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What is this?
Main Question
“Given a number of features, how can one select the most important of
them so as to reduce their number and at the same time retain as much as
possible of their class discriminatory information? “

Why is important?
1 If we selected features with little discrimination power, the subsequent

design of a classifier would lead to poor performance.
2 if information-rich features are selected, the design of the classifier

can be greatly simplified.

Therefore
We want features that lead to

1 Large between-class distance.
2 Small within-class variance.
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Then

Basically, we want nice separated and dense clusters!!!
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However, Before That...

It is necessary to do the following
1 Outlier removal.
2 Data normalization.
3 Deal with missing data.

Actually
PREPROCESSING!!!
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Outliers
Definition
An outlier is defined as a point that lies very far from the mean of the
corresponding random variable.

Note: We use the standard deviation

Example
For a normally distributed random

1 A distance of two times the standard deviation covers 95% of the
points.

2 A distance of three times the standard deviation covers 99% of the
points.

Note
Points with values very different from the mean value produce large errors
during training and may have disastrous effects. These effects are even
worse when the outliers, and they are the result of noisy measureme
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Outlier Removal

Important
Then removing outliers is the biggest importance.

Therefore
You can do the following

1 If you have a small number ⇒ discard them!!!
2 Adopt cost functions that are not sensitive to outliers:

1 For example, possibilistic clustering.
3 For more techniques look at

1 Huber, P.J. “Robust Statistics,” JohnWiley and Sons, 2nd Ed 2009.
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We can do the following

Algorithm
Input: An N × d data set Data

Output: Candidate Outliers
1 Calculate the sample mean µ and sample covariance

matrix Σ.
2 Let M be N × 1 vector consisting of square of the

Mahalonobis distance to µ.
3 Find points O in M whose values are greater than

χ2
d (0.05)

4 Return O.
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Mahalonobis Distance

We have

M (x) =
√

(x− µ)T Σ−1 (x− µ)
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Thus

Setting M (x) to a constant c defines a multidimensional ellipsoid
with centroid at µ
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As Johnson and Wichern (2007, p. 155, Eq. 4-8) state

The solid ellipsoid of x vectors satisfying

(x− µ)T Σ−1 (x− µ) ≤ χ2
d (α)

has a probability 1− α.
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How?

We know that
χ2
d is defined as the distribution of the sum ∑d

i=1 Z
2
i where Z ′is are

independent N (0, 1) random variables.

Additionally, if we assume that Σ is positive definite and Σ ∈ Rd×d

Σ =
d∑
i=1

λiuiu
T
i

1 uiare the orthonormal eigenvectors of Σ
2 λi are the corresponding real eigenvectors
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Then

Something Notable
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i=1

1
λ
uiu

T
i

Now, if our data matrix element X ∼ Nd (µ,Σ)
We have

Σ−1ui = 1
λi
ui
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Therefore

We have that Z1, Z2, ..., Zd are independent standard normal variables
(x− µ)T Σ−1 (x− µ) has a χ2

d-distribution.

Finally, the P
(
(x− µ)T Σ−1 (x− µ) ≤ c2

)
It is the probability assigned to the ellipsoid
(x− µ)T Σ−1 (x− µ) ≤ c2 by the density Nd (µ,Σ)
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Therefore

We have P
(
(x− µ)T Σ−1 (x− µ) ≤ χ2

d (α)
)

= 1− α

Basically χ2
d (α) is the the critical chi-square value that makes possible the

probability 1− α

Basically
We assume that if 1− α = .95 is the data with probability of not
being an outlier!!!
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Algorithm

The Partial Code

de f Out l i e rRemova l ( s e l f , Data ) :
SampleMean = Data . mean (1 )
SampleCov = Data − SampleMean
SampleCov = np . cov ( SampleCov .T)
Maha lonob is = ( Data − SampleMean )∗

np . i n v ( SampleCov )∗
( ( Data − SampleMean ) .T)

# Something e l s e he r e
# Here you can use c h i 2 . i s f (\ a lpha , dim )
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Data Normalization

In the real world
In many practical situations a designer is confronted with features
whose values lie within different dynamic ranges.

For Example
We can have two features with the following ranges

xi ∈ [0, 100, 000]
xj ∈ [0, 0.5]

Thus
Many classification machines will be swamped by the first feature!!!
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Data Normalization

We have the following situation
Features with large values may have a larger influence in the cost
function than features with small values.

Thus!!!
This does not necessarily reflect their respective significance in the
design of the classifier.
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Min-Max Method

Be Naive
For each feature i = 1, ..., d obtain the maxi and the mini such that

x̂ik = xik −mini
maxi−mini

(1)

Problem
This simple normalization will send everything to a unitary sphere
thus loosing data resolution!!!
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However

Even though this can happens there have been report that it can
work...

When data does not depend of single values as:

Position
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Gaussian Method

Use the idea of
Everything is Gaussian...

Thus
For each feature set...

1 xk = 1
N

∑N
i=1 xik, k = 1, 2, ..., d

2 σ2
k = 1

N−1
∑N

i=1 (xik − xk)2
, k = 1, 2, ..., d

Thus

x̂ik = xik − xk
σ

(2)
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Thus
All new features have zero mean and unit variance.

Further
Other linear techniques limit the feature values in the range of [0, 1]
or [−1, 1] by proper scaling.

However
We can non-linear mapping. For example the softmax scaling.

32 / 179



Images/cinvestav-1.jpg

Gaussian Mehtod

Thus
All new features have zero mean and unit variance.

Further
Other linear techniques limit the feature values in the range of [0, 1]
or [−1, 1] by proper scaling.

However
We can non-linear mapping. For example the softmax scaling.

32 / 179



Images/cinvestav-1.jpg

Gaussian Mehtod

Thus
All new features have zero mean and unit variance.

Further
Other linear techniques limit the feature values in the range of [0, 1]
or [−1, 1] by proper scaling.

However
We can non-linear mapping. For example the softmax scaling.

32 / 179



Images/cinvestav-1.jpg

Soft Max Scaling

Softmax Scaling
It consists of two steps

First one

yik = xik − xk
σ

(3)

Second one

x̂ik = 1
1 + exp {−yik}

(4)
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Notice the red area is almost flat!!!

34 / 179



Images/cinvestav-1.jpg

Actually

Thus, we have that
The red region represents values of y inside of the region defined by
the mean and variance (small values of y).
Then, if we have those values x behaves as a linear function.

And values too away from the mean
They are squashed by the exponential part of the function.
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If you want a more complex analysis

A more complex analysis
You can use a Taylor’s expansion

x = f(y) = f(a) + f ′ (y) (y − a) + f ′′(y) (y − a)2

2 + ... (5)
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Missing Data

This can happen
In practice, certain features may be missing from some feature vectors.

Examples where this happens
1 Social sciences - incomplete surveys.
2 Remote sensing - sensors go off-line.
3 etc.

Note
Completing the missing values in a set of data is also known as imputation.
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Some traditional techniques to solve this problem
Use zeros and risked it!!!
The idea is not to add anything to the features

The sample mean/unconditional mean
Does not matter what distribution you have use the sample mean

xi = 1
N

N∑
k=1

xik (6)

Find the distribution of your data
Use the mean from that distribution. For example, if you have a beta
distribution

xi = α

α+ β
(7)

39 / 179



Images/cinvestav-1.jpg

Some traditional techniques to solve this problem
Use zeros and risked it!!!
The idea is not to add anything to the features

The sample mean/unconditional mean
Does not matter what distribution you have use the sample mean

xi = 1
N

N∑
k=1

xik (6)

Find the distribution of your data
Use the mean from that distribution. For example, if you have a beta
distribution

xi = α

α+ β
(7)

39 / 179



Images/cinvestav-1.jpg

Some traditional techniques to solve this problem
Use zeros and risked it!!!
The idea is not to add anything to the features

The sample mean/unconditional mean
Does not matter what distribution you have use the sample mean

xi = 1
N

N∑
k=1

xik (6)

Find the distribution of your data
Use the mean from that distribution. For example, if you have a beta
distribution

xi = α

α+ β
(7)

39 / 179



Images/cinvestav-1.jpg

The MOST traditional

Drop it
Remove that data

I Still you need to have a lot of data to have this luxury
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Something more advanced

Split data samples in two set of variables

xcomplete =
(
xobserved
xmissed

)
(8)

Generate the following probability distribution

P (xmissed|xobserved,Θ) = P (xmissed,xobserved|Θ)
P (xobserved|Θ) (9)

where

p (xobserved|Θ) =
ˆ
X
p (xcomplete|Θ) dxmissed (10)
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We can use EM

Basically, we use the data to obtain a multivariate version of the data
Then, we use the αi in a roulette based algorithm to select a sample

I Then, we generate xmissed ∼ pj (x|θ) + V ar (x)

This is the most simple
What about something more complex?
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For this, we can do

We have the following joint probability

f (xmissed,xobserved|θ)

Thus, the complete log likelihood

` (θ) = log f (xmissed,xobserved|θ)

Therefore, we have

lxmissed (θ) = log
ˆ
f (xmissed,xobserved|θ) dxmissed
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Here, it is quite interesting

We have a ratio like this

log f (xmissed,xobserved|θ)
f (xmissed,xobservedθt)

Basically we can get the Q function

Q (θ|θt) =Eθt

[
log

f (xmissed,xobserved|θ)
f (xmissed,xobserved|θt)

]
=
ˆ

log
f (xmissed,xobserved|θ)
f (xmissed,xobserved|θt)

f (xobserved|xmissed, θt) dxobserved
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In this case

Why this ratio?
Actually, because we want the missing data to be estimated by the
observed one

Actually... There is something quite interesting
Kullback–Leibler Divergence!!!
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Actually the Kullback–Leibler Divergence

Definition
For probability distributions P and Q defined on the same probability
space, X , the Kullback–Leibler divergence is defined as

KL (P ‖Q) =
ˆ
p (x) log

(
p (x)
q (x)

)
dx

Thus, we have that

Q (θ|θt) =
ˆ

log f (xmissed,xobserved|θ)
f (xmissed,xobserved|θt)

f (xobserved|xmissed, θt) dxobserved

=
ˆ

log f (xobserved|xmissed, θ) f (xmissed|θ)
f (xobserved|xmissed, θt) f (xmissed|θt)

f (xobser|xmissed, θt) dxobser
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Basically, we have

The well known difference and KL Divergence

Q (θ|θt) = log f (xmissed|θ)
ˆ
f (xobserved|xmissed, θt) dxobserved − ...

log f (xmissed|θt)
ˆ
f (xobserved|xmissed, θt) dxobserved + ...

ˆ
θt

log f (xobserved|xmissed, θ)
f (xobserved|xmissed, θt)

f (xobserved|xmissed, θt) dxobserved

Using a little bit of notation

Q (θ|θt) = ly (θ)− ly (θt)−KL
(
fxmissed
θt

∥∥fxmissed
θ

)

48 / 179



Images/cinvestav-1.jpg

Basically, we have

The well known difference and KL Divergence

Q (θ|θt) = log f (xmissed|θ)
ˆ
f (xobserved|xmissed, θt) dxobserved − ...

log f (xmissed|θt)
ˆ
f (xobserved|xmissed, θt) dxobserved + ...

ˆ
θt

log f (xobserved|xmissed, θ)
f (xobserved|xmissed, θt)

f (xobserved|xmissed, θt) dxobserved

Using a little bit of notation

Q (θ|θt) = ly (θ)− ly (θt)−KL
(
fxmissed
θt

∥∥fxmissed
θ

)

48 / 179



Images/cinvestav-1.jpg

KL-divergence is minimized for θ = θt, actually zero!!!

Then when differentiating the Q divergence
∂Q (θ|θt)

∂θ

∣∣∣∣
θ=θy

= ∂lxmissed (θ)
∂θ

∣∣∣∣
θ=θy

Thus define the iteration as

θt+1 = arg max
θ
Q (θ|θt)
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It is possible to see that

Something Notable

Q (θt+1|θt) + ly (θt) +KL
(
fxmissed
θt

∥∥∥fxmissed
θt

)
= ly (θt+1)

Then

ly (θt+1) ≥ ly (θt) + 0 + 0

Thus
The log-likelihood never decreases after a combined E − step and
M − step.
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Here, everything looks great but...

We need to know to which distribution could come the result
Thus, we have that we assume that the missing data can come from
two distributions!!!

Start from the simple
We assume a two possible sources of the information for the missing
data.
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Thus, we can device the following Likelihood

We can consider a sample Y = {Y1, ..., Yn} from individual densities

f (y|α, µ) = αφ (y − µ) + (1− α)φ (y)

Where, we have

φ (y) = 1√
2π

exp
{
−y

2

2

}

With both α and µ are both unknown, but 0 < α < 1.
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Incomplete observation

The likelihood function becomes

Lxmissed (α, µ) =
N∏
i=1

αφ (yi − µ) + (1− α)φ (yi)

This is a quite unpleasant function
But suppose we knew which observations came from which
population?
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What?

Let X = {X1, ..., Xn} be i.i.d. with P (Xi = 1) = α

Then, we play the hierarchical idea

Hierachy

Yi ∼N (µ, 1) if Xi = 1
Yi ∼N (0, 1) if Xi = 0

i.e Xi allows to indicate to which distribution Yi belongs
Then we need the marginal distribution of Y .
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Thus

The complete Data Likelihood is

Lx,y (α, µ) =
N∏
i=1

αxiφ (yi − µ)xi (1− α) 1−xiφ (yi)1−xi

Or given that φ (yi) does not contain any parameter

Lx,y (α, µ) ∝ α
∑

xi (1− α) n−
∑

xi
N∏
i=1

φ (yi − µ)xi
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Then taking logarithms

We have that

lx,y (α, µ) =
∑

xi logα+
(
n−

∑
xi

)
log (1− α)−

∑ xi (yi − µ)2

2

Therefore, if we differentiate

α̂ = 1
xi

∑
xi, µ̂ =

∑
xiyi∑
xi

We have seen this formulations
The EM algorithm for the Mixture of Gaussian’s
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Example

We have two matrices
Data Matrix X
Missing Data M

Mij =
{

0 Xij is missing
1 Xij is not missing

Therefore, we have
X = (Xobs, Xmis)

This comes from
“Bayes and multiple imputation” by RJA Little, DB Rubin (2002)
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We can use the following optimization

We can do the following

min
Mij=1

‖X −AB‖F

Clearly an initial matrix decomposition, where

Mijxij ≈
K∑
k=1

aikbkj

So the total error to be minimized is

min
Mij=1

‖X −AB‖F =

√√√√√ N∑
i=1

M∑
j=1

[
Mijxij −

K∑
k=1

aikbkj

]2

K � N,M
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This can be regularized

Using the following ideas

min
Mij=1

‖X −AB‖F + λ
[
‖A‖2 + ‖B‖2

]

Therefore, once the minimization is achieved
We finish with two dense matrices A,B that can be used to obtain
the elements with entries Mij = 0
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There are many other methods for this

For example
Moritz Hardt. Understanding Alternating Minimization for Matrix
Completion. FOCS, pages 651–660, 2014.
Moritz Hardt, Mary Wootters. Fast matrix completion without the
condition number. COLT, pages 638–678, 20
Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh,
Matrix completion from noisy entries, The Journal of Machine
Learning Research 99 (2010), 2057–2078.
Stephen J Wright, Robert D Nowak, and M´ario AT Figueiredo,
Sparse reconstruction by separable approximation, Signal Processing,
IEEE Transactions on 57 (2009), no. 7, 2479–2493.
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THE PEAKING PHENOMENON

Remeber
Normally, to design a classifier with good generalization performance, we
want the number of sample N to be larger than the number of features d.

What?
The intuition, the larger the number of samples vs the number of features,
the smaller the error Pe
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Graphically
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Let us explain

Something Notable
Let’s look at the following example from the paper:

“A Problem of Dimensionality: A Simple Example” by G.A. Trunk
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THE PEAKING PHENOMENON

Assume the following problem
We have two classes ω1, ω2 such that

P (ω1) = P (ω2) = 1
2 (11)

Both Classes have the following Gaussian distribution
1 ω1 ⇒ µ and Σ = I

2 ω2 ⇒ −µ and Σ = I

Where

µ =
[
1, 1√

2
,

1√
3
, ...,

1√
d

]
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The µ for R2
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THE PEAKING PHENOMENON

Properties of the features
Since the features are jointly Gaussian and Σ = I ,the involved features
are statistically independent.

We use the following rule to classify
if for any vector x, we have that

1 ‖x− µ‖2 < ‖x+ µ‖2 or z ≡ xTµ > 0 then x ∈ ω1.
2 z ≡ xTµ < 0 then x ∈ ω2.
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A little bit of algebra

For the first case

‖x− µ‖2 < ‖x+ µ‖2

(x− µ)T (x− µ) < (x+ µ)T (x+ µ)
xtx− 2xTµ+ µTµ <xtx+ 2xTµ+ µTµ

0 <xTµ ≡ z

We have then two cases
1 Known mean value µ.
2 Unknown mean value µ.
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Known mean value µ

Given that z is a linear combination of independent Gaussian Variables
1 It is a Gaussian variable.
2 E [z] =

∑d
i=1 µiE (xi) =

∑d
i=1

1√
i

1√
i

=
∑d
i=1

1
i = ‖µ‖2.

3 σ2
z = ‖µ‖2.
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Why the first statement?
Given that each feature of x
It can be seen as random variable with mean 1√

i
and variance 1 with no

correlation between each other.

What about the variance of z?

V ar (z) =E
[(
z − ‖µ‖2

)2
]

=E
[
z2 − 2z ‖µ‖2 + ‖µ‖4

]
=E

[
z2
]
− ‖µ‖4

=E
[(

d∑
i=1

µixi

)(
d∑
i=1

µixi

)]
−


d∑
i=1

1
i2

+
d∑
j=1

d∑
h=1

j 6=h

1
i
× 1
j
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Thus

But, given that x2
i ∼ χ2

1

(
1
i

)
, with mean

E
[
x2
i

]
= 1 + 1

i
(12)

Remark: The rest is for you to solve so σ2
z = ‖µ‖2 .

72 / 179



Images/cinvestav-1.jpg

Remember the Pe

We have then...
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We get the probability of error

We know that the error is coming from the following equation

Pe = 1
2

x0ˆ

−∞

p (z|ω2) dx+ 1
2

∞̂

x0

p (z|ω1) dx (13)

But, we have equiprobable classes

Pe =1
2

x0ˆ

−∞

p (z|ω2) dx+ 1
2

∞̂

x0

p (z|ω1)

=
∞̂

x0

p (z|ω1) dx

74 / 179



Images/cinvestav-1.jpg

We get the probability of error

We know that the error is coming from the following equation

Pe = 1
2

x0ˆ

−∞

p (z|ω2) dx+ 1
2

∞̂

x0

p (z|ω1) dx (13)

But, we have equiprobable classes

Pe =1
2

x0ˆ

−∞

p (z|ω2) dx+ 1
2

∞̂

x0

p (z|ω1)

=
∞̂

x0

p (z|ω1) dx

74 / 179



Images/cinvestav-1.jpg

We get the probability of error

We know that the error is coming from the following equation

Pe = 1
2

x0ˆ

−∞

p (z|ω2) dx+ 1
2

∞̂

x0

p (z|ω1) dx (13)

But, we have equiprobable classes

Pe =1
2

x0ˆ

−∞

p (z|ω2) dx+ 1
2

∞̂

x0

p (z|ω1)

=
∞̂

x0

p (z|ω1) dx

74 / 179



Images/cinvestav-1.jpg

Thus, we have that

Now, given that z is a sum of Gaussian

exp term = − 1
2 ‖µ‖2

[(
z − ‖µ‖2

)2
]

(14)

Because we have the rule
We can do a change of variable to a normalized z

Pe =
∞̂

bd

1√
2π

exp
{
−z

2

2

}
dz (15)
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Known mean value µ

The probability of error is given by

Pe =
∞̂

bd

1√
2π

exp
{
−z

2

2

}
dz (16)

Where

bd =

√√√√ d∑
i=1

1
i

(17)

How?
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Known mean value µ

Thus
When the series bd tends to infinity as d→∞, the probability of error
tends to zero as the number of features increases.
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Unknown mean value µ
For This, we use the maximum likelihood

µ̂ = 1
N

N∑
k=1

skxk (18)

where
1 sk = 1 if xk ∈ ω1
2 sk = −1 if xk ∈ ω2

Now, we have aproblem z is no more a Gaussian variable
Still, if we select d large enough and knowing that z =

∑
xiµ̂i, then for

the central limit theorem, we can consider z to be Gaussian.

With mean and variance
1 E [z] =

∑d
i=1

1
i .

2 σ2
z =

(
1 + 1

N

)∑d
i=1

1
i + d

N .
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Unknown mean value µ

Thus

bd = E [z]
σz

(19)

Thus, using Pe
It can now be shown that bd → 0 as d→∞ and the probability of
error tends to 1

2 for any finite number N .
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Finally

Case I
If for any d the corresponding PDF is known, then we can perfectly
discriminate the two classes by arbitrarily increasing the number of
features.

Case II
If the PDF’s are not known, then the arbitrary increase of the number
of features leads to the maximum possible value of the error rate,
that is, 1

2 .

Thus
Under a limited number of training data we must try to keep the
number of features to a relatively low number.
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Graphically

For N2 � N1, minimum at d = N
α
with α ∈ [2, 10]
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Back to Feature Selection

The Goal
1 Select the “optimum” number d of features.
2 Select the “best” d features.

Why? Large d has a three-fold disadvantage:
High computational demands.
Low generalization performance.
Poor error estimates
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Given N
d must be large enough to learn what makes classes different and what
makes patterns in the same class similar

In addition
d must be small enough not to learn what makes patterns of the same
class different

In practice
In practice, d < N/3 has been reported to be a sensible choice for a
number of cases
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Oh!!!
Once d has been decided, choose the d most informative features:

Best: Large between class distance, Small within class variance.

The basic philosophy
1 Discard individual features with poor information content.
2 The remaining information rich features are examined jointly as

vectors
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Using Statistics

Simplicity First Principles - Marcus Aurelius
A first step in feature selection is to look at each of the generated
features independently.
Then, test their discriminatory capability for the problem at hand.

For this, we can use the following hypothesis testing
Assume the samples for two classes ω1, ω2 are vectors of random variables.

1 H1: The values of the feature differ significantly
2 H0: The values of the feature do not differ significantly

Meaning
H0 is known as the null hypothesis and H1 as the alternative hypothesis.
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Hypothesis Testing Basics
We need to represent these ideas in a more mathematical way
For this, given an unknown parameter θ:

H1 : θ 6= θ0

H0 : θ = θ0

We want to generate a q
That measures the quality of our answer under our knowledge of the
sample features x1, x2, ..., xN .

We ask for
1 Where a D (Acceptance Interval) is an interval where q lies with high

probability under hypothesis H0.
2 Where D, the complement or critical region, is the region where we

reject H0.
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Example

Acceptance and critical regions for hypothesis testing. The area of
the shaded region is the probability of an erroneous decision.
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Known Variance Case

Assume
Be x a random variable and xi the resulting experimental samples.

Let
1 E [x] = µ

2 E
[
(x− µ)2

]
= σ2

We can estimate µ using

x = 1
N

N∑
i=1

xi (20)
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Known Variance Case
It can be proved that the
x is an unbiased estimate of the mean of x.

In a similar way
The variance of σ2

x of x is

E
[
(x− µ)2

]
= E

( 1
N

N∑
i=1

xi − µ
)2 = E

( 1
N

N∑
i=1

(xi − µ)
)2 (21)

Which is the following

E
[
(x− µ)2

]
= 1
N2

N∑
i=1

E
[
(xi − µ)2

]
+ 1
N2

∑
i

∑
j 6=i

E [(xi − µ)(xj − µ)]

(22)
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Known Variance Case

Because independence

E [(xi − µ)((xj − µ)] = E [xi − µ]E [xj − µ] = 0 (23)

Thus

σ2
x = 1

N
σ2 (24)

Note: the larger the number of measurement samples, the smaller
the variance of x¯ around the true mean.
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What to do with it
Now, you are given a µ̂ the estimated parameter (In our case the
mean sample)
Thus:

H1 : E [x] 6= µ̂

H0 : E [x] = µ̂

We define q

q = x− µ̂
σ
N

(25)

Recalling the central limit theorem
The probability density function of x under H0 is approx Gaussian
N
(
µ̂, σN

)
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Thus
q under H0 is approx N (0, 1)

Then
We can choose an acceptance level ρ with interval D = [−xρ, xρ] such
that q lies on it with probability 1− ρ.

97 / 179



Images/cinvestav-1.jpg

Thus

Thus
q under H0 is approx N (0, 1)

Then
We can choose an acceptance level ρ with interval D = [−xρ, xρ] such
that q lies on it with probability 1− ρ.

97 / 179



Images/cinvestav-1.jpg

Final Process

First Step
Given the N experimental samples of x, compute x and then q.

Second One
Choose the significance level ρ.

Third One
Compute from the corresponding tables for N(0, 1) the acceptance
interval D = [−xρ, xρ] with probability 1− ρ.

98 / 179



Images/cinvestav-1.jpg

Final Process

First Step
Given the N experimental samples of x, compute x and then q.

Second One
Choose the significance level ρ.

Third One
Compute from the corresponding tables for N(0, 1) the acceptance
interval D = [−xρ, xρ] with probability 1− ρ.

98 / 179



Images/cinvestav-1.jpg

Final Process

First Step
Given the N experimental samples of x, compute x and then q.

Second One
Choose the significance level ρ.

Third One
Compute from the corresponding tables for N(0, 1) the acceptance
interval D = [−xρ, xρ] with probability 1− ρ.

98 / 179



Images/cinvestav-1.jpg

Final Process

Final Step
If q ∈ D decide H0 , if not decide H1.

Second one
Basically, all we say is that we expect the resulting value q to lie in
the high-percentage 1− ρ interval.
If it does not, then we decide that this is because the assumed mean
value is not “correct.”
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Example

Let us consider an experiment with a random variable x of σ = 0.23
Assume N to be equal to 16 and x = 1.35
Adopt ρ = 0.05

We will test if the hypothesis µ̂ = 1.4 is true

P

{
−1.97 < x− µ̂

0.23/4
< 1.97

}
= 0.95

Therefore, we accept the hypothesis
We have 1.237 < µ̂ < 1.463
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Application of the t -Test in Feature Selection

Very Simple
Use the difference µ1 − µ2 for the testing.

Note Each µ correspond to a class ω1, ω2

Thus, What is the logic?
Basically, if we have two classes... we must see different µ′s.

Assume that the variance of the feature values is the same in both

σ2
1 = σ2

2 = σ2 (26)
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What is the Hypothesis?

A very simple one

H1 : ∆µ = µ1 − µ2 6= 0
H0 : ∆µ = µ1 − µ2 = 0

The new random variable is

z = x− y (27)

where x, y denote the random variables corresponding to the values of the
feature in the two classes.

Properties
E [z] = µ1 − µ2

σ2
z = 2σ2
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Then

It is possible to prove that z follows the distribution

N

(
µ1 − µ2,

2σ2

N

)
(28)

So
We can use the following

q = (x− y)− (µ1 − µ2)
sz
√

2
N

(29)

where

s2
z = 1

2N − 2

(
N∑
i=1

(xi − x)2 +
N∑
i=1

(yi − y)2
)

(30)

105 / 179



Images/cinvestav-1.jpg

Then

It is possible to prove that z follows the distribution

N

(
µ1 − µ2,

2σ2

N

)
(28)

So
We can use the following

q = (x− y)− (µ1 − µ2)
sz
√

2
N

(29)

where

s2
z = 1

2N − 2

(
N∑
i=1

(xi − x)2 +
N∑
i=1

(yi − y)2
)

(30)

105 / 179



Images/cinvestav-1.jpg

Then

It is possible to prove that z follows the distribution

N

(
µ1 − µ2,

2σ2

N

)
(28)

So
We can use the following

q = (x− y)− (µ1 − µ2)
sz
√

2
N

(29)

where

s2
z = 1

2N − 2

(
N∑
i=1

(xi − x)2 +
N∑
i=1

(yi − y)2
)

(30)

105 / 179



Images/cinvestav-1.jpg

Now

It can be shown that s2
z(2N−2)
σ2 follows

A Chi-Square distribution with 2N − 2 degrees of freedom.

Testing
q turns out to follow a Chi-Square distribution with 2N − 2 degrees of
freedom
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We have two classes

The sample measurements of a feature in two classes are
class ω1 3.5 3.7 3.9 4.1 3.4 3.5 4.1 3.8 3.6 3.7
class ω2 3.2 3.6 3.1 3.4 3.0 3.4 2.8 3.1 3.3 3.6

Now, we want to know if the feature is informative enough

H1 : ∆µ = µ1 − µ2 6= 0
H0 : ∆µ = µ1 − µ2 = 0

Again, we choose ρ = 0.05

ω1 :x = 3.73, σ̂2
1 = 0.0601

ω2 :y = 3.25, σ̂2
2 = 0.0672
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109 / 179



Images/cinvestav-1.jpg

Then

For N = 10
s2
z = 1

2
(
σ̂2

1 + σ̂2
2
)

q = (x−y−0)
sz
√

2
N

We have q = 4.25
We have 20-2 = 18 degrees of freedom and significance level 0.05

Then, D = [−2.10, 2.10]
q = 4.25 is outside of D, we decide H1 : ∆µ = µ1 − µ2 6= 0

109 / 179



Images/cinvestav-1.jpg

Then

For N = 10
s2
z = 1

2
(
σ̂2

1 + σ̂2
2
)

q = (x−y−0)
sz
√

2
N

We have q = 4.25
We have 20-2 = 18 degrees of freedom and significance level 0.05

Then, D = [−2.10, 2.10]
q = 4.25 is outside of D, we decide H1 : ∆µ = µ1 − µ2 6= 0

109 / 179



Images/cinvestav-1.jpg

Finally

The means µ1 and µ2 are significantly different with α = 0.05
The Feature is selected
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Considering Feature Sets
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But
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highly correlated we need not consider both of them.

Then
Combine features to search for the “best” combination after features
have been discarded.
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Possible
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Train the classifier, and choose the combination resulting in the best
classifier performance.

However
A major disadvantage of this approach is the high complexity.
Also, local minimum may give misleading results.

Better
Adopt a class separability measure and choose the best feature
combination against this cost.
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Definition
These are used as a measure of the way data are scattered in the
respective feature space.

Within-class Scatter Matrix

Sw =
C∑
i=1

PiSi (31)

where C is the number of classes.

where
1 Si = E

[
(x− µi) (x− µi)T

]
2 Pi the a priori probability of class ωi defined as Pi ∼= ni/N.

1 ni is the number of samples in class ωi.
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Scatter Matrices
Between-class scatter matrix

Sb =
C∑
i=1

Pi (x− µ0) (x− µ0)T (32)

Where

µ0 =
C∑
i=1

Piµi (33)

The global mean.

Mixture scatter matrix

Sm = E
[
(x− µ0) (x− µ0)T

]
(34)

Note: it can be proved that Sm = Sw + Sb
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First One

J1 = trace {Sm}
trace {Sw}

(35)

It takes takes large values when samples in the d-dimensional space
are well clustered around their mean, within each class, and the
clusters of the different classes are well separated.

Other Criteria are
1 J2 = |Sm|

|Sw|
2 J3 = trace

{
S−1
w Sm

}
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We have
Classes with

I (a) small within-class variance and small between-class distances,
I (b) large within- class variance and small between-class distances,
I (c) small within-class variance and large between-class distances.
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m
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For example: Sequential Backward Selection

We have the following example
Given x1, x2, x3, x4 and we wish to select two of them

Step 1
Adopt a class separability criterion, C, and compute its value for the
feature vector [x1, x2, x3, x4]T .

Step 2
Eliminate one feature, you get

[x1, x2, x3]T , [x1, x2, x4]T , [x1, x3, x4]T , [x2, x3, x4]T ,
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Use criterion C
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Thus, starting from m, at each step we drop out one feature from the
“best” combination until we obtain a vector of l features.

Thus, we need
1 + 1/2((m+ 1)m− l(l + 1)) combinations

However
The method is sub-optimal
It suffers of the so called nesting-effect

I Once a feature is discarded, there is no way to reconsider that feature
again.
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For
Sequential Forward Selection

We can overcome this by using
Floating Search Methods

A more elegant methods are the ones based on
Dynamic Programming
Branch and Bound
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Shrinkage Methods

By retaining a subset of the predictors and discarding the rest
Subset Selection produces a model that is interpretable,
It possibly produces lower prediction error than the full model.

However given process
it often exhibits high variance,
It does not reduce the prediction error of the full model.

Therefore
Shrinkage methods are more continuous avoiding high variability.
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The house example

Imagine the following data set
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Now assume that we use LSE

For the fitting

1
2

N∑
i=1

(hw (xi)− yi)2

We can then run one of our machine to see what minimize better the
previous equation
Question: Did you notice that I did not impose any structure to hw (x)?
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Then, First fitting

What about using h1 (x) = w0 + w1x+ w2x
2?
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Second fitting

What about using h2 (x) = w0 +w1x+w2x
2 +w3x

3 +w4x
4 +w5x

5?
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Therefore, we have a problem

We get weird overfitting effects!!!
What do we do? What about minimizing the influence of w3, w4, w5?

How do we do that?

min
w

1
2

N∑
i=1

(hw (xi)− yi)2

What about integrating those values to the cost function? Ideas
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We have

Regularization intuition is as follow
Small values for parameters w0, w1, w2, ..., wn

It implies
1 ”Simpler” function
2 Less prone to overfitting
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We can do the previous idea for the other parameters

We can do the same for the other parameters

min
w

1
2

N∑
i=1

(hw (xi)− yi)2 +
d∑
i=1

λiw
2
i (36)

However handling such many parameters can be so difficult
Combinatorial problem in reality!!!
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XŵRidge =
d∑
i=1

λ2
i

λ2
i + λ

uiu
T
i y

151 / 179



Images/cinvestav-1.jpg

Therefore

We have that given λ ≥ 0
λ2
i

λ2
i + λ

≤ 1

Thus, like Linear Regression
Ridge Regression computes the coordinates of y with respect to the
orthonormal basis U .

Then, it shrinks the coordinates by a factor of λ2
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Meaning the smaller is a λj the larger shrinkage you have!!!

152 / 179



Images/cinvestav-1.jpg

Therefore

We have that given λ ≥ 0
λ2
i

λ2
i + λ

≤ 1

Thus, like Linear Regression
Ridge Regression computes the coordinates of y with respect to the
orthonormal basis U .

Then, it shrinks the coordinates by a factor of λ2
i

λ2
i+λ

Meaning the smaller is a λj the larger shrinkage you have!!!

152 / 179



Images/cinvestav-1.jpg

Therefore

We have that given λ ≥ 0
λ2
i

λ2
i + λ

≤ 1

Thus, like Linear Regression
Ridge Regression computes the coordinates of y with respect to the
orthonormal basis U .

Then, it shrinks the coordinates by a factor of λ2
i

λ2
i+λ

Meaning the smaller is a λj the larger shrinkage you have!!!

152 / 179



Images/cinvestav-1.jpg

Therefore

This behaves has what we know as Principal Component Analysis
We will look at this later...

153 / 179



Images/cinvestav-1.jpg

Outline
1 Introduction

What is Feature Selection?
Preprocessing
Outlier Removal
Example, Finding Multivariate Outliers
Data Normalization
Methods

Missing Data
Using EM
Matrix Completion

The Peaking Phenomena

2 Feature Selection
Feature Selection
Feature selection based on statistical hypothesis testing
Example

Application of the t-Test in Feature Selection
Example

Considering Feature Sets
Scatter Matrices
What to do with it?
Sequential Backward Selection

3 Shrinkage Methods
Introduction
Intuition from Overfitting
The Idea of Regularization
Ridge Regression
Standardization of Data
Degree of Freedom of λ
Back to the Main Problem
The LASSO
The Lagrangian Version of the LASSO

154 / 179



Images/cinvestav-1.jpg

Thus

Using Our Singular Value Decomposition

XTX = V DUTUDV T = V D2V T

Therefore the Sample Variance, for centered data, is defined as
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CX = 1
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Y = XA
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Covariance matrix captures all the information about X
Only true for exponential family distributions
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In fact

We have that

z1 = Xv1 = λ1u1

This variable z1 is called the first principal component of X
Therefore u1 is called the normalized first principal component!!!
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Degrees of Freedom in Linear Regression

Usually in a linear-regression fit with p variables
The degrees-of-freedom of the fit is d = number of features

This is important
We assume all d coefficients in a ridge fit will be non-zero.

I They are fit in a restricted fashion controlled by λ.

We have the following cases
If df (λ) = d when λ = 0.
If df (λ)→ 0 as λ→∞
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From Hastie et. al page 63

Cancer Data using a Linear Model and df (λ) = 5
LSE Subset Selection Ridge

Test Error 0.521 0.492 0.492
Std Error 0.179 0.143 0.1645
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Least Absolute Shrinkage and Selection Operator (LASSO)
It was introduced by Robert Tibshirani in 1996 based on Leo
Breiman’s nonnegative garrote

ŵgarrote = arg min
w

N∑
i=1

yi − β0 −
d∑
j=1

xijwj

2

+Nλ
d∑
j=1

wj

s.t. wj > 0 ∀j

This is quite derivable
However, Tibshirani realized that you could get a more flexible model by
using the absolute value at the constraint!!!

Robert Tibshirani proposed the use of the L1 norm

‖w‖1 =
d∑
i=1
|wi|
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The Final Optimization Problem

LASSO

ŵLASSO = arg min
w

N∑
i=1

yi − β0 −
d∑
j=1

xijwj

2

s.t.
d∑
i=1
|wi| ≤ t

This is not derivable
More advanced methods are necessary to solve this problem!!!
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The Lagrangian

ŵLASSO = arg min
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N∑
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However

You have other regularizations as ‖w‖2 =
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i=1 |wi|
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Graphically

The first area correspond to the L1 regularization and the second one?

173 / 179



Images/cinvestav-1.jpg

Graphically

Yes the circle defined as ‖w‖2 =
√∑d

i=1 |wi|
2

174 / 179



Images/cinvestav-1.jpg

For Example

In the Case of X is a Orthogonal Matrix

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3

175 / 179



Images/cinvestav-1.jpg

The seminal paper by Robert Tibshirani

An initial study of this regularization can be seen in
“Regression Shrinkage and Selection via the LASSO” by Robert Tibshirani

- 1996
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This out the scope of this class

However, it is worth noticing that the most efficient method for
solving LASSO problems is
“Pathwise Coordinate Optimization” By Jerome Friedman, Trevor Hastie,

Holger Ho and Robert Tibshirani

Nevertheless
It will be a great seminar paper!!!

Generalization
We can generalize ridge regression and the lasso, and view them as
Bayes estimates

ŵLASSO = arg min
w

{
N∑
i=1

(
yi − xTw

)2
+ λ

d∑
i=1
|wi|q

}
with q ≥ 0
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For Example

We have when d = 2

Here, when q > 1
You are having a derivable Lagrangian, but you lose the LASSO
properties
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Therefore

Zou and Hastie (2005) introduced the elastic- net penalty

λ
d∑
i=1

{
αw2

i + (1− α) |wi|
}

This is Basically
A Compromise Between the Ridge and LASSO.
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