Introduction to Machine Learning Expectation Maximization

Andres Mendez-Vazquez

June 5, 2018

Outline

Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

3 Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 - Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

イロト イロト イヨト イヨト

Outline

Introduction

Maximum-Likelihood

- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

3 Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

We have a density function $p\left(\boldsymbol{x}|\Theta\right)$

Assume that we have a data set of size N , $\mathcal{X} = \{ oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N \}$

• This data is known as evidence.

We assume in addition that

The vectors are independent and identically distributed (i.i.d.) with distribution p under parameter heta.

We have a density function $p\left(\boldsymbol{x}|\Theta\right)$

Assume that we have a data set of size N, $\mathcal{X} = \{m{x}_1, m{x}_2, ..., m{x}_N\}$

• This data is known as evidence.

We assume in addition that

The vectors are independent and identically distributed (i.i.d.) with distribution p under parameter θ .

< ロ > < 回 > < 回 > < 回 > < 回 >

What Can We Do With The Evidence?

We may use the Bayes' Rule to estimate the parameters $\boldsymbol{\theta}$

$$p(\Theta|\mathcal{X}) = \frac{P(\mathcal{X}|\Theta)P(\Theta)}{P(\mathcal{X})}$$

Or, given a new observation $ilde{x}$

$$p\left(ilde{oldsymbol{x}} | \mathcal{X}
ight)$$

I.e. to compute the probability of the new observation being supported by the evidence $\mathcal{X}.$

Thus

The former represents parameter estimation and the latter data prediction.

(1)

What Can We Do With The Evidence?

We may use the Bayes' Rule to estimate the parameters θ

$$p(\Theta|\mathcal{X}) = \frac{P(\mathcal{X}|\Theta)P(\Theta)}{P(\mathcal{X})}$$

Or, given a new observation $ilde{x}$

$$p\left(\tilde{\boldsymbol{x}}|\mathcal{X}\right)$$

l.e. to compute the probability of the new observation being supported by the evidence $\ensuremath{\mathcal{X}}.$

The former represents parameter estimation and the latter data prediction.

(1)

(2)

What Can We Do With The Evidence?

We may use the Bayes' Rule to estimate the parameters θ

$$p(\Theta|\mathcal{X}) = \frac{P(\mathcal{X}|\Theta)P(\Theta)}{P(\mathcal{X})}$$

Or, given a new observation $ilde{x}$

$$p\left(\tilde{\boldsymbol{x}}|\mathcal{X}\right)$$

I.e. to compute the probability of the new observation being supported by the evidence $\ensuremath{\mathcal{X}}.$

Thus

The former represents parameter estimation and the latter data prediction.

イロト イヨト イヨト

(1)

(2)

Focusing First on the Estimation of the Parameters $\boldsymbol{\theta}$

$$p(\Theta|\mathcal{X}) = \frac{P(\mathcal{X}|\Theta)P(\Theta)}{P(\mathcal{X})}$$

Interpreted as

I hus, we want

 $likelihood = P\left(\mathcal{X}|\Theta\right)$

< ロ > < 回 > < 回 > < 回 > < 回 >

(3)

Focusing First on the Estimation of the Parameters $\boldsymbol{\theta}$

We can interpret the Bayes' Rule

$$p(\Theta|\mathcal{X}) = \frac{P(\mathcal{X}|\Theta)P(\Theta)}{P(\mathcal{X})}$$
(3)

Interpreted as

$$posterior = \frac{likelihood \times prior}{evidence}$$

Thus, we want

$likelihood = P\left(\mathcal{X}|\Theta\right)$

イロン イロン イヨン イヨン

(4)

Focusing First on the Estimation of the Parameters $\boldsymbol{\theta}$

We can interpret the Bayes' Rule

$$p(\Theta|\mathcal{X}) = \frac{P(\mathcal{X}|\Theta)P(\Theta)}{P(\mathcal{X})}$$
(3)

Interpreted as

$$posterior = \frac{likelihood \times prior}{evidence}$$

Thus, we want

$$likelihood = P\left(\mathcal{X}|\Theta\right)$$

イロト イボト イヨト イヨト

(4)

What we want...

We want to maximize the likelihood as a function of $\boldsymbol{\theta}$

Cinvestar Ξ ∽ ९ ୯ 7 / 113

イロン イ団 とくほとう ほんし

We have

$$p(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N | \Theta) = \prod_{i=1}^{N} p(\boldsymbol{x}_i | \Theta)$$
(5)

Also known as the likelihood function.

Because multiplication of quantities $p\left(m{x}_{i}|\Theta ight)\leq1$ can be problematic

 $\mathcal{L}(\Theta|\mathcal{X}) = \log \prod_{i=1}^{n} p(\mathbf{x}_i|\Theta) = \sum_{i=1}^{n} \log p(\mathbf{x}_i|\Theta)$

We have

$$p(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N | \Theta) = \prod_{i=1}^N p(\boldsymbol{x}_i | \Theta)$$
(5)

Also known as the likelihood function.

Because multiplication of quantities $p\left(\boldsymbol{x}_{i} | \Theta \right) \leq 1$ can be problematic

$$\mathcal{L}(\Theta|\mathcal{X}) = \log \prod_{i=1}^{N} p(\boldsymbol{x}_{i}|\Theta) = \sum_{i=1}^{N} \log p(\boldsymbol{x}_{i}|\Theta)$$
(6)

We want to find a Θ^*

$$\Theta^{*} = \operatorname{argmax}_{\Theta} \mathcal{L} \left(\Theta | \mathcal{X}
ight)$$

$$\frac{\partial \mathcal{L}\left(\Theta|\mathcal{X}\right)}{\partial \theta_{i}} = 0 \ \forall \theta_{i} \in \Theta$$

$$\tag{8}$$

(7)

What happened if we have incomplete data

Data could have been split

 $\textcircled{0} \ \mathcal{X} = \text{observed data or incomplete data}$

$\bigcirc \mathcal{Y} =$ unobserved data

イロト イヨト イヨト イヨト

What happened if we have incomplete data

Data could have been split

- $\textcircled{0} \ \mathcal{X} = \text{observed data or incomplete data}$
- $\textbf{0} \ \mathcal{Y} = \text{unobserved data}$

We have the famous Expectation Maximization (EM)

What happened if we have incomplete data

Data could have been split

- $\ \, \bullet \ \, \mathcal{X} = \mathsf{observed} \ \, \mathsf{data} \ \, \mathsf{or} \ \, \mathbf{incomplete} \ \, \mathsf{data} \\$
- $\textbf{0} \ \mathcal{Y} = \text{unobserved data}$

For this type of problems

We have the famous Expectation Maximization (EM)

イロト イヨト イヨト

Outline

Introduction

Maximum-Likelihood

Expectation Maximization

• Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

3 Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

The EM algorithm

It was first developed by Dempster et al. (1977).

The EM algorithm

It was first developed by Dempster et al. (1977).

Its popularity comes from the fact

It can estimate an underlying distribution when data is incomplete or has missing values.

イロト イヨト イヨト

The EM algorithm

It was first developed by Dempster et al. (1977).

Its popularity comes from the fact

It can estimate an underlying distribution when data is incomplete or has missing values.

Two main applications

• When missing values exists.

When a likelihood function can be simplified by assuming extraparameters that are **missing** or **hidden**.

The EM algorithm

It was first developed by Dempster et al. (1977).

Its popularity comes from the fact

It can estimate an underlying distribution when data is incomplete or has missing values.

Two main applications

- When missing values exists.
- When a likelihood function can be simplified by assuming extra parameters that are missing or hidden.

Outline

Introduction

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

3 Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Clustering

Given a series of data sets

Given the fact that Radial Gaussian Functions are Universal Approximators

- Samples $\{m{x}_1, m{x}_2, ..., m{x}_N\}$ are the visible parameters
- The Gaussian distributions generating each of the samples are the hidden parameters

Then, we model the cluster as a mixture of Gaussian's

Clustering

Given a series of data sets

Given the fact that Radial Gaussian Functions are Universal Approximators

- Samples $\{oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N\}$ are the visible parameters
- The Gaussian distributions generating each of the samples are the hidden parameters

Unsupervised induction of probabilistic context-free grammars

Here given a series of words o_1, o_2, o_3, \dots and normalized Context-Free Grammar

 \bullet We want to know the probabilities of each rule $P\left(i\rightarrow jk\right)$

Unsupervised induction of probabilistic context-free grammars

Here given a series of words o_1, o_2, o_3, \ldots and normalized Context-Free Grammar

• We want to know the probabilities of each rule $P\left(i \rightarrow jk\right)$

Thus

- Here the you have two variables:
 - The Visible Ones: The sequence of words
 - \blacktriangleright The Hidden Ones: The rule that produces the possible sequence $o_i \rightarrow o_j$

Here

- Hidden Variables: The circular nodes producing the data
- Visible Variables: The square nodes representing the samples.

Here

- Hidden Variables: The circular nodes producing the data
- Visible Variables: The square nodes representing the samples.

イロト イヨト イヨト

Outline

Introducti

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

Introduction

- Using the Expected Value
- Analogy

3 Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

We assume the following

Two parts of data

- $\mathcal{X} = \mathsf{observed} \ \mathsf{data} \ \mathsf{or} \ \mathsf{incomplete} \ \mathsf{data}$

イロト イロト イヨト イヨト

We assume the following

Two parts of data

- $\textcircled{0} \ \mathcal{X} = \text{observed data or incomplete data}$
- $\textcircled{O} \mathcal{Y} = \textsf{unobserved data}$

$\mathcal{Z} = (\mathcal{X}, \mathcal{Y}){=}\mathsf{Complete}$ Data

Thus, we have the following probability

 $p\left(\boldsymbol{z}|\Theta\right) = p\left(\boldsymbol{x}, \boldsymbol{y}|\Theta\right) = p\left(\boldsymbol{y}|\boldsymbol{x}, \Theta\right) p\left(\boldsymbol{x}|\Theta\right)$

We assume the following

Two parts of data

- $\textcircled{0} \ \mathcal{X} = \text{observed data or incomplete data}$
- $\textbf{2} \ \mathcal{Y} = unobserved \ data$

Thus

$$\mathcal{Z} = (\mathcal{X}, \mathcal{Y}) =$$
Complete Data

(9)

18/113

Incomplete Data

We assume the following

Two parts of data

- $\textcircled{0} \ \mathcal{X} = \text{observed data or incomplete data}$
- $\textbf{2} \ \mathcal{Y} = unobserved \ data$

Thus

$$\mathcal{Z} = (\mathcal{X}, \mathcal{Y}) = \mathsf{Complete} \mathsf{ Data}$$

Thus, we have the following probability

$$p(\boldsymbol{z}|\Theta) = p(\boldsymbol{x}, \boldsymbol{y}|\Theta) = p(\boldsymbol{y}|\boldsymbol{x}, \Theta) p(\boldsymbol{x}|\Theta)$$

(10)

イロト 不得 トイヨト イヨト 二日

New Likelihood Function

The New Likelihood Function

$$\mathcal{L}\left(\Theta|\mathcal{Z}\right) = \mathcal{L}\left(\Theta|\mathcal{X},\mathcal{Y}\right) = p\left(\mathcal{X},\mathcal{Y}|\Theta\right)$$

(11)

Note: The complete data likelihood.

Thus, we have

 $\mathcal{L}\left(\Theta|\mathcal{X},\mathcal{Y}\right) = p\left(\mathcal{X},\mathcal{Y}|\Theta\right) = p\left(\mathcal{Y}|\mathcal{X},\Theta\right)p\left(\mathcal{X}|\Theta\right)$

adt rebru stab bevessko-on adt la boodiekli adt si (8), 9, e. Utab bevessia - Utab bevessia

New Likelihood Function

The New Likelihood Function

$$\mathcal{L}(\Theta|\mathcal{Z}) = \mathcal{L}(\Theta|\mathcal{X}, \mathcal{Y}) = p(\mathcal{X}, \mathcal{Y}|\Theta)$$
(11)

Note: The complete data likelihood.

Thus, we have

$$\mathcal{L}\left(\Theta|\mathcal{X},\mathcal{Y}\right) = p\left(\mathcal{X},\mathcal{Y}|\Theta\right) = p\left(\mathcal{Y}|\mathcal{X},\Theta\right)p\left(\mathcal{X}|\Theta\right)$$

(12)

Did you notice

• $p\left(\mathcal{X}|\Theta
ight)$ is the likelihood of the observed data.

editrebut stab. bevreado-on edit/lo bood/lo/(16/06/06/06/06/06/06) Utatab.eved

New Likelihood Function

The New Likelihood Function

$$\mathcal{L}(\Theta|\mathcal{Z}) = \mathcal{L}(\Theta|\mathcal{X}, \mathcal{Y}) = p(\mathcal{X}, \mathcal{Y}|\Theta)$$
(11)

Note: The complete data likelihood.

Thus, we have

$$\mathcal{L}\left(\Theta|\mathcal{X},\mathcal{Y}\right) = p\left(\mathcal{X},\mathcal{Y}|\Theta\right) = p\left(\mathcal{Y}|\mathcal{X},\Theta\right)p\left(\mathcal{X}|\Theta\right)$$

Cinvestav

19/113

Did you notice?

- $p\left(\mathcal{X}|\Theta\right)$ is the likelihood of the observed data.
- $p\left(\mathcal{Y}|\mathcal{X},\Theta\right)$ is the likelihood of the no-observed data under the observed data!!!

Rewriting

This can be rewritten as

$$\mathcal{L}\left(\Theta|\mathcal{X},\mathcal{Y}\right) = h_{\mathcal{X},\Theta}\left(\mathcal{Y}\right) \tag{13}$$

This basically signify that \mathcal{X}, Θ are constant and the only random part is $\mathcal{Y}.$

In addition

$$\mathcal{L}(\Theta|\mathcal{X})$$

It is known as the incomplete-data likelihood function

Rewriting

This can be rewritten as

$$\mathcal{L}\left(\Theta|\mathcal{X},\mathcal{Y}\right) = h_{\mathcal{X},\Theta}\left(\mathcal{Y}\right) \tag{13}$$

This basically signify that \mathcal{X},Θ are constant and the only random part is $\mathcal{Y}.$

In addition

$$\mathcal{L}\left(\boldsymbol{\Theta}|\mathcal{X}\right)$$

(14)

It is known as the incomplete-data likelihood function.

We can connect both incomplete-complete data equations by doing the following

 $\mathcal{L}(\Theta|\mathcal{X}) = p(\mathcal{X}|\Theta)$ $= \sum_{\mathcal{Y}} p(\mathcal{Y}|\mathcal{X},\Theta) p(\mathcal{X}|\Theta)$ $= \sum_{\mathcal{Y}} \left(\prod_{i=1}^{N} p(\mathcal{X}_{i}|\Theta)\right) p(\mathcal{Y}|\mathcal{X},\Theta)$

イロト イボト イヨト イヨト

Thus

We can connect both incomplete-complete data equations by doing the following

$$\mathcal{L}(\Theta|\mathcal{X}) = p(\mathcal{X}|\Theta)$$
$$= \sum_{\mathcal{Y}} p(\mathcal{X}, \mathcal{Y}|\Theta)$$
$$= \sum_{\mathcal{Y}} p(\mathcal{O}|\mathcal{A}, \Theta) p(\mathcal{A}|\Theta)$$
$$= \sum_{\mathcal{Y}} \left(\prod_{i=1}^{N} p(\mathcal{A}_{i}|\Theta)\right) p(\mathcal{O}|\mathcal{A}, \Theta)$$

イロト イロト イヨト イヨト

Thus

We can connect both incomplete-complete data equations by doing the following

$$\mathcal{L}(\Theta|\mathcal{X}) = p(\mathcal{X}|\Theta)$$
$$= \sum_{\mathcal{Y}} p(\mathcal{X}, \mathcal{Y}|\Theta)$$
$$= \sum_{\mathcal{Y}} p(\mathcal{Y}|\mathcal{X}, \Theta) p(\mathcal{X}|\Theta)$$
$$= \sum_{\mathcal{Y}} p(\mathcal{Y}|\mathcal{X}, \Theta) p(\mathcal{X}|\Theta)$$

イロト イロト イヨト イヨト

Thus

We can connect both incomplete-complete data equations by doing the following

$$\begin{aligned} \mathcal{L}(\Theta|\mathcal{X}) &= p\left(\mathcal{X}|\Theta\right) \\ &= \sum_{\mathcal{Y}} p\left(\mathcal{X}, \mathcal{Y}|\Theta\right) \\ &= \sum_{\mathcal{Y}} p\left(\mathcal{Y}|\mathcal{X}, \Theta\right) p\left(\mathcal{X}|\Theta\right) \\ &= \sum_{\mathcal{Y}} \left(\prod_{i=1}^{N} p\left(x_{i}|\Theta\right)\right)_{\mathcal{Y}} p\left(\mathcal{Y}|\mathcal{X}, \Theta\right) \end{aligned}$$

э

イロン イロン イヨン イヨン

Remarks

Problems

Normally, it is almost impossible to obtain a closed analytical solution for the previous equation.

However

We can use the expected value of $\log p(\mathcal{X}, \mathcal{Y}|\Theta)$, which allows us to find an iterative procedure to approximate the solution.

Remarks

Problems

Normally, it is almost impossible to obtain a closed analytical solution for the previous equation.

However

We can use the expected value of $\log p(\mathcal{X}, \mathcal{Y}|\Theta)$, which allows us to find an iterative procedure to approximate the solution.

イロト イヨト イヨト

The function we would like to have

The Q function

We want an estimation of the complete-data log-likelihood

 $\log p\left(\mathcal{X}, \mathcal{Y}|\Theta\right) \tag{15}$

Based in the info provided by $\mathcal{X}, \Theta_{n-1}$ where Θ_{n-1} is a previously estimated set of parameters at step n.

Fhink about the following, if we want to remove ${\mathcal Y}$

 $\Big| \left[\log p\left(\mathcal{X}, \mathcal{Y} | \Theta
ight)
ight] p\left(\mathcal{Y} | \mathcal{X}, \Theta_{n-1}
ight) d\mathcal{Y}$

Remark: We integrate out \mathcal{Y} - Actually, this is the expected value of $\log p(\mathcal{X}, \mathcal{Y} | \Theta)$.

The function we would like to have

The Q function

We want an estimation of the complete-data log-likelihood

$$\log p\left(\mathcal{X}, \mathcal{Y} | \Theta\right) \tag{15}$$

Based in the info provided by $\mathcal{X}, \Theta_{n-1}$ where Θ_{n-1} is a previously estimated set of parameters at step n.

Think about the following, if we want to remove ${\mathcal Y}$

$$\int \left[\log p\left(\mathcal{X}, \mathcal{Y}|\Theta\right)\right] p\left(\mathcal{Y}|\mathcal{X}, \Theta_{n-1}\right) d\mathcal{Y}$$
(16)

Remark: We integrate out \mathcal{Y} - Actually, this is the expected value of $\log p(\mathcal{X}, \mathcal{Y}|\Theta)$.

Outline

Introducti

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

Introduction

• Using the Expected Value

Analogy

3 Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 In Our Case
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

< ロ > < 同 > < 回 > < 回 >

Then, we want an iterative method to guess Θ from Θ_{n-1}

$$Q(\Theta, \Theta_{n-1}) = E\left[\log p\left(\mathcal{X}, \mathcal{Y}|\Theta\right) | \mathcal{X}, \Theta_{n-1}\right]$$
(17)

イロト イロト イヨト イヨト

Then, we want an iterative method to guess Θ from Θ_{n-1}

$$Q(\Theta, \Theta_{n-1}) = E\left[\log p\left(\mathcal{X}, \mathcal{Y}|\Theta\right) | \mathcal{X}, \Theta_{n-1}\right]$$
(17)

Take in account that

Q $\mathcal{X}, \Theta_{n-1}$ are taken as constants.

) Θ is a normal variable that we wish to adjust.

) \mathcal{Y} is a random variable governed by distribution

 $p(\mathcal{Y}|\mathcal{X}, \Theta_{n-1}) =$ marginal distribution of missing data.

イロト イヨト イヨト

Then, we want an iterative method to guess Θ from Θ_{n-1}

$$Q(\Theta, \Theta_{n-1}) = E\left[\log p\left(\mathcal{X}, \mathcal{Y}|\Theta\right) | \mathcal{X}, \Theta_{n-1}\right]$$
(17)

Take in account that

- **1** $\mathcal{X}, \Theta_{n-1}$ are taken as constants.
- **2** Θ is a normal variable that we wish to adjust.

) is a random variable governed by distribution

< ロ > < 同 > < 回 > < 回 >

Then, we want an iterative method to guess Θ from Θ_{n-1}

$$Q(\Theta, \Theta_{n-1}) = E\left[\log p\left(\mathcal{X}, \mathcal{Y}|\Theta\right) | \mathcal{X}, \Theta_{n-1}\right]$$
(17)

Take in account that

- **1** $\mathcal{X}, \Theta_{n-1}$ are taken as constants.
- ${f Q}$ Θ is a normal variable that we wish to adjust.
- *Y* is a random variable governed by distribution
 p(*Y*|*X*, Θ_{n-1})=marginal distribution of missing data.

Given the previous information

$E\left[\log p\left(\mathcal{X}, \mathcal{Y} | \Theta\right) | \mathcal{X}, \Theta_{n-1}\right] = \int_{\mathcal{Y} \in \mathbb{Y}} \log p\left(\mathcal{X}, \mathcal{Y} | \Theta\right) p\left(\mathcal{Y} | \mathcal{X}, \Theta_{n-1}\right) d\mathcal{Y}$

Given the previous information

$$E\left[\log p\left(\mathcal{X}, \mathcal{Y} | \Theta\right) | \mathcal{X}, \Theta_{n-1}\right] = \int_{\mathcal{Y} \in \mathbb{Y}} \log p\left(\mathcal{X}, \mathcal{Y} | \Theta\right) p\left(\mathcal{Y} | \mathcal{X}, \Theta_{n-1}\right) d\mathcal{Y}$$

Something Notable

9 In the best of cases, this marginal distribution is a simple analytical expression of the assumed parameter Θ_{n-1} .

Given the previous information

$$E\left[\log p\left(\mathcal{X}, \mathcal{Y}|\Theta\right) | \mathcal{X}, \Theta_{n-1}\right] = \int_{\mathcal{Y}\in\mathbb{Y}} \log p\left(\mathcal{X}, \mathcal{Y}|\Theta\right) p\left(\mathcal{Y}|\mathcal{X}, \Theta_{n-1}\right) d\mathcal{Y}$$

Something Notable

- In the best of cases, this marginal distribution is a simple analytical expression of the assumed parameter Θ_{n-1} .
- 2 In the worst of cases, this density might be very hard to obtain.

$p(\mathcal{Y}, \mathcal{X} | \Theta_{n-1}) = p(\mathcal{Y} | \mathcal{X}, \Theta_{n-1}) p(\mathcal{X} | \Theta_{n-1})$

which is not dependent on Θ .

Given the previous information

$$E\left[\log p\left(\mathcal{X}, \mathcal{Y}|\Theta\right) | \mathcal{X}, \Theta_{n-1}\right] = \int_{\mathcal{Y}\in\mathbb{Y}} \log p\left(\mathcal{X}, \mathcal{Y}|\Theta\right) p\left(\mathcal{Y}|\mathcal{X}, \Theta_{n-1}\right) d\mathcal{Y}$$

Something Notable

- In the best of cases, this marginal distribution is a simple analytical expression of the assumed parameter Θ_{n-1}.
- 2 In the worst of cases, this density might be very hard to obtain.

Actually, we use

$$p(\mathcal{Y}, \mathcal{X}|\Theta_{n-1}) = p(\mathcal{Y}|\mathcal{X}, \Theta_{n-1}) p(\mathcal{X}|\Theta_{n-1})$$
(18)

イロト イヨト イヨト

which is not dependent on Θ .

Outline

Introducti

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 Mixing Parameters
 - Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

< ロ > < 同 > < 回 > < 回 >

The intuition

- We have the following analogy:
- Consider $h\left(heta,oldsymbol{Y}
 ight)$ a function
 - θ a constant
 - $\sim p_{oldsymbol{Y}}\left(y
 ight)$, a random variable with distribution $p_{oldsymbol{Y}}\left(y
 ight)$

イロト イロト イヨト イヨト

The intuition

We have the following analogy:

 $\bullet~ \mbox{Consider}~ h\left(\boldsymbol{\theta},\boldsymbol{Y}\right)$ a function

 $\sim p_{oldsymbol{Y}}\left(y
ight)$, a random variable with distribution $p_{oldsymbol{Y}}\left(y
ight)$.

Thus, if $oldsymbol{Y}$ is a discrete random variable

$$q(\theta) = E_{Y}[h(\theta, Y)] = \sum_{y} h(\theta, y) p_{Y}(y)$$

< ロ > < 回 > < 回 > < 回 > < 回 >

The intuition

We have the following analogy:

- $\bullet~ \mbox{Consider}~ h\left(\boldsymbol{\theta},\boldsymbol{Y}\right)$ a function
 - $\blacktriangleright \ \theta$ a constant

 $_{\mathcal{C}}(y)$, a random variable with distribution $p_{oldsymbol{Y}}(y).$

Thus, if Y is a discrete random variable

$$q\left(\theta\right) = E_{\boldsymbol{Y}}\left[h\left(\theta, \boldsymbol{Y}\right)\right] = \sum_{\boldsymbol{y}} h\left(\theta, \boldsymbol{y}\right) p_{\boldsymbol{Y}}\left(\boldsymbol{y}\right)$$

< ロ > < 回 > < 回 > < 回 > < 回 >

The intuition

We have the following analogy:

- $\bullet~ \mbox{Consider}~ h\left(\boldsymbol{\theta},\boldsymbol{Y}\right)$ a function
 - θ a constant
 - $\boldsymbol{Y} \sim p_{\boldsymbol{Y}}\left(y\right)$, a random variable with distribution $p_{\boldsymbol{Y}}\left(y\right)$.

Thus, if Y is a discrete random variable $q(\theta) = E_{Y} [h(\theta, Y)] = \sum_{y} h(\theta, y) p_{Y}(y)$ (19)

イロト イヨト イヨト イヨト

The intuition

We have the following analogy:

- Consider $h\left(\boldsymbol{\theta},\boldsymbol{Y}\right)$ a function
 - θ a constant
 - $\boldsymbol{Y} \sim p_{\boldsymbol{Y}}\left(y\right)$, a random variable with distribution $p_{\boldsymbol{Y}}\left(y\right)$.

Thus, if Y is a discrete random variable

$$q(\theta) = E_{\mathbf{Y}}[h(\theta, \mathbf{Y})] = \sum_{y} h(\theta, y) p_{\mathbf{Y}}(y)$$
(19)

イロト イボト イヨト イヨト

Why E-step!!!

From here the name

This is basically the E-step

The second step

It tries to maximize the Q function

$\partial_{n} = \operatorname{argmax}_{\Theta} Q\left(\Theta, \Theta_{n-1} ight)$

Why E-step!!!

From here the name

This is basically the E-step

The second step

It tries to maximize the Q function

$\partial_n = \operatorname{argmax}_{\Theta} Q\left(\Theta, \Theta_{n-1}\right) \tag{20}$

Why E-step!!!

From here the name

This is basically the E-step

The second step

It tries to maximize the \boldsymbol{Q} function

$$\Theta_n = \operatorname{argmax}_{\Theta} Q\left(\Theta, \Theta_{n-1}\right) \tag{20}$$

Derivation of the EM-Algorithm

The likelihood function we are going to use

Let $\ensuremath{\mathcal{X}}$ be a random vector which results from a parametrized family:

$$\mathcal{L}(\Theta) = \ln \mathcal{P}\left(\mathcal{X}|\Theta\right) \tag{21}$$

Note: $\ln(x)$ is a strictly increasing function.

We wish to compute \oplus

Based on an estimate Θ_n (After the n^{th}) such that $\mathcal{L}(\Theta) > \mathcal{L}(\Theta_n)$

Or the maximization of the difference

 $\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) = \ln \mathcal{P}(\mathcal{X}|\Theta) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$

Derivation of the EM-Algorithm

The likelihood function we are going to use

Let $\mathcal X$ be a random vector which results from a parametrized family:

$$\mathcal{L}(\Theta) = \ln \mathcal{P}\left(\mathcal{X}|\Theta\right) \tag{21}$$

Note: $\ln(x)$ is a strictly increasing function.

We wish to compute Θ

Based on an estimate Θ_n (After the n^{th}) such that $\mathcal{L}(\Theta) > \mathcal{L}(\Theta_n)$

Or the maximization of the difference

Derivation of the EM-Algorithm

The likelihood function we are going to use

Let \mathcal{X} be a random vector which results from a parametrized family:

$$\mathcal{L}(\Theta) = \ln \mathcal{P}\left(\mathcal{X}|\Theta\right) \tag{21}$$

Note: $\ln(x)$ is a strictly increasing function.

We wish to compute Θ

Based on an estimate Θ_n (After the n^{th}) such that $\mathcal{L}(\Theta) > \mathcal{L}(\Theta_n)$

Or the maximization of the difference

$$\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) = \ln \mathcal{P}(\mathcal{X}|\Theta) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$

Outline

Introducti

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

Derivation of the EM-Algorithm

Hidden Features

- Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM
- Finding Maximum Likelihood Mixture Densities
 - The Beginning of The Process
 - Bayes' Rule for the components
 Mixing Parameters
 - Mixing Parameters
 - Maximizing Q using Lagrange Multipliers
 In Our Case
 - Example on Mixture of Gaussian Distributions
 - The EM Algorithm

< ロ > < 同 > < 回 > < 回 >
Introducing the Hidden Features

Given that the hidden random vector \mathcal{Y} exits with y values $\mathcal{P}(\mathcal{X}|\Theta) = \sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)$ (23)

Thus, using our first constraint $\mathcal{L}\left(\Theta\right) - \mathcal{L}\left(\Theta_{n}\right)$

 $\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) = \ln\left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$ (24)

イロト イヨト イヨト イヨト

Introducing the Hidden Features

Given that the hidden random vector ${\mathcal Y}$ exits with y values

$$\mathcal{P}(\mathcal{X}|\Theta) = \sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)$$
(23)

Thus, using our first constraint $\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n)$

$$\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) = \ln\left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n) \quad (24)$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Here, we introduce some concepts of convexity

For Convexity

Theorem (Jensen's inequality)

Let f be a convex function defined on an interval I. If $x_1, x_2, ..., x_n \in I$ and $\lambda_1, \lambda_2, ..., \lambda_n \ge 0$ with $\sum_{i=1}^n \lambda_i = 1$, then

$$f\left(\sum_{i=1}^{n}\lambda_{i}x_{i}\right) \leq \sum_{i=1}^{n}\lambda_{i}f\left(x_{i}\right)$$
(25)

イロト イヨト イヨト

Proof:

For n = 1

We have the trivial case

For n=2

The convexity definition.

Now the inductive hypothesis

We assume that the theorem is true for some n.

Proof:

For n = 1

We have the trivial case

For n=2

The convexity definition.

Now the inductive hypothesis

We assume that the theorem is true for some n.

Proof:

For n = 1

We have the trivial case

For n=2

The convexity definition.

Now the inductive hypothesis

We assume that the theorem is true for some n.

Now, we have

The following linear combination for λ_i

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left(\lambda_{n+1} x_{n+1} + \sum_{i=1}^n \lambda_i x_i\right)$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Now, we have

The following linear combination for λ_i

$$f\left(\sum_{i=1}^{n+1}\lambda_{i}x_{i}\right) = f\left(\lambda_{n+1}x_{n+1} + \sum_{i=1}^{n}\lambda_{i}x_{i}\right)$$
$$= f\left(\lambda_{n+1}x_{n+1} + \frac{(1-\lambda_{n+1})}{(1-\lambda_{n+1})}\sum_{i=1}^{n}\lambda_{i}x_{i}\right)$$

Now, we have

The following linear combination for λ_i

$$f\left(\sum_{i=1}^{n+1}\lambda_{i}x_{i}\right) = f\left(\lambda_{n+1}x_{n+1} + \sum_{i=1}^{n}\lambda_{i}x_{i}\right)$$
$$= f\left(\lambda_{n+1}x_{n+1} + \frac{(1-\lambda_{n+1})}{(1-\lambda_{n+1})}\sum_{i=1}^{n}\lambda_{i}x_{i}\right)$$
$$\leq \lambda_{n+1}f\left(x_{n+1}\right) + (1-\lambda_{n+1})f\left(\frac{1}{(1-\lambda_{n+1})}\sum_{i=1}^{n}\lambda_{i}x_{i}\right)$$

Did you notice?

Something Notable

$$\sum_{i=1}^{n+1} \lambda_i = 1$$

Thus

$$\sum_{i=1}^{n} \lambda_i = 1 - \lambda_{n+1}$$

$$\frac{1}{(1-\lambda_{n+1})}\sum_{i=1}^n \lambda_i = 1$$

Cinvestav Ξ ∽ ৭ ペ 36/113

メロト スピト メヨト メヨト

Did you notice?

Something Notable

$$\sum_{i=1}^{n+1} \lambda_i = 1$$

Thus

$$\sum_{i=1}^{n} \lambda_i = 1 - \lambda_{n+1}$$

Finally

$$\frac{1}{(1-\lambda_{n+1})}\sum_{i=1}^n \lambda_i = 1$$

Did you notice?

Something Notable

$$\sum_{i=1}^{n+1} \lambda_i = 1$$

Thus

$$\sum_{i=1}^{n} \lambda_i = 1 - \lambda_{n+1}$$

Finally

$$\frac{1}{(1-\lambda_{n+1})}\sum_{i=1}^n \lambda_i = 1$$

2

・ロト ・回ト ・ヨト ・ヨト

Now

We have that

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) \le \lambda_{n+1} f\left(x_{n+1}\right) + (1 - \lambda_{n+1}) f\left(\frac{1}{(1 - \lambda_{n+1})} \sum_{i=1}^n \lambda_i x_i\right)$$

Now

We have that

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) \leq \lambda_{n+1} f\left(x_{n+1}\right) + (1 - \lambda_{n+1}) f\left(\frac{1}{(1 - \lambda_{n+1})} \sum_{i=1}^n \lambda_i x_i\right)$$
$$\leq \lambda_{n+1} f\left(x_{n+1}\right) + (1 - \lambda_{n+1}) \frac{1}{(1 - \lambda_{n+1})} \sum_{i=1}^n \lambda_i f\left(x_i\right)$$

Now

We have that

$$f\left(\sum_{i=1}^{n+1} \lambda_{i} x_{i}\right) \leq \lambda_{n+1} f\left(x_{n+1}\right) + \left(1 - \lambda_{n+1}\right) f\left(\frac{1}{\left(1 - \lambda_{n+1}\right)} \sum_{i=1}^{n} \lambda_{i} x_{i}\right)$$
$$\leq \lambda_{n+1} f\left(x_{n+1}\right) + \left(1 - \lambda_{n+1}\right) \frac{1}{\left(1 - \lambda_{n+1}\right)} \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right)$$
$$\leq \lambda_{n+1} f\left(x_{n+1}\right) + \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right) \quad \text{Q.E.D.}$$

Thus, for concave functions

It is possible to shown that

Given $\ln(x)$ a concave function:

$$\ln\left[\sum_{i=1}^{n}\lambda_{i}x_{i}\right] \geq \sum_{i=1}^{n}\lambda_{i}\ln\left(x_{i}\right)$$

If we take in consideration

Assume that the $\lambda_i = \mathcal{P}(y|\mathcal{X}, \Theta_n)$. We know that

 $P\left(y|\mathcal{X},\Theta_n\right) \geq 0$

 $\bigcirc \sum_{y} \mathcal{P}(y|\mathcal{X}, \Theta_n) = 1$

Thus, for concave functions

It is possible to shown that

Given $\ln(x)$ a concave function:

$$\ln\left[\sum_{i=1}^{n}\lambda_{i}x_{i}\right] \geq \sum_{i=1}^{n}\lambda_{i}\ln\left(x_{i}\right)$$

If we take in consideration

Assume that the $\lambda_i = \mathcal{P}(y|\mathcal{X}, \Theta_n)$. We know that

$$P(y|\mathcal{X},\Theta_n) \ge 0$$

イロト イヨト イヨト イヨト

First

$$\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) = \ln\left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$

$$= \ln\left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta) \frac{\mathcal{P}(y|\Theta)}{\mathcal{P}(y|\Theta)}\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$

$$= \ln\left(\sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_n) \frac{\mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)}{\mathcal{P}(y|\Theta)}\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$

$$\geq \sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_n) \ln\left(\frac{\mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)}{\mathcal{P}(y|\Theta)}\right) - \dots$$

Cinvestav

First

$$\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) = \ln\left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$
$$= \ln\left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta) \frac{\mathcal{P}(y|\mathcal{X},\Theta_n)}{\mathcal{P}(y|\mathcal{X},\Theta_n)}\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$
$$= \ln\left(\sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_n) + \frac{\mathcal{P}(\mathcal{X}|\Theta_n)}{\mathcal{P}(y|\mathcal{X},\Theta_n)}\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$
$$= \sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_n) + \frac{\mathcal{P}(\mathcal{X}|\Theta_n)}{\mathcal{P}(y|\mathcal{X},\Theta_n)} + \frac{\mathcal{P}($$

Cinvestav < ロ > < (ア・ ミ = > ・ ミ = > つ へ (や 39/113

First

$$\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) = \ln\left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$

$$= \ln\left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta) \frac{\mathcal{P}(y|\mathcal{X},\Theta_n)}{\mathcal{P}(y|\mathcal{X},\Theta_n)}\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$

$$= \ln\left(\sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_n) \frac{\mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)}{\mathcal{P}(y|\mathcal{X},\Theta_n)}\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$

Cinvestav

≣ ∽ ९ ୯ 39 / 113

First

$$\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) = \ln\left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$

$$= \ln\left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta) \frac{\mathcal{P}(y|\mathcal{X},\Theta_n)}{\mathcal{P}(y|\mathcal{X},\Theta_n)}\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$

$$= \ln\left(\sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_n) \frac{\mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)}{\mathcal{P}(y|\mathcal{X},\Theta_n)}\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$

$$\geq \sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_n) \ln\left(\frac{\mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)}{\mathcal{P}(y|\mathcal{X},\Theta_n)}\right) - \dots$$

$$\sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_n) \ln \mathcal{P}(\mathcal{X}|\Theta_n) \text{ Why this?}$$

Cinvestav < □ > < 圕 > < ≧ > < ≧ > ≤ ≧ > ○ Q (~ 39 / 113

Next

Because

$$\sum_{y} \mathcal{P}\left(y|\mathcal{X}, \Theta_n\right) = 1$$

Then

$\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) \ge \sum_{y} \mathcal{P}(y|\mathcal{X}, \Theta_n) \ln\left(\frac{\mathcal{P}(\mathcal{X}|y, \Theta) \mathcal{P}(y|\Theta)}{\mathcal{P}(y|\mathcal{X}, \Theta_n) \mathcal{P}(\mathcal{X}|\Theta_n)}\right)$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Next

Because

$$\sum_{y} \mathcal{P}\left(y|\mathcal{X}, \Theta_n\right) = 1$$

Then

$$\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) \ge \sum_{y} \mathcal{P}(y|\mathcal{X}, \Theta_n) \ln\left(\frac{\mathcal{P}(\mathcal{X}|y, \Theta) \mathcal{P}(y|\Theta)}{\mathcal{P}(y|\mathcal{X}, \Theta_n) \mathcal{P}(\mathcal{X}|\Theta_n)}\right)$$
$$= \Delta(\Theta|\Theta_n)$$

Then, we have

Then, we have proved that

$$\mathcal{L}(\Theta) \ge \mathcal{L}(\Theta_n) + \Delta(\Theta|\Theta_n)$$

hen, we define a new function

$$l\left(\Theta|\Theta_{n}\right) = \mathcal{L}\left(\Theta_{n}\right) + \Delta\left(\Theta|\Theta_{n}\right)$$

Thus $l\left(\Theta|\Theta_{n}
ight)$

t is bounded from above by $\mathcal{L}(\Theta)$ i.e $l(\Theta|\Theta_n) \leq \mathcal{L}(\Theta)$

イロン イロン イヨン イヨン

(26)

Then, we have

Then, we have proved that

$$\mathcal{L}(\Theta) \ge \mathcal{L}(\Theta_n) + \Delta(\Theta|\Theta_n)$$

Then, we define a new function

$$l(\Theta|\Theta_n) = \mathcal{L}(\Theta_n) + \Delta(\Theta|\Theta_n)$$
(27)

Thus $l(\Theta|\Theta_n)$

It is bounded from above by $\mathcal{L}\left(\Theta
ight)$ i.e $l\left(\Theta|\Theta_{n}
ight)\leq\mathcal{L}\left(\Theta
ight)$

イロト イロト イヨト イヨト

(26)

Then, we have

Then, we have proved that

$$\mathcal{L}(\Theta) \ge \mathcal{L}(\Theta_n) + \Delta(\Theta|\Theta_n)$$

Then, we define a new function

$$\mathcal{L}(\Theta|\Theta_n) = \mathcal{L}(\Theta_n) + \Delta(\Theta|\Theta_n)$$
(27)

イロト イロト イヨト イヨト

Thus $l(\Theta|\Theta_n)$

It is bounded from above by $\mathcal{L}\left(\Theta\right)$ i.e $l\left(\Theta|\Theta_{n}\right) \leq \mathcal{L}\left(\Theta\right)$

(26)

We evaluate in Θ_n

$$l\left(\Theta_{n}|\Theta_{n}\right) = \mathcal{L}\left(\Theta_{n}\right) + \Delta\left(\Theta_{n}|\Theta_{n}\right)$$

$$= \mathcal{L}\left(\Theta_{n}\right) + \sum_{n} P\left(q|A_{n},\Theta_{n}\right) + \left(\frac{P\left(A_{n}|\Theta_{n},\Theta_{n}\right)}{P\left(A_{n}|\Theta_{n}\right)}\right)$$

$$= \mathcal{L}\left(\Theta_{n}\right) + \sum_{n} P\left(q|A_{n},\Theta_{n}\right) + \left(\frac{P\left(A_{n}|\Theta_{n},\Theta_{n}\right)}{P\left(A_{n}|\Theta_{n}\right)}\right)$$

We evaluate in Θ_n

$$l(\Theta_{n}|\Theta_{n}) = \mathcal{L}(\Theta_{n}) + \Delta(\Theta_{n}|\Theta_{n})$$
$$= \mathcal{L}(\Theta_{n}) + \sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_{n}) \ln\left(\frac{\mathcal{P}(\mathcal{X}|y,\Theta_{n})\mathcal{P}(y|\Theta_{n})}{\mathcal{P}(y|\mathcal{X},\Theta_{n})\mathcal{P}(\mathcal{X}|\Theta_{n})}\right)$$

This means that

For $\Theta = \Theta_n$, functions $\mathcal{L}(\Theta)$ and $l(\Theta|\Theta_n)$ are equal

We evaluate in Θ_n

$$l(\Theta_{n}|\Theta_{n}) = \mathcal{L}(\Theta_{n}) + \Delta(\Theta_{n}|\Theta_{n})$$
$$= \mathcal{L}(\Theta_{n}) + \sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_{n}) \ln\left(\frac{\mathcal{P}(\mathcal{X}|y,\Theta_{n})\mathcal{P}(y|\Theta_{n})}{\mathcal{P}(y|\mathcal{X},\Theta_{n})\mathcal{P}(\mathcal{X}|\Theta_{n})}\right)$$
$$= \mathcal{L}(\Theta_{n}) + \sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_{n}) \ln\left(\frac{\mathcal{P}(\mathcal{X},y|\Theta_{n})}{\mathcal{P}(\mathcal{X},y|\Theta_{n})}\right)$$
$$= \mathcal{L}(\Theta_{n})$$

I his means that

For $\Theta = \Theta_n$, functions $\mathcal{L}(\Theta)$ and $l\left(\Theta|\Theta_n ight)$ are equa

We evaluate in Θ_n

$$l(\Theta_{n}|\Theta_{n}) = \mathcal{L}(\Theta_{n}) + \Delta(\Theta_{n}|\Theta_{n})$$
$$= \mathcal{L}(\Theta_{n}) + \sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_{n}) \ln\left(\frac{\mathcal{P}(\mathcal{X}|y,\Theta_{n})\mathcal{P}(y|\Theta_{n})}{\mathcal{P}(y|\mathcal{X},\Theta_{n})\mathcal{P}(\mathcal{X}|\Theta_{n})}\right)$$
$$= \mathcal{L}(\Theta_{n}) + \sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_{n}) \ln\left(\frac{\mathcal{P}(\mathcal{X},y|\Theta_{n})}{\mathcal{P}(\mathcal{X},y|\Theta_{n})}\right)$$
$$= \mathcal{L}(\Theta_{n})$$

This means that

For $\Theta = \Theta_n$, functions $\mathcal{L}(\Theta)$ and $l(\Theta|\Theta_n)$ are equal

イロト イヨト イヨト イヨト

We evaluate in Θ_n

$$l(\Theta_{n}|\Theta_{n}) = \mathcal{L}(\Theta_{n}) + \Delta(\Theta_{n}|\Theta_{n})$$
$$= \mathcal{L}(\Theta_{n}) + \sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_{n}) \ln\left(\frac{\mathcal{P}(\mathcal{X}|y,\Theta_{n})\mathcal{P}(y|\Theta_{n})}{\mathcal{P}(y|\mathcal{X},\Theta_{n})\mathcal{P}(\mathcal{X}|\Theta_{n})}\right)$$
$$= \mathcal{L}(\Theta_{n}) + \sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_{n}) \ln\left(\frac{\mathcal{P}(\mathcal{X},y|\Theta_{n})}{\mathcal{P}(\mathcal{X},y|\Theta_{n})}\right)$$
$$= \mathcal{L}(\Theta_{n})$$

イロト イボト イヨト イヨト

42/113

This means that

For $\Theta = \Theta_n$, functions $\mathcal{L}(\Theta)$ and $l(\Theta|\Theta_n)$ are equal

Therefore

The function $l(\Theta|\Theta_n)$ has the following properties

1 It is bounded from above by $\mathcal{L}(\Theta)$ i.e $l(\Theta|\Theta_n) \leq \mathcal{L}(\Theta)$.

• For $\Theta = \Theta_n$, functions $\mathcal{L}(\Theta)$ and $l(\Theta | \Theta_n)$ are equal.

• The function $l\left(\Theta|\Theta_n\right)$ is concave... How?

(日) (日) (日) (日) (日)

Therefore

The function $l(\Theta|\Theta_n)$ has the following properties

- **1** It is bounded from above by $\mathcal{L}(\Theta)$ i.e $l(\Theta|\Theta_n) \leq \mathcal{L}(\Theta)$.
- 2 For $\Theta = \Theta_n$, functions $\mathcal{L}(\Theta)$ and $l(\Theta|\Theta_n)$ are equal.

Therefore

The function $l(\Theta|\Theta_n)$ has the following properties

- **1** It is bounded from above by $\mathcal{L}(\Theta)$ i.e $l(\Theta|\Theta_n) \leq \mathcal{L}(\Theta)$.
- 2 For $\Theta = \Theta_n$, functions $\mathcal{L}(\Theta)$ and $l(\Theta|\Theta_n)$ are equal.
- **③** The function $l(\Theta|\Theta_n)$ is concave... How?

Outline

Introduct

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

< ロ > < 同 > < 回 > < 回 >

First

We have the value $\mathcal{L}(\Theta_n)$

We know that $\mathcal{L}\left(\Theta_{n}
ight)$ is constant i.e. an offset value

What about $\Delta\left(\Theta|\Theta_n ight)$

We have that the \ln is a concave function

 $\ln\left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta\right)\mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right)\mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right)$

イロン イロン イヨン イヨン
First

We have the value $\mathcal{L}(\Theta_n)$

We know that $\mathcal{L}\left(\Theta_{n}
ight)$ is constant i.e. an offset value

What about $\Delta(\Theta|\Theta_n)$

$$\sum_{y} \mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}|y, \Theta\right) \mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right)$$

We have that the \ln is a concave function

 $n\left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta\right)\mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right)\mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right)$

<ロ> <四> <ヨ> <ヨ>

First

We have the value $\mathcal{L}(\Theta_n)$

We know that $\mathcal{L}\left(\Theta_{n}
ight)$ is constant i.e. an offset value

What about $\Delta(\Theta|\Theta_n)$

$$\sum_{y} \mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}|y, \Theta\right) \mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right)$$

We have that the \ln is a concave function

$$\ln\left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta\right)\mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right)\mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right)$$

Each element is concave

$$\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right)\ln\left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta\right)\mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right)\mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right)$$

Therefore, the sum of concave functions is a concave function

 $\sum_{y} \mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}|y, \Theta\right) \mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right)$

Each element is concave

$$\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right)\ln\left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta\right)\mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right)\mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right)$$

Therefore, the sum of concave functions is a concave function

$$\sum_{y} \mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}|y, \Theta\right) \mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right)$$

Outline

Introducti

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

3 Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity

• Using the Concave Functions for Approximation

- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 Mixing Parameters
 - Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

< ロ > < 同 > < 回 > < 回 >

Given the Concave Function

Thus, we have that

• We can select Θ_n such that $l(\Theta|\Theta_n)$ is maximized.

Given the Concave Function

Thus, we have that

- We can select Θ_n such that $l(\Theta|\Theta_n)$ is maximized.
- **2** Thus, given a Θ_n , we can generate Θ_{n+1} .

he process can be seen in the following graph

< ロ > < 回 > < 回 > < 回 > < 回 >

Given the Concave Function

Thus, we have that

- We can select Θ_n such that $l(\Theta|\Theta_n)$ is maximized.
- **2** Thus, given a Θ_n , we can generate Θ_{n+1} .

The process can be seen in the following graph

Given

The Previous Constraints

1 $(\Theta|\Theta_n)$ is bounded from above by $\mathcal{L}(\Theta)$

 $l\left(\Theta|\Theta_{n}\right) \leq \mathcal{L}\left(\Theta\right)$

• For $\Theta = \Theta_n$, functions $\mathcal{L}(\Theta)$ and $l(\Theta|\Theta_n)$ are equa

 $\mathcal{L}\left(\Theta_{n}\right) = l\left(\Theta|\Theta_{n}\right)$

) The function $l\left(\Theta|\Theta_n
ight)$ is concave

Given

The Previous Constraints

1 $(\Theta|\Theta_n)$ is bounded from above by $\mathcal{L}(\Theta)$

 $l\left(\Theta|\Theta_{n}\right) \leq \mathcal{L}\left(\Theta\right)$

2 For $\Theta = \Theta_n$, functions $\mathcal{L}(\Theta)$ and $l(\Theta|\Theta_n)$ are equal

 $\mathcal{L}\left(\Theta_{n}\right) = l\left(\Theta|\Theta_{n}\right)$

• The function $l\left(\Theta|\Theta_n
ight)$ is concave

Given

The Previous Constraints

1 $(\Theta|\Theta_n)$ is bounded from above by $\mathcal{L}(\Theta)$

 $l\left(\Theta|\Theta_{n}\right) \leq \mathcal{L}\left(\Theta\right)$

2 For $\Theta = \Theta_n$, functions $\mathcal{L}(\Theta)$ and $l(\Theta|\Theta_n)$ are equal

$$\mathcal{L}\left(\Theta_{n}\right) = l\left(\Theta|\Theta_{n}\right)$$

③ The function $l(\Theta|\Theta_n)$ is concave

イロト 不得 トイヨト イヨト

Outline

Introducti

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

3 Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation

• From The Concave Function to the EM

- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 - Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

< ロ > < 同 > < 回 > < 回 >

The following

 $\Theta_{n+1} = \operatorname{argmax}_{\Theta} \{ l(\Theta | \Theta_n) \}$

The following

$$\begin{split} \Theta_{n+1} = &\operatorname{argmax}_{\Theta} \left\{ l\left(\Theta|\Theta_{n}\right) \right\} \\ = &\operatorname{argmax}_{\Theta} \left\{ \mathcal{L}\left(\Theta_{n}\right) + \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta\right) \mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right) \right\} \\ & \text{The terms with } \Theta_{n} \text{ are constants.} \end{split}$$

51/113

The following

$$\begin{split} \Theta_{n+1} = &\operatorname{argmax}_{\Theta} \left\{ l\left(\Theta|\Theta_{n}\right) \right\} \\ = &\operatorname{argmax}_{\Theta} \left\{ \mathcal{L}\left(\Theta_{n}\right) + \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln\left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta\right)\mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right)\mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right) \right\} \\ & \text{The terms with } \Theta_{n} \text{ are constants.} \\ \approx &\operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln\left(\mathcal{P}\left(\mathcal{X}|y,\Theta\right)\mathcal{P}\left(y|\Theta\right)\right) \right\} \\ & = &\operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln\left(\mathcal{P}\left(\mathcal{X}|y,\Theta\right)\mathcal{P}\left(y|\Theta\right)\right) \right\} \end{split}$$

The following

$$\begin{split} \Theta_{n+1} = &\operatorname{argmax}_{\Theta} \left\{ l\left(\Theta|\Theta_{n}\right) \right\} \\ = &\operatorname{argmax}_{\Theta} \left\{ \mathcal{L}\left(\Theta_{n}\right) + \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln\left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta\right)\mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right)\mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right) \right\} \\ & \text{The terms with } \Theta_{n} \text{ are constants.} \\ \approx &\operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln\left(\mathcal{P}\left(\mathcal{X}|y,\Theta\right)\mathcal{P}\left(y|\Theta\right)\right) \right\} \\ = &\operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln\left(\frac{\mathcal{P}\left(\mathcal{X},y|\Theta\right)\mathcal{P}\left(y,\Theta\right)}{\mathcal{P}\left(y|\Theta\right)}\right) \right\} \end{split}$$

The following

$$\begin{split} \Theta_{n+1} =& \operatorname{argmax}_{\Theta} \left\{ l\left(\Theta|\Theta_{n}\right) \right\} \\ =& \operatorname{argmax}_{\Theta} \left\{ \mathcal{L}\left(\Theta_{n}\right) + \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln\left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta\right)\mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right)\mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right) \right\} \\ & \text{The terms with } \Theta_{n} \text{ are constants.} \\ \approx& \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln\left(\mathcal{P}\left(\mathcal{X}|y,\Theta\right)\mathcal{P}\left(y|\Theta\right)\right) \right\} \\ =& \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln\left(\frac{\mathcal{P}\left(\mathcal{X},y|\Theta\right)}{\mathcal{P}\left(y|\Theta\right)}\frac{\mathcal{P}\left(y,\Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ =& \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln\left(\frac{\frac{\mathcal{P}\left(\mathcal{X},y|\Theta\right)}{\mathcal{P}\left(\Theta\right)}}{\frac{\mathcal{P}\left(\Theta\right)}{\mathcal{P}\left(\Theta\right)}}\frac{\mathcal{P}\left(y,\Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \end{split}$$

Then

$$\theta_{n+1} = \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}(y|\mathcal{X}, \Theta_n) \ln \left(\frac{\mathcal{P}(\mathcal{X}, y, \Theta)}{\mathcal{P}(y, \Theta)} \frac{\mathcal{P}(y, \Theta)}{\mathcal{P}(\Theta)} \right) \right\}$$

52/113

Then

$$\begin{aligned} \theta_{n+1} = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(y, \Theta\right)} \frac{\mathcal{P}\left(y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \arg \max_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{P}\left(\varphi\right) + \left\{ \sum_{y} \mathcal{P}\left(\varphi\right) + \left\{$$

(ロ) (四) (主) (主) (主) のへで

52/113

Then

$$\begin{split} \theta_{n+1} = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(y, \Theta\right)} \frac{\mathcal{P}\left(y, \Theta\right)}{\mathcal{P}\left(\Theta\right)} \right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)} \right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\mathcal{P}\left(\mathcal{X}, y | \Theta\right) \right) \right\} \end{split}$$

 $= \operatorname{argmax}_{\Theta} \left\{ E_{y|\mathcal{X},\Theta_{n}} \left[\ln \left(\mathcal{P} \left(\mathcal{X}, y | \Theta \right) \right) \right] \right\}$

Then $\operatorname{argmax}_{\Theta} \left\{ l\left(\Theta|\Theta_{n}\right) \right\} \approx \operatorname{argmax}_{\Theta} \left\{ E_{y|\mathcal{X},\Theta_{n}}\left[\ln\left(\mathcal{P}\left(\mathcal{X},y|\Theta\right)\right)\right] \right\}$

Cinvestav

Then

$$\begin{split} & \theta_{n+1} = & \mathsf{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(y, \Theta\right)} \frac{\mathcal{P}\left(y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \mathsf{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ & = & \mathsf{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \ln \left(\mathcal{P}\left(\mathcal{X}, y|\Theta\right)\right) \right\} \\ & = & \mathsf{argmax}_{\Theta} \left\{ E_{y|\mathcal{X}, \Theta_{n}} \left[\ln \left(\mathcal{P}\left(\mathcal{X}, y|\Theta\right)\right)\right] \right\} \end{split}$$

 $\left[\mathsf{hen} \; \arg \mathsf{max}_{\Theta} \left\{ l\left(\Theta | \Theta_n\right) \right\} \approx \mathsf{argmax}_{\Theta} \left\{ E_{y | \mathcal{X}, \Theta_n} \left[\ln \left(\mathcal{P}\left(\mathcal{X}, y | \Theta \right) \right) \right] \right\} \right\}$

Cinvestav

・ロト ・回ト ・ヨト ・ヨト

Then

$$\begin{split} \theta_{n+1} = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X},y,\Theta\right)}{\mathcal{P}\left(y,\Theta\right)} \frac{\mathcal{P}\left(y,\Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X},y,\Theta\right)}{\mathcal{P}\left(\Theta\right)}\right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln \left(\mathcal{P}\left(\mathcal{X},y|\Theta\right)\right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ E_{y|\mathcal{X},\Theta_{n}}\left[\ln \left(\mathcal{P}\left(\mathcal{X},y|\Theta\right)\right)\right] \right\} \\ \end{split}$$
Then $\operatorname{argmax}_{\Theta} \left\{ l\left(\Theta|\Theta_{n}\right) \right\} \approx \operatorname{argmax}_{\Theta} \left\{ E_{y|\mathcal{X},\Theta_{n}}\left[\ln \left(\mathcal{P}\left(\mathcal{X},y|\Theta\right)\right)\right] \right\}$

Cinvestav

52/113

(ロ) (四) (主) (主) (主) のへで

Outline

Introduct

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM

The Final Algorithm

Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 - Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

< ロ > < 同 > < 回 > < 回 >

Steps of EM

Expectation under hidden variables.

Maximization of the resulting formula

イロン イ団 とく ヨン イヨン

Steps of EM

- Expectation under hidden variables.
- Maximization of the resulting formula.

Determine the conditional expectation, $E_{y|\mathcal{X},\Theta_n}\left[\ln\left(\mathcal{P}\left(\mathcal{X},y|\Theta
ight)
ight)
ight]$

Steps of EM

- Expectation under hidden variables.
- Maximization of the resulting formula.

E-Step

Determine the conditional expectation, $E_{y|\mathcal{X},\Theta_n} [\ln (\mathcal{P}(\mathcal{X}, y|\Theta))].$

Maximize this expression with respect to Θ

< ロ > < 同 > < 回 > < 回 >

Steps of EM

- Expectation under hidden variables.
- Maximization of the resulting formula.

E-Step

Determine the conditional expectation, $E_{y|\mathcal{X},\Theta_n} \left[\ln \left(\mathcal{P} \left(\mathcal{X}, y | \Theta \right) \right) \right]$.

M-Step

Maximize this expression with respect to Θ .

イロト イヨト イヨト

Outline

Introducti

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 - Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

< ロ > < 同 > < 回 > < 回 >

Gains between $\mathcal{L}\left(\Theta\right)$ and $l\left(\Theta|\Theta_{n}\right)$

Using the hidden variables it is possible to simplify the optimization of $\mathcal{L}(\Theta)$ through $l(\Theta|\Theta_n)$.

Gains between $\mathcal{L}\left(\Theta ight)$ and $l\left(\Theta|\Theta_{n} ight)$

Using the hidden variables it is possible to simplify the optimization of $\mathcal{L}(\Theta)$ through $l(\Theta|\Theta_n)$.

Convergence

• Remember that Θ_{n+1} is the estimate for Θ which maximizes the difference $\Delta(\Theta|\Theta_n)$.

イロト イヨト イヨト

Gains between $\mathcal{L}\left(\Theta ight)$ and $l\left(\Theta|\Theta_{n} ight)$

Using the hidden variables it is possible to simplify the optimization of $\mathcal{L}(\Theta)$ through $l(\Theta|\Theta_n)$.

Convergence

• Remember that Θ_{n+1} is the estimate for Θ which maximizes the difference $\Delta(\Theta|\Theta_n)$.

イロト イヨト イヨト

Then, we have

Given the initial estimate of Θ by Θ_n

 $\Delta\left(\Theta_n|\Theta_n\right) = 0$

Now

If we choose Θ_{n+1} to maximize the $\Delta\left(\Theta|\Theta_n
ight)$, then

$\Delta\left(\Theta_{n+1}|\Theta_n\right) \ge \Delta\left(\Theta_n|\Theta_n\right) = 0$

We have that

The Likelihood $\mathcal{L}(\Theta)$ is not a decreasing function with respect to Θ .

Then, we have

Given the initial estimate of Θ by Θ_n

$$\Delta\left(\Theta_n|\Theta_n\right) = 0$$

Now

If we choose Θ_{n+1} to maximize the $\Delta\left(\Theta|\Theta_n
ight)$, then

$$\Delta\left(\Theta_{n+1}|\Theta_n\right) \ge \Delta\left(\Theta_n|\Theta_n\right) = 0$$

We have that

The Likelihood $\mathcal{L}(\Theta)$ is not a decreasing function with respect to Θ .

Then, we have

Given the initial estimate of Θ by Θ_n

$$\Delta\left(\Theta_n|\Theta_n\right) = 0$$

Now

If we choose Θ_{n+1} to maximize the $\Delta\left(\Theta|\Theta_n
ight)$, then

$$\Delta\left(\Theta_{n+1}|\Theta_n\right) \ge \Delta\left(\Theta_n|\Theta_n\right) = 0$$

We have that

The Likelihood $\mathcal{L}(\Theta)$ is not a decreasing function with respect to Θ .

Properties

When the algorithm reaches a fixed point for some Θ_n , the value maximizes $l\,(\Theta|\Theta_n).$

Properties

When the algorithm reaches a fixed point for some Θ_n , the value maximizes $l\,(\Theta|\Theta_n).$

Definition

A fixed point of a function is an element on domain that is mapped to itself by the function:

$$f(\boldsymbol{x}) = \boldsymbol{x}$$

Basically the EM algorithm does the following

$$EM\left[\Theta^*\right] = \Theta^*$$

イロン イロン イヨン イヨン
Notes and Convergence of EM

Properties

When the algorithm reaches a fixed point for some Θ_n , the value maximizes $l(\Theta|\Theta_n)$.

Definition

A fixed point of a function is an element on domain that is mapped to itself by the function:

$$f(\boldsymbol{x}) = \boldsymbol{x}$$

Basically the EM algorithm does the following

$$EM\left[\Theta^{*}\right]=\Theta^{*}$$

イロト イヨト イヨト

At this moment

We have that

The algorithm reaches a fixed point for some Θ_n , the value Θ^* maximizes $l(\Theta|\Theta_n)$.

Then, when the algorithm

It reaches a fixed point for some Θ_n the value maximizes l (Θ|Θ_n).
 ▶ Basically Θ_{n+1} = Θ_n.

At this moment

We have that

The algorithm reaches a fixed point for some Θ_n , the value Θ^* maximizes $l(\Theta|\Theta_n)$.

Then, when the algorithm

• It reaches a fixed point for some Θ_n the value maximizes $l(\Theta|\Theta_n)$.

• Basically $\Theta_{n+1} = \Theta_n$.

イロト イヨト イヨト

Therefore

Then

If $\mathcal L$ and l are differentiable at Θ_n

- Since ${\mathcal L}$ and l are equal at Θ_n
 - Then, Θ_n is a stationary point of L i.e. the derivative of L vanishes at that point.

However

For more on the subject

Please take a look to

Geoffrey McLachlan and Thriyambakam Krishnan, "The EM Algorithm and Extensions," John Wiley & Sons, New York, 1996.

Something Notable

The mixture-density parameter estimation problem is probably one of the most widely used applications of the EM algorithm in the computational pattern recognition community.

We have

Something Notable

The mixture-density parameter estimation problem is probably one of the most widely used applications of the EM algorithm in the computational pattern recognition community.

We have

$$p(\boldsymbol{x}|\Theta) = \sum_{i=1}^{M} \alpha_{i} p_{i}(\boldsymbol{x}|\theta_{i})$$

where

$$\Theta = (\alpha_1, ..., \alpha_M, \theta_1, ..., \theta_M)$$

Each p_i is a density function parametrized by θ_i

イロト イヨト イヨト イヨト

(28)

Something Notable

The mixture-density parameter estimation problem is probably one of the most widely used applications of the EM algorithm in the computational pattern recognition community.

We have

$$p(\boldsymbol{x}|\Theta) = \sum_{i=1}^{M} \alpha_{i} p_{i}(\boldsymbol{x}|\theta_{i})$$

where

$$\Theta = (\alpha_1, ..., \alpha_M, \theta_1, ..., \theta_M)$$
$$\geq \sum_{i=1}^M \alpha_i = 1$$

 p_i is a density function parametrized by $heta_i.$

イロト イヨト イヨト イヨト

(28)

Something Notable

The mixture-density parameter estimation problem is probably one of the most widely used applications of the EM algorithm in the computational pattern recognition community.

We have

$$p(\boldsymbol{x}|\Theta) = \sum_{i=1}^{M} \alpha_i p_i(\boldsymbol{x}|\theta_i)$$

where

$$\Theta = (\alpha_1, ..., \alpha_M, \theta_1, ..., \theta_M)$$

$$2 \quad \sum_{i=1}^{M} \alpha_i = 1$$

③ Each p_i is a density function parametrized by θ_i .

イロト イヨト イヨト イヨト

(28)

We have

$$\log \mathcal{L}(\Theta|\mathcal{X}) = \log \prod_{i=1}^{N} p(x_i|\Theta) = \sum_{i=1}^{N} \log \left(\sum_{j=1}^{M} \alpha_j p_j(x_i|\theta_j) \right)$$
(29)

Note: This is too difficult to optimize due to the log function

We have

$$\log \mathcal{L}(\Theta|\mathcal{X}) = \log \prod_{i=1}^{N} p(x_i|\Theta) = \sum_{i=1}^{N} \log \left(\sum_{j=1}^{M} \alpha_j p_j(x_i|\theta_j) \right)$$
(29)

Note: This is too difficult to optimize due to the log function.

lowever

We can simplify this assuming the following

- We assume that each unobserved data $\mathcal{Y} = \{y_i\}_{i=1}^N$ has a the following range $y_i \in \{1, ..., M\}$
- $y_i = k$ if the i^{th} samples was generated by the k^{th} mixture.

(日) (日) (日) (日) (日)

We have

$$\log \mathcal{L}(\Theta|\mathcal{X}) = \log \prod_{i=1}^{N} p(x_i|\Theta) = \sum_{i=1}^{N} \log \left(\sum_{j=1}^{M} \alpha_j p_j(x_i|\theta_j) \right)$$
(29)

Note: This is too difficult to optimize due to the log function.

However

We can simplify this assuming the following:

We assume that each unobserved data 𝔅 = {y_i}^N_{i=1} has a the following range y_i ∈ {1, ..., M}
 y_i = k if the ith samples was generated by the kth mixture.

イロト イヨト イヨト

We have

$$\log \mathcal{L}(\Theta|\mathcal{X}) = \log \prod_{i=1}^{N} p(x_i|\Theta) = \sum_{i=1}^{N} \log \left(\sum_{j=1}^{M} \alpha_j p_j(x_i|\theta_j) \right)$$
(29)

Note: This is too difficult to optimize due to the log function.

However

We can simplify this assuming the following:

• We assume that each unobserved data $\mathcal{Y} = \{y_i\}_{i=1}^N$ has a the following range $y_i \in \{1,...,M\}$

We have

$$\log \mathcal{L}(\Theta|\mathcal{X}) = \log \prod_{i=1}^{N} p(x_i|\Theta) = \sum_{i=1}^{N} \log \left(\sum_{j=1}^{M} \alpha_j p_j(x_i|\theta_j) \right)$$
(29)

Note: This is too difficult to optimize due to the log function.

However

We can simplify this assuming the following:

- **2** $y_i = k$ if the i^{th} samples was generated by the k^{th} mixture.

We have

$$\log \mathcal{L}\left(\Theta|\mathcal{X}, \mathcal{Y}\right) = \log\left[P\left(\mathcal{X}, \mathcal{Y}|\Theta\right)\right]$$

We have

$$\log \mathcal{L}\left(\Theta|\mathcal{X}, \mathcal{Y}\right) = \log\left[P\left(\mathcal{X}, \mathcal{Y}|\Theta\right)\right]$$

Remember that $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ with $\mathcal{Y} = \{y_1, y_2, ..., y_N\}$ and assuming independence

$$\log \left[P\left(\mathcal{X}, \mathcal{Y} | \Theta\right) \right] = \log \left[P\left(x_1, x_2, ..., x_N, y_1, y_2, ..., y_N | \Theta \right) \right]$$

We have

$$\log \mathcal{L}\left(\Theta|\mathcal{X}, \mathcal{Y}\right) = \log\left[P\left(\mathcal{X}, \mathcal{Y}|\Theta\right)\right]$$

Remember that $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ with $\mathcal{Y} = \{y_1, y_2, ..., y_N\}$ and assuming independence

$$\log \left[P\left(\mathcal{X}, \mathcal{Y}|\Theta\right) \right] = \log \left[P\left(x_1, x_2, ..., x_N, y_1, y_2, ..., y_N|\Theta\right) \right]$$
$$= \log \left[P\left(x_1, y_1, ..., x_i, y_i, ..., x_N, y_N|\Theta\right) \right]$$

A D F A D F A D F A D

We have

$$\log \mathcal{L}\left(\Theta|\mathcal{X}, \mathcal{Y}\right) = \log\left[P\left(\mathcal{X}, \mathcal{Y}|\Theta\right)\right]$$

(30)

CHIVESLOV

E ∽ Q C 66 / 113

・ロット 小田 マネ ボマン

Remember that $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ with $\mathcal{Y} = \{y_1, y_2, ..., y_N\}$ and assuming independence

$$\log \left[P\left(\mathcal{X}, \mathcal{Y} | \Theta\right) \right] = \log \left[P\left(x_1, x_2, ..., x_N, y_1, y_2, ..., y_N | \Theta\right) \right]$$
$$= \log \left[P\left(x_1, y_1, ..., x_i, y_i, ..., x_N, y_N | \Theta\right) \right]$$
$$= \log \prod_{i=1}^N P\left(x_i, y_i | \Theta\right)$$

 $\sum \log P(x_i, y_i | \Theta)$

We have

$$\log \mathcal{L}\left(\Theta|\mathcal{X}, \mathcal{Y}\right) = \log\left[P\left(\mathcal{X}, \mathcal{Y}|\Theta\right)\right]$$

Remember that $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ with $\mathcal{Y} = \{y_1, y_2, ..., y_N\}$ and assuming independence

$$\log \left[P\left(\mathcal{X}, \mathcal{Y} | \Theta\right) \right] = \log \left[P\left(x_1, x_2, \dots, x_N, y_1, y_2, \dots, y_N | \Theta\right) \right]$$
$$= \log \left[P\left(x_1, y_1, \dots, x_i, y_i, \dots, x_N, y_N | \Theta\right) \right]$$
$$= \log \prod_{i=1}^N P\left(x_i, y_i | \Theta\right)$$
$$= \sum_{i=1}^N \log P\left(x_i, y_i | \Theta\right)$$

CIIIVEStdV
√ Q (~
66 / 113

э

イロト 不得 トイヨト イヨト

Then

Thus, by the chain Rule

$$\sum_{i=1}^{N} \log P(x_i, y_i | \Theta) = \sum_{i=1}^{N} \log \left[P(x_i | y_i, \theta_{y_i}) P(y_i | \theta_{y_i}) \right]$$
(31)

Question Do you need y_i if you know θ_{y_i} or the other way around?

Then

Thus, by the chain Rule

$$\sum_{i=1}^{N} \log P(x_i, y_i | \Theta) = \sum_{i=1}^{N} \log \left[P(x_i | y_i, \theta_{y_i}) P(y_i | \theta_{y_i}) \right]$$
(31)

Question Do you need y_i if you know θ_{y_i} or the other way around?

Finally

$$\sum_{i=1}^{N} \log \left[P\left(x_i | y_i, \theta_{y_i}\right) P\left(y_i | \theta_{y_i}\right) \right] = \sum_{i=1}^{N} \log \left[P\left(y_i\right) p_{y_i}\left(x_i | \theta_{y_i}\right) \right]$$
(32)
NOPE: You do not need y_i if you know θ_{y_i} or the other way around.

Finally, we have

Making
$$\alpha_{y_{i}} = P\left(y_{i}\right)$$

$$\log \mathcal{L}(\Theta | \mathcal{X}, \mathcal{Y}) = \sum_{i=1}^{N} \log \left[\alpha_{y_i} P\left(x_i | y_i, \theta_{y_i} \right) \right]$$
(33)

Problem

Which Labels?

We do not know the values of $\ensuremath{\mathcal{Y}}.$

We can get away by using the following idea

Assume the ${\mathcal Y}$ is a random variable.

Problem

Which Labels?

We do not know the values of \mathcal{Y} .

We can get away by using the following idea

Assume the $\ensuremath{\mathcal{Y}}$ is a random variable.

Outline

Introducti

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

3 Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

• The Beginning of The Process

- Bayes' Rule for the components
 Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

< ロ > < 同 > < 回 > < 回 >

Thus

You do a first guess for the parameters at the beginning of EM

$$\Theta^g = (\alpha_1^g, ..., \alpha_M^g, \theta_1^g, ..., \theta_M^g)$$
(34)

Then, it is possible to calculate given the parametric probability

Therefore

The mixing parameters α_j can be though of as a prior probabilities of each mixture:

 $lpha_j = p\left(\mathsf{component}\; j
ight)$

Thus

You do a first guess for the parameters at the beginning of EM

$$\Theta^g = (\alpha_1^g, ..., \alpha_M^g, \theta_1^g, ..., \theta_M^g)$$
(34)

Then, it is possible to calculate given the parametric probability

$$p_j\left(x_i|\theta_j^g\right)$$

Therefore

The mixing parameters α_j can be though of as a prior probabilities of each mixture:

 $lpha_j = p\left(\mathsf{component}\;j
ight)$

Thus

You do a first guess for the parameters at the beginning of EM

$$\Theta^g = (\alpha_1^g, ..., \alpha_M^g, \theta_1^g, ..., \theta_M^g)$$
(34)

Then, it is possible to calculate given the parametric probability

$$p_j\left(x_i|\theta_j^g\right)$$

Therefore

The mixing parameters α_j can be though of as a prior probabilities of each mixture:

$$\alpha_j = p \left(\text{component } j \right)$$

(35)

Outline

Introducti

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

3 Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

• The Beginning of The Process

Bayes' Rule for the components

- Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

< ロ > < 同 > < 回 > < 回 >

Outline

Introducti

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

3 Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

• The Beginning of The Process

Bayes' Rule for the components Mixing Parameters

- Maximizing Q using Lagrange Multipliers
 In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

< ロ > < 同 > < 回 > < 回 >

We want to calculate the following probability

We want to calculate

 $p\left(y_i|x_i,\Theta^g\right)$

イロト イヨト イヨト イヨト

We want to calculate the following probability

We want to calculate

$$p\left(y_i|x_i,\Theta^g\right)$$

Basically

We want a Bayesian formulation of this probability.

• Assuming that the $oldsymbol{y}=(y_1,y_2,...,y_N)$ are samples identicall

independent samples from a distribution.

ヘロト 人間ト 人目下 人目下

We want to calculate the following probability

We want to calculate

 $p\left(y_i|x_i,\Theta^g\right)$

Basically

We want a Bayesian formulation of this probability.

• Assuming that the $y = (y_1, y_2, ..., y_N)$ are samples identically independent samples from a distribution.

Using Bayes' Rule

Compute

$$p\left(y_{i}|x_{i},\Theta^{g}\right) = \frac{p\left(y_{i},x_{i}|\Theta^{g}\right)}{p\left(x_{i}|\Theta^{g}\right)}$$

$$= \frac{p\left(y_{i}|\Theta^{g}\right)}{p\left(x_{i}|\Theta^{g}\right)}$$

$$= \frac{p\left(x_{i}|\Theta^{g}\right)}{p\left(x_{i}|\Theta^{g}\right)}$$

$$= \frac{p\left(x_{i}|\Theta^{g}\right)}{p\left(x_{i}|\Theta^{g}\right)}$$

$$= \frac{p\left(x_{i}|\Theta^{g}\right)}{\sum_{i=1}^{n} p_{i}\left(x_{i}|\Theta^{g}\right)}$$

$$= \frac{p\left(x_{i}|\Theta^{g}\right)}{\sum_{i=1}^{n} p_{i}\left(x_{i}|\Theta^{g}\right)}$$

Using Bayes' Rule

Compute

$$p(y_i|x_i, \Theta^g) = \frac{p(y_i, x_i|\Theta^g)}{p(x_i|\Theta^g)}$$
$$= \frac{p(x_i|\Theta^g) p(y_i|\theta^g_{y_i})}{p(x_i|\Theta^g)} \text{ We know } \theta^g_{y_i} \Rightarrow \text{Drop it}$$

Using Bayes' Rule

Compute

$$p(y_i|x_i, \Theta^g) = \frac{p(y_i, x_i|\Theta^g)}{p(x_i|\Theta^g)}$$
$$= \frac{p(x_i|\Theta^g) p(y_i|\theta^g_{y_i})}{p(x_i|\Theta^g)} \text{ We know } \theta^g_{y_i} \Rightarrow \text{Drop it}$$
$$= \frac{\alpha^g_{y_i} p_{y_i} \left(x_i|\theta^g_{y_i}\right)}{p(x_i|\Theta^g)}$$
$$= \frac{\alpha^g_{y_i} p_{y_i} \left(x_i|\theta^g_{y_i}\right)}{p(x_i|\Theta^g)}$$

Using Bayes' Rule

Compute

$$\begin{split} p\left(y_{i}|x_{i},\Theta^{g}\right) &= \frac{p\left(y_{i},x_{i}|\Theta^{g}\right)}{p\left(x_{i}|\Theta^{g}\right)} \\ &= \frac{p\left(x_{i}|\Theta^{g}\right)p\left(y_{i}|\theta^{g}_{y_{i}}\right)}{p\left(x_{i}|\Theta^{g}\right)} \text{ We know } \theta^{g}_{y_{i}} \Rightarrow \text{Drop it} \\ &= \frac{\alpha^{g}_{y_{i}}p_{y_{i}}\left(x_{i}|\theta^{g}_{y_{i}}\right)}{p\left(x_{i}|\Theta^{g}\right)} \\ &= \frac{\alpha^{g}_{y_{i}}p_{y_{i}}\left(x_{i}|\theta^{g}_{y_{i}}\right)}{\sum_{k=1}^{M}\alpha^{g}_{k}p_{k}\left(x_{i}|\theta^{g}_{k}\right)} \end{split}$$

As in Naive Bayes

We have the fact that there is a probability per probability at the mixture and sample

$$p\left(y_{i}|x_{i},\Theta^{g}\right) = \frac{\alpha_{y_{i}}^{g}p_{y_{i}}\left(x_{i}|\theta_{y_{i}}^{g}\right)}{\sum_{k=1}^{M}\alpha_{k}^{g}p_{k}\left(x_{i}|\theta_{k}^{g}\right)} \; \forall x_{i}, \; y_{i} \text{ and } k \in \{1,...,M\}$$

This is going to be updated at each iteration of the EM algorithm

After the initial Guess!!! Until convergence!!!

As in Naive Bayes

We have the fact that there is a probability per probability at the mixture and sample

$$p\left(y_{i}|x_{i},\Theta^{g}\right) = \frac{\alpha_{y_{i}}^{g}p_{y_{i}}\left(x_{i}|\theta_{y_{i}}^{g}\right)}{\sum_{k=1}^{M}\alpha_{k}^{g}p_{k}\left(x_{i}|\theta_{k}^{g}\right)} \; \forall x_{i}, \; y_{i} \text{ and } k \in \{1,...,M\}$$

This is going to be updated at each iteration of the EM algorithm

After the initial Guess!!! Until convergence!!!

Additionally

We assume again that the samples $y_i^\prime s$ are identically and independent samples

$$p(\boldsymbol{y}|\boldsymbol{\mathcal{X}},\Theta^g) = \prod_{i=1}^{N} p(y_i|x_i,\Theta^g)$$
(36)

Where $y = (y_1, y_2, ..., y_N)$

Now, using equation 17

$$Q\left(\Theta|\Theta^{g}\right) = \sum_{\boldsymbol{y}\in\mathcal{Y}} \log\left(\mathcal{L}\left(\Theta|\mathcal{X},\boldsymbol{y}\right)\right) p\left(\boldsymbol{y}|\mathcal{X},\Theta^{g}\right)$$

Now, using equation 17

$$Q\left(\Theta|\Theta^{g}\right) = \sum_{\boldsymbol{y}\in\mathcal{Y}} \log\left(\mathcal{L}\left(\Theta|\mathcal{X},\boldsymbol{y}\right)\right) p\left(\boldsymbol{y}|\mathcal{X},\Theta^{g}\right)$$
$$= \sum_{\boldsymbol{y}\in\mathcal{Y}} \sum_{i=1}^{N} \log\left[\alpha_{y_{i}}p_{y_{i}}\left(x_{i}|\theta_{y_{i}}\right)\right] \prod_{j=1}^{N} p\left(y_{j}|x_{j},\Theta^{g}\right)$$

Here, a small stop

What is the meaning of $\sum_{y \in \mathcal{Y}}$

It is actually a summation of all possible states of the random vector \boldsymbol{y} .

Then, we can rewrite the previous summation as

Running over all the samples $\{x_1, x_2, ..., x_N\}$

Here, a small stop

What is the meaning of $\sum_{y \in \mathcal{Y}}$

It is actually a summation of all possible states of the random vector $\boldsymbol{y}.$

Then, we can rewrite the previous summation as

$$\sum_{\boldsymbol{y}\in\mathcal{Y}} = \underbrace{\sum_{y_1=1}^M \sum_{y_2=1}^M \cdots \sum_{y_N=1}^M}_{N}$$

Running over all the samples $\{x_1, x_2, ..., x_N\}$.

イロト イロト イヨト イヨト

We have

$$Q\left(\Theta|\Theta^{g}\right) = \sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \sum_{i=1}^{N} \left[\log\left[\alpha_{y_{i}} p_{y_{i}}\left(x_{i}|\theta_{y_{i}}\right)\right] \prod_{j=1}^{N} p\left(y_{j}|x_{j},\Theta^{g}\right) \right]$$

We introduce the following

We have the following function

$$\delta_{l,y_i} = \begin{cases} 1 & I = y_i \\ 0 & I \neq y_i \end{cases}$$

Therefore, we can do the following

$$\alpha_i = \sum_{j=1}^M \delta_{i,j} \alpha_j$$

Then

$\log\left[\alpha_{y_i} p_{y_i}\left(x_i | \theta_{y_i}\right)\right] \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^g\right) = \sum_{l=1}^{M} \delta_{l, y_l} \log\left[\alpha_l p_l\left(x_i | \theta_l\right)\right] \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^g\right)$

Cinvestav

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のQで 81/113

We introduce the following

We have the following function

$$\delta_{l,y_i} = \begin{cases} 1 & I = y_i \\ 0 & I \neq y_i \end{cases}$$

Therefore, we can do the following

$$\alpha_i = \sum_{j=1}^M \delta_{i,j} \alpha_j$$

Then

$\log\left[\alpha_{y_i} p_{y_i}\left(x_i | \theta_{y_i}\right)\right] \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^q\right) = \sum_{l=1}^{M} \delta_{l, y_l} \log\left[\alpha_l p_l\left(x_i | \theta_l\right)\right] \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^q\right)$

Cinvestav

<ロト < 団ト < 臣ト < 臣ト < 臣ト < 臣 > 臣 の Q (C 81 / 113

We introduce the following

We have the following function

$$\delta_{l,y_i} = \begin{cases} 1 & I = y_i \\ 0 & I \neq y_i \end{cases}$$

Therefore, we can do the following

$$\alpha_i = \sum_{j=1}^M \delta_{i,j} \alpha_j$$

Then

$$\log\left[\alpha_{y_i} p_{y_i}\left(x_i | \theta_{y_i}\right)\right] \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^g\right) = \sum_{l=1}^{M} \delta_{l, y_i} \log\left[\alpha_l p_l\left(x_i | \theta_l\right)\right] \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^g\right)$$

э

We have that for $\sum_{y_1=1}^{M} \cdots \sum_{y_N=1}^{M} \sum_{i=1}^{N} \log \left[\alpha_{y_i} p_{y_i} \left(x_i | \theta_{y_i} \right) \right] \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^g \right) = *$

$$* = \sum_{y_1=1}^{M} \sum_{y_2=1}^{M} \cdots \sum_{y_N=1}^{M} \sum_{i=1}^{N} \sum_{l=1}^{M} \delta_{l,y_i} \log \left[\alpha_l p_l \left(x_i | \theta_l \right) \right] \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^g \right)$$

We have that for $\sum_{y_1=1}^M \cdots \sum_{y_N=1}^M \sum_{i=1}^N \log \left[\alpha_{y_i} p_{y_i} \left(x_i | \theta_{y_i} \right) \right] \prod_{j=1}^N p\left(y_j | x_j, \Theta^g \right) = *$

$$* = \sum_{y_1=1}^{M} \sum_{y_2=1}^{M} \cdots \sum_{y_N=1}^{M} \sum_{i=1}^{N} \sum_{l=1}^{M} \delta_{l,y_i} \log \left[\alpha_l p_l \left(x_i | \theta_l \right) \right] \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^g \right)$$

$$= \sum_{i=1}^{N} \sum_{l=1}^{M} \log \left[\alpha_l p_l \left(x_i | \theta_l \right) \right] \sum_{y_1=1}^{M} \sum_{y_2=1}^{M} \cdots \sum_{y_N=1}^{M} \left[\delta_{l,y_i} \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^g \right) \right]$$

Because

82/113

We have that for $\sum_{y_1=1}^M \cdots \sum_{y_N=1}^M \sum_{i=1}^N \log \left[\alpha_{y_i} p_{y_i} \left(x_i | \theta_{y_i} \right) \right] \prod_{j=1}^N p\left(y_j | x_j, \Theta^g \right) = *$

$$* = \sum_{y_1=1}^{M} \sum_{y_2=1}^{M} \cdots \sum_{y_N=1}^{M} \sum_{i=1}^{N} \sum_{l=1}^{M} \delta_{l,y_i} \log \left[\alpha_l p_l \left(x_i | \theta_l \right) \right] \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^g \right)$$

$$= \sum_{i=1}^{N} \sum_{l=1}^{M} \log \left[\alpha_l p_l \left(x_i | \theta_l \right) \right] \sum_{y_1=1}^{M} \sum_{y_2=1}^{M} \cdots \sum_{y_N=1}^{M} \left[\delta_{l,y_i} \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^g \right) \right]$$

Because

$$\sum_{y_1=1}^M \sum_{y_2=1}^M \cdots \sum_{y_N=1}^M$$
 applies only to $\delta_{l,y_i} \prod_{j=1}^N p\left(y_j | x_j, \Theta^g\right)$

3

ヘロト ヘロト ヘヨト ヘヨト

First notice the following

$$\sum_{y_1=1}^M \sum_{y_2=1}^M \cdots \sum_{y_N=1}^M \left[\delta_{l,y_i} \prod_{j=1}^N p\left(y_j | x_j, \Theta^g\right) \right] =$$

・ロト ・日下・ ・ ヨト

First notice the following

$$\sum_{y_1=1}^{M} \sum_{y_2=1}^{M} \cdots \sum_{y_N=1}^{M} \left[\delta_{l,y_i} \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^g\right) \right] = \\ = \left(\sum_{y_1=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_N=1}^{M} \left\{ \left[\sum_{y_i=1}^{M} \delta_{l,y_i} p\left(y_i | x_i, \Theta^g\right) \right] \prod_{j=1, j \neq i, j}^{N} p\left(y_j | x_j, \Theta^g\right) \right\} \right)$$

Then, we have

 $\sum_{i} \delta_{l,y_i} p\left(y_i | x_i, \Theta^g\right) = p\left(l | x_i, \Theta^g\right)$

イロト イヨト イヨト イヨト

First notice the following

$$\sum_{y_1=1}^{M} \sum_{y_2=1}^{M} \cdots \sum_{y_N=1}^{M} \left[\delta_{l,y_i} \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^g\right) \right] = \\ = \left(\sum_{y_1=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_N=1}^{M} \left\{ \left[\sum_{y_i=1}^{M} \delta_{l,y_i} p\left(y_i | x_i, \Theta^g\right) \right] \prod_{j=1, j \neq i, j=1}^{N} p\left(y_j | x_j, \Theta^g\right) \right\} \right)$$

Then, we have

$$\sum_{y_i=1}^{M} \delta_{l,y_i} p\left(y_i | x_i, \Theta^g\right) = p\left(l | x_i, \Theta^g\right)$$

イロト イロト イヨト イヨト

In this way

Plugging back the previous equation

$$\sum_{y_1=1}^{M} \sum_{y_2=1}^{M} \cdots \sum_{y_N=1}^{M} \delta_{l,y_i} \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^g\right) =$$

イロト イロト イヨト イヨト

In this way

Plugging back the previous equation

$$\sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \delta_{l,y_{i}} \prod_{j=1}^{N} p\left(y_{j} | x_{j}, \Theta^{g}\right) = \\ = \left(\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} p\left(l | x_{i}, \Theta^{g}\right) \prod_{j=1, j \neq i}^{N} p\left(y_{j} | x_{j}, \Theta^{g}\right)\right)$$

イロト イヨト イヨト イヨト

In this way

Plugging back the previous equation

$$\sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \delta_{l,y_{i}} \prod_{j=1}^{N} p\left(y_{j}|x_{j},\Theta^{g}\right) = \\ = \left(\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} p\left(l|x_{i},\Theta^{g}\right) \prod_{j=1,j\neq i}^{N} p\left(y_{j}|x_{j},\Theta^{g}\right)\right) \\ = \left(\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \prod_{j=1,j\neq i}^{N} p\left(y_{j}|x_{j},\Theta^{g}\right)\right) p\left(l|x_{i},\Theta^{g}\right)$$

イロト イヨト イヨト イヨト

Now, what about...?

The left part of the equation

$$\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \prod_{j=1, j \neq i}^{N} p(y_{j}|x_{j}, \Theta^{g}) =$$

Cinvestav

イロン イ団 とく ヨン イヨン

The left part of the equation

$$\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \prod_{j=1, j \neq i}^{N} p\left(y_{j} | x_{j}, \Theta^{g}\right) = \\ = \left[\sum_{y_{1}=1}^{M} p\left(y_{1} | x_{1}, \Theta^{g}\right)\right] \cdots \left[\sum_{y_{i-1}=1}^{M} p\left(y_{i-1} | x_{i-1}, \Theta^{g}\right)\right] \times \dots \\ \left[\sum_{y_{i+1}=1}^{M} p\left(y_{i+1} | x_{i+1}, \Theta^{g}\right)\right] \cdots \left[\sum_{y_{N}=1}^{M} p\left(y_{N} | x_{N}, \Theta^{g}\right)\right] \\ = \prod_{x_{i-1}=1}^{M} \left[\sum_{y_{i-1}=1}^{M} p\left(y_{i+1} | x_{i+1}, \Theta^{g}\right)\right]$$

Cinvestav ∽ < (~ 85 / 113

э

イロト イロト イヨト イヨト

CE

The left part of the equation

$$\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \prod_{j=1, j \neq i}^{N} p(y_{j}|x_{j}, \Theta^{g}) = \\ = \left[\sum_{y_{1}=1}^{M} p(y_{1}|x_{1}, \Theta^{g})\right] \cdots \left[\sum_{y_{i-1}=1}^{M} p(y_{i-1}|x_{i-1}, \Theta^{g})\right] \times \dots \\ \left[\sum_{y_{i+1}=1}^{M} p(y_{i+1}|x_{i+1}, \Theta^{g})\right] \cdots \left[\sum_{y_{N}=1}^{M} p(y_{N}|x_{N}, \Theta^{g})\right] \\ = \prod_{j=1, j \neq i}^{N} \left[\sum_{y_{j}=1}^{M} p(y_{j}|x_{j}, \Theta^{g})\right]$$

Cinvestav ∽ < (~ 85 / 113

2

イロト イロト イヨト イヨト

Plugging back to the original equation

$$\left\{\sum_{y_1=1}^{M}\cdots\sum_{y_{i-1}=1}^{M}\sum_{y_{i+1}=1}^{M}\cdots\sum_{y_N=1}^{M}\prod_{j=1,j\neq i}^{N}p\left(y_j|x_j,\Theta^g\right)\right\}p\left(l|x_i,\Theta^g\right) =$$

イロト イヨト イヨト イヨト

Plugging back to the original equation

$$\left\{\sum_{y_1=1}^M \cdots \sum_{y_{i-1}=1}^M \sum_{y_{i+1}=1}^M \cdots \sum_{y_N=1}^M \prod_{j=1, j\neq i}^N p\left(y_j | x_j, \Theta^g\right)\right\} p\left(l | x_i, \Theta^g\right) = \left\{\prod_{j=1, j\neq i}^N \left[\sum_{y_j=1}^M p\left(y_j | x_j, \Theta^g\right)\right]\right\} p\left(l | x_i, \Theta^g\right)$$

イロト イヨト イヨト イヨト

We know that M $\sum_{i=1}^{M} p\left(y_i | x_i, \Theta^g\right) = 1$ (37) $y_i = 1$

We know that

$$\sum_{y_i=1}^{M} p(y_i | x_i, \Theta^g) = 1$$
(37)

$$\left\{\prod_{j=1, j\neq i}^{N} \left[\sum_{y_j=1}^{M} p\left(y_j | x_j, \Theta^g\right)\right]\right\} p\left(l | x_i, \Theta^g\right) = \left\{\prod_{j=1, j\neq i}^{N} 1\right\} p\left(l | x_i, \Theta^g\right)$$

We know that

$$\sum_{y_i=1}^{M} p\left(y_i | x_i, \Theta^g\right) = 1 \tag{37}$$

$$\left\{ \prod_{j=1, j \neq i}^{N} \left[\sum_{y_j=1}^{M} p\left(y_j | x_j, \Theta^g\right) \right] \right\} p\left(l | x_i, \Theta^g\right) = \\ = \left\{ \prod_{j=1, j \neq i}^{N} 1 \right\} p\left(l | x_i, \Theta^g\right) \\ = p\left(l | x_i, \Theta^g\right)$$

We know that

$$\sum_{y_i=1}^{M} p\left(y_i | x_i, \Theta^g\right) = 1 \tag{37}$$

$$\begin{cases} \prod_{j=1, j \neq i}^{N} \left[\sum_{y_j=1}^{M} p\left(y_j | x_j, \Theta^g\right) \right] \end{cases} p\left(l | x_i, \Theta^g\right) = \\ = \left\{ \prod_{j=1, j \neq i}^{N} 1 \right\} p\left(l | x_i, \Theta^g\right) \\ = p\left(l | x_i, \Theta^g\right) \\ = \frac{\alpha_l^g p_{y_i}\left(x_i | \theta_l^g\right)}{\sum_{k=1}^{M} \alpha_k^g p_k\left(x_i | \theta_k^g\right)} \end{cases}$$

We can write Q in the following way

$$Q\left(\Theta,\Theta^{g}\right) = \sum_{i=1}^{N} \sum_{l=1}^{M} \log\left[\alpha_{l} p_{l}\left(x_{i} | \theta_{l}\right)\right] p\left(l | x_{i},\Theta^{g}\right)$$

$$= \sum_{i=1}^{N} \sum_{l=1}^{M} \log\left(\alpha_{l} p_{l}\left(x_{i} | \theta_{l}\right)\right) p\left(l | x_{i},\Theta^{g}\right)$$

$$= \sum_{i=1}^{N} \sum_{l=1}^{M} \log\left(\alpha_{l} p_{l}\left(x_{i} | \theta_{l}\right)\right) p\left(l | x_{i},\Theta^{g}\right)$$
(38)

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

We can write Q in the following way

$$Q\left(\Theta,\Theta^{g}\right) = \sum_{i=1}^{N} \sum_{l=1}^{M} \log\left[\alpha_{l} p_{l}\left(x_{i} | \theta_{l}\right)\right] p\left(l | x_{i},\Theta^{g}\right)$$
$$= \sum_{i=1}^{N} \sum_{l=1}^{M} \log\left(\alpha_{l}\right) p\left(l | x_{i},\Theta^{g}\right) + \dots$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

We can write Q in the following way

$$Q\left(\Theta,\Theta^{g}\right) = \sum_{i=1}^{N} \sum_{l=1}^{M} \log\left[\alpha_{l}p_{l}\left(x_{i}|\theta_{l}\right)\right] p\left(l|x_{i},\Theta^{g}\right)$$
$$= \sum_{i=1}^{N} \sum_{l=1}^{M} \log\left(\alpha_{l}\right) p\left(l|x_{i},\Theta^{g}\right) + \dots$$
$$\sum_{i=1}^{N} \sum_{l=1}^{M} \log\left(p_{l}\left(x_{i}|\theta_{l}\right)\right) p\left(l|x_{i},\Theta^{g}\right)$$
(38)

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Outline

Introducti

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

3 Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 Mixing Parameters

• Maximizing Q using Lagrange Multipliers

- In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

< ロ > < 同 > < 回 > < 回 >
A Method

That could be used as a general framework

To solve problems set as EM problem.

First, we will look at the Lagrange Multipliers setup

Then, we will look at a specific case using the mixture of Gaussian's

Note

Not all the mixture of distributions will get you an analytical solution.

A Method

That could be used as a general framework

To solve problems set as EM problem.

First, we will look at the Lagrange Multipliers setup

Then, we will look at a specific case using the mixture of Gaussian's

Note

Not all the mixture of distributions will get you an analytical solution.

A Method

That could be used as a general framework

To solve problems set as EM problem.

First, we will look at the Lagrange Multipliers setup

Then, we will look at a specific case using the mixture of Gaussian's

Note

Not all the mixture of distributions will get you an analytical solution.

イロト イポト イヨト イヨー

Outline

Introducti

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

3 Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

< ロ > < 同 > < 回 > < 回 >

Lagrange Multipliers for \boldsymbol{Q}

We can us the following constraint for that

$$\sum_{l} \alpha_{l} = 1 \tag{39}$$

イロト イロト イヨト イヨト

We have the following cost function

$$Q\left(\Theta,\Theta^{g}\right) + \lambda\left(\sum_{l}\alpha_{l} - 1\right)$$
(40)

Deriving by α_l

$$\frac{\partial}{\partial \alpha_l} \left[Q\left(\Theta, \Theta^g\right) + \lambda \left(\sum_l \alpha_l - 1 \right) \right] = 0$$

Lagrange Multipliers for \boldsymbol{Q}

We can us the following constraint for that

$$\sum_{l} \alpha_{l} = 1 \tag{39}$$

・ロト ・四ト ・ヨト ・ヨト

We have the following cost function

$$Q\left(\Theta,\Theta^{g}\right) + \lambda\left(\sum_{l}\alpha_{l} - 1\right)$$
(40)

Deriving by $lpha_i$

Lagrange Multipliers for \boldsymbol{Q}

We can us the following constraint for that

$$\sum_{l} \alpha_l = 1 \tag{39}$$

Image: A math a math

We have the following cost function

$$Q\left(\Theta,\Theta^{g}\right) + \lambda\left(\sum_{l}\alpha_{l} - 1\right)$$
(40)

Deriving by α_l

$$\frac{\partial}{\partial \alpha_l} \left[Q\left(\Theta, \Theta^g\right) + \lambda \left(\sum_l \alpha_l - 1\right) \right] = 0$$
(41)

Thus

The Q function

$$Q\left(\Theta,\Theta^{g}\right) = \sum_{i=1}^{N} \sum_{l=1}^{M} \log\left(\alpha_{l}\right) p\left(l|x_{i},\Theta^{g}\right) + \dots$$
$$\sum_{i=1}^{N} \sum_{l=1}^{M} \log\left(p_{l}\left(x_{i}|\theta_{l}\right)\right) p\left(l|x_{i},\Theta^{g}\right)$$

Deriving

We have

$$\frac{\partial}{\partial \alpha_l} \left[Q\left(\Theta, \Theta^g\right) + \lambda \left(\sum_l \alpha_l - 1\right) \right] = \sum_{i=1}^N \frac{1}{\alpha_l} p\left(l|x_i, \Theta^g\right) + \lambda$$

We have making the previous equation equal to 0

$$\sum_{i=1}^{N} \frac{1}{\alpha_l} p\left(l|x_i, \Theta^g\right) + \lambda = 0$$

Thus

 $\sum_{i=1}^{N} p\left(l|x_i, \Theta^g\right) = -\lambda \alpha_l$

Summing over *l*, we get

$$\lambda = -N$$

< ロ > < 回 > < 回 > < 回 > < 回 >

(42)

We have making the previous equation equal to 0

$$\sum_{i=1}^{N} \frac{1}{\alpha_{l}} p\left(l|x_{i}, \Theta^{g}\right) + \lambda = 0$$

Thus

$$\sum_{i=1}^{N} p\left(l|x_i, \Theta^g\right) = -\lambda \alpha_l \tag{43}$$

イロト イロト イヨト イヨト

Summing over l_1 we get

$$\lambda = -N$$

(42)

We have making the previous equation equal to 0

$$\sum_{i=1}^{N} \frac{1}{\alpha_l} p\left(l|x_i, \Theta^g\right) + \lambda = 0$$

Thus

$$\sum_{i=1}^{N} p\left(l|x_i, \Theta^g\right) = -\lambda \alpha_l \tag{43}$$

イロト イロト イヨト イヨト

Summing over l, we get

$$\lambda = -N$$

(44)

э

(42)

Lagrange Multipliers

Thus

$$\alpha_l = \frac{1}{N} \sum_{i=1}^{N} p\left(l|x_i, \Theta^g\right)$$

About θ_l

It is possible to get an analytical expressions for $heta_l$ as functions of everything else.

• This is for you to try!!!

For more, please look at

"Geometric Idea of Lagrange Multipliers" by John Wyatt.

ヘロト ヘロト ヘヨト ヘヨト

(45)

Lagrange Multipliers

Thus

$$\alpha_l = \frac{1}{N} \sum_{i=1}^{N} p\left(l|x_i, \Theta^g\right) \tag{45}$$

About θ_l

It is possible to get an analytical expressions for θ_l as functions of everything else.

• This is for you to try!!!

For more, please look at

'Geometric Idea of Lagrange Multipliers" by John Wyatt.

イロト イヨト イヨト

Lagrange Multipliers

Thus

$$\alpha_l = \frac{1}{N} \sum_{i=1}^{N} p\left(l|x_i, \Theta^g\right) \tag{45}$$

イロト イヨト イヨト

About θ_l

It is possible to get an analytical expressions for θ_l as functions of everything else.

• This is for you to try!!!

For more, please look at

"Geometric Idea of Lagrange Multipliers" by John Wyatt.

Outline

Introducti

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

3 Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 Mixing Parameters
 - Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 In Our Case

• Example on Mixture of Gaussian Distributions

• The EM Algorithm

< ロ > < 同 > < 回 > < 回 >

Remember?

Gaussian Distribution

$$p_l(\boldsymbol{x}|\boldsymbol{\mu}_l,\boldsymbol{\Sigma}_l) = \frac{1}{\left(2\pi\right)^{d/2}\left|\boldsymbol{\Sigma}_l\right|^{1/2}} \exp\left\{-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_l\right)^T \boldsymbol{\Sigma}_l^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_l\right)\right\} \quad (46)$$

For this, we need to refresh some linear algebra

1
$$tr(A+B) = tr(A) + tr(B)$$

 $\bigcirc \ \sum_i x_i^T A x_i = tr \, (AB) \text{ where } B = \sum_i x_i x_i^T$

< ロ > < 回 > < 回 > < 回 > < 回 >

For this, we need to refresh some linear algebra

1
$$tr(A+B) = tr(A) + tr(B)$$

$$tr (AB) = tr (BA)$$

 $ig) ~ \sum_i x_i^T A x_i = tr \, (AB)$ where $B = \sum_i x_i x_i^T$

Now, we need the derivative of a matrix function f (A

Thus, $\frac{\partial f(A)}{\partial A}$ is going to be the matrix with i, j^{th} entry $\left[\frac{\partial f(A)}{\partial a_{i,j}}\right]$ where $a_{i,j}$ is the i, j^{th} entry of A.

Cinvestav ≅ ∽ ۹ (~ 99 / 113

イロト イロト イヨト イヨト

For this, we need to refresh some linear algebra

$$tr (A+B) = tr (A) + tr (B)$$

$$tr (AB) = tr (BA)$$

3
$$\sum_{i} x_{i}^{T} A x_{i} = tr(AB)$$
 where $B = \sum_{i} x_{i} x_{i}^{T}$.

Now, we need the derivative of a matrix function $f\left(A ight)$

Thus, $\frac{\partial f(A)}{\partial A}$ is going to be the matrix with i, j^{th} entry $\left[\frac{\partial f(A)}{\partial a_{i,j}}\right]$ where $a_{i,j}$ is the i, j^{th} entry of A.

イロン イロン イヨン イヨン

For this, we need to refresh some linear algebra

$$tr (A+B) = tr (A) + tr (B)$$

$$tr (AB) = tr (BA)$$

3
$$\sum_{i} x_{i}^{T} A x_{i} = tr(AB)$$
 where $B = \sum_{i} x_{i} x_{i}^{T}$.

$$|A^{-1}| = \frac{1}{|A|}$$

Now, we need the derivative of a matrix function f (A

Thus, $\frac{\partial f(A)}{\partial A}$ is going to be the matrix with i, j^{th} entry $\left[\frac{\partial f(A)}{\partial a_{i,j}}\right]$ where $a_{i,j}$ is the i, j^{th} entry of A.

イロン イロン イヨン イヨン

For this, we need to refresh some linear algebra

$$tr (A+B) = tr (A) + tr (B)$$

$$tr (AB) = tr (BA)$$

$$\sum_{i} x_i^T A x_i = tr (AB) \text{ where } B = \sum_{i} x_i x_i^T.$$

Now, we need the derivative of a matrix function f(A)

Thus, $\frac{\partial f(A)}{\partial A}$ is going to be the matrix with i, j^{th} entry $\left[\frac{\partial f(A)}{\partial a_{i,j}}\right]$ where $a_{i,j}$ is the i, j^{th} entry of A.

If A is symmetric

$$\frac{\partial |A|}{\partial A} = \begin{cases} \mathcal{A}_{i,j} & \text{if } i = j \\ 2\mathcal{A}_{i,j} & \text{if } i \neq j \end{cases}$$

(47)

Where $\mathcal{A}_{i,j}$ is the i, j^{th} cofactor of A.

Note: The determinant obtained by deleting the row and column of a given element of a matrix or determinant. The **cofactor** is preceded by a + or – sign depending whether the element is in a + or – position.

If A is symmetric

$$\frac{\partial |A|}{\partial A} = \begin{cases} \mathcal{A}_{i,j} & \text{if } i = j \\ 2\mathcal{A}_{i,j} & \text{if } i \neq j \end{cases}$$

(47)

Where $\mathcal{A}_{i,j}$ is the i, j^{th} cofactor of A.

lote: The determinant obtained by deleting the row and column of a given element of a matrix or determinant. The **cofactor** is preceded by a + or – sign depending whether the element is in a + or – position.

Thus

$$\frac{\partial \log |A|}{\partial A} = \begin{cases} A_{ij} & \text{if } i = j \\ 2A_{ij} & \text{if } i \neq j \end{cases} = 2A^{-1} - \text{diag} \left(A^{-1}\right) \qquad (48)$$
cinvestance in the second second

100/113

If A is symmetric

$$\frac{\partial |A|}{\partial A} = \begin{cases} \mathcal{A}_{i,j} & \text{if } i = j\\ 2\mathcal{A}_{i,j} & \text{if } i \neq j \end{cases}$$
(47)

100 / 113

Where $\mathcal{A}_{i,j}$ is the i, j^{th} cofactor of A.

Note: The determinant obtained by deleting the row and column of a given element of a matrix or determinant. The **cofactor** is preceded by a + or - sign depending whether the element is in a + or - position.

If A is symmetric

$$\frac{\partial |A|}{\partial A} = \begin{cases} \mathcal{A}_{i,j} & \text{if } i = j\\ 2\mathcal{A}_{i,j} & \text{if } i \neq j \end{cases}$$
(47)

Where $\mathcal{A}_{i,j}$ is the i, j^{th} cofactor of A.

Note: The determinant obtained by deleting the row and column of a given element of a matrix or determinant. The **cofactor** is preceded by a + or - sign depending whether the element is in a + or - position.

Thus

$$\frac{\partial \log |A|}{\partial A} = \begin{cases} \frac{\mathcal{A}_{i,j}}{|A|} & \text{if } i = j\\ 2\mathcal{A}_{i,j} & \text{if } i \neq j \end{cases} = 2A^{-1} - \mathsf{diag}\left(A^{-1}\right)$$
(48)

The last equation we need

$$\frac{\partial tr(AB)}{\partial A} = B + B^T - \operatorname{diag}(B)$$
(49)

The last equation we need

$$\frac{\partial tr\left(AB\right)}{\partial A} = B + B^{T} - \operatorname{diag}\left(B\right)$$
(49)

In addition
$$\frac{\partial \boldsymbol{x}^{T} A \boldsymbol{x}}{\partial \boldsymbol{x}} \tag{50}$$

Thus, using last part of equation 38

We get, after ignoring constant terms

Remember they disappear after derivatives

$$\sum_{i=1}^{N} \sum_{l=1}^{M} \log \left(p_l \left(\boldsymbol{x}_i | \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l \right) \right) p \left(l | \boldsymbol{x}_i, \boldsymbol{\Theta}^g \right)$$

< ロ > < 同 > < 回 > < 回 >

Thus, using last part of equation 38

We get, after ignoring constant terms

Remember they disappear after derivatives

$$\sum_{i=1}^{N} \sum_{l=1}^{M} \log \left(p_l \left(\boldsymbol{x}_i | \mu_l, \Sigma_l \right) \right) p \left(l | \boldsymbol{x}_i, \Theta^g \right)$$

=
$$\sum_{i=1}^{N} \sum_{l=1}^{M} \left[-\frac{1}{2} \log \left(|\Sigma_l| \right) - \frac{1}{2} \left(\boldsymbol{x}_i - \mu_l \right)^T \Sigma_l^{-1} \left(\boldsymbol{x}_i - \mu_l \right) \right] p \left(l | \boldsymbol{x}_i, \Theta^g \right)$$
(51)

< ロ > < 同 > < 回 > < 回 >

Thus, when taking the derivative with respect to μ_l

$$\sum_{i=1}^{N} \left[\Sigma_{l}^{-1} \left(\boldsymbol{x}_{i} - \mu_{l} \right) p\left(l | \boldsymbol{x}_{i}, \Theta^{g} \right) \right] = 0$$
(52)

$$\mu_{l} = \frac{\sum_{i=1}^{N} \boldsymbol{x}_{i} p\left(l | \boldsymbol{x}_{i}, \Theta^{g}\right)}{\sum_{i=1}^{N} p\left(l | \boldsymbol{x}_{i}, \Theta^{g}\right)}$$

イロト イヨト イヨト イヨト

Thus, when taking the derivative with respect to μ_l

$$\sum_{i=1}^{N} \left[\Sigma_{l}^{-1} \left(\boldsymbol{x}_{i} - \mu_{l} \right) p\left(l | \boldsymbol{x}_{i}, \Theta^{g} \right) \right] = 0$$
(52)

Then

$$\mu_{l} = \frac{\sum_{i=1}^{N} \boldsymbol{x}_{i} p\left(l | \boldsymbol{x}_{i}, \Theta^{g}\right)}{\sum_{i=1}^{N} p\left(l | \boldsymbol{x}_{i}, \Theta^{g}\right)}$$
(53)

First, we rewrite equation 51

$$\sum_{i=1}^{N} \sum_{l=1}^{M} \left[-\frac{1}{2} \log \left(|\Sigma_{l}| \right) - \frac{1}{2} \left(x_{i} - \mu_{l} \right)^{T} \Sigma_{l}^{-1} \left(x_{i} - \mu_{l} \right) \right] p \left(l | x_{i}, \Theta^{g} \right)$$

Where $N_{l,i} = (x_i - \mu_l) (x_i - \mu_l)^T$.

イロト イヨト イヨト イヨト

First, we rewrite equation 51

$$\sum_{i=1}^{N} \sum_{l=1}^{M} \left[-\frac{1}{2} \log (|\Sigma_{l}|) - \frac{1}{2} (\boldsymbol{x}_{i} - \mu_{l})^{T} \Sigma_{l}^{-1} (\boldsymbol{x}_{i} - \mu_{l}) \right] p(l|\boldsymbol{x}_{i}, \Theta^{g})$$

$$= \sum_{l=1}^{M} \left[-\frac{1}{2} \log (|\Sigma_{l}|) \sum_{i=1}^{N} p(l|\boldsymbol{x}_{i}, \Theta^{g}) - \frac{1}{2} \sum_{i=1}^{N} p(l|\boldsymbol{x}_{i}, \Theta^{g}) tr \left\{ \Sigma_{l}^{-1} (\boldsymbol{x}_{i} - \mu_{l}) (\boldsymbol{x}_{i} - \mu_{l})^{T} \right\} \right]$$

$$= \sum_{l=1}^{M} \left[-\frac{1}{2} \log (|\Sigma_{l}|) \sum_{i=1}^{N} p(l|\boldsymbol{x}_{i}, \Theta^{g}) - \frac{1}{2} \sum_{i=1}^{N} p(l|\boldsymbol{x}_{i}, \Theta^{g}) tr \left\{ \Sigma_{l}^{-1} (\boldsymbol{x}_{i} - \mu_{l}) (\boldsymbol{x}_{i} - \mu_{l})^{T} \right\} \right]$$

イロト イロト イヨト イヨト

First, we rewrite equation 51

$$\sum_{i=1}^{N} \sum_{l=1}^{M} \left[-\frac{1}{2} \log \left(|\Sigma_{l}| \right) - \frac{1}{2} \left(\mathbf{x}_{i} - \mu_{l} \right)^{T} \Sigma_{l}^{-1} \left(\mathbf{x}_{i} - \mu_{l} \right) \right] p\left(l | \mathbf{x}_{i}, \Theta^{g} \right)$$

$$= \sum_{l=1}^{M} \left[-\frac{1}{2} \log \left(|\Sigma_{l}| \right) \sum_{i=1}^{N} p\left(l | \mathbf{x}_{i}, \Theta^{g} \right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l | \mathbf{x}_{i}, \Theta^{g} \right) tr \left\{ \Sigma_{l}^{-1} \left(\mathbf{x}_{i} - \mu_{l} \right) \left(\mathbf{x}_{i} - \mu_{l} \right)^{T} \right\} \right]$$

$$= \sum_{l=1}^{M} \left[-\frac{1}{2} \log \left(|\Sigma_{l}| \right) \sum_{i=1}^{N} p\left(l | \mathbf{x}_{i}, \Theta^{g} \right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l | \mathbf{x}_{i}, \Theta^{g} \right) tr \left\{ \Sigma_{l}^{-1} N_{l,i} \right\} \right]$$

Where $N_{l,i} = \left(x_i - \mu_l
ight)\left(x_i - \mu_l
ight)^{ au}$

イロト イヨト イヨト イヨト

First, we rewrite equation 51

$$\sum_{i=1}^{N} \sum_{l=1}^{M} \left[-\frac{1}{2} \log \left(|\Sigma_{l}| \right) - \frac{1}{2} \left(x_{i} - \mu_{l} \right)^{T} \Sigma_{l}^{-1} \left(x_{i} - \mu_{l} \right) \right] p\left(l | x_{i}, \Theta^{g} \right)$$

$$= \sum_{l=1}^{M} \left[-\frac{1}{2} \log \left(|\Sigma_{l}| \right) \sum_{i=1}^{N} p\left(l | x_{i}, \Theta^{g} \right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l | x_{i}, \Theta^{g} \right) tr \left\{ \Sigma_{l}^{-1} \left(x_{i} - \mu_{l} \right) \left(x_{i} - \mu_{l} \right)^{T} \right\} \right]$$

$$= \sum_{l=1}^{M} \left[-\frac{1}{2} \log \left(|\Sigma_{l}| \right) \sum_{i=1}^{N} p\left(l | x_{i}, \Theta^{g} \right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l | x_{i}, \Theta^{g} \right) tr \left\{ \Sigma_{l}^{-1} N_{l,i} \right\} \right]$$

Where $N_{l,i} = (x_i - \mu_l) (x_i - \mu_l)^T$.

イロン イ団 とくほとう ほんし
We have that

$$\frac{\partial}{\partial \Sigma_l^{-1}} \sum_{l=1}^M \left[-\frac{1}{2} \log\left(|\Sigma_l|\right) \sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \Theta^g\right) - \frac{1}{2} \sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \Theta^g\right) tr\left\{\Sigma_l^{-1} N_{l,i}\right\} \right]$$

We have that

$$\frac{\partial}{\partial \Sigma_{l}^{-1}} \sum_{l=1}^{M} \left[-\frac{1}{2} \log\left(|\Sigma_{l}|\right) \sum_{i=1}^{N} p\left(l|\mathbf{x}_{i},\Theta^{g}\right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l|\mathbf{x}_{i},\Theta^{g}\right) tr\left\{\Sigma_{l}^{-1}N_{l,i}\right\} \right]$$

$$= \frac{1}{2} \sum_{i=1}^{N} p\left(l|\mathbf{x}_{i},\Theta^{g}\right) \left(2\Sigma_{l} - \operatorname{diag}\left(\Sigma_{l}\right)\right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l|\mathbf{x}_{i},\Theta^{g}\right) \left(2N_{l,i} - \operatorname{diag}\left(N_{l,i}\right)\right)$$

$$= \frac{1}{2} \sum_{i=1}^{N} p\left(l|\mathbf{x}_{i},\Theta^{g}\right) \left(2\Sigma_{l} - \operatorname{diag}\left(\Sigma_{l}\right)\right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l|\mathbf{x}_{i},\Theta^{g}\right) \left(2N_{l,i} - \operatorname{diag}\left(N_{l,i}\right)\right)$$

$$= 2N - \operatorname{diag}\left(\Sigma_{l}\right)$$

We have that

$$\begin{split} & \frac{\partial}{\partial \Sigma_{l}^{-1}} \sum_{l=1}^{M} \left[-\frac{1}{2} \log\left(|\Sigma_{l}|\right) \sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right) tr\left\{\Sigma_{l}^{-1} N_{l,i}\right\} \right] \\ & = \frac{1}{2} \sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right) \left(2\Sigma_{l} - \operatorname{diag}\left(\Sigma_{l}\right)\right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right) \left(2N_{l,i} - \operatorname{diag}\left(N_{l,i}\right)\right) \\ & = \frac{1}{2} \sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right) \left(2M_{l,i} - \operatorname{diag}\left(M_{l,i}\right)\right) \end{split}$$

Where $M_{l,i} = \Sigma_l - N_{l,i}$ and $S = rac{1}{2} \sum_{i=1}^N p\left(l | x_i, \Theta^g
ight) M_{l,i}$

We have that

$$\begin{split} & \frac{\partial}{\partial \Sigma_{l}^{-1}} \sum_{l=1}^{M} \left[-\frac{1}{2} \log\left(|\Sigma_{l}|\right) \sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right) tr\left\{\Sigma_{l}^{-1} N_{l,i}\right\} \right] \\ & = \frac{1}{2} \sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right) \left(2\Sigma_{l} - \operatorname{diag}\left(\Sigma_{l}\right)\right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right) \left(2N_{l,i} - \operatorname{diag}\left(N_{l,i}\right)\right) \\ & = \frac{1}{2} \sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right) \left(2M_{l,i} - \operatorname{diag}\left(M_{l,i}\right)\right) \\ & = 2S - \operatorname{diag}\left(S\right) \end{split}$$

Where $M_{l,i} = \Sigma_l - N_{l,i}$ and $S = \frac{1}{2} \sum_{i=1}^N p\left(l|\pmb{x}_i,\Theta^g\right) M_{l,i}$

Thus, we have

Thus

$$\mathsf{lf}\; 2S - \mathsf{diag}\,(S) = 0 \Longrightarrow S = 0$$

Implying

Or

$\Sigma_{l} = \frac{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right) N_{l,i}}{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right)} = \frac{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right) \left(\boldsymbol{x}_{i} - \mu_{l}\right) \left(\boldsymbol{x}_{i} - \mu_{l}\right)^{T}}{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right)}$

Thus, we have

Thus

$${\rm If}\; 2S-{\rm diag}\,(S)=0\Longrightarrow S=0$$

Implying

$$\frac{1}{2}\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i},\Theta^{g}\right)\left[\boldsymbol{\Sigma}_{l}-N_{l,i}\right]=0$$
(54)

Or

 $\Sigma_{l} = \frac{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right) N_{l,i}}{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right)} = \frac{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right) \left(\boldsymbol{x}_{i} - \mu_{l}\right) \left(\boldsymbol{x}_{i} - \mu_{l}\right)^{T}}{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right)}$

Thus, we have

Thus

$${\rm If}\; 2S-{\rm diag}\,(S)=0\Longrightarrow S=0$$

Implying

$$\frac{1}{2}\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i},\Theta^{g}\right)\left[\boldsymbol{\Sigma}_{l}-N_{l,i}\right]=0$$
(54)

Or

$$\Sigma_{l} = \frac{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i},\Theta^{g}\right) N_{l,i}}{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i},\Theta^{g}\right)} = \frac{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i},\Theta^{g}\right) \left(\boldsymbol{x}_{i}-\mu_{l}\right) \left(\boldsymbol{x}_{i}-\mu_{l}\right)^{T}}{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i},\Theta^{g}\right)}$$
(55)

Thus, we have the iterative updates

They are

$$\alpha_l^{New} = \frac{1}{N} \sum_{i=1}^N p\left(l|x_i, \Theta^g\right)$$

イロト イロト イヨト イヨト

Thus, we have the iterative updates

They are

$$\alpha_l^{New} = \frac{1}{N} \sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \Theta^g\right)$$
$$\mu_l^{New} = \frac{\sum_{i=1}^N \boldsymbol{x}_i p\left(l|\boldsymbol{x}_i, \Theta^g\right)}{\sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \Theta^g\right)}$$

イロト イヨト イヨト イヨト

Thus, we have the iterative updates

They are

$$\begin{aligned} \alpha_l^{New} &= \frac{1}{N} \sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \Theta^g\right) \\ \mu_l^{New} &= \frac{\sum_{i=1}^N \boldsymbol{x}_i p\left(l|\boldsymbol{x}_i, \Theta^g\right)}{\sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \Theta^g\right)} \\ \Sigma_l^{New} &= \frac{\sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \Theta^g\right) \left(\boldsymbol{x}_i - \mu_l\right) \left(\boldsymbol{x}_i - \mu_l\right)^T}{\sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \Theta^g\right)} \end{aligned}$$

イロト イロト イヨト イヨト

Outline

Introducti

- Maximum-Likelihood
- Expectation Maximization
- Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

3 Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
- Using the Concave Functions for Approximation
- From The Concave Function to the EM
- The Final Algorithm
- Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 - Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

EM Algorithm for Gaussian Mixtures

Step 1

Initialize:

- The means μ_l
- Covariances Σ_l
- Mixing coefficients α_l

Evaluate

Step 2 - E-Step

• Evaluate the the probabilities of component l given x_i using the current parameter values:

$$p\left(l|x_i,\Theta^g\right) = \frac{\alpha_l^g p_{y_i}\left(x_i|\theta_l^g\right)}{\sum_{k=1}^M \alpha_k^g p_k\left(x_i|\theta_k^g\right)}$$

イロト イヨト イヨト イヨト

Now

Step 3 - M-Step

• Re-estimate the parameters using the current iteration values:

$$\alpha_l^{New} = \frac{1}{N} \sum_{i=1}^N p\left(l|x_i, \Theta^g\right)$$

$$\begin{split} \mu_l^{New} &= \frac{\sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \Theta^g\right)}{\sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \Theta^g\right)} \\ \Sigma_l^{New} &= \frac{\sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \Theta^g\right) \left(\boldsymbol{x}_i - \mu_l\right) \left(\boldsymbol{x}_i - \mu_l\right)^T}{\sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \Theta^g\right)} \end{split}$$

イロト イヨト イヨト イヨト

Now

Step 3 - M-Step

• Re-estimate the parameters using the current iteration values:

$$\alpha_l^{New} = \frac{1}{N} \sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \boldsymbol{\Theta}^g\right)$$
$$\mu_l^{New} = \frac{\sum_{i=1}^N \boldsymbol{x}_i p\left(l|\boldsymbol{x}_i, \boldsymbol{\Theta}^g\right)}{\sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \boldsymbol{\Theta}^g\right)}$$

イロト 不得 トイヨト イヨト 二日

Now

Step 3 - M-Step

• Re-estimate the parameters using the current iteration values:

$$\begin{aligned} \alpha_l^{New} &= \frac{1}{N} \sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \Theta^g\right) \\ \mu_l^{New} &= \frac{\sum_{i=1}^N \boldsymbol{x}_i p\left(l|\boldsymbol{x}_i, \Theta^g\right)}{\sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \Theta^g\right)} \\ \Sigma_l^{New} &= \frac{\sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \Theta^g\right) \left(\boldsymbol{x}_i - \mu_l\right) \left(\boldsymbol{x}_i - \mu_l\right)^T}{\sum_{i=1}^N p\left(l|\boldsymbol{x}_i, \Theta^g\right)} \end{aligned}$$

Evaluate

Step 4

Evaluate the log likelihood:

$$\log p\left(\boldsymbol{X}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\alpha}\right) = \sum_{i=1}^{N} \log \left\{ \sum_{l=1}^{M} \alpha_{l}^{New} p_{l}\left(\boldsymbol{x}_{i}|\boldsymbol{\mu}_{l}^{New},\boldsymbol{\Sigma}_{l}^{New}\right) \right\}$$

Step 6

- Check for convergence of either the parameters or the log likelihood.
- If the convergence criterion is not satisfied return to step 2.

Evaluate

Step 4

Evaluate the log likelihood:

$$\log p\left(\boldsymbol{X}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\alpha}\right) = \sum_{i=1}^{N} \log \left\{ \sum_{l=1}^{M} \alpha_{l}^{New} p_{l}\left(\boldsymbol{x}_{i}|\boldsymbol{\mu}_{l}^{New},\boldsymbol{\Sigma}_{l}^{New}\right) \right\}$$

Step 6

- Check for convergence of either the parameters or the log likelihood.
- If the convergence criterion is not satisfied return to step 2.

イロト イヨト イヨト

References I

- S. Borman, "The expectation maximization algorithm-a short tutorial," *Submitted for publication*, pp. 1–9, 2004.
- J. Bilmes, "A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models," *International Computer Science Institute*, vol. 4, 1998.
- F. Dellaert, "The expectation maximization algorithm," tech. rep., Georgia Institute of Technology, 2002.
- G. McLachlan and T. Krishnan, The EM algorithm and extensions, vol. 382. John Wiley & Sons, 2007.

