Introduction to Machine Learning Logistic Regression

Andres Mendez-Vazquez

May 30, 2020

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation
(2) More on Optimization Methods
- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation

2 More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

Assume the following

Let $Y_{1}, Y_{2}, \ldots, Y_{N}$ independent random variables

Taking values in the set $\{0,1\}$

Assume the following

Let $Y_{1}, Y_{2}, \ldots, Y_{N}$ independent random variables

Taking values in the set $\{0,1\}$

Now, you have a set of fixed vectors

$$
\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}
$$

Assume the following

Let $Y_{1}, Y_{2}, \ldots, Y_{N}$ independent random variables

Taking values in the set $\{0,1\}$

Now, you have a set of fixed vectors

$$
\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}
$$

Mapped to a series of numbers by a weight vector \boldsymbol{w}

$$
\boldsymbol{w}^{T} \boldsymbol{x}_{1}, \boldsymbol{w}^{T} \boldsymbol{x}_{2}, \ldots, \boldsymbol{w}^{T} \boldsymbol{x}_{N}
$$

In our simplest from $[1,2]$

There is a suspected relation

Between $\theta_{i}=P\left(Y_{i}=1\right)$ and $\boldsymbol{w}^{T} \boldsymbol{x}_{i}$

- Here Y is the random variable and y is the value that the random variable can take.

In our simplest from $[1,2]$

There is a suspected relation

Between $\theta_{i}=P\left(Y_{i}=1\right)$ and $\boldsymbol{w}^{T} \boldsymbol{x}_{i}$

- Here Y is the random variable and y is the value that the random variable can take.

Thus we have

$$
y= \begin{cases}1 & \boldsymbol{w}^{T} \boldsymbol{x}+e>0 \\ 0 & \text { else }\end{cases}
$$

Note: Where e is an error with a certain distribution!!!

For Example, Graphically

We have

It is better to user a logit version

We have

Logit Distribution

PDF with support $z \in(-\infty, \infty), \mu$ location and s scale

$$
p(x \mid \mu, s)=\frac{\exp \left\{-\frac{z-\mu}{s}\right\}}{s\left(1+\exp \left\{-\frac{z-\mu}{s}\right\}\right)^{2}}
$$

Logit Distribution

PDF with support $z \in(-\infty, \infty), \mu$ location and s scale

$$
p(x \mid \mu, s)=\frac{\exp \left\{-\frac{z-\mu}{s}\right\}}{s\left(1+\exp \left\{-\frac{z-\mu}{s}\right\}\right)^{2}}
$$

With a CDF

$$
P(Y<z)=\int_{-\infty}^{z} p(y \mid \mu, s) d y=\frac{1}{1+\exp \left\{-\frac{z-\mu}{s}\right\}}
$$

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation

2 More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

In Bayesian Classification

Assignment of a pattern

It is performed by using the posterior probabilities, $P\left(\omega_{i} \mid \boldsymbol{x}\right)$

In Bayesian Classification

Assignment of a pattern

It is performed by using the posterior probabilities, $P\left(\omega_{i} \mid \boldsymbol{x}\right)$
And given K classes, we want

$$
\sum_{i=1}^{K} P\left(\omega_{i} \mid \boldsymbol{x}\right)=1
$$

In Bayesian Classification

Assignment of a pattern

It is performed by using the posterior probabilities, $P\left(\omega_{i} \mid \boldsymbol{x}\right)$
And given K classes, we want

$$
\sum_{i=1}^{K} P\left(\omega_{i} \mid \boldsymbol{x}\right)=1
$$

Such that each

$$
0 \leq P\left(\omega_{i} \mid \boldsymbol{x}\right) \leq 1
$$

Observation

This is a typical example of the discriminative approach

- Where the distribution of data is of no interest.
- In the Logistic Regression the Distribution is imposed over the output!!!

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation

2 More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

The Model

We have the following under the extended features

$$
\log \frac{P\left(\omega_{1} \mid \boldsymbol{x}\right)}{P\left(\omega_{K} \mid \boldsymbol{x}\right)}=\boldsymbol{w}_{1}^{T} \boldsymbol{x}
$$

The Model

We have the following under the extended features

$$
\begin{aligned}
& \log \frac{P\left(\omega_{1} \mid \boldsymbol{x}\right)}{P\left(\omega_{K} \mid \boldsymbol{x}\right)}=\boldsymbol{w}_{1}^{T} \boldsymbol{x} \\
& \log \frac{P\left(\omega_{2} \mid \boldsymbol{x}\right)}{P\left(\omega_{K} \mid \boldsymbol{x}\right)}=\boldsymbol{w}_{2}^{T} \boldsymbol{x}
\end{aligned}
$$

The Model

We have the following under the extended features

$$
\begin{aligned}
\log \frac{P\left(\omega_{1} \mid \boldsymbol{x}\right)}{P\left(\omega_{K} \mid \boldsymbol{x}\right)} & =\boldsymbol{w}_{1}^{T} \boldsymbol{x} \\
\log \frac{P\left(\omega_{2} \mid \boldsymbol{x}\right)}{P\left(\omega_{K} \mid \boldsymbol{x}\right)} & =\boldsymbol{w}_{2}^{T} \boldsymbol{x} \\
\vdots & \\
\log \frac{P\left(\omega_{K-1} \mid \boldsymbol{x}\right)}{P\left(\omega_{K} \mid \boldsymbol{x}\right)} & =\boldsymbol{w}_{K-1}^{T} \boldsymbol{x}
\end{aligned}
$$

Further

We have

The model is specified in terms of $K-1$ log-odds or logit transformations.

Further

We have

The model is specified in terms of $K-1$ log-odds or logit transformations.

And

Although the model uses the last class as the denominator in the odds-ratios.

Further

We have

The model is specified in terms of $K-1$ log-odds or logit transformations.

And

Although the model uses the last class as the denominator in the odds-ratios.

The choice of denominator is arbitrary

- However, because the estimates are equivariant under this choice.
- The action taken in a decision problem should not depend on transformation on the measurement used

Now

How do we find the terms?

$$
P\left(\omega_{1} \mid \boldsymbol{x}\right), P\left(\omega_{2} \mid \boldsymbol{x}\right), \ldots, P\left(\omega_{K} \mid \boldsymbol{x}\right)
$$

It is possible to show that

We have that, for $l=1,2, \ldots, K-1$

$$
\frac{P\left(\omega_{l} \mid \boldsymbol{x}\right)}{P\left(\omega_{K} \mid \boldsymbol{x}\right)}=\exp \left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}
$$

It is possible to show that

We have that, for $l=1,2, \ldots, K-1$

$$
\frac{P\left(\omega_{l} \mid \boldsymbol{x}\right)}{P\left(\omega_{K} \mid \boldsymbol{x}\right)}=\exp \left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}
$$

Therefore

$$
\sum_{l=1}^{K-1} \frac{P\left(\omega_{l} \mid \boldsymbol{x}\right)}{P\left(\omega_{K} \mid \boldsymbol{x}\right)}=\sum_{l=1}^{K-1} \exp \left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}
$$

It is possible to show that

We have that, for $l=1,2, \ldots, K-1$

$$
\frac{P\left(\omega_{l} \mid \boldsymbol{x}\right)}{P\left(\omega_{K} \mid \boldsymbol{x}\right)}=\exp \left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}
$$

Therefore

$$
\sum_{l=1}^{K-1} \frac{P\left(\omega_{l} \mid \boldsymbol{x}\right)}{P\left(\omega_{K} \mid \boldsymbol{x}\right)}=\sum_{l=1}^{K-1} \exp \left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}
$$

Thus

$$
\frac{1-P\left(\omega_{K} \mid \boldsymbol{x}\right)}{P\left(\omega_{K} \mid \boldsymbol{x}\right)}=\sum_{l=1}^{K-1} \exp \left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}
$$

Basically

We have, (Take a look a the board)

$$
P\left(\omega_{K} \mid \boldsymbol{x}\right)=\frac{1}{1+\sum_{l=1}^{K-1} \exp \left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}}
$$

Basically

We have, (Take a look a the board)

$$
P\left(\omega_{K} \mid \boldsymbol{x}\right)=\frac{1}{1+\sum_{l=1}^{K-1} \exp \left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}}
$$

Then

$$
\frac{P\left(\omega_{i} \mid \boldsymbol{x}\right)}{\frac{1+\sum_{l=1}^{K-1} \exp \left\{\boldsymbol{w}_{l}^{T} x\right\}}{1}}=\exp \left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}
$$

Basically

We have, (Take a look a the board)

$$
P\left(\omega_{K} \mid \boldsymbol{x}\right)=\frac{1}{1+\sum_{l=1}^{K-1} \exp \left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}}
$$

Then

$$
\frac{P\left(\omega_{i} \mid \boldsymbol{x}\right)}{\frac{1+\sum_{l=1}^{K-1} \exp \left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}}{1}}=\exp \left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}
$$

For $i=1,2, \ldots, k-1$

$$
P\left(\omega_{i} \mid \boldsymbol{x}\right)=\frac{\exp \left\{\boldsymbol{w}_{i}^{T} \boldsymbol{x}\right\}}{1+\sum_{l=1}^{K-1} \exp \left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}}
$$

Additionally

For K

$$
P\left(\omega_{K} \mid \boldsymbol{x}\right)=\frac{1}{1+\sum_{l=1}^{K-1} \exp \left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}}
$$

Additionally

For K

$$
P\left(\omega_{K} \mid \boldsymbol{x}\right)=\frac{1}{1+\sum_{l=1}^{K-1} \exp \left\{\boldsymbol{w}_{l}^{T} \boldsymbol{x}\right\}}
$$

Easy to see

They sum to one.

A Note in Notation

Given all these parameters, we summarized them

$$
\Theta=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{K-1}\right\}
$$

A Note in Notation

Given all these parameters, we summarized them

$$
\Theta=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{K-1}\right\}
$$

Therefore

$$
P\left(\omega_{l} \mid \boldsymbol{X}=\boldsymbol{x}\right)=p_{l}(\boldsymbol{x} \mid \Theta)
$$

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation
(2) More on Optimization Methods
- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

In the two class case

We have

$$
\begin{aligned}
P_{1}\left(\omega_{1} \mid \boldsymbol{x}\right) & =\frac{\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}\right\}}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}\right\}} \\
P_{2}\left(\omega_{2} \mid \boldsymbol{x}\right) & =\frac{1}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}\right\}}
\end{aligned}
$$

In the two class case

We have

$$
\begin{aligned}
P_{1}\left(\omega_{1} \mid \boldsymbol{x}\right) & =\frac{\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}\right\}}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}\right\}} \\
P_{2}\left(\omega_{2} \mid \boldsymbol{x}\right) & =\frac{1}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}\right\}}
\end{aligned}
$$

A similar model

$$
\begin{aligned}
& P_{1}\left(\omega_{1} \mid \boldsymbol{x}\right)=\frac{\exp \left\{-\boldsymbol{w}^{T} \boldsymbol{x}\right\}}{1+\exp \left\{-\boldsymbol{w}^{T} \boldsymbol{x}\right\}} \\
& P_{2}\left(\omega_{2} \mid \boldsymbol{x}\right)=\frac{1}{1+\exp \left\{-\boldsymbol{w}^{T} \boldsymbol{x}\right\}}
\end{aligned}
$$

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation

2 More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

We have the following split

Using $f(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}$

Then, we have the mapping to

We have

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation

2 More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

A Classic application of Maximum Likelihood

Given a sequence of smaples iid

$$
\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}
$$

A Classic application of Maximum Likelihood

Given a sequence of smaples iid

$$
\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}
$$

We have the following pdf

$$
p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N} \mid \Theta\right)=\prod_{i=1}^{N} p\left(x_{i} \mid \Theta\right)
$$

$P(g=v \mid X)$ Distribution

Where $P(g=v \mid X)$ completely specify the conditional distribution

 We have a multinomial distribution which under the log-likelihood of N observations:$\mathcal{L}(\Theta)=$

$P(g=v \mid X)$ Distribution

Where $P(g=v \mid X)$ completely specify the conditional distribution

 We have a multinomial distribution which under the log-likelihood of N observations:$$
\mathcal{L}(\Theta)=\log p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N} \mid \Theta\right)=
$$

$P(g=v \mid X)$ Distribution

Where $P(g=v \mid X)$ completely specify the conditional distribution

 We have a multinomial distribution which under the log-likelihood of N observations:$$
\mathcal{L}(\Theta)=\log p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N} \mid \Theta\right)=\log \prod_{i=1}^{N} p_{g_{i}}\left(\boldsymbol{x}_{i} \mid \theta\right)=
$$

$P(g=v \mid X)$ Distribution

Where $P(g=v \mid X)$ completely specify the conditional distribution

 We have a multinomial distribution which under the log-likelihood of N observations:$$
\mathcal{L}(\Theta)=\log p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N} \mid \Theta\right)=\log \prod_{i=1}^{N} p_{g_{i}}\left(\boldsymbol{x}_{i} \mid \theta\right)=\sum_{i=1}^{N} \log p_{g_{i}}\left(\boldsymbol{x}_{i} \mid \theta\right)
$$

Where

$P(g=v \mid X)$ Distribution

Where $P(g=v \mid X)$ completely specify the conditional distribution

We have a multinomial distribution which under the log-likelihood of N observations:

$$
\mathcal{L}(\Theta)=\log p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N} \mid \Theta\right)=\log \prod_{i=1}^{N} p_{g_{i}}\left(\boldsymbol{x}_{i} \mid \theta\right)=\sum_{i=1}^{N} \log p_{g_{i}}\left(\boldsymbol{x}_{i} \mid \theta\right)
$$

Where

g_{i} represent the class that \boldsymbol{x}_{i} belongs.

$$
g_{i}= \begin{cases}1 & \text { if } \boldsymbol{x}_{i} \in \text { Class } 1 \\ 2 & \text { if } \boldsymbol{x}_{i} \in \text { Class } 2\end{cases}
$$

How do we integrate this into a Cost Function?

Clearly, we have two distributions
We need to represent the distributions into the functions $p_{g_{i}}\left(\boldsymbol{x}_{i} \mid \theta\right)$.

How do we integrate this into a Cost Function?

Clearly, we have two distributions
We need to represent the distributions into the functions $p_{g_{i}}\left(\boldsymbol{x}_{i} \mid \theta\right)$.
Why not to have all the distributions into this function

$$
p_{g_{i}}\left(\boldsymbol{x}_{i} \mid \theta\right)=\prod_{l=1}^{K-1} p\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}_{l}\right)^{I\left\{\boldsymbol{x}_{i} \in \omega_{l}\right\}}
$$

How do we integrate this into a Cost Function?

Clearly, we have two distributions

We need to represent the distributions into the functions $p_{g_{i}}\left(\boldsymbol{x}_{i} \mid \theta\right)$.
Why not to have all the distributions into this function

$$
p_{g_{i}}\left(\boldsymbol{x}_{i} \mid \theta\right)=\prod_{l=1}^{K-1} p\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}_{l}\right)^{I\left\{\boldsymbol{x}_{i} \in \omega_{l}\right\}}
$$

It is easy with the two classes

Given that we have a binary situation!!!

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation

2 More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

Given the two case

We have then a Bernoulli distribution

$$
\begin{aligned}
& p_{1}\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}\right)=\left[\frac{\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}\right\}}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}\right\}}\right]^{y_{i}} \\
& p_{2}\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}\right)=\left[\frac{1}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}\right\}}\right]^{1-y_{i}}
\end{aligned}
$$

Given the two case

We have then a Bernoulli distribution

$$
\begin{aligned}
& p_{1}\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}\right)=\left[\frac{\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}\right\}}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}\right\}}\right]^{y_{i}} \\
& p_{2}\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}\right)=\left[\frac{1}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}\right\}}\right]^{1-y_{i}}
\end{aligned}
$$

With

$$
\begin{aligned}
& y_{i}=1 \text { if } \boldsymbol{x}_{i} \in \text { Class } 1 \\
& y_{i}=0 \text { if } \boldsymbol{x}_{i} \in \text { Class } 2
\end{aligned}
$$

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation

2 More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

We have the following

Cost Function

$$
\begin{aligned}
\mathcal{L}(\boldsymbol{w})= & \sum_{i=1}^{N}\left\{y_{i} \log p_{1}\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}\right)+\right. \\
& \left.\left(1-y_{i}\right) \log \left(1-p_{1}\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}\right)\right)\right\}
\end{aligned}
$$

We have the following

Cost Function

$$
\begin{aligned}
\mathcal{L}(\boldsymbol{w})= & \sum_{i=1}^{N}\left\{y_{i} \log p_{1}\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}\right)+\right. \\
& \left.\left(1-y_{i}\right) \log \left(1-p_{1}\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}\right)\right)\right\}
\end{aligned}
$$

After some reductions

$$
\mathcal{L}(\boldsymbol{w})=\sum_{i=1}^{N}\left\{y_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}-\log \left(1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}\right)\right\}
$$

Now, we derive and set it to zero
We have

$$
\frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w}}=\sum_{i=1}^{N} \boldsymbol{x}_{i}\left(y_{i}-\frac{\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right)=0
$$

Now, we derive and set it to zero

We have

$$
\frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w}}=\sum_{i=1}^{N} \boldsymbol{x}_{i}\left(y_{i}-\frac{\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right)=0
$$

Which are $d+1$ equations nonlinear

$$
\sum_{i=1}^{N} \boldsymbol{x}_{i}\left(y_{i}-p\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}\right)\right)=\left(\begin{array}{c}
\sum_{i=1}^{N} 1 \times\left(y_{i}-\frac{\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right) \\
\sum_{i=1}^{N} x_{1}^{i}\left(y_{i}-\frac{\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right) \\
\sum_{i=1}^{N} x_{2}^{i}\left(y_{i}-\frac{\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right) \\
\vdots \\
\sum_{i=1}^{N} x_{d}^{i}\left(y_{i}-\frac{\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right)
\end{array}\right)=\mathbf{0}
$$

It is know as a scoring function.

Finally

In other words you

(1) $d+1$ nonlinear equations in \boldsymbol{w}.

Finally

In other words you

(1) $d+1$ nonlinear equations in \boldsymbol{w}.
(2) For example, from the first equation:

Finally

In other words you

(1) $d+1$ nonlinear equations in \boldsymbol{w}.
(3) For example, from the first equation:

$$
\sum_{i=1}^{N} y_{i}=\sum_{i=1}^{N} p\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}\right)
$$

- The expected number of class ones matches the observed number.

Finally

In other words you

(1) $d+1$ nonlinear equations in \boldsymbol{w}.
(c) For example, from the first equation:

$$
\sum_{i=1}^{N} y_{i}=\sum_{i=1}^{N} p\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}\right)
$$

- The expected number of class ones matches the observed number.
- And hence also class twos.

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation

2 More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

To solve the previous equations [3]

We use the Newton-Raphson Method to find the roots or zeros
It comes from the first Taylor Approximation

To solve the previous equations [3]

We use the Newton-Raphson Method to find the roots or zeros
It comes from the first Taylor Approximation

$$
f(x+h) \approx f(x)+h f^{\prime}(x)
$$

To solve the previous equations [3]

We use the Newton-Raphson Method to find the roots or zeros
It comes from the first Taylor Approximation

$$
f(x+h) \approx f(x)+h f^{\prime}(x)
$$

Thus we have for a root r of function f
We have
(1) Assume a good estimate of r, x_{0}

To solve the previous equations [3]

We use the Newton-Raphson Method to find the roots or zeros
It comes from the first Taylor Approximation

$$
f(x+h) \approx f(x)+h f^{\prime}(x)
$$

Thus we have for a root r of function f
We have
(1) Assume a good estimate of r, x_{0}
(2) Thus we have $r=x_{0}+h$

To solve the previous equations [3]

We use the Newton-Raphson Method to find the roots or zeros
It comes from the first Taylor Approximation

$$
f(x+h) \approx f(x)+h f^{\prime}(x)
$$

Thus we have for a root r of function f
We have
(1) Assume a good estimate of r, x_{0}
(2) Thus we have $r=x_{0}+h$
(3) $\operatorname{Or} h=r-x_{0}$

We have then

From Taylor

$$
0=f(r)=f\left(x_{0}+h\right) \approx f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)
$$

We have then

From Taylor

$$
0=f(r)=f\left(x_{0}+h\right) \approx f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)
$$

Thus, as long $f^{\prime}\left(x_{0}\right)$ is not close to 0

$$
h \approx-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

We have then

From Taylor

$$
0=f(r)=f\left(x_{0}+h\right) \approx f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)
$$

Thus, as long $f^{\prime}\left(x_{0}\right)$ is not close to 0

$$
h \approx-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Thus

$$
r=x_{0}+h \approx x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

We have our final improving

We have

$$
x_{1} \approx x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Then, on the scoring function

For this, we need the Hessian of the function

$$
\frac{\partial^{2} \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w} \partial \boldsymbol{w}^{T}}=-\sum_{i=1}^{N} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\left[\frac{\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right]\left[1-\frac{\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right]
$$

Then, on the scoring function

For this, we need the Hessian of the function

$$
\frac{\partial^{2} \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w} \partial \boldsymbol{w}^{T}}=-\sum_{i=1}^{N} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\left[\frac{\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right]\left[1-\frac{\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}{1+\exp \left\{\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right]
$$

Thus, we have at a starting point $w^{\text {old }}$

$$
\boldsymbol{w}^{\text {new }}=\boldsymbol{w}^{\text {old }}-\left(\frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w} \partial \boldsymbol{w}^{T}}\right)^{-1} \frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w}}
$$

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation

2 More on Optimization Methods

- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

We can rewrite all as matrix notations

Assume

(1) Let \boldsymbol{y} denotes the vector of y_{i}

We can rewrite all as matrix notations

Assume

(1) Let \boldsymbol{y} denotes the vector of y_{i}
(2) X is the data matrix $N \times(d+1)$

We can rewrite all as matrix notations

Assume

(1) Let \boldsymbol{y} denotes the vector of y_{i}
(2) X is the data matrix $N \times(d+1)$
(3) \boldsymbol{p} the vector of fitted probabilities with the $i^{\text {th }}$ element $p\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}^{\text {old }}\right)$

We can rewrite all as matrix notations

Assume

(1) Let \boldsymbol{y} denotes the vector of y_{i}
(2) X is the data matrix $N \times(d+1)$
(3) \boldsymbol{p} the vector of fitted probabilities with the $i^{\text {th }}$ element $p\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}^{\text {old }}\right)$
(9) W a $N \times N$ diagonal matrix of weights with the $i^{t h}$ diagonal element

$$
p\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}^{o l d}\right)\left[1-p\left(\boldsymbol{x}_{i} \mid \boldsymbol{w}^{o l d}\right)\right]
$$

Then, we have

For each updating term

$$
\begin{aligned}
\frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w}} & =X^{T}(\boldsymbol{y}-\boldsymbol{p}) \\
\frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w} \partial \boldsymbol{w}^{T}} & =-X^{T} W X
\end{aligned}
$$

Then, we have

Then, the Newton Step
$\boldsymbol{w}^{\text {new }}=\boldsymbol{w}^{\text {old }}+\left(X^{T} W X\right)^{-1} X^{T}(\boldsymbol{y}-\boldsymbol{p})$

Then, we have

Then, the Newton Step

$$
\begin{aligned}
\boldsymbol{w}^{\text {new }} & =\boldsymbol{w}^{\text {old }}+\left(X^{T} W X\right)^{-1} X^{T}(\boldsymbol{y}-\boldsymbol{p}) \\
& =I \boldsymbol{w}^{\text {old }}+\left(X^{T} W X\right)^{-1} X^{T} I(\boldsymbol{y}-\boldsymbol{p})
\end{aligned}
$$

Then, we have

Then, the Newton Step

$$
\begin{aligned}
\boldsymbol{w}^{n e w} & =\boldsymbol{w}^{\text {old }}+\left(X^{T} W X\right)^{-1} X^{T}(\boldsymbol{y}-\boldsymbol{p}) \\
& =I \boldsymbol{w}^{\text {old }}+\left(X^{T} W X\right)^{-1} X^{T} I(\boldsymbol{y}-\boldsymbol{p}) \\
& =\left(X^{T} W X\right)^{-1} X^{T} W X \boldsymbol{w}^{\text {old }}+\left(X^{T} W X\right)^{-1} X^{T} W W^{-1}(\boldsymbol{y}-\boldsymbol{p})
\end{aligned}
$$

Then, we have

Then, the Newton Step

$$
\begin{aligned}
\boldsymbol{w}^{\text {new }} & =\boldsymbol{w}^{o l d}+\left(X^{T} W X\right)^{-1} X^{T}(\boldsymbol{y}-\boldsymbol{p}) \\
& =I \boldsymbol{w}^{o l d}+\left(X^{T} W X\right)^{-1} X^{T} I(\boldsymbol{y}-\boldsymbol{p}) \\
& =\left(X^{T} W X\right)^{-1} X^{T} W X \boldsymbol{w}^{o l d}+\left(X^{T} W X\right)^{-1} X^{T} W W^{-1}(\boldsymbol{y}-\boldsymbol{p}) \\
& =\left(X^{T} W X\right)^{-1} X^{T} W\left[X \boldsymbol{w}^{o l d}+W^{-1}(\boldsymbol{y}-\boldsymbol{p})\right]
\end{aligned}
$$

Then, we have

Then, the Newton Step

$$
\begin{aligned}
\boldsymbol{w}^{n e w} & =\boldsymbol{w}^{\text {old }}+\left(X^{T} W X\right)^{-1} X^{T}(\boldsymbol{y}-\boldsymbol{p}) \\
& =I \boldsymbol{w}^{\text {old }}+\left(X^{T} W X\right)^{-1} X^{T} I(\boldsymbol{y}-\boldsymbol{p}) \\
& =\left(X^{T} W X\right)^{-1} X^{T} W X \boldsymbol{w}^{\text {old }}+\left(X^{T} W X\right)^{-1} X^{T} W W^{-1}(\boldsymbol{y}-\boldsymbol{p}) \\
& =\left(X^{T} W X\right)^{-1} X^{T} W\left[X \boldsymbol{w}^{\text {old }}+W^{-1}(\boldsymbol{y}-\boldsymbol{p})\right] \\
& =\left(X^{T} W X\right)^{-1} X^{T} W \boldsymbol{z}
\end{aligned}
$$

Then

Abstract

We have Re-expressed the Newton step as a weighted least squares step.

Then

We have

Re-expressed the Newton step as a weighted least squares step.
With a the adjusted response as

$$
\boldsymbol{z}=X \boldsymbol{w}^{\text {old }}+W^{-1}(\boldsymbol{y}-\boldsymbol{p})
$$

This New Algorithm

It is know as
Iteratively Re-weighted Least Squares or IRLS

This New Algorithm

It is know as
Iteratively Re-weighted Least Squares or IRLS

After all at each iteration, it solves

A weighted Least Square Problem

$$
\boldsymbol{w}^{n e w} \leftarrow \arg \min _{\boldsymbol{w}}(\boldsymbol{z}-X \boldsymbol{w})^{T} W(\boldsymbol{z}-X \boldsymbol{w})
$$

Observations

Good Starting Point $w=0$

However, convergence is never guaranteed!!!

Observations

Good Starting Point $\boldsymbol{w}=0$

However, convergence is never guaranteed!!!

However

- Typically the algorithm does converge, since the log-likelihood is concave.
- But overshooting can occur.

Observations

$L\left(\boldsymbol{\theta}_{j}\right)=\log \prod_{j=1}^{n} p\left(\boldsymbol{x}_{j} \mid \boldsymbol{\theta}_{j}\right)$

Observations

$L\left(\boldsymbol{\theta}_{j}\right)=\log \prod_{j=1}^{n} p\left(\boldsymbol{x}_{j} \mid \boldsymbol{\theta}_{j}\right)$

Halving Solve the Problem

Perfect!!!

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation
(2) More on Optimization Methods
- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

The final question

After all, we always want to have a better solution

- We know that $\left(\frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w} \partial \boldsymbol{w}^{T}}\right)^{-1}$ takes $O\left(d^{3}\right) \ldots$ and we want something better!!!

The final question

After all, we always want to have a better solution

- We know that $\left(\frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w} \partial \boldsymbol{w}^{T}}\right)^{-1}$ takes $O\left(d^{3}\right) \ldots$. and we want something better!!!

We have the following methods

- Colesky Decomposition

The final question

After all, we always want to have a better solution

- We know that $\left(\frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w} \partial \boldsymbol{w}^{T}}\right)^{-1}$ takes $O\left(d^{3}\right) \ldots$ and we want something better!!!

We have the following methods

- Colesky Decomposition
- Quasi-Newton Method

The final question

After all, we always want to have a better solution

- We know that $\left(\frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w} \partial \boldsymbol{w}^{T}}\right)^{-1}$ takes $O\left(d^{3}\right) \ldots$ and we want something better!!!

We have the following methods

- Colesky Decomposition
- Quasi-Newton Method
- Coordinate Ascent

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation
(2) More on Optimization Methods
- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

We can decompose the matrix

Given $A=X^{T} W X$ and $Y=X^{T} W \boldsymbol{z}$, you have

$$
A x=Y
$$

We can decompose the matrix

Given $A=X^{T} W X$ and $Y=X^{T} W \boldsymbol{z}$, you have

$$
A x=Y
$$

We want to obtain

$$
x=A^{-1} Y
$$

This can be seen as a system of linear equations

As you can see

- We start with a set of linear equations with $d+1$ unknowns:

This can be seen as a system of linear equations

As you can see

- We start with a set of linear equations with $d+1$ unknowns:

$$
x_{1}, x_{2}, \ldots, x_{d+1} \begin{cases}a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 d+1} x_{d+1} & =y_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 d+1} x_{d+1} & =y_{2} \\ \vdots & \vdots \\ a_{d+11} x_{1}+a_{d+12} x_{2}+\ldots+a_{d+1 d+1} x_{n} & =y_{d+1}\end{cases}
$$

This can be seen as a system of linear equations

As you can see

- We start with a set of linear equations with $d+1$ unknowns:

$$
x_{1}, x_{2}, \ldots, x_{d+1} \begin{cases}a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 d+1} x_{d+1} & =y_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 d+1} x_{d+1} & =y_{2} \\ \vdots & \vdots \\ a_{d+11} x_{1}+a_{d+12} x_{2}+\ldots+a_{d+1 d+1} x_{n} & =y_{d+1}\end{cases}
$$

Thus

- A set of values for $x_{1}, x_{2}, \ldots, x_{n}$ that satisfy all of the equations simultaneously is said to be a solution to these equations.

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation
(2) More on Optimization Methods
- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

What is the Cholesky Decomposition? [4]

It is a method that factorize a matrix

- $A \in \mathbb{R}^{d+1 \times d+1}$ is a positive definite Hermitian matrix

What is the Cholesky Decomposition? [4]

It is a method that factorize a matrix

- $A \in \mathbb{R}^{d+1 \times d+1}$ is a positive definite Hermitian matrix

Positive definite matrix

$$
\boldsymbol{x}^{T} A \boldsymbol{x}>0 \text { for all } \boldsymbol{x} \in \mathbb{R}^{d+1 \times d+1}
$$

What is the Cholesky Decomposition? [4]

It is a method that factorize a matrix

- $A \in \mathbb{R}^{d+1 \times d+1}$ is a positive definite Hermitian matrix

Positive definite matrix

$$
\boldsymbol{x}^{T} A \boldsymbol{x}>0 \text { for all } \boldsymbol{x} \in \mathbb{R}^{d+1 \times d+1}
$$

Hermitian matrix in the Real Domain (Symmetric Matrix)

$$
A=A^{T}
$$

Therefore

Cholesky decomposes A into lower or upper triangular matrix and their conjugate transpose

$$
\begin{aligned}
A & =L L^{T} \\
A & =R^{T} R
\end{aligned}
$$

Therefore

Cholesky decomposes A into lower or upper triangular matrix and their conjugate transpose

$$
\begin{aligned}
A & =L L^{T} \\
A & =R^{T} R
\end{aligned}
$$

Thus, we can use the Cholensky decomposition

- The Cholensky decomposition is of order $O\left(d^{3}\right)$ and requires $\frac{1}{6} d^{3}$ FLOP operations.

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation
(2) More on Optimization Methods
- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

We have

The matrices $A \in \mathbb{R}^{d+1 \times d+1}$ and $X=A^{-1}$

$$
A X=I
$$

We have

The matrices $A \in \mathbb{R}^{d+1 \times d+1}$ and $X=A^{-1}$

$$
A X=I
$$

From Cholensky, the decomposition of A

$$
R^{T} R X=I
$$

We have

The matrices $A \in \mathbb{R}^{d+1 \times d+1}$ and $X=A^{-1}$

$$
A X=I
$$

From Cholensky, the decomposition of A

$$
R^{T} R X=I
$$

If we define $R X=B$

$$
R^{T} B=I
$$

Now

If $B=\left(R^{T}\right)^{-1}=L^{-1}$ for $L=R^{T}$
(1) We note that the inverse of the lower triangular matrix L is lower triangular.
(2) The diagonal entries of L^{-1} are the reciprocal of diagonal entries of L

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{1,1} & 0 & \cdots & 0 \\
a_{2,1} & a_{2,2} & 0 & \vdots \\
\vdots & \vdots & \ddots & 0 \\
a_{d+1,1} & a_{d+1,2} & \cdots & a_{d+1, d+1}
\end{array}\right)\left(\begin{array}{cccc}
b_{1,1} & 0 & \cdots & 0 \\
b_{2,1} & b_{2,2} & 0 & \vdots \\
\vdots & \vdots & \ddots & 0 \\
b_{d+1,1} & b_{d+1,2} & \cdots & b_{d+1, d+1}
\end{array}\right) \\
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & 0 & \vdots \\
\vdots & 0 & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right)
\end{gathered}
$$

Now

Now, we construct the following matrix S with entries

$$
s_{i, j}= \begin{cases}\frac{1}{l_{i, i}} & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Now, we have

The matrix S is the correct solution to upper diagonal element of the matrix B
i.e. $s_{i j}=b_{i j}$ for $i \leq j \leq d+1$

Now, we have

The matrix S is the correct solution to upper diagonal element of the matrix B
i.e. $s_{i j}=b_{i j}$ for $i \leq j \leq d+1$

Then, we use backward substitution to solve $x_{i, j}$ at equation $R x_{i}=s_{i}$
Assuming:

$$
\begin{aligned}
X & =\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{d+1}\right] \\
S & =\left[\boldsymbol{s}_{1}, \boldsymbol{s}_{2}, \ldots, \boldsymbol{s}_{d+1}\right]
\end{aligned}
$$

Back Substitution

Back substitution

Since R is upper-triangular, we can rewrite the system $R x_{i}=s_{i}$ as

$$
\begin{aligned}
r_{1,1} x_{1, i}+r_{1,2} x_{2, i}+\ldots+r_{1, d-1} x_{d-1, i}+r_{1, d} x_{d, i}+r_{1, d+1} x_{d+1, i} & =s_{1, i} \\
r_{2,2} x_{2}+\ldots+r_{2, d-1} x_{d-1, i}+r_{2, d} x_{d, i}+r_{2, d+1} x_{d+1, i} & =s_{2, i} \\
& \vdots \\
r_{d-1, d-1} x_{d-1, i}+r_{d-1, d} x_{d, i}+r_{d-1, d+1} x_{d+1, i} & =s_{d-1, i} \\
r_{d, d} x_{d, i}+r_{d, d+1} x_{d, i} & =s_{d, i} \\
r_{d+1, d+1} x_{d+1, i} & =s_{d+1, i}
\end{aligned}
$$

Then

We solve only for $x_{i j}$ such that

- We have $i<j \leq N$ (Upper triangle elements).

Then

We solve only for $x_{i j}$ such that

- We have $i<j \leq N$ (Upper triangle elements).

$$
x_{j i}=\overline{x_{i j}}
$$

- In our case the same value given that we live on the reals.

Complexity

Equation solving requires

- $\frac{1}{3}(d+1)^{3}$ multiply operations.

Complexity

Equation solving requires

- $\frac{1}{3}(d+1)^{3}$ multiply operations.

The total number of multiply operations for matrix inverse

- Including Cholesky decomposition is $\frac{1}{2}(d+1)^{3}$

Complexity

Equation solving requires

- $\frac{1}{3}(d+1)^{3}$ multiply operations.

The total number of multiply operations for matrix inverse

- Including Cholesky decomposition is $\frac{1}{2}(d+1)^{3}$

Therefore

- We have complexity $O\left(d^{3}\right)$!!! Per iteration!!! But actually $\frac{1}{2}(d+1)^{3}$ multiply operations

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation
(2) More on Optimization Methods
- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

However

As Good Computer Scientists

We want to obtain a better complexity as $O\left(n^{2}\right)!!!$

However

As Good Computer Scientists

We want to obtain a better complexity as $O\left(n^{2}\right)!!!$

We can obtain such improvements

Using Quasi Newton Methods

However

As Good Computer Scientists

We want to obtain a better complexity as $O\left(n^{2}\right)!!!$

We can obtain such improvements

Using Quasi Newton Methods

Let's us to develop the solution

- For the most popular one
- Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation
(2) More on Optimization Methods
- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

The Second Order Approximation

We have

$$
f(\boldsymbol{x}) \approx f\left(\boldsymbol{x}_{k}\right)+\nabla f\left(\boldsymbol{x}_{k}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right)+\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right)^{T} \boldsymbol{H} f\left(\boldsymbol{x}_{k}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right)
$$

The Second Order Approximation

We have

$$
f(\boldsymbol{x}) \approx f\left(\boldsymbol{x}_{k}\right)+\nabla f\left(\boldsymbol{x}_{k}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right)+\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right)^{T} \boldsymbol{H} f\left(\boldsymbol{x}_{k}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right)
$$

We develop a new equation based in the previous idea by using $\boldsymbol{x}=\boldsymbol{x}_{k}+\boldsymbol{p}$

$$
f(\boldsymbol{x}) \approx f\left(\boldsymbol{x}_{k}\right)+\nabla f\left(\boldsymbol{x}_{k}\right) \boldsymbol{p}+\frac{1}{2} \boldsymbol{p}^{T} H_{k} \boldsymbol{p}
$$

The Second Order Approximation

We have

$$
f(\boldsymbol{x}) \approx f\left(\boldsymbol{x}_{k}\right)+\nabla f\left(\boldsymbol{x}_{k}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right)+\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right)^{T} \boldsymbol{H} f\left(\boldsymbol{x}_{k}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right)
$$

We develop a new equation based in the previous idea by using $\boldsymbol{x}=\boldsymbol{x}_{k}+\boldsymbol{p}$

$$
f(\boldsymbol{x}) \approx f\left(\boldsymbol{x}_{k}\right)+\nabla f\left(\boldsymbol{x}_{k}\right) \boldsymbol{p}+\frac{1}{2} \boldsymbol{p}^{T} H_{k} \boldsymbol{p}
$$

Here

- H_{k} is an $d+1 \times d+1$ symmetric positive definite matrix that will be updated through the entire process

For the BFGS

Then, the inverse update of it $H_{k}=B_{k}^{-1}$
In BFGS we go directly for the inverse by setting up:

$$
\begin{gathered}
\min _{H}\left\|H-H_{k}\right\| \\
\text { s.t. } H=H^{T} \\
H y_{k}=s_{k}
\end{gathered}
$$

with

$$
\begin{aligned}
& s_{k}=\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k} \\
& y_{k}=\nabla f\left(\boldsymbol{x}_{k+1}\right)-\nabla f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

Then, we have

Then, we have

A unique solution will be

$$
\begin{equation*}
H_{k+1}=\left(I-\rho_{k} s_{k} y_{k}^{T}\right) H_{k}\left(I-\rho_{k} y_{k} s_{k}^{T}\right)+\rho s_{k} s_{k}^{T} \tag{1}
\end{equation*}
$$

where $\rho_{k}=\frac{1}{y_{k}^{T} s_{k}}$

Complexity of Generating H_{k+1}

We notice that the complexity of calculating

$$
s_{k} s_{k}^{T}, s_{k} s_{k}^{T}, s_{k} y_{k}^{T}
$$

- It is $O\left(d^{2}\right)$

Complexity of Generating H_{k+1}

We notice that the complexity of calculating

$$
s_{k} s_{k}^{T}, s_{k} s_{k}^{T}, s_{k} y_{k}^{T}
$$

- It is $O\left(d^{2}\right)$

Why? For Example

$$
\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{d}
\end{array}\right)\left(\begin{array}{llll}
s_{1} & s_{2} & \cdots & s_{d}
\end{array}\right)=\left(\begin{array}{cccc}
s_{1}^{2} & s_{1} s_{2} & \cdots & s_{1} s_{d} \\
s_{2} s_{1} & s_{2}^{2} & \cdots & s_{2} s_{d} \\
\vdots & \vdots & \ddots & \vdots \\
s_{d} s_{1} & s_{d} s_{2} & \cdots & s_{d}^{2}
\end{array}\right) \text {-Equal to } d^{2}
$$

Finally

Finally

Thus

- The sum on the term H_{k+1} has a complexity of $O\left(d^{2}\right)$

The total complexity

$$
O\left(d^{2}\right)
$$

Problem

There is no magic formula to find an initial H_{0}

We can use specific information about the problem:

Problem

There is no magic formula to find an initial H_{0}

We can use specific information about the problem:

- For instance by setting it to the inverse of an approximate Hessian calculated by finite differences at \boldsymbol{x}_{0}

Problem

There is no magic formula to find an initial H_{0}

We can use specific information about the problem:

- For instance by setting it to the inverse of an approximate Hessian calculated by finite differences at \boldsymbol{x}_{0}
- In our case, we have $\frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w} \partial \boldsymbol{w}^{T}}$, or in matrix format $X^{T} W X$, we could get initial setup

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation
(2) More on Optimization Methods
- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

Algorithm (BFGS Method)

Quasi-Newton Algorithm

- Starting point x_{0}, Convergence tolerance e, Inverse Hessian approximation H_{0}

Algorithm (BFGS Method)

Quasi-Newton Algorithm

- Starting point x_{0}, Convergence tolerance e, Inverse Hessian approximation H_{0}
(1) $k \leftarrow 0$

Algorithm (BFGS Method)

Quasi-Newton Algorithm

- Starting point x_{0}, Convergence tolerance e, Inverse Hessian approximation H_{0}
(1) $k \leftarrow 0$
(2) while $\left\|\nabla f\left(\boldsymbol{x}_{k+1}\right)\right\|>e$

Algorithm (BFGS Method)

Quasi-Newton Algorithm

- Starting point x_{0}, Convergence tolerance e, Inverse Hessian approximation H_{0}
(1) $k \leftarrow 0$
(2) while $\left\|\nabla f\left(\boldsymbol{x}_{k+1}\right)\right\|>e$
(3) Compute search direction $\boldsymbol{p}_{k}=-H_{k} \nabla\left\|\nabla f\left(\boldsymbol{x}_{k+1}\right)\right\|$

Algorithm (BFGS Method)

Quasi-Newton Algorithm

- Starting point x_{0}, Convergence tolerance e, Inverse Hessian approximation H_{0}
(1) $k \leftarrow 0$
(2) while $\left\|\nabla f\left(\boldsymbol{x}_{k+1}\right)\right\|>e$
(3) Compute search direction $\boldsymbol{p}_{k}=-H_{k} \nabla\left\|\nabla f\left(\boldsymbol{x}_{k+1}\right)\right\|$

4. Set $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{p}_{k}$ where α_{k} is obtained from a linear search (Under Wolfe conditions).

Algorithm (BFGS Method)

Quasi-Newton Algorithm

- Starting point x_{0}, Convergence tolerance e, Inverse Hessian approximation H_{0}
(1) $k \leftarrow 0$
(2) while $\left\|\nabla f\left(\boldsymbol{x}_{k+1}\right)\right\|>e$
(3) Compute search direction $\boldsymbol{p}_{k}=-H_{k} \nabla\left\|\nabla f\left(\boldsymbol{x}_{k+1}\right)\right\|$
(4) Set $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{p}_{k}$ where α_{k} is obtained from a linear search (Under Wolfe conditions).
(5) Define $s_{k}=\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}$ and $y_{k}=\nabla f\left(\boldsymbol{x}_{k+1}\right)-\nabla f\left(\boldsymbol{x}_{k}\right)$

Algorithm (BFGS Method)

Quasi-Newton Algorithm

- Starting point x_{0}, Convergence tolerance e, Inverse Hessian approximation H_{0}
(1) $k \leftarrow 0$
(2) while $\left\|\nabla f\left(\boldsymbol{x}_{k+1}\right)\right\|>e$
(3) Compute search direction $\boldsymbol{p}_{k}=-H_{k} \nabla\left\|\nabla f\left(\boldsymbol{x}_{k+1}\right)\right\|$

4. Set $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{p}_{k}$ where α_{k} is obtained from a linear search (Under Wolfe conditions).
(5) Define $s_{k}=\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}$ and $y_{k}=\nabla f\left(\boldsymbol{x}_{k+1}\right)-\nabla f\left(\boldsymbol{x}_{k}\right)$
(6) Compute H_{k+1} by means of (Eq. ??)

Algorithm (BFGS Method)

Quasi-Newton Algorithm

- Starting point x_{0}, Convergence tolerance e, Inverse Hessian approximation H_{0}
(1) $k \leftarrow 0$
(2) while $\left\|\nabla f\left(\boldsymbol{x}_{k+1}\right)\right\|>e$
(3) Compute search direction $\boldsymbol{p}_{k}=-H_{k} \nabla\left\|\nabla f\left(\boldsymbol{x}_{k+1}\right)\right\|$
(4) Set $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{p}_{k}$ where α_{k} is obtained from a linear search (Under Wolfe conditions).
(5) Define $s_{k}=\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}$ and $y_{k}=\nabla f\left(\boldsymbol{x}_{k+1}\right)-\nabla f\left(\boldsymbol{x}_{k}\right)$
(6) Compute H_{k+1} by means of (Eq. ??)
(7) $k \leftarrow k+1$

Complexity

The

- Cost of update or inverse update is $O\left(d^{2}\right)$ operations per iteration.

Complexity

The

- Cost of update or inverse update is $O\left(d^{2}\right)$ operations per iteration.

For More

- Nocedal, Jorge \& Wright, Stephen J. (1999). Numerical Optimization. Springer-Verlag.

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation
(2) More on Optimization Methods
- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

Given the following [5]

Because the likelihood is concave

Caution

Here, we change the labeling to $y_{i}= \pm 1$ with

$$
p\left(y_{i}= \pm 1 \mid \boldsymbol{x}, \boldsymbol{w}\right)=\sigma\left(y \boldsymbol{w}^{T} \boldsymbol{x}\right)=\frac{1}{1+\exp \left\{-y \boldsymbol{w}^{T} \boldsymbol{x}\right\}}
$$

Caution

Here, we change the labeling to $y_{i}= \pm 1$ with

$$
p\left(y_{i}= \pm 1 \mid \boldsymbol{x}, \boldsymbol{w}\right)=\sigma\left(y \boldsymbol{w}^{T} \boldsymbol{x}\right)=\frac{1}{1+\exp \left\{-y \boldsymbol{w}^{T} \boldsymbol{x}\right\}}
$$

Thus, we have the following log likelihood under regularization $\lambda>0$

$$
\mathcal{L}(\boldsymbol{w})=-\sum_{i=1}^{N} \log \left\{1+\exp \left\{-y_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}\right\}-\frac{\lambda}{2} \boldsymbol{w}^{T} \boldsymbol{w}
$$

Caution

Here, we change the labeling to $y_{i}= \pm 1$ with

$$
p\left(y_{i}= \pm 1 \mid \boldsymbol{x}, \boldsymbol{w}\right)=\sigma\left(y \boldsymbol{w}^{T} \boldsymbol{x}\right)=\frac{1}{1+\exp \left\{-y \boldsymbol{w}^{T} \boldsymbol{x}\right\}}
$$

Thus, we have the following log likelihood under regularization $\lambda>0$

$$
\mathcal{L}(\boldsymbol{w})=-\sum_{i=1}^{N} \log \left\{1+\exp \left\{-y_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}\right\}-\frac{\lambda}{2} \boldsymbol{w}^{T} \boldsymbol{w}
$$

It is possible to get a Gradient Descent

$$
\nabla_{\boldsymbol{w}} l(\boldsymbol{w})=\sum_{i=1}^{N}\left\{1-\frac{1}{1+\exp \left\{-y_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right\} y_{i} \boldsymbol{x}_{i}-\lambda \boldsymbol{w}
$$

Danger Will Robinson!!!

Gradient descent using resembles the Perceptron learning algorithm Problem!!! It will always converge for a suitable step size, regardless of whether the classes are separable!!!

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation
(2) More on Optimization Methods
- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

Here

We will simplify our work
By stating the algorithm for coordinate ascent

Here

We will simplify our work

By stating the algorithm for coordinate ascent
Then
A more precise version will be given

Coordinate Ascent

Algorithm

- Input Max, an initial \boldsymbol{w}_{0}
(1) counter $\leftarrow 0$
(2) while counter $<$ Max
(3) for $i \leftarrow 1, \ldots, d$
©
Randomly pick i
Compute a step size δ^{*} by approximately maximize $\arg \min _{\delta} f\left(\boldsymbol{x}+\delta \boldsymbol{e}_{i}\right)$
©

$$
x_{i} \leftarrow x_{i}+\delta^{*}
$$

Coordinate Ascent

Algorithm

- Input Max, an initial \boldsymbol{w}_{0}
(1) counter $\leftarrow 0$
(2) while counter $<$ Max
(3) for $i \leftarrow 1, \ldots, d$
(1)

Randomly pick i
(5
Compute a step size δ^{*} by approximately maximize $\arg \min _{\delta} f\left(\boldsymbol{x}+\delta \boldsymbol{e}_{i}\right)$
6

$$
x_{i} \leftarrow x_{i}+\delta^{*}
$$

Where

$$
\boldsymbol{e}_{i}=\left(\begin{array}{lllllll}
0 & \cdots & 0 & 1 \leftarrow i & 0 & \cdots & 0
\end{array}\right)^{T}
$$

In the case of Logistic Regression

Thus, we can optimize each w_{k} alternatively by a coordinate-wise Newton update

$$
w_{k}^{\text {new }}=w_{k}^{o l d}+\frac{-\lambda w_{k}^{o l d}+\sum_{i=1}^{N}\left\{1-\frac{1}{1+\exp \left\{-y_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right\} y_{i} x_{i k}}{\lambda+\sum_{i=1}^{N} x_{i k}^{2}\left(\frac{1}{1+\exp \left\{-y_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right)\left(1-\frac{1}{1+\exp \left\{-y_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right)}
$$

In the case of Logistic Regression

Thus, we can optimize each w_{k} alternatively by a coordinate-wise Newton update

$$
w_{k}^{\text {new }}=w_{k}^{\text {old }}+\frac{-\lambda w_{k}^{\text {old }}+\sum_{i=1}^{N}\left\{1-\frac{1}{1+\exp \left\{-y_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right\} y_{i} x_{i k}}{\lambda+\sum_{i=1}^{N} x_{i k}^{2}\left(\frac{1}{1+\exp \left\{-y_{i} \boldsymbol{w}^{T} x_{i}\right\}}\right)\left(1-\frac{1}{1+\exp \left\{-y_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right)}
$$

Complexity of this update

Item	Complexity
$\sum_{i=1}^{N}\left\{1-\frac{1}{1+\exp \left\{-y_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right\} y_{i} x_{i k}$	$O(N)$
$\sum_{i=1}^{N} x_{i k}^{2}\left(\frac{1}{1+\exp \left\{-y_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right)\left(1-\frac{1}{1+\exp \left\{-y_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}\right\}}\right)$	$O(N)$
Total Complexity	$O(N)$
For all the dimensions	$O(N d)$

Outline

(1) Logistic Regression

- Introduction
- Constraints
- The Initial Model
- The Two Case Class
- Graphic Interpretation
- Fitting The Model
- The Two Class Case
- The Final Log-Likelihood
- The Newton-Raphson Algorithm
- Matrix Notation
(2) More on Optimization Methods
- Can we do better?
- Using Cholesky Decomposition
- Cholesky Decomposition
- The Proposed Method
- Quasi-Newton Method
- The Second Order Approximation
- The BFGS Algorithm
- A Neat Trick: Coordinate Ascent
- Coordinate Ascent Algorithm
- Conclusion

We have the following Complexities per iteration

Complexities

Method	Per Iteration	Convergence Rate
Cholesky Decomposition	$\frac{d^{3}}{2}=O\left(d^{3}\right)$	Quadratic
Quasi-Newton BFGS	$O\left(d^{2}\right)$	Super-linearly
Coordinate Ascent	$O(N d)$	Not established

嗇 T．Hastie，R．Tibshirani，and J．Friedman，The Elements of Statistical Learning：Data Mining，Inference，and Prediction，Second Edition． Springer Series in Statistics，Springer New York， 2009.
F．E．Harrell Jr，Regression modeling strategies：with applications to linear models，logistic and ordinal regression，and survival analysis． Springer， 2015.
（ J．Nocedal and S．Wright，Numerical optimization． Springer Science \＆Business Media， 2006.

圊 A．Krishnamoorthy and D．Menon，＂Matrix inversion using cholesky decomposition，＂in 2013 signal processing：Algorithms，architectures， arrangements，and applications（SPA），pp．70－72，IEEE， 2013.

目 J．Dhanani and K．Rana，＂Logistic regression with stochastic gradient ascent to estimate click through rate，＂in Information and Communication Technology for Sustainable Development， pp．319－326，Springer， 2018.

