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Maximum-Likelihood

We have a density function p (x|Θ)
Assume that we have a data set of size N , X = {x1,x2, ...,xN}

This data is known as evidence.

We assume in addition that
The vectors are independent and identically distributed (i.i.d.) with
distribution p under parameter θ.
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What Can We Do With The Evidence?

We may use the Bayes’ Rule to estimate the parameters θ

p (Θ|X ) = P (X|Θ)P (Θ)
P (X ) (1)

Or, given a new observation x̃

p (x̃|X ) (2)

I.e. to compute the probability of the new observation being supported by
the evidence X .

Thus
The former represents parameter estimation and the latter data prediction.
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Focusing First on the Estimation of the Parameters θ

We can interpret the Bayes’ Rule

p (Θ|X ) = P (X|Θ)P (Θ)
P (X ) (3)

Interpreted as

posterior = likelihood× prior
evidence

(4)

Thus, we want

likelihood = P (X|Θ)
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What we want...

We want to maximize the likelihood as a function of θ
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Maximum-Likelihood

We have

p (x1,x2, ...,xN |Θ) =
N∏
i=1

p (xi|Θ) (5)

Also known as the likelihood function.

Because multiplication of quantities p (xi|Θ) ≤ 1 can be problematic

L (Θ|X ) = log
N∏
i=1

p (xi|Θ) =
N∑
i=1

log p (xi|Θ) (6)
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Maximum-Likelihood

We want to find a Θ∗

Θ∗ = argmaxΘL (Θ|X ) (7)

The classic method
∂L (Θ|X )

∂θi
= 0 ∀θi ∈ Θ (8)
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What happened if we have incomplete data

Data could have been split
1 X = observed data or incomplete data
2 Y = unobserved data

For this type of problems
We have the famous Expectation Maximization (EM)
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The Expectation Maximization

The EM algorithm
It was first developed by Dempster et al. (1977).

Its popularity comes from the fact
It can estimate an underlying distribution when data is incomplete or has
missing values.

Two main applications
1 When missing values exists.
2 When a likelihood function can be simplified by assuming extra

parameters that are missing or hidden.
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Clustering

Given a series of data sets
Given the fact that Radial Gaussian Functions are Universal Approximators
.

Samples {x1,x2, ...,xN} are the visible parameters
The Gaussian distributions generating each of the samples are the
hidden parameters

Then, we model the cluster as a mixture of Gaussian’s
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Natural Language Processing

Unsupervised induction of probabilistic context-free grammars
Here given a series of words o1, o2, o3, ... and normalized Context-Free
Grammar

We want to know the probabilities of each rule P (i→ jk)

Thus
Here the you have two variables:

I The Visible Ones: The sequence of words
I The Hidden Ones: The rule that produces the possible sequence
oi → oj
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Natural Language Processing

Baum-Welch Algorithm for Hidden Markov Models
Visible Data

Hidden Data

Here
Hidden Variables: The circular nodes producing the data
Visible Variables: The square nodes representing the samples.
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Incomplete Data

We assume the following
Two parts of data

1 X = observed data or incomplete data
2 Y = unobserved data

Thus

Z = (X ,Y)=Complete Data (9)

Thus, we have the following probability

p (z|Θ) = p (x,y|Θ) = p (y|x,Θ) p (x|Θ) (10)
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New Likelihood Function

The New Likelihood Function

L (Θ|Z) = L (Θ|X ,Y) = p (X ,Y|Θ) (11)

Note: The complete data likelihood.

Thus, we have

L (Θ|X ,Y) = p (X ,Y|Θ) = p (Y|X ,Θ) p (X|Θ) (12)

Did you notice?
p (X|Θ) is the likelihood of the observed data.
p (Y|X ,Θ) is the likelihood of the no-observed data under the
observed data!!!
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Rewriting

This can be rewritten as

L (Θ|X ,Y) = hX ,Θ (Y) (13)

This basically signify that X ,Θ are constant and the only random part is
Y.

In addition

L (Θ|X ) (14)

It is known as the incomplete-data likelihood function.
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Thus

We can connect both incomplete-complete data equations by doing
the following

L (Θ|X ) =p (X|Θ)
=
∑
Y
p (X ,Y|Θ)

=
∑
Y
p (Y|X ,Θ) p (X|Θ)

=
∑(

N∏
i=1

p (xi|Θ)
)
Y

p (Y|X ,Θ)
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Remarks

Problems
Normally, it is almost impossible to obtain a closed analytical solution for
the previous equation.

However
We can use the expected value of log p (X ,Y|Θ), which allows us to find
an iterative procedure to approximate the solution.
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The function we would like to have

The Q function
We want an estimation of the complete-data log-likelihood

log p (X ,Y|Θ) (15)

Based in the info provided by X ,Θn−1 where Θn−1 is a previously
estimated set of parameters at step n.

Think about the following, if we want to remove Yˆ
[log p (X ,Y|Θ)] p (Y|X ,Θn−1) dY (16)

Remark: We integrate out Y - Actually, this is the expected value of
log p (X ,Y|Θ).
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Use the Expected Value

Then, we want an iterative method to guess Θ from Θn−1

Q (Θ,Θn−1) = E [log p (X ,Y|Θ) |X ,Θn−1] (17)

Take in account that
1 X ,Θn−1 are taken as constants.
2 Θ is a normal variable that we wish to adjust.
3 Y is a random variable governed by distribution
p (Y|X ,Θn−1)=marginal distribution of missing data.
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Another Interpretation

Given the previous information
E [log p (X ,Y|Θ) |X ,Θn−1] =

´
Y∈Y log p (X ,Y|Θ) p (Y|X ,Θn−1) dY

Something Notable
1 In the best of cases, this marginal distribution is a simple analytical

expression of the assumed parameter Θn−1.
2 In the worst of cases, this density might be very hard to obtain.

Actually, we use

p (Y,X|Θn−1) = p (Y|X ,Θn−1) p (X|Θn−1) (18)

which is not dependent on Θ.
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Back to the Q function

The intuition
We have the following analogy:

Consider h (θ,Y ) a function
I θ a constant
I Y ∼ pY (y), a random variable with distribution pY (y).

Thus, if Y is a discrete random variable

q (θ) = EY [h (θ,Y )] =
∑
y

h (θ, y) pY (y) (19)
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Why E-step!!!

From here the name
This is basically the E-step

The second step
It tries to maximize the Q function

Θn = argmaxΘQ (Θ,Θn−1) (20)
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Derivation of the EM-Algorithm

The likelihood function we are going to use
Let X be a random vector which results from a parametrized family:

L (Θ) = lnP (X|Θ) (21)

Note: ln (x) is a strictly increasing function.

We wish to compute Θ
Based on an estimate Θn (After the nth) such that L (Θ) > L (Θn)

Or the maximization of the difference

L (Θ)− L (Θn) = lnP (X|Θ)− lnP (X|Θn) (22)
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Introducing the Hidden Features

Given that the hidden random vector Y exits with y values

P (X|Θ) =
∑
y

P (X|y,Θ)P (y|Θ) (23)

Thus, using our first constraint L (Θ)− L (Θn)

L (Θ)− L (Θn) = ln
(∑

y

P (X|y,Θ)P (y|Θ)
)
− lnP (X|Θn) (24)
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Here, we introduce some concepts of convexity

For Convexity
Theorem (Jensen’s inequality)

Let f be a convex function defined on an interval I. If x1, x2, ..., xn ∈ I
and λ1, λ2, ..., λn ≥ 0 with

∑n
i=1 λi = 1, then

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif (xi) (25)
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Proof:

For n = 1
We have the trivial case

For n = 2
The convexity definition.

Now the inductive hypothesis
We assume that the theorem is true for some n.
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Now, we have

The following linear combination for λi

f

(
n+1∑
i=1

λixi

)
= f

(
λn+1xn+1 +

n∑
i=1

λixi

)

= f

(
λn+1xn+1 + (1− λn+1)

(1− λn+1)

n∑
i=1

λixi

)

≤ λn+1f (xn+1) + (1− λn+1) f
(

1
(1− λn+1)

n∑
i=1

λixi

)
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Did you notice?

Something Notable
n+1∑
i=1

λi = 1

Thus
n∑
i=1

λi = 1− λn+1

Finally
1

(1− λn+1)

n∑
i=1

λi = 1
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Now

We have that

f

(
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)
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(
1
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)

≤ λn+1f (xn+1) + (1− λn+1) 1
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λif (xi)
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λif (xi) Q.E.D.
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Thus, for concave functions

It is possible to shown that
Given ln (x) a concave function:

ln
[
n∑
i=1

λixi

]
≥

n∑
i=1

λi ln (xi)

If we take in consideration
Assume that the λi = P (y|X ,Θn). We know that

1 P (y|X ,Θn) ≥ 0
2
∑
y P (y|X ,Θn) = 1
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We have

First

L (Θ)− L (Θn) = ln
(∑

y

P (X|y,Θ)P (y|Θ)
)
− lnP (X|Θn)

= ln
(∑

y

P (X|y,Θ)P (y|Θ) P (y|X ,Θn)
P (y|X ,Θn)

)
− lnP (X|Θn)

= ln
(∑

y

P (y|X ,Θn) P (X|y,Θ)P (y|Θ)
P (y|X ,Θn)

)
− lnP (X|Θn)

≥
∑

y

P (y|X ,Θn) ln
(
P (X|y,Θ)P (y|Θ)
P (y|X ,Θn)

)
− ...

∑
y

P (y|X ,Θn) lnP (X|Θn) Why this?
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Next

Because ∑
y

P (y|X ,Θn) = 1

Then

L (Θ)− L (Θn) ≥
∑

y

P (y|X ,Θn) ln
(
P (X|y,Θ)P (y|Θ)
P (y|X ,Θn)P (X|Θn)

)
=∆ (Θ|Θn)
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Then, we have

Then, we have proved that

L (Θ) ≥ L (Θn) + ∆ (Θ|Θn) (26)

Then, we define a new function

l (Θ|Θn) = L (Θn) + ∆ (Θ|Θn) (27)

Thus l (Θ|Θn)
It is bounded from above by L (Θ) i.e l (Θ|Θn) ≤ L (Θ)
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Now, we can do the following

We evaluate in Θn

l (Θn|Θn) =L (Θn) + ∆ (Θn|Θn)

=L (Θn) +
∑
y

P (y|X ,Θn) ln
( P (X|y,Θn)P (y|Θn)
P (y|X ,Θn)P (X|Θn)

)

=L (Θn) +
∑
y

P (y|X ,Θn) ln
(P (X , y|Θn)
P (X , y|Θn)

)
=L (Θn)

This means that
For Θ = Θn, functions L (Θ) and l (Θ|Θn) are equal
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Therefore

The function l (Θ|Θn) has the following properties
1 It is bounded from above by L (Θ) i.e l (Θ|Θn) ≤ L (Θ).
2 For Θ = Θn, functions L (Θ) and l (Θ|Θn) are equal.
3 The function l (Θ|Θn) is concave... How?
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First

We have the value L (Θn)
We know that L (Θn) is constant i.e. an offset value

What about ∆ (Θ|Θn)∑
y

P (y|X ,Θn) ln
( P (X|y,Θ)P (y|Θ)
P (y|X ,Θn)P (X|Θn)

)

We have that the ln is a concave function

ln
( P (X|y,Θ)P (y|Θ)
P (y|X ,Θn)P (X|Θn)

)
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Therefore

Each element is concave

P (y|X ,Θn) ln
( P (X|y,Θ)P (y|Θ)
P (y|X ,Θn)P (X|Θn)

)

Therefore, the sum of concave functions is a concave function∑
y

P (y|X ,Θn) ln
( P (X|y,Θ)P (y|Θ)
P (y|X ,Θn)P (X|Θn)

)
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Given the Concave Function

Thus, we have that
1 We can select Θn such that l (Θ|Θn) is maximized.
2 Thus, given a Θn, we can generate Θn+1.

The process can be seen in the following graph
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Given

The Previous Constraints
1 l (Θ|Θn) is bounded from above by L (Θ)

l (Θ|Θn) ≤ L (Θ)

2 For Θ = Θn, functions L (Θ) and l (Θ|Θn) are equal

L (Θn) = l (Θ|Θn)

3 The function l (Θ|Θn) is concave
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From
The following

Θn+1 =argmaxΘ {l (Θ|Θn)}

=argmaxΘ

{
L (Θn) +

∑
y

P (y|X ,Θn) ln
( P (X|y,Θ)P (y|Θ)
P (y|X ,Θn)P (X|Θn)

)}
The terms with Θn are constants.

≈argmaxΘ

{∑
y

P (y|X ,Θn) ln (P (X|y,Θ)P (y|Θ))
}

=argmaxΘ

{∑
y

P (y|X ,Θn) ln
(P (X , y|Θ)
P (y|Θ)

P (y,Θ)
P (Θ)

)}

=argmaxΘ

∑
y

P (y|X ,Θn) ln

 P(X ,y,Θ)
P(Θ)
P(y,Θ)
P(Θ)

P (y,Θ)
P (Θ)
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Thus

Then
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[ln (P (X , y|Θ))]
}

Then argmaxΘ {l (Θ|Θn)} ≈ argmaxΘ

{
Ey|X ,Θn

[ln (P (X , y|Θ))]
}
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The EM-Algorithm

Steps of EM
1 Expectation under hidden variables.
2 Maximization of the resulting formula.

E-Step
Determine the conditional expectation, Ey|X ,Θn

[ln (P (X , y|Θ))].

M-Step
Maximize this expression with respect to Θ.

54 / 113



The EM-Algorithm

Steps of EM
1 Expectation under hidden variables.
2 Maximization of the resulting formula.

E-Step
Determine the conditional expectation, Ey|X ,Θn

[ln (P (X , y|Θ))].

M-Step
Maximize this expression with respect to Θ.

54 / 113



The EM-Algorithm

Steps of EM
1 Expectation under hidden variables.
2 Maximization of the resulting formula.

E-Step
Determine the conditional expectation, Ey|X ,Θn

[ln (P (X , y|Θ))].

M-Step
Maximize this expression with respect to Θ.

54 / 113



The EM-Algorithm

Steps of EM
1 Expectation under hidden variables.
2 Maximization of the resulting formula.

E-Step
Determine the conditional expectation, Ey|X ,Θn

[ln (P (X , y|Θ))].

M-Step
Maximize this expression with respect to Θ.

54 / 113



Outline
1 Introduction

Maximum-Likelihood
Expectation Maximization
Examples of Applications of EM

2 Incomplete Data
Introduction
Using the Expected Value
Analogy

3 Derivation of the EM-Algorithm
Hidden Features

Proving Concavity
Using the Concave Functions for Approximation
From The Concave Function to the EM
The Final Algorithm
Notes and Convergence of EM

4 Finding Maximum Likelihood Mixture Densities
The Beginning of The Process

Bayes’ Rule for the components
Mixing Parameters

Maximizing Q using Lagrange Multipliers
In Our Case

Example on Mixture of Gaussian Distributions
The EM Algorithm

55 / 113



Notes and Convergence of EM

Gains between L (Θ) and l (Θ|Θn)
Using the hidden variables it is possible to simplify the optimization of
L (Θ) through l (Θ|Θn).

Convergence
Remember that Θn+1is the estimate for Θ which maximizes the
difference ∆ (Θ|Θn).

56 / 113



Notes and Convergence of EM

Gains between L (Θ) and l (Θ|Θn)
Using the hidden variables it is possible to simplify the optimization of
L (Θ) through l (Θ|Θn).

Convergence
Remember that Θn+1is the estimate for Θ which maximizes the
difference ∆ (Θ|Θn).

56 / 113



Notes and Convergence of EM

Gains between L (Θ) and l (Θ|Θn)
Using the hidden variables it is possible to simplify the optimization of
L (Θ) through l (Θ|Θn).

Convergence
Remember that Θn+1is the estimate for Θ which maximizes the
difference ∆ (Θ|Θn).

56 / 113



Therefore

Then, we have
Given the initial estimate of Θ by Θn

∆ (Θn|Θn) = 0

Now
If we choose Θn+1 to maximize the ∆ (Θ|Θn), then

∆ (Θn+1|Θn) ≥ ∆ (Θn|Θn) = 0

We have that
The Likelihood L (Θ) is not a decreasing function with respect to Θ.
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Notes and Convergence of EM

Properties
When the algorithm reaches a fixed point for some Θn, the value
maximizes l (Θ|Θn).

Definition
A fixed point of a function is an element on domain that is mapped to
itself by the function:

f (x) = x

Basically the EM algorithm does the following

EM [Θ∗] = Θ∗
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At this moment

We have that
The algorithm reaches a fixed point for some Θn, the value Θ∗ maximizes
l (Θ|Θn).

Then, when the algorithm
It reaches a fixed point for some Θn the value maximizes l (Θ|Θn).

I Basically Θn+1 = Θn.
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Therefore

We have
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Then
If L and l are differentiable at Θn

Since L and l are equal at Θn

I Then, Θn is a stationary point of L i.e. the derivative of L vanishes at
that point.

Local Maxima
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However

You could finish with the following case, no local maxima

Saddle Point
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For more on the subject

Please take a look to
Geoffrey McLachlan and Thriyambakam Krishnan, “The EM Algorithm
and Extensions,” John Wiley & Sons, New York, 1996.
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Finding Maximum Likelihood Mixture Densities Parameters
via EM
Something Notable
The mixture-density parameter estimation problem is probably one of the
most widely used applications of the EM algorithm in the computational
pattern recognition community.

We have

p (x|Θ) =
M∑
i=1

αipi (x|θi) (28)

where
1 Θ = (α1, ..., αM , θ1, ..., θM )
2
∑M
i=1 αi = 1

3 Each pi is a density function parametrized by θi.
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A log-likelihood for this function

We have

logL (Θ|X ) = log
N∏
i=1

p (xi|Θ) =
N∑
i=1

log

 M∑
j=1

αjpj (xi|θj)

 (29)

Note: This is too difficult to optimize due to the log function.

However
We can simplify this assuming the following:

1 We assume that each unobserved data Y = {yi}Ni=1 has a the
following range yi ∈ {1, ...,M}

2 yi = k if the ith samples was generated by the kth mixture.
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Now

We have

logL (Θ|X ,Y) = log [P (X ,Y|Θ)] (30)

Remember that X = {x1, x2, ..., xN} with Y = {y1, y2, ..., yN} and
assuming independence

log [P (X ,Y|Θ)] = log [P (x1, x2, ..., xN , y1, y2, ..., yN |Θ)]
= log [P (x1, y1, ..., xi, yi, ..., xN , yN |Θ)]

= log
N∏
i=1

P (xi, yi|Θ)

=
N∑
i=1

logP (xi, yi|Θ)
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Then

Thus, by the chain Rule
N∑
i=1

logP (xi, yi|Θ) =
N∑
i=1

log [P (xi|yi, θyi)P (yi|θyi)] (31)

Question Do you need yi if you know θyi or the other way around?

Finally
N∑
i=1

log [P (xi|yi, θyi)P (yi|θyi)] =
N∑
i=1

log [P (yi) pyi (xi|θyi)] (32)

NOPE: You do not need yi if you know θyi or the other way around.
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Finally, we have

Making αyi
= P (yi)

logL (Θ|X ,Y) =
N∑
i=1

log [αyiP (xi|yi, θyi)] (33)
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Problem

Which Labels?
We do not know the values of Y.

We can get away by using the following idea
Assume the Y is a random variable.
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Thus

You do a first guess for the parameters at the beginning of EM

Θg = (αg1, ..., α
g
M , θ

g
1, ..., θ

g
M ) (34)

Then, it is possible to calculate given the parametric probability

pj
(
xi|θgj

)
Therefore
The mixing parameters αj can be though of as a prior probabilities of each
mixture:

αj = p (component j) (35)

71 / 113



Thus

You do a first guess for the parameters at the beginning of EM

Θg = (αg1, ..., α
g
M , θ

g
1, ..., θ

g
M ) (34)

Then, it is possible to calculate given the parametric probability

pj
(
xi|θgj

)
Therefore
The mixing parameters αj can be though of as a prior probabilities of each
mixture:

αj = p (component j) (35)

71 / 113



Thus

You do a first guess for the parameters at the beginning of EM

Θg = (αg1, ..., α
g
M , θ

g
1, ..., θ

g
M ) (34)

Then, it is possible to calculate given the parametric probability

pj
(
xi|θgj

)
Therefore
The mixing parameters αj can be though of as a prior probabilities of each
mixture:

αj = p (component j) (35)

71 / 113



Outline
1 Introduction

Maximum-Likelihood
Expectation Maximization
Examples of Applications of EM

2 Incomplete Data
Introduction
Using the Expected Value
Analogy

3 Derivation of the EM-Algorithm
Hidden Features

Proving Concavity
Using the Concave Functions for Approximation
From The Concave Function to the EM
The Final Algorithm
Notes and Convergence of EM

4 Finding Maximum Likelihood Mixture Densities
The Beginning of The Process

Bayes’ Rule for the components
Mixing Parameters

Maximizing Q using Lagrange Multipliers
In Our Case

Example on Mixture of Gaussian Distributions
The EM Algorithm

72 / 113



Outline
1 Introduction

Maximum-Likelihood
Expectation Maximization
Examples of Applications of EM

2 Incomplete Data
Introduction
Using the Expected Value
Analogy

3 Derivation of the EM-Algorithm
Hidden Features

Proving Concavity
Using the Concave Functions for Approximation
From The Concave Function to the EM
The Final Algorithm
Notes and Convergence of EM

4 Finding Maximum Likelihood Mixture Densities
The Beginning of The Process

Bayes’ Rule for the components
Mixing Parameters

Maximizing Q using Lagrange Multipliers
In Our Case

Example on Mixture of Gaussian Distributions
The EM Algorithm

73 / 113



We want to calculate the following probability

We want to calculate

p (yi|xi,Θg)

Basically
We want a Bayesian formulation of this probability.

Assuming that the y = (y1, y2, ..., yN ) are samples identically
independent samples from a distribution.
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Using Bayes’ Rule

Compute

p (yi|xi,Θg) =p (yi, xi|Θg)
p (xi|Θg)

=
p (xi|Θg) p

(
yi|θgyi

)
p (xi|Θg) We know θgyi

⇒ Drop it

=
αgyi

pyi

(
xi|θgyi

)
p (xi|Θg)

=
αgyi

pyi

(
xi|θgyi

)
∑M
k=1 α

g
kpk

(
xi|θgk

)
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As in Naive Bayes

We have the fact that there is a probability per probability at the
mixture and sample

p (yi|xi,Θg) =
αgyi

pyi

(
xi|θgyi

)
∑M
k=1 α

g
kpk

(
xi|θgk

) ∀xi, yi and k ∈ {1, ...,M}
This is going to be updated at each iteration of the EM algorithm
After the initial Guess!!! Until convergence!!!
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Additionally

We assume again that the samples y′is are identically and independent
samples

p (y|X ,Θg) =
N∏
i=1

p (yi|xi,Θg) (36)

Where y = (y1, y2, ..., yN )
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Now, using equation 17

Then

Q (Θ|Θg) =
∑
y∈Y

log (L (Θ|X ,y)) p (y|X ,Θg)

=
∑
y∈Y

N∑
i=1

log [αyipyi (xi|θyi)]
N∏
j=1

p (yj |xj ,Θg)
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Here, a small stop

What is the meaning of ∑y∈Y

It is actually a summation of all possible states of the random vector y.

Then, we can rewrite the previous summation as

∑
y∈Y=

M∑
y1=1

M∑
y2=1
· · ·

M∑
yN =1︸ ︷︷ ︸

N

Running over all the samples {x1, x2, ..., xN}.
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Then

We have

Q (Θ|Θg) =
M∑
y1=1

M∑
y2=1
· · ·

M∑
yN =1

N∑
i=1

log [αyipyi (xi|θyi)]
N∏
j=1

p (yj |xj ,Θg)
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We introduce the following

We have the following function

δl,yi
=
{

1 I = yi

0 I 6= yi

Therefore, we can do the following

αi =
M∑
j=1

δi,jαj

Then

log [αyipyi (xi|θyi)]
N∏

j=1
p (yj |xj ,Θg) =

M∑
l=1

δl,yi log [αlpl (xi|θl)]
N∏

j=1
p (yj |xj ,Θg)
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Thus

We have that for∑M
y1=1 · · ·

∑M
yN =1

∑N
i=1 log [αyi

pyi
(xi|θyi

)]∏N
j=1 p (yj|xj,Θg) = ∗

∗ =
M∑
y1=1

M∑
y2=1
· · ·

M∑
yN =1

N∑
i=1

M∑
l=1

δl,yi
log [αlpl (xi|θl)]

N∏
j=1

p (yj |xj ,Θg)

=
N∑
i=1

M∑
l=1

log [αlpl (xi|θl)]
M∑
y1=1

M∑
y2=1
· · ·

M∑
yN =1

δl,yi

N∏
j=1

p (yj |xj ,Θg)


Because∑M

y1=1
∑M
y2=1 · · ·

∑M
yN =1 applies only to δl,yi

∏N
j=1 p (yj |xj ,Θg)
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Then, we have that

First notice the following

M∑
y1=1

M∑
y2=1

· · ·
M∑

yN =1

[
δl,yi

N∏
j=1

p (yj |xj ,Θg)

]
=

=

 M∑
y1=1

· · ·
M∑

yi−1=1

M∑
yi+1=1

· · ·
M∑

yN =1

{[
M∑

yi=1

δl,yi
p (yi|xi,Θg)

]
N∏

j=1,j 6=i,

p (yj |xj ,Θg)

}
Then, we have

M∑
yi=1

δl,yi
p (yi|xi,Θg) = p (l|xi,Θg)
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In this way

Plugging back the previous equation

M∑
y1=1

M∑
y2=1
· · ·

M∑
yN =1

δl,yi

N∏
j=1

p (yj |xj ,Θg) =

=

 M∑
y1=1
· · ·

M∑
yi−1=1

M∑
yi+1=1

· · ·
M∑

yN =1
p (l|xi,Θg)

N∏
j=1,j 6=i

p (yj |xj ,Θg)


=

 M∑
y1=1
· · ·

M∑
yi−1=1

M∑
yi+1=1

· · ·
M∑

yN =1

N∏
j=1,j 6=i

p (yj |xj ,Θg)

 p (l|xi,Θg)
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Now, what about...?

The left part of the equation

M∑
y1=1
· · ·

M∑
yi−1=1

M∑
yi+1=1

· · ·
M∑

yN =1

N∏
j=1,j 6=i

p (yj |xj ,Θg) =

=

 M∑
y1=1

p (y1|x1,Θg)

 · · ·
 M∑
yi−1=1

p (yi−1|xi−1,Θg)

× ...
 M∑
yi+1=1

p (yi+1|xi+1,Θg)

 · · ·
 M∑
yN =1

p (yN |xN ,Θg)


=

N∏
j=1,j 6=i

 M∑
yj=1

p (yj |xj ,Θg)
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Then, we have that

Plugging back to the original equation


M∑
y1=1
· · ·

M∑
yi−1=1

M∑
yi+1=1

· · ·
M∑

yN =1

N∏
j=1,j 6=i

p (yj |xj ,Θg)

 p (l|xi,Θg) =

=


N∏

j=1,j 6=i

 M∑
yj=1

p (yj |xj ,Θg)

 p (l|xi,Θg)
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We can use properties of probability
We know that

M∑
yi=1

p (yi|xi,Θg) = 1 (37)

Then


N∏
j=1,j 6=i

 M∑
yj=1

p (yj |xj ,Θg)

 p (l|xi,Θg) =

=


N∏

j=1,j 6=i
1

 p (l|xi,Θg)

=p (l|xi,Θg)

= αgl pyi

(
xi|θgl

)∑M
k=1 α

g
kpk

(
xi|θgk

)
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Thus

We can write Q in the following way

Q (Θ,Θg) =
N∑
i=1

M∑
l=1

log [αlpl (xi|θl)] p (l|xi,Θg)

=
N∑
i=1

M∑
l=1

log (αl) p (l|xi,Θg) + ...

N∑
i=1

M∑
l=1

log (pl (xi|θl)) p (l|xi,Θg) (38)

88 / 113



Thus

We can write Q in the following way

Q (Θ,Θg) =
N∑
i=1

M∑
l=1

log [αlpl (xi|θl)] p (l|xi,Θg)

=
N∑
i=1

M∑
l=1

log (αl) p (l|xi,Θg) + ...

N∑
i=1

M∑
l=1

log (pl (xi|θl)) p (l|xi,Θg) (38)

88 / 113



Thus

We can write Q in the following way

Q (Θ,Θg) =
N∑
i=1

M∑
l=1

log [αlpl (xi|θl)] p (l|xi,Θg)

=
N∑
i=1

M∑
l=1

log (αl) p (l|xi,Θg) + ...

N∑
i=1

M∑
l=1

log (pl (xi|θl)) p (l|xi,Θg) (38)

88 / 113



Outline
1 Introduction

Maximum-Likelihood
Expectation Maximization
Examples of Applications of EM

2 Incomplete Data
Introduction
Using the Expected Value
Analogy

3 Derivation of the EM-Algorithm
Hidden Features

Proving Concavity
Using the Concave Functions for Approximation
From The Concave Function to the EM
The Final Algorithm
Notes and Convergence of EM

4 Finding Maximum Likelihood Mixture Densities
The Beginning of The Process

Bayes’ Rule for the components
Mixing Parameters

Maximizing Q using Lagrange Multipliers
In Our Case

Example on Mixture of Gaussian Distributions
The EM Algorithm

89 / 113



A Method

That could be used as a general framework
To solve problems set as EM problem.

First, we will look at the Lagrange Multipliers setup
Then, we will look at a specific case using the mixture of Gaussian’s

Note
Not all the mixture of distributions will get you an analytical solution.
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Lagrange Multipliers for Q

We can us the following constraint for that∑
l

αl = 1 (39)

We have the following cost function

Q (Θ,Θg) + λ

(∑
l

αl − 1
)

(40)

Deriving by αl
∂

∂αl

[
Q (Θ,Θg) + λ

(∑
l

αl − 1
)]

= 0 (41)
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Thus

The Q function

Q (Θ,Θg) =
N∑
i=1

M∑
l=1

log (αl) p (l|xi,Θg) + ...

N∑
i=1

M∑
l=1

log (pl (xi|θl)) p (l|xi,Θg)
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Deriving

We have
∂

∂αl

[
Q (Θ,Θg) + λ

(∑
l

αl − 1
)]

=
N∑
i=1

1
αl
p (l|xi,Θg) + λ
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Finally

We have making the previous equation equal to 0
N∑
i=1

1
αl
p (l|xi,Θg) + λ = 0 (42)

Thus
N∑
i=1

p (l|xi,Θg) = −λαl (43)

Summing over l, we get

λ = −N (44)
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Lagrange Multipliers

Thus

αl = 1
N

N∑
i=1

p (l|xi,Θg) (45)

About θl
It is possible to get an analytical expressions for θl as functions of
everything else.

This is for you to try!!!

For more, please look at
“Geometric Idea of Lagrange Multipliers” by John Wyatt.
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Remember?

Gaussian Distribution

pl (x|µl,Σl) = 1
(2π)d/2 |Σl|

1/2
exp

{
−1

2 (x− µl)T Σ−1
l (x− µl)

}
(46)
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How to use this for Gaussian Distributions

For this, we need to refresh some linear algebra
1 tr (A+B) = tr (A) + tr (B)
2 tr (AB) = tr (BA)
3
∑
i x

T
i Axi = tr (AB) where B =

∑
i xix

T
i .

4
∣∣A−1∣∣ = 1

|A|

Now, we need the derivative of a matrix function f (A)

Thus, ∂f(A)
∂A is going to be the matrix with i, jth entry

[
∂f(A)
∂ai,j

]
where ai,j

is the i, jth entry of A.
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In addition

If A is symmetric

∂ |A|
∂A

=
{
Ai,j if i = j

2Ai,j if i 6= j
(47)

Where Ai,j is the i, jth cofactor of A.
Note: The determinant obtained by deleting the row and column of

a given element of a matrix or determinant. The cofactor is
preceded by a + or – sign depending whether the element is
in a + or – position.

Thus

∂ log |A|
∂A

=


Ai,j

|A| if i = j

2Ai,j if i 6= j
= 2A−1 − diag

(
A−1

)
(48)
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Finally

The last equation we need
∂tr (AB)
∂A

= B +BT − diag (B) (49)

In addition
∂xTAx

∂x
(50)
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Thus, using last part of equation 38

We get, after ignoring constant terms
Remember they disappear after derivatives

N∑
i=1

M∑
l=1

log (pl (xi|µl,Σl)) p (l|xi,Θg)

=
N∑
i=1

M∑
l=1

[
−1

2 log (|Σl|)−
1
2 (xi − µl)T Σ−1

l (xi − µl)
]
p (l|xi,Θg) (51)
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Finally

Thus, when taking the derivative with respect to µl
N∑
i=1

[
Σ−1
l (xi − µl) p (l|xi,Θg)

]
= 0 (52)

Then

µl =
∑N
i=1 xip (l|xi,Θg)∑N
i=1 p (l|xi,Θg)

(53)
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Now, if we derive with respect to Σl

First, we rewrite equation 51

N∑
i=1

M∑
l=1

[
−

1
2

log (|Σl|)−
1
2

(xi − µl)T Σ−1
l

(xi − µl)
]
p (l|xi,Θg)

=
M∑

l=1

[
−

1
2

log (|Σl|)
N∑

i=1

p (l|xi,Θg)−
1
2

N∑
i=1

p (l|xi,Θg) tr
{

Σ−1
l

(xi − µl) (xi − µl)T
}]

=
M∑

l=1

[
−

1
2

log (|Σl|)
N∑

i=1

p (l|xi,Θg)−
1
2

N∑
i=1

p (l|xi,Θg) tr
{

Σ−1
l
Nl,i

}]

Where Nl,i = (xi − µl) (xi − µl)T .
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Deriving with respect to Σ−1
l

We have that

∂

∂Σ−1
l

M∑
l=1

[
−

1
2

log (|Σl|)
N∑

i=1

p (l|xi,Θg)−
1
2

N∑
i=1

p (l|xi,Θg) tr
{

Σ−1
l
Nl,i

}]

=
1
2

N∑
i=1

p (l|xi,Θg) (2Σl − diag (Σl))−
1
2

N∑
i=1

p (l|xi,Θg)
(
2Nl.i − diag

(
Nl,i

))
=

1
2

N∑
i=1

p (l|xi,Θg)
(
2Ml,i − diag

(
Ml,i

))
=2S − diag (S)

Where Ml,i = Σl −Nl,i and S = 1
2
∑N

i=1 p (l|xi,Θg)Ml,i
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Thus, we have

Thus
If 2S − diag (S) = 0 =⇒ S = 0

Implying

1
2

N∑
i=1

p (l|xi,Θg) [Σl −Nl,i] = 0 (54)

Or

Σl =
∑N
i=1 p (l|xi,Θg)Nl,i∑N
i=1 p (l|xi,Θg)

=
∑N
i=1 p (l|xi,Θg) (xi − µl) (xi − µl)T∑N

i=1 p (l|xi,Θg)
(55)
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Thus, we have the iterative updates

They are

αNewl = 1
N

N∑
i=1

p (l|xi,Θg)

µNewl =
∑N
i=1 xip (l|xi,Θg)∑N
i=1 p (l|xi,Θg)

ΣNew
l =

∑N
i=1 p (l|xi,Θg) (xi − µl) (xi − µl)T∑N

i=1 p (l|xi,Θg)
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EM Algorithm for Gaussian Mixtures

Step 1
Initialize:

The means µl
Covariances Σl

Mixing coefficients αl
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Evaluate

Step 2 - E-Step
Evaluate the the probabilities of component l given xi using the
current parameter values:

p (l|xi,Θg) = αgl pyi

(
xi|θgl

)∑M
k=1 α

g
kpk

(
xi|θgk

)
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Now

Step 3 - M-Step
Re-estimate the parameters using the current iteration values:

αNewl = 1
N

N∑
i=1

p (l|xi,Θg)

µNewl =
∑N
i=1 xip (l|xi,Θg)∑N
i=1 p (l|xi,Θg)

ΣNew
l =

∑N
i=1 p (l|xi,Θg) (xi − µl) (xi − µl)T∑N

i=1 p (l|xi,Θg)
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Evaluate

Step 4
Evaluate the log likelihood:

log p (X|µ,Σ,α) =
N∑
i=1

log
{
M∑
l=1

αNewl pl
(
xi|µNewl ,Σl

New
)}

Step 6
Check for convergence of either the parameters or the log likelihood.
If the convergence criterion is not satisfied return to step 2.
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