Introduction to Machine Learning Logistic Regression

Andres Mendez-Vazquez

May 30, 2020

Outline

1 Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
 - The Two Class Case
 - The Final Log-Likelihood
 - The Newton-Raphson Algorithm
 - Matrix Notation

2 More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method

Quasi-Newton Method

- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

Outline

Introduction

- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
 - The Two Class Case
 - The Final Log-Likelihood
 - The Newton-Raphson Algorithm
 - Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method
- Quasi-Newton Method
 - The Second Order Approximation
 - The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

Assume the following

Let $Y_1, Y_2, ..., Y_N$ independent random variables

Taking values in the set $\{0,1\}$

Now, you have a set of fixed vectors

 $oldsymbol{x}_1,oldsymbol{x}_2,...,oldsymbol{x}_N$

Mapped to a series of numbers by a weight vector $oldsymbol{w}$

 $oldsymbol{w}^Toldsymbol{x}_1,oldsymbol{w}^Toldsymbol{x}_2,...,oldsymbol{w}^Toldsymbol{x}_N$

Assume the following

Let $Y_1, Y_2, ..., Y_N$ independent random variables

Taking values in the set $\{0,1\}$

Now, you have a set of fixed vectors

 $oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N$

Mapped to a series of numbers by a weight vector w

 $\boldsymbol{w}^T \boldsymbol{x}_1, \boldsymbol{w}^T \boldsymbol{x}_2, ..., \boldsymbol{w}^T \boldsymbol{x}_N$

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 0 Q @ 4/86

Assume the following

Let $Y_1, Y_2, ..., Y_N$ independent random variables

Taking values in the set $\{0,1\}$

Now, you have a set of fixed vectors

 $oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N$

Mapped to a series of numbers by a weight vector \boldsymbol{w}

 $\boldsymbol{w}^T \boldsymbol{x}_1, \boldsymbol{w}^T \boldsymbol{x}_2, ..., \boldsymbol{w}^T \boldsymbol{x}_N$

In our simplest from [1, 2]

There is a suspected relation

Between $\theta_i = P(Y_i = 1)$ and $\boldsymbol{w}^T \boldsymbol{x}_i$

• Here Y is the random variable and y is the value that the random variable can take.

Thus we have

$$y = \begin{cases} 1 & \boldsymbol{w}^T \boldsymbol{x} + c > 0 \\ 0 & \text{else} \end{cases}$$

Note: Where e is an error with a certain distribution!!!

In our simplest from [1, 2]

There is a suspected relation

Between $\theta_i = P(Y_i = 1)$ and $\boldsymbol{w}^T \boldsymbol{x}_i$

• Here Y is the random variable and y is the value that the random variable can take.

Thus we have

$$y = \begin{cases} 1 & \boldsymbol{w}^T \boldsymbol{x} + e > 0 \\ 0 & \text{else} \end{cases}$$

Note: Where e is an error with a certain distribution!!!

For Example, Graphically

It is better to user a logit version

Logit Distribution

PDF with support $z \in (-\infty, \infty), \mu$ location and s scale

$$p(x|\mu, s) = \frac{\exp\left\{-\frac{z-\mu}{s}\right\}}{s\left(1 + \exp\left\{-\frac{z-\mu}{s}\right\}\right)^2}$$

With a CDF

Logit Distribution

PDF with support $z \in (-\infty, \infty)$, μ location and s scale

$$p(x|\mu, s) = \frac{\exp\left\{-\frac{z-\mu}{s}\right\}}{s\left(1 + \exp\left\{-\frac{z-\mu}{s}\right\}\right)^2}$$

With a CDF

$$P(Y < z) = \int_{-\infty}^{z} p(y|\mu, s) \, dy = \frac{1}{1 + \exp\left\{-\frac{z-\mu}{s}\right\}}$$

Outline

Introduction

Constraints

- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
 - The Two Class Case
 - The Final Log-Likelihood
 - The Newton-Raphson Algorithm
 - Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method
- Quasi-Newton Method
 - The Second Order Approximation
 - The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

In Bayesian Classification

Assignment of a pattern

It is performed by using the posterior probabilities, $P\left(\omega_{i}|\boldsymbol{x}\right)$

And given K classes, we want

$$\sum_{i=1}^{K} P\left(\omega_{i} | \boldsymbol{x}\right) = 1$$

Such that each

 $0 \le P\left(\omega_i | \boldsymbol{x}\right) \le 1$

<ロト < 回 ト < 巨 ト < 巨 ト 三 の Q (C 10 / 86

In Bayesian Classification

Assignment of a pattern

It is performed by using the posterior probabilities, $P\left(\omega_{i}|\boldsymbol{x}
ight)$

And given K classes, we want

$$\sum_{i=1}^{K} P\left(\omega_i | \boldsymbol{x}\right) = 1$$

Such that each

 $0 \le P\left(\omega_i | \boldsymbol{x}\right) \le 1$

<ロト < 回 ト < 巨 ト < 巨 ト 三 の < C 10 / 86

In Bayesian Classification

Assignment of a pattern

It is performed by using the posterior probabilities, $P\left(\omega_{i}|\boldsymbol{x}\right)$

And given K classes, we want

$$\sum_{i=1}^{K} P\left(\omega_i | \boldsymbol{x}\right) = 1$$

Such that each

$$0 \le P\left(\omega_i | \boldsymbol{x}\right) \le 1$$

<ロト < 回 > < 臣 > < 臣 > 三 の Q (C 10 / 86

Observation

This is a typical example of the discriminative approach

- Where the distribution of data is of no interest.
 - ▶ In the Logistic Regression the Distribution is imposed over the output!!!

Outline

Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
 - The Two Class Case
 - The Final Log-Likelihood
 - The Newton-Raphson Algorithm
 - Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method

Quasi-Newton Method

- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

The Model

We have the following under the extended features

$$\log \frac{P\left(\omega_{1} | \boldsymbol{x}\right)}{P\left(\omega_{K} | \boldsymbol{x}\right)} = \boldsymbol{w}_{1}^{T} \boldsymbol{x}$$

The Model

We have the following under the extended features

$$\log \frac{P(\omega_1 | \boldsymbol{x})}{P(\omega_K | \boldsymbol{x})} = \boldsymbol{w}_1^T \boldsymbol{x}$$
$$\log \frac{P(\omega_2 | \boldsymbol{x})}{P(\omega_K | \boldsymbol{x})} = \boldsymbol{w}_2^T \boldsymbol{x}$$

::

The Model

We have the following under the extended features

$$\log \frac{P(\omega_1 | \boldsymbol{x})}{P(\omega_K | \boldsymbol{x})} = \boldsymbol{w}_1^T \boldsymbol{x}$$
$$\log \frac{P(\omega_2 | \boldsymbol{x})}{P(\omega_K | \boldsymbol{x})} = \boldsymbol{w}_2^T \boldsymbol{x}$$
$$\vdots$$
$$\vdots$$
$$\log \frac{P(\omega_{K-1} | \boldsymbol{x})}{P(\omega_K | \boldsymbol{x})} = \boldsymbol{w}_{K-1}^T \boldsymbol{x}$$

<ロ><回><一><一><一><一><一><一><一</td>13/86

Further

We have

The model is specified in terms of K-1 log-odds or logit transformations.

Although the model uses the last class as the denominator in the odds-ratios.

The choice of denominator is arbitrary

 However, because the estimates are equivariant under this choice.
 The action taken in a decision problem should not depend on transformation on the measurement used

Further

We have

The model is specified in terms of K-1 log-odds or logit transformations.

And

Although the model uses the last class as the denominator in the odds-ratios.

The choice of denominator is arbitrary

However, because the estimates are equivariant under this choice.
 The action taken in a decision problem should not depend on transformation on the measurement used

Further

We have

The model is specified in terms of K-1 log-odds or logit transformations.

And

Although the model uses the last class as the denominator in the odds-ratios.

The choice of denominator is arbitrary

- However, because the estimates are equivariant under this choice.
 - The action taken in a decision problem should not depend on transformation on the measurement used

How do we find the terms?

$$P\left(\omega_{1}|\boldsymbol{x}
ight),P\left(\omega_{2}|\boldsymbol{x}
ight),...,P\left(\omega_{K}|\boldsymbol{x}
ight)$$

It is possible to show that

We have that, for
$$l = 1, 2, ..., K - 1$$

$$\frac{P(\omega_l | \boldsymbol{x})}{P(\omega_K | \boldsymbol{x})} = \exp\left\{\boldsymbol{w}_l^T \boldsymbol{x}\right\}$$

It is possible to show that

We have that, for
$$l = 1, 2, ..., K - 1$$

$$rac{P\left(\omega_{l}|oldsymbol{x}
ight)}{P\left(\omega_{K}|oldsymbol{x}
ight)}=\exp\left\{oldsymbol{w}_{l}^{T}oldsymbol{x}
ight\}$$

Therefore

$$\sum_{l=1}^{K-1} \frac{P\left(\omega_{l} | \boldsymbol{x}\right)}{P\left(\omega_{K} | \boldsymbol{x}\right)} = \sum_{l=1}^{K-1} \exp\left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}$$

Thus

$rac{1-P\left(\omega_{K}|oldsymbol{x} ight)}{P\left(\omega_{K}|oldsymbol{x} ight)} = \sum_{l=1}^{K-1} \exp\left\{oldsymbol{w}_{l}^{T}oldsymbol{x} ight\}$

It is possible to show that

We have that, for
$$l = 1, 2, ..., K - 1$$

$$rac{P\left(\omega_{l}|oldsymbol{x}
ight)}{P\left(\omega_{K}|oldsymbol{x}
ight)}=\exp\left\{oldsymbol{w}_{l}^{T}oldsymbol{x}
ight\}$$

Therefore

$$\sum_{l=1}^{K-1} \frac{P\left(\omega_{l} | \boldsymbol{x}\right)}{P\left(\omega_{K} | \boldsymbol{x}\right)} = \sum_{l=1}^{K-1} \exp\left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}$$

Thus

$$\frac{1 - P\left(\omega_{K} | \boldsymbol{x}\right)}{P\left(\omega_{K} | \boldsymbol{x}\right)} = \sum_{l=1}^{K-1} \exp\left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}$$

Basically

We have, (Take a look a the board)

$$P\left(\omega_{K}|\boldsymbol{x}
ight) = rac{1}{1+\sum_{l=1}^{K-1}\exp\left\{\boldsymbol{w}_{l}^{T}\boldsymbol{x}
ight\}}$$

For i = 1, 2, ..., k - 1

$$P\left(\omega_{i}|oldsymbol{x}
ight)=rac{\exp\left\{oldsymbol{w}_{i}^{T}oldsymbol{x}
ight\}}{1+\sum_{l=1}^{K-1}\exp\left\{oldsymbol{w}_{l}^{T}oldsymbol{x}
ight\}}$$

Basically

We have, (Take a look a the board)

$$P\left(\omega_{K}|\boldsymbol{x}\right) = \frac{1}{1 + \sum_{l=1}^{K-1} \exp\left\{\boldsymbol{w}_{l}^{T}\boldsymbol{x}\right\}}$$

Then

$$\frac{P\left(\omega_{l} | \boldsymbol{x}\right)}{\frac{1}{1 + \sum_{l=1}^{K-1} \exp\left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}}} = \exp\left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}$$

For i = 1, 2, ..., k - 1

$$P\left(\omega_{i}|oldsymbol{x}
ight)=rac{\exp\left\{oldsymbol{w}_{i}^{T}oldsymbol{x}
ight\}}{1+\sum_{l=1}^{K-1}\exp\left\{oldsymbol{w}_{l}^{T}oldsymbol{x}
ight\}}$$

Basically

We have, (Take a look a the board)

$$P\left(\omega_{K}|\boldsymbol{x}\right) = \frac{1}{1 + \sum_{l=1}^{K-1} \exp\left\{\boldsymbol{w}_{l}^{T}\boldsymbol{x}\right\}}$$

Then

$$\frac{P\left(\omega_{i}|\boldsymbol{x}\right)}{\frac{1}{1+\sum_{l=1}^{K-1}\exp\left\{\boldsymbol{w}_{l}^{T}\boldsymbol{x}\right\}}}=\exp\left\{\boldsymbol{w}_{l}^{T}\boldsymbol{x}\right\}$$

For i = 1, 2, ..., k - 1

$$P\left(\omega_{i}|\boldsymbol{x}\right) = \frac{\exp\left\{\boldsymbol{w}_{i}^{T}\boldsymbol{x}\right\}}{1 + \sum_{l=1}^{K-1}\exp\left\{\boldsymbol{w}_{l}^{T}\boldsymbol{x}\right\}}$$

Additionally

For K

$$P\left(\omega_{K}|\boldsymbol{x}\right) = \frac{1}{1 + \sum_{l=1}^{K-1} \exp\left\{\boldsymbol{w}_{l}^{T}\boldsymbol{x}\right\}}$$

Easy to see

They sum to one.

Additionally

For K

$$P(\omega_K | \boldsymbol{x}) = \frac{1}{1 + \sum_{l=1}^{K-1} \exp\left\{\boldsymbol{w}_l^T \boldsymbol{x}\right\}}$$

Easy to see

They sum to one.

A Note in Notation

Given all these parameters, we summarized them

$$\Theta = \{ \boldsymbol{w}_1, \boldsymbol{w}_2, ..., \boldsymbol{w}_{K-1} \}$$

I heretore

$P(\omega_l | \boldsymbol{X} = \boldsymbol{x}) = p_l(\boldsymbol{x} | \Theta)$

A Note in Notation

Given all these parameters, we summarized them

$$\Theta = \{ \boldsymbol{w}_1, \boldsymbol{w}_2, ..., \boldsymbol{w}_{K-1} \}$$

Therefore

$$P(\omega_l | \boldsymbol{X} = \boldsymbol{x}) = p_l(\boldsymbol{x} | \Theta)$$

Outline

Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
 - The Two Class Case
 - The Final Log-Likelihood
 - The Newton-Raphson Algorithm
 - Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method
- Quasi-Newton Method
 - The Second Order Approximation
 - The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

In the two class case

We have

$$P_1\left(\omega_1|oldsymbol{x}
ight) = rac{\exp\left\{oldsymbol{w}^Toldsymbol{x}
ight\}}{1+\exp\left\{oldsymbol{w}^Toldsymbol{x}
ight\}} P_2\left(\omega_2|oldsymbol{x}
ight) = rac{1}{1+\exp\left\{oldsymbol{w}^Toldsymbol{x}
ight\}}$$

A similar model

$$P_1\left(\omega_1|oldsymbol{x}
ight) = rac{\exp\left\{-oldsymbol{w}^Toldsymbol{x}
ight\}}{1+\exp\left\{-oldsymbol{w}^Toldsymbol{x}
ight\}}
onumber \ P_2\left(\omega_2|oldsymbol{x}
ight) = rac{1}{1+\exp\left\{-oldsymbol{w}^Toldsymbol{x}
ight\}}$$

< □ > < □ > < □ > < ■ > < ≧ > < ≧ > < ≧ > ≧ の Q (~ 21/86

In the two class case

We have

$$P_1\left(\omega_1|oldsymbol{x}
ight) = rac{\exp\left\{oldsymbol{w}^Toldsymbol{x}
ight\}}{1+\exp\left\{oldsymbol{w}^Toldsymbol{x}
ight\}} P_2\left(\omega_2|oldsymbol{x}
ight) = rac{1}{1+\exp\left\{oldsymbol{w}^Toldsymbol{x}
ight\}}$$

A similar model

$$P_1(\omega_1|oldsymbol{x}) = rac{\exp\left\{-oldsymbol{w}^Toldsymbol{x}
ight\}}{1+\exp\left\{-oldsymbol{w}^Toldsymbol{x}
ight\}} P_2(\omega_2|oldsymbol{x}) = rac{1}{1+\exp\left\{-oldsymbol{w}^Toldsymbol{x}
ight\}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = つへ⊙

21 / 86

Outline

Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class

Graphic Interpretation

- Fitting The Model
 - The Two Class Case
 - The Final Log-Likelihood
 - The Newton-Raphson Algorithm
 - Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method

Quasi-Newton Method

- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

We have the following split

Then, we have the mapping to

Outline

Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation

Fitting The Model

- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method

Quasi-Newton Method

- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

A Classic application of Maximum Likelihood

Given a sequence of smaples iid

 $oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N$

We have the following pdf

 $p\left(oldsymbol{x}_{1},oldsymbol{x}_{2},...,oldsymbol{x}_{N}|\Theta
ight)=\prod_{i=1}^{N}p\left(x_{i}|\Theta
ight)$

<ロト < 回 ト < 巨 ト < 巨 ト ミ の < C 26 / 86

A Classic application of Maximum Likelihood

Given a sequence of smaples iid

 $oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N$

We have the following pdf

$$p(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N | \Theta) = \prod_{i=1}^N p(x_i | \Theta)$$

<ロ><回><一><日><日><日><日><日><日><日><日><日><日><日><日><10</td>26/86

Where $P\left(g=v|X\right)$ completely specify the conditional distribution

We have a multinomial distribution which under the log-likelihood of ${\cal N}$ observations:

$$\mathcal{L}(\Theta) = \log p \left(a_1, a_2, \dots, a_N \left[\Theta \right] = \log \left[\left[p_{\mathcal{H}} \left[a_1 \left[\theta \right] \right] = \right] \right] \log p_{\mathcal{H}} \left[a_1 \left[\theta \right] \right]$$

Where $P\left(g=v|X\right)$ completely specify the conditional distribution

We have a multinomial distribution which under the log-likelihood of ${\cal N}$ observations:

$$\mathcal{L}(\Theta) = \log p(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N | \Theta) =$$

g_i represent the class that x_i belongs.

$$_{i} = egin{cases} 1 & ext{if } \boldsymbol{x}_{i} \in ext{Class 1} \ 2 & ext{if } \boldsymbol{x}_{i} \in ext{Class 2} \end{cases}$$

Where $P\left(g=v|X\right)$ completely specify the conditional distribution

We have a multinomial distribution which under the log-likelihood of ${\cal N}$ observations:

$$\mathcal{L}(\Theta) = \log p(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N | \Theta) = \log \prod_{i=1}^N p_{g_i}(\boldsymbol{x}_i | \theta) =$$

Where g_i represent the class that x_i belongs.

$$\mathbf{y} = egin{cases} 1 & ext{if } \mathbf{x}_i \in ext{Class 1} \ 2 & ext{if } \mathbf{x}_i \in ext{Class 2} \end{cases}$$

Where P(g = v|X) completely specify the conditional distribution

We have a multinomial distribution which under the log-likelihood of ${\cal N}$ observations:

$$\mathcal{L}(\Theta) = \log p(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N | \Theta) = \log \prod_{i=1}^N p_{g_i}(\boldsymbol{x}_i | \theta) = \sum_{i=1}^N \log p_{g_i}(\boldsymbol{x}_i | \theta)$$

Where

 g_i represent the class that x_i belongs. $g_i = egin{cases} 1 & ext{if } x_i \in ext{Class 1} \ 2 & ext{if } x_i \in ext{Class 2} \end{cases}$

Where P(g = v|X) completely specify the conditional distribution

We have a multinomial distribution which under the log-likelihood of ${\cal N}$ observations:

$$\mathcal{L}(\Theta) = \log p(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N | \Theta) = \log \prod_{i=1}^N p_{g_i}(\boldsymbol{x}_i | \theta) = \sum_{i=1}^N \log p_{g_i}(\boldsymbol{x}_i | \theta)$$

Where

 g_i represent the class that x_i belongs.

$$g_i = egin{cases} 1 & ext{if } oldsymbol{x}_i \in ext{Class 1} \ 2 & ext{if } oldsymbol{x}_i \in ext{Class 2} \end{cases}$$

How do we integrate this into a Cost Function?

Clearly, we have two distributions

We need to represent the distributions into the functions $p_{g_i}(\boldsymbol{x}_i|\theta)$.

Why not to have all the distributions into this function

$$p_{g_i}(\boldsymbol{x}_i|\boldsymbol{\theta}) = \prod_{l=1}^{K-1} p(\boldsymbol{x}_i|\boldsymbol{w}_l)^{I\{\boldsymbol{x}_i \in \omega_l\}}$$

is easy with the two classes

Given that we have a binary situation!!!

How do we integrate this into a Cost Function?

Clearly, we have two distributions

We need to represent the distributions into the functions $p_{g_i}(\boldsymbol{x}_i|\theta)$.

Why not to have all the distributions into this function

$$p_{g_i}(\boldsymbol{x}_i|\boldsymbol{\theta}) = \prod_{l=1}^{K-1} p(\boldsymbol{x}_i|\boldsymbol{w}_l)^{I\{\boldsymbol{x}_i \in \omega_l\}}$$

is easy with the two classes

Given that we have a binary situation!!!

How do we integrate this into a Cost Function?

Clearly, we have two distributions

We need to represent the distributions into the functions $p_{g_i}(\boldsymbol{x}_i|\theta)$.

Why not to have all the distributions into this function

$$p_{g_i}(\boldsymbol{x}_i|\boldsymbol{\theta}) = \prod_{l=1}^{K-1} p(\boldsymbol{x}_i|\boldsymbol{w}_l)^{I\{\boldsymbol{x}_i \in \omega_l\}}$$

It is easy with the two classes

Given that we have a binary situation!!!

Outline

Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation

Fitting The Model

The Two Class Case

- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method

Quasi-Newton Method

- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

Given the two case

We have then a Bernoulli distribution

$$p_1 \left(\boldsymbol{x}_i | \boldsymbol{w} \right) = \left[\frac{\exp \left\{ \boldsymbol{w}^T \boldsymbol{x} \right\}}{1 + \exp \left\{ \boldsymbol{w}^T \boldsymbol{x} \right\}} \right]^{y_i}$$
$$p_2 \left(\boldsymbol{x}_i | \boldsymbol{w} \right) = \left[\frac{1}{1 + \exp \left\{ \boldsymbol{w}^T \boldsymbol{x} \right\}} \right]^{1 - y_i}$$

With

$$y_i = 1$$
 if $x_i \in \text{Class 1}$
 $y_i = 0$ if $x_i \in \text{Class 2}$

<ロト < 回 > < 直 > < 直 > < 直 > < 亘 > < 亘 > 30 / 86

Given the two case

We have then a Bernoulli distribution

$$p_1 \left(\boldsymbol{x}_i | \boldsymbol{w} \right) = \left[\frac{\exp \left\{ \boldsymbol{w}^T \boldsymbol{x} \right\}}{1 + \exp \left\{ \boldsymbol{w}^T \boldsymbol{x} \right\}} \right]^{y_i}$$
$$p_2 \left(\boldsymbol{x}_i | \boldsymbol{w} \right) = \left[\frac{1}{1 + \exp \left\{ \boldsymbol{w}^T \boldsymbol{x} \right\}} \right]^{1 - y_i}$$

With

$$y_i = 1$$
 if $x_i \in \text{Class 1}$
 $y_i = 0$ if $x_i \in \text{Class 2}$

Outline

Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation

Fitting The Model

The Two Class Case

• The Final Log-Likelihood

- The Newton-Raphson Algorithm
- Matrix Notation

2 More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method

Quasi-Newton Method

- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

We have the following

Cost Function

$$\mathcal{L}(\boldsymbol{w}) = \sum_{i=1}^{N} \{y_i \log p_1(\boldsymbol{x}_i | \boldsymbol{w}) + (1 - y_i) \log (1 - p_1(\boldsymbol{x}_i | \boldsymbol{w}))\}$$

After some reductions

$$\mathcal{L}\left(oldsymbol{w}
ight) = \sum_{i=1}^{N} \left\{ y_i oldsymbol{w}^T oldsymbol{x}_i - \log\left(1 + \exp\left\{oldsymbol{w}^T oldsymbol{x}_i
ight\}
ight)
ight\}$$

We have the following

Cost Function

$$\mathcal{L}(\boldsymbol{w}) = \sum_{i=1}^{N} \{y_i \log p_1(\boldsymbol{x}_i | \boldsymbol{w}) + (1 - y_i) \log (1 - p_1(\boldsymbol{x}_i | \boldsymbol{w}))\}$$

After some reductions

$$\mathcal{L}(\boldsymbol{w}) = \sum_{i=1}^{N} \left\{ y_i \boldsymbol{w}^T \boldsymbol{x}_i - \log \left(1 + \exp \left\{ \boldsymbol{w}^T \boldsymbol{x}_i \right\} \right) \right\}$$

Now, we derive and set it to zero

We have

$$\frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w}} = \sum_{i=1}^{N} \boldsymbol{x}_{i} \left(y_{i} - \frac{\exp\left\{ \boldsymbol{w}^{T} \boldsymbol{x}_{i} \right\}}{1 + \exp\left\{ \boldsymbol{w}^{T} \boldsymbol{x}_{i} \right\}} \right) = 0$$

Which are *d* + 1 equations nonlinear

$$\sum_{i=1}^{N} x_i \left(y_i - p\left(x_i | w \right) \right) = \begin{pmatrix} \sum_{i=1}^{N} 1 \times \left(y_i - \frac{\exp\{w^T x_i\}}{1 + \exp\{w^T x_i\}} \right) \\ \sum_{i=1}^{N} x_1^i \left(y_i - \frac{\exp\{w^T x_i\}}{1 + \exp\{w^T x_i\}} \right) \\ \sum_{i=1}^{N} x_2^i \left(y_i - \frac{\exp\{w^T x_i\}}{1 + \exp\{w^T x_i\}} \right) \\ \vdots \\ \sum_{i=1}^{N} x_d^i \left(y_i - \frac{\exp\{w^T x_i\}}{1 + \exp\{w^T x_i\}} \right) \end{pmatrix}$$

It is know as a scoring function.

Now, we derive and set it to zero

We have

$$\frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w}} = \sum_{i=1}^{N} \boldsymbol{x}_{i} \left(y_{i} - \frac{\exp\left\{ \boldsymbol{w}^{T} \boldsymbol{x}_{i} \right\}}{1 + \exp\left\{ \boldsymbol{w}^{T} \boldsymbol{x}_{i} \right\}} \right) = 0$$

Which are d + 1 equations nonlinear

$$\sum_{i=1}^{N} \boldsymbol{x}_{i} \left(y_{i} - p\left(\boldsymbol{x}_{i} | \boldsymbol{w} \right) \right) = \begin{pmatrix} \sum_{i=1}^{N} 1 \times \left(y_{i} - \frac{\exp\left\{\boldsymbol{w}^{T}\boldsymbol{x}_{i}\right\}}{1 + \exp\left\{\boldsymbol{w}^{T}\boldsymbol{x}_{i}\right\}} \right) \\ \sum_{i=1}^{N} \boldsymbol{x}_{i}^{i} \left(y_{i} - \frac{\exp\left\{\boldsymbol{w}^{T}\boldsymbol{x}_{i}\right\}}{1 + \exp\left\{\boldsymbol{w}^{T}\boldsymbol{x}_{i}\right\}} \right) \\ \sum_{i=1}^{N} x_{2}^{i} \left(y_{i} - \frac{\exp\left\{\boldsymbol{w}^{T}\boldsymbol{x}_{i}\right\}}{1 + \exp\left\{\boldsymbol{w}^{T}\boldsymbol{x}_{i}\right\}} \right) \\ \vdots \\ \sum_{i=1}^{N} x_{d}^{i} \left(y_{i} - \frac{\exp\left\{\boldsymbol{w}^{T}\boldsymbol{x}_{i}\right\}}{1 + \exp\left\{\boldsymbol{w}^{T}\boldsymbol{x}_{i}\right\}} \right) \end{pmatrix} = \mathbf{0}$$

It is know as a scoring function.

In other words you

- d+1 nonlinear equations in w.
 - For example, from the first equation:

$$\sum_{i=1}^{N} y_i = \sum_{i=1}^{N} p\left(\boldsymbol{x}_i | \boldsymbol{w}\right)$$

The expected number of class ones matches the observed number.
 And hence also class twos

In other words you

- d+1 nonlinear equations in w.
- **2** For example, from the first equation:

The expected number of class ones matches the observed number.
 And hence also class twos.

Finally

In other words you

- d+1 nonlinear equations in w.
- **2** For example, from the first equation:

$$\sum_{i=1}^{N} y_i = \sum_{i=1}^{N} p\left(\boldsymbol{x}_i | \boldsymbol{w}\right)$$

The expected number of class ones matches the observed number.

Finally

In other words you

- d+1 nonlinear equations in w.
- **2** For example, from the first equation:

$$\sum_{i=1}^{N} y_i = \sum_{i=1}^{N} p\left(\boldsymbol{x}_i | \boldsymbol{w}\right)$$

- The expected number of class ones matches the observed number.
- And hence also class twos.

Outline

Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation

Fitting The Model

- The Two Class Case
- The Final Log-Likelihood

• The Newton-Raphson Algorithm

Matrix Notation

2 More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method

Quasi-Newton Method

- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

We use the Newton-Raphson Method to find the roots or zeros

It comes from the first Taylor Approximation

Thus we have $r = x_0 + h$

 $0 \quad 0 \quad h = r - s_0$

<ロト < 回 ト < 巨 ト < 巨 ト ミ の Q (C 36 / 86

We use the Newton-Raphson Method to find the roots or zeros

It comes from the first Taylor Approximation

 $f(x+h) \approx f(x) + hf'(x)$

hus we have for a root r of function

We have

In Assume a good estimate of r, x_0

If thus we have $r = x_0 + h$

I Or $h = r - x_0$

We use the Newton-Raphson Method to find the roots or zeros

It comes from the first Taylor Approximation

$$f(x+h) \approx f(x) + hf'(x)$$

Thus we have for a root r of function f

We have

• Or $h = r - x_0$

We use the Newton-Raphson Method to find the roots or zeros

It comes from the first Taylor Approximation

$$f(x+h) \approx f(x) + hf'(x)$$

Thus we have for a root r of function f

We have

- **()** Assume a good estimate of r, x_0
- 2 Thus we have $r = x_0 + h$

We use the Newton-Raphson Method to find the roots or zeros

It comes from the first Taylor Approximation

$$f(x+h) \approx f(x) + hf'(x)$$

Thus we have for a root r of function f

We have

- **()** Assume a good estimate of r, x_0
- 2 Thus we have $r = x_0 + h$

3 Or
$$h = r - x_0$$

We have then

From Taylor

$$0 = f(r) = f(x_0 + h) \approx f(x_0) + hf'(x_0)$$

Thus, as long $f^{\prime}\left(x_{0} ight)$ is not close to (

 $h \approx -\frac{f\left(x_{0}\right)}{f'\left(x_{0}\right)}$

Thus

$$r = x_0 + h \approx x_0 - \frac{f(x_0)}{f'(x_0)}$$

We have then

From Taylor

$$0 = f(r) = f(x_0 + h) \approx f(x_0) + hf'(x_0)$$

Thus, as long $f'(x_0)$ is not close to 0

$$h \approx -\frac{f(x_0)}{f'(x_0)}$$

Thus

$$r = x_0 + h \approx x_0 - \frac{f(x_0)}{f'(x_0)}$$

<ロト < 回 ト < 直 ト < 直 ト < 直 ト < 直 ト 37 / 86

We have then

From Taylor

$$0 = f(r) = f(x_0 + h) \approx f(x_0) + hf'(x_0)$$

Thus, as long $f'(x_0)$ is not close to 0

$$h \approx -\frac{f\left(x_{0}\right)}{f'\left(x_{0}\right)}$$

Thus

$$r = x_0 + h \approx x_0 - \frac{f(x_0)}{f'(x_0)}$$

We have our final improving

We have

$$x_1 \approx x_0 - \frac{f(x_0)}{f'(x_0)}$$

<ロト < 回 ト < 巨 ト < 巨 ト 三 の Q () 38 / 86

Then, on the scoring function

For this, we need the Hessian of the function

$$\frac{\partial^{2} \mathcal{L} \left(\boldsymbol{w} \right)}{\partial \boldsymbol{w} \partial \boldsymbol{w}^{T}} = -\sum_{i=1}^{N} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \left[\frac{\exp\left\{ \boldsymbol{w}^{T} \boldsymbol{x}_{i} \right\}}{1 + \exp\left\{ \boldsymbol{w}^{T} \boldsymbol{x}_{i} \right\}} \right] \left[1 - \frac{\exp\left\{ \boldsymbol{w}^{T} \boldsymbol{x}_{i} \right\}}{1 + \exp\left\{ \boldsymbol{w}^{T} \boldsymbol{x}_{i} \right\}} \right]$$

Thus, we have at a starting point w°

$$oldsymbol{w}^{new} = oldsymbol{w}^{old} - \left(rac{\partial \mathcal{L}\left(w
ight)}{\partial oldsymbol{w} \partial oldsymbol{w}^T}
ight)^{-1} rac{\partial \mathcal{L}\left(w
ight)}{\partial oldsymbol{w}}$$

Then, on the scoring function

For this, we need the Hessian of the function

$$\frac{\partial^{2} \mathcal{L} \left(\boldsymbol{w} \right)}{\partial \boldsymbol{w} \partial \boldsymbol{w}^{T}} = -\sum_{i=1}^{N} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \left[\frac{\exp\left\{ \boldsymbol{w}^{T} \boldsymbol{x}_{i} \right\}}{1 + \exp\left\{ \boldsymbol{w}^{T} \boldsymbol{x}_{i} \right\}} \right] \left[1 - \frac{\exp\left\{ \boldsymbol{w}^{T} \boldsymbol{x}_{i} \right\}}{1 + \exp\left\{ \boldsymbol{w}^{T} \boldsymbol{x}_{i} \right\}} \right]$$

Thus, we have at a starting point $oldsymbol{w}^{old}$

$$oldsymbol{w}^{new} = oldsymbol{w}^{old} - \left(rac{\partial \mathcal{L}\left(oldsymbol{w}
ight)}{\partial oldsymbol{w} \partial oldsymbol{w}^T}
ight)^{-1} rac{\partial \mathcal{L}\left(oldsymbol{w}
ight)}{\partial oldsymbol{w}}$$

<ロト < 回 ト < 巨 ト < 巨 ト ミ うへで 39 / 86

Outline

Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation

Fitting The Model

- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm

Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method

Quasi-Newton Method

- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

Assume

- **1** Let \boldsymbol{y} denotes the vector of y_i
- X is the data matrix N imes (d+1)
- ullet $m{p}$ the vector of fitted probabilities with the i^{th} element $p\left(m{x}_i|w^{old}
 ight)$.
- $igodoldsymbol{0}$ W a N imes N diagonal matrix of weights with the i^{th} diagonal element.

 $p\left(oldsymbol{x}_{i}|oldsymbol{w}^{old}
ight)\left[1-p\left(oldsymbol{x}_{i}|oldsymbol{w}^{old}
ight)
ight]$

Assume

- **1** Let \boldsymbol{y} denotes the vector of y_i
- 2 X is the data matrix $N \times (d+1)$

ullet p the vector of fitted probabilities with the i^{th} element $p\left(m{x}_{i}|m{w}^{old}
ight)$.

• W a $N \times N$ diagonal matrix of weights with the i^{th} diagonal element

 $p\left(oldsymbol{x}_{i}|oldsymbol{w}^{old}
ight)\left[1-p\left(oldsymbol{x}_{i}|oldsymbol{w}^{old}
ight)
ight]$

Assume

- **1** Let \boldsymbol{y} denotes the vector of y_i
- 2 X is the data matrix $N \times (d+1)$
- **③** $m{p}$ the vector of fitted probabilities with the i^{th} element $p\left(m{x}_i|m{w}^{old}
 ight)$

Assume

- **1** Let \boldsymbol{y} denotes the vector of y_i
- 2 X is the data matrix $N \times (d+1)$
- **③** p the vector of fitted probabilities with the i^{th} element $p\left(m{x}_i|m{w}^{old}
 ight)$

 $\textcircled{O} W \text{ a } N \times N \text{ diagonal matrix of weights with the } i^{th} \text{ diagonal element}$

$$p\left(\boldsymbol{x}_{i}|\boldsymbol{w}^{old}\right)\left[1-p\left(\boldsymbol{x}_{i}|\boldsymbol{w}^{old}\right)\right]$$

For each updating term

$$\frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w}} = X^T (\boldsymbol{y} - \boldsymbol{p})$$
$$\frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w} \partial \boldsymbol{w}^T} = -X^T W X$$

$$\boldsymbol{w}^{new} = \boldsymbol{w}^{old} + \left(X^T W X\right)^{-1} X^T \left(\boldsymbol{y} - \boldsymbol{p}\right)$$

$$\boldsymbol{w}^{new} = \boldsymbol{w}^{old} + \left(X^T W X\right)^{-1} X^T \left(\boldsymbol{y} - \boldsymbol{p}\right)$$
$$= I \boldsymbol{w}^{old} + \left(X^T W X\right)^{-1} X^T I \left(\boldsymbol{y} - \boldsymbol{p}\right)$$

$$\boldsymbol{w}^{new} = \boldsymbol{w}^{old} + \left(X^T W X\right)^{-1} X^T \left(\boldsymbol{y} - \boldsymbol{p}\right)$$

= $I \boldsymbol{w}^{old} + \left(X^T W X\right)^{-1} X^T I \left(\boldsymbol{y} - \boldsymbol{p}\right)$
= $\left(X^T W X\right)^{-1} X^T W X \boldsymbol{w}^{old} + \left(X^T W X\right)^{-1} X^T W W^{-1} \left(\boldsymbol{y} - \boldsymbol{p}\right)$

$$\boldsymbol{w}^{new} = \boldsymbol{w}^{old} + \left(\boldsymbol{X}^T W \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \left(\boldsymbol{y} - \boldsymbol{p}\right)$$

$$= I \boldsymbol{w}^{old} + \left(\boldsymbol{X}^T W \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T I \left(\boldsymbol{y} - \boldsymbol{p}\right)$$

$$= \left(\boldsymbol{X}^T W \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T W \boldsymbol{X} \boldsymbol{w}^{old} + \left(\boldsymbol{X}^T W \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T W W^{-1} \left(\boldsymbol{y} - \boldsymbol{p}\right)$$

$$= \left(\boldsymbol{X}^T W \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T W \left[\boldsymbol{X} \boldsymbol{w}^{old} + W^{-1} \left(\boldsymbol{y} - \boldsymbol{p}\right)\right]$$

$$\boldsymbol{w}^{new} = \boldsymbol{w}^{old} + \left(X^T W X\right)^{-1} X^T \left(\boldsymbol{y} - \boldsymbol{p}\right)$$

= $I \boldsymbol{w}^{old} + \left(X^T W X\right)^{-1} X^T I \left(\boldsymbol{y} - \boldsymbol{p}\right)$
= $\left(X^T W X\right)^{-1} X^T W X \boldsymbol{w}^{old} + \left(X^T W X\right)^{-1} X^T W W^{-1} \left(\boldsymbol{y} - \boldsymbol{p}\right)$
= $\left(X^T W X\right)^{-1} X^T W \left[X \boldsymbol{w}^{old} + W^{-1} \left(\boldsymbol{y} - \boldsymbol{p}\right)\right]$
= $\left(X^T W X\right)^{-1} X^T W \boldsymbol{z}$

We have

Re-expressed the Newton step as a weighted least squares step.

With a the adjusted response as

$\boldsymbol{z} = \boldsymbol{X} \boldsymbol{w}^{old} + \boldsymbol{W}^{-1} \left(\boldsymbol{y} - \boldsymbol{p} \right)$

Then

We have

Re-expressed the Newton step as a weighted least squares step.

With a the adjusted response as

$$\boldsymbol{z} = X \boldsymbol{w}^{old} + W^{-1} \left(\boldsymbol{y} - \boldsymbol{p} \right)$$

This New Algorithm

It is know as

Iteratively Re-weighted Least Squares or IRLS

After all at each iteration, it solves

A weighted Least Square Problem

 $\boldsymbol{w}^{new} \leftarrow \arg\min_{\boldsymbol{w}} \left(\boldsymbol{z} - \boldsymbol{X} \boldsymbol{w}\right)^T W \left(\boldsymbol{z} - \boldsymbol{X} \boldsymbol{w}\right)$

<ロト < 回 ト < 巨 ト < 巨 ト ミ の Q (C) 45 / 86

This New Algorithm

It is know as

Iteratively Re-weighted Least Squares or IRLS

After all at each iteration, it solves

A weighted Least Square Problem

$$\boldsymbol{w}^{new} \leftarrow \arg\min_{\boldsymbol{w}} (\boldsymbol{z} - X\boldsymbol{w})^T W (\boldsymbol{z} - X\boldsymbol{w})$$

Good Starting Point ${m w}=0$

However, convergence is never guaranteed!!!

However

- Typically the algorithm does converge, since the log-likelihood is concave.
- But overshooting can occur.

Good Starting Point $\boldsymbol{w}=0$

However, convergence is never guaranteed!!!

However

- Typically the algorithm does converge, since the log-likelihood is concave.
- But overshooting can occur.

$L(\boldsymbol{\theta}_j) = \log \prod_{j=1}^n p(\boldsymbol{x}_j | \boldsymbol{\theta}_j)$

Halving Solve the Problem

Perfect!!!

$L(\boldsymbol{\theta}_j) = \log \prod_{j=1}^n p(\boldsymbol{x}_j | \boldsymbol{\theta}_j)$

Halving Solve the Problem

Perfect!!!

Outline

- Logistic Regression
 - Introduction
 - Constraints
 - The Initial Model
 - The Two Case Class
 - Graphic Interpretation
 - Fitting The Model
 - The Two Class Case
 - The Final Log-Likelihood
 - The Newton-Raphson Algorithm
 - Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method
- Quasi-Newton Method
 - The Second Order Approximation
 - The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

After all, we always want to have a better solution

• We know that $\left(\frac{\partial \mathcal{L}(w)}{\partial w \partial w^T}\right)^{-1}$ takes $O\left(d^3\right)...$ and we want something better!!!

After all, we always want to have a better solution

• We know that
$$\left(\frac{\partial \mathcal{L}(w)}{\partial w \partial w^T}\right)^{-1}$$
 takes $O(d^3)$ and we want something better!!!

We have the following methods

Colesky Decomposition

After all, we always want to have a better solution

We have the following methods

- Colesky Decomposition
- Quasi-Newton Method

After all, we always want to have a better solution

49 / 86

We have the following methods

- Colesky Decomposition
- Quasi-Newton Method
- Coordinate Ascent

Outline

- Logistic Regression
 - Introduction
 - Constraints
 - The Initial Model
 - The Two Case Class
 - Graphic Interpretation
 - Fitting The Model
 - The Two Class Case
 - The Final Log-Likelihood
 - The Newton-Raphson Algorithm
 - Matrix Notation

More on Optimization Methods

Can we do better?

Using Cholesky Decomposition

- Cholesky Decomposition
- The Proposed Method

Quasi-Newton Method

- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

We can decompose the matrix

Given $A = \overline{X^T W X}$ and $Y = X^T W \overline{z}$, you have

Ax = Y

We want to obtain

 $x = A^{-1}Y$

<ロト < 回 ト < 直 ト < 直 ト < 直 ト 三 の Q (C 51/86

We can decompose the matrix

Given $A = \overline{X^T W X}$ and $Y = X^T W \overline{z}$, you have

Ax = Y

We want to obtain

$$x = A^{-1}Y$$

<ロト < 回 > < 直 > < 直 > < 直 > 三 の Q (C 51 / 86

This can be seen as a system of linear equations

As you can see

• We start with a set of linear equations with d+1 unknowns:

This can be seen as a system of linear equations

As you can see

• We start with a set of linear equations with d + 1 unknowns:

$$x_{1}, x_{2}, \dots, x_{d+1} \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1d+1}x_{d+1} &= y_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2d+1}x_{d+1} &= y_{2} \\ \vdots & \vdots \\ a_{d+11}x_{1} + a_{d+12}x_{2} + \dots + a_{d+1d+1}x_{n} &= y_{d+1} \end{cases}$$

A set of values for x₁, x₂, ..., x_n that satisfy all of the equations simultaneously is said to be a solution to these equations.

This can be seen as a system of linear equations

As you can see

• We start with a set of linear equations with d + 1 unknowns:

$$x_{1}, x_{2}, \dots, x_{d+1} \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1d+1}x_{d+1} &= y_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2d+1}x_{d+1} &= y_{2} \\ \vdots & & \vdots \\ a_{d+11}x_{1} + a_{d+12}x_{2} + \dots + a_{d+1d+1}x_{n} &= y_{d+1} \end{cases}$$

Thus

• A set of values for $x_1, x_2, ..., x_n$ that satisfy all of the equations simultaneously is said to be a solution to these equations.

Outline

- Logistic Regression
 - Introduction
 - Constraints
 - The Initial Model
 - The Two Case Class
 - Graphic Interpretation
 - Fitting The Model
 - The Two Class Case
 - The Final Log-Likelihood
 - The Newton-Raphson Algorithm
 - Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 Cholesky Decomposition
 - The Proposed Method
- Quasi-Newton Method
 - The Second Order Approximation
 - The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

What is the Cholesky Decomposition? [4]

It is a method that factorize a matrix

• $A \in \mathbb{R}^{d+1 \times d+1}$ is a positive definite Hermitian matrix

Positive definite matrix

 $oldsymbol{x}^T A oldsymbol{x} > 0$ for all $oldsymbol{x} \in \mathbb{R}^{d+1 imes d+1}$

Hermitian matrix in the Real Domain (Symmetric Matrix)

 $A = A^T$

What is the Cholesky Decomposition? [4]

It is a method that factorize a matrix

• $A \in \mathbb{R}^{d+1 \times d+1}$ is a positive definite Hermitian matrix

Positive definite matrix

$$oldsymbol{x}^T A oldsymbol{x} > 0$$
 for all $oldsymbol{x} \in \mathbb{R}^{d+1 imes d+1}$

Hermitian matrix in the Real Domain (Symmetric Matrix)

 $A = A^T$

What is the Cholesky Decomposition? [4]

It is a method that factorize a matrix

• $A \in \mathbb{R}^{d+1 \times d+1}$ is a positive definite Hermitian matrix

Positive definite matrix

$$oldsymbol{x}^T A oldsymbol{x} > 0$$
 for all $oldsymbol{x} \in \mathbb{R}^{d+1 imes d+1}$

Hermitian matrix in the Real Domain (Symmetric Matrix)

$$A = A^T$$

Therefore

Cholesky decomposes A into lower or upper triangular matrix and their conjugate transpose

$$A = LL^T$$
$$A = R^T R$$

Fhus, we can use the Cholensky decomposition

 The Cholensky decomposition is of order O (d³) and requires ¹/₆d³ FLOP operations.

Therefore

Cholesky decomposes A into lower or upper triangular matrix and their conjugate transpose

$$A = LL^T$$
$$A = R^T R$$

Thus, we can use the Cholensky decomposition

• The Cholensky decomposition is of order $O\left(d^3\right)$ and requires $\frac{1}{6}d^3$ FLOP operations.

Outline

- Logistic Regression
 - Introduction
 - Constraints
 - The Initial Model
 - The Two Case Class
 - Graphic Interpretation
 - Fitting The Model
 - The Two Class Case
 - The Final Log-Likelihood
 - The Newton-Raphson Algorithm
 - Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition

• The Proposed Method

- Quasi-Newton Method
 - The Second Order Approximation
 - The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

We have

The matrices $A \in \mathbb{R}^{d+1 \times d+1}$ and $X = A^{-1}$

AX = I

From Cholensky, the decomposition of 2

 $R^T R X = I$

If we define RX = B.

 $R^T B = I$

We have

The matrices $A \in \mathbb{R}^{d+1 \times d+1}$ and $X = A^{-1}$

AX = I

From Cholensky, the decomposition of \boldsymbol{A}

 $R^T R X = I$

If we define RX = E

 $R^T B = I$

We have

The matrices $A \in \mathbb{R}^{d+1 \times d+1}$ and $X = A^{-1}$

AX = I

From Cholensky, the decomposition of \boldsymbol{A}

 $R^T R X = I$

If we define RX = B

 $R^T B = I$

Now

If
$$B = \left(R^T\right)^{-1} = L^{-1}$$
 for $L = R^T$

- We note that the inverse of the lower triangular matrix *L* is lower triangular.
- 2 The diagonal entries of L^{-1} are the reciprocal of diagonal entries of L

$$\begin{pmatrix} a_{1,1} & 0 & \cdots & 0 \\ a_{2,1} & a_{2,2} & 0 & \vdots \\ \vdots & \vdots & \ddots & 0 \\ a_{d+1,1} & a_{d+1,2} & \cdots & a_{d+1,d+1} \end{pmatrix} \begin{pmatrix} b_{1,1} & 0 & \cdots & 0 \\ b_{2,1} & b_{2,2} & 0 & \vdots \\ \vdots & \vdots & \ddots & 0 \\ b_{d+1,1} & b_{d+1,2} & \cdots & b_{d+1,d+1} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

Now, we construct the following matrix \boldsymbol{S} with entries

$$s_{i,j} = \begin{cases} \frac{1}{l_{i,i}} & \text{ if } i = j \\ 0 & \text{ otherwise} \end{cases}$$

Now, we have

The matrix ${\cal S}$ is the correct solution to upper diagonal element of the matrix ${\cal B}$

i.e. $s_{ij} = b_{ij}$ for $i \le j \le d+1$

Then, we use backward substitution to solve $x_{i,j}$ at equation $Rx_i = s_i$

Assuming

$$X = [\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_{d+1}]$$

 $S = [\boldsymbol{s}_1, \boldsymbol{s}_2, ..., \boldsymbol{s}_{d+1}]$

Now, we have

The matrix ${\cal S}$ is the correct solution to upper diagonal element of the matrix ${\cal B}$

i.e. $s_{ij} = b_{ij}$ for $i \leq j \leq d+1$

Then, we use backward substitution to solve $x_{i,j}$ at equation $R\boldsymbol{x}_i = \boldsymbol{s}_i$

Assuming:

$$X = [x_1, x_2, ..., x_{d+1}]$$

 $S = [s_1, s_2, ..., s_{d+1}]$

Back Substitution

Back substitution

Since R is upper-triangular, we can rewrite the system $Rx_i = s_i$ as $r_{1,1}x_{1,i} + r_{1,2}x_{2,i} + \dots + r_{1,d-1}x_{d-1,i} + r_{1,d}x_{d,i} + r_{1,d+1}x_{d+1,i} = s_{1,i}$ $r_{2,2}x_2 + \dots + r_{2,d-1}x_{d-1,i} + r_{2,d}x_{d,i} + r_{2,d+1}x_{d+1,i} = s_{2,i}$ \vdots $r_{d-1,d-1}x_{d-1,i} + r_{d-1,d}x_{d,i} + r_{d-1,d+1}x_{d+1,i} = s_{d-1,i}$ $r_{d,d}x_{d,i} + r_{d,d+1}x_{d,i} = s_{d,i}$ $r_{d+1,d+1}x_{d+1,i} = s_{d+1,i}$

We solve only for x_{ij} such that

• We have $i < j \le N$ (Upper triangle elements).

In our case the same value given that we live on the reals.

We solve only for x_{ij} such that

• We have $i < j \le N$ (Upper triangle elements).

$x_{ji} = \overline{x_{ij}}$

• In our case the same value given that we live on the reals.

Complexity

Equation solving requires

• $\frac{1}{3}(d+1)^3$ multiply operations.

The total number of multiply operations for matrix inverse

• Including Cholesky decomposition is $rac{1}{2}\,(d+1)^3$

Therefore

• We have complexity $O(d^3)$!!! Per iteration!!! But actually $\frac{1}{2}(d+1)^3$ multiply operations

Complexity

Equation solving requires

• $\frac{1}{3}(d+1)^3$ multiply operations.

The total number of multiply operations for matrix inverse

• Including Cholesky decomposition is $\frac{1}{2}\left(d+1\right)^3$

Therefore

• We have complexity $O(d^3)$!!! Per iteration!!! But actually $\frac{1}{2}(d+1)^3$ multiply operations

Complexity

Equation solving requires

• $\frac{1}{3}(d+1)^3$ multiply operations.

The total number of multiply operations for matrix inverse

• Including Cholesky decomposition is $\frac{1}{2}(d+1)^3$

Therefore

• We have complexity $O\left(d^3\right)!!!$ Per iteration!!! But actually $\frac{1}{2}\left(d+1\right)^3$ multiply operations

Outline

Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
 - The Two Class Case
 - The Final Log-Likelihood
 - The Newton-Raphson Algorithm
 - Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method

Quasi-Newton Method

- The Second Order Approximation
 The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

However

As Good Computer Scientists

We want to obtain a better complexity as $O(n^2)!!!$

We can obtain such improvements

Using Quasi Newton Methods

Let's us to develop the solution

- For the most popular one
 - Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

However

As Good Computer Scientists

We want to obtain a better complexity as $O(n^2)!!!$

We can obtain such improvements

Using Quasi Newton Methods

Let's us to develop the solution

- For the most popular one
 - Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

However

As Good Computer Scientists

We want to obtain a better complexity as $O(n^2)!!!$

We can obtain such improvements

Using Quasi Newton Methods

Let's us to develop the solution

- For the most popular one
 - Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

Outline

- Logistic Regression
 - Introduction
 - Constraints
 - The Initial Model
 - The Two Case Class
 - Graphic Interpretation
 - Fitting The Model
 - The Two Class Case
 - The Final Log-Likelihood
 - The Newton-Raphson Algorithm
 - Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method

Quasi-Newton Method

• The Second Order Approximation

- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

The Second Order Approximation

We have

$$f\left(\boldsymbol{x}\right) pprox f\left(\boldsymbol{x}_{k}\right) +
abla f\left(\boldsymbol{x}_{k}
ight)\left(\boldsymbol{x}-\boldsymbol{x}_{k}
ight) + rac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{k}
ight)^{T} \boldsymbol{H} f\left(\boldsymbol{x}_{k}
ight)\left(\boldsymbol{x}-\boldsymbol{x}_{k}
ight)$$

We develop a new equation based in the previous idea by using $oldsymbol{x} = oldsymbol{x}_k + oldsymbol{p}$

$$f\left(oldsymbol{x}
ight) pprox f\left(oldsymbol{x}_{k}
ight) +
abla f\left(oldsymbol{x}_{k}
ight) oldsymbol{p}+rac{1}{2}oldsymbol{p}^{T}H_{k}oldsymbol{p}$$

Here

• H_k is an $d + 1 \times d + 1$ symmetric positive definite matrix that will be updated through the entire process

The Second Order Approximation

We have

$$f\left(\boldsymbol{x}\right) pprox f\left(\boldsymbol{x}_{k}\right) +
abla f\left(\boldsymbol{x}_{k}
ight)\left(\boldsymbol{x}-\boldsymbol{x}_{k}
ight) + rac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{k}
ight)^{T} \boldsymbol{H} f\left(\boldsymbol{x}_{k}
ight)\left(\boldsymbol{x}-\boldsymbol{x}_{k}
ight)$$

We develop a new equation based in the previous idea by using $oldsymbol{x} = oldsymbol{x}_k + oldsymbol{p}$

$$f\left(\boldsymbol{x}\right) pprox f\left(\boldsymbol{x}_{k}\right) +
abla f\left(\boldsymbol{x}_{k}
ight) \boldsymbol{p} + rac{1}{2} \boldsymbol{p}^{T} H_{k} \boldsymbol{p}$$

H_k is an *d* + 1 × *d* + 1 symmetric positive definite matrix that will be updated through the entire process

The Second Order Approximation

We have

$$f\left(\boldsymbol{x}\right) pprox f\left(\boldsymbol{x}_{k}\right) +
abla f\left(\boldsymbol{x}_{k}
ight) \left(\boldsymbol{x}-\boldsymbol{x}_{k}
ight) + rac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{k}
ight)^{T} \boldsymbol{H} f\left(\boldsymbol{x}_{k}
ight) \left(\boldsymbol{x}-\boldsymbol{x}_{k}
ight)$$

We develop a new equation based in the previous idea by using $oldsymbol{x} = oldsymbol{x}_k + oldsymbol{p}$

$$f\left(\boldsymbol{x}\right) pprox f\left(\boldsymbol{x}_{k}
ight) +
abla f\left(\boldsymbol{x}_{k}
ight) \boldsymbol{p} + rac{1}{2} \boldsymbol{p}^{T} H_{k} \boldsymbol{p}$$

Here

• H_k is an $d+1\times d+1$ symmetric positive definite matrix that will be updated through the entire process

For the BFGS

Then, the inverse update of it $H_k = B_k^{-1}$

In BFGS we go directly for the inverse by setting up:

r

$$\min_{H} \|H - H_k\|$$
$$s.t. \ H = H^T$$
$$Hy_k = s_k$$

with

$$s_{k} = \boldsymbol{x}_{k+1} - \boldsymbol{x}_{k}$$
$$y_{k} = \nabla f(\boldsymbol{x}_{k+1}) - \nabla f(\boldsymbol{x}_{k})$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 68 / 86

Then, we have

A unique solution will be

$$H_{k+1} = \left(I - \rho_k s_k y_k^T\right) H_k \left(I - \rho_k y_k s_k^T\right) + \rho s_k s_k^T \tag{1}$$

re $\rho_k = \frac{1}{y_k^T s_k}$

Then, we have

A unique solution will be

$$H_{k+1} = \left(I - \rho_k s_k y_k^T\right) H_k \left(I - \rho_k y_k s_k^T\right) + \rho s_k s_k^T$$
(1)
where $\rho_k = \frac{1}{y_k^T s_k}$

Complexity of Generating H_{k+1}

We notice that the complexity of calculating

$$s_k s_k^T, s_k s_k^T, s_k y_k^T$$

• It is $O\left(d^2\right)$

Why? For Example

$$\begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_d \end{pmatrix} \begin{pmatrix} s_1 & s_2 & \cdots & s_d \end{pmatrix} = \begin{pmatrix} s_1^2 & s_1s_2 & \cdots & s_1s_d \\ s_2s_1 & s_2^2 & \cdots & s_2s_d \\ \vdots & \vdots & \ddots & \vdots \\ s_ds_1 & s_ds_2 & \cdots & s_d^2 \end{pmatrix} \text{-Equal to } d^2 \text{ regarding to } d$$

Complexity of Generating H_{k+1}

We notice that the complexity of calculating

$$s_k s_k^T, s_k s_k^T, s_k y_k^T$$

• It is $O\left(d^2\right)$

Why? For Example

$$\begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_d \end{pmatrix} \begin{pmatrix} s_1 & s_2 & \cdots & s_d \end{pmatrix} = \begin{pmatrix} s_1^2 & s_1s_2 & \cdots & s_1s_d \\ s_2s_1 & s_2^2 & \cdots & s_2s_d \\ \vdots & \vdots & \ddots & \vdots \\ s_ds_1 & s_ds_2 & \cdots & s_d^2 \end{pmatrix} \text{-Equal to } d^2 \text{ regarding}$$

Finally

Thus

• The sum on the term H_{k+1} has a complexity of $O\left(d^2\right)$

The total complexity

<ロト < 回 ト < 巨 ト < 巨 ト ミ の Q (C 71/86

Thus

• The sum on the term H_{k+1} has a complexity of $O\left(d^2
ight)$

The total complexity

$$O\left(d^2\right)$$

Problem

There is no magic formula to find an initial H_0

We can use specific information about the problem:

For instance by setting it to the inverse of an approximate Hessian calculated by finite differences at x₀
 In our case, we have
 ^{DL(w)}/_{Dw∂w^T}, or in matrix format X^TWX, we could get initial setup

Problem

There is no magic formula to find an initial H_0

We can use specific information about the problem:

• For instance by setting it to the inverse of an approximate Hessian calculated by finite differences at $m{x}_0$

In our case, we have $\frac{\partial \mathcal{L}(w)}{\partial w \partial w^T}$, or in matrix format $X^T W X$, we could get initial setup

Problem

There is no magic formula to find an initial H_0

We can use specific information about the problem:

• For instance by setting it to the inverse of an approximate Hessian calculated by finite differences at $m{x}_0$

• In our case, we have $\frac{\partial \mathcal{L}(w)}{\partial w \partial w^T}$, or in matrix format $X^T W X$, we could get initial setup

Outline

Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
 - The Two Class Case
 - The Final Log-Likelihood
 - The Newton-Raphson Algorithm
 - Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method

Quasi-Newton Method

• The Second Order Approximation

• The BFGS Algorithm

- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

Quasi-Newton Algorithm

• Starting point x_0 , Convergence tolerance e, Inverse Hessian approximation H_0

) while $\| abla f(oldsymbol{x}_{k+1}) \| > e$

- Compute search direction $oldsymbol{p}_k = -H_k
 abla \, \|
 abla f\left(oldsymbol{x_{k+1}}
 ight)\|$
- Set $x_{k+1} = x_k + lpha_k p_k$ where $lpha_k$ is obtained from a
 - linear search (Under Wolfe conditions)

Define
$$s_k = x_{k+1} - x_k$$
 and $y_k =
abla f\left(x_{k+1}
ight) -
abla f\left(x_k
ight)$

- Compute H_{k+1} by means of (Eq. ??)
- $k \leftarrow k+1$

Quasi-Newton Algorithm

- Starting point x_0 , Convergence tolerance e, Inverse Hessian approximation H_0
- $\bigcirc k \leftarrow 0$

) while $\left\|
abla f\left(x_{k+1}
ight) \right\| > \epsilon$

- Compute search direction $oldsymbol{p}_k = -H_k
 abla \, \|
 abla f \, (oldsymbol{x}_{k+1})\|$
- Set $oldsymbol{x}_{k+1} = oldsymbol{x}_k + lpha_k oldsymbol{p}_k$ where $lpha_k$ is obtained from a
 - linear search (Under Wolfe conditions)
- Define $s_k = oldsymbol{x}_{k+1} oldsymbol{x}_k$ and $y_k =
 abla f(oldsymbol{x}_{k+1})
 abla f(oldsymbol{x}_k)$
 - Compute H_{k+1} by means of (Eq. ??)
- $\bigcirc \qquad k \leftarrow k+1$

Quasi-Newton Algorithm

- Starting point x_0 , Convergence tolerance e, Inverse Hessian approximation H_0
- $\textcircled{1} \quad k \leftarrow 0$
- **2** while $\|\nabla f(x_{k+1})\| > e$
 - Compute search direction $oldsymbol{p}_{k}=-H_{k}
 abla \left\Vert
 abla f\left(x_{k+1}
 ight)
 ight\Vert$
 - Set $oldsymbol{x_{k+1}} = oldsymbol{x_k} + lpha_k oldsymbol{p}_k$ where $lpha_k$ is obtained from a
 - linear search (Under Wolfe conditions).
 - Define $s_k = x_{k+1} x_k$ and $y_k =
 abla f\left(x_{k+1}
 ight)
 abla f\left(x_k
 ight)$
 - Compute H_{k+1} by means of (Eq. ??)
- $\bigcirc \qquad k \leftarrow k+1$

Quasi-Newton Algorithm

- Starting point x_0 , Convergence tolerance e, Inverse Hessian approximation H_0
- $\textcircled{1} \quad k \leftarrow 0$

(3)

- **2** while $\|\nabla f(x_{k+1})\| > e$
 - Compute search direction $oldsymbol{p}_{k}=-H_{k}
 abla \left\|
 abla f\left(oldsymbol{x}_{k+1}
 ight)
 ight\|$

near search (Under Wolfe conditions).

Define $s_k = x_{k+1} - x_k$ and $y_k =
abla f\left(x_{k+1}
ight) -
abla f\left(x_k
ight)$

Compute H_{k+1} by means of (Eq. ??)

 $k \leftarrow k + 1$

Quasi-Newton Algorithm

- Starting point x_0 , Convergence tolerance e, Inverse Hessian approximation H_0
- $\textcircled{1} \quad k \leftarrow 0$

4

- **2** while $\|\nabla f(x_{k+1})\| > e$
- 3 Compute search direction $oldsymbol{p}_k = -H_k
 abla \, \|
 abla f \, (oldsymbol{x}_{k+1}) \|$
 - Set $x_{k+1} = x_k + \alpha_k p_k$ where α_k is obtained from a linear search (Under Wolfe conditions).

Compute H_{k+1} by means of (Eq. ??)

Quasi-Newton Algorithm

- Starting point x_0 , Convergence tolerance e, Inverse Hessian approximation H_0
- $\textcircled{1} \quad k \leftarrow 0$
- **2** while $\|\nabla f(x_{k+1})\| > e$
- 3 Compute search direction $oldsymbol{p}_k = -H_k
 abla \, \|
 abla f \, (oldsymbol{x}_{k+1}) \|$
- Set x_{k+1} = x_k + α_kp_k where α_k is obtained from a linear search (Under Wolfe conditions).

5 Define
$$s_k = x_{k+1} - x_k$$
 and $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$

Quasi-Newton Algorithm

- Starting point x_0 , Convergence tolerance e, Inverse Hessian approximation H_0
- $\textcircled{1} \quad k \leftarrow 0$
- **2** while $\|\nabla f(x_{k+1})\| > e$
- 3 Compute search direction $oldsymbol{p}_k = -H_k
 abla \, \|
 abla f \, (oldsymbol{x}_{k+1}) \|$
- Set $x_{k+1} = x_k + \alpha_k p_k$ where α_k is obtained from a linear search (Under Wolfe conditions).
- **O** Define $s_k = x_{k+1} x_k$ and $y_k = \nabla f(x_{k+1}) \nabla f(x_k)$
- **6** Compute H_{k+1} by means of (Eq. ??)

Quasi-Newton Algorithm

- Starting point x_0 , Convergence tolerance e, Inverse Hessian approximation H_0
- $\textcircled{1} \quad k \leftarrow 0$
- **2** while $\|\nabla f(x_{k+1})\| > e$
- 3 Compute search direction $oldsymbol{p}_k = -H_k
 abla \, \|
 abla f \, (oldsymbol{x}_{k+1}) \|$
- Set $x_{k+1} = x_k + \alpha_k p_k$ where α_k is obtained from a linear search (Under Wolfe conditions).
- **5** Define $s_k = x_{k+1} x_k$ and $y_k = \nabla f(x_{k+1}) \nabla f(x_k)$

6 Compute
$$H_{k+1}$$
 by means of (Eq. ??)

 $\bigcirc k \leftarrow k+1$

Complexity

The

• Cost of update or inverse update is $O\left(d^2\right)$ operations per iteration.

For More

 Nocedal, Jorge & Wright, Stephen J. (1999). Numerical Optimization. Springer-Verlag.

Complexity

The

• Cost of update or inverse update is $O\left(d^2\right)$ operations per iteration.

For More

• Nocedal, Jorge & Wright, Stephen J. (1999). Numerical Optimization. Springer-Verlag.

Outline

- Logistic Regression
 - Introduction
 - Constraints
 - The Initial Model
 - The Two Case Class
 - Graphic Interpretation
 - Fitting The Model
 - The Two Class Case
 - The Final Log-Likelihood
 - The Newton-Raphson Algorithm
 - Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method
- Quasi-Newton Method
 - The Second Order Approximation
 - The BFGS Algorithm

• A Neat Trick: Coordinate Ascent

- Coordinate Ascent Algorithm
- Conclusion

Given the following [5]

Because the likelihood is concave

<ロ><□><一</p>

Caution

Here, we change the labeling to $y_i = \pm 1$ with

$$p(y_i = \pm 1 | \boldsymbol{x}, \boldsymbol{w}) = \sigma(y \boldsymbol{w}^T \boldsymbol{x}) = \frac{1}{1 + \exp\{-y \boldsymbol{w}^T \boldsymbol{x}\}}$$

have the following log likelihood under regularization

$$\mathcal{L}\left(oldsymbol{w}
ight) = -\sum_{i=1}^{N}\log\left\{1+\exp\left\{-y_{i}oldsymbol{w}^{T}oldsymbol{x}_{i}
ight\}
ight\} - rac{\lambda}{2}oldsymbol{w}^{T}oldsymbol{w}$$

to get a Gradient Descentter

$$abla_w l\left(oldsymbol{w}
ight) = \sum_{i=1}^N \left\{1 - rac{1}{1 + \exp\left\{-y_ioldsymbol{w}^Toldsymbol{x}_i
ight\}}
ight\} y_ioldsymbol{x}_i - \lambdaoldsymbol{w}$$

Caution

Here, we change the labeling to $y_i = \pm 1$ with

$$p(y_i = \pm 1 | \boldsymbol{x}, \boldsymbol{w}) = \sigma(y \boldsymbol{w}^T \boldsymbol{x}) = \frac{1}{1 + \exp\{-y \boldsymbol{w}^T \boldsymbol{x}\}}$$

Thus, we have the following log likelihood under regularization $\lambda > 0$

$$\mathcal{L}(\boldsymbol{w}) = -\sum_{i=1}^{N} \log \left\{ 1 + \exp \left\{ -y_i \boldsymbol{w}^T \boldsymbol{x}_i \right\} \right\} - \frac{\lambda}{2} \boldsymbol{w}^T \boldsymbol{w}$$

It is possible to get a Gradient Descent

$$abla_{\boldsymbol{w}} l\left(\boldsymbol{w}
ight) = \sum_{i=1}^{N} \left\{ 1 - rac{1}{1 + \exp\left\{-y_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}
ight\}}
ight\} y_{i} \boldsymbol{x}_{i} - \lambda \boldsymbol{w}$$

Caution

Here, we change the labeling to $y_i = \pm 1$ with

$$p(y_i = \pm 1 | \boldsymbol{x}, \boldsymbol{w}) = \sigma(y \boldsymbol{w}^T \boldsymbol{x}) = \frac{1}{1 + \exp\{-y \boldsymbol{w}^T \boldsymbol{x}\}}$$

Thus, we have the following log likelihood under regularization $\lambda > 0$

$$\mathcal{L}(\boldsymbol{w}) = -\sum_{i=1}^{N} \log \left\{ 1 + \exp \left\{ -y_i \boldsymbol{w}^T \boldsymbol{x}_i \right\} \right\} - \frac{\lambda}{2} \boldsymbol{w}^T \boldsymbol{w}$$

It is possible to get a Gradient Descent

$$\nabla_{\boldsymbol{w}} l\left(\boldsymbol{w}\right) = \sum_{i=1}^{N} \left\{ 1 - \frac{1}{1 + \exp\left\{-y_i \boldsymbol{w}^T \boldsymbol{x}_i\right\}} \right\} y_i \boldsymbol{x}_i - \lambda \boldsymbol{w}$$

Danger Will Robinson!!!

Gradient descent using resembles the Perceptron learning algorithm

Problem!!! It will always converge for a suitable step size, regardless of whether the classes are separable!!!

Outline

- Logistic Regression
 - Introduction
 - Constraints
 - The Initial Model
 - The Two Case Class
 - Graphic Interpretation
 - Fitting The Model
 - The Two Class Case
 - The Final Log-Likelihood
 - The Newton-Raphson Algorithm
 - Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method
- Quasi-Newton Method
 - The Second Order Approximation
 - The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 Coordinate Ascent Algorithm
- Conclusion

We will simplify our work

By stating the algorithm for coordinate ascent

A more precise version will be given

We will simplify our work

By stating the algorithm for coordinate ascent

Then

A more precise version will be given

Coordinate Ascent

Algorithm

4

5

٩	Input	Max,	an	initial	$oldsymbol{w}_0$	
---	-------	------	----	---------	------------------	--

 $\bigcirc \quad counter \leftarrow 0$

2 while counter < Max

 $or i \leftarrow 1, ..., d$

Randomly pick i

Compute a step size δ^* by approximately maximize $\arg\min_{\delta} f\left(x + \delta e_i\right)$

$e_i = egin{pmatrix} 0 & \cdots & 0 & 1 \leftarrow i & 0 & \cdots & 0 \end{pmatrix}^T$

Coordinate Ascent

Algorithm

۲	Input	Max,	an	initial	$oldsymbol{w}_0$	
---	-------	------	----	---------	------------------	--

 $\bigcirc \quad counter \leftarrow 0$

2 while counter < Max

3	for $i \leftarrow 1,, d$
4	Randomly

Randomly pick i

Compute a step size δ^* by approximately maximize $\arg\min_{\delta} f\left(\boldsymbol{x} + \delta \boldsymbol{e}_i
ight)$

Where

6

<ロト < 回 ト < 画 ト < 画 ト < 画 ト < 画 ト < 画 ト 82/86

In the case of Logistic Regression

Thus, we can optimize each \boldsymbol{w}_k alternatively by a coordinate-wise Newton update

$$w_k^{new} = w_k^{old} + \frac{-\lambda w_k^{old} + \sum_{i=1}^N \left\{ 1 - \frac{1}{1 + \exp\{-y_i w^T x_i\}} \right\} y_i x_{ik}}{\lambda + \sum_{i=1}^N x_{ik}^2 \left(\frac{1}{1 + \exp\{-y_i w^T x_i\}} \right) \left(1 - \frac{1}{1 + \exp\{-y_i w^T x_i\}} \right)}$$

Complexity of this update

In the case of Logistic Regression

Thus, we can optimize each w_k alternatively by a coordinate-wise Newton update

$$w_k^{new} = w_k^{old} + \frac{-\lambda w_k^{old} + \sum_{i=1}^N \left\{ 1 - \frac{1}{1 + \exp\{-y_i \boldsymbol{w}^T \boldsymbol{x}_i\}} \right\} y_i \boldsymbol{x}_{ik}}{\lambda + \sum_{i=1}^N x_{ik}^2 \left(\frac{1}{1 + \exp\{-y_i \boldsymbol{w}^T \boldsymbol{x}_i\}} \right) \left(1 - \frac{1}{1 + \exp\{-y_i \boldsymbol{w}^T \boldsymbol{x}_i\}} \right)}$$

Complexity of this update

Outline

Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
 - The Two Class Case
 - The Final Log-Likelihood
 - The Newton-Raphson Algorithm
 - Matrix Notation

More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
 - Cholesky Decomposition
 - The Proposed Method
- Quasi-Newton Method
 - The Second Order Approximation
 - The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
 - Coordinate Ascent Algorithm
- Conclusion

We have the following Complexities per iteration

Complexities

Method	Per Iteration	Convergence Rate
Cholesky Decomposition	$\frac{d^3}{2} = O\left(d^3\right)$	Quadratic
Quasi-Newton BFGS	$O\left(d^2\right)$	Super-linearly
Coordinate Ascent	$O\left(Nd ight)$	Not established

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition. Springer Series in Statistics, Springer New York, 2009.

- F. E. Harrell Jr, Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis.
 Springer, 2015.
- J. Nocedal and S. Wright, *Numerical optimization*. Springer Science & Business Media, 2006.
- A. Krishnamoorthy and D. Menon, "Matrix inversion using cholesky decomposition," in *2013 signal processing: Algorithms, architectures, arrangements, and applications (SPA)*, pp. 70–72, IEEE, 2013.
- J. Dhanani and K. Rana, "Logistic regression with stochastic gradient ascent to estimate click through rate," in *Information and Communication Technology for Sustainable Development*, pp. 319–326, Springer, 2018.

ā.