Introduction to Machine Learning Introduction to Bayesian Classification

Andres Mendez-Vazquez

June 3, 2020

Outline

Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- Examples
- The Naive Bayes Model
- The Multi-Class Case

Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

Introduction

- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP
(4) Exercises
- Some Stuff you can try

Outline

(1) Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- Examples
- The Naive Bayes Model
- The Multi-Class Case
(2) Discriminant Functions and Decision Surfaces
- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks
(3) Introduction
- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP
(4) Exercises
- Some Stuff you can try

Classification Problem

Goal

Given $\boldsymbol{x}_{n e w}$, provide $f\left(\boldsymbol{x}_{n e w}\right)$
The Machinery in General looks...
Training Info: Desired/Target Output

Outline

(1) Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- Examples
- The Naive Bayes Model
- The Multi-Class Case
(2) Discriminant Functions and Decision Surfaces
- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks
(3) Introduction
- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood V/s Maximum A Posteriori
- Properties of the MAP
(4) Exercises
- Some Stuff you can try

How do we handle Noise?

Imagine the following signal from $\sin (\theta)$

What if we know the noise?

Given a series of observed samples $\left\{\widehat{\boldsymbol{x}}_{1}, \widehat{\boldsymbol{x}}_{2}, \ldots, \widehat{\boldsymbol{x}}_{N}\right\}$ with noise $\epsilon \sim N(0,1)$
We could use our knowledge on the noise, for example additive:

$$
\widehat{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}+\epsilon
$$

What if we know the noise?

Given a series of observed samples $\left\{\widehat{x}_{1}, \widehat{\boldsymbol{x}}_{2}, \ldots, \widehat{\boldsymbol{x}}_{N}\right\}$ with noise $\epsilon \sim N(0,1)$
We could use our knowledge on the noise, for example additive:

$$
\widehat{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}+\epsilon
$$

We can use our knowledge of probability to remove such noise

$$
E\left[\widehat{\boldsymbol{x}}_{i}\right]=E\left[\boldsymbol{x}_{i}+\epsilon\right]=E\left[\boldsymbol{x}_{i}\right]+E[\epsilon]
$$

What if we know the noise?

Given a series of observed samples $\left\{\widehat{x}_{1}, \widehat{x}_{2}, \ldots, \widehat{\boldsymbol{x}}_{N}\right\}$ with noise $\epsilon \sim N(0,1)$
We could use our knowledge on the noise, for example additive:

$$
\widehat{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}+\epsilon
$$

We can use our knowledge of probability to remove such noise

$$
E\left[\widehat{\boldsymbol{x}}_{i}\right]=E\left[\boldsymbol{x}_{i}+\epsilon\right]=E\left[\boldsymbol{x}_{i}\right]+E[\epsilon]
$$

Then, because $E[\epsilon]=0$

$$
E\left[\boldsymbol{x}_{i}\right]=E\left[\widehat{\boldsymbol{x}}_{i}\right] \approx \frac{1}{N} \sum_{i=1}^{N} \widehat{\boldsymbol{x}}_{i}
$$

In our example

We have a nice result

Therefore, we have

The Bayesian Models

- They allow to deal with noise from the samples

Therefore, we have

The Bayesian Models

- They allow to deal with noise from the samples

Quite different from the deterministic models so far

- Unless Samples are Preprocessed to Reduce the Noise

Therefore, we have

The Bayesian Models

- They allow to deal with noise from the samples

Quite different from the deterministic models so far

- Unless Samples are Preprocessed to Reduce the Noise

Something that people in area as Control tend to do

- The importance of Filters as Kalman Filters

Outline

(1) Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- ExamplesThe Naive Bayes Model
- The Multi-Class Case
(2) Discriminant Functions and Decision Surfaces
- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

Introduction

- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP
(4) Exercises
- Some Stuff you can try

Example

Given a Spoken Language

The task is to determine the language that someone is speaking

Example

Given a Spoken Language

The task is to determine the language that someone is speaking

Generative Models

- They try to learn each language.

Example

Given a Spoken Language

The task is to determine the language that someone is speaking

Generative Models

- They try to learn each language.
- Therefore, they try to determine the spoken language based in such learning.

Example

Given a Spoken Language

The task is to determine the language that someone is speaking

Generative Models

- They try to learn each language.
- Therefore, they try to determine the spoken language based in such learning.

Discriminative Models

- They try to determine the linguistic differences without learning any language!!!

Example

Given a Spoken Language

The task is to determine the language that someone is speaking

Generative Models

- They try to learn each language.
- Therefore, they try to determine the spoken language based in such learning.

Discriminative Models

- They try to determine the linguistic differences without learning any language!!!
- Quite easier!!!

Therefore

Generative Methods

(1) Model class-conditional pdfs and prior probabilities.

Therefore

Generative Methods

(1) Model class-conditional pdfs and prior probabilities.
(2) "Generative" since sampling can generate synthetic data points.

Therefore

Generative Methods

(1) Model class-conditional pdfs and prior probabilities.
(2) "Generative" since sampling can generate synthetic data points.

Examples

- Gaussians, Naïve Bayes, Mixtures of Multinomials.

Therefore

Generative Methods

(1) Model class-conditional pdfs and prior probabilities.
(2) "Generative" since sampling can generate synthetic data points.

Examples

- Gaussians, Naïve Bayes, Mixtures of Multinomials.
- Mixtures of Gaussians, Mixtures of Experts, Hidden Markov Models (HMM).

Therefore

Generative Methods

(1) Model class-conditional pdfs and prior probabilities.
(2) "Generative" since sampling can generate synthetic data points.

Examples

- Gaussians, Naïve Bayes, Mixtures of Multinomials.
- Mixtures of Gaussians, Mixtures of Experts, Hidden Markov Models (HMM).
- Sigmoidal Belief Networks, Bayesian Networks, Markov Random Fields.

Furthermore

Discriminative Methods

(1) Directly estimate posterior probabilities.

Furthermore

Discriminative Methods

(1) Directly estimate posterior probabilities.
(2) No attempt to model underlying probability distributions.

Furthermore

Discriminative Methods

(1) Directly estimate posterior probabilities.
(2) No attempt to model underlying probability distributions.
(3) Focus computational resources on given task for better performance.

Furthermore

Discriminative Methods

(1) Directly estimate posterior probabilities.
(2) No attempt to model underlying probability distributions.
(3) Focus computational resources on given task for better performance.

Popular models

- Logistic regression, SVMs.

Furthermore

Discriminative Methods

(1) Directly estimate posterior probabilities.
(2) No attempt to model underlying probability distributions.
(3) Focus computational resources on given task for better performance.

Popular models

- Logistic regression, SVMs.
- Traditional neural networks, Nearest neighbor.

Furthermore

Discriminative Methods

(1) Directly estimate posterior probabilities.
(2) No attempt to model underlying probability distributions.
(3) Focus computational resources on given task for better performance.

Popular models

- Logistic regression, SVMs.
- Traditional neural networks, Nearest neighbor.
- Conditional Random Fields (CRF).

Outline

(1) Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- Examples
- The Naive Bayes Model
- The Multi-Class Case
(2) Discriminant Functions and Decision Surfaces
- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

Introduction

- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP

4 Exercises

- Some Stuff you can try

Naive Bayes Model

Task for two classes

Let ω_{1}, ω_{2} be the two classes in which our samples belong.

Naive Bayes Model

Task for two classes

Let ω_{1}, ω_{2} be the two classes in which our samples belong.
There is a prior probability of belonging to that class

- $P\left(\omega_{1}\right)$ for Class 1 .

Naive Bayes Model

Task for two classes

Let ω_{1}, ω_{2} be the two classes in which our samples belong.
There is a prior probability of belonging to that class

- $P\left(\omega_{1}\right)$ for Class 1 .
- $P\left(\omega_{2}\right)$ for Class 2 .

Naive Bayes Model

Task for two classes

Let ω_{1}, ω_{2} be the two classes in which our samples belong.
There is a prior probability of belonging to that class

- $P\left(\omega_{1}\right)$ for Class 1 .
- $P\left(\omega_{2}\right)$ for Class 2.

The Rule for classification is the following one

$$
\begin{equation*}
P\left(\omega_{i} \mid \boldsymbol{x}\right)=\frac{P\left(\boldsymbol{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)}{P(\boldsymbol{x})} \tag{1}
\end{equation*}
$$

Remark: Bayes to the next level.

In Informal English

We have that

$$
\begin{equation*}
\text { posterior }=\frac{\text { likelihood } \times \text { prior }- \text { in formation }}{\text { evidence }} \tag{2}
\end{equation*}
$$

In Informal English

We have that

$$
\begin{equation*}
\text { posterior }=\frac{\text { likelihood } \times \text { prior }- \text { information }}{\text { evidence }} \tag{2}
\end{equation*}
$$

Basically

One: If we can observe \boldsymbol{x}.

In Informal English

We have that

$$
\begin{equation*}
\text { posterior }=\frac{\text { likelihood } \times \text { prior }- \text { information }}{\text { evidence }} \tag{2}
\end{equation*}
$$

Basically

One: If we can observe \boldsymbol{x}.
Two: we can convert the prior-information into the posterior information.

We have the following terms...
Likelihood
We call $p\left(\boldsymbol{x} \mid \omega_{i}\right)$ the likelihood of ω_{i} given \boldsymbol{x} :

We have the following terms...

Likelihood

We call $p\left(\boldsymbol{x} \mid \omega_{i}\right)$ the likelihood of ω_{i} given \boldsymbol{x} :

- This indicates that given a category ω_{i} : If $p\left(\boldsymbol{x} \mid \omega_{i}\right)$ is "large", then ω_{i} is the "likely" class of \boldsymbol{x}.

We have the following terms...

Likelihood

We call $p\left(\boldsymbol{x} \mid \omega_{i}\right)$ the likelihood of ω_{i} given \boldsymbol{x} :

- This indicates that given a category ω_{i} : If $p\left(\boldsymbol{x} \mid \omega_{i}\right)$ is "large", then ω_{i} is the "likely" class of \boldsymbol{x}.

Prior Probability

It is the known probability of a given class.

We have the following terms...

Likelihood

We call $p\left(\boldsymbol{x} \mid \omega_{i}\right)$ the likelihood of ω_{i} given \boldsymbol{x} :

- This indicates that given a category ω_{i} : If $p\left(\boldsymbol{x} \mid \omega_{i}\right)$ is "large", then ω_{i} is the "likely" class of \boldsymbol{x}.

Prior Probability

It is the known probability of a given class.
Remark: Because, we lack information about this class, we tend to use the uniform distribution.

We have the following terms...

Likelihood

We call $p\left(\boldsymbol{x} \mid \omega_{i}\right)$ the likelihood of ω_{i} given \boldsymbol{x} :

- This indicates that given a category ω_{i} : If $p\left(\boldsymbol{x} \mid \omega_{i}\right)$ is "large", then ω_{i} is the "likely" class of \boldsymbol{x}.

Prior Probability

It is the known probability of a given class.
Remark: Because, we lack information about this class, we tend to use the uniform distribution.

However: We can use other tricks for it.

We have the following terms...

Likelihood

We call $p\left(\boldsymbol{x} \mid \omega_{i}\right)$ the likelihood of ω_{i} given \boldsymbol{x} :

- This indicates that given a category ω_{i} : If $p\left(\boldsymbol{x} \mid \omega_{i}\right)$ is "large", then ω_{i} is the "likely" class of \boldsymbol{x}.

Prior Probability

It is the known probability of a given class.
Remark: Because, we lack information about this class, we tend to use the uniform distribution.

However: We can use other tricks for it.

Evidence

The evidence factor can be seen as a scale factor that guarantees that the posterior probability sum to one.

The most important term in all this

The factor

$$
\text { likelihood } \times \text { prior-information }
$$

Outline

(1) Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- Examples
- The Naive Bayes Model
- The Multi-Class Case
(2) Discriminant Functions and Decision Surfaces
- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

Introduction

- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood V/s Maximum A Posteriori
- Properties of the MAP
(4) Exercises
- Some Stuff you can try

Example

We have the likelihood of two classes

Example

We have the posterior of two classes when $P\left(\omega_{1}\right)=\frac{2}{3}$ and $P\left(\omega_{2}\right)=\frac{1}{3}$

Example of key distribution

Example, mean $=488.5$ and dispersion $=5$

Example with 10 keys

Universal Hashing Vs Division Method

Example with 50 keys

Universal Hashing Vs Division Method

Example with 100 keys

Universal Hashing Vs Division Method

Example with 200 keys

Universal Hashing Vs Division Method

Outline

Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- Examples
- The Naive Bayes Model
- The Multi-Class Case
(2) Discriminant Functions and Decision Surfaces
- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

Introduction

- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP
(4) Exercises
- Some Stuff you can try

Naive Bayes Model

In the case of two classes, we can use demarginalization

$$
\begin{equation*}
P(\boldsymbol{x})=\sum_{i=1}^{2} p\left(\boldsymbol{x}, \omega_{i}\right)=\sum_{i=1}^{2} p\left(\boldsymbol{x} \mid \omega_{i}\right) P\left(\omega_{i}\right) \tag{4}
\end{equation*}
$$

Error in this rule

We have that

$$
P(\text { error } \mid \boldsymbol{x})= \begin{cases}P\left(\omega_{1} \mid \boldsymbol{x}\right) & \text { if we decide } \omega_{2} \tag{5}\\ P\left(\omega_{2} \mid \boldsymbol{x}\right) & \text { if we decide } \omega_{1}\end{cases}
$$

Error in this rule

We have that

$$
P(\text { error } \mid \boldsymbol{x})= \begin{cases}P\left(\omega_{1} \mid \boldsymbol{x}\right) & \text { if we decide } \omega_{2} \tag{5}\\ P\left(\omega_{2} \mid \boldsymbol{x}\right) & \text { if we decide } \omega_{1}\end{cases}
$$

Thus, we have that

$$
\begin{equation*}
P(\text { error })=\int_{-\infty}^{\infty} P(\text { error }, \boldsymbol{x}) d \boldsymbol{x}=\int_{-\infty}^{\infty} P(\text { error } \mid \boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x} \tag{6}
\end{equation*}
$$

Graphically

We have

Classification Rule

Thus, we have the Bayes Classification Rule
(1) If $P\left(\omega_{1} \mid \boldsymbol{x}\right)>P\left(\omega_{2} \mid \boldsymbol{x}\right) \boldsymbol{x}$ is classified to ω_{1}

Classification Rule

Thus, we have the Bayes Classification Rule
(1) If $P\left(\omega_{1} \mid \boldsymbol{x}\right)>P\left(\omega_{2} \mid \boldsymbol{x}\right) \boldsymbol{x}$ is classified to ω_{1}
(2) If $P\left(\omega_{1} \mid \boldsymbol{x}\right)<P\left(\omega_{2} \mid \boldsymbol{x}\right) \boldsymbol{x}$ is classified to ω_{2}

What if we remove the normalization factor?

Remember

$$
\begin{equation*}
P\left(\omega_{1} \mid \boldsymbol{x}\right)+P\left(\omega_{2} \mid \boldsymbol{x}\right)=1 \tag{7}
\end{equation*}
$$

What if we remove the normalization factor?

Remember

$$
\begin{equation*}
P\left(\omega_{1} \mid \boldsymbol{x}\right)+P\left(\omega_{2} \mid \boldsymbol{x}\right)=1 \tag{7}
\end{equation*}
$$

We are able to obtain the new Bayes Classification Rule
(1) If $P\left(\boldsymbol{x} \mid \omega_{1}\right) p\left(\omega_{1}\right)>P\left(\boldsymbol{x} \mid \omega_{2}\right) P\left(\omega_{2}\right) \boldsymbol{x}$ is classified to ω_{1}

What if we remove the normalization factor?

Remember

$$
\begin{equation*}
P\left(\omega_{1} \mid \boldsymbol{x}\right)+P\left(\omega_{2} \mid \boldsymbol{x}\right)=1 \tag{7}
\end{equation*}
$$

We are able to obtain the new Bayes Classification Rule
(1) If $P\left(\boldsymbol{x} \mid \omega_{1}\right) p\left(\omega_{1}\right)>P\left(\boldsymbol{x} \mid \omega_{2}\right) P\left(\omega_{2}\right) \boldsymbol{x}$ is classified to ω_{1}
(2) If $P\left(\boldsymbol{x} \mid \omega_{1}\right) p\left(\omega_{1}\right)<P\left(\boldsymbol{x} \mid \omega_{2}\right) P\left(\omega_{2}\right) \boldsymbol{x}$ is classified to ω_{2}

We have several cases

If for some \boldsymbol{x} we have $P\left(x \mid \omega_{1}\right)=P\left(x \mid \omega_{2}\right)$
The final decision relies completely from the prior probability.

We have several cases

If for some x we have $P\left(x \mid \omega_{1}\right)=P\left(x \mid \omega_{2}\right)$
The final decision relies completely from the prior probability.
On the Other hand if $P\left(\omega_{1}\right)=P\left(\omega_{2}\right)$, the "state" is equally probable In this case the decision is based entirely on the likelihoods $P\left(\boldsymbol{x} \mid \omega_{i}\right)$.

How the Rule looks like

If $P\left(\omega_{1}\right)=P\left(\omega_{2}\right)$ the Rule depends on the term $p\left(x \mid \omega_{i}\right)$

Error in Naive Bayes

Error in equiprobable classes $p\left(\omega_{1}\right)=p\left(\omega_{2}\right)=\frac{1}{2}$

$$
P_{e}=\int_{-\infty}^{\infty} P(\boldsymbol{x}, \text { error }) d \boldsymbol{x}
$$

Error in Naive Bayes

Error in equiprobable classes $p\left(\omega_{1}\right)=p\left(\omega_{2}\right)=\frac{1}{2}$

$$
\begin{aligned}
P_{e} & =\int_{-\infty}^{\infty} P(\boldsymbol{x}, \text { error }) d \boldsymbol{x} \\
& =\int_{-\infty}^{x_{0}} p\left(x, \omega_{2}\right) d x+\int_{x_{0}}^{\infty} p\left(x, \omega_{1}\right) d x
\end{aligned}
$$

Error in Naive Bayes

Error in equiprobable classes $p\left(\omega_{1}\right)=p\left(\omega_{2}\right)=\frac{1}{2}$

$$
\begin{aligned}
P_{e} & =\int_{-\infty}^{\infty} P(\boldsymbol{x}, \text { error }) d \boldsymbol{x} \\
& =\int_{-\infty}^{x_{0}} p\left(x, \omega_{2}\right) d x+\int_{x_{0}}^{\infty} p\left(x, \omega_{1}\right) d x \\
& =\int_{-\infty}^{x_{0}} p\left(x \mid \omega_{2}\right) P\left(\omega_{2}\right) d x+\int_{x_{0}}^{\infty} p\left(x \mid \omega_{1}\right) P\left(\omega_{1}\right) d x
\end{aligned}
$$

Error in Naive Bayes

Error in equiprobable classes $p\left(\omega_{1}\right)=p\left(\omega_{2}\right)=\frac{1}{2}$

$$
\begin{aligned}
P_{e} & =\int_{-\infty}^{\infty} P(\boldsymbol{x}, \text { error }) d \boldsymbol{x} \\
& =\int_{-\infty}^{x_{0}} p\left(x, \omega_{2}\right) d x+\int_{x_{0}}^{\infty} p\left(x, \omega_{1}\right) d x \\
& =\int_{-\infty}^{x_{0}} p\left(x \mid \omega_{2}\right) P\left(\omega_{2}\right) d x+\int_{x_{0}}^{\infty} p\left(x \mid \omega_{1}\right) P\left(\omega_{1}\right) d x \\
& =P\left(\omega_{2}\right) \int_{-\infty}^{x_{0}} p\left(x \mid \omega_{2}\right) d x+P\left(\omega_{1}\right) \int_{x_{0}}^{\infty} p\left(x \mid \omega_{1}\right) d x
\end{aligned}
$$

Error in Naive Bayes

Error in equiprobable classes $p\left(\omega_{1}\right)=p\left(\omega_{2}\right)=\frac{1}{2}$

$$
\begin{aligned}
P_{e} & =\int_{-\infty}^{\infty} P(\boldsymbol{x}, \text { error }) d \boldsymbol{x} \\
& =\int_{-\infty}^{x_{0}} p\left(x, \omega_{2}\right) d x+\int_{x_{0}}^{\infty} p\left(x, \omega_{1}\right) d x \\
& =\int_{-\infty}^{x_{0}} p\left(x \mid \omega_{2}\right) P\left(\omega_{2}\right) d x+\int_{x_{0}}^{\infty} p\left(x \mid \omega_{1}\right) P\left(\omega_{1}\right) d x \\
& =P\left(\omega_{2}\right) \int_{-\infty}^{x_{0}} p\left(x \mid \omega_{2}\right) d x+P\left(\omega_{1}\right) \int_{x_{0}}^{\infty} p\left(x \mid \omega_{1}\right) d x \\
& =\frac{1}{2} \int_{-\infty}^{x_{0}} p\left(x \mid \omega_{2}\right) d x+\frac{1}{2} \int_{x_{0}}^{\infty} p\left(x \mid \omega_{1}\right) d x
\end{aligned}
$$

Error in Naive Bayes

Something Notable
 Bayesian classifier is optimal with respect to minimizing the classification error probability.

Proof

Step 1

- R_{1} be the region of the feature space in which we decide in favor of ω_{1}

Proof

Step 1

- R_{1} be the region of the feature space in which we decide in favor of ω_{1}
- R_{2} be the region of the feature space in which we decide in favor of ω_{2}

Proof

Step 1

- R_{1} be the region of the feature space in which we decide in favor of ω_{1}
- R_{2} be the region of the feature space in which we decide in favor of ω_{2}

Step 2

$$
\begin{equation*}
P_{e}=P\left(x \in R_{2}, \omega_{1}\right)+P\left(x \in R_{1}, \omega_{2}\right) \tag{8}
\end{equation*}
$$

Proof

Step 1

- R_{1} be the region of the feature space in which we decide in favor of ω_{1}
- R_{2} be the region of the feature space in which we decide in favor of ω_{2}

Step 2

$$
\begin{equation*}
P_{e}=P\left(x \in R_{2}, \omega_{1}\right)+P\left(x \in R_{1}, \omega_{2}\right) \tag{8}
\end{equation*}
$$

Thus

$$
P_{e}=P\left(x \in R_{2} \mid \omega_{1}\right) P\left(\omega_{1}\right)+P\left(x \in R_{1} \mid \omega_{2}\right) P\left(\omega_{2}\right)
$$

Proof

Step 1

- R_{1} be the region of the feature space in which we decide in favor of ω_{1}
- R_{2} be the region of the feature space in which we decide in favor of ω_{2}

Step 2

$$
\begin{equation*}
P_{e}=P\left(x \in R_{2}, \omega_{1}\right)+P\left(x \in R_{1}, \omega_{2}\right) \tag{8}
\end{equation*}
$$

Thus

$$
\begin{aligned}
P_{e} & =P\left(x \in R_{2} \mid \omega_{1}\right) P\left(\omega_{1}\right)+P\left(x \in R_{1} \mid \omega_{2}\right) P\left(\omega_{2}\right) \\
& =P\left(\omega_{1}\right) \int_{R_{2}} p\left(x \mid \omega_{1}\right) d x+P\left(\omega_{2}\right) \int_{R_{1}} p\left(x \mid \omega_{2}\right) d x
\end{aligned}
$$

Proof

It is more

$$
\begin{equation*}
P_{e}=P\left(\omega_{1}\right) \int_{R_{2}} \frac{p\left(\omega_{1}, x\right)}{P\left(\omega_{1}\right)} d x+P\left(\omega_{2}\right) \int_{R_{1}} \frac{p\left(\omega_{2}, x\right)}{P\left(\omega_{2}\right)} d x \tag{9}
\end{equation*}
$$

Proof

It is more

$$
\begin{equation*}
P_{e}=P\left(\omega_{1}\right) \int_{R_{2}} \frac{p\left(\omega_{1}, x\right)}{P\left(\omega_{1}\right)} d x+P\left(\omega_{2}\right) \int_{R_{1}} \frac{p\left(\omega_{2}, x\right)}{P\left(\omega_{2}\right)} d x \tag{9}
\end{equation*}
$$

Finally

$$
\begin{equation*}
P_{e}=\int_{R_{2}} p\left(\omega_{1} \mid x\right) p(x) d x+\int_{R_{1}} p\left(\omega_{2} \mid x\right) p(x) d x \tag{10}
\end{equation*}
$$

Proof

It is more

$$
\begin{equation*}
P_{e}=P\left(\omega_{1}\right) \int_{R_{2}} \frac{p\left(\omega_{1}, x\right)}{P\left(\omega_{1}\right)} d x+P\left(\omega_{2}\right) \int_{R_{1}} \frac{p\left(\omega_{2}, x\right)}{P\left(\omega_{2}\right)} d x \tag{9}
\end{equation*}
$$

Finally

$$
\begin{equation*}
P_{e}=\int_{R_{2}} p\left(\omega_{1} \mid x\right) p(x) d x+\int_{R_{1}} p\left(\omega_{2} \mid x\right) p(x) d x \tag{10}
\end{equation*}
$$

Now, we choose the Bayes Classification Rule

$$
\begin{aligned}
& R_{1}: P\left(\omega_{1} \mid x\right)>P\left(\omega_{2} \mid x\right) \\
& R_{2}: P\left(\omega_{2} \mid x\right)>P\left(\omega_{1} \mid x\right)
\end{aligned}
$$

Proof

Thus

$$
\begin{equation*}
P\left(\omega_{1}\right)=\int_{R_{1}} p\left(\omega_{1} \mid x\right) p(x) d x+\int_{R_{2}} p\left(\omega_{1} \mid x\right) p(x) d x \tag{11}
\end{equation*}
$$

Proof

Thus

$$
\begin{equation*}
P\left(\omega_{1}\right)=\int_{R_{1}} p\left(\omega_{1} \mid x\right) p(x) d x+\int_{R_{2}} p\left(\omega_{1} \mid x\right) p(x) d x \tag{11}
\end{equation*}
$$

Now, we have...

$$
\begin{equation*}
P\left(\omega_{1}\right)-\int_{R_{1}} p\left(\omega_{1} \mid x\right) p(x) d x=\int_{R_{2}} p\left(\omega_{1} \mid x\right) p(x) d x \tag{12}
\end{equation*}
$$

Proof

Thus

$$
\begin{equation*}
P\left(\omega_{1}\right)=\int_{R_{1}} p\left(\omega_{1} \mid x\right) p(x) d x+\int_{R_{2}} p\left(\omega_{1} \mid x\right) p(x) d x \tag{11}
\end{equation*}
$$

Now, we have...

$$
\begin{equation*}
P\left(\omega_{1}\right)-\int_{R_{1}} p\left(\omega_{1} \mid x\right) p(x) d x=\int_{R_{2}} p\left(\omega_{1} \mid x\right) p(x) d x \tag{12}
\end{equation*}
$$

Then

$$
\begin{equation*}
P_{e}=P\left(\omega_{1}\right)-\int_{R_{1}} p\left(\omega_{1} \mid x\right) p(x) d x+\int_{R_{1}} p\left(\omega_{2} \mid x\right) p(x) d x \tag{13}
\end{equation*}
$$

Graphically $P\left(\omega_{1}\right)$: Thanks Edith 2013 Class!!!

In Gray

Thus we have
$\int_{R_{1}} p\left(\omega_{1} \mid x\right) p(x) d x=\int_{R_{1}} p\left(\omega_{1}, x\right) d x=P_{R_{1}}\left(\omega_{1}\right)$

Thus

Finally P_{e}

A great idea Edith!!!

Thus

Finally

$$
\begin{equation*}
P_{e}=P\left(\omega_{1}\right)-\int_{R_{1}}\left[p\left(\omega_{1} \mid x\right)-p\left(\omega_{2} \mid x\right)\right] p(x) d x \tag{14}
\end{equation*}
$$

Thus

Finally

$$
\begin{equation*}
P_{e}=P\left(\omega_{1}\right)-\int_{R_{1}}\left[p\left(\omega_{1} \mid x\right)-p\left(\omega_{2} \mid x\right)\right] p(x) d x \tag{14}
\end{equation*}
$$

Thus

The probability of error is minimized at the region of space in which $R_{1}: P\left(\omega_{1} \mid x\right)>P\left(\omega_{2} \mid x\right)$.

Finally

Similarly

$$
\begin{equation*}
P_{e}=P\left(\omega_{2}\right)-\int_{R_{2}}\left[p\left(\omega_{2} \mid x\right)-p\left(\omega_{1} \mid x\right)\right] p(x) d x \tag{15}
\end{equation*}
$$

Finally

Similarly

$$
\begin{equation*}
P_{e}=P\left(\omega_{2}\right)-\int_{R_{2}}\left[p\left(\omega_{2} \mid x\right)-p\left(\omega_{1} \mid x\right)\right] p(x) d x \tag{15}
\end{equation*}
$$

Thus

The probability of error is minimized at the region of space in which $R_{2}: P\left(\omega_{2} \mid x\right)>P\left(\omega_{1} \mid x\right)$.

Finally

Similarly

$$
\begin{equation*}
P_{e}=P\left(\omega_{2}\right)-\int_{R_{2}}\left[p\left(\omega_{2} \mid x\right)-p\left(\omega_{1} \mid x\right)\right] p(x) d x \tag{15}
\end{equation*}
$$

Thus

The probability of error is minimized at the region of space in which $R_{2}: P\left(\omega_{2} \mid x\right)>P\left(\omega_{1} \mid x\right)$.

Thus

The Naive Bayes Rule minimizes the error.

After all!!!

If you choose any other x_{0}^{\prime}

Outline

Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- Examples
- The Naive Bayes Model
- The Multi-Class Case
(2) Discriminant Functions and Decision Surfaces
- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

Introduction

- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP
(4) Exercises
- Some Stuff you can try

For M classes $\omega_{1}, \omega_{2}, \ldots, \omega_{M}$

We have that vector \boldsymbol{x} is in ω_{i}

$$
\begin{equation*}
P\left(\omega_{i} \mid \boldsymbol{x}\right)>P\left(\omega_{j} \mid \boldsymbol{x}\right) \forall j \neq i \tag{16}
\end{equation*}
$$

For M classes $\omega_{1}, \omega_{2}, \ldots, \omega_{M}$

We have that vector \boldsymbol{x} is in ω_{i}

$$
\begin{equation*}
P\left(\omega_{i} \mid \boldsymbol{x}\right)>P\left(\omega_{j} \mid \boldsymbol{x}\right) \quad \forall j \neq i \tag{16}
\end{equation*}
$$

Something Notable

It turns out that such a choice also minimizes the classification error probability.

Outline

(1) Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- Examples
- The Naive Bayes Model
- The Multi-Class Case
(2) Discriminant Functions and Decision Surfaces
- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

3 Introduction

- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP

4 Exercises

- Some Stuff you can try

Decision Surface

Because the R_{1} and R_{2} are contiguous

The separating surface between both of them is described by

$$
\begin{equation*}
P\left(\omega_{1} \mid x\right)-P\left(\omega_{2} \mid x\right)=0 \tag{17}
\end{equation*}
$$

Decision Surface

Because the R_{1} and R_{2} are contiguous

The separating surface between both of them is described by

$$
\begin{equation*}
P\left(\omega_{1} \mid x\right)-P\left(\omega_{2} \mid x\right)=0 \tag{17}
\end{equation*}
$$

Thus, we define the decision function as

$$
\begin{equation*}
g_{12}(x)=P\left(\omega_{1} \mid x\right)-P\left(\omega_{2} \mid x\right)=0 \tag{18}
\end{equation*}
$$

Which decision function for the Naive Bayes

A single number in this case

In general

First

Instead of working with probabilities, we work with an equivalent function of them $g_{i}(\boldsymbol{x})=f\left(P\left(\omega_{i} \mid \boldsymbol{x}\right)\right)$.

In general

First

Instead of working with probabilities, we work with an equivalent function of them $g_{i}(\boldsymbol{x})=f\left(P\left(\omega_{i} \mid \boldsymbol{x}\right)\right)$.

- Classic Example the Monotonically increasing $f\left(P\left(\omega_{i} \mid \boldsymbol{x}\right)\right)=\ln P\left(\omega_{i} \mid \boldsymbol{x}\right)$.

In general

First

Instead of working with probabilities, we work with an equivalent function of them $g_{i}(\boldsymbol{x})=f\left(P\left(\omega_{i} \mid \boldsymbol{x}\right)\right)$.

- Classic Example the Monotonically increasing

$$
f\left(P\left(\omega_{i} \mid \boldsymbol{x}\right)\right)=\ln P\left(\omega_{i} \mid \boldsymbol{x}\right)
$$

The decision test is now

classify \boldsymbol{x} in ω_{i} if $g_{i}(\boldsymbol{x})>g_{j}(\boldsymbol{x}) \forall j \neq i$.

In general

First

Instead of working with probabilities, we work with an equivalent function of them $g_{i}(\boldsymbol{x})=f\left(P\left(\omega_{i} \mid \boldsymbol{x}\right)\right)$.

- Classic Example the Monotonically increasing

$$
f\left(P\left(\omega_{i} \mid \boldsymbol{x}\right)\right)=\ln P\left(\omega_{i} \mid \boldsymbol{x}\right) .
$$

The decision test is now classify \boldsymbol{x} in ω_{i} if $g_{i}(\boldsymbol{x})>g_{j}(\boldsymbol{x}) \forall j \neq i$.

The decision surfaces, separating contiguous regions, are described by

$$
g_{i j}(\boldsymbol{x})=g_{i}(\boldsymbol{x})-g_{j}(\boldsymbol{x}) i, j=1,2, \ldots, M i \neq j
$$

Outline

1 Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- Examples
- The Naive Bayes Model
- The Multi-Class Case
(2) Discriminant Functions and Decision Surfaces
- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

3 Introduction

- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP

4 Exercises

- Some Stuff you can try

Gaussian Distribution

We can use the Gaussian distribution

$$
\begin{equation*}
p\left(\boldsymbol{x} \mid \boldsymbol{\omega}_{i}\right)=\frac{1}{(2 \pi)^{l / 2}\left|\Sigma_{i}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T} \Sigma_{i}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{i}\right)\right\} \tag{19}
\end{equation*}
$$

Gaussian Distribution

We can use the Gaussian distribution

$$
\begin{equation*}
p\left(\boldsymbol{x} \mid \boldsymbol{\omega}_{i}\right)=\frac{1}{(2 \pi)^{l / 2}\left|\Sigma_{i}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T} \Sigma_{i}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{i}\right)\right\} \tag{19}
\end{equation*}
$$

Example

$$
\Sigma=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]
$$

Some Properties

About Σ

It is the covariance matrix between variables.

Some Properties

About Σ

It is the covariance matrix between variables.

Thus

- It is positive semi-definite.
- Symmetric.
- The inverse exists.

Outline

1 Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- ExamplesThe Naive Bayes Model
- The Multi-Class Case
(2) Discriminant Functions and Decision Surfaces
- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

3 Introduction

- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP

4 Exercises

- Some Stuff you can try

Influence of the Covariance Σ

Look at the following Covariance

$$
\Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Influence of the Covariance Σ

Look at the following Covariance

$$
\Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

It simple the unit Gaussian with mean μ

The Covariance Σ as a Rotation

Look at the following Covariance

$$
\Sigma=\left[\begin{array}{cc}
16 & 0 \\
0 & 1
\end{array}\right]
$$

The Covariance Σ as a Rotation

Look at the following Covariance

$$
\Sigma=\left[\begin{array}{cc}
16 & 0 \\
0 & 1
\end{array}\right]
$$

Actually, it flatten the circle through the x - axis

Influence of the Covariance Σ

Look at the following Covariance

$$
\Sigma_{a}=R \Sigma_{b} R^{T} \text { with } R=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Influence of the Covariance Σ

Look at the following Covariance

$$
\Sigma_{a}=R \Sigma_{b} R^{T} \text { with } R=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

It allows to rotate the axises

Now For Two Classes

Then, we use the following trick for two Classes $i=1,2$
We know that the pdf of correct classification is
$p\left(x, \omega_{1}\right)=p\left(x \mid \omega_{i}\right) P\left(\omega_{i}\right)!!!$

Now For Two Classes

Then, we use the following trick for two Classes $i=1,2$
We know that the pdf of correct classification is
$p\left(x, \omega_{1}\right)=p\left(x \mid \omega_{i}\right) P\left(\omega_{i}\right)!!!$

Thus

It is possible to generate the following decision function:

$$
\begin{equation*}
g_{i}(\boldsymbol{x})=\ln \left[p\left(x \mid \omega_{i}\right) P\left(\omega_{i}\right)\right]=\ln p\left(x \mid \omega_{i}\right)+\ln P\left(\omega_{i}\right) \tag{20}
\end{equation*}
$$

Now For Two Classes

Then, we use the following trick for two Classes $i=1,2$
We know that the pdf of correct classification is
$p\left(x, \omega_{1}\right)=p\left(x \mid \omega_{i}\right) P\left(\omega_{i}\right)!!!$

Thus

It is possible to generate the following decision function:

$$
\begin{equation*}
g_{i}(\boldsymbol{x})=\ln \left[p\left(x \mid \omega_{i}\right) P\left(\omega_{i}\right)\right]=\ln p\left(x \mid \omega_{i}\right)+\ln P\left(\omega_{i}\right) \tag{20}
\end{equation*}
$$

Thus

$$
\begin{equation*}
g_{i}(\boldsymbol{x})=-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T} \Sigma_{i}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)+\ln P\left(\omega_{i}\right)+c_{i} \tag{21}
\end{equation*}
$$

Outline

Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- Examples
- The Naive Bayes Model
- The Multi-Class Case
(2) Discriminant Functions and Decision Surfaces
- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks
(3) Introduction
- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP

4 Exercises

- Some Stuff you can try

We can work one of the possible decision surfaces

Assume first that $\Sigma_{i}=\sigma^{2} I$

- The features are statistically independent

We can work one of the possible decision surfaces

Assume first that $\Sigma_{i}=\sigma^{2} I$

- The features are statistically independent
- Each feature has the same variance

We can work one of the possible decision surfaces

Assume first that $\Sigma_{i}=\sigma^{2} I$

- The features are statistically independent
- Each feature has the same variance

Therefore

- The samples fall in equal size spherical clusters!!!

We can work one of the possible decision surfaces

Assume first that $\Sigma_{i}=\sigma^{2} I$

- The features are statistically independent
- Each feature has the same variance

Therefore

- The samples fall in equal size spherical clusters!!!
- Each Cluster centered at mean vector μ_{i}.

For Example

We have

Now

We have that

$$
\left|\Sigma_{i}\right|=\sigma^{2 d} \text { and } \Sigma_{i}^{-1}=\left(\frac{1}{\sigma^{2}}\right) I
$$

Now

We have that

$$
\left|\Sigma_{i}\right|=\sigma^{2 d} \text { and } \Sigma_{i}^{-1}=\left(\frac{1}{\sigma^{2}}\right) I
$$

Something Notable

- Gaussian Multivariate function after the log

$$
g_{i}(\boldsymbol{x})=-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T} \Sigma_{i}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)+\ln P\left(\omega_{i}\right)-\frac{d}{2} \ln 2 \pi-\frac{1}{2} \ln \left|\Sigma_{i}\right|
$$

Now

We have that

$$
\left|\Sigma_{i}\right|=\sigma^{2 d} \text { and } \Sigma_{i}^{-1}=\left(\frac{1}{\sigma^{2}}\right) I
$$

Something Notable

- Gaussian Multivariate function after the log

$$
g_{i}(\boldsymbol{x})=-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{i}\right)^{T} \Sigma_{i}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)+\ln P\left(\omega_{i}\right)-\frac{d}{2} \ln 2 \pi-\frac{1}{2} \ln \left|\Sigma_{i}\right|
$$

The term $-\frac{d}{2} \ln 2 \pi-\frac{1}{2} \ln \left|\Sigma_{i}\right|$
It is unimportant therefore it can be ignored!!!

We have the following discriminant functions

$$
\begin{equation*}
g_{i}(\boldsymbol{x})=-\frac{\underbrace{\left\|\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right\|^{2}}}{\left.\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)}{2 \sigma^{2}}^{\|} \ln P\left(\omega_{i}\right) \tag{22}
\end{equation*}
$$

We have the following discriminant functions

$$
\begin{equation*}
g_{i}(\boldsymbol{x})=-\frac{\underbrace{\left\|\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right\|^{2}}}{\left.\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)}+\ln P\left(\omega_{i}\right) \tag{22}
\end{equation*}
$$

Then, we have that

$$
g_{i}(\boldsymbol{x})=-\frac{1}{2 \sigma^{2}}\left[\boldsymbol{x}^{T} \boldsymbol{x}-2 \boldsymbol{\mu}_{\boldsymbol{i}}^{T} \boldsymbol{x}+\boldsymbol{\mu}_{\boldsymbol{i}}^{T} \boldsymbol{\mu}_{i}\right]+\ln P\left(\omega_{i}\right)
$$

We can then...

Do you notice that $x^{T} \boldsymbol{x}$ is actually the same for all g_{i} ?

Then, we can ignore that term thus, we get

We can then...

Do you notice that $x^{T} x$ is actually the same for all g_{i} ?

Then, we can ignore that term thus, we get

$$
g_{i}(\boldsymbol{x})=\overbrace{\boldsymbol{w}_{i}^{T}}^{\frac{1}{\sigma^{2}}} \boldsymbol{\mu}_{i}^{T} \boldsymbol{x}-\frac{1}{2 \sigma^{2}} \boldsymbol{\mu}_{\boldsymbol{i}}^{T} \overbrace{w_{i 0}}^{\boldsymbol{\mu}_{i}+\ln P\left(\omega_{i}\right)}
$$

Or if you want

$$
g_{i}(\boldsymbol{x})=\boldsymbol{w}_{i}^{T} \boldsymbol{x}+w_{i 0}
$$

Outline

(1) Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- ExamplesThe Naive Bayes Model
- The Multi-Class Case
(2) Discriminant Functions and Decision Surfaces
- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

3 Introduction

- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP

4 Exercises

- Some Stuff you can try

Given a series of classes $\omega_{1}, \omega_{2}, \ldots, \omega_{M}$

We assume for each class ω_{j}

The samples are drawn independently according to the probability law $p\left(\boldsymbol{x} \mid \omega_{j}\right)$

Given a series of classes $\omega_{1}, \omega_{2}, \ldots, \omega_{M}$

We assume for each class ω_{j}

The samples are drawn independently according to the probability law $p\left(\boldsymbol{x} \mid \omega_{j}\right)$

We call those samples as

i.i.d. - independent identically distributed random variables.

Given a series of classes $\omega_{1}, \omega_{2}, \ldots, \omega_{M}$

We assume for each class ω_{j}

The samples are drawn independently according to the probability law $p\left(\boldsymbol{x} \mid \omega_{j}\right)$

We call those samples as

i.i.d. - independent identically distributed random variables.

We assume in addition

$p\left(\boldsymbol{x} \mid \omega_{j}\right)$ has a known parametric form with vector $\boldsymbol{\theta}_{j}$ of parameters.

Given a series of classes $\omega_{1}, \omega_{2}, \ldots, \omega_{M}$

For example

$$
\begin{equation*}
p\left(\boldsymbol{x} \mid \omega_{j}\right) \sim N\left(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right) \tag{23}
\end{equation*}
$$

Given a series of classes $\omega_{1}, \omega_{2}, \ldots, \omega_{M}$

For example

$$
\begin{equation*}
p\left(\boldsymbol{x} \mid \omega_{j}\right) \sim N\left(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right) \tag{23}
\end{equation*}
$$

In our case

We will assume that there is no dependence between classes!!!

Now

Suppose that ω_{j} contains n samples $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$

$$
\begin{equation*}
p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n} \mid \boldsymbol{\theta}_{j}\right)=\prod_{j=1}^{n} p\left(\boldsymbol{x}_{j} \mid \boldsymbol{\theta}_{j}\right) \tag{24}
\end{equation*}
$$

Now

Suppose that ω_{j} contains n samples $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$

$$
\begin{equation*}
p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n} \mid \boldsymbol{\theta}_{j}\right)=\prod_{j=1}^{n} p\left(\boldsymbol{x}_{j} \mid \boldsymbol{\theta}_{j}\right) \tag{24}
\end{equation*}
$$

We can see then the function $p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n} \mid \boldsymbol{\theta}_{j}\right)$ as a function of

$$
\begin{equation*}
L\left(\boldsymbol{\theta}_{j}\right)=\prod_{j=1}^{n} p\left(\boldsymbol{x}_{j} \mid \boldsymbol{\theta}_{j}\right) \tag{25}
\end{equation*}
$$

Example

$L\left(\boldsymbol{\theta}_{j}\right)=\log \prod_{j=1}^{n} p\left(\boldsymbol{x}_{j} \mid \boldsymbol{\theta}_{j}\right)$

Outline

(1) Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- ExamplesThe Naive Bayes Model
- The Multi-Class Case
(2) Discriminant Functions and Decision Surfaces
- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks
(3) Introduction
- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP

4 Exercises

- Some Stuff you can try

Maximum Likelihood on a Gaussian

Then, using the log!!!

$$
\begin{equation*}
\ln L\left(\omega_{i}\right)=-\frac{n}{2} \ln \left|\Sigma_{i}\right|-\frac{1}{2}\left[\sum_{j=1}^{n}\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T} \Sigma_{i}^{-1}\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)\right]+c_{2} \tag{26}
\end{equation*}
$$

Maximum Likelihood on a Gaussian

Then, using the log!!!

$$
\begin{equation*}
\ln L\left(\omega_{i}\right)=-\frac{n}{2} \ln \left|\Sigma_{i}\right|-\frac{1}{2}\left[\sum_{j=1}^{n}\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T} \Sigma_{i}^{-1}\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)\right]+c_{2} \tag{26}
\end{equation*}
$$

We know that

$$
\begin{equation*}
\frac{d \boldsymbol{x}^{T} A \boldsymbol{x}}{d \boldsymbol{x}}=A x+A^{T} x, \frac{d A \boldsymbol{x}}{d \boldsymbol{x}}=A \tag{27}
\end{equation*}
$$

Maximum Likelihood on a Gaussian

Then, using the log!!!

$$
\begin{equation*}
\ln L\left(\omega_{i}\right)=-\frac{n}{2} \ln \left|\Sigma_{i}\right|-\frac{1}{2}\left[\sum_{j=1}^{n}\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T} \Sigma_{i}^{-1}\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)\right]+c_{2} \tag{26}
\end{equation*}
$$

We know that

$$
\begin{equation*}
\frac{d \boldsymbol{x}^{T} A \boldsymbol{x}}{d \boldsymbol{x}}=A x+A^{T} x, \frac{d A \boldsymbol{x}}{d \boldsymbol{x}}=A \tag{27}
\end{equation*}
$$

Thus, we expand equation26

$$
\begin{equation*}
-\frac{n}{2} \ln \left|\Sigma_{i}\right|-\frac{1}{2} \sum_{j=1}^{n}\left[\boldsymbol{x}_{j}^{T} \Sigma_{i}^{-1} \boldsymbol{x}_{\boldsymbol{j}}-2 \boldsymbol{x}_{\boldsymbol{j}}^{T} \Sigma_{i}^{-1} \boldsymbol{\mu}_{i}+\boldsymbol{\mu}_{i}^{T} \Sigma_{i}^{-1} \boldsymbol{\mu}_{i}\right]+c_{2} \tag{28}
\end{equation*}
$$

Maximum Likelihood

Then

$$
\frac{\partial \ln L\left(\omega_{i}\right)}{\partial \boldsymbol{\mu}_{i}}=\sum_{j=1}^{n} \Sigma_{i}^{-1}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)=0
$$

Maximum Likelihood

Then

$$
\begin{aligned}
\frac{\partial \ln L\left(\omega_{i}\right)}{\partial \boldsymbol{\mu}_{i}} & =\sum_{j=1}^{n} \Sigma_{i}^{-1}\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)=0 \\
n \Sigma_{i}^{-1}\left[-\boldsymbol{\mu}_{i}+\frac{1}{n} \sum_{j=1}^{n} \boldsymbol{x}_{j}\right] & =0
\end{aligned}
$$

Maximum Likelihood

Then

$$
\begin{aligned}
\frac{\partial \ln L\left(\omega_{i}\right)}{\partial \boldsymbol{\mu}_{i}} & =\sum_{j=1}^{n} \Sigma_{i}^{-1}\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{i}\right)=0 \\
n \Sigma_{i}^{-1}\left[-\boldsymbol{\mu}_{i}+\frac{1}{n} \sum_{j=1}^{n} \boldsymbol{x}_{j}\right] & =0 \\
\hat{\boldsymbol{\mu}}_{i} & =\frac{1}{n} \sum_{j=1}^{n} \boldsymbol{x}_{j}
\end{aligned}
$$

Maximum Likelihood

Then, we derive with respect to Σ_{i}
For this we use the following tricks:
(1) $\frac{\partial \log |\Sigma|}{\partial \Sigma^{-1}}=-\frac{1}{|\Sigma|} \cdot|\Sigma|(\Sigma)^{T}=-\Sigma$
(2) $\frac{\partial \operatorname{Tr}[A B]}{\partial A}=\frac{\partial \operatorname{Tr}[B A]}{\partial A}=B^{T}$
(3) Trace(of a number)=the number
(9) $\operatorname{Tr}\left(A^{T} B\right)=\operatorname{Tr}\left(B A^{T}\right)$

Thus

$$
\begin{equation*}
f\left(\Sigma_{i}\right)=-\frac{n}{2} \ln \left|\Sigma_{I}\right|-\frac{1}{2} \sum_{j=1}^{n}\left[\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T} \Sigma_{i}^{-1}\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)\right]+c_{1} \tag{29}
\end{equation*}
$$

Maximum Likelihood

Thus

$$
f\left(\Sigma_{i}\right)=-\frac{n}{2} \ln \left|\Sigma_{i}\right|-\frac{1}{2} \sum_{j=1}^{n}\left[\operatorname{Trace}\left\{\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T} \Sigma_{i}^{-1}\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)\right\}\right]+c_{1}
$$

Maximum Likelihood

Thus

$$
\begin{equation*}
f\left(\Sigma_{i}\right)=-\frac{n}{2} \ln \left|\Sigma_{i}\right|-\frac{1}{2} \sum_{j=1}^{n}\left[\operatorname{Trace}\left\{\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{i}\right)^{T} \Sigma_{i}^{-1}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)\right\}\right]+c_{1} \tag{30}
\end{equation*}
$$

Tricks!!!

$$
\begin{equation*}
f\left(\Sigma_{i}\right)=-\frac{n}{2} \ln \left|\Sigma_{i}\right|-\frac{1}{2} \sum_{j=1}^{n}\left[\operatorname{Trace}\left\{\Sigma_{i}^{-1}\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{i}\right)^{T}\right\}\right]+c_{1} \tag{31}
\end{equation*}
$$

Maximum Likelihood

Derivative with respect to Σ

$$
\begin{equation*}
\frac{\partial f\left(\Sigma_{i}\right)}{\partial \Sigma_{i}}=\frac{n}{2} \Sigma_{i}-\frac{1}{2} \sum_{j=1}^{n}\left[\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T}\right]^{T} \tag{32}
\end{equation*}
$$

Maximum Likelihood

Derivative with respect to Σ

$$
\begin{equation*}
\frac{\partial f\left(\Sigma_{i}\right)}{\partial \Sigma_{i}}=\frac{n}{2} \Sigma_{i}-\frac{1}{2} \sum_{j=1}^{n}\left[\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T}\right]^{T} \tag{32}
\end{equation*}
$$

Thus, when making it equal to zero

$$
\begin{equation*}
\hat{\Sigma}_{i}=\frac{1}{n} \sum_{j=1}^{n}\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)\left(\boldsymbol{x}_{\boldsymbol{j}}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T} \tag{33}
\end{equation*}
$$

Therefore

Step 1 - Assume a Gaussian Distribution over each class

- The So Called Model Selection

Therefore

Step 1 - Assume a Gaussian Distribution over each class

- The So Called Model Selection

Step 2

- Adjust the Gaussian Distribution, for each class, using the previous Maximum Likelihood

Therefore

Step 1 - Assume a Gaussian Distribution over each class

- The So Called Model Selection

Step 2

- Adjust the Gaussian Distribution, for each class, using the previous Maximum Likelihood

Step 3

$$
\begin{aligned}
& R_{1}: P\left(\omega_{1} \mid x\right)>P\left(\omega_{2} \mid x\right) \\
& R_{2}: P\left(\omega_{2} \mid x\right)>P\left(\omega_{1} \mid x\right)
\end{aligned}
$$

Outline

Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- ExamplesThe Naive Bayes Model
- The Multi-Class Case
(2) Discriminant Functions and Decision Surfaces
- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

3 Introduction

- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP

4 Exercises

- Some Stuff you can try

In the case of Bayesian Model

We have

$$
P\left(Y_{n}=i \mid \boldsymbol{x}_{n}\right)=\frac{P\left(\boldsymbol{x}_{n} \mid Y_{n}=i\right) P\left(Y_{n}=i\right)}{P\left(\boldsymbol{x}_{n}\right)}
$$

In the case of Bayesian Model

We have

$$
P\left(Y_{n}=i \mid \boldsymbol{x}_{n}\right)=\frac{P\left(\boldsymbol{x}_{n} \mid Y_{n}=i\right) P\left(Y_{n}=i\right)}{P\left(\boldsymbol{x}_{n}\right)}
$$

In the Generative Model

- We model two distribution $P\left(\boldsymbol{x}_{n} \mid Y_{n}=1\right)$ and $P\left(Y_{n}=i\right)$

In the case of Bayesian Model

We have

$$
P\left(Y_{n}=i \mid \boldsymbol{x}_{n}\right)=\frac{P\left(\boldsymbol{x}_{n} \mid Y_{n}=i\right) P\left(Y_{n}=i\right)}{P\left(\boldsymbol{x}_{n}\right)}
$$

In the Generative Model

- We model two distribution $P\left(\boldsymbol{x}_{n} \mid Y_{n}=1\right)$ and $P\left(Y_{n}=i\right)$

In the Discriminative Model

- We model a single distribution $P\left(Y_{n}=i\right)$

Therefore

We have

- In the Generative Model, we discover the distribution from X and Y

Therefore

We have

- In the Generative Model, we discover the distribution from X and Y

Therefore

Although discriminative models tend to be faster and less complex, they cannot model the joint $P(X, Y)$.

Therefore

We have

- In the Generative Model, we discover the distribution from X and Y

Therefore

Although discriminative models tend to be faster and less complex, they cannot model the joint $P(X, Y)$.

Thus

- We have a decision problem
- Do we want to know the joint distribution?

Outline

Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- ExamplesThe Naive Bayes Model
- The Multi-Class Case

2 Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

Introduction

- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP

4 Exercises

- Some Stuff you can try

Introduction

We go back to the Bayesian Rule

$$
\begin{equation*}
p(\Theta \mid \mathcal{X})=\frac{p(\mathcal{X} \mid \Theta) p(\Theta)}{p(\mathcal{X})} \tag{34}
\end{equation*}
$$

Introduction

We go back to the Bayesian Rule

$$
\begin{equation*}
p(\Theta \mid \mathcal{X})=\frac{p(\mathcal{X} \mid \Theta) p(\Theta)}{p(\mathcal{X})} \tag{34}
\end{equation*}
$$

We now seek that value for Θ, called $\widehat{\Theta}_{M A P}$
It allows to maximize the posterior $p(\Theta \mid \mathcal{X})$

Development of the solution

We look to maximize $\widehat{\Theta}_{M A P}$

$$
\widehat{\Theta}_{M A P}=\underset{\Theta}{\operatorname{argmax}}(\Theta \mid \mathcal{X})
$$

Development of the solution

We look to maximize $\widehat{\Theta}_{M A P}$

$$
\begin{aligned}
\widehat{\Theta}_{M A P} & =\underset{\Theta}{\operatorname{argmax}} p(\Theta \mid \mathcal{X}) \\
& =\underset{\Theta}{\operatorname{argmax}} \frac{p(\mathcal{X} \mid \Theta) p(\Theta)}{P(\mathcal{X})}
\end{aligned}
$$

Development of the solution

We look to maximize $\widehat{\Theta}_{M A P}$

$$
\begin{aligned}
\widehat{\Theta}_{M A P} & =\underset{\Theta}{\operatorname{argmax}} p(\Theta \mid \mathcal{X}) \\
& =\underset{\Theta}{\operatorname{argmax}} \frac{p(\mathcal{X} \mid \Theta) p(\Theta)}{P(\mathcal{X})} \\
& \approx \underset{\Theta}{\operatorname{argmaxp}}(\mathcal{X} \mid \Theta) p(\Theta)
\end{aligned}
$$

Development of the solution

We look to maximize $\widehat{\Theta}_{M A P}$

$$
\begin{aligned}
\widehat{\Theta}_{M A P} & =\underset{\Theta}{\operatorname{argmax}} p(\Theta \mid \mathcal{X}) \\
& =\underset{\Theta}{\operatorname{argmax}} \frac{p(\mathcal{X} \mid \Theta) p(\Theta)}{P(\mathcal{X})} \\
& \approx \underset{\Theta}{\operatorname{argmax}} p(\mathcal{X} \mid \Theta) p(\Theta) \\
& =\underset{\Theta}{\operatorname{argmax}} \prod_{x_{i} \in \mathcal{X}} p\left(x_{i} \mid \Theta\right) p(\Theta)
\end{aligned}
$$

Development of the solution

We look to maximize $\widehat{\Theta}_{M A P}$

$$
\begin{aligned}
\widehat{\Theta}_{M A P} & =\underset{\Theta}{\operatorname{argmax}} p(\Theta \mid \mathcal{X}) \\
& =\underset{\Theta}{\operatorname{argmax}} \frac{p(\mathcal{X} \mid \Theta) p(\Theta)}{P(\mathcal{X})} \\
& \approx \underset{\Theta}{\operatorname{argmax}} p(\mathcal{X} \mid \Theta) p(\Theta) \\
& =\underset{\Theta}{\operatorname{argmax}} \prod_{x_{i} \in \mathcal{X}} p\left(x_{i} \mid \Theta\right) p(\Theta)
\end{aligned}
$$

$P(\mathcal{X})$ can be removed because it has no functional relation with Θ.

We can make this easier

Use logarithms

$$
\begin{equation*}
\widehat{\Theta}_{M A P}=\underset{\Theta}{\operatorname{argmax}}\left[\sum_{x_{i} \in \mathcal{X}} \log p\left(x_{i} \mid \Theta\right)+\log p(\Theta)\right] \tag{35}
\end{equation*}
$$

Outline

Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- ExamplesThe Naive Bayes Model
- The Multi-Class Case

2) Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

Introduction

- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP
(4) Exercises
- Some Stuff you can try

What can we do?

We can specify a distribution
Then, learn the parameters

What can we do?

We can specify a distribution
Then, learn the parameters

Remember the Bayesian Rule

$$
\begin{equation*}
p(\Theta \mid \mathcal{X})=\frac{p(\mathcal{X} \mid \Theta) p(\Theta)}{p(\mathcal{X})} \tag{36}
\end{equation*}
$$

What can we do?

We can specify a distribution

Then, learn the parameters

Remember the Bayesian Rule

$$
\begin{equation*}
p(\Theta \mid \mathcal{X})=\frac{p(\mathcal{X} \mid \Theta) p(\Theta)}{p(\mathcal{X})} \tag{36}
\end{equation*}
$$

We seek that value for Θ, called $\widehat{\Theta}_{M A P}$

It allows to maximize the posterior $p(\Theta \mid \mathcal{X})$

Therefore

We can use this idea of maximizing the posterior
To obtain the distribution through the Maximum a Posteriori

Development of the solution

We look to maximize $\widehat{\Theta}_{M A P}$

$$
\widehat{\Theta}_{M A P}=\underset{\Theta}{\operatorname{argmax}}(\Theta \mid \mathcal{X})
$$

Development of the solution

We look to maximize $\widehat{\Theta}_{M A P}$

$$
\begin{aligned}
\widehat{\Theta}_{M A P} & =\underset{\Theta}{\operatorname{argmax}} p(\Theta \mid \mathcal{X}) \\
& =\underset{\Theta}{\operatorname{argmax}} \frac{p(\mathcal{X} \mid \Theta) p(\Theta)}{P(\mathcal{X})}
\end{aligned}
$$

Development of the solution

We look to maximize $\widehat{\Theta}_{M A P}$

$$
\begin{aligned}
\widehat{\Theta}_{M A P} & =\underset{\Theta}{\operatorname{argmax}} p(\Theta \mid \mathcal{X}) \\
& =\underset{\Theta}{\operatorname{argmax}} \frac{p(\mathcal{X} \mid \Theta) p(\Theta)}{P(\mathcal{X})} \\
& \approx \underset{\Theta}{\operatorname{argmaxp}}(\mathcal{X} \mid \Theta) p(\Theta)
\end{aligned}
$$

Development of the solution

We look to maximize $\widehat{\Theta}_{M A P}$

$$
\begin{aligned}
\widehat{\Theta}_{M A P} & =\underset{\Theta}{\operatorname{argmax}} p(\Theta \mid \mathcal{X}) \\
& =\underset{\Theta}{\operatorname{argmax}} \frac{p(\mathcal{X} \mid \Theta) p(\Theta)}{P(\mathcal{X})} \\
& \approx \underset{\Theta}{\operatorname{argmax}} p(\mathcal{X} \mid \Theta) p(\Theta) \\
& =\underset{\Theta}{\operatorname{argmax}} \prod_{x_{i} \in \mathcal{X}} p\left(x_{i} \mid \Theta\right) p(\Theta)
\end{aligned}
$$

Development of the solution

We look to maximize $\widehat{\Theta}_{M A P}$

$$
\begin{aligned}
\widehat{\Theta}_{M A P} & =\underset{\Theta}{\operatorname{argmax}} p(\Theta \mid \mathcal{X}) \\
& =\underset{\Theta}{\operatorname{argmax}} \frac{p(\mathcal{X} \mid \Theta) p(\Theta)}{P(\mathcal{X})} \\
& \approx \underset{\Theta}{\operatorname{argmax}} p(\mathcal{X} \mid \Theta) p(\Theta) \\
& =\underset{\Theta}{\operatorname{argmax}} \prod_{x_{i} \in \mathcal{X}} p\left(x_{i} \mid \Theta\right) p(\Theta)
\end{aligned}
$$

$P(\mathcal{X})$ can be removed because it has no functional relation with Θ.

We can make this easier

Use logarithms

$$
\begin{equation*}
\widehat{\Theta}_{M A P}=\underset{\Theta}{\operatorname{argmax}}\left[\sum_{x_{i} \in \mathcal{X}} \log p\left(x_{i} \mid \Theta\right)+\log p(\Theta)\right] \tag{37}
\end{equation*}
$$

What Does the MAP Estimate Get?

Something Notable

The MAP estimate allows us to inject into the estimation calculation our prior beliefs regarding the parameters values in Θ.

What Does the MAP Estimate Get?

Something Notable

The MAP estimate allows us to inject into the estimation calculation our prior beliefs regarding the parameters values in Θ.

For example

Let's conduct N independent trials of the following Bernoulli experiment with q parameter:

What Does the MAP Estimate Get?

Something Notable

The MAP estimate allows us to inject into the estimation calculation our prior beliefs regarding the parameters values in Θ.

For example

Let's conduct N independent trials of the following Bernoulli experiment with q parameter:

- We will ask each individual we run into in the hallway whether they will vote PRI or PAN in the next presidential election.

What Does the MAP Estimate Get?

Something Notable

The MAP estimate allows us to inject into the estimation calculation our prior beliefs regarding the parameters values in Θ.

For example

Let's conduct N independent trials of the following Bernoulli experiment with q parameter:

- We will ask each individual we run into in the hallway whether they will vote PRI or PAN in the next presidential election.

With probability q to vote PRI

Where the values of x_{i} is either PRI or PAN.

First the Maximum Likelihood Estimate

Samples

$$
\mathcal{X}=\left\{x_{i}=\left\{\begin{array}{ll}
P A N \tag{38}\\
P R I
\end{array} \quad i=1, \ldots, N\right\}\right.
$$

First the Maximum Likelihood Estimate

Samples

$$
\mathcal{X}=\left\{x_{i}=\left\{\begin{array}{ll}
P A N \tag{38}\\
P R I
\end{array} \quad i=1, \ldots, N\right\}\right.
$$

The log likelihood function

$$
\log p(\mathcal{X} \mid q)=\sum_{i=1}^{N} \log p\left(x_{i} \mid q\right)
$$

First the Maximum Likelihood Estimate

Samples

$$
\mathcal{X}=\left\{x_{i}=\left\{\begin{array}{ll}
P A N \tag{38}\\
P R I
\end{array} \quad i=1, \ldots, N\right\}\right.
$$

The log likelihood function

$$
\begin{aligned}
\log p(\mathcal{X} \mid q)= & \sum_{i=1}^{N} \log p\left(x_{i} \mid q\right) \\
= & \sum_{i} \log p\left(x_{i}=P R I \mid q\right)+\ldots \\
& \sum_{i} \log p\left(x_{i}=P A N \mid 1-q\right)
\end{aligned}
$$

First the Maximum Likelihood Estimate

Samples

$$
\mathcal{X}=\left\{x_{i}=\left\{\begin{array}{ll}
P A N \tag{38}\\
P R I
\end{array} \quad i=1, \ldots, N\right\}\right.
$$

The log likelihood function

$$
\begin{aligned}
\log p(\mathcal{X} \mid q)= & \sum_{i=1}^{N} \log p\left(x_{i} \mid q\right) \\
= & \sum_{i} \log p\left(x_{i}=P R I \mid q\right)+\ldots \\
& \sum_{i} \log p\left(x_{i}=P A N \mid 1-q\right) \\
= & n_{P R I} \log (q)+\left(N-n_{P R I}\right) \log (1-q)
\end{aligned}
$$

First the Maximum Likelihood Estimate

Samples

$$
\mathcal{X}=\left\{x_{i}=\left\{\begin{array}{ll}
P A N \tag{38}\\
P R I
\end{array} \quad i=1, \ldots, N\right\}\right.
$$

The log likelihood function

$$
\begin{aligned}
\log p(\mathcal{X} \mid q)= & \sum_{i=1}^{N} \log p\left(x_{i} \mid q\right) \\
= & \sum_{i} \log p\left(x_{i}=P R I \mid q\right)+\ldots \\
& \sum_{i} \log p\left(x_{i}=P A N \mid 1-q\right) \\
= & n_{P R I} \log (q)+\left(N-n_{P R I}\right) \log (1-q)
\end{aligned}
$$

Where $n_{P R I}$ are the numbers of individuals who are planning to vote PRI this fall

We use our classic tricks

By setting

$$
\begin{equation*}
\mathcal{L}=\log p(\mathcal{X} \mid q) \tag{39}
\end{equation*}
$$

We use our classic tricks

By setting

$$
\begin{equation*}
\mathcal{L}=\log p(\mathcal{X} \mid q) \tag{39}
\end{equation*}
$$

We have that

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial q}=0 \tag{40}
\end{equation*}
$$

We use our classic tricks

By setting

$$
\begin{equation*}
\mathcal{L}=\log p(\mathcal{X} \mid q) \tag{39}
\end{equation*}
$$

We have that

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial q}=0 \tag{40}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{n_{P R I}}{q}-\frac{\left(N-n_{P R I}\right)}{(1-q)}=0 \tag{41}
\end{equation*}
$$

Final Solution of ML

We get

$$
\begin{equation*}
\widehat{q}_{P R I}=\frac{n_{P R I}}{N} \tag{42}
\end{equation*}
$$

Final Solution of ML

We get

$$
\begin{equation*}
\widehat{q}_{P R I}=\frac{n_{P R I}}{N} \tag{42}
\end{equation*}
$$

Thus
If we say that $N=20$ and if 12 are going to vote PRI, we get $\widehat{q}_{P R I}=0.6$.

Building the MAP estimate

Obviously we need a prior belief distribution

We have the following constraints:

Building the MAP estimate

Obviously we need a prior belief distribution

We have the following constraints:

- The prior for q must be zero outside the $[0,1]$ interval.

Building the MAP estimate

Obviously we need a prior belief distribution

We have the following constraints:

- The prior for q must be zero outside the $[0,1]$ interval.
- Within the $[0,1]$ interval, we are free to specify our beliefs in any way we wish.

Building the MAP estimate

Obviously we need a prior belief distribution

We have the following constraints:

- The prior for q must be zero outside the $[0,1]$ interval.
- Within the $[0,1]$ interval, we are free to specify our beliefs in any way we wish.
- In most cases, we would want to choose a distribution for the prior beliefs that peaks somewhere in the $[0,1]$ interval.

Building the MAP estimate

Obviously we need a prior belief distribution

We have the following constraints:

- The prior for q must be zero outside the $[0,1]$ interval.
- Within the $[0,1]$ interval, we are free to specify our beliefs in any way we wish.
- In most cases, we would want to choose a distribution for the prior beliefs that peaks somewhere in the $[0,1]$ interval.

We assume the following

- The state of Colima has traditionally voted PRI in presidential elections.
- However, on account of the prevailing economic conditions, the voters are more likely to vote PAN in the election in question.

What prior distribution can we use?

We could use a Beta distribution being parametrized by two values α and β

$$
\begin{equation*}
p(q)=\frac{1}{B(\alpha, \beta)} q^{\alpha-1}(1-q)^{\beta-1} \tag{43}
\end{equation*}
$$

What prior distribution can we use?

We could use a Beta distribution being parametrized by two values α and β

$$
\begin{equation*}
p(q)=\frac{1}{B(\alpha, \beta)} q^{\alpha-1}(1-q)^{\beta-1} . \tag{43}
\end{equation*}
$$

Where

We have $B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$ is the beta function where Γ is the generalization of the notion of factorial in the case of the real numbers.

What prior distribution can we use?

We could use a Beta distribution being parametrized by two values α and β

$$
\begin{equation*}
p(q)=\frac{1}{B(\alpha, \beta)} q^{\alpha-1}(1-q)^{\beta-1} . \tag{43}
\end{equation*}
$$

Where

We have $B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$ is the beta function where Γ is the generalization of the notion of factorial in the case of the real numbers.

Properties

When both the $\alpha, \beta>0$ then the beta distribution has its mode (Maximum value) at

$$
\frac{\alpha-1}{\alpha+\beta-2} .
$$

We then do the following

We do the following
We can choose $\alpha=\beta$ so the beta prior peaks at 0.5 .

We then do the following

We do the following

We can choose $\alpha=\beta$ so the beta prior peaks at 0.5 .

As a further expression of our belief
We make the following choice $\alpha=\beta=5$.

We then do the following

We do the following

We can choose $\alpha=\beta$ so the beta prior peaks at 0.5 .

As a further expression of our belief
We make the following choice $\alpha=\beta=5$.

Why? Look at the variance of the beta distribution

$$
\begin{equation*}
\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)} . \tag{45}
\end{equation*}
$$

Thus, we have the following nice properties

We have a variance with $\alpha=\beta=5$
$\operatorname{Var}(q) \approx 0.025$

Thus, we have the following nice properties

We have a variance with $\alpha=\beta=5$
$\operatorname{Var}(q) \approx 0.025$
Thus, the standard deviation
$s d \approx 0.16$ which is a nice dispersion at the peak point!!!

Now, our MAP estimate for $\widehat{p}_{M A P} \ldots$

We have then

$$
\begin{equation*}
\widehat{p}_{M A P}=\underset{\Theta}{\operatorname{argmax}}\left[\sum_{x_{i} \in \mathcal{X}} \log p\left(x_{i} \mid q\right)+\log p(q)\right] \tag{46}
\end{equation*}
$$

Now, our MAP estimate for $\widehat{p}_{M A P} \ldots$

We have then

$$
\begin{equation*}
\widehat{p}_{M A P}=\underset{\Theta}{\operatorname{argmax}}\left[\sum_{x_{i} \in \mathcal{X}} \log p\left(x_{i} \mid q\right)+\log p(q)\right] \tag{46}
\end{equation*}
$$

Plugging back the ML

$$
\begin{equation*}
\widehat{p}_{M A P}=\underset{\Theta}{\operatorname{argmax}}\left[n_{P R I} \log q+\left(N-n_{P R I}\right) \log (1-q)+\log p(q)\right] \tag{47}
\end{equation*}
$$

Now, our MAP estimate for $\widehat{p}_{M A P} \ldots$

We have then

$$
\widehat{p}_{M A P}=\underset{\Theta}{\operatorname{argmax}}\left[\sum_{x_{i} \in \mathcal{X}} \log p\left(x_{i} \mid q\right)+\log p(q)\right]
$$

Plugging back the ML

$$
\begin{equation*}
\widehat{p}_{M A P}=\underset{\Theta}{\operatorname{argmax}}\left[n_{P R I} \log q+\left(N-n_{P R I}\right) \log (1-q)+\log p(q)\right] \tag{47}
\end{equation*}
$$

Where

$$
\begin{equation*}
\log p(q)=\log \left(\frac{1}{B(\alpha, \beta)} q^{\alpha-1}(1-q)^{\beta-1}\right) \tag{48}
\end{equation*}
$$

The log of $p(q)$

We have that

$$
\begin{equation*}
\log p(q)=(\alpha-1) \log q+(\beta-1) \log (1-q)-\log B(\alpha, \beta) \tag{49}
\end{equation*}
$$

The log of $p(q)$

We have that

$$
\begin{equation*}
\log p(q)=(\alpha-1) \log q+(\beta-1) \log (1-q)-\log B(\alpha, \beta) \tag{49}
\end{equation*}
$$

Now taking the derivative with respect to p, we get

$$
\begin{equation*}
\frac{n_{P R I}}{q}-\frac{\left(N-n_{P R I}\right)}{(1-q)}-\frac{\beta-1}{1-q}+\frac{\alpha-1}{q}=0 \tag{50}
\end{equation*}
$$

The log of $p(q)$

We have that

$$
\begin{equation*}
\log p(q)=(\alpha-1) \log q+(\beta-1) \log (1-q)-\log B(\alpha, \beta) \tag{49}
\end{equation*}
$$

Now taking the derivative with respect to p, we get

$$
\begin{equation*}
\frac{n_{P R I}}{q}-\frac{\left(N-n_{P R I}\right)}{(1-q)}-\frac{\beta-1}{1-q}+\frac{\alpha-1}{q}=0 \tag{50}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\widehat{q}_{M A P}=\frac{n_{P R I}+\alpha-1}{N+\alpha+\beta-2} \tag{51}
\end{equation*}
$$

Now

With $N=20$ with $n_{P R I}=12$ and $\alpha=\beta=5$
$\widehat{q}_{M A P}=0.571$

Outline

Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- ExamplesThe Naive Bayes Model- The Multi-Class Case

2 Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

Introduction

- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP

4 Exercises

- Some Stuff you can try

Properties

First

MAP estimation "pulls" the estimate toward the prior.

Properties

First

MAP estimation "pulls" the estimate toward the prior.

Second

The more focused our prior belief, the larger the pull toward the prior.

Properties

First

MAP estimation "pulls" the estimate toward the prior.

Second

The more focused our prior belief, the larger the pull toward the prior.

```
Example
If }\alpha=\beta=\mathrm{ equal to large value
```

- It will make the MAP estimate to move closer to the prior.

Properties

Third

In the expression we derived for $\widehat{q}_{M A P}$, the parameters α and β play a "smoothing" role vis-a-vis the measurement $n_{P R I}$.

Properties

Third

In the expression we derived for $\widehat{q}_{M A P}$, the parameters α and β play a "smoothing" role vis-a-vis the measurement $n_{P R I}$.

Fourth

Since we referred to q as the parameter to be estimated, we can refer to α and β as the hyper-parameters in the estimation calculations.

Basically the MAP

It is using the power of Likelihood \times Prior to obtain more information from the data

Beyond simple derivation

In the previous technique
We took an logarithm of the likelihood \times the prior to obtain a function that can be derived in order to obtain each of the parameters to be estimated.

Beyond simple derivation

In the previous technique
We took an logarithm of the likelihood \times the prior to obtain a function that can be derived in order to obtain each of the parameters to be estimated.

What if we cannot derive the likelihood \times the prior?

For example when we have something like $\left|\theta_{i}\right|$.

Beyond simple derivation

In the previous technique
We took an logarithm of the likelihood \times the prior to obtain a function that can be derived in order to obtain each of the parameters to be estimated.

What if we cannot derive the likelihood \times the prior?

For example when we have something like $\left|\theta_{i}\right|$.
We can try the following
$E M+M A P$ to be able to estimate the sought parameters.

Outline

1) Introduction

- Supervised Learning
- Handling Noise in Classification
- Models of Classification
- Naive Bayes
- Examples
- The Naive Bayes Model
- The Multi-Class Case

2 Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

3 Introduction

- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP
(4) Exercises
- Some Stuff you can try

Exercises

Duda and Hart
 Chapter 3
 - 3.1, 3.2, 3.3, 3.13

Exercises

Duda and Hart

Chapter 3

- 3.1, 3.2, 3.3, 3.13

Theodoridis
Chapter 2

- 2.5, 2.7, 2.10, 2.12, 2.14, 2.17

