set but
very bad for another.

This is the reason of studying fusion of information at decision level...

5 / 60



Images/cinvestav-1.jpg

Outline

1 Bias-Variance Dilemma
Introduction
Measuring the difference between optimal and learned
The Bias-Variance
“Extreme” Example

2 Confusion Matrix
Introduction
The α and β errors
The Initial Confusion Matrix
Metrics from the Confusion Matrix

3 Receiver Operator Curves (ROC)
Introduction
Example
Algorithm for the ROC Curve
Area Under the Curve (AUC)
Other Measures: F1-Measure

4 K-Cross Validation
Introduction
How to choose K

6 / 60



Images/cinvestav-1.jpg

How do we measure the difference

We have that

V ar(X) = E((X − µ)2)

We can do that for our data

V arD (g (x|D)) = ED
(
(g (x|D)− E [y|x])2

)

Now, if we add and subtract

ED [g (x|D)] (2)

Remark: The expected output of the machine g (x|D)
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Thus, we have that

Or Original variance

V arD (g (x|D)) = ED

(
(g (x|D)− E [y|x])2)

= ED

(
(g (x|D)− ED [g (x|D)] + ED [g (x|D)]− E [y|x])2)
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(
(g (x|D)− ED [g (x|D)])2 + ...
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... (ED [g (x|D)]− E [y|x])2)
Finally

ED (((g (x|D)− ED [g (x|D)])) (ED [g (x|D)]− E [y|x])) =? (3)
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We have the Bias-Variance

Our Final Equation

ED
(

(g (x|D)− E [y|x])2) = ED
(

(g (x|D)− ED [g (x|D)])2)︸ ︷︷ ︸
V ARIANCE

+ (ED [g (x|D)]− E [y|x])2︸ ︷︷ ︸
BIAS

Where the variance
It represents the measure of the error between our machine g (x|D) and
the expected output of the machine under xi ∼ p (x|Θ).

Where the bias
It represents the quadratic error between the expected output of the
machine under xi ∼ p (x|Θ) and the expected output of the optimal
regression.
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Remarks

We have then
Even if the estimator is unbiased, it can still result in a large mean square
error due to a large variance term.

The situation is more dire in a finite set of data D
We have then a trade-off:

1 Increasing the bias decreases the variance and vice versa.
2 This is known as the bias–variance dilemma.
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Similar to...

Curve Fitting
If, for example, the adopted model is complex (many parameters involved)
with respect to the number N , the model will fit the idiosyncrasies of the
specific data set.

Thus
Thus, it will result in low bias but will yield high variance, as we change
from one data set to another data set.

Furthermore
If N grows we can have a more complex model to be fitted which reduces
bias and ensures low variance.

However, N is always finite!!!
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Thus

You always need to compromise
However, you always have some a priori knowledge about the data

Allowing you to impose restrictions
Lowering the bias and the variance

Nevertheless
We have the following example to grasp better the bothersome
bias–variance dilemma.
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For this

Assume
The data is generated by the following function

y =f (x) + ε,

ε ∼N
(
0, σ2

ε

)
We know that
The optimum regressor is E [y|x] = f (x)

Furthermore
Assume that the randomness in the different training sets, D, is due to the
yi’s (Affected by noise), while the respective points, xi, are fixed.
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Sampling the Space

Imagine that D ⊂ [x1, x2] in which x lies
For example, you can choose xi = x1 + x2−x1

N−1 (i− 1) with i = 1, 2, ..., N
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Case 1

Choose the estimate of f (x), g (x|D), to be independent of D
For example, g (x) = w1x+ w0

For example, the points are spread around (x, f (x))
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Case 1

Since g (x) is fixed

ED [g (x|D)] = g (x|D) ≡ g (x) (4)

With

V arD [g (x|D)] = 0 (5)

On the other hand
Because g (x) was chosen arbitrarily the expected bias must be large.

(ED [g (x|D)]− E [y|x])2︸ ︷︷ ︸
BIAS

(6)
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Case 2

In the other hand
Now, g1 (x) corresponds to a polynomial of high degree so it can pass
through each training point in D.

Example of g1 (x)
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Case 2

Due to the zero mean of the noise source

ED [g1 (x|D)] = f (x) = E [y|x] for any x = xi (7)

Remark: At the training points the bias is zero.

However the variance increases

ED
[
(g1 (x|D)− ED [g1 (x|D)])2

]
= ED

[
(f (x) + ε− f (x))2

]
= σ2

ε , for x = xi, i = 1, 2, ..., N

In other words
The bias becomes zero (or approximately zero) but the variance is now
equal to the variance of the noise source.
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Observations

First
Everything that has been said so far applies to both the regression and the
classification tasks.

However
Mean squared error is not the best way to measure the power of a
classifier.

Think about
A classifier that sends everything far away of the hyperplane!!! Away from
the values +− 1!!!
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Sooner of Latter you need to know how efficient is your
algorithm

Thus, we need a measures of accuracy
Thus, we begin with the classic classifier for two classes

Classifier

Here
A dataset used for performance evaluation is called a test dataset.

23 / 60



Images/cinvestav-1.jpg

Sooner of Latter you need to know how efficient is your
algorithm

Thus, we need a measures of accuracy
Thus, we begin with the classic classifier for two classes

Classifier

Here
A dataset used for performance evaluation is called a test dataset.

23 / 60



Images/cinvestav-1.jpg

Therefore

It is a good idea to build a measure of performance
For this, we can use the idea of error in statistics.

Do you remember?
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α error

Definition (Type I Error - False Positive)
α is the probability that the test will lead to the rejection of the hypothesis
H0 when that hypothesis is true.

Example
1 H0 : “You have a device that produce circuits with no error”
2 You have a device that fails α = 0.05 meaning that it fails 5 of the

time.
3 This says that you ha low chance of a wrong circuit.
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Definition (Type II Error - False Negative)
β is the probability that the test will lead to the rejection of the hypothesis
H1 when that hypothesis is true.

Example
1 H1: “Adding fluoride to toothpaste protects against cavities."
2 Then β = 0.05 meaning that you have a chance of 5 of the time.
3 This says that you ha low chance of having a cavity using fluoride in

the water.
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This can be seen as a table

Confusion Matrix
Table of error Null Hypothesis H0

types True False

Decision about H0

Reject Type I Error - α Correct Inference
False Positive True Positive

Fail to reject Correct Inference Type II Error - β
True Negative False Negative
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In the case of two classes, we have

We have the following
Actual Class

Positive Negative
Predicted Positive True Positive (TP) False Positives (FP)
Classes Negative False Negatives (FN) True Negatives (TN)
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Accuracy

Definition
The proportion of getting correct classification of the Positive and
Negative classes.

Thus

Accuracy = TP + TN

TP + FP + FN + TN

Problem - accuracy assumes equal cost for both kinds of errors
Is 99% accuracy good, bad or terrible? It depends on the problem.
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True Positive Rate

Also called
Sensitivity or Recall Rate

Defined as
True Positive Rate is the proportion of getting a correct classification of
the Positive Class vs the True Positive and False Negatives.

True Positive Rate = TP

TP + FN
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True Negative Rate

Also known as
Specificity

Defined as
It is the proportion of True Negative vs the elements classified as True
negatives.

True Negative Rate = TN

FP + TN
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Precision

Also known as
Positive Predictive Value

Defined as
The proportion of the elements classified as true positive vs the total of all
the real true positives.

Precision Predicted Value = TP

FP + TP
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Significance Level

Also known as
False Positive Rate.

Defined as
False Positive Rate is the probability of getting an incorrect classification
of the Positive Class vs the True Negative and the False Positive.

False positive rate = FP

TN + FP
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We can do better than these simple measures of accuracy

Given these initial measures of validity
it is possible to obtain a more precise model evaluation, the ROC curves.

The ROC Curves plot
It is a model-wide evaluation measure that is based on two basic
evaluation measures:

1 Specificity is a performance measure of the whole negative part of a
dataset.

2 Sensitivity is a performance measure of the whole positive part.
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What the ROC Curves uses

We have a plot where
The ROC plot uses specificity on the x-axis and sensitivity on the y-axis.

Basically
False Positive Rate (FPR) is identical with specificity, and True Positive
Rate (TPR) is identical with sensitivity.

Then
1 A ROC curve is created by connecting all ROC points of a classier in

the ROC space.
2 Two adjacent ROC points can be connected by a straight line.
3 The curve starts at (0.0, 0.0) and ends at (1.0, 1.0).
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We have
Algorithm ROC point generation

Input: L, the set of test examples; f(i), the probabilistic classifier estimate
that example i is positive; P and N, the number of positive and negative
examples.

Ouput: R, a list of ROC points increasing by false positive rate.
1 Lsorted ← L sorted decreasing by f scores
2 FP ← TP ← 0;R← 〈〉 ; fprev ← −∞; i← 1
3 while i ≤ |Lsorted|
4 if f (i) 6= fprev then
5 R.append

(
FP
N
, TP
P

)
6 fprev ← f (i)
7 if Lsorted is a positive example then TP = TP + 1
8 else FP = FP + 1
9 i← i+ 1
10 R.append

(
FP
N
, TP
P

)
, this is (1, 1)
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Thus

Thus
Thus, after generating the ROC Curve it is possible to use several metrics
to validate using the ROC curves.

A Partial List is
1 Area Under the Curve (AUC)
2 Equal Error Rate (EER)
3 Likelihood Ratio
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A Simple Defintion

We have

AUC =
∫
ROC (p) dp =

N∑
i=1

ROC

(
f

(1
i

))[
i

N
− i− 1

N

]

This equation has the following meaning
The probability that a randomly selected observation X from the
positive class would have a higher score than a randomly selected
observation Y from the negative class.

P (X > Y )

Thus
The AUC gives the mean true positive rate averaged uniformly across the
false positive rate.
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Also known as F1 score

It is a measure of a test’s accuracy
It considers both the precision P and the recall R of the test to compute
the score.

An interesting fact
It computes some average of the information retrieval precision and recall.
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Comparison of Measures

Something Notable

Average = 1
N

N∑
i=1

xi

Harmonic = N∑N
i=1

1
xi

When x1 = Precision and x2 = Recall

Average = 1
2 (P +R)

Harmonic = 2
1
P + 1

R

= 2PR
P +R
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Thus

Important
The harmonic mean is more intuitive than the arithmetic mean when
computing a mean of ratios.

Example
Suppose that you have a finger print recognition system and its
precision and recall be 1.0 and 0.2
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How is this Computed?

Then for Precision and Recall, we have a general function

Fβ =
(
β2 + 1

)
Precision×Recall

β2Precision+Recall
(0 ≤ β ≤ +∞)

Thus, for the basic case F1

F1 = 2Precision×Recall
Precision+Recall
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What we want

We want to measure
A quality measure to measure different classifiers (for different parameter
values).

We call that as

R(f) = ED [L (y, f (x))] . (8)

Example: L (y, f (x)) = ‖y − f (x)‖22

More precisely
For different values γj of the parameter, we train a classifier f (x|γj) on
the training set.
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Then, calculate the empirical Risk
Do you have any ideas?
Give me your best shot!!!

Empirical Risk
We use the validation set to estimate

R̂ (f (x|γ)) = 1
Nv

Nv∑
i=1

L (yi, f (xi|γ)) (9)

Thus, you follow the following procedure
1 Select the value γ∗ which achieves the smallest estimated error.
2 Re-train the classifier with parameter γ∗ on all data except the test

set (i.e. train + validation data).
3 Report error estimate R̂ (f (x|γi)) computed on the test set.
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Idea
Something Notable

Each of the error estimates computed on validation set is
computed from a single example of a trained classifier.

I Can we improve the estimate?

K-fold Cross Validation
To estimate the risk of a classifier f :

1 Split data into K equally sized parts (called "folds"), Nv.
2 Train an instance fk of the classifier, using all folds except fold k as

training data.
3 Compute the Cross Validation (CV) estimate:

R̂CV (f (x|γ)) = 1
Nv

Nv∑
k=1

L
(
yi, fk

(
xk(i)|γ

))
(10)

where k (i) is the fold containing xi.
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Example

K = 5,k = 3
Train Train Testing Train Train
1 2 3 4 5

Actually, we have
Cross validation procedure does not involve the test data.

SPLIT All Train Set︷ ︸︸ ︷
Train Data + Validation Data Test
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How to choose K

Extremal cases
K = N , called leave one out cross validation (loocv)
K = 2

An often-cited problem with loocv is that we have to train many (= N)
classifiers, but there is also a deeper problem.

Argument 1: K should be small, e.g. K = 2
1 Unless we have a lot of data, variance between two distinct training

sets may be considerable.
2 Important concept: By removing substantial parts of the sample in

turn and at random, we can simulate this variance.
3 By removing a single point (loocv), we cannot make this variance

visible.
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How to choose K

Argument 2: K should be large, e.g. K = N

1 Classifiers generally perform better when trained on larger data sets.
2 A small K means we substantially reduce the amount of training data

used to train each fk, so we may end up with weaker classifiers.
3 This way, we will systematically overestimate the risk.

Common recommendation: K = 5 to K = 10
Intuition:

1 K = 10 means number of samples removed from training is one order
of magnitude below training sample size.

2 This should not weaken the classifier considerably, but should be large
enough to make measure variance effects.
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