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Assume the following

Let Y1, Y2, ..., YN independent random variables
Taking values in the set {0, 1}

Now, you have a set of fixed vectors

x1,x2, ...,xN

Mapped to a series of numbers by a weight vector w

wTx1,w
Tx2, ...,w

TxN
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In our simplest from [1, 2]

There is a suspected relation
Between θi = P (Yi = 1) and wTxi

Here Y is the random variable and y is the value that the random
variable can take.

Thus we have

y =
{

1 wTx+ e > 0
0 else

Note: Where e is an error with a certain distribution!!!
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For Example, Graphically

We have
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It is better to user a logit version

We have
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Logit Distribution

PDF with support z ∈ (−∞,∞) ,µ location and s scale
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{
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s

}
s
(
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})2

With a CDF

P (Y < z) =
∫ z

−∞
p (y|µ, s) dy = 1

1 + exp
{
− z−µ

s

}
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In Bayesian Classification

Assignment of a pattern
It is performed by using the posterior probabilities, P (ωi|x)

And given K classes, we want
K∑
i=1

P (ωi|x) = 1

Such that each

0 ≤ P (ωi|x) ≤ 1
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Observation

This is a typical example of the discriminative approach
Where the distribution of data is of no interest.

I In the Logistic Regression the Distribution is imposed over the output!!!
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The Model

We have the following under the extended features

log P (ω1|x)
P (ωK |x) = wT

1 x

log P (ω2|x)
P (ωK |x) = wT

2 x

...
...

log P (ωK−1|x)
P (ωK |x) = wT

K−1x
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Further

We have
The model is specified in terms of K − 1 log-odds or logit transformations.

And
Although the model uses the last class as the denominator in the
odds-ratios.

The choice of denominator is arbitrary
However, because the estimates are equivariant under this choice.

I The action taken in a decision problem should not depend on
transformation on the measurement used
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Now

How do we find the terms?

P (ω1|x) , P (ω2|x) , ..., P (ωK |x)
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It is possible to show that

We have that, for l = 1, 2, ..., K − 1
P (ωl|x)
P (ωK |x) = exp

{
wT
l x
}

Therefore
K−1∑
l=1

P (ωl|x)
P (ωK |x) =

K−1∑
l=1

exp
{
wT
l x
}

Thus
1− P (ωK |x)
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{
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Basically

We have, (Take a look a the board)

P (ωK |x) = 1
1 +

∑K−1
l=1 exp

{
wT
l x
}

Then
P (ωi|x)

1
1+
∑K−1

l=1 exp{wTl x}
= exp

{
wT
l x
}

For i = 1, 2, ..., k − 1
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{
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i x
}
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l x
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Additionally

For K

P (ωK |x) = 1
1 +

∑K−1
l=1 exp

{
wT
l x
}

Easy to see
They sum to one.
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A Note in Notation

Given all these parameters, we summarized them

Θ = {w1,w2, ...,wK−1}

Therefore

P (ωl|X = x) = pl (x|Θ)
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We have
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We have the following split

Using f (x) = wTx
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Then, we have the mapping to

We have

Class 1 Class 2

24 / 86



Images/cinvestav.jpg

Outline
1 Logistic Regression

Introduction
Constraints
The Initial Model
The Two Case Class
Graphic Interpretation
Fitting The Model

The Two Class Case
The Final Log-Likelihood
The Newton-Raphson Algorithm
Matrix Notation

2 More on Optimization Methods
Can we do better?
Using Cholesky Decomposition

Cholesky Decomposition
The Proposed Method

Quasi-Newton Method
The Second Order Approximation
The BFGS Algorithm

A Neat Trick: Coordinate Ascent
Coordinate Ascent Algorithm

Conclusion

25 / 86



Images/cinvestav.jpg

A Classic application of Maximum Likelihood

Given a sequence of smaples iid

x1,x2, ...,xN

We have the following pdf

p (x1,x2, ...,xN |Θ) =
N∏
i=1

p (xi|Θ)
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P (g = v|X) Distribution

Where P (g = v|X) completely specify the conditional distribution
We have a multinomial distribution which under the log-likelihood of N
observations:

L (Θ) = log p (x1,x2, ...,xN |Θ) = log
N∏
i=1

pgi (xi|θ) =
N∑
i=1

log pgi (xi|θ)

Where
gi represent the class that xi belongs.

gi =
{

1 if xi ∈ Class 1
2 if xi ∈ Class 2
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How do we integrate this into a Cost Function?

Clearly, we have two distributions
We need to represent the distributions into the functions pgi (xi|θ).

Why not to have all the distributions into this function

pgi (xi|θ) =
K−1∏
l=1

p (xi|wl)I{xi∈ωl}

It is easy with the two classes
Given that we have a binary situation!!!
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Given the two case

We have then a Bernoulli distribution

p1 (xi|w) =

 exp
{
wTx

}
1 + exp {wTx}

yi

p2 (xi|w) =
[ 1

1 + exp {wTx}

]1−yi

With

yi = 1 if xi ∈ Class 1
yi = 0 if xi ∈ Class 2
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We have the following

Cost Function

L (w) =
N∑
i=1
{yi log p1 (xi|w) +

(1− yi) log (1− p1 (xi|w))}

After some reductions

L (w) =
N∑
i=1

{
yiw

Txi − log
(
1 + exp

{
wTxi

})}
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Now, we derive and set it to zero
We have

∂L (w)
∂w

=
N∑

i=1
xi

(
yi −

exp
{
wTxi

}
1 + exp {wTxi}

)
= 0

Which are d+ 1 equations nonlinear

N∑
i=1

xi (yi − p (xi|w)) =



∑N
i=1 1×

(
yi −

exp{wT xi}
1+exp{wT xi}

)
∑N

i=1 x
i
1

(
yi −

exp{wT xi}
1+exp{wT xi}

)
∑N

i=1 x
i
2

(
yi −

exp{wT xi}
1+exp{wT xi}

)
...∑N

i=1 x
i
d

(
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exp{wT xi}
1+exp{wT xi}

)


= 0

It is know as a scoring function.
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Finally

In other words you
1 d+ 1 nonlinear equations in w.
2 For example, from the first equation:

N∑
i=1

yi =
N∑
i=1

p (xi|w)

I The expected number of class ones matches the observed number.
I And hence also class twos.
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To solve the previous equations [3]

We use the Newton-Raphson Method to find the roots or zeros
It comes from the first Taylor Approximation

f (x+ h) ≈ f (x) + hf ′ (x)

Thus we have for a root r of function f
We have

1 Assume a good estimate of r, x0
2 Thus we have r = x0 + h

3 Or h = r − x0
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We have then

From Taylor

0 = f (r) = f (x0 + h) ≈ f (x0) + hf ′ (x0)

Thus, as long f ′ (x0) is not close to 0

h ≈ − f (x0)
f ′ (x0)

Thus

r = x0 + h ≈ x0 −
f (x0)
f ′ (x0)
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We have our final improving

We have

x1 ≈ x0 −
f (x0)
f ′ (x0)
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Then, on the scoring function

For this, we need the Hessian of the function

∂2L (w)
∂w∂wT

= −
N∑
i=1
xix

T
i

 exp
{
wTxi

}
1 + exp {wTxi}

1−
exp

{
wTxi

}
1 + exp {wTxi}


Thus, we have at a starting point wold

wnew = wold −
(
∂L (w)
∂w∂wT

)−1 ∂L (w)
∂w
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We can rewrite all as matrix notations

Assume
1 Let y denotes the vector of yi
2 X is the data matrix N × (d+ 1)
3 p the vector of fitted probabilities with the ith element p

(
xi|wold

)
4 W a N ×N diagonal matrix of weights with the ith diagonal element

p
(
xi|wold

) [
1− p

(
xi|wold

)]
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Then, we have

For each updating term

∂L (w)
∂w

= XT (y − p)

∂L (w)
∂w∂wT

= −XTWX
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Then, the Newton Step
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XTWX
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)−1
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)−1
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)−1
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Then

We have
Re-expressed the Newton step as a weighted least squares step.

With a the adjusted response as

z = Xwold +W−1 (y − p)
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This New Algorithm

It is know as
Iteratively Re-weighted Least Squares or IRLS

After all at each iteration, it solves

A weighted Least Square Problem

wnew ← arg min
w

(z −Xw)T W (z −Xw)
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Observations

Good Starting Point w = 0
However, convergence is never guaranteed!!!

However
Typically the algorithm does converge, since the log-likelihood is
concave.
But overshooting can occur.
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The final question

After all, we always want to have a better solution

We know that
(
∂L(w)
∂w∂wT

)−1
takes O

(
d3).... and we want something

better!!!

We have the following methods
Colesky Decomposition
Quasi-Newton Method
Coordinate Ascent
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We can decompose the matrix

Given A = XTWX and Y = XTWz, you have

Ax = Y

We want to obtain

x = A−1Y
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This can be seen as a system of linear equations

As you can see
We start with a set of linear equations with d+ 1 unknowns:

x1, x2, ..., xd+1



a11x1 + a12x2 + ...+ a1d+1xd+1 = y1

a21x1 + a22x2 + ...+ a2d+1xd+1 = y2
...

...
ad+11x1 + ad+12x2 + ...+ ad+1d+1xn = yd+1

Thus
A set of values for x1, x2, ..., xn that satisfy all of the equations
simultaneously is said to be a solution to these equations.
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What is the Cholesky Decomposition? [4]

It is a method that factorize a matrix
A ∈ Rd+1×d+1 is a positive definite Hermitian matrix

Positive definite matrix

xTAx > 0 for all x ∈ Rd+1×d+1

Hermitian matrix in the Real Domain (Symmetric Matrix)

A = AT
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Therefore

Cholesky decomposes A into lower or upper triangular matrix and
their conjugate transpose

A = LLT

A = RTR

Thus, we can use the Cholensky decomposition
The Cholensky decomposition is of order O

(
d3) and requires 1

6d
3

FLOP operations.
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We have

The matrices A ∈ Rd+1×d+1 and X = A−1

AX = I

From Cholensky, the decomposition of A

RTRX = I

If we define RX = B

RTB = I
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Now

If B =
(
RT
)−1

= L−1 for L = RT

1 We note that the inverse of the lower triangular matrix L is lower
triangular.

2 The diagonal entries of L−1 are the reciprocal of diagonal entries of L


a1,1 0 · · · 0

a2,1 a2,2 0
...

...
...

. . . 0
ad+1,1 ad+1,2 · · · ad+1,d+1




b1,1 0 · · · 0

b2,1 b2,2 0
...

...
...

. . . 0
bd+1,1 bd+1,2 · · · bd+1,d+1

 =


1 0 · · · 0

0 1 0
...

... 0
. . . 0

0 · · · 0 1
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Now

Now, we construct the following matrix S with entries

si,j =


1
li,i

if i = j

0 otherwise
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Now, we have

The matrix S is the correct solution to upper diagonal element of the
matrix B
i.e. sij = bij for i ≤ j ≤ d+ 1

Then, we use backward substitution to solve xi,j at equation
Rxi = si
Assuming:

X = [x1,x2, ...,xd+1]
S = [s1, s2, ..., sd+1]
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Back Substitution

Back substitution
Since R is upper-triangular, we can rewrite the system Rxi = si as

r1,1x1,i + r1,2x2,i + ...+ r1,d−1xd−1,i + r1,dxd,i + r1,d+1xd+1,i = s1,i

r2,2x2 + ...+ r2,d−1xd−1,i + r2,dxd,i + r2,d+1xd+1,i = s2,i
...

rd−1,d−1xd−1,i + rd−1,dxd,i + rd−1,d+1xd+1,i = sd−1,i

rd,dxd,i + rd,d+1xd,i = sd,i

rd+1,d+1xd+1,i = sd+1,i
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Then

We solve only for xij such that
We have i < j ≤ N (Upper triangle elements).

xji = xij

In our case the same value given that we live on the reals.
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Complexity

Equation solving requires
1
3(d+ 1)3 multiply operations.

The total number of multiply operations for matrix inverse
Including Cholesky decomposition is 1

2 (d+ 1)3

Therefore
We have complexity O

(
d3)!!! Per iteration!!! But actually

1
2 (d+ 1)3 multiply operations
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However

As Good Computer Scientists
We want to obtain a better complexity as O

(
n2)!!!

We can obtain such improvements
Using Quasi Newton Methods

Let’s us to develop the solution
For the most popular one

I Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
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The Second Order Approximation

We have

f (x) ≈ f (xk) +∇f (xk) (x− xk) + 1
2 (x− xk)T Hf (xk) (x− xk)

We develop a new equation based in the previous idea by using
x = xk + p

f (x) ≈ f (xk) +∇f (xk)p+ 1
2p

THkp

Here
Hk is an d+ 1× d+ 1 symmetric positive definite matrix that will be
updated through the entire process

67 / 86



Images/cinvestav.jpg

The Second Order Approximation

We have

f (x) ≈ f (xk) +∇f (xk) (x− xk) + 1
2 (x− xk)T Hf (xk) (x− xk)

We develop a new equation based in the previous idea by using
x = xk + p

f (x) ≈ f (xk) +∇f (xk)p+ 1
2p

THkp

Here
Hk is an d+ 1× d+ 1 symmetric positive definite matrix that will be
updated through the entire process

67 / 86



Images/cinvestav.jpg

The Second Order Approximation

We have

f (x) ≈ f (xk) +∇f (xk) (x− xk) + 1
2 (x− xk)T Hf (xk) (x− xk)

We develop a new equation based in the previous idea by using
x = xk + p

f (x) ≈ f (xk) +∇f (xk)p+ 1
2p

THkp

Here
Hk is an d+ 1× d+ 1 symmetric positive definite matrix that will be
updated through the entire process

67 / 86



Images/cinvestav.jpg

For the BFGS

Then, the inverse update of it Hk = B−1
k

In BFGS we go directly for the inverse by setting up:

min
H
‖H −Hk‖

s.t. H = HT

Hyk = sk

with

sk = xk+1 − xk
yk = ∇f (xk+1)−∇f (xk)
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Then, we have

A unique solution will be

Hk+1 =
(
I − ρkskyTk

)
Hk

(
I − ρkyksTk

)
+ ρsks

T
k (1)

where ρk = 1
yT
k
sk
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∂w∂wT

, or in matrix format XTWX, we could
get initial setup
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Algorithm (BFGS Method)

Quasi-Newton Algorithm
Starting point x0, Convergence tolerance e, Inverse Hessian approximation H0

1 k ← 0
2 while ‖∇f (xk+1)‖ > e

3 Compute search direction pk = −Hk∇‖∇f (xk+1)‖
4 Set xk+1 = xk + αkpkwhere αk is obtained from a

linear search (Under Wolfe conditions).
5 Define sk = xk+1 − xk and yk = ∇f (xk+1)−∇f (xk)
6 Compute Hk+1 by means of (Eq. ??)
7 k ← k + 1
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For More
Nocedal, Jorge & Wright, Stephen J. (1999). Numerical
Optimization. Springer-Verlag.
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Danger Will Robinson!!!

Gradient descent using resembles the Perceptron learning algorithm
Problem!!! It will always converge for a suitable step size, regardless of
whether the classes are separable!!!
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Algorithm
Input Max, an initial w0

1 counter ← 0
2 while counter < Max

3 for i← 1, ..., d
4 Randomly pick i
5 Compute a step size δ∗ by approximately

maximize arg minδ f (x+ δei)
6 xi ← xi + δ∗

Where
ei =

(
0 · · · 0 1← i 0 · · · 0

)T
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In the case of Logistic Regression

Thus, we can optimize each wk alternatively by a coordinate-wise
Newton update
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We have the following Complexities per iteration

Complexities
Method Per Iteration Convergence Rate

Cholesky Decomposition d3

2 = O
(
d3) Quadratic

Quasi-Newton BFGS O
(
d2) Super-linearly

Coordinate Ascent O (Nd) Not established
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