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What do we want?

What
Given a set of measurements, the goal is to discover compact and
informative representations of the obtained data.

Our Approach
We want to “squeeze” in a relatively small number of features,
leading to a reduction of the necessary feature space dimension.

Properties
Thus removing information redundancies - Usually produced and the
measurement.
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What Methods we will see?

Fisher Linear Discriminant
1 Squeezing to the maximum.
2 From Many to One Dimension

Principal Component Analysis
1 Not so much squeezing
2 You are willing to lose some information
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Rotation

Projecting
Projecting well-separated samples onto an arbitrary line usually produces a
confused mixture of samples from all of the classes and thus produces poor
recognition performance.

Something Notable
However, moving and rotating the line around might result in an
orientation for which the projected samples are well separated.

Fisher linear discriminant (FLD)
It is a discriminant analysis seeking directions that are efficient for
discriminating binary classification problem.
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This is actually comming from...

Classifier as
A machine for dimensionality reduction.

Initial Setup
We have:

N d-dimensional samples x1, x2, ..., xN

Ni is the number of samples in class Ci for i=1,2.

Then, we ask for the projection of each xi into the line by means of

yi = wTxi (1)
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Use the mean of each Class

Then
Select w such that class separation is maximized

We then define the mean sample for ecah class
1 C1 ⇒m1 = 1

N1

∑N1
i=1 xi

2 C2 ⇒m2 = 1
N2

∑N2
i=1 xi

Ok!!! This is giving us a measure of distance
Thus, we want to maximize the distance the projected means:

m1 −m2 = wT (m1 −m2) (2)

where mk = wTmk for k = 1, 2.
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However

We could simply seek

maxwT (m1 −m2)

s.t.
d∑

i=1
wi = 1

After all
We do not care about the magnitude of w.
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Fixing the Problem

To obtain good separation of the projected data
The difference between the means should be large relative to some
measure of the standard deviations for each class.

We define a SCATTER measure (Based in the Sample Variance)

s2
k =

∑
xi∈Ck

(
wTxi −mk

)2
=

∑
yi=wTxi∈Ck

(yi −mk)2 (3)

We define then within-class variance for the whole data

s2
1 + s2

2 (4)
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Finally, a Cost Function

The between-class variance

(m1 −m2)2 (5)

The Fisher criterion
between-class variance
within-class variance (6)

Finally

J (w) = (m1 −m2)2

s2
1 + s2

2
(7)
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Transformation

Fourth

=
wT (m1 − m2) (m1 − m2)T w∑

yi=wT xi∈C1
wT (xi − m1) (xi − m1)T w +

∑
yi=wT xi∈C2

wT (xi − m2) (xi − m2)T w

Fifth
=

wT (m1 − m2) (m1 − m2)T w

wT

[∑
yi=wT xi∈C1

(xi − m1) (xi − m1)T +
∑

yi=wT xi∈C2
(xi − m2) (xi − m2)T

]
w

Now Rename

J (w) = wTSBw

wTSww
(8)
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Derive with respect to w

Thus
dJ (w)
dw

=
d
(
wTSBw

) (
wTSww

)−1

dw
= 0 (9)

Then

dJ (w)
dw

=
(
SBw + STBw

) (
wTSww

)−1−
(
wTSBw

) (
wTSww

)−2 (
Sww + STww

)
= 0

(10)

Now because the symmetry in SB and Sw

dJ (w)
dw

= SB
(wTSww) − wTSBwSww

(wTSww)2 = 0 (11)
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Now, Several Tricks!!!

First
SBw = (m1 −m2) (m1 −m2)T w = α (m1 −m2) (14)

Where α = (m1 −m2)T w is a simple constant
It means that SBw is always in the direction m1 −m2!!!

In addition
wTSww and wTSBw are constants
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Now, Several Tricks!!!

Finally

Sww ∝ (m1 −m2)⇒ w ∝ S−1
w (m1 −m2) (15)

Once the data is transformed into yi

Use a threshold y0 ⇒ x ∈ C1 iff y (x) ≥ y0 or x ∈ C2 iff y (x) < y0

Or ML with a Gussian can be used to classify the new transformed
data using a Naive Bayes (Central Limit Theorem and y = wTx sum
of random variables).
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Please

Your Reading Material, it is about the Multiclass
4.1.6 Fisher’s discriminant for multiple classes AT “Pattern Recognition”
by Bishop
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Did you noticed?

That Rotations really do not exist
Actually, they are mappings or projections in linear algebra

Thus, Can we get more powerful mappings?
To obtain better features

Clearly... Yes
For example, Principal Components or Singular Value
Decomposition’s
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Also Known as Karhunen-Loeve Transform

Setup
Consider a data set of observations {xn} with n = 1, 2, ..., N and
xn ∈ Rd.

Goal
Project data onto space with dimensionality m < d (We assume m is
given)
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Dimensional Variance

Remember the Variance Sample in R

V AR(X) =
∑N

i=1 (xi − x)2

N − 1 (16)

You can do the same in the case of two variables X and Y

COV (x, y) =
∑N

i=1 (xi − x) (yi − y)
N − 1 (17)
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Now, Define

Given the data

x1,x2, ...,xN (18)

where xi is a column vector

Construct the sample mean

x = 1
N

N∑
i=1
xi (19)

Center data

x1 − x,x2 − x, ...,xN − x (20)
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Build the Sample Mean

The Covariance Matrix

S = 1
N − 1

N∑
i=1

(xi − x) (xi − x)T (21)

Properties
1 The ijth value of S is equivalent to σ2

ij .
2 The iith value of S is equivalent to σ2

ii.
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Using S to Project Data

For this we use a u1

with uT
1 u1 = 1, an orthonormal vector

Question
What is the Sample Variance of the Projected Data?
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Then, we have that

We have because of Orthogonality

Su2 − λ2u2 = 0

Implying the classic solution
u2 is the eigenvector of S with second largest eigenvalue λ2.
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Thus
Variance will be the maximum when

uT
1 Su1 = λ1 (26)

is set to the largest eigenvalue. Also know as the First Principal
Component

By Induction
It is possible for M -dimensional space to define M eigenvectors
u1,u2, ...,uM of the data covariance S corresponding to λ1, λ2, ..., λM

that maximize the variance of the projected data.

Computational Cost of PCA
1 Full eigenvector decomposition O

(
d3)

2 Power Method O
(
Md2) “Golub and Van Loan, 1996)”

3 Use the Expectation Maximization Algorithm
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We have the following steps

Determine covariance matrix

S = 1
N − 1

N∑
i=1

(xi − x) (xi − x)T (27)

Generate the decomposition

S = UΣUT

With
Eigenvalues in Σ and eigenvectors in the columns of U .
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What happened with no-square matrices

We can still diagonalize it
Thus, we can obtain certain properties.

We want to avoid the problems with

S−1AS

The eigenvectors in S have three big problems
1 They are usually not orthogonal.
2 There are not always enough eigenvectors.
3 Ax = λx requires A to be square.
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Therefore, we can look at the following problem

We have a series of vectors

{x1,x2, ...,xd}

Then imagine a set of projection vectors and differences

{β1,β2, ...,βd} and {α1,α2, ...,αd}

We want to know a little bit of the relations between them
After all, we are looking at the possibility of using them for our
problem
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Actually this is know as the dual problem (Weak Duality)

An example of this

min wTx

s.tAx ≤b
x ≥0

Then, using what is know as slack variables

Ax+A′x = b

Each row lives in the column space, but the yi lives in the column
space (

Ax+A′x
)

i → yi and x′ ≥ 0
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Then, we have that

Example of such Slack Matrix

(
Ax+A′x

)
=

 0 0
0 1
1 0

x+

 0 0
0 −1
−1 0

x′ =
 0

0
0


Element in the column space of dimensionality have three dimensions

But in the row space their dimension is 2
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We have then

Stack such vectors that in the d-dimensional space the
In a matrix A of n× d

A =


aT

1
aT

2
...
aT

n


The matrix works as a Projection Matrix

We are looking for a unit vector v such that length of the projection
is maximized.
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Why? Do you remember the Projection to a single vector
p?

Definition of the projection under unitary vector

p = vTai

vTv
v =

[
vTai

]
v

Therefore the length of the projected vector is∥∥∥[vTai

]
v
∥∥∥ =

∣∣∣vTai

∣∣∣
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Then

It is possible to ask to maximize the longitude of such vector
(Singular Vector)

v1 = arg max
‖v‖=1

‖Av‖

Then, we can define the following singular value

σ1 (A) = ‖Av1‖
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This is known as

Definition
The best-fit line problem describes the problem of finding the best
line for a set of data points, where the quality of the line is measured
by the sum of squared (perpendicular) distances of the points to the
line.

I Remember, we are looking at the dual problem....

Generalization
This can be transferred to higher dimensions: One can find the
best-fit d-dimensional subspace, so the subspace which minimizes the
sum of the squared distances of the points to the subspace
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Then, in a Greedy Fashion

The second singular vector v2

v2 = arg max
v⊥v1,‖v‖=1

‖Av‖

Them you go through this process
Stop when we have found all the following vectors:

v1,v2, ...,vr

As singular vectors and

arg max
v ⊥ v1,v2, ...,vr

‖v‖ = 1

‖Av‖
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Proving that the strategy is good

Theorem
Let A be an n× d matrix where v1,v2, ...,vr are the singular vectors
defined above. For 1 ≤ k ≤ r, let Vk be the subspace spanned by
v1,v2, ...,vk. Then for each k, Vk is the best-fit k-dimensional
subspace for A.
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Proof

For k = 1
What about k = 2? Let W be a best-fit 2- dimensional subspace for
A.

For any basis w1,w2 of W
|Aw1|2 + |Aw2|2 is the sum of the squared lengths of the projections
of the rows of A to W .

Now, choose a basis w1,w2 so that w2 is perpendicular to v1

This can be a unit vector perpendicular to v1 projection in W .
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Do you remember v1 = arg max‖v‖=1 ‖Av‖?

Therefore

|Aw1|2 ≤ |Av1|2 and |Aw2|2 ≤ |Av2|2

Then

|Aw1|2 + |Aw2|2 ≤ |Av1|2 + |Av2|2

In a similar way for k > 2
Vk is at least as good as W and hence is optimal.
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Remarks

Every Matrix has a singular value decomposition

A = UΣV T

Where
The columns of U are an orthonormal basis for the column space.
The columns of V are an orthonormal basis for the row space.
The Σ is diagonal and the entries on its diagonal σi = Σii are positive
real numbers, called the singular values of A.
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Properties of the Singular Value Decomposition

First
The eigenvalues of the symmetric matrix ATA are equal to the square of
the singular values of A

ATA = V ΣUTUT ΣV T = V Σ2V T

Second
The rank of a matrix is equal to the number of non-zero singular values.
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Singular Value Decomposition as Sums

The singular value decomposition can be viewed as a sum of rank 1
matrices

A = A1 +A2 + ...+AR (28)
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Truncating
Truncating the singular value decomposition allows us to represent
the matrix with less parameters

For a 512× 512
Full Representation 512× 512 = 262, 144
Rank 10 approximation 512×10 + 10 + 10× 512 = 10, 250
Rank 40 approximation 512×40 + 40 + 40× 512 = 41, 000
Rank 80 approximation 512×80 + 80 + 80× 512 = 82, 000
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