Introduction to Machine Learning Expectation Maximization

Andres Mendez-Vazquez

June 5, 2018

Outline

(1) Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM
(2) Incomplete Data
- Introduction
- Using the Expected Value
- Analogy
(3) Derivation of the EM-Algorithm
- Hidden Features
- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
(4) Finding Maximum Likelihood Mixture Densities
- The Beginning of The Process
- Bayes' Rule for the components - Mixing Parameters
- Maximizing Q using Lagrange Multipliers - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Outline

(1) Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2. Incomplete Data

- Introduction
- Using the Expected Value
- Analogy
(3) Derivation of the EM-Algorithm
- Hidden Features
- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
(4) Finding Maximum Likelihood Mixture Densities
- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Maximum-Likelihood

We have a density function $p(x \mid \Theta)$

Assume that we have a data set of size $N, \mathcal{X}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}$

- This data is known as evidence.

Maximum-Likelihood

We have a density function $p(x \mid \Theta)$

Assume that we have a data set of size $N, \mathcal{X}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}$

- This data is known as evidence.

We assume in addition that

The vectors are independent and identically distributed (i.i.d.) with distribution p under parameter θ.

What Can We Do With The Evidence?

We may use the Bayes' Rule to estimate the parameters θ

$$
\begin{equation*}
p(\Theta \mid \mathcal{X})=\frac{P(\mathcal{X} \mid \Theta) P(\Theta)}{P(\mathcal{X})} \tag{1}
\end{equation*}
$$

What Can We Do With The Evidence?

We may use the Bayes' Rule to estimate the parameters θ

$$
\begin{equation*}
p(\Theta \mid \mathcal{X})=\frac{P(\mathcal{X} \mid \Theta) P(\Theta)}{P(\mathcal{X})} \tag{1}
\end{equation*}
$$

Or, given a new observation \tilde{x}

$$
\begin{equation*}
p(\tilde{\boldsymbol{x}} \mid \mathcal{X}) \tag{2}
\end{equation*}
$$

I.e. to compute the probability of the new observation being supported by the evidence \mathcal{X}.

What Can We Do With The Evidence?

We may use the Bayes' Rule to estimate the parameters θ

$$
\begin{equation*}
p(\Theta \mid \mathcal{X})=\frac{P(\mathcal{X} \mid \Theta) P(\Theta)}{P(\mathcal{X})} \tag{1}
\end{equation*}
$$

Or, given a new observation \tilde{x}

$$
\begin{equation*}
p(\tilde{\boldsymbol{x}} \mid \mathcal{X}) \tag{2}
\end{equation*}
$$

I.e. to compute the probability of the new observation being supported by the evidence \mathcal{X}.

Thus

The former represents parameter estimation and the latter data prediction.

Focusing First on the Estimation of the Parameters θ

We can interpret the Bayes' Rule

$$
\begin{equation*}
p(\Theta \mid \mathcal{X})=\frac{P(\mathcal{X} \mid \Theta) P(\Theta)}{P(\mathcal{X})} \tag{3}
\end{equation*}
$$

Focusing First on the Estimation of the Parameters θ

We can interpret the Bayes' Rule

$$
\begin{equation*}
p(\Theta \mid \mathcal{X})=\frac{P(\mathcal{X} \mid \Theta) P(\Theta)}{P(\mathcal{X})} \tag{3}
\end{equation*}
$$

Interpreted as

$$
\begin{equation*}
\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { evidence }} \tag{4}
\end{equation*}
$$

Focusing First on the Estimation of the Parameters θ

We can interpret the Bayes' Rule

$$
\begin{equation*}
p(\Theta \mid \mathcal{X})=\frac{P(\mathcal{X} \mid \Theta) P(\Theta)}{P(\mathcal{X})} \tag{3}
\end{equation*}
$$

Interpreted as

$$
\begin{equation*}
\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { evidence }} \tag{4}
\end{equation*}
$$

Thus, we want

$$
\text { likelihood }=P(\mathcal{X} \mid \Theta)
$$

What we want...

We want to maximize the likelihood as a function of θ

Maximum-Likelihood

We have

$$
\begin{equation*}
p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N} \mid \Theta\right)=\prod_{i=1}^{N} p\left(\boldsymbol{x}_{i} \mid \Theta\right) \tag{5}
\end{equation*}
$$

Also known as the likelihood function.

Maximum-Likelihood

We have

$$
\begin{equation*}
p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N} \mid \Theta\right)=\prod_{i=1}^{N} p\left(\boldsymbol{x}_{i} \mid \Theta\right) \tag{5}
\end{equation*}
$$

Also known as the likelihood function.
Because multiplication of quantities $p\left(x_{i} \mid \Theta\right) \leq 1$ can be problematic

$$
\begin{equation*}
\mathcal{L}(\Theta \mid \mathcal{X})=\log \prod_{i=1}^{N} p\left(\boldsymbol{x}_{i} \mid \Theta\right)=\sum_{i=1}^{N} \log p\left(\boldsymbol{x}_{i} \mid \Theta\right) \tag{6}
\end{equation*}
$$

Maximum-Likelihood

Maximum-Likelihood

We want to find a Θ^{*}

$$
\begin{equation*}
\Theta^{*}=\operatorname{argmax}_{\Theta} \mathcal{L}(\Theta \mid \mathcal{X}) \tag{7}
\end{equation*}
$$

The classic method

$$
\begin{equation*}
\frac{\partial \mathcal{L}(\Theta \mid \mathcal{X})}{\partial \theta_{i}}=0 \forall \theta_{i} \in \Theta \tag{8}
\end{equation*}
$$

What happened if we have incomplete data

Data could have been split
(1) $\mathcal{X}=$ observed data or incomplete data

What happened if we have incomplete data

Data could have been split
(1) $\mathcal{X}=$ observed data or incomplete data
(2) $\mathcal{Y}=$ unobserved data

What happened if we have incomplete data

Data could have been split

(1) $\mathcal{X}=$ observed data or incomplete data
(2) $\mathcal{Y}=$ unobserved data

For this type of problems

We have the famous Expectation Maximization (EM)

Outline

（1）Introduction
－Maximum－Likelihood
－Expectation Maximization
－Examples of Applications of EM

2 Incomplete Data

－Introduction
－Using the Expected Value
－Analogy
（3）Derivation of the EM－Algorithm
－Hidden Features
－Proving Concavity
－Using the Concave Functions for Approximation
－From The Concave Function to the EM
－The Final Algorithm
－Notes and Convergence of EM
4）Finding Maximum Likelihood Mixture Densities
－The Beginning of The Process
－Bayes＇Rule for the components
－Mixing Parameters
－Maximizing Q using Lagrange Multipliers
－In Our Case
－Example on Mixture of Gaussian Distributions
－The EM Algorithm

The Expectation Maximization

The EM algorithm
It was first developed by Dempster et al. (1977).

The Expectation Maximization

```
The EM algorithm
It was first developed by Dempster et al. (1977).
```


Its popularity comes from the fact

```
It can estimate an underlying distribution when data is incomplete or has missing values.
```


The Expectation Maximization

The EM algorithm

It was first developed by Dempster et al. (1977).

Its popularity comes from the fact

It can estimate an underlying distribution when data is incomplete or has missing values.

Two main applications

(1) When missing values exists.

The Expectation Maximization

The EM algorithm

It was first developed by Dempster et al. (1977).

Its popularity comes from the fact

It can estimate an underlying distribution when data is incomplete or has missing values.

Two main applications

(1) When missing values exists.
(2) When a likelihood function can be simplified by assuming extra parameters that are missing or hidden.

Outline

（1）Introduction
－Maximum－Likelihood
－Expectation Maximization
－Examples of Applications of EM
（2）Incomplete Data
－Introduction
－Using the Expected Value
－Analogy
（3）Derivation of the EM－Algorithm
－Hidden Features
－Proving Concavity
－Using the Concave Functions for Approximation
－From The Concave Function to the EM
－The Final Algorithm
－Notes and Convergence of EM
（1）Finding Maximum Likelihood Mixture Densities
－The Beginning of The Process
－Bayes＇Rule for the components
－Mixing Parameters
－Maximizing Q using Lagrange Multipliers －In Our Case
－Example on Mixture of Gaussian Distributions
－The EM Algorithm

Clustering

Given a series of data sets
Given the fact that Radial Gaussian Functions are Universal Approximators

- Samples $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}$ are the visible parameters
- The Gaussian distributions generating each of the samples are the hidden parameters

Clustering

Given a series of data sets

Given the fact that Radial Gaussian Functions are Universal Approximators

- Samples $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}$ are the visible parameters
- The Gaussian distributions generating each of the samples are the hidden parameters

Then, we model the cluster as a mixture of Gaussian's

Natural Language Processing

Unsupervised induction of probabilistic context-free grammars

Here given a series of words $o_{1}, o_{2}, o_{3}, \ldots$ and normalized Context-Free Grammar

- We want to know the probabilities of each rule $P(i \rightarrow j k)$

Natural Language Processing

Unsupervised induction of probabilistic context-free grammars

Here given a series of words $o_{1}, o_{2}, o_{3}, \ldots$ and normalized Context-Free Grammar

- We want to know the probabilities of each rule $P(i \rightarrow j k)$

Thus

- Here the you have two variables:
- The Visible Ones: The sequence of words
- The Hidden Ones: The rule that produces the possible sequence $o_{i} \rightarrow o_{j}$

Natural Language Processing

Baum－Welch Algorithm for Hidden Markov Models

Natural Language Processing

Baum-Welch Algorithm for Hidden Markov Models

Here

- Hidden Variables: The circular nodes producing the data
- Visible Variables: The square nodes representing the samples.

Outline

Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM
(2) Incomplete Data
- Introduction
- Using the Expected Value
- Analogy
(3. Derivation of the EM-Algorithm
- Hidden Features
- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
(4) Finding Maximum Likelihood Mixture Densities
- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Incomplete Data

We assume the following

Two parts of data

Incomplete Data

We assume the following

Two parts of data
(1) $\mathcal{X}=$ observed data or incomplete data

Incomplete Data

We assume the following

Two parts of data
(1) $\mathcal{X}=$ observed data or incomplete data
(2) $\mathcal{Y}=$ unobserved data

Incomplete Data

We assume the following

Two parts of data
(1) $\mathcal{X}=$ observed data or incomplete data
(2) $\mathcal{Y}=$ unobserved data

Thus

$$
\begin{equation*}
\mathcal{Z}=(\mathcal{X}, \mathcal{Y})=\text { Complete Data } \tag{9}
\end{equation*}
$$

Incomplete Data

We assume the following

Two parts of data
(1) $\mathcal{X}=$ observed data or incomplete data
(2) $\mathcal{Y}=$ unobserved data

Thus

$$
\mathcal{Z}=(\mathcal{X}, \mathcal{Y})=\text { Complete Data }
$$

Thus, we have the following probability

$$
\begin{equation*}
p(\boldsymbol{z} \mid \Theta)=p(\boldsymbol{x}, \boldsymbol{y} \mid \Theta)=p(\boldsymbol{y} \mid \boldsymbol{x}, \Theta) p(\boldsymbol{x} \mid \Theta) \tag{10}
\end{equation*}
$$

New Likelihood Function

The New Likelihood Function

$$
\begin{equation*}
\mathcal{L}(\Theta \mid \mathcal{Z})=\mathcal{L}(\Theta \mid \mathcal{X}, \mathcal{Y})=p(\mathcal{X}, \mathcal{Y} \mid \Theta) \tag{11}
\end{equation*}
$$

Note: The complete data likelihood.

New Likelihood Function

The New Likelihood Function

$$
\begin{equation*}
\mathcal{L}(\Theta \mid \mathcal{Z})=\mathcal{L}(\Theta \mid \mathcal{X}, \mathcal{Y})=p(\mathcal{X}, \mathcal{Y} \mid \Theta) \tag{11}
\end{equation*}
$$

Note: The complete data likelihood.

Thus, we have

$$
\begin{equation*}
\mathcal{L}(\Theta \mid \mathcal{X}, \mathcal{Y})=p(\mathcal{X}, \mathcal{Y} \mid \Theta)=p(\mathcal{Y} \mid \mathcal{X}, \Theta) p(\mathcal{X} \mid \Theta) \tag{12}
\end{equation*}
$$

New Likelihood Function

The New Likelihood Function

$$
\begin{equation*}
\mathcal{L}(\Theta \mid \mathcal{Z})=\mathcal{L}(\Theta \mid \mathcal{X}, \mathcal{Y})=p(\mathcal{X}, \mathcal{Y} \mid \Theta) \tag{11}
\end{equation*}
$$

Note: The complete data likelihood.
Thus, we have

$$
\begin{equation*}
\mathcal{L}(\Theta \mid \mathcal{X}, \mathcal{Y})=p(\mathcal{X}, \mathcal{Y} \mid \Theta)=p(\mathcal{Y} \mid \mathcal{X}, \Theta) p(\mathcal{X} \mid \Theta) \tag{12}
\end{equation*}
$$

Did you notice?

- $p(\mathcal{X} \mid \Theta)$ is the likelihood of the observed data.
- $p(\mathcal{Y} \mid \mathcal{X}, \Theta)$ is the likelihood of the no-observed data under the observed data!!!

Rewriting

This can be rewritten as

$$
\begin{equation*}
\mathcal{L}(\Theta \mid \mathcal{X}, \mathcal{Y})=h_{\mathcal{X}, \Theta}(\mathcal{Y}) \tag{13}
\end{equation*}
$$

This basically signify that \mathcal{X}, Θ are constant and the only random part is \mathcal{Y}.

Rewriting

This can be rewritten as

$$
\begin{equation*}
\mathcal{L}(\Theta \mid \mathcal{X}, \mathcal{Y})=h_{\mathcal{X}, \Theta}(\mathcal{Y}) \tag{13}
\end{equation*}
$$

This basically signify that \mathcal{X}, Θ are constant and the only random part is \mathcal{Y}.

In addition

$$
\mathcal{L}(\Theta \mid \mathcal{X})
$$

It is known as the incomplete-data likelihood function.

Thus

We can connect both incomplete-complete data equations by doing the following

$$
\mathcal{L}(\Theta \mid \mathcal{X})=p(\mathcal{X} \mid \Theta)
$$

Thus

We can connect both incomplete-complete data equations by doing the following

$$
\begin{aligned}
\mathcal{L}(\Theta \mid \mathcal{X}) & =p(\mathcal{X} \mid \Theta) \\
& =\sum_{\mathcal{Y}} p(\mathcal{X}, \mathcal{Y} \mid \Theta)
\end{aligned}
$$

Thus

We can connect both incomplete-complete data equations by doing the following

$$
\begin{aligned}
\mathcal{L}(\Theta \mid \mathcal{X}) & =p(\mathcal{X} \mid \Theta) \\
& =\sum_{\mathcal{Y}} p(\mathcal{X}, \mathcal{Y} \mid \Theta) \\
& =\sum_{\mathcal{Y}} p(\mathcal{Y} \mid \mathcal{X}, \Theta) p(\mathcal{X} \mid \Theta)
\end{aligned}
$$

Thus

We can connect both incomplete-complete data equations by doing the following

$$
\begin{aligned}
\mathcal{L}(\Theta \mid \mathcal{X}) & =p(\mathcal{X} \mid \Theta) \\
& =\sum_{\mathcal{Y}} p(\mathcal{X}, \mathcal{Y} \mid \Theta) \\
& =\sum_{\mathcal{Y}} p(\mathcal{Y} \mid \mathcal{X}, \Theta) p(\mathcal{X} \mid \Theta) \\
& =\sum_{i=1}^{N}\left(\prod_{i=1}^{N} p\left(x_{i} \mid \Theta\right)\right)_{\mathcal{Y}} p(\mathcal{Y} \mid \mathcal{X}, \Theta)
\end{aligned}
$$

Remarks

Problems

Normally, it is almost impossible to obtain a closed analytical solution for the previous equation.

Remarks

Problems

Normally, it is almost impossible to obtain a closed analytical solution for the previous equation.

However

We can use the expected value of $\log p(\mathcal{X}, \mathcal{Y} \mid \Theta)$, which allows us to find an iterative procedure to approximate the solution.

The function we would like to have

The Q function

We want an estimation of the complete-data log-likelihood

$$
\begin{equation*}
\log p(\mathcal{X}, \mathcal{Y} \mid \Theta) \tag{15}
\end{equation*}
$$

Based in the info provided by $\mathcal{X}, \Theta_{n-1}$ where Θ_{n-1} is a previously estimated set of parameters at step n.

The function we would like to have

The Q function

We want an estimation of the complete-data log-likelihood

$$
\begin{equation*}
\log p(\mathcal{X}, \mathcal{Y} \mid \Theta) \tag{15}
\end{equation*}
$$

Based in the info provided by $\mathcal{X}, \Theta_{n-1}$ where Θ_{n-1} is a previously estimated set of parameters at step n.

Think about the following, if we want to remove \mathcal{Y}

$$
\begin{equation*}
\int[\log p(\mathcal{X}, \mathcal{Y} \mid \Theta)] p\left(\mathcal{Y} \mid \mathcal{X}, \Theta_{n-1}\right) d \mathcal{Y} \tag{16}
\end{equation*}
$$

Remark: We integrate out \mathcal{Y} - Actually, this is the expected value of $\log p(\mathcal{X}, \mathcal{Y} \mid \Theta)$.

Outline

Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM
(2) Incomplete Data
- Introduction
- Using the Expected Value
- Analogy
(3) Derivation of the EM-Algorithm
- Hidden Features
- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
(1) Finding Maximum Likelihood Mixture Densities
- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Use the Expected Value

Then, we want an iterative method to guess Θ from Θ_{n-1}

$$
\begin{equation*}
Q\left(\Theta, \Theta_{n-1}\right)=E\left[\log p(\mathcal{X}, \mathcal{Y} \mid \Theta) \mid \mathcal{X}, \Theta_{n-1}\right] \tag{17}
\end{equation*}
$$

Use the Expected Value

Then, we want an iterative method to guess Θ from Θ_{n-1}

$$
\begin{equation*}
Q\left(\Theta, \Theta_{n-1}\right)=E\left[\log p(\mathcal{X}, \mathcal{Y} \mid \Theta) \mid \mathcal{X}, \Theta_{n-1}\right] \tag{17}
\end{equation*}
$$

Take in account that

(1) $\mathcal{X}, \Theta_{n-1}$ are taken as constants.

Use the Expected Value

Then, we want an iterative method to guess Θ from Θ_{n-1}

$$
\begin{equation*}
Q\left(\Theta, \Theta_{n-1}\right)=E\left[\log p(\mathcal{X}, \mathcal{Y} \mid \Theta) \mid \mathcal{X}, \Theta_{n-1}\right] \tag{17}
\end{equation*}
$$

Take in account that

(1) $\mathcal{X}, \Theta_{n-1}$ are taken as constants.
(2) Θ is a normal variable that we wish to adjust.

Use the Expected Value

Then, we want an iterative method to guess Θ from Θ_{n-1}

$$
\begin{equation*}
Q\left(\Theta, \Theta_{n-1}\right)=E\left[\log p(\mathcal{X}, \mathcal{Y} \mid \Theta) \mid \mathcal{X}, \Theta_{n-1}\right] \tag{17}
\end{equation*}
$$

Take in account that

(1) $\mathcal{X}, \Theta_{n-1}$ are taken as constants.
(2) Θ is a normal variable that we wish to adjust.
(3) \mathcal{Y} is a random variable governed by distribution $p\left(\mathcal{Y} \mid \mathcal{X}, \Theta_{n-1}\right)=$ marginal distribution of missing data.

Another Interpretation

Given the previous information

$$
E\left[\log p(\mathcal{X}, \mathcal{Y} \mid \Theta) \mid \mathcal{X}, \Theta_{n-1}\right]=\int_{\mathcal{Y} \in \mathbb{Y}} \log p(\mathcal{X}, \mathcal{Y} \mid \Theta) p\left(\mathcal{Y} \mid \mathcal{X}, \Theta_{n-1}\right) d \mathcal{Y}
$$

Another Interpretation

Given the previous information

$$
E\left[\log p(\mathcal{X}, \mathcal{Y} \mid \Theta) \mid \mathcal{X}, \Theta_{n-1}\right]=\int_{\mathcal{Y} \in \mathbb{Y}} \log p(\mathcal{X}, \mathcal{Y} \mid \Theta) p\left(\mathcal{Y} \mid \mathcal{X}, \Theta_{n-1}\right) d \mathcal{Y}
$$

Something Notable

(1) In the best of cases, this marginal distribution is a simple analytical expression of the assumed parameter Θ_{n-1}.

Another Interpretation

Given the previous information

$$
E\left[\log p(\mathcal{X}, \mathcal{Y} \mid \Theta) \mid \mathcal{X}, \Theta_{n-1}\right]=\int_{\mathcal{Y} \in \mathbb{Y}} \log p(\mathcal{X}, \mathcal{Y} \mid \Theta) p\left(\mathcal{Y} \mid \mathcal{X}, \Theta_{n-1}\right) d \mathcal{Y}
$$

Something Notable

(1) In the best of cases, this marginal distribution is a simple analytical expression of the assumed parameter Θ_{n-1}.
(2) In the worst of cases, this density might be very hard to obtain.

Another Interpretation

Given the previous information

$$
E\left[\log p(\mathcal{X}, \mathcal{Y} \mid \Theta) \mid \mathcal{X}, \Theta_{n-1}\right]=\int_{\mathcal{Y} \in \mathbb{Y}} \log p(\mathcal{X}, \mathcal{Y} \mid \Theta) p\left(\mathcal{Y} \mid \mathcal{X}, \Theta_{n-1}\right) d \mathcal{Y}
$$

Something Notable

(1) In the best of cases, this marginal distribution is a simple analytical expression of the assumed parameter Θ_{n-1}.
(2) In the worst of cases, this density might be very hard to obtain.

Actually, we use

$$
\begin{equation*}
p\left(\mathcal{Y}, \mathcal{X} \mid \Theta_{n-1}\right)=p\left(\mathcal{Y} \mid \mathcal{X}, \Theta_{n-1}\right) p\left(\mathcal{X} \mid \Theta_{n-1}\right) \tag{18}
\end{equation*}
$$

which is not dependent on Θ.

Outline

Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

(2) Incomplete Data

- Introduction
- Using the Expected Value
- Analogy
(3) Derivation of the EM-Algorithm
- Hidden Features
- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
(4) Finding Maximum Likelihood Mixture Densities
- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Back to the Q function

The intuition
We have the following analogy:

Back to the Q function

The intuition

We have the following analogy:

- Consider $h(\theta, \boldsymbol{Y})$ a function

Back to the Q function

The intuition

We have the following analogy:

- Consider $h(\theta, \boldsymbol{Y})$ a function
- θ a constant

Back to the Q function

The intuition

We have the following analogy:

- Consider $h(\theta, \boldsymbol{Y})$ a function
- θ a constant
- $\boldsymbol{Y} \sim p_{\boldsymbol{Y}}(y)$, a random variable with distribution $p_{\boldsymbol{Y}}(y)$.

Back to the Q function

The intuition

We have the following analogy:

- Consider $h(\theta, \boldsymbol{Y})$ a function
- θ a constant
- $\boldsymbol{Y} \sim p_{\boldsymbol{Y}}(y)$, a random variable with distribution $p_{\boldsymbol{Y}}(y)$.

Thus, if Y is a discrete random variable

$$
\begin{equation*}
q(\theta)=E_{\boldsymbol{Y}}[h(\theta, \boldsymbol{Y})]=\sum_{y} h(\theta, y) p_{\boldsymbol{Y}}(y) \tag{19}
\end{equation*}
$$

Why E-step!!!

Why E-step!!!

From here the name

This is basically the E-step

Why E-step!!!

From here the name

This is basically the E-step
The second step
It tries to maximize the Q function

$$
\begin{equation*}
\Theta_{n}=\operatorname{argmax}_{\Theta} Q\left(\Theta, \Theta_{n-1}\right) \tag{20}
\end{equation*}
$$

Derivation of the EM-Algorithm

The likelihood function we are going to use
Let \mathcal{X} be a random vector which results from a parametrized family:

$$
\begin{equation*}
\mathcal{L}(\Theta)=\ln \mathcal{P}(\mathcal{X} \mid \Theta) \tag{21}
\end{equation*}
$$

Note: $\ln (x)$ is a strictly increasing function.

Derivation of the EM-Algorithm

The likelihood function we are going to use
Let \mathcal{X} be a random vector which results from a parametrized family:

$$
\begin{equation*}
\mathcal{L}(\Theta)=\ln \mathcal{P}(\mathcal{X} \mid \Theta) \tag{21}
\end{equation*}
$$

Note: $\ln (x)$ is a strictly increasing function.

We wish to compute Θ

Based on an estimate Θ_{n} (After the $\left.n^{t h}\right)$ such that $\mathcal{L}(\Theta)>\mathcal{L}\left(\Theta_{n}\right)$

Derivation of the EM-Algorithm

The likelihood function we are going to use
Let \mathcal{X} be a random vector which results from a parametrized family:

$$
\begin{equation*}
\mathcal{L}(\Theta)=\ln \mathcal{P}(\mathcal{X} \mid \Theta) \tag{21}
\end{equation*}
$$

Note: $\ln (x)$ is a strictly increasing function.

We wish to compute Θ

Based on an estimate Θ_{n} (After the $\left.n^{t h}\right)$ such that $\mathcal{L}(\Theta)>\mathcal{L}\left(\Theta_{n}\right)$

Or the maximization of the difference

$$
\begin{equation*}
\mathcal{L}(\Theta)-\mathcal{L}\left(\Theta_{n}\right)=\ln \mathcal{P}(\mathcal{X} \mid \Theta)-\ln \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right) \tag{22}
\end{equation*}
$$

Outline

Introduction
－Maximum－Likelihood
－Expectation Maximization
－Examples of Applications of EM
（2）Incomplete Data
－Introduction
－Using the Expected Value
－Analogy
（3）Derivation of the EM－Algorithm
－Hidden Features
－Proving Concavity
－Using the Concave Functions for Approximation
－From The Concave Function to the EM
－The Final Algorithm
－Notes and Convergence of EM
（1）Finding Maximum Likelihood Mixture Densities
－The Beginning of The Process
－Bayes＇Rule for the components
－Mixing Parameters
－Maximizing Q using Lagrange Multipliers －In Our Case
－Example on Mixture of Gaussian Distributions
－The EM Algorithm

Introducing the Hidden Features

Given that the hidden random vector \mathcal{Y} exits with y values

$$
\begin{equation*}
\mathcal{P}(\mathcal{X} \mid \Theta)=\sum_{y} \mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta) \tag{23}
\end{equation*}
$$

Introducing the Hidden Features

Given that the hidden random vector \mathcal{Y} exits with y values

$$
\begin{equation*}
\mathcal{P}(\mathcal{X} \mid \Theta)=\sum_{y} \mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta) \tag{23}
\end{equation*}
$$

Thus, using our first constraint $\mathcal{L}(\Theta)-\mathcal{L}\left(\Theta_{n}\right)$

$$
\begin{equation*}
\mathcal{L}(\Theta)-\mathcal{L}\left(\Theta_{n}\right)=\ln \left(\sum_{y} \mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)\right)-\ln \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right) \tag{24}
\end{equation*}
$$

Here, we introduce some concepts of convexity

For Convexity

Theorem (Jensen's inequality)

Let f be a convex function defined on an interval I. If $x_{1}, x_{2}, \ldots, x_{n} \in I$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \geq 0$ with $\sum_{i=1}^{n} \lambda_{i}=1$, then

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right) \tag{25}
\end{equation*}
$$

Proof:

For $n=1$

We have the trivial case

Proof:

For $n=1$

We have the trivial case
For $n=2$
The convexity definition.

Proof:

For $n=1$
We have the trivial case
For $n=2$
The convexity definition.

Now the inductive hypothesis

We assume that the theorem is true for some n.

Now, we have

The following linear combination for λ_{i}

$$
f\left(\sum_{i=1}^{n+1} \lambda_{i} x_{i}\right)=f\left(\lambda_{n+1} x_{n+1}+\sum_{i=1}^{n} \lambda_{i} x_{i}\right)
$$

Now, we have

The following linear combination for λ_{i}

$$
\begin{aligned}
f\left(\sum_{i=1}^{n+1} \lambda_{i} x_{i}\right) & =f\left(\lambda_{n+1} x_{n+1}+\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \\
& =f\left(\lambda_{n+1} x_{n+1}+\frac{\left(1-\lambda_{n+1}\right)}{\left(1-\lambda_{n+1}\right)} \sum_{i=1}^{n} \lambda_{i} x_{i}\right)
\end{aligned}
$$

Now, we have

The following linear combination for λ_{i}

$$
\begin{aligned}
f\left(\sum_{i=1}^{n+1} \lambda_{i} x_{i}\right) & =f\left(\lambda_{n+1} x_{n+1}+\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \\
& =f\left(\lambda_{n+1} x_{n+1}+\frac{\left(1-\lambda_{n+1}\right)}{\left(1-\lambda_{n+1}\right)} \sum_{i=1}^{n} \lambda_{i} x_{i}\right) \\
& \leq \lambda_{n+1} f\left(x_{n+1}\right)+\left(1-\lambda_{n+1}\right) f\left(\frac{1}{\left(1-\lambda_{n+1}\right)} \sum_{i=1}^{n} \lambda_{i} x_{i}\right)
\end{aligned}
$$

Did you notice?

Something Notable

$$
\sum_{i=1}^{n+1} \lambda_{i}=1
$$

Did you notice?

Something Notable

$$
\sum_{i=1}^{n+1} \lambda_{i}=1
$$

Thus

$$
\sum_{i=1}^{n} \lambda_{i}=1-\lambda_{n+1}
$$

Did you notice?

Something Notable

$$
\sum_{i=1}^{n+1} \lambda_{i}=1
$$

Thus

$$
\sum_{i=1}^{n} \lambda_{i}=1-\lambda_{n+1}
$$

Finally

$$
\frac{1}{\left(1-\lambda_{n+1}\right)} \sum_{i=1}^{n} \lambda_{i}=1
$$

Now

We have that

$$
f\left(\sum_{i=1}^{n+1} \lambda_{i} x_{i}\right) \leq \lambda_{n+1} f\left(x_{n+1}\right)+\left(1-\lambda_{n+1}\right) f\left(\frac{1}{\left(1-\lambda_{n+1}\right)} \sum_{i=1}^{n} \lambda_{i} x_{i}\right)
$$

Now

We have that

$$
\begin{aligned}
f\left(\sum_{i=1}^{n+1} \lambda_{i} x_{i}\right) & \leq \lambda_{n+1} f\left(x_{n+1}\right)+\left(1-\lambda_{n+1}\right) f\left(\frac{1}{\left(1-\lambda_{n+1}\right)} \sum_{i=1}^{n} \lambda_{i} x_{i}\right) \\
& \leq \lambda_{n+1} f\left(x_{n+1}\right)+\left(1-\lambda_{n+1}\right) \frac{1}{\left(1-\lambda_{n+1}\right)} \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right)
\end{aligned}
$$

Now

We have that

$$
\begin{aligned}
f\left(\sum_{i=1}^{n+1} \lambda_{i} x_{i}\right) & \leq \lambda_{n+1} f\left(x_{n+1}\right)+\left(1-\lambda_{n+1}\right) f\left(\frac{1}{\left(1-\lambda_{n+1}\right)} \sum_{i=1}^{n} \lambda_{i} x_{i}\right) \\
& \leq \lambda_{n+1} f\left(x_{n+1}\right)+\left(1-\lambda_{n+1}\right) \frac{1}{\left(1-\lambda_{n+1}\right)} \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right) \\
& \leq \lambda_{n+1} f\left(x_{n+1}\right)+\sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right) \text { Q.E.D. }
\end{aligned}
$$

Thus, for concave functions

It is possible to shown that

Given $\ln (x)$ a concave function:

$$
\ln \left[\sum_{i=1}^{n} \lambda_{i} x_{i}\right] \geq \sum_{i=1}^{n} \lambda_{i} \ln \left(x_{i}\right)
$$

Thus, for concave functions

It is possible to shown that

Given $\ln (x)$ a concave function:

$$
\ln \left[\sum_{i=1}^{n} \lambda_{i} x_{i}\right] \geq \sum_{i=1}^{n} \lambda_{i} \ln \left(x_{i}\right)
$$

If we take in consideration

Assume that the $\lambda_{i}=\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right)$. We know that
(1) $\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \geq 0$
(2) $\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right)=1$

We have

First

$$
\mathcal{L}(\Theta)-\mathcal{L}\left(\Theta_{n}\right)=\ln \left(\sum_{y} \mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)\right)-\ln \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)
$$

We have

First

$$
\begin{aligned}
\mathcal{L}(\Theta)-\mathcal{L}\left(\Theta_{n}\right) & =\ln \left(\sum_{y} \mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)\right)-\ln \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right) \\
& =\ln \left(\sum_{y} \mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta) \frac{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right)}\right)-\ln \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)
\end{aligned}
$$

We have

First

$$
\begin{aligned}
\mathcal{L}(\Theta)-\mathcal{L}\left(\Theta_{n}\right) & =\ln \left(\sum_{y} \mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)\right)-\ln \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right) \\
& =\ln \left(\sum_{y} \mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta) \frac{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right)}\right)-\ln \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right) \\
& =\ln \left(\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \frac{\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right)}\right)-\ln \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)
\end{aligned}
$$

We have

First

$$
\begin{aligned}
\mathcal{L}(\Theta)-\mathcal{L}\left(\Theta_{n}\right)= & \ln \left(\sum_{y} \mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)\right)-\ln \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right) \\
= & \ln \left(\sum_{y} \mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta) \frac{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right)}\right)-\ln \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right) \\
= & \ln \left(\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \frac{\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right)}\right)-\ln \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right) \\
\geq & \sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right)}\right)-\ldots \\
& \sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right) \text { Why this? }
\end{aligned}
$$

Next

Because

$$
\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right)=1
$$

Next

Because

$$
\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right)=1
$$

Then

$$
\begin{aligned}
\mathcal{L}(\Theta)-\mathcal{L}\left(\Theta_{n}\right) & \geq \sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)}\right) \\
& =\Delta\left(\Theta \mid \Theta_{n}\right)
\end{aligned}
$$

Then, we have

Then, we have proved that

$$
\begin{equation*}
\mathcal{L}(\Theta) \geq \mathcal{L}\left(\Theta_{n}\right)+\Delta\left(\Theta \mid \Theta_{n}\right) \tag{26}
\end{equation*}
$$

Then, we have

Then, we have proved that

$$
\begin{equation*}
\mathcal{L}(\Theta) \geq \mathcal{L}\left(\Theta_{n}\right)+\Delta\left(\Theta \mid \Theta_{n}\right) \tag{26}
\end{equation*}
$$

Then, we define a new function

$$
\begin{equation*}
l\left(\Theta \mid \Theta_{n}\right)=\mathcal{L}\left(\Theta_{n}\right)+\Delta\left(\Theta \mid \Theta_{n}\right) \tag{27}
\end{equation*}
$$

Then, we have

Then, we have proved that

$$
\begin{equation*}
\mathcal{L}(\Theta) \geq \mathcal{L}\left(\Theta_{n}\right)+\Delta\left(\Theta \mid \Theta_{n}\right) \tag{26}
\end{equation*}
$$

Then, we define a new function

$$
\begin{equation*}
l\left(\Theta \mid \Theta_{n}\right)=\mathcal{L}\left(\Theta_{n}\right)+\Delta\left(\Theta \mid \Theta_{n}\right) \tag{27}
\end{equation*}
$$

Thus $l\left(\Theta \mid \Theta_{n}\right)$
It is bounded from above by $\mathcal{L}(\Theta)$ i.e $l\left(\Theta \mid \Theta_{n}\right) \leq \mathcal{L}(\Theta)$

Now, we can do the following

We evaluate in Θ_{n}

$$
l\left(\Theta_{n} \mid \Theta_{n}\right)=\mathcal{L}\left(\Theta_{n}\right)+\Delta\left(\Theta_{n} \mid \Theta_{n}\right)
$$

Now, we can do the following

We evaluate in Θ_{n}

$$
\begin{aligned}
l\left(\Theta_{n} \mid \Theta_{n}\right) & =\mathcal{L}\left(\Theta_{n}\right)+\Delta\left(\Theta_{n} \mid \Theta_{n}\right) \\
& =\mathcal{L}\left(\Theta_{n}\right)+\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X} \mid y, \Theta_{n}\right) \mathcal{P}\left(y \mid \Theta_{n}\right)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)}\right)
\end{aligned}
$$

Now, we can do the following

We evaluate in Θ_{n}

$$
\begin{aligned}
l\left(\Theta_{n} \mid \Theta_{n}\right) & =\mathcal{L}\left(\Theta_{n}\right)+\Delta\left(\Theta_{n} \mid \Theta_{n}\right) \\
& =\mathcal{L}\left(\Theta_{n}\right)+\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X} \mid y, \Theta_{n}\right) \mathcal{P}\left(y \mid \Theta_{n}\right)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)}\right) \\
& =\mathcal{L}\left(\Theta_{n}\right)+\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y \mid \Theta_{n}\right)}{\mathcal{P}\left(\mathcal{X}, y \mid \Theta_{n}\right)}\right)
\end{aligned}
$$

Now, we can do the following

We evaluate in Θ_{n}

$$
\begin{aligned}
l\left(\Theta_{n} \mid \Theta_{n}\right) & =\mathcal{L}\left(\Theta_{n}\right)+\Delta\left(\Theta_{n} \mid \Theta_{n}\right) \\
& =\mathcal{L}\left(\Theta_{n}\right)+\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X} \mid y, \Theta_{n}\right) \mathcal{P}\left(y \mid \Theta_{n}\right)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)}\right) \\
& =\mathcal{L}\left(\Theta_{n}\right)+\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y \mid \Theta_{n}\right)}{\mathcal{P}\left(\mathcal{X}, y \mid \Theta_{n}\right)}\right) \\
& =\mathcal{L}\left(\Theta_{n}\right)
\end{aligned}
$$

This means that

Now, we can do the following

We evaluate in Θ_{n}

$$
\begin{aligned}
l\left(\Theta_{n} \mid \Theta_{n}\right) & =\mathcal{L}\left(\Theta_{n}\right)+\Delta\left(\Theta_{n} \mid \Theta_{n}\right) \\
& =\mathcal{L}\left(\Theta_{n}\right)+\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X} \mid y, \Theta_{n}\right) \mathcal{P}\left(y \mid \Theta_{n}\right)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)}\right) \\
& =\mathcal{L}\left(\Theta_{n}\right)+\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y \mid \Theta_{n}\right)}{\mathcal{P}\left(\mathcal{X}, y \mid \Theta_{n}\right)}\right) \\
& =\mathcal{L}\left(\Theta_{n}\right)
\end{aligned}
$$

This means that

For $\Theta=\Theta_{n}$, functions $\mathcal{L}(\Theta)$ and $l\left(\Theta \mid \Theta_{n}\right)$ are equal

Therefore

The function $l\left(\Theta \mid \Theta_{n}\right)$ has the following properties
(1) It is bounded from above by $\mathcal{L}(\Theta)$ i.e $l\left(\Theta \mid \Theta_{n}\right) \leq \mathcal{L}(\Theta)$.

Therefore

The function $l\left(\Theta \mid \Theta_{n}\right)$ has the following properties
(1) It is bounded from above by $\mathcal{L}(\Theta)$ i.e $l\left(\Theta \mid \Theta_{n}\right) \leq \mathcal{L}(\Theta)$.
(2) For $\Theta=\Theta_{n}$, functions $\mathcal{L}(\Theta)$ and $l\left(\Theta \mid \Theta_{n}\right)$ are equal.

Therefore

The function $l\left(\Theta \mid \Theta_{n}\right)$ has the following properties
(1) It is bounded from above by $\mathcal{L}(\Theta)$ i.e $l\left(\Theta \mid \Theta_{n}\right) \leq \mathcal{L}(\Theta)$.
(2) For $\Theta=\Theta_{n}$, functions $\mathcal{L}(\Theta)$ and $l\left(\Theta \mid \Theta_{n}\right)$ are equal.
(3) The function $l\left(\Theta \mid \Theta_{n}\right)$ is concave... How?

Outline

Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

(2) Incomplete Data

- Introduction
- Using the Expected Value
- Analogy
(3) Derivation of the EM-Algorithm
- Hidden Features
- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
(4) Finding Maximum Likelihood Mixture Densities
- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

First

We have the value $\mathcal{L}\left(\Theta_{n}\right)$

We know that $\mathcal{L}\left(\Theta_{n}\right)$ is constant i.e. an offset value

First

We have the value $\mathcal{L}\left(\Theta_{n}\right)$

We know that $\mathcal{L}\left(\Theta_{n}\right)$ is constant i.e. an offset value

What about $\Delta\left(\Theta \mid \Theta_{n}\right)$

$$
\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)}\right)
$$

First

We have the value $\mathcal{L}\left(\Theta_{n}\right)$

We know that $\mathcal{L}\left(\Theta_{n}\right)$ is constant i.e. an offset value

What about $\Delta\left(\Theta \mid \Theta_{n}\right)$

$$
\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)}\right)
$$

We have that the \ln is a concave function

$$
\ln \left(\frac{\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)}\right)
$$

Therefore

Each element is concave

$$
\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)}\right)
$$

Therefore

Each element is concave

$$
\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)}\right)
$$

Therefore, the sum of concave functions is a concave function

$$
\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)}\right)
$$

Outline

Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

Incomplete Data

- Introduction
- Using the Expected Value
- Analogy
(3) Derivation of the EM-Algorithm
- Hidden Features
- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
(4) Finding Maximum Likelihood Mixture Densities
- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers
- In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Given the Concave Function

Thus, we have that
(1) We can select Θ_{n} such that $l\left(\Theta \mid \Theta_{n}\right)$ is maximized.

Given the Concave Function

Thus, we have that
(1) We can select Θ_{n} such that $l\left(\Theta \mid \Theta_{n}\right)$ is maximized.
(2) Thus, given a Θ_{n}, we can generate Θ_{n+1}.

Given the Concave Function

Thus, we have that

(1) We can select Θ_{n} such that $l\left(\Theta \mid \Theta_{n}\right)$ is maximized.
(2) Thus, given a Θ_{n}, we can generate Θ_{n+1}.

The process can be seen in the following graph

Given

The Previous Constraints
(1) $l\left(\Theta \mid \Theta_{n}\right)$ is bounded from above by $\mathcal{L}(\Theta)$

$$
l\left(\Theta \mid \Theta_{n}\right) \leq \mathcal{L}(\Theta)
$$

Given

The Previous Constraints

(1) $l\left(\Theta \mid \Theta_{n}\right)$ is bounded from above by $\mathcal{L}(\Theta)$

$$
l\left(\Theta \mid \Theta_{n}\right) \leq \mathcal{L}(\Theta)
$$

(2) For $\Theta=\Theta_{n}$, functions $\mathcal{L}(\Theta)$ and $l\left(\Theta \mid \Theta_{n}\right)$ are equal

$$
\mathcal{L}\left(\Theta_{n}\right)=l\left(\Theta \mid \Theta_{n}\right)
$$

Given

The Previous Constraints

(1) $l\left(\Theta \mid \Theta_{n}\right)$ is bounded from above by $\mathcal{L}(\Theta)$

$$
l\left(\Theta \mid \Theta_{n}\right) \leq \mathcal{L}(\Theta)
$$

(2) For $\Theta=\Theta_{n}$, functions $\mathcal{L}(\Theta)$ and $l\left(\Theta \mid \Theta_{n}\right)$ are equal

$$
\mathcal{L}\left(\Theta_{n}\right)=l\left(\Theta \mid \Theta_{n}\right)
$$

(3) The function $l\left(\Theta \mid \Theta_{n}\right)$ is concave

Outline

Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM
(2) Incomplete Data
- Introduction
- Using the Expected Value
- Analogy
(3) Derivation of the EM-Algorithm
- Hidden Features
- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
(1) Finding Maximum Likelihood Mixture Densities
- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers
- In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

From

The following
$\Theta_{n+1}=\operatorname{argmax}_{\Theta}\left\{l\left(\Theta \mid \Theta_{n}\right)\right\}$

From

The following

$$
\begin{aligned}
\Theta_{n+1} & =\operatorname{argmax}_{\Theta}\left\{l\left(\Theta \mid \Theta_{n}\right)\right\} \\
& =\operatorname{argmax}_{\Theta}\left\{\mathcal{L}\left(\Theta_{n}\right)+\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)}\right)\right\}
\end{aligned}
$$

The terms with Θ_{n} are constants.

From

The following

$$
\begin{aligned}
\Theta_{n+1} & =\operatorname{argmax}_{\Theta}\left\{l\left(\Theta \mid \Theta_{n}\right)\right\} \\
& =\operatorname{argmax}_{\Theta}\left\{\mathcal{L}\left(\Theta_{n}\right)+\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)}\right)\right\}
\end{aligned}
$$

The terms with Θ_{n} are constants．

$$
\approx \operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln (\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta))\right\}
$$

From

The following

$$
\begin{aligned}
\Theta_{n+1} & =\operatorname{argmax}_{\Theta}\left\{l\left(\Theta \mid \Theta_{n}\right)\right\} \\
& =\operatorname{argmax}_{\Theta}\left\{\mathcal{L}\left(\Theta_{n}\right)+\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)}\right)\right\}
\end{aligned}
$$

The terms with Θ_{n} are constants．

$$
\begin{aligned}
& \approx \operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln (\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta))\right\} \\
& =\operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X}, y \mid \Theta)}{\mathcal{P}(y \mid \Theta)} \frac{\mathcal{P}(y, \Theta)}{\mathcal{P}(\Theta)}\right)\right\}
\end{aligned}
$$

From

The following

$$
\Theta_{n+1}=\operatorname{argmax}_{\Theta}\left\{l\left(\Theta \mid \Theta_{n}\right)\right\}
$$

$$
=\operatorname{argmax}_{\Theta}\left\{\mathcal{L}\left(\Theta_{n}\right)+\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta)}{\mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X} \mid \Theta_{n}\right)}\right)\right\}
$$

The terms with Θ_{n} are constants.

$$
\begin{aligned}
& \approx \operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln (\mathcal{P}(\mathcal{X} \mid y, \Theta) \mathcal{P}(y \mid \Theta))\right\} \\
& =\operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X}, y \mid \Theta)}{\mathcal{P}(y \mid \Theta)} \frac{\mathcal{P}(y, \Theta)}{\mathcal{P}(\Theta)}\right)\right\} \\
& =\operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\frac{\mathcal{P}(\mathcal{X}, y, \Theta)}{\mathcal{P}(\Theta)}}{\frac{\mathcal{P}(y, \Theta)}{\mathcal{P}(\Theta)}} \frac{\mathcal{P}(y, \Theta)}{\mathcal{P}(\Theta)}\right)\right\}
\end{aligned}
$$

Thus

Then

$$
\theta_{n+1}=\operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X}, y, \Theta)}{\mathcal{P}(y, \Theta)} \frac{\mathcal{P}(y, \Theta)}{\mathcal{P}(\Theta)}\right)\right\}
$$

Thus

Then

$$
\begin{aligned}
\theta_{n+1} & =\operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X}, y, \Theta)}{\mathcal{P}(y, \Theta)} \frac{\mathcal{P}(y, \Theta)}{\mathcal{P}(\Theta)}\right)\right\} \\
& =\operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X}, y, \Theta)}{\mathcal{P}(\Theta)}\right)\right\}
\end{aligned}
$$

Thus

Then

$$
\begin{aligned}
\theta_{n+1} & =\operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X}, y, \Theta)}{\mathcal{P}(y, \Theta)} \frac{\mathcal{P}(y, \Theta)}{\mathcal{P}(\Theta)}\right)\right\} \\
& =\operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X}, y, \Theta)}{\mathcal{P}(\Theta)}\right)\right\} \\
& =\operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln (\mathcal{P}(\mathcal{X}, y \mid \Theta))\right\}
\end{aligned}
$$

Thus

Then

$$
\begin{aligned}
\theta_{n+1} & =\operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X}, y, \Theta)}{\mathcal{P}(y, \Theta)} \frac{\mathcal{P}(y, \Theta)}{\mathcal{P}(\Theta)}\right)\right\} \\
& =\operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X}, y, \Theta)}{\mathcal{P}(\Theta)}\right)\right\} \\
& =\operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln (\mathcal{P}(\mathcal{X}, y \mid \Theta))\right\} \\
& =\operatorname{argmax}_{\Theta}\left\{E_{y \mid \mathcal{X}, \Theta_{n}}[\ln (\mathcal{P}(\mathcal{X}, y \mid \Theta))]\right\}
\end{aligned}
$$

Thus

Then

$$
\begin{aligned}
\theta_{n+1} & =\operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X}, y, \Theta)}{\mathcal{P}(y, \Theta)} \frac{\mathcal{P}(y, \Theta)}{\mathcal{P}(\Theta)}\right)\right\} \\
& =\operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}(\mathcal{X}, y, \Theta)}{\mathcal{P}(\Theta)}\right)\right\} \\
& =\operatorname{argmax}_{\Theta}\left\{\sum_{y} \mathcal{P}\left(y \mid \mathcal{X}, \Theta_{n}\right) \ln (\mathcal{P}(\mathcal{X}, y \mid \Theta))\right\} \\
& =\operatorname{argmax}_{\Theta}\left\{E_{y \mid \mathcal{X}, \Theta_{n}}[\ln (\mathcal{P}(\mathcal{X}, y \mid \Theta))]\right\}
\end{aligned}
$$

Then $\operatorname{argmax}_{\Theta}\left\{l\left(\Theta \mid \Theta_{n}\right)\right\} \approx \operatorname{argmax}_{\Theta}\left\{E_{y \mid \mathcal{X}, \Theta_{n}}[\ln (\mathcal{P}(\mathcal{X}, y \mid \Theta))]\right\}$

Outline

Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM
(2) Incomplete Data
- Introduction
- Using the Expected Value
- Analogy
(3) Derivation of the EM-Algorithm
- Hidden Features
- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
(4) Finding Maximum Likelihood Mixture Densities
- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers
- In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

The EM-Algorithm

Steps of EM

(1) Expectation under hidden variables.

The EM-Algorithm

Steps of EM

(1) Expectation under hidden variables.
(2) Maximization of the resulting formula.

The EM-Algorithm

Steps of EM

(1) Expectation under hidden variables.
(2) Maximization of the resulting formula.

E-Step

Determine the conditional expectation, $E_{y \mid \mathcal{X}, \Theta_{n}}[\ln (\mathcal{P}(\mathcal{X}, y \mid \Theta))]$.

The EM-Algorithm

Steps of EM

(1) Expectation under hidden variables.
(2) Maximization of the resulting formula.

E-Step

Determine the conditional expectation, $E_{y \mid \mathcal{X}, \Theta_{n}}[\ln (\mathcal{P}(\mathcal{X}, y \mid \Theta))]$.

M-Step

Maximize this expression with respect to Θ.

Outline

Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM
(2) Incomplete Data
- Introduction
- Using the Expected Value
- Analogy
(3) Derivation of the EM-Algorithm
- Hidden Features
- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
(4) Finding Maximum Likelihood Mixture Densities
- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Cinvestav

Notes and Convergence of EM

Gains between $\mathcal{L}(\Theta)$ and $l\left(\Theta \mid \Theta_{n}\right)$

Using the hidden variables it is possible to simplify the optimization of $\mathcal{L}(\Theta)$ through $l\left(\Theta \mid \Theta_{n}\right)$.

Notes and Convergence of EM

Gains between $\mathcal{L}(\Theta)$ and $l\left(\Theta \mid \Theta_{n}\right)$

Using the hidden variables it is possible to simplify the optimization of $\mathcal{L}(\Theta)$ through $l\left(\Theta \mid \Theta_{n}\right)$.

Convergence

- Remember that Θ_{n+1} is the estimate for Θ which maximizes the difference $\Delta\left(\Theta \mid \Theta_{n}\right)$.

Notes and Convergence of EM

Gains between $\mathcal{L}(\Theta)$ and $l\left(\Theta \mid \Theta_{n}\right)$

Using the hidden variables it is possible to simplify the optimization of $\mathcal{L}(\Theta)$ through $l\left(\Theta \mid \Theta_{n}\right)$.

Convergence

- Remember that Θ_{n+1} is the estimate for Θ which maximizes the difference $\Delta\left(\Theta \mid \Theta_{n}\right)$.

Therefore

Then, we have
Given the initial estimate of Θ by Θ_{n}

$$
\Delta\left(\Theta_{n} \mid \Theta_{n}\right)=0
$$

Therefore

Then, we have
Given the initial estimate of Θ by Θ_{n}

$$
\Delta\left(\Theta_{n} \mid \Theta_{n}\right)=0
$$

Now

If we choose Θ_{n+1} to maximize the $\Delta\left(\Theta \mid \Theta_{n}\right)$, then

$$
\Delta\left(\Theta_{n+1} \mid \Theta_{n}\right) \geq \Delta\left(\Theta_{n} \mid \Theta_{n}\right)=0
$$

Therefore

Then, we have
Given the initial estimate of Θ by Θ_{n}

$$
\Delta\left(\Theta_{n} \mid \Theta_{n}\right)=0
$$

Now

If we choose Θ_{n+1} to maximize the $\Delta\left(\Theta \mid \Theta_{n}\right)$, then

$$
\Delta\left(\Theta_{n+1} \mid \Theta_{n}\right) \geq \Delta\left(\Theta_{n} \mid \Theta_{n}\right)=0
$$

We have that

The Likelihood $\mathcal{L}(\Theta)$ is not a decreasing function with respect to Θ.

Notes and Convergence of EM

Properties

When the algorithm reaches a fixed point for some Θ_{n}, the value maximizes $l\left(\Theta \mid \Theta_{n}\right)$.

Notes and Convergence of EM

Properties

When the algorithm reaches a fixed point for some Θ_{n}, the value maximizes $l\left(\Theta \mid \Theta_{n}\right)$.

Definition

A fixed point of a function is an element on domain that is mapped to itself by the function:

$$
f(\boldsymbol{x})=\boldsymbol{x}
$$

Notes and Convergence of EM

Properties

When the algorithm reaches a fixed point for some Θ_{n}, the value maximizes $l\left(\Theta \mid \Theta_{n}\right)$.

Definition

A fixed point of a function is an element on domain that is mapped to itself by the function:

$$
f(\boldsymbol{x})=\boldsymbol{x}
$$

Basically the EM algorithm does the following

$$
E M\left[\Theta^{*}\right]=\Theta^{*}
$$

At this moment

We have that
The algorithm reaches a fixed point for some Θ_{n}, the value Θ^{*} maximizes $l\left(\Theta \mid \Theta_{n}\right)$.

At this moment

We have that

The algorithm reaches a fixed point for some Θ_{n}, the value Θ^{*} maximizes $l\left(\Theta \mid \Theta_{n}\right)$.

Then, when the algorithm

- It reaches a fixed point for some Θ_{n} the value maximizes $l\left(\Theta \mid \Theta_{n}\right)$.
- Basically $\Theta_{n+1}=\Theta_{n}$.

Therefore

We have

Cinvestav

Then

If \mathcal{L} and l are differentiable at Θ_{n}

- Since \mathcal{L} and l are equal at Θ_{n}
- Then, Θ_{n} is a stationary point of \mathcal{L} i.e. the derivative of \mathcal{L} vanishes at that point.

However

You could finish with the following case, no local maxima

For more on the subject

Please take a look to

Geoffrey McLachlan and Thriyambakam Krishnan, "The EM Algorithm and Extensions," John Wiley \& Sons, New York, 1996.

Finding Maximum Likelihood Mixture Densities Parameters via EM

Something Notable

The mixture-density parameter estimation problem is probably one of the most widely used applications of the EM algorithm in the computational pattern recognition community.

Finding Maximum Likelihood Mixture Densities Parameters via EM

Something Notable

The mixture-density parameter estimation problem is probably one of the most widely used applications of the EM algorithm in the computational pattern recognition community.

We have

$$
\begin{equation*}
p(\boldsymbol{x} \mid \Theta)=\sum_{i=1}^{M} \alpha_{i} p_{i}\left(\boldsymbol{x} \mid \theta_{i}\right) \tag{28}
\end{equation*}
$$

where
(1) $\Theta=\left(\alpha_{1}, \ldots, \alpha_{M}, \theta_{1}, \ldots, \theta_{M}\right)$

Finding Maximum Likelihood Mixture Densities Parameters via EM

Something Notable

The mixture-density parameter estimation problem is probably one of the most widely used applications of the EM algorithm in the computational pattern recognition community.

We have

$$
\begin{equation*}
p(\boldsymbol{x} \mid \Theta)=\sum_{i=1}^{M} \alpha_{i} p_{i}\left(\boldsymbol{x} \mid \theta_{i}\right) \tag{28}
\end{equation*}
$$

where
(1) $\Theta=\left(\alpha_{1}, \ldots, \alpha_{M}, \theta_{1}, \ldots, \theta_{M}\right)$
(2) $\sum_{i=1}^{M} \alpha_{i}=1$

Finding Maximum Likelihood Mixture Densities Parameters via EM

Something Notable

The mixture-density parameter estimation problem is probably one of the most widely used applications of the EM algorithm in the computational pattern recognition community.

We have

$$
\begin{equation*}
p(\boldsymbol{x} \mid \Theta)=\sum_{i=1}^{M} \alpha_{i} p_{i}\left(\boldsymbol{x} \mid \theta_{i}\right) \tag{28}
\end{equation*}
$$

where
(1) $\Theta=\left(\alpha_{1}, \ldots, \alpha_{M}, \theta_{1}, \ldots, \theta_{M}\right)$
(2) $\sum_{i=1}^{M} \alpha_{i}=1$
(3) Each p_{i} is a density function parametrized by θ_{i}.

A log-likelihood for this function

We have

$$
\begin{equation*}
\log \mathcal{L}(\Theta \mid \mathcal{X})=\log \prod_{i=1}^{N} p\left(x_{i} \mid \Theta\right)=\sum_{i=1}^{N} \log \left(\sum_{j=1}^{M} \alpha_{j} p_{j}\left(x_{i} \mid \theta_{j}\right)\right) \tag{29}
\end{equation*}
$$

A log-likelihood for this function

We have

$$
\begin{equation*}
\log \mathcal{L}(\Theta \mid \mathcal{X})=\log \prod_{i=1}^{N} p\left(x_{i} \mid \Theta\right)=\sum_{i=1}^{N} \log \left(\sum_{j=1}^{M} \alpha_{j} p_{j}\left(x_{i} \mid \theta_{j}\right)\right) \tag{29}
\end{equation*}
$$

Note: This is too difficult to optimize due to the log function.

A log-likelihood for this function

We have

$$
\begin{equation*}
\log \mathcal{L}(\Theta \mid \mathcal{X})=\log \prod_{i=1}^{N} p\left(x_{i} \mid \Theta\right)=\sum_{i=1}^{N} \log \left(\sum_{j=1}^{M} \alpha_{j} p_{j}\left(x_{i} \mid \theta_{j}\right)\right) \tag{29}
\end{equation*}
$$

Note: This is too difficult to optimize due to the log function.

However

We can simplify this assuming the following:

A log-likelihood for this function

We have

$$
\begin{equation*}
\log \mathcal{L}(\Theta \mid \mathcal{X})=\log \prod_{i=1}^{N} p\left(x_{i} \mid \Theta\right)=\sum_{i=1}^{N} \log \left(\sum_{j=1}^{M} \alpha_{j} p_{j}\left(x_{i} \mid \theta_{j}\right)\right) \tag{29}
\end{equation*}
$$

Note: This is too difficult to optimize due to the \log function.

However

We can simplify this assuming the following:
(1) We assume that each unobserved data $\mathcal{Y}=\left\{y_{i}\right\}_{i=1}^{N}$ has a the following range $y_{i} \in\{1, \ldots, M\}$

A log-likelihood for this function

We have

$$
\begin{equation*}
\log \mathcal{L}(\Theta \mid \mathcal{X})=\log \prod_{i=1}^{N} p\left(x_{i} \mid \Theta\right)=\sum_{i=1}^{N} \log \left(\sum_{j=1}^{M} \alpha_{j} p_{j}\left(x_{i} \mid \theta_{j}\right)\right) \tag{29}
\end{equation*}
$$

Note: This is too difficult to optimize due to the \log function.

However

We can simplify this assuming the following:
(1) We assume that each unobserved data $\mathcal{Y}=\left\{y_{i}\right\}_{i=1}^{N}$ has a the following range $y_{i} \in\{1, \ldots, M\}$
(2) $y_{i}=k$ if the $i^{\text {th }}$ samples was generated by the $k^{t h}$ mixture.

Now
We have

$$
\begin{equation*}
\log \mathcal{L}(\Theta \mid \mathcal{X}, \mathcal{Y})=\log [P(\mathcal{X}, \mathcal{Y} \mid \Theta)] \tag{30}
\end{equation*}
$$

Now

We have

$$
\begin{equation*}
\log \mathcal{L}(\Theta \mid \mathcal{X}, \mathcal{Y})=\log [P(\mathcal{X}, \mathcal{Y} \mid \Theta)] \tag{30}
\end{equation*}
$$

Remember that $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ with $\mathcal{Y}=\left\{y_{1}, y_{2}, \ldots, y_{N}\right\}$ and assuming independence

$$
\log [P(\mathcal{X}, \mathcal{Y} \mid \Theta)]=\log \left[P\left(x_{1}, x_{2}, \ldots, x_{N}, y_{1}, y_{2}, \ldots, y_{N} \mid \Theta\right)\right]
$$

Now

We have

$$
\begin{equation*}
\log \mathcal{L}(\Theta \mid \mathcal{X}, \mathcal{Y})=\log [P(\mathcal{X}, \mathcal{Y} \mid \Theta)] \tag{30}
\end{equation*}
$$

Remember that $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ with $\mathcal{Y}=\left\{y_{1}, y_{2}, \ldots, y_{N}\right\}$ and assuming independence

$$
\begin{aligned}
\log [P(\mathcal{X}, \mathcal{Y} \mid \Theta)] & =\log \left[P\left(x_{1}, x_{2}, \ldots, x_{N}, y_{1}, y_{2}, \ldots, y_{N} \mid \Theta\right)\right] \\
& =\log \left[P\left(x_{1}, y_{1}, \ldots, x_{i}, y_{i}, \ldots, x_{N}, y_{N} \mid \Theta\right)\right]
\end{aligned}
$$

Now

We have

$$
\begin{equation*}
\log \mathcal{L}(\Theta \mid \mathcal{X}, \mathcal{Y})=\log [P(\mathcal{X}, \mathcal{Y} \mid \Theta)] \tag{30}
\end{equation*}
$$

Remember that $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ with $\mathcal{Y}=\left\{y_{1}, y_{2}, \ldots, y_{N}\right\}$ and assuming independence

$$
\begin{aligned}
\log [P(\mathcal{X}, \mathcal{Y} \mid \Theta)] & =\log \left[P\left(x_{1}, x_{2}, \ldots, x_{N}, y_{1}, y_{2}, \ldots, y_{N} \mid \Theta\right)\right] \\
& =\log \left[P\left(x_{1}, y_{1}, \ldots, x_{i}, y_{i}, \ldots, x_{N}, y_{N} \mid \Theta\right)\right] \\
& =\log \prod_{i=1}^{N} P\left(x_{i}, y_{i} \mid \Theta\right)
\end{aligned}
$$

Now

We have

$$
\begin{equation*}
\log \mathcal{L}(\Theta \mid \mathcal{X}, \mathcal{Y})=\log [P(\mathcal{X}, \mathcal{Y} \mid \Theta)] \tag{30}
\end{equation*}
$$

Remember that $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ with $\mathcal{Y}=\left\{y_{1}, y_{2}, \ldots, y_{N}\right\}$ and assuming independence

$$
\begin{aligned}
\log [P(\mathcal{X}, \mathcal{Y} \mid \Theta)] & =\log \left[P\left(x_{1}, x_{2}, \ldots, x_{N}, y_{1}, y_{2}, \ldots, y_{N} \mid \Theta\right)\right] \\
& =\log \left[P\left(x_{1}, y_{1}, \ldots, x_{i}, y_{i}, \ldots, x_{N}, y_{N} \mid \Theta\right)\right] \\
& =\log \prod_{i=1}^{N} P\left(x_{i}, y_{i} \mid \Theta\right) \\
& =\sum_{i=1}^{N} \log P\left(x_{i}, y_{i} \mid \Theta\right)
\end{aligned}
$$

Thus, by the chain Rule

$$
\begin{equation*}
\sum_{i=1}^{N} \log P\left(x_{i}, y_{i} \mid \Theta\right)=\sum_{i=1}^{N} \log \left[P\left(x_{i} \mid y_{i}, \theta_{y_{i}}\right) P\left(y_{i} \mid \theta_{y_{i}}\right)\right] \tag{31}
\end{equation*}
$$

Question Do you need y_{i} if you know $\theta_{y_{i}}$ or the other way around?

Thus, by the chain Rule

$$
\begin{equation*}
\sum_{i=1}^{N} \log P\left(x_{i}, y_{i} \mid \Theta\right)=\sum_{i=1}^{N} \log \left[P\left(x_{i} \mid y_{i}, \theta_{y_{i}}\right) P\left(y_{i} \mid \theta_{y_{i}}\right)\right] \tag{31}
\end{equation*}
$$

Question Do you need y_{i} if you know $\theta_{y_{i}}$ or the other way around?

Finally

$$
\begin{equation*}
\sum_{i=1}^{N} \log \left[P\left(x_{i} \mid y_{i}, \theta_{y_{i}}\right) P\left(y_{i} \mid \theta_{y_{i}}\right)\right]=\sum_{i=1}^{N} \log \left[P\left(y_{i}\right) p_{y_{i}}\left(x_{i} \mid \theta_{y_{i}}\right)\right] \tag{32}
\end{equation*}
$$

NOPE: You do not need y_{i} if you know $\theta_{y_{i}}$ or the other way around.

Finally, we have

Making $\alpha_{y_{i}}=P\left(y_{i}\right)$

$$
\begin{equation*}
\log \mathcal{L}(\Theta \mid \mathcal{X}, \mathcal{Y})=\sum_{i=1}^{N} \log \left[\alpha_{y_{i}} P\left(x_{i} \mid y_{i}, \theta_{y_{i}}\right)\right] \tag{33}
\end{equation*}
$$

Problem

Which Labels?

We do not know the values of \mathcal{Y}.

Problem

Which Labels?

We do not know the values of \mathcal{Y}.
We can get away by using the following idea
Assume the \mathcal{Y} is a random variable.

Outline

Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

(2) Incomplete Data

- Introduction
- Using the Expected Value
- Analogy
(3. Derivation of the EM-Algorithm
- Hidden Features
- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
(4) Finding Maximum Likelihood Mixture Densities
- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers
- In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Thus

You do a first guess for the parameters at the beginning of EM

$$
\begin{equation*}
\Theta^{g}=\left(\alpha_{1}^{g}, \ldots, \alpha_{M}^{g}, \theta_{1}^{g}, \ldots, \theta_{M}^{g}\right) \tag{34}
\end{equation*}
$$

Thus

You do a first guess for the parameters at the beginning of EM

$$
\begin{equation*}
\Theta^{g}=\left(\alpha_{1}^{g}, \ldots, \alpha_{M}^{g}, \theta_{1}^{g}, \ldots, \theta_{M}^{g}\right) \tag{34}
\end{equation*}
$$

Then, it is possible to calculate given the parametric probability

$$
p_{j}\left(x_{i} \mid \theta_{j}^{g}\right)
$$

Thus

You do a first guess for the parameters at the beginning of EM

$$
\begin{equation*}
\Theta^{g}=\left(\alpha_{1}^{g}, \ldots, \alpha_{M}^{g}, \theta_{1}^{g}, \ldots, \theta_{M}^{g}\right) \tag{34}
\end{equation*}
$$

Then, it is possible to calculate given the parametric probability

$$
p_{j}\left(x_{i} \mid \theta_{j}^{g}\right)
$$

Therefore

The mixing parameters α_{j} can be though of as a prior probabilities of each mixture:

$$
\begin{equation*}
\alpha_{j}=p(\text { component } j) \tag{35}
\end{equation*}
$$

Outline

Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM
(2) Incomplete Data
- Introduction
- Using the Expected Value
- Analogy
(3. Derivation of the EM-Algorithm
- Hidden Features
- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
(4) Finding Maximum Likelihood Mixture Densities
- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers
- In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Cinvestav

Outline

Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

Incomplete Data

- Introduction
- Using the Expected Value
- Analogy
(3. Derivation of the EM-Algorithm
- Hidden Features
- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
(4) Finding Maximum Likelihood Mixture Densities
- The Beginning of The Process
- Bayes' Rule for the components - Mixing Parameters
- Maximizing Q using Lagrange Multipliers - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Cinvestav

We want to calculate the following probability

We want to calculate

$$
p\left(y_{i} \mid x_{i}, \Theta^{g}\right)
$$

We want to calculate the following probability

We want to calculate

$$
p\left(y_{i} \mid x_{i}, \Theta^{g}\right)
$$

Basically

We want a Bayesian formulation of this probability.

We want to calculate the following probability

We want to calculate

$$
p\left(y_{i} \mid x_{i}, \Theta^{g}\right)
$$

Basically

We want a Bayesian formulation of this probability.

- Assuming that the $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{N}\right)$ are samples identically independent samples from a distribution.

Using Bayes' Rule

Compute

$$
p\left(y_{i} \mid x_{i}, \Theta^{g}\right)=\frac{p\left(y_{i}, x_{i} \mid \Theta^{g}\right)}{p\left(x_{i} \mid \Theta^{g}\right)}
$$

Using Bayes' Rule

Compute

$$
\begin{aligned}
p\left(y_{i} \mid x_{i}, \Theta^{g}\right) & =\frac{p\left(y_{i}, x_{i} \mid \Theta^{g}\right)}{p\left(x_{i} \mid \Theta^{g}\right)} \\
& =\frac{p\left(x_{i} \mid \Theta^{g}\right) p\left(y_{i} \mid \theta_{y_{i}}^{g}\right)}{p\left(x_{i} \mid \Theta^{g}\right)} \text { We know } \theta_{y_{i}}^{g} \Rightarrow \text { Drop it }
\end{aligned}
$$

Using Bayes' Rule

Compute

$$
\begin{aligned}
p\left(y_{i} \mid x_{i}, \Theta^{g}\right) & =\frac{p\left(y_{i}, x_{i} \mid \Theta^{g}\right)}{p\left(x_{i} \mid \Theta^{g}\right)} \\
& =\frac{p\left(x_{i} \mid \Theta^{g}\right) p\left(y_{i} \mid \theta_{y_{i}}^{g}\right)}{p\left(x_{i} \mid \Theta^{g}\right)} \text { We know } \theta_{y_{i}}^{g} \Rightarrow \text { Drop it } \\
& =\frac{\alpha_{y_{i}}^{g} p_{y_{i}}\left(x_{i} \mid \theta_{y_{i}}^{g}\right)}{p\left(x_{i} \mid \Theta^{g}\right)}
\end{aligned}
$$

Using Bayes' Rule

Compute

$$
\begin{aligned}
p\left(y_{i} \mid x_{i}, \Theta^{g}\right) & =\frac{p\left(y_{i}, x_{i} \mid \Theta^{g}\right)}{p\left(x_{i} \mid \Theta^{g}\right)} \\
& =\frac{p\left(x_{i} \mid \Theta^{g}\right) p\left(y_{i} \mid \theta_{y_{i}}^{g}\right)}{p\left(x_{i} \mid \Theta^{g}\right)} \text { We know } \theta_{y_{i}}^{g} \Rightarrow \text { Drop it } \\
& =\frac{\alpha_{y_{i}}^{g} p_{y_{i}}\left(x_{i} \mid \theta_{y_{i}}^{g}\right)}{p\left(x_{i} \mid \Theta^{g}\right)} \\
& =\frac{\alpha_{y_{i}}^{g} p_{y_{i}}\left(x_{i} \mid \theta_{y_{i}}^{g}\right)}{\sum_{k=1}^{M} \alpha_{k}^{g} p_{k}\left(x_{i} \mid \theta_{k}^{g}\right)}
\end{aligned}
$$

As in Naive Bayes

We have the fact that there is a probability per probability at the mixture and sample

$$
p\left(y_{i} \mid x_{i}, \Theta^{g}\right)=\frac{\alpha_{y_{i}}^{g} p_{y_{i}}\left(x_{i} \mid \theta_{y_{i}}^{g}\right)}{\sum_{k=1}^{M} \alpha_{k}^{g} p_{k}\left(x_{i} \mid \theta_{k}^{g}\right)} \forall x_{i}, y_{i} \text { and } k \in\{1, \ldots, M\}
$$

As in Naive Bayes

We have the fact that there is a probability per probability at the mixture and sample

$$
p\left(y_{i} \mid x_{i}, \Theta^{g}\right)=\frac{\alpha_{y_{i}}^{g} p_{y_{i}}\left(x_{i} \mid \theta_{y_{i}}^{g}\right)}{\sum_{k=1}^{M} \alpha_{k}^{g} p_{k}\left(x_{i} \mid \theta_{k}^{g}\right)} \forall x_{i}, y_{i} \text { and } k \in\{1, \ldots, M\}
$$

This is going to be updated at each iteration of the EM algorithm After the initial Guess!!! Until convergence!!!

Additionally

We assume again that the samples $y_{i}^{\prime} s$ are identically and independent samples

$$
\begin{equation*}
p\left(\boldsymbol{y} \mid \mathcal{X}, \Theta^{g}\right)=\prod_{i=1}^{N} p\left(y_{i} \mid x_{i}, \Theta^{g}\right) \tag{36}
\end{equation*}
$$

Where $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{N}\right)$

Now, using equation 17

Then

$$
Q\left(\Theta \mid \Theta^{g}\right)=\sum_{\boldsymbol{y} \in \mathcal{Y}} \log (\mathcal{L}(\Theta \mid \mathcal{X}, \boldsymbol{y})) p\left(\boldsymbol{y} \mid \mathcal{X}, \Theta^{g}\right)
$$

Now, using equation 17

Then

$$
\begin{aligned}
Q\left(\Theta \mid \Theta^{g}\right) & =\sum_{\boldsymbol{y} \in \mathcal{Y}} \log (\mathcal{L}(\Theta \mid \mathcal{X}, \boldsymbol{y})) p\left(\boldsymbol{y} \mid \mathcal{X}, \Theta^{g}\right) \\
& =\sum_{\boldsymbol{y} \in \mathcal{Y}} \sum_{i=1}^{N} \log \left[\alpha_{y_{i}} p_{y_{i}}\left(x_{i} \mid \theta_{y_{i}}\right)\right] \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)
\end{aligned}
$$

Here, a small stop

What is the meaning of $\sum_{y \in \mathcal{V}}$

It is actually a summation of all possible states of the random vector \boldsymbol{y}.

Here, a small stop

What is the meaning of $\sum_{y \in \mathcal{Y}}$

It is actually a summation of all possible states of the random vector \boldsymbol{y}.
Then, we can rewrite the previous summation as

$$
\sum_{\boldsymbol{y} \in \mathcal{Y}}=\underbrace{\sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M}}_{N}
$$

Running over all the samples $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$.

Then

We have

$$
Q\left(\Theta \mid \Theta^{g}\right)=\sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \sum_{i=1}^{N}\left[\log \left[\alpha_{y_{i}} y_{y_{i}}\left(x_{i} \mid \theta_{y_{i}}\right)\right] \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right]
$$

We introduce the following

We have the following function

$$
\delta_{l, y_{i}}= \begin{cases}1 & I=y_{i} \\ 0 & I \neq y_{i}\end{cases}
$$

We introduce the following

We have the following function

$$
\delta_{l, y_{i}}= \begin{cases}1 & I=y_{i} \\ 0 & I \neq y_{i}\end{cases}
$$

Therefore, we can do the following

$$
\alpha_{i}=\sum_{j=1}^{M} \delta_{i, j} \alpha_{j}
$$

We introduce the following
We have the following function

$$
\delta_{l, y_{i}}= \begin{cases}1 & I=y_{i} \\ 0 & I \neq y_{i}\end{cases}
$$

Therefore, we can do the following

$$
\alpha_{i}=\sum_{j=1}^{M} \delta_{i, j} \alpha_{j}
$$

Then
$\log \left[\alpha_{y_{i}} p_{y_{i}}\left(x_{i} \mid \theta_{y_{i}}\right)\right] \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)=\sum_{l=1}^{M} \delta_{l, y_{i}} \log \left[\alpha_{l} p_{l}\left(x_{i} \mid \theta_{l}\right)\right] \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)$

Thus

We have that for

$\sum_{y_{1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \sum_{i=1}^{N} \log \left[\alpha_{y_{i}} p_{y_{i}}\left(x_{i} \mid \theta_{y_{i}}\right)\right] \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)=*$

$$
*=\sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \sum_{i=1}^{N} \sum_{l=1}^{M} \delta_{l, y_{i}} \log \left[\alpha_{l} p_{l}\left(x_{i} \mid \theta_{l}\right)\right] \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)
$$

Thus

We have that for

$\sum_{y_{1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \sum_{i=1}^{N} \log \left[\alpha_{y_{i}} p_{y_{i}}\left(x_{i} \mid \theta_{y_{i}}\right)\right] \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)=*$

$$
\begin{aligned}
* & =\sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \sum_{i=1}^{N} \sum_{l=1}^{M} \delta_{l, y_{i}} \log \left[\alpha_{l} p_{l}\left(x_{i} \mid \theta_{l}\right)\right] \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right) \\
& =\sum_{i=1}^{N} \sum_{l=1}^{M} \log \left[\alpha_{l} p_{l}\left(x_{i} \mid \theta_{l}\right)\right] \sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M}\left[\delta_{l, y_{i}} \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right]
\end{aligned}
$$

Because

Thus

We have that for

$\sum_{y_{1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \sum_{i=1}^{N} \log \left[\alpha_{y_{i}} p_{y_{i}}\left(x_{i} \mid \theta_{y_{i}}\right)\right] \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)=*$

$$
\begin{aligned}
* & =\sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \sum_{i=1}^{N} \sum_{l=1}^{M} \delta_{l, y_{i}} \log \left[\alpha_{l} p_{l}\left(x_{i} \mid \theta_{l}\right)\right] \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right) \\
& =\sum_{i=1}^{N} \sum_{l=1}^{M} \log \left[\alpha_{l} p_{l}\left(x_{i} \mid \theta_{l}\right)\right] \sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M}\left[\delta_{l, y_{i}} \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right]
\end{aligned}
$$

Because

$\sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M}$ applies only to $\delta_{l, y_{i}} \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)$

Then, we have that

First notice the following

$$
\sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M}\left[\delta_{l, y_{i}} \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right]=
$$

Then, we have that

First notice the following

$$
\begin{aligned}
& \sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M}\left[\delta_{l, y_{i}} \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right]= \\
= & \left(\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M}\left\{\left[\sum_{y_{i}=1}^{M} \delta_{l, y_{i}} p\left(y_{i} \mid x_{i}, \Theta^{g}\right)\right] \prod_{j=1, j \neq i,}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right\}\right)
\end{aligned}
$$

Then, we have

Then, we have that

First notice the following

$$
\begin{aligned}
& \sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M}\left[\delta_{l, y_{i}} \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right]= \\
= & \left(\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M}\left\{\left[\sum_{y_{i}=1}^{M} \delta_{l, y_{i}} p\left(y_{i} \mid x_{i}, \Theta^{g}\right)\right] \prod_{j=1, j \neq i,}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right\}\right)
\end{aligned}
$$

Then, we have

$$
\sum_{y_{i}=1}^{M} \delta_{l, y_{i}} p\left(y_{i} \mid x_{i}, \Theta^{g}\right)=p\left(l \mid x_{i}, \Theta^{g}\right)
$$

In this way

Plugging back the previous equation

$$
\sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \delta_{l, y_{i}} \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)=
$$

In this way

Plugging back the previous equation

$$
\begin{aligned}
& \sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \delta_{l, y_{i}} \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)= \\
= & \left(\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} p\left(l \mid x_{i}, \Theta^{g}\right) \prod_{j=1, j \neq i}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right)
\end{aligned}
$$

In this way

Plugging back the previous equation

$$
\begin{aligned}
& \sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \delta_{l, y_{i}} \prod_{j=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)= \\
= & \left(\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} p\left(l \mid x_{i}, \Theta^{g}\right) \prod_{j=1, j \neq i}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right) \\
= & \left(\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \prod_{j=1, j \neq i}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right) p\left(l \mid x_{i}, \Theta^{g}\right)
\end{aligned}
$$

Now, what about...?

The left part of the equation

$$
\sum_{j=1}^{M} \cdots \sum_{j}^{M} \sum_{j, 1}^{M} \ldots \sum_{j=1}^{M} \prod_{i=1}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)=
$$

Now, what about...?

The left part of the equation

$$
\begin{aligned}
& \sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \prod_{j=1, j \neq i}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)= \\
= & {\left[\sum_{y_{1}=1}^{M} p\left(y_{1} \mid x_{1}, \Theta^{g}\right)\right] \cdots\left[\sum_{y_{i-1}=1}^{M} p\left(y_{i-1} \mid x_{i-1}, \Theta^{g}\right)\right] \times \ldots } \\
& {\left[\sum_{y_{i+1}=1}^{M} p\left(y_{i+1} \mid x_{i+1}, \Theta^{g}\right)\right] \ldots\left[\sum_{y_{N}=1}^{M} p\left(y_{N} \mid x_{N}, \Theta^{g}\right)\right] }
\end{aligned}
$$

Now, what about...?

The left part of the equation

$$
\begin{aligned}
& \sum_{y_{1}=1}^{M} \ldots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \ldots \sum_{y_{N}=1}^{M} \prod_{j=1, j \neq i}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)= \\
= & {\left.\left[\sum_{y_{1}=1}^{M} p\left(y_{1} \mid x_{1}, \Theta^{g}\right)\right] \cdots \sum_{y_{i-1}=1}^{M} p\left(y_{i-1} \mid x_{i-1}, \Theta^{g}\right)\right] \times \ldots } \\
= & {\left[\sum_{y_{i+1}=1}^{M} p\left(y_{i+1} \mid x_{i+1}, \Theta^{g}\right)\right] \cdots\left[\sum_{y_{N}=1}^{M} p\left(y_{N} \mid x_{N}, \Theta^{g}\right)\right] } \\
& \left.\sum_{j=1, j \neq i}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right]
\end{aligned}
$$

Then, we have that

Plugging back to the original equation

$$
\left\{\sum_{y_{1}=1}^{M} \ldots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \ldots \sum_{y_{N}=1}^{M} \prod_{j=1, j \neq i}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right\} p\left(l \mid x_{i}, \Theta^{g}\right)=
$$

Then, we have that

Plugging back to the original equation

$$
\begin{aligned}
& \left\{\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \prod_{j=1, j \neq i}^{N} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right\} p\left(l \mid x_{i}, \Theta^{g}\right)= \\
= & \left\{\prod_{j=1, j \neq i}^{N}\left[\sum_{y_{j}=1}^{M} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right]\right\} p\left(l \mid x_{i}, \Theta^{g}\right)
\end{aligned}
$$

We can use properties of probability
We know that

$$
\begin{equation*}
\sum_{y_{i}=1}^{M} p\left(y_{i} \mid x_{i}, \Theta^{g}\right)=1 \tag{37}
\end{equation*}
$$

We can use properties of probability
We know that

$$
\begin{equation*}
\sum_{y_{i}=1}^{M} p\left(y_{i} \mid x_{i}, \Theta^{g}\right)=1 \tag{37}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \left\{\prod_{j=1, j \neq i}^{N}\left[\sum_{y_{j}=1}^{M} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right]\right\} p\left(l \mid x_{i}, \Theta^{g}\right)= \\
= & \left\{\prod_{j=1, j \neq i}^{N} 1\right\} p\left(l \mid x_{i}, \Theta^{g}\right)
\end{aligned}
$$

We can use properties of probability
We know that

$$
\begin{equation*}
\sum_{y_{i}=1}^{M} p\left(y_{i} \mid x_{i}, \Theta^{g}\right)=1 \tag{37}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \left\{\prod_{j=1, j \neq i}^{N}\left[\sum_{y_{j}=1}^{M} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right]\right\} p\left(l \mid x_{i}, \Theta^{g}\right)= \\
= & \left\{\prod_{j=1, j \neq i}^{N} 1\right\} p\left(l \mid x_{i}, \Theta^{g}\right) \\
= & p\left(l \mid x_{i}, \Theta^{g}\right)
\end{aligned}
$$

We can use properties of probability
We know that

$$
\begin{equation*}
\sum_{y_{i}=1}^{M} p\left(y_{i} \mid x_{i}, \Theta^{g}\right)=1 \tag{37}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \left\{\prod_{j=1, j \neq i}^{N}\left[\sum_{y_{j}=1}^{M} p\left(y_{j} \mid x_{j}, \Theta^{g}\right)\right]\right\} p\left(l \mid x_{i}, \Theta^{g}\right)= \\
= & \left\{\prod_{j=1, j \neq i}^{N} 1\right\} p\left(l \mid x_{i}, \Theta^{g}\right) \\
= & p\left(l \mid x_{i}, \Theta^{g}\right) \\
= & \frac{\alpha_{l}^{g} p_{y_{i}}\left(x_{i} \mid \theta_{l}^{g}\right)}{\sum_{k=1}^{M} \alpha_{k}^{g} p_{k}\left(x_{i} \mid \theta_{k}^{g}\right)}
\end{aligned}
$$

Thus

We can write Q in the following way

$$
Q\left(\Theta, \Theta^{g}\right)=\sum_{i=1}^{N} \sum_{l=1}^{M} \log \left[\alpha_{l} p_{l}\left(x_{i} \mid \theta_{l}\right)\right] p\left(l \mid x_{i}, \Theta^{g}\right)
$$

Thus

We can write Q in the following way

$$
\begin{aligned}
Q\left(\Theta, \Theta^{g}\right) & =\sum_{i=1}^{N} \sum_{l=1}^{M} \log \left[\alpha_{l} p_{l}\left(x_{i} \mid \theta_{l}\right)\right] p\left(l \mid x_{i}, \Theta^{g}\right) \\
& =\sum_{i=1}^{N} \sum_{l=1}^{M} \log \left(\alpha_{l}\right) p\left(l \mid x_{i}, \Theta^{g}\right)+\ldots
\end{aligned}
$$

Thus

We can write Q in the following way

$$
\begin{align*}
Q\left(\Theta, \Theta^{g}\right)= & \sum_{i=1}^{N} \sum_{l=1}^{M} \log \left[\alpha_{l} p_{l}\left(x_{i} \mid \theta_{l}\right)\right] p\left(l \mid x_{i}, \Theta^{g}\right) \\
= & \sum_{i=1}^{N} \sum_{l=1}^{M} \log \left(\alpha_{l}\right) p\left(l \mid x_{i}, \Theta^{g}\right)+\ldots \\
& \sum_{i=1}^{N} \sum_{l=1}^{M} \log \left(p_{l}\left(x_{i} \mid \theta_{l}\right)\right) p\left(l \mid x_{i}, \Theta^{g}\right) \tag{38}
\end{align*}
$$

Outline

Introduction
－Maximum－Likelihood
－Expectation Maximization
－Examples of Applications of EM
（2）Incomplete Data
－Introduction
－Using the Expected Value
－Analogy
（3．Derivation of the EM－Algorithm
－Hidden Features
－Proving Concavity
－Using the Concave Functions for Approximation
－From The Concave Function to the EM
－The Final Algorithm
－Notes and Convergence of EM
（4）Finding Maximum Likelihood Mixture Densities
－The Beginning of The Process
－Bayes＇Rule for the components
－Mixing Parameters
－Maximizing Q using Lagrange Multipliers
－In Our Case
－Example on Mixture of Gaussian Distributions
－The EM Algorithm

A Method

That could be used as a general framework
To solve problems set as EM problem.

A Method

That could be used as a general framework

To solve problems set as EM problem.
First, we will look at the Lagrange Multipliers setup
Then, we will look at a specific case using the mixture of Gaussian's

A Method

That could be used as a general framework

To solve problems set as EM problem.

First, we will look at the Lagrange Multipliers setup
Then, we will look at a specific case using the mixture of Gaussian's

Note

Not all the mixture of distributions will get you an analytical solution.

Outline

Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

Incomplete Data

- Introduction
- Using the Expected Value
- Analogy
(3. Derivation of the EM-Algorithm
- Hidden Features
- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
(4) Finding Maximum Likelihood Mixture Densities
- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers
- In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Lagrange Multipliers for Q

We can us the following constraint for that

$$
\begin{equation*}
\sum_{l} \alpha_{l}=1 \tag{39}
\end{equation*}
$$

Lagrange Multipliers for Q

We can us the following constraint for that

$$
\begin{equation*}
\sum_{l} \alpha_{l}=1 \tag{39}
\end{equation*}
$$

We have the following cost function

$$
Q\left(\Theta, \Theta^{g}\right)+\lambda\left(\sum_{l} \alpha_{l}-1\right)
$$

Lagrange Multipliers for Q

We can us the following constraint for that

$$
\begin{equation*}
\sum_{l} \alpha_{l}=1 \tag{39}
\end{equation*}
$$

We have the following cost function

$$
\begin{equation*}
Q\left(\Theta, \Theta^{g}\right)+\lambda\left(\sum_{l} \alpha_{l}-1\right) \tag{40}
\end{equation*}
$$

Deriving by α_{l}

$$
\begin{equation*}
\frac{\partial}{\partial \alpha_{l}}\left[Q\left(\Theta, \Theta^{g}\right)+\lambda\left(\sum_{l} \alpha_{l}-1\right)\right]=0 \tag{41}
\end{equation*}
$$

Thus

The Q function

$$
\begin{aligned}
Q\left(\Theta, \Theta^{g}\right)= & \sum_{i=1}^{N} \sum_{l=1}^{M} \log \left(\alpha_{l}\right) p\left(l \mid x_{i}, \Theta^{g}\right)+\ldots \\
& \sum_{i=1}^{N} \sum_{l=1}^{M} \log \left(p_{l}\left(x_{i} \mid \theta_{l}\right)\right) p\left(l \mid x_{i}, \Theta^{g}\right)
\end{aligned}
$$

Deriving

We have

$$
\frac{\partial}{\partial \alpha_{l}}\left[Q\left(\Theta, \Theta^{g}\right)+\lambda\left(\sum_{l} \alpha_{l}-1\right)\right]=\sum_{i=1}^{N} \frac{1}{\alpha_{l}} p\left(l \mid x_{i}, \Theta^{g}\right)+\lambda
$$

Finally

We have making the previous equation equal to 0

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{1}{\alpha_{l}} p\left(l \mid x_{i}, \Theta^{g}\right)+\lambda=0 \tag{42}
\end{equation*}
$$

Finally

We have making the previous equation equal to 0

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{1}{\alpha_{l}} p\left(l \mid x_{i}, \Theta^{g}\right)+\lambda=0 \tag{42}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right)=-\lambda \alpha_{l} \tag{43}
\end{equation*}
$$

Finally

We have making the previous equation equal to 0

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{1}{\alpha_{l}} p\left(l \mid x_{i}, \Theta^{g}\right)+\lambda=0 \tag{42}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right)=-\lambda \alpha_{l} \tag{43}
\end{equation*}
$$

Summing over l, we get

$$
\begin{equation*}
\lambda=-N \tag{44}
\end{equation*}
$$

Lagrange Multipliers

Thus

$$
\begin{equation*}
\alpha_{l}=\frac{1}{N} \sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right) \tag{45}
\end{equation*}
$$

Lagrange Multipliers

Thus

$$
\begin{equation*}
\alpha_{l}=\frac{1}{N} \sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right) \tag{45}
\end{equation*}
$$

About θ_{l}

It is possible to get an analytical expressions for θ_{l} as functions of everything else.

- This is for you to try!!!

Lagrange Multipliers

Thus

$$
\begin{equation*}
\alpha_{l}=\frac{1}{N} \sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right) \tag{45}
\end{equation*}
$$

About θ_{l}

It is possible to get an analytical expressions for θ_{l} as functions of everything else.

- This is for you to try!!!

For more, please look at

"Geometric Idea of Lagrange Multipliers" by John Wyatt.

Outline

Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

Incomplete Data

- Introduction
- Using the Expected Value
- Analogy
(3. Derivation of the EM-Algorithm
- Hidden Features
- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
(4) Finding Maximum Likelihood Mixture Densities
- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers
- In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Remember?

Gaussian Distribution

$$
\begin{equation*}
p_{l}\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l}\right)=\frac{1}{(2 \pi)^{d / 2}\left|\Sigma_{l}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{l}\right)^{T} \Sigma_{l}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{l}\right)\right\} \tag{46}
\end{equation*}
$$

How to use this for Gaussian Distributions

For this, we need to refresh some linear algebra
(1) $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$

How to use this for Gaussian Distributions

For this, we need to refresh some linear algebra
(1) $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
(2) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$

How to use this for Gaussian Distributions

For this, we need to refresh some linear algebra
(1) $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
(2) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$

- $\sum_{i} x_{i}^{T} A x_{i}=\operatorname{tr}(A B)$ where $B=\sum_{i} x_{i} x_{i}^{T}$.

How to use this for Gaussian Distributions

For this, we need to refresh some linear algebra
(1) $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
(2) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
(3) $\sum_{i} x_{i}^{T} A x_{i}=\operatorname{tr}(A B)$ where $B=\sum_{i} x_{i} x_{i}^{T}$.
(9) $\left|A^{-1}\right|=\frac{1}{|A|}$

How to use this for Gaussian Distributions

For this, we need to refresh some linear algebra
(1) $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
(2) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
(3) $\sum_{i} x_{i}^{T} A x_{i}=\operatorname{tr}(A B)$ where $B=\sum_{i} x_{i} x_{i}^{T}$.
(9) $\left|A^{-1}\right|=\frac{1}{|A|}$

Now, we need the derivative of a matrix function $f(A)$
Thus, $\frac{\partial f(A)}{\partial A}$ is going to be the matrix with $i, j^{\text {th }}$ entry $\left[\frac{\partial f(A)}{\partial a_{i, j}}\right]$ where $a_{i, j}$ is the $i, j^{\text {th }}$ entry of A.

In addition

If A is symmetric

$$
\frac{\partial|A|}{\partial A}= \begin{cases}\mathcal{A}_{i, j} & \text { if } i=j \tag{47}\\ 2 \mathcal{A}_{i, j} & \text { if } i \neq j\end{cases}
$$

In addition

If A is symmetric

$$
\frac{\partial|A|}{\partial A}= \begin{cases}\mathcal{A}_{i, j} & \text { if } i=j \tag{47}\\ 2 \mathcal{A}_{i, j} & \text { if } i \neq j\end{cases}
$$

Where $\mathcal{A}_{i, j}$ is the $i, j^{t h}$ cofactor of A.

In addition

If A is symmetric

$$
\frac{\partial|A|}{\partial A}= \begin{cases}\mathcal{A}_{i, j} & \text { if } i=j \tag{47}\\ 2 \mathcal{A}_{i, j} & \text { if } i \neq j\end{cases}
$$

Where $\mathcal{A}_{i, j}$ is the $i, j^{t h}$ cofactor of A.
Note: The determinant obtained by deleting the row and column of a given element of a matrix or determinant. The cofactor is preceded by a + or - sign depending whether the element is in a + or - position.

In addition

If A is symmetric

$$
\frac{\partial|A|}{\partial A}= \begin{cases}\mathcal{A}_{i, j} & \text { if } i=j \tag{47}\\ 2 \mathcal{A}_{i, j} & \text { if } i \neq j\end{cases}
$$

Where $\mathcal{A}_{i, j}$ is the $i, j^{\text {th }}$ cofactor of A.
Note: The determinant obtained by deleting the row and column of a given element of a matrix or determinant. The cofactor is preceded by a + or - sign depending whether the element is in a + or - position.

Thus

$$
\frac{\partial \log |A|}{\partial A}=\left\{\begin{array}{ll}
\frac{\mathcal{A}_{i, j}}{|A|} & \text { if } i=j \tag{48}\\
2 \mathcal{A}_{i, j} & \text { if } i \neq j
\end{array}=2 A^{-1}-\operatorname{diag}\left(A^{-1}\right)\right.
$$

Finally

The last equation we need

$$
\frac{\partial \operatorname{tr}(A B)}{\partial A}=B+B^{T}-\operatorname{diag}(B)
$$

Finally

The last equation we need

$$
\frac{\partial \operatorname{tr}(A B)}{\partial A}=B+B^{T}-\operatorname{diag}(B)
$$

In addition

$$
\frac{\partial \boldsymbol{x}^{T} A \boldsymbol{x}}{\partial \boldsymbol{x}}
$$

Thus, using last part of equation 38

We get, after ignoring constant terms
Remember they disappear after derivatives

$$
\sum_{i=1}^{N} \sum_{l=1}^{M} \log \left(p_{l}\left(\boldsymbol{x}_{i} \mid \mu_{l}, \Sigma_{l}\right)\right) p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)
$$

Thus, using last part of equation 38

We get, after ignoring constant terms

Remember they disappear after derivatives

$$
\begin{align*}
& \sum_{i=1}^{N} \sum_{l=1}^{M} \log \left(p_{l}\left(\boldsymbol{x}_{i} \mid \mu_{l}, \Sigma_{l}\right)\right) p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right) \\
= & \sum_{i=1}^{N} \sum_{l=1}^{M}\left[-\frac{1}{2} \log \left(\left|\Sigma_{l}\right|\right)-\frac{1}{2}\left(\boldsymbol{x}_{i}-\mu_{l}\right)^{T} \Sigma_{l}^{-1}\left(\boldsymbol{x}_{i}-\mu_{l}\right)\right] p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right) \tag{51}
\end{align*}
$$

Finally

Thus, when taking the derivative with respect to μ_{l}

$$
\begin{equation*}
\sum_{i=1}^{N}\left[\Sigma_{l}^{-1}\left(\boldsymbol{x}_{i}-\mu_{l}\right) p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)\right]=0 \tag{52}
\end{equation*}
$$

Finally

Thus, when taking the derivative with respect to μ_{l}

$$
\begin{equation*}
\sum_{i=1}^{N}\left[\Sigma_{l}^{-1}\left(\boldsymbol{x}_{i}-\mu_{l}\right) p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)\right]=0 \tag{52}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mu_{l}=\frac{\sum_{i=1}^{N} \boldsymbol{x}_{i} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)}{\sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)} \tag{53}
\end{equation*}
$$

Now, if we derive with respect to Σ_{l}

First, we rewrite equation 51

$$
\sum_{i=1}^{N} \sum_{l=1}^{M}\left[-\frac{1}{2} \log \left(\left|\Sigma_{l}\right|\right)-\frac{1}{2}\left(\boldsymbol{x}_{i}-\mu_{l}\right)^{T} \Sigma_{l}^{-1}\left(\boldsymbol{x}_{i}-\mu_{l}\right)\right] p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)
$$

Now, if we derive with respect to Σ_{l}

First, we rewrite equation 51

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{l=1}^{M}\left[-\frac{1}{2} \log \left(\left|\Sigma_{l}\right|\right)-\frac{1}{2}\left(\boldsymbol{x}_{i}-\mu_{l}\right)^{T} \Sigma_{l}^{-1}\left(\boldsymbol{x}_{i}-\mu_{l}\right)\right] p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right) \\
= & \sum_{l=1}^{M}\left[-\frac{1}{2} \log \left(\left|\Sigma_{l}\right|\right) \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)-\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right) \operatorname{tr}\left\{\Sigma_{l}^{-1}\left(\boldsymbol{x}_{i}-\mu_{l}\right)\left(\boldsymbol{x}_{i}-\mu_{l}\right)^{T}\right\}\right]
\end{aligned}
$$

Now, if we derive with respect to Σ_{l}

First, we rewrite equation 51

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{l=1}^{M}\left[-\frac{1}{2} \log \left(\left|\Sigma_{l}\right|\right)-\frac{1}{2}\left(\boldsymbol{x}_{i}-\mu_{l}\right)^{T} \Sigma_{l}^{-1}\left(\boldsymbol{x}_{i}-\mu_{l}\right)\right] p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right) \\
= & \sum_{l=1}^{M}\left[-\frac{1}{2} \log \left(\left|\Sigma_{l}\right|\right) \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)-\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right) \operatorname{tr}\left\{\Sigma_{l}^{-1}\left(\boldsymbol{x}_{i}-\mu_{l}\right)\left(\boldsymbol{x}_{i}-\mu_{l}\right)^{T}\right\}\right] \\
= & \sum_{l=1}^{M}\left[-\frac{1}{2} \log \left(\left|\Sigma_{l}\right|\right) \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)-\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right) \operatorname{tr}\left\{\Sigma_{l}^{-1} N_{l, i}\right\}\right]
\end{aligned}
$$

Now, if we derive with respect to Σ_{l}

First, we rewrite equation 51

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{l=1}^{M}\left[-\frac{1}{2} \log \left(\left|\Sigma_{l}\right|\right)-\frac{1}{2}\left(\boldsymbol{x}_{i}-\mu_{l}\right)^{T} \Sigma_{l}^{-1}\left(\boldsymbol{x}_{i}-\mu_{l}\right)\right] p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right) \\
= & \sum_{l=1}^{M}\left[-\frac{1}{2} \log \left(\left|\Sigma_{l}\right|\right) \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)-\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right) \operatorname{tr}\left\{\Sigma_{l}^{-1}\left(\boldsymbol{x}_{i}-\mu_{l}\right)\left(\boldsymbol{x}_{i}-\mu_{l}\right)^{T}\right\}\right] \\
= & \sum_{l=1}^{M}\left[-\frac{1}{2} \log \left(\left|\Sigma_{l}\right|\right) \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)-\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right) \operatorname{tr}\left\{\Sigma_{l}^{-1} N_{l, i}\right\}\right]
\end{aligned}
$$

Where $N_{l, i}=\left(\boldsymbol{x}_{i}-\mu_{l}\right)\left(\boldsymbol{x}_{i}-\mu_{l}\right)^{T}$.

Deriving with respect to Σ_{l}^{-1}

We have that

$$
\frac{\partial}{\partial \Sigma_{l}^{-1}} \sum_{l=1}^{M}\left[-\frac{1}{2} \log \left(\left|\Sigma_{l}\right|\right) \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)-\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right) \operatorname{tr}\left\{\Sigma_{l}^{-1} N_{l, i}\right\}\right]
$$

Deriving with respect to Σ_{l}^{-1}

We have that

$$
\begin{aligned}
& \frac{\partial}{\partial \Sigma_{l}^{-1}} \sum_{l=1}^{M}\left[-\frac{1}{2} \log \left(\left|\Sigma_{l}\right|\right) \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)-\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right) \operatorname{tr}\left\{\Sigma_{l}^{-1} N_{l, i}\right\}\right] \\
& \quad=\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)\left(2 \Sigma_{l}-\operatorname{diag}\left(\Sigma_{l}\right)\right)-\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)\left(2 N_{l . i}-\operatorname{diag}\left(N_{l, i}\right)\right)
\end{aligned}
$$

Deriving with respect to Σ_{l}^{-1}

We have that

$$
\begin{aligned}
& \frac{\partial}{\partial \Sigma_{l}^{-1}} \sum_{l=1}^{M}\left[-\frac{1}{2} \log \left(\left|\Sigma_{l}\right|\right) \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)-\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right) \operatorname{tr}\left\{\Sigma_{l}^{-1} N_{l, i}\right\}\right] \\
& \quad=\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)\left(2 \Sigma_{l}-\operatorname{diag}\left(\Sigma_{l}\right)\right)-\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right)\left(2 N_{l, i}-\operatorname{diag}\left(N_{l, i}\right)\right) \\
& \quad=\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)\left(2 M_{l, i}-\operatorname{diag}\left(M_{l, i}\right)\right)
\end{aligned}
$$

Deriving with respect to Σ_{l}^{-1}

We have that

$$
\begin{aligned}
& \frac{\partial}{\partial \Sigma_{l}^{-1}} \sum_{l=1}^{M}\left[-\frac{1}{2} \log \left(\left|\Sigma_{l}\right|\right) \sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right)-\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right) \operatorname{tr}\left\{\Sigma_{l}^{-1} N_{l, i}\right\}\right] \\
& \quad=\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right)\left(2 \Sigma_{l}-\operatorname{diag}\left(\Sigma_{l}\right)\right)-\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right)\left(2 N_{l . i}-\operatorname{diag}\left(N_{l, i}\right)\right) \\
& \quad=\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)\left(2 M_{l, i}-\operatorname{diag}\left(M_{l, i}\right)\right) \\
& \quad=2 S-\operatorname{diag}(S)
\end{aligned}
$$

Where $M_{l, i}=\Sigma_{l}-N_{l, i}$ and $S=\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right) M_{l, i}$

Thus, we have

Thus
If $2 S-\operatorname{diag}(S)=0 \Longrightarrow S=0$

Thus, we have

Thus

If $2 S-\operatorname{diag}(S)=0 \Longrightarrow S=0$

Implying

$$
\begin{equation*}
\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)\left[\Sigma_{l}-N_{l, i}\right]=0 \tag{54}
\end{equation*}
$$

Thus, we have

Thus

If $2 S-\operatorname{diag}(S)=0 \Longrightarrow S=0$

Implying

$$
\begin{equation*}
\frac{1}{2} \sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)\left[\Sigma_{l}-N_{l, i}\right]=0 \tag{54}
\end{equation*}
$$

Or

$$
\Sigma_{l}=\frac{\sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right) N_{l, i}}{\sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)}=\frac{\sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)\left(\boldsymbol{x}_{i}-\mu_{l}\right)\left(\boldsymbol{x}_{i}-\mu_{l}\right)^{T}}{\sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)}
$$

Thus, we have the iterative updates

They are

$$
\alpha_{l}^{N e w}=\frac{1}{N} \sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right)
$$

Thus, we have the iterative updates

They are

$$
\begin{aligned}
\alpha_{l}^{N e w} & =\frac{1}{N} \sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right) \\
\mu_{l}^{N e w} & =\frac{\sum_{i=1}^{N} \boldsymbol{x}_{i} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)}{\sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)}
\end{aligned}
$$

Thus, we have the iterative updates

They are

$$
\begin{aligned}
\alpha_{l}^{N e w} & =\frac{1}{N} \sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right) \\
\mu_{l}^{N e w} & =\frac{\sum_{i=1}^{N} \boldsymbol{x}_{i} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)}{\sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)} \\
\Sigma_{l}^{N e w} & =\frac{\sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)\left(\boldsymbol{x}_{i}-\mu_{l}\right)\left(\boldsymbol{x}_{i}-\mu_{l}\right)^{T}}{\sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)}
\end{aligned}
$$

Outline

Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM
(2) Incomplete Data
- Introduction
- Using the Expected Value
- Analogy
(3. Derivation of the EM-Algorithm
- Hidden Features
- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
(4) Finding Maximum Likelihood Mixture Densities
- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers
- In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

EM Algorithm for Gaussian Mixtures

Step 1

Initialize:

- The means μ_{l}
- Covariances Σ_{l}
- Mixing coefficients α_{l}

Evaluate

Step 2 - E-Step

- Evaluate the the probabilities of component l given x_{i} using the current parameter values:

$$
p\left(l \mid x_{i}, \Theta^{g}\right)=\frac{\alpha_{l}^{g} p_{y_{i}}\left(x_{i} \mid \theta_{l}^{g}\right)}{\sum_{k=1}^{M} \alpha_{k}^{g} p_{k}\left(x_{i} \mid \theta_{k}^{g}\right)}
$$

Now

Step 3 - M-Step

- Re-estimate the parameters using the current iteration values:

$$
\alpha_{l}^{N e w}=\frac{1}{N} \sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right)
$$

Now

Step 3 - M-Step

- Re-estimate the parameters using the current iteration values:

$$
\begin{aligned}
\alpha_{l}^{N e w} & =\frac{1}{N} \sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right) \\
\mu_{l}^{N e w} & =\frac{\sum_{i=1}^{N} \boldsymbol{x}_{i} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)}{\sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)}
\end{aligned}
$$

Now

Step 3 - M-Step

- Re-estimate the parameters using the current iteration values:

$$
\begin{aligned}
\alpha_{l}^{N e w} & =\frac{1}{N} \sum_{i=1}^{N} p\left(l \mid x_{i}, \Theta^{g}\right) \\
\mu_{l}^{N e w} & =\frac{\sum_{i=1}^{N} \boldsymbol{x}_{i} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)}{\sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)} \\
\Sigma_{l}^{N e w} & =\frac{\sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)\left(\boldsymbol{x}_{i}-\mu_{l}\right)\left(\boldsymbol{x}_{i}-\mu_{l}\right)^{T}}{\sum_{i=1}^{N} p\left(l \mid \boldsymbol{x}_{i}, \Theta^{g}\right)}
\end{aligned}
$$

Evaluate

Step 4

Evaluate the log likelihood:

$$
\log p(\boldsymbol{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\alpha})=\sum_{i=1}^{N} \log \left\{\sum_{l=1}^{M} \alpha_{l}^{N e w} p_{l}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{l}^{\text {New }}, \boldsymbol{\Sigma}_{l}^{N e w}\right)\right\}
$$

Evaluate

Step 4

Evaluate the log likelihood:

$$
\log p(\boldsymbol{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\alpha})=\sum_{i=1}^{N} \log \left\{\sum_{l=1}^{M} \alpha_{l}^{N e w} p_{l}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{l}^{\text {New }}, \boldsymbol{\Sigma}_{l}^{N e w}\right)\right\}
$$

Step 6

- Check for convergence of either the parameters or the log likelihood.
- If the convergence criterion is not satisfied return to step 2.

References I

S. Borman, "The expectation maximization algorithm-a short tutorial," Submitted for publication, pp. 1-9, 2004.
圊 J. Bilmes, "A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models," International Computer Science Institute, vol. 4, 1998.

围 F. Dellaert, "The expectation maximization algorithm," tech. rep., Georgia Institute of Technology, 2002.
R. McLachlan and T. Krishnan, The EM algorithm and extensions, vol. 382.
John Wiley \& Sons, 2007.

