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Outline

Introduction
@ Maximum-Likelihood
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Maximum-Likelihood

We have a density function p (x|O)

Assume that we have a data set of size N, X = {z1,®2,...,zN}

@ This data is known as evidence.
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Maximum-Likelihood

We have a density function p (x|O)

Assume that we have a data set of size N, X = {z1,®2,...,zN}

@ This data is known as evidence.

We assume in addition that

The vectors are independent and identically distributed (i.i.d.) with
distribution p under parameter 6.
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What Can We Do With The Evidence?

We may use the Bayes' Rule to estimate the parameters ¢

P (X|©) P (©)

p(611) = =55 M

e
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What Can We Do With The Evidence?

We may use the Bayes' Rule to estimate the parameters ¢

p(el) = T (1)

Or, given a new observation &

| A

p(&|X) (2)

l.e. to compute the probability of the new observation being supported by
the evidence X.
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What Can We Do With The Evidence?

We may use the Bayes' Rule to estimate the parameters ¢

p(el) = T (1)

| A\

Or, given a new observation &

p(&|X) (2)

l.e. to compute the probability of the new observation being supported by
the evidence X.

The former represents parameter estimation and the latter data prediction.
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Focusing First on the Estimation of the Parameters 6

We can interpret the Bayes’ Rule

P(x|©) P(©)

p(O1¥) = "5 3)
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Focusing First on the Estimation of the Parameters 6

We can interpret the Bayes’ Rule

plol) = O )

Interpreted as

likelihood x prior
(4)

4

posterior = -
evidence
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Focusing First on the Estimation of the Parameters 6

We can interpret the Bayes’ Rule

P(Xx|®)P(©)
X)=—-— -~
p(©lF) = =0 ()
Interpreted as
) likelihood x prior
posterior = ; (4)
evidence )

likelihood = P (X|©)
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What we want...

We want to maximize the likelihood as a function of 4

likelihood = P (X|©)
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Maximum-Likelihood

N
p(x1,x2,...,zN|O) = Hp(wl|@)
i=1

Also known as the likelihood function.
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Maximum-Likelihood

N
p(x1,x2,...,zN|O) = Hp(wll@) (5)

=1

Also known as the likelihood function.

N N
L(0]X) =1log [[p(zi|®) = logp (x:|0) (6)
i=1 1=1
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Maximum-Likelihood
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Maximum-Likelihood

We want to find a ©*

©* = argmaxg L (B|X) (7)

The classic method
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What happened if we have incomplete data

Data could have been split
@ X = observed data or incomplete data
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What happened if we have incomplete data

Data could have been split
@ X = observed data or incomplete data
@ ) = unobserved data
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What happened if we have incomplete data

Data could have been split

@ X = observed data or incomplete data
@ ) = unobserved data

For this type of problems

We have the famous Expectation Maximization (EM)
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Introduction
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The Expectation Maximization

The EM algorithm J

It was first developed by Dempster et al. (1977).

©
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The Expectation Maximization

The EM algorithm
It was first developed by Dempster et al. (1977).

Its popularity comes from the fact

It can estimate an underlying distribution when data is incomplete or has
missing values.

©
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The Expectation Maximization

The EM algorithm
It was first developed by Dempster et al. (1977).

Its popularity comes from the fact

It can estimate an underlying distribution when data is incomplete or has
missing values.

Two main applications

© When missing values exists.

v
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The Expectation Maximization

The EM algorithm
It was first developed by Dempster et al. (1977).

Its popularity comes from the fact

It can estimate an underlying distribution when data is incomplete or has
missing values.

| A

Two main applications

© When missing values exists.

@ When a likelihood function can be simplified by assuming extra
parameters that are missing or hidden.

v
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Outline

Introduction

@ Examples of Applications of EM
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Clustering

Given a series of data sets

Given the fact that Radial Gaussian Functions are Universal Approximators

e Samples {x1, x2,...,xN} are the visible parameters

@ The Gaussian distributions generating each of the samples are the
hidden parameters
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Clustering

Given a series of data sets

Given the fact that Radial Gaussian Functions are Universal Approximators

e Samples {x1, 2, ...,xN} are the visible parameters
@ The Gaussian distributions generating each of the samples are the

hidden parameters

N

Then, we model the cluster as a mixture of Gaussian's

A
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Natural Language Processing

Unsupervised induction of probabilistic context-free grammars

Here given a series of words 01, 02, 03, ... and normalized Context-Free
Grammar

@ We want to know the probabilities of each rule P (i — jk)
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Natural Language Processing

Unsupervised induction of probabilistic context-free grammars

Here given a series of words 01, 02, 03, ... and normalized Context-Free
Grammar

@ We want to know the probabilities of each rule P (i — jk)

@ Here the you have two variables:
» The Visible Ones: The sequence of words

» The Hidden Ones: The rule that produces the possible sequence
0; — 0

v
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Natural Language Processing

Baum-Welch Algorithm for Hidden Markov Models

\ARALS

Hidden Data

&
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Natural Language Processing

Baum-Welch Algorithm for Hidden Markov Models

\ARAZLF

Hidden Data

Here

@ Hidden Variables: The circular nodes producing the data

@ Visible Variables: The square nodes representing the samples.

v
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Outline

e Incomplete Data

@ Introduction
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Incomplete Data

We assume the following
Two parts of data
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Incomplete Data

We assume the following
Two parts of data

@ X = observed data or incomplete data
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Incomplete Data

We assume the following
Two parts of data

@ X = observed data or incomplete data
@ Y = unobserved data
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Incomplete Data

We assume the following

Two parts of data
@ X = observed data or incomplete data
@ Y = unobserved data

Z = (X,Y)=Complete Data

N
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Incomplete Data

We assume the following

Two parts of data
@ X = observed data or incomplete data
@ )Y = unobserved data

| A\

Thus

Z = (X,Y)=Complete Data

| A

Thus, we have the following probability
p(210) =p(z,y|®) = p(ylz,0)p(|O) (10)
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New Likelihood Function

The New Likelihood Function

L£(©|2)=L(6]X,)) =p(X,)]O) (11)

Note: The complete data likelihood.
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New Likelihood Function

The New Likelihood Function
L(©|2)=L(B|X,Y)=p(X,)V|0) (11)

Note: The complete data likelihood.

4

L£(0]X,Y)=p(X,Y0)=p(Y|X,0)p(X|6) (12)
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New Likelihood Function

The New Likelihood Function

L£(0]2) =L(8]X,)) =p(X,V]0) (11)
Note: The complete data likelihood.

Thus, we have

| A\

L£(0]X,Y)=p(X,Y0)=p(Y|X,0)p(X|6) (12)

A

Did you notice?

e p(X|O) is the likelihood of the observed data.

e p(Y|X,0) is the likelihood of the no-observed data under the
observed datal!!
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Rewriting

This can be rewritten as

L(O]X,Y) = hre (V) (13)

This basically signify that X', © are constant and the only random part is
V.
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Rewriting

This can be rewritten as

L(O]X,Y) =hxe (V)

This basically signify that X', © are constant and the only random part is

(13)

In addition

|(<

L(0]X)

It is known as the incomplete-data likelihood function.

(14)

W
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Thus

We can connect both incomplete-complete data equations by doing

the following

L(8]|X) =p(X[0)

V.
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Thus

We can connect both incomplete-complete data equations by doing

the following

L(0]X) =p

—

24C)
p(X,Y[0)

I
<[

V.
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Thus

We can connect both incomplete-complete data equations by doing

the following

L(6]X) =p(X|0)
=> p(x,Y|©)
y
=> p(V|X,0)p(X|©)
y

V.
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Thus

We can connect both incomplete-complete data equations by doing

the following

L(0|X) =p(¥|0)
=> p(x,Y|©)
y
=> p(V|X,0)p(X|©)
g N
=z<n m@) Yx.6)
=L Yy
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Remarks

Problems

Normally, it is almost impossible to obtain a closed analytical solution for
the previous equation.
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Remarks

Problems

Normally, it is almost impossible to obtain a closed analytical solution for
the previous equation.

However

We can use the expected value of log p (X, Y|©), which allows us to find
an iterative procedure to approximate the solution.

| \
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The function we would like to have

The Q function

We want an estimation of the complete-data log-likelihood

logp (X,)|0)

Based in the info provided by X, ©,,_1 where ©,,_; is a previously
estimated set of parameters at step n.

(15)
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The function we would like to have

The Q function

We want an estimation of the complete-data log-likelihood

logp (X,)|0) (15)

Based in the info provided by X, ©,,_1 where ©,,_; is a previously
estimated set of parameters at step n.

Think about the following, if we want to remove )

/ logp (X, Y/0)] p (V|X, ©_1) dY (16)

Remark: We integrate out ) - Actually, this is the expected value of

logp (X,)|0).
&
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Outline

e Incomplete Data

@ Using the Expected Value
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Use the Expected Value

Then, we want an iterative method to guess © from ©,,_

Q(0,0,_1)=E[logp(X,V|0)|X,0,_1] (17)
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Use the Expected Value

Then, we want an iterative method to guess © from ©,,_

Q(0,0,_1)=E[logp(X,V|0)|X,0,_1] (17)

Take in account that

Q@ X,0,_; are taken as constants.
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Use the Expected Value

Then, we want an iterative method to guess © from ©,,_

Q(0,0,_1)=E[logp(X,V|0)|X,0,_1] (17)

Take in account that

Q@ X,0,_; are taken as constants.

@ O is a normal variable that we wish to adjust.

&)

Cinvestav

25 /113



Use the Expected Value

Then, we want an iterative method to guess © from ©,,_

Q(0,0,_1)=E[logp(X,V|0)|X,0,_1] (17)

Take in account that

Q@ X,0,_; are taken as constants.
@ O is a normal variable that we wish to adjust.

© ) is a random variable governed by distribution
p (Y|X, O,_1)=marginal distribution of missing data.
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Another Interpretation

Given the previous information J

Eflogp (X, Y10)|X,On1] = [yeylogp (X,Y]0) p (V|X, On-1) dY

&
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Another Interpretation

Given the previous information

Eflogp (X, Y10)|X,On1] = [yeylogp (X,Y]0) p (V|X, On-1) dY

Something Notable

@ In the best of cases, this marginal distribution is a simple analytical
expression of the assumed parameter ©,_1.

.
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Another Interpretation

Given the previous information

Eflogp (X, Y10)|X,On1] = [yeylogp (X,Y]0) p (V|X, On-1) dY

Something Notable

@ In the best of cases, this marginal distribution is a simple analytical
expression of the assumed parameter ©,_1.

@ In the worst of cases, this density might be very hard to obtain.

A
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Another Interpretation

Given the previous information

Eflogp (X, Y10)|X,On1] = [yeylogp (X,Y]0) p (V|X, On-1) dY

| A\

Something Notable
@ In the best of cases, this marginal distribution is a simple analytical
expression of the assumed parameter ©,_1.

@ In the worst of cases, this density might be very hard to obtain.

Actually, we use

p(y7X|®n—1) :p(y|X7®n—1)p(X|®n—1) (18)
which is not dependent on ©.
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Outline

e Incomplete Data

@ Analogy
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Back to the () function

The intuition
We have the following analogy:
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Back to the () function

The intuition
We have the following analogy:

e Consider h (0,Y) a function
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Back to the () function

The intuition
We have the following analogy:

e Consider h (0,Y) a function

» 0 a constant
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Back to the () function

The intuition
We have the following analogy:

e Consider h (0,Y) a function

» 0 a constant
» Y ~ py (y), a random variable with distribution py (y).
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Back to the () function

We have the following analogy:
e Consider h (0,Y) a function

» 0 a constant
» Y ~ py (y), a random variable with distribution py (y).

Thus, if Y is a discrete random variable

q(0) =By [h(0,Y)] =D h(0,y)py (y) (19)
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Why E-step!!!

. B
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Why E-step!!!

From here the name
This is basically the E-step
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Why E-step!!!

From here the name
This is basically the E-step

The second step

It tries to maximize the @) function

©, = argmaxg® (0,0,,_1) (20)
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Derivation of the EM-Algorithm

The likelihood function we are going to use

Let X be a random vector which results from a parametrized family:
L(©)=InP(X|O) (21)

Note: In (z) is a strictly increasing function.

&8
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Derivation of the EM-Algorithm

The likelihood function we are going to use
Let X be a random vector which results from a parametrized family:

£(©) =InP (X|©) (21)

Note: In (z) is a strictly increasing function.

We wish to compute ©
Based on an estimate ©,, (After the n**) such that £ (0) > £ (0,,)

| A\

A
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Derivation of the EM-Algorithm

The likelihood function we are going to use

Let X be a random vector which results from a parametrized family:
L(O©)=InP(X|0O) (21)

Note: In (z) is a strictly increasing function.

We wish to compute ©

Based on an estimate ©,, (After the n**) such that £ (0) > £ (0,,)

Or the maximization of the difference

L(©) - L£(O,) =P (X]0) — InP (X|0,) (22)

&8
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Outline

e Derivation of the EM-Algorithm
@ Hidden Features
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Introducing the Hidden Features

Given that the hidden random vector ) exits with y values

P(x|©) = ZP (X|y,©) P (y©) (23)
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Introducing the Hidden Features

Given that the hidden random vector ) exits with y values

P(x|©) = ZP (X|y,©) P (y©) (23)

Thus, using our first constraint £(0©) — L(0,,)

L(©) - L(6n) =In (ZP(XIy, @)P(yl@)) —InP(X[6,) (24)
Yy
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Here, we introduce some concepts of convexity

For Convexity

Theorem (Jensen’s inequality)

Let f be a convex function defined on an interval I. If z1,x9, ...,z € [
and Aq, Ao, ..., Ay > 0 with Z?:l Ai =1, then

/ (i Aﬁi) < zn:)\if(xi) (25)

4
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Proof:

We have the trivial case I
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Proof:

We have the trivial case I
The convexity definition. I
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Proof:

We have the trivial case \
The convexity definition. l
Now the inductive hypothesis

We assume that the theorem is true for some n.
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Now, we have

The following linear combination for \;
n+1 n
f (Z /\i$i> =f <)\n+1xn+1 + Z Aﬂi)
i=1

=1
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Now, we have

The following linear combination for \;
n+1 n
f (Z /\i$i> =f <)\n+196n+1 + Z Aﬂi)
i=1

=1

=f <>\n+137n+1 + % > Ai$i>
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Now, we have

The following linear combination for \;

n+1 n
f (Z /\i$i> = f <)\n+1xn+1 +> )\ixi>
i=1

=1

1— Xy -
=f <)\n+137n+1 + (2= Antr) Z )\i$i>

(]‘ - >\n+1) i=1

<Angif (xn+1) + (1 - )\n—&-l) f <

Cinvestav
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Did you notice?

Something Notable

4
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Did you notice?

Something Notable

n+1

> x=1
=1

Thus

|
N

S Ai=1- 1
i=1

4
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Did you notice?

Something Notable

4

NG 24
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Now

n+1 n
f (Z >\i$i> < At f (@ng1) + (1= Anga) f (ﬁ > >\i$i>

i=1 =1
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Now

n+1 n
f (Z >\i$i> < At f (@ng1) + (1= Anga) f (ﬁ > >\i$i>

=1 =1

< )\n-i-lf (xn-i-l) + (1 - )\n-‘rl 1 — +1 Z)\ f xz
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Now

n+1 n
f (Z >\i$i> < At f (@ng1) + (1= Anga) f (ﬁ > >\i$i>

=1 =1

< )\n-i-lf (xn-i-l) + (1 - )\n-‘rl 1 — +1 Z)\ f xz

n

=1
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Thus, for concave functions

It is possible to shown that

Given In (z) a concave function:

=1 =1
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Thus, for concave functions

It is possible to shown that

Given In (z) a concave function:

=1 =1

y

If we take in consideration

Assume that the A\; = P (y|X, ©,). We know that
Q P(ylX,0,) >0
Q@ >, Pylx,en)=1

<

&)
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We have

L(©) - L(6,) =In (ZP(XIy,@)P <y|@>> —InP (X|6n)

Y

4

v/
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We have

L(©) - L(6,)=In (ZP(XIy,@)P <y|@>> —InP (X|0,)
( P (y|X,0,)

=In Lo )
P (ylX, 0,)

> P (X]y,0)P (y]©)

Y

) —InP (X]0,)
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We have

L(©) - L(6,) =In (ZP(XIy,@)P (y|@)> —InP (X|6n)

Y

P (y|X, On)

—In (ZP (Xly, ©) P (y|©) P (y|X,0n)

Y

) —InP (X]0,)

it (ZP(yM’,@n) P(’g?y’g,gg'@)) —InP (¥]0,)
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We have

L(©) - L(6,) =In (Z?(le,@ﬁ’ (y|@)> —InP (X|6n)

Y

P (y|X, On)

—In (ZP (Xly, ©) P (y|©) P (y|X,0n)

Y

) —InP (X]0,)

it (ZP(yM’,@n) P(’gag,gg'@) —InP (¥]0,)

>3 Pylx,0,)In (P (;i'z’y"(?() ZS"G)> — .

> P (ylX,0,)InP (X|©,) Why this?

Y
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Next

Because

Z'P(y‘.)(,@n) =1l
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Next

Because

Z'P(Z/‘X;@n) =1

P (X]y,0) P (y/©) )

£(©) ~L(8x) 2 P (yl¥,0,)n <P(y|X ©.) P (X[6,)

=A(9]0,)
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Then, we have

Then, we have proved that

L(©)>L(6,)+A(O]6,)
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Then, we have

Then, we have proved that

L(©)>L(6, +A(O|6,) (26)
Then, we define a new function
l (@|@n) =L (@n) +A (@’@n) (27)J
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Then, we have

Then, we have proved that
L(©)>L(6, +A(O|6,) (26)

V.

Then, we define a new function
! (@’@n) =L (@n) +A (@’@n) (27)

.

It is bounded from above by £(0) i.e [ (0|0,) < L(O)
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Now, we can do the following

We evaluate in ©,

1 ©5|80) =£{85) = A (@5S5)
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Now, we can do the following

We evaluate in ©,

1 ©5|80) =£{85) = A (@5S5)

—£(0,)+ Y P (y[¥,0,)In (

P (X|y,0n) P (y|On) )
P (ylX, On) P (X[On)
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Now, we can do the following

We evaluate in ©,

1(0n]On) =L (6,) + A (0,]04)

=L (0,) + Ey: P (y|X,©y)In (73 (y]X,0,) P (X|@n))
=L (@n)‘i‘;,])(y‘x:@n)l (7) (X,ylen)>
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Now, we can do the following

We evaluate in ©,

1(6,]0,) =L£(0,) + A (6,|0,)
- P (X|y,0,) P (y|On)
=L (0,)+ %:P(yIX,@n) In (p(yw,@n)mm@n))
=L (@n) + ;IP (y\X, @n) In (7) (X’ ylen)>
=L (0,)
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Now, we can do the following

We evaluate in ©,

1 ©5|80) =£{85) = A (@5S5)

=L (0,) + Ey: P (y|X,©y)In (73 (y]X,0,) P (X|@n))
=L (@n)‘i‘;,])(y‘x:@n)l (7) (X,ylen)>

=L (@n)

This means that
For © = ©,, functions £ (©) and [ (0]©,,) are equal
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Therefore

The function [ (6|6,,) has the following properties
@ It is bounded from above by £ (0) i.e [ (0|0,) < L(O).
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Therefore

The function [ (6|6,,) has the following properties
@ It is bounded from above by £ (0) i.e [ (0|0,) < L(O).
@ For © = O, functions £ (0) and [ (0]©,,) are equal.
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Therefore

The function [ (6|6,,) has the following properties

@ It is bounded from above by £ (0) i.e [ (0|0,) < L(O).
@ For © = O, functions £ (0) and [ (0]©,,) are equal.
@ The function [ (0|0,,) is concave... How?
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Outline

e Derivation of the EM-Algorithm
@ Hidden Features
@ Proving Concavity

&)
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First

We have the value £ (0,,)

We know that £ (©,,) is constant i.e. an offset value
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First

We have the value £ (0,,)

We know that £ (©,,) is constant i.e. an offset value

What about A (©]6,,)

P (X]y,0)P (y|©)
;7’ (4], ©n) In (P WIX,6m) P (X!@n))
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First

We have the value £ (0,,)

We know that £ (©,,) is constant i.e. an offset value

What about A (6]0,,)

P (X|y,0)P (y|0)
;7’ @|%, 8n)In <7> WX, 0P (Xy@n)>

V.

We have that the In is a concave function

ln( P (X|y,0)P (y|9) )
P (y|X,0,) P (X|0,)

v

&)
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Therefore

Each element is concave

P(y\x,@n)ln( P (X]y,0)P (y|©) )

P (y|X,0n) P (X[64)

&)
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Therefore

P (X|y,©)P (y©) )
P (y|X, O, ln(
WX, O I\ T 17, 6.) P (X6,

Therefore, the sum of concave functions is a concave function
P (X]y,0)P (y|O©) )
P (y|X, 0, ln(
2P Wlx.on (507 6.0 P (@6

v

&)
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Outline

e Derivation of the EM-Algorithm

@ Using the Concave Functions for Approximation

&)
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Given the Concave Function

Thus, we have that
@ We can select ©,, such that [ (©|0,,) is maximized.

&)
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Given the Concave Function

Thus, we have that
@ We can select ©,, such that [ (©|0,,) is maximized.
@ Thus, given a ©,,, we can generate O, 1.
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Given the Concave Function

Thus, we have that
@ We can select O,, such that [ (0]0,,) is maximized.

@ Thus, given a ©,,, we can generate O, 1.

The process can be seen in the following graph
A

L (On+1)

1(©n+1|0r)

[,(@n) S [(@,,‘9")

L(©]6)
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Given

The Previous Constraints

Q [(0]©,) is bounded from above by L (O)

1(©]6,) < L(O)

v
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Given

The Previous Constraints

Q [(0]©,) is bounded from above by L (O)

1(©]6,) < L(O)

@ For © = O, functions £ (0) and [ (0]©,,) are equal

L(0,) =1(0]6,)

v
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Given

The Previous Constraints

Q [(0]©,) is bounded from above by L (O)

1(©]6,) < L(O)

@ For © = O, functions £ (0) and [ (0]©,,) are equal

L(0,) =1(0]6,)

@ The function [ (©]0,,) is concave

v

&)
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Outline

e Derivation of the EM-Algorithm

@ From The Concave Function to the EM

&)

Cinvestav

50/113



From
The following

©n+1 =argmaxg {1 (©|0,)}
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From
The following
©n+1 =argmaxg {1 (©|0,)}

=argmaxg {E (On) + ZP (y|X,0y,)In (
y

P (X[y,0) P (y/©) )}
P (y|X,0,) P (X]6,)

The terms with ©,, are constants.
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©n+1 =argmaxg {1 (©|0,)}

=argmaxg {E (On) + ZP (y|X,0y,)In (
y

P (X[y,0) P (y/©) )}
P (y|X,0,) P (X]6,)

The terms with ©,, are constants.

Rrargmaxg {ZP (y|X,0,)In (P (X|y,0)P (?/|@))}
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From
The following
©n+1 =argmaxg {l (60|0,)}

=argmaxg {E (On) + Z P (y|X,0,)In (
y

P (X|y,0)P (y|©) )}
P (y|X,0,) P (X]6,)

The terms with ©,, are constants.

Rrargmaxg {ZP (y|X,0,)In (P (X|y,0)P (?/|@))}

e {Z i CHR )
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From
The following

©n+1 =argmaxg {l (60|0,)}

o o (P (Xly,©)P (y|©)
=argma @{E(@n)-l-zyzp(y‘){:@n)l (P(y‘X,@n)P(X|9n))}

The terms with ©,, are constants.

Aargmaxg {ZP y|X,0,)In (P (X|y,©) P (y|©)) }
=argmaxg {ZP (y|X,0) ( 7§X ,y|©) P )}

'P(Xy@
=argmaxg ZP (y| X, 0n) ( pr( )}

P(©
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Thus

On+1 =argmaxg {ZP (y|X,0,)1n <
y

P(%y@)?(y@))}
P(y,©) P(O)

V.

D
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Thus

On41 =argmaxg {ZP (X, On) In <
v

=argmaxg {ZP (y|X, @n) In (%) }

Yy

P (X,y,0) P(y,@))}
P(y,©) P(O)

Cinvestav

52 /113



Thus

On+1 =argmaxg {Z P (y|X7 @n) In <
Y

=argmaxg {Z P (y|X,0n)In (P gég)’)@)> }

Y

P(X,y,@W(y,@))}
P(y,©) P(O)

=argmaxg {ZP (y|X,0,)In (P (X, y|@))}
y
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Thus

On+1 =argmaxg ZP (y| X, On)
y

P(X,y,@W(y,@))}
P(y,©) P(O)

P(X,y,@)

{

—argmaxg {ZP (1%, On) P(©) >}
{
{

Y

=argmaxg ¢ > P (y|X,0,)In (P (X, Z/|@))}
y

=argmaxg Ey|X@ P(x y|@))]}
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Thus

0n+1 =argmaxg

P(X,y,@W(y,@))}

;P(y'x’@")IIl( P(1,0) P(©)

P wie.om(PEE))

Y

=argmaxg

=argmaxg

> P ylX,0n)In (P (X,yl@))}
Yy

=argmaxg 1 Eyx 0, [In (P (X,y|@))]}

~= N~ ——

1(6]0)} ~ argmaxg { B, 1.0, [In (P (¥,4]0))]}

S

Cinvestav
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Outline

e Derivation of the EM-Algorithm

@ The Final Algorithm

&)
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The EM-Algorithm

Steps of EM

© Expectation under hidden variables.

&)
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The EM-Algorithm

Steps of EM

© Expectation under hidden variables.

@ Maximization of the resulting formula.
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The EM-Algorithm

© Expectation under hidden variables.

@ Maximization of the resulting formula.

Determine the conditional expectation, E, v o, [In (P (X,y]|0))].

&)
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The EM-Algorithm

© Expectation under hidden variables.

@ Maximization of the resulting formula.

Determine the conditional expectation, E, v o, [In (P (X,y]|0))].

Maximize this expression with respect to ©. l
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Outline

e Derivation of the EM-Algorithm

@ Notes and Convergence of EM

&)
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Notes and Convergence of EM

Gains between £ (0) and [ (©]0,,)

Using the hidden variables it is possible to simplify the optimization of
L (©) through [ (©]6,,).
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Notes and Convergence of EM

Gains between £ (0) and [ (©]0,,)
Using the hidden variables it is possible to simplify the optimization of
L (©) through [ (©]6,,).

| N,

Convergence
@ Remember that ©,,, 1is the estimate for © which maximizes the
difference A (©|0,,).
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Notes and Convergence of EM

Gains between £ (0) and [ (©]0,,)

Using the hidden variables it is possible to simplify the optimization of
L (©) through [ (©]6,,).

Convergence

| A

@ Remember that ©,,, 1is the estimate for © which maximizes the
difference A (©|0,,).

&)
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Therefore

Then, we have

Given the initial estimate of © by ©,

A(0,|0,)=0

&
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Therefore

Then, we have

Given the initial estimate of © by ©,

A(0,|0,)=0

Now

If we choose ©,, 11 to maximize the A (0]©,,), then

A (©ni1]On) > A (On]6,) =0

N,

\

&
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Therefore

Then, we have
Given the initial estimate of © by ©,

A (0,]0,) = 0

N,

Now

If we choose ©,, 11 to maximize the A (0]©,,), then

A (©ni1]On) > A (On]6,) =0

\

We have that
The Likelihood £ (©) is not a decreasing function with respect to ©.

&2
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Notes and Convergence of EM

Properties

When the algorithm reaches a fixed point for some ©,,, the value
maximizes [ (©]0,,).

&
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Notes and Convergence of EM

Properties

When the algorithm reaches a fixed point for some ©,,, the value
maximizes [ (©]0,,).

Definition

A fixed point of a function is an element on domain that is mapped to
itself by the function:

flz)==

&
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Notes and Convergence of EM

Properties

When the algorithm reaches a fixed point for some ©,,, the value
maximizes [ (©]0,,).

Definition

A fixed point of a function is an element on domain that is mapped to
itself by the function:

flz)==

v

Basically the EM algorithm does the following

EM[0*] = ©*

v

&

Cinvestav

58 /113



At this moment

We have that

The algorithm reaches a fixed point for some O, the value ©* maximizes
1(9]|6y).

&)
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At this moment

We have that

The algorithm reaches a fixed point for some O, the value ©* maximizes
1(9]|6y).

v

Then, when the algorithm

@ It reaches a fixed point for some ©,, the value maximizes [ (©|0,,).
» Basically ©,,11 = ©,.

A\

&)

Cinvestav

59 /113



Therefore

4

\

E(em—l) = (9"“\9")

1(©n+1/6n)

Y

@n = @n—H

o

&2
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Then
If £ and [ are differentiable at ©,,

@ Since £ and [ are equal at ©,,

» Then, ©,, is a stationary point of L i.e. the derivative of £ vanishes at
that point.

dL(Ons1) _

de
Local Maxima /

L)

1(6]6,)

Y

@n = @n+1

v
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However

You could finish with the following case, no local maxima

Saddle Point

dL(On
EE =0l £(0)

Y

1606,)

6n = @n+l

<

&3
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For more on the subject

Please take a look to

Geoffrey McLachlan and Thriyambakam Krishnan, “The EM Algorithm
and Extensions,” John Wiley & Sons, New York, 1996.
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Finding Maximum Likelihood Mixture Densities Parameters
via EM

Something Notable

The mixture-density parameter estimation problem is probably one of the
most widely used applications of the EM algorithm in the computational
pattern recognition community.

64 /113



Finding Maximum Likelihood Mixture Densities Parameters
via EM

Something Notable
The mixture-density parameter estimation problem is probably one of the
most widely used applications of the EM algorithm in the computational
pattern recognition community.

| \

We have

p(x|®) = Zazp, (x6;) (28)

where
o 0= (alv "'7aM7017 79]\/[)

A

64 /113



Finding Maximum Likelihood Mixture Densities Parameters
via EM

Something Notable
The mixture-density parameter estimation problem is probably one of the
most widely used applications of the EM algorithm in the computational
pattern recognition community.

| \

We have

p(x|®) = Zazp, (x6;) (28)

where
(1) O = (al,...,aM,Gl,...,QM)

A

64 /113



Finding Maximum Likelihood Mixture Densities Parameters
via EM

Something Notable
The mixture-density parameter estimation problem is probably one of the
most widely used applications of the EM algorithm in the computational
pattern recognition community.

| A\

We have
$|@ Zazpz $|9 (28)
where
(1) O = (Otl, ...,aM,Gl, ,QM)

© Each p; is a density function parametrized by 6;.

N
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A log-likelihood for this function

N N M
log £ (O©]X) = log Hp(aﬂ@) = Zlog Zajpj (xi]6;) (29)
i=1 j=1

=1
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A log-likelihood for this function

N

log L(B|X) = logH (z;]0) = Zlog (ZaﬂoJ (], ) (29)

=1

Note: This is too difficult to optimize due to the log function.

&
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A log-likelihood for this function

N

log L(B|X) = logH (z;]0) = Zlog (ZaﬂoJ (], ) (29)

=1

Note: This is too difficult to optimize due to the log function.

| A\

However
We can simplify this assuming the following:

V.
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A log-likelihood for this function

N

log L(B|X) = logH (z;]0) = Zlog (ZaﬂoJ (], ) (29)

=1

Note: This is too difficult to optimize due to the log function.

| A\

However
We can simplify this assuming the following:

© We assume that each unobserved data Y = {y;}}¥ | has a the
following range y; € {1, ..., M'}

V.
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A log-likelihood for this function

N

log L(B|X) = logH (z;]0) = Zlog (2:%;10J (], ) (29)

=1

Note: This is too difficult to optimize due to the log function.

However

| A

We can simplify this assuming the following:
© We assume that each unobserved data Y = {y;}}¥ | has a the
following range y; € {1, ..., M'}
Q y; = k if the i*" samples was generated by the k" mixture.

y.
Cinvestav
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Now

log £L(O|X,Y) =log[P (X,)|0)] (30)
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Now

log £L(O|X,Y) =log[P (X,)|0)] (30)

Remember that X = {z1,x9,...,zx} with YV = {y1, 9o, ..., yn } and

assuming independence

IOg[P(X7y|@)]:IOg[P(3717$2a-~-,$Nay17y2,~-w?/N|@)]
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Remember that X = {z1,x9,...,zx} with YV = {y1, 9o, ..., yn } and

assuming independence

log[P(X7y|@)]:log[P(‘TL'TQa"~7$N7y17y2)"'7yN|®)]
:10g[P(l'hyl’~--7ﬂ7iayi,~~-7517N7yN’@)]
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Now

log £L(O|X,Y) =log[P (X,)|0)] (30)

Remember that X = {z1,x9,...,zx} with YV = {y1, 9o, ..., yn } and

assuming independence

log[P(X7y|@)]:log[P(‘TL'TQa"~7$N7y17y2)"'7yN|®)]
:10g[P(l'hyl’~--7ﬂ7iayi,~~-7517N7yN’@)]

N
=log [ [ P (i,:]©)

1=

—_

wiiveaudV
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Now

log £L(O|X,Y) =log[P (X,)|0)] (30)

Remember that X = {z1,x9,...,zx} with YV = {y1, 9o, ..., yn } and

assuming independence

log[P(X7y|@)]:log[P(‘TL'TQa"~7$N7y17y2)"'7yN|®)]
:10g[P(l'hyl’~--7ﬂ7iayi,~~-7517N7yN’@)]

N
=log [ [ P (i,:]©)
i=1
N
=Y log P (z;,4i|0)

=1

wiiveaudV
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Then

Thus, by the chain Rule

N N
> log P (x4, yi]©) = > log [P (wilys, 0y,) P (yilby,)] (31)
=1 =1

Question Do you need y; if you know 6,, or the other way around?

&)
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Then

Thus, by the chain Rule

N N
> log P (x4, yi|©) = Zlog [P (zilyi, 0y:) P (yil6y,)] (31)

=1

Question Do you need y; if you know 6, or the other way around?

Finally

2:|
<
S
A\

Zlog [P (z:]y:, 0 yz ?/z|‘9yz Zlog (i) Py, xl|9y2)] (32)
i=1

NOPE: You do not need y; if you know 6, or the other way around.

&)
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Finally, we have

Making o, = P (y;)

log L (B|X,Y) = Zlog oy, P (x3]yi, 0y,)] (33)

&)
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Problem

Which Labels?
We do not know the values of ).

&)
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Problem

Which Labels?

We do not know the values of ).

We can get away by using the following idea
Assume the ) is a random variable.

&)

Cinvestav

69 /113



Outline

e Finding Maximum Likelihood Mixture Densities
@ The Beginning of The Process

&)
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Thus

You do a first guess for the parameters at the beginning of EM

09 = (af,...,a%,,6y,....,0%,) (34)

&8
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Thus

You do a first guess for the parameters at the beginning of EM

09 = (af,...,a%,,6y,....,0%,) (34)

Then, it is possible to calculate given the parametric probability

s (1)

&8
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Thus

You do a first guess for the parameters at the beginning of EM

QI = (a?,...,a%,@’f,...ﬂ%) (34)

Then, it is possible to calculate given the parametric probability

pj (fb‘z’|9]g-)

Therefore

The mixing parameters o; can be though of as a prior probabilities of each
mixture:

a; = p (component j) (35)

Cinvestav
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Outline

e Finding Maximum Likelihood Mixture Densities

@ Bayes’ Rule for the components

&)
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Outline

6 Finding Maximum Likelihood Mixture Densities

@ Bayes’ Rule for the components
@ Mixing Parameters

&)
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We want to calculate the following probability

We want to calculate

b (yllxla @g)

&)
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We want to calculate the following probability

We want to calculate

b (yllxla @g)

Basically

We want a Bayesian formulation of this probability.

A

&)
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We want to calculate the following probability

We want to calculate

b (yllxla @g)

| \

Basically
We want a Bayesian formulation of this probability.

@ Assuming that the y = (y1, 2, ..., yn) are samples identically
independent samples from a distribution.

\

&)
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Using Bayes' Rule

p (i, 1:|09)
p (24]09)

P (yilzi, ©%) =

v

&
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Using Bayes' Rule

Compute

p (yi, 2i|©9)
ey ) =—————=
Pk O =, (o)

p(@il®?)p (il6g,)
N CED

We know 6. = Drop it

v

&
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Using Bayes' Rule

Compute

p (yi, 2i|©9)
ey ) =—————=
Pk O =, (o)

_p(i[69) p (uil6g,)

p (xi|©9)

_agipyi (‘rzwgz)
-~ p(@il©9)

We know 6. = Drop it

v

&
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Using Bayes' Rule

Compute

p (yi, 2i|©9)
ey ) =—————=
Pk O =, (o)

_p(i[69) p (uil6g,)

p(%:]©9)
_agipyi (w,|9§l>
p(%:/©9)
O‘;Zipyi (SCZng)

_lecwzl ozipk (:EiIHi)

We know 6. = Drop it

<

&
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As in Naive Bayes

We have the fact that there is a probability per probability at the

mixture and sample

0, Py, (:U2 ‘GZJ

p (y!x, @g) =
o Sl ofpr (:]69)

Vi, y; and k € {1, ,M}

&)
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As in Naive Bayes

We have the fact that there is a probability per probability at the

mixture and sample

0, Py, (:U2 ‘GZJ

p (y!x, @g) =
o Sl ofpr (:]69)

Vx;, y; and k € {1, ,M}

This is going to be updated at each iteration of the EM algorithm

After the initial Guess!!! Until convergence!!!

&)
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Additionally

We assume again that the samples y;s are identically and independent

samples

N
p (X, 09) = [ p (yilzs, ©9) (36)

=1
Where y = (y1,92, ..., YN )

&)
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Now, using equation 17

Q (0189 = "log (L (0|X,y))p(y|X,69)
yey

&)
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Now, using equation 17

R

Q (0109 =>"log (L (O]X,y))p(y|X, 0

yey
N N
=3 3" log oy, py, (x:l6,)] [T p (5125, ©7)
yey i=1 j=1

&)
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Here, a small stop

What is the meaning of >, ),

It is actually a summation of all possible states of the random vector y.

&)
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Here, a small stop

What is the meaning of >, ),

It is actually a summation of all possible states of the random vector y.

Then, we can rewrite the previous summation as

I 3 3 Z

y1=1y2=1 YN
N

Running over all the samples {z1, z2,...,zN}.

v

&)
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Then

M M M N N
QOO =2 > - > > |loglaypy, (zily)] [] p(vlz;, © ]

y1=ly2=1  yn=1li=1 J=1

Cinvestav
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We introduce the following

We have the following function

1 I=y
5l7yi =
0 I#y

Cinvestav
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We introduce the following

We have the following function

1 I=y
5l7yi =
0 I#y

Therefore, we can do the following

M
a; =) _dija;
j=1
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We introduce the following

We have the following function

1 I=vy

0 I#y

Therefore, we can do the following

M
a; =) _ 50
j=1

M

2

N
10g [y, py, (2:]0y)] [ [ 2 (wilz;,©9) = 61y, log [oupr (2:|00)] [ ] p (uj 5, ©7
j=1

=1 Jj=1
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Thus

We have that for

Sooret " Lt L1 108 [y, by, (2:10y,)] T, p (y5l75,©9) = *

N

MM M N M
P Z Z Z ZZé’y log [cup; (z]601)] H (yjlzj, 09
—

1i=11=1 J=1

&
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Thus

We have that for

Zf/\l[:l T Ey]\ =Il Z log {(Y.l/ip'yi (":l'ti‘eyz’)] vazl p (y.'J"’I"]‘1 @y) =*

M M M N M N
* = Z Z Z Zzé,y log [alpl 5171|0l H y]|x],
y1=1ya2=1 yn=11i=1I=1 j=1
N M M M N
= Z Z log [alpl xz‘el Z Z Z lél,yi H p y] |$]7 @g)
i=1[=1 y1=1y2=1 N=1 7j=1
Because

ﬁ|
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Thus

We have that for

M
Dy—1

Eyz\ =1 Z

N

M M M N M
x=D > D 2{:2{:5,y10g[au% (zl6)] [] »

y1=1y2=1 Yy Jj=1

,_.
-
Il
—
=
I
—

N M M M
=> "> loglaupy (zil6)] > D - Z

i=11=1 y1:1 y2=1 N=1

(y;lz;, ©F

N
lél,yi Hp y]|x]7@g)
7j=1

1 log [av, py, (2116, ) T, p (925, ©9) = =

I
| §

Because

- N
Zyl 1 y2 = ZyN 1 applies only to d;,, szlp(yj\xj,

©9)

V.

&
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Then, we have that

First notice the following
M M N
>33 o [Trwinson] -

y1=1lyz2=1 yn=1

&
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Then, we have that

First notice the following

M M M M M N
Z Z Z Z {lzal,yip(yi|$i7®g)] H p(yjlxj»Qg)}

1=1 Yi—1=1yj41=1 yn=1 yi=1 J=1,j#1,
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Then, we have that

First notice the following

(i i i i {[iﬁz,ym(yilwi@g)l ﬁ P(yj|xj»®g)})

=1 Yi—1=1yj41=1 yn=1 yi=1 J=1,j#1,

Then, we have

§|

Z O1y:p (Yilzi, ©9) = p (|2, 07)

yi=1

]
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In this way

Plugging back the previous equation
M

y1=1y2

M N
: Z 5l,yz Hp y]|x]7 =

1 yy=1 =1

M&

v

&)
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In this way

Plugging back the previous equation

M M M M
= (Z Z Z Z p (l|zi, ©9) H p (y;lz;, ©7 )
yi=1  yi1=ly;1=1  yn=1 J=1j#i
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In this way

Plugging back the previous equation

M M M N
Z Z Z 1y Hp(yj|x]7@ =
y1=1y2=1 yn=1 j=1
M M M M N
(£ 2 - L ouaon 1T o)
=l yia=lyipi=1 yy=1 J=1j#i
M M M M N
(S 8 8 ST o0 ninen
=1l yia=lyip=1  yn=1j=1j#i
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Now, what about...?

The left part of the equation
M M

y1=1 Yi—1=1yi+

]
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Now, what about...?

The left part of the equation

M= 1=

P (Yit1|Tiv1,09)

| Yi+1=1

M
> p(ieilwi1,©9)
i—1=1
M
' [Z p(yn|zn, ©7)
yn=1

o4

a4
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Now, what about...?

The left part of the equation

|Yit1=1
N M
= 11 | plz;, 09
J=1j#i |y;=1

M
> p(ieilwi1,©9)
i—1=1
M
' [Z p(yn|zn, ©7)
yn=1

4

a4
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Then, we have that

Plugging back to the original equation

{M M M M N

o> > o 1l p(yj|$j=@g)}p(llxia@g):

y1=1 Yi—1=1y;41=1 yn=1j=1,j7#i

&)
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Then, we have that

Plugging back to the original equation

M M M M N
{Z--~ )SEDIEED I p(yﬂwj,@g)}p(uxi,@g):
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We can use properties of probability
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We can use properties of probability

M
> p(yilri,09) =1 (37)

yi=1

v

{' I1 [Z p (yjlz;, ©9) }p(l\fvi,@g)z
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We can use properties of probability

M
> p(yilri,09) =1 (37)

yi=1

N M
{ 11 [Z p (yjlz;, ©9)
=1

y;=1

N
:{ I1 1}p(l!$¢,@g)

j=1 i
=p (l|z;, ©9)

}p(l\xi,@g) =

87 /113



We can use properties of probability

M
> p(yilri,09) =1 (37)

yi=1

N M
{ 11 [Z p (yjlz;, ©9)
=1

y;=1

N
:{ I1 1}p(l!$¢,@g)

J=Li#i
=p (l|z;,©9)
_ ozlgpyi (%Wf)
SaLy afpy (24167)

}p(l\xi,@g) =

87 /113



Thus

We can write @) in the following way

N M
Q (0,09 =" "log[aypi (zil60)] p (1], ©9)
=1 [=1

V.

&)
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Thus

We can write @) in the following way

N
Mz

@
Il
._.
=
Il
—

Q(0,09) log [cupr (xi]60;)] p (1] 2i, ©9)

N
Mk

s
Il
—
=
Il
—

log () p (Iws, ©9) + ...

V.

&)
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Thus

We can write @) in the following way

M
Zlog [cupr (z:]01)] p (1] i, ©F)

s

Q(0,07)

@
Il
._.
=
Il
—

N
Mk

s
Il
—
=
Il
—

log () p (Iws, ©9) + ...

M=
M=

log (pi (z:161)) p (|zi, ©7) (38)

y

&)
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Outline

6 Finding Maximum Likelihood Mixture Densities

@ Maximizing @ using Lagrange Multipliers @
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A Method

That could be used as a general framework
To solve problems set as EM problem.

&)
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A Method

That could be used as a general framework
To solve problems set as EM problem.

First, we will look at the Lagrange Multipliers setup

Then, we will look at a specific case using the mixture of Gaussian's
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Cinvestav

90 /113



A Method

That could be used as a general framework

To solve problems set as EM problem.

First, we will look at the Lagrange Multipliers setup
Then, we will look at a specific case using the mixture of Gaussian's

Not all the mixture of distributions will get you an analytical solution. \

&)
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Outline

6 Finding Maximum Likelihood Mixture Densities

@ In Our Case

@ Maximizing @ using Lagrange Multipliers @
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Lagrange Multipliers for @)

We can us the following constraint for that

=1 (39)

N
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Lagrange Multipliers for @)

We can us the following constraint for that

=1 (39)
l ”
We have the following cost function
Q(0,09) + A (Z o — 1) (40)
!

N
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Lagrange Multipliers for @)

We can us the following constraint for that

=1 (39)

We have the following cost function

Q(0,09) + ) (Z o — 1) (40)
l

Deriving by o

l
&
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Thus

The @ function

M=
Mz

Q(0,09) = log (oq) p (I, 09) + ...

@
Il
-
o~
Il
i

M=
Mz

log (p1 (2:|6h)) p (1|, ©7)

s
Il
N
=
Il
—

&)
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Deriving

0

87

N
o lQ (0,09) + A (Zal — 1)] = Z lp(l|$¢,@g) + A
; :

&)
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Finally

We have making the previous equation equal to 0

1
l

&
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Finally

We have making the previous equation equal to 0

1
—p |z, 09) + A =0 (42)
=1 o
N
> (|, ©9) = =y (43)
i=1
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Finally

We have making the previous equation equal to 0
N

1
—p |z, 09) + A =0 (42)
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Lagrange Multipliers

&
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Lagrange Multipliers

Thus

1 N
ZNZ p(l|z;,© (45)

| A

About 6,

It is possible to get an analytical expressions for 6; as functions of
everything else.

@ This is for you to try!!!

&
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Lagrange Multipliers

Thus

1 N
ZNZ p(l|z;,© (45)

About 6,

It is possible to get an analytical expressions for ; as functions of
everything else.

| A\

@ This is for you to try!!!

For more, please look at
“Geometric Idea of Lagrange Multipliers” by John Wyatt.
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Outline

6 Finding Maximum Likelihood Mixture Densities

@ Example on Mixture of Gaussian Distributions @
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Remember?

Gaussian Distribution

- 1 1 T 1
Pl($|ul,zl)—WGXP{—ﬁ(m—Ml) ¥ (w—uz)} (46)

&)
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How to use this for Gaussian Distributions

For this, we need to refresh some linear algebra
Q tr(A+B)=tr(A)+tr(B)

&)
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How to use this for Gaussian Distributions

For this, we need to refresh some linear algebra
Q tr(A+B)=tr(A)+tr(B)
Q tr(AB) =tr(BA)

&)
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How to use this for Gaussian Distributions

Q tr(A+B)=tr(A)+tr(B)
Q ir(AB) =tr (BA)
Q@ >,z Ax; = tr (AB) where B =", z;zl.
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How to use this for Gaussian Distributions

Q tr(A+B)=tr(A)+tr(B)
Q ir(AB) =tr (BA)
Q@ >,z Ax; = tr (AB) where B =", z;zl.

O [A7Y =g

&)
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How to use this for Gaussian Distributions

For this, we need to refresh some linear algebra
Q tr(A+B)=tr(A)+tr(B)
Q tr(AB) =tr(BA)
Q@ >,z Ax; = tr (AB) where B =", z;zl.

O [A7Y =g

A\

Now, we need the derivative of a matrix function f (A)

Thus, 8’5(1:‘) is going to be the matrix with 7, j** entry [%’;’?} where a; ;
is the 4, j™* entry of A.

v

&)
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In addition

If A is symmetric

014] _ {Am if i = j (47

0A 24;;, ifi#]
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In addition

If A is symmetric

014] _ {Am if i = j (47

0A 24;;, ifi#]

Where A; ; is the i, j cofactor of A.
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In addition

If A is symmetric

014] _ {Am if i = j (47

0A 24;;, ifi#]

Where A; ; is the i, j cofactor of A.

Note: The determinant obtained by deleting the row and column of
a given element of a matrix or determinant. The cofactor is
preceded by a + or — sign depending whether the element is
in a + or — position.
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In addition

If A is symmetric

014] _ {Am if i = j (47

0A 24;;, ifi#]

Where A; ; is the i, j cofactor of A.

Note: The determinant obtained by deleting the row and column of
a given element of a matrix or determinant. The cofactor is
preceded by a + or — sign depending whether the element is
in a + or — position.

Thus

>|

Ologld] _ ) Taf  Wi=J _ 511 g (a7) (48)
0A 2./41',]‘ ifi#j

4
uinvestav
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Finally

The last equation we need

otr (AB)

— T _ di
oA B+ B —diag (B) (49)

&)
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Finally

The last equation we need

otr (AB) T
oA B+ B* —diag(B) (49),
oxT Ax
ox (50)

&)
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Thus, using last part of equation 38

We get, after ignoring constant terms

Remember they disappear after derivatives

Zlog (p1 (il pu, 20)) p (Ui, ©9)
1i=1

1=

&)
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Thus, using last part of equation 38

We get, after ignoring constant terms

Remember they disappear after derivatives

M
> log (pi (@ilw, %)) p (I|zi, ©9)

i
T

'Fnﬂz
M

@
Il
—
=
Il
—

[—%1Og(|21|) - % (i — )" 7 (s —Ml)} p(l|z:, ©7) (51)

v

&)
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Finally

Thus, when taking the derivative with respect to 1

(2 (@i~ ) p (U2, 0)] = 0 (52)

—

i=

&)
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Finally

Thus, when taking the derivative with respect to 1
N
> (= @i — ) p (U2, 69)] = 0 (52)

i=1

| A

Then

SNz (lzi, ©9)
Lip(lx;, ©9)

= (53)

&)
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Now, if we derive with respect to

First, we rewrite equation 51

N M
SO0 [F3to8 0 — 5 @i — ) B (o — )| Ui, 09)

=1 l=1

V.

&)
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Now, if we derive with respect to

First, we rewrite equation 51

M =
M=

[~ g (1=) = 5 (i — )™ =7 (i = )] p Ui, ©9)

s
Il
=S
Il
—

N

N
~5Tog (%) > p Ulas, 09) - %Z zm,eg)tr{zll(wi—m(xi—m)T}]

i=1

Il
—

V.

&)
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Now, if we derive with respect to

First, we rewrite equation 51

M
Z[——log(lzzl - 5 (s = )" 5 (os = )| p Ui, 69)

§
§

iM-

bnﬁs

5 log |zl| lm,@g)——zp (tfzs, © tr{zll(wi—m(m—mﬁ}]

Il
—

tnﬁs

> log |Ez| p(l[2i,©9) ——Zp (i, © tr{z;INz,i}]

1

V.

&)
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Now, if we derive with respect to

First, we rewrite equation 51

M
Z[——log(lzzl - 5 (s = )" 5 (os = )| p Ui, 69)

M =

s
Il
=S

=

bnﬁs

5 log |zl| lm,@g)——zp (tfzs, © tr{zll(wi—m(m—mﬁ}]

tnﬁs

s
§

> log |Ez| p(l[2i,©9) ——Zp (i, © tr{z;INz,i}]

1

Where Ny ; = (zi — ) (z — )"

V.

&)
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Deriving with respect to ;!

M

N

N
1 1 _q
—5 18 (IZi) Y _pUlzi,€9) — 5 plw:, 09 tr {7 Ny}

=1 w=ll =1

d
az; !

V.

Q2
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Deriving with respect to ;!

M N
o log |Zl|)2p (U2, © Zp(lm,@g)tr{z;lz\r,,i}
=1 =1
il 1 »
=5 ZP(”%,@" (2%, — diag (%)) — 3 ZP(”G%GQ) (2Nl.i — diag (Nl,i))
i=1 =1

v

Q2
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Deriving with respect to ;!

M N
a;— log |Zl|)2p (U2, © Zp(lm,@g)tr{z;lz\r,,i}
l =1 i—1
1 al 1 ZN
=35 > p(l2:,©°) (25 — diag (%)) = 5 > p(l2:,©7) (2N; — diag (Ni,1))
=1 a=1

p (Il;,09) (2M, ; — diag (M;) )

o
Il
i

lolll)—l

v

Q2
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Deriving with respect to ;!

N

— % Zp(l|wi,@g)tr {=7'N:}

M 1 N
e —5log (=) Y _p(llz:,©
=1 7 =1
1 1 a
=5 Zp(z\mi, ©9) (25 — diag (1) — 5 > p (Ui, 09) (2N0; — diag (Vi)
=1 1
N

Zp(l\wl,eg) (2M1,; — diag (M)

K3
i=

lol)—l

_25 = dlag (S)

Where My ; = £, — Njg and S = 37 p (i, 09) My,

v

Q2
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Thus, we have

If 25 — diag (S) =0= S=0

J

G4
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Thus, we have

If 25 — diag(S)=0=S5=0

J

G4
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Thus, we have

If 25 — diag (S) =0= S=0

Implying
1y
EZ p (|, ©9) [Z — Nig] =0 (54)

Or

| A\

YN Uz, ©) Ny SN p(lxi, ©9) (= — ) (2 — )"

X p(l|z;, ©9) Xip(lzi, 09)

(55)
w[
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Thus, we have the iterative updates

—_
=

=—>» p(]z;,©

=

&)
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Thus, we have the iterative updates

1 X
' =N E: p (l|zi, ©7)
N Uz ©I
New Z =l zp( ’wza )
M

X oz, 09)

&)
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Thus, we have the iterative updates

1 N
:N; l|ZL‘1,

vew :E%} zip (I|zi, ©9)
iz p (I, ©9)
y)New _ X p (U2, ©) (@i — ) (@i — )"
Yitip (e, ©9)

&)
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Outline

e Finding Maximum Likelihood Mixture Densities

&)

@ The EM Algorithm Cinvestav
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EM Algorithm for Gaussian Mixtures

Initialize:

@ The means y;

o Covariances Y;
e Mixing coefficients oy

&)
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Evaluate

Step 2 - E-Step

@ Evaluate the the probabilities of component [ given z; using the
current parameter values:

algpyi (xl |0iq)
Elzcw:l aipk (95@ Wi)

p(l|zi, ©7) =

&)
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Now

Step 3 - M-Step

@ Re-estimate the parameters using the current iteration values:

1 N
—Ng Z|Il,

v

&)
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Now

Step 3 - M-Step

@ Re-estimate the parameters using the current iteration values:

1 N
—Ng Z|Il,

H{Vew ZZZJ\Ll Zip (”mla g)
L p (s, ©9)

v

&)
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Now

Step 3 - M-Step

@ Re-estimate the parameters using the current iteration values:

1 N
—Ng Z|Il,

pNew :Zf\%\} z;p (I|x;, ©9)

=1 P (|2, ©9)
sNew _Yp (l|wi7N99) (a0 — ) (i — )"
=1 P (l|zi, ©9)

v

&)
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Evaluate

Evaluate the log likelihood:

N M
N
lng (X|/“l’a 2 a) = Z log {Z alNewpl <$i|[,l;{vew, > ew) }
1=1 =1

&)

Cinvestav

112 /113



Evaluate

Evaluate the log likelihood:

N M
N
lng (X“*l’a 2 Ct) = Z log {Z alNewpl (mi“l’{\few, > ew) }
1=1 =1

@ Check for convergence of either the parameters or the log likelihood.

@ If the convergence criterion is not satisfied return to step 2.

&)
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