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Gradient Descent [1, 2]

The basic procedure is as follow
1 Start with a random weight vector w0.
2 Compute the gradient vector ∇J (w0).
3 Obtain value w1 by moving from w0 in the direction of the steepest

descent:

wn+1 = wn − ηn∇J (wn) (1)

ηn is a positive scale factor or learning rate!!!
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Geometrically

We have the following
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Although

It is possible to prove
That the gradient direction gives the greatest increase direction!!!

We have a problem in cost functions like in Deep Neural Networks

J (w) =
N∑
i=1

(yi − f (w,xi))2

Where, we have that f (w,xi) = f1 ◦ f2 ◦ f3 ◦ · · · ◦ fT (w,xi)
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Do you remember the problem of the η step size?

Gradient Descent with fixed step size

wn+1 = wn − η∇J (wn)

Why to worry about this?
Because, we want to know how fast Gradient Descent will find the
answer...
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We have

Lipschitz Continuous [3]
Lipschitz continuity, named after Rudolf Lipschitz, is a strong form of
uniform continuity for functions.

Uniform continuity
The function f : A→ R is said to be uniformly continuous on A iff for
every ε > 0, ∃δ > 0 such that |x− y| < δ implies |f (x)− f (y)| < ε.
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Lipschitz Continuous

Definition
A function f : S ⊂ Rn → Rn satisfies the Lipschitz Continuous at
x ∈ S, if there is a such constant L > 0 such that

‖f (x)− f (y)‖ ≤ L ‖x− y‖

for all y ∈ S sufficiently near to x. Lipschitz continuity can be
seen as a refinement of continuity.
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Example when you see L as the slope

Here the function f : R→ R
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An interesting property of such setup

The derivative of the function cannot exceed L (Example, f : R→ R)

f ′ (x) = lim
δ→∞

f (x+ δ)− f (x)
δ

Then, we have that

f ′ (x) = lim
δ→∞

f (x)− f (y)
x− y

≤ lim
δ→∞

|f (x)− f (y)|
|x− y|

≤ L

13 / 225



An interesting property of such setup

The derivative of the function cannot exceed L (Example, f : R→ R)

f ′ (x) = lim
δ→∞

f (x+ δ)− f (x)
δ

Then, we have that

f ′ (x) = lim
δ→∞

f (x)− f (y)
x− y

≤ lim
δ→∞

|f (x)− f (y)|
|x− y|

≤ L

13 / 225



Therefore

Lipschitz Continuity implies ∣∣f ′ (x)
∣∣ < L
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Convergence idea

Definition (Big O - Upper Bound) [4]
For a given function g(n):

O(g(n)) ={f(n)| There exists c > 0 and n0 > 0
s.t. 0 ≤ f(n) ≤ cg(n) ∀n ≥ n0}

Example
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What are the implications?

Definition [3]
Suppose that the sequence {xk} converges to the number L:

We say that this sequence converges linearly to L, if there exists a
number 1

n
∈ (0, 1) such that

lim
k−→∞

|xn+1 − L|
|xn − L|

= 1
n

Thus, Gradient Descent has a linear convergence speed
If you do a comparison with quadratic convergence...
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Example

As you can see the quadratic is faster than linear in convergence
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Why the importance of Convex Functions?

There is an interest on the rates of convergence for many
optimization algorithms

And they are affected by the different cost function that can be used:
I Lipschitz-continuity, convexity, strong convexity, and smoothness

There are different rates of convergence for the Gradient Descent
For example when a function is strongly convex

∇2f (x) � αI ⇐⇒ ∇2f (x)− αI � 0 (Matrix greater of equal)

This means that
The curvature of f (x) is not very close to zero, making possible to
accelerate the convergence
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Convex Sets

Definition
For a convex set X, for any two points x and y such that x, y ∈ X,
the line between them lies within the set

z = λx + (1− λ) y, ∀θ ∈ (0, 1) then z ∈ X

I The sum λx + (1− λ) y is termed as convex linear combination.
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Convex Functions

Definition
. A function f(x) is convex if the following holds:

1 The Domain of f is convex
2 ∀x,y in the Domain of f and λ ∈ (0, 1)

f (λx + (1− λ) y) ≤ λf (x) + (1− λ) f (y)

22 / 225



Graphically

This can further expanded to functions
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Convergence of gradient descent with fixed step size

Theorem
Suppose the function f : Rd → R is convex and differentiable, and we
have that ‖∇f (x)−∇f (y)‖2 ≤ L ‖x− y‖ (Lipschitz Continuous
Gradient) for any x,y and L > 0.

We have that
Then, if we run the gradient descent for k iterations with a fixed
step size η ≤ 1

L , it will yield a solution fn which satisfies

f (xn)− f (x∗) ≤

∥∥∥x(0) − x∗
∥∥∥2

2
2ηn

where f (x∗) is the optimal value.
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Proof

f (x) is Lipschitz continuous with constant L implies
(‖y − x‖2 = ‖y − x‖2

2)

∇2f (x)− LI as semi-definite matrix

We have the following inequality

f (y) = f (x) +∇f (x)T (y − x) + 1
2∇

2f (x) ‖y − x‖2

≤ f (x) +∇f (x)T (y − x) + 1
2L ‖y − x‖2
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Proof

Now, if we apply the Gradient update y = x+ = x− η∇f (x)

f
(
x+
)
≤ f (x) +∇f (x)T

(
x+ − x

)
+ 1

2L
∥∥∥x+ − x

∥∥∥2

= f (x)− η ‖∇f (x)‖2 + 1
2Lη

2 ‖∇f (x)‖2

= f (x)−
(

1− 1
2Lη

)
η ‖∇f (x)‖2

Using η ≤ 1
L

−
(

1− 1
2Lη

)
≤ −1

2
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Therefore

We have that

f
(
x+
)
≤ f (x)− 1

2η ‖∇f (x)‖2 (2)

Implying that
This inequality implies that the objective function value strictly
decreases until it reaches the optimal value

This only holds when η is small enough
This explains why we observe in practice that gradient descent
diverges when the step size is too large.
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Since f is convex

We can write

f (x∗) ≥ f (x) +∇f (x)T (x∗ − x)
f (x) ≤ f (x∗) +∇f (x)T (x− x∗)

This comes from the “First order condition for convexity”

f (y) ≥ f (x) +∇f (x)T (y − x)
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Then

Plugging this in to (Equation 2)

f
(
x+
)
≤ f (x∗) +∇f (x)T (x− x∗)− 1

2η ‖∇f (x)‖2

Therefore

f
(
x+
)
− f (x∗) ≤ 1

2η
[
‖x− x∗‖2 − ‖x− η∇f (x)− x∗‖2

]

Then plugging this x+ = x− η∇f (x) into

f
(
x+
)
− f (x∗) ≤ 1

2η

[
‖x− x∗‖2 −

∥∥∥x+ − x∗
∥∥∥2
]
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Then

Summing over all iterations and the telescopic sum in the right side
n∑
i=1

[
f
(
x(i)

)
− f (x∗)

]
≤ 1

2η

[∥∥∥x(0) − x∗
∥∥∥2
]

Finally, using the fact that f decreasing on every iteration

f
(
x(n)

)
− f (x∗) ≤ 1

n

n∑
i=1

[
f
(
x(i)

)
− f (x∗)

]
≤ 1

2ηn

[∥∥∥x(0) − x∗
∥∥∥2
]
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Therefore

It converges with rate

O

(1
n

)
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Accelerating the Gradient Descent

It is possible to modify the Batch Gradient Descent
In order to accelerate it several modifications have been proposed

Possible Methods
Polyak’s Momentum Method or Heavy-Ball Method (1964)
Nesterov’s Proposal (1983)
Stochastic Gradient Descent (1951)
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Polyak’s Momentum Method

Polyak’s Step Size
He Proposed that the step size could be modified to

wn+1 = wn − α∇f (wn) + µ (wn −wn−1) with µ ∈ [0, 1] , α > 0

Basically, the method uses the previous gradient information through
the step difference (wn −wn−1)

By the discretization of the second order ODE

..
w + a

.
w + b∇f (w) = 0

I which models the motion of a body in a potential field given by
f with friction.
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I which models the motion of a body in a potential field given by
f with friction.
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The Momentum helps to stabilize the GD

If we do not have Momentum

Starting Point

Solution

No Momentum
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Then, with Momentum

If we have Momentum

Starting Point

Solution

With Momentum

OPTIMUM
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Problem

It has been proved that the method has problems
L. Lessard, B. Recht, and A. Packard. Analysis and Design of
Optimization Algorithms via Integral Quadratic Constraints. ArXiv
e-prints, Aug. 2014.

Under the function

∇f (x) =


25x if x < 1
x+ 24 if 1 ≤ x ≤ 2
25x− 24 if otherwise
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In Lessard et al.

We have a non-convergence (Original Lessard et al.) [5]

0
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3
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Nesterov’s Proposal

He proposed a Quasi-Convex Combination
Instead to use

wn+1 = wn − α∇f (wn) + µ (wn −wn−1)

Have an intermediate step to update wn+1

wn+1 = (1− γn) yn+1 + γnyn

This allow to weight the actual original gradient change
with the previous gradient change... making possible to avoid the
original problem by Polyak... Which is based in Lyapunov Analysis
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Nesterov’s Proposal [6]
Nesterov’s Accelerated Gradient Descent (A Quasi-Convex
Modification)

yn+1 =wn −
1
β
∇J (wn)

wn+1 = (1− γn) yn+1 + γnyn

Where, we use the following constants

λ0 =0

λn =
1 +

√
1 + 4λ2

n−1

2

γn =1− λn
λn+1
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Nesterov’s Algorithm

Nesterov Accelerated Gradient
Input: Training Time T , Learning Rate β, an initialization w0

1 y0 ← w0
2 λ0 ← 0
3 for t = 0 to T − 1 do
4 yn+1 = wn − 1

β∇J (wn)

5 λn = 1+
√

1+4λ2
n−1

2

6 λn+1 = 1+
√

1+4λ2
n

2
7 γn = 1−λn

λn+1

8 wn+1 = (1− γn) yn+1 + γnyn

42 / 225



Nesterov’s Algorithm

Nesterov Accelerated Gradient
Input: Training Time T , Learning Rate β, an initialization w0

1 y0 ← w0
2 λ0 ← 0
3 for t = 0 to T − 1 do
4 yn+1 = wn − 1

β∇J (wn)

5 λn = 1+
√

1+4λ2
n−1

2

6 λn+1 = 1+
√

1+4λ2
n

2
7 γn = 1−λn

λn+1

8 wn+1 = (1− γn) yn+1 + γnyn

42 / 225



Nesterov’s Algorithm

Nesterov Accelerated Gradient
Input: Training Time T , Learning Rate β, an initialization w0

1 y0 ← w0
2 λ0 ← 0
3 for t = 0 to T − 1 do
4 yn+1 = wn − 1

β∇J (wn)

5 λn = 1+
√

1+4λ2
n−1

2

6 λn+1 = 1+
√

1+4λ2
n

2
7 γn = 1−λn

λn+1

8 wn+1 = (1− γn) yn+1 + γnyn

42 / 225



Nesterov’s Algorithm

Nesterov Accelerated Gradient
Input: Training Time T , Learning Rate β, an initialization w0

1 y0 ← w0
2 λ0 ← 0
3 for t = 0 to T − 1 do
4 yn+1 = wn − 1

β∇J (wn)

5 λn = 1+
√

1+4λ2
n−1

2

6 λn+1 = 1+
√

1+4λ2
n

2
7 γn = 1−λn

λn+1

8 wn+1 = (1− γn) yn+1 + γnyn

42 / 225



Nesterov’s Algorithm

Nesterov Accelerated Gradient
Input: Training Time T , Learning Rate β, an initialization w0

1 y0 ← w0
2 λ0 ← 0
3 for t = 0 to T − 1 do
4 yn+1 = wn − 1

β∇J (wn)

5 λn = 1+
√

1+4λ2
n−1

2

6 λn+1 = 1+
√

1+4λ2
n

2
7 γn = 1−λn

λn+1

8 wn+1 = (1− γn) yn+1 + γnyn

42 / 225



Nesterov’s Algorithm

Nesterov Accelerated Gradient
Input: Training Time T , Learning Rate β, an initialization w0

1 y0 ← w0
2 λ0 ← 0
3 for t = 0 to T − 1 do
4 yn+1 = wn − 1

β∇J (wn)

5 λn = 1+
√

1+4λ2
n−1

2

6 λn+1 = 1+
√

1+4λ2
n

2
7 γn = 1−λn

λn+1

8 wn+1 = (1− γn) yn+1 + γnyn

42 / 225



Nesterov’s Algorithm

Nesterov Accelerated Gradient
Input: Training Time T , Learning Rate β, an initialization w0

1 y0 ← w0
2 λ0 ← 0
3 for t = 0 to T − 1 do
4 yn+1 = wn − 1

β∇J (wn)

5 λn = 1+
√

1+4λ2
n−1

2

6 λn+1 = 1+
√

1+4λ2
n

2
7 γn = 1−λn

λn+1

8 wn+1 = (1− γn) yn+1 + γnyn

42 / 225



With the following complexity

Theorem (Nesterov 1983)
Let f be a convex and β-smooth function (∇f is β-Lipschitz
continous), then Nesterov’s Accelerated Gradient Descent satisfies:

f
(
yn+1

)
− f (w∗) ≤ 2β ‖w1 −w∗‖2

n2

It converges with rate

O

( 1
n2

)
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Example

As you can see Nesterov is faster...

Nesterov
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Remark, Polyak vs Nesterov
We have a remarkable difference

The gradient descent step (orange arrow) is perpendicular to the level
set before applying momentum to w1 (red arrow) in Polyak’s
algorithm

45 / 225



In the case of Nesterov

If we rewrite the equations

wn+1 = (1− γn)
[

wn −
1
β
∇J (wn)

]
+ γnyn

=wn − γnwn −
1
β
∇J (wn) + γn

β
∇J (wn) + γnwn−1 −

γn
β
∇J (wn−1)

=wn − γn (wn −wn−1)− 1
β

[∇J (wn) + γn∇J (wn)− γn∇J (wn−1)]

=wn − γn (wn −wn−1)− 1
β

[∇J (wn + γn [wn −wn−1])]
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In Nesterov

We have a remarkable difference
it is perpendicular to the level set after applying momentum to w1 in
Nesterov’s algorithm.
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There is a dependence with respect with different
properties of f

In this table, we can see upper bounds for the convergences
D = ‖x1 − x∗‖2 and λ regularization term [7]

Properties of the Objective Function Upper Bound for Gradient Descent

convex and L-Lipschitz D1L√
n

convex and β-smooth βD2
1

n

α-strongly convex and L-Lipschitz L2

αn

α-strongly convex and β-smooth βD2
1 exp

(
− 4n
β/λ

)
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A Hierarchy can be established (Black Box Model)

Based on the following idea
A black box model assumes that the algorithm does not know the
objective function f being minimized.

Not only that
Information about the objective function can only be accessed by
querying an oracle.

Remarks
The oracle serves as a bridge between the unknown objective function
and the optimizer.
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Furthermore

At any given step, the optimizer queries the oracle with a guess x

The oracle responds with information about the function around x

For Example
Value of the Cost function, Gradient, Hessian, etc.
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Then, we have
Zeroth Order Methods

These methods only require the value of function f at the current
guess x.

I The Bisection, Genetic Algorithms, Simulated Annealing and
Metropolis-Hastings methods

First Order Methods
These methods can inquire the value of the function f and its first
derivative.

I Gradient descent, Nesterov’s and and Polyak’s

Second Order Methods
These methods require the value of the function f, its first derivative
(gradient), and its second derivative (Hessian).

I Newton’s method. Improving the efficiency of these algorithms is an
active area of research.
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One of the Last Hierarchy

Adaptive Methods and Conjugate Gradients
The methods we mentioned until this point assume that all
dimensions of a vector-valued variable have a common set of
hyperparameters.

Adaptive methods relax this assumption
They allow for every variable to have its own set of hyperparameters.

Some popular methods under this paradigm
AdaGrad and ADAM
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Finally, but not less important

Lower Bounds
Lower bounds are useful because they tell us what’s the best possible
rate of convergence we can have given a category of optimizer.

Something Notable
Without lower bounds, an unnecessary amount of research energy
would be spent in designing better optimizers

I Even if convergence rate improvement is impossible within this
category of algorithm

However, if we prove that each procedure has a lower bounded rate of
convergence

We do not know if a specific method reaches this bound.
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However

Please, take a look
Convex Optimization: Algorithms and Complexity by Sébastien
Bubeck - Theory Group, Microsoft Research [7]
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1. Introduction
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In our classic Convex Scenario [2]

Least Square Problem locking to minimize the average of the LSE

min
x∈Rd

f (x) = min
x∈Rd

1
2M

M∑
m=1

(
wTxm − ym

)2
= min

x∈Rd
1

2M ‖Xw − Y ‖2
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Therefore

Calculating the Gradient

∇wf (x) = 1
M

M∑
i=1

(
wTxm − ym

)
xm
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Observations

It is easy to verify that the complexity per iteration is O (dM)
With M is for the sum and d is for wTxm.
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Drawbacks

When the number of samples M is Large
Even with a rate of linear convergence, Gradient Descent

Not only that but in the On-line Learning scenario
The data (xi, yi) is coming one by one making the gradient not
computable.
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Therefore

Thus, the need to look for something faster
Two possibilities:

I Accelerating Gradient Decent Using Stochastic Gradient
Descent!!!

I Accelerating Gradient Descent Using The Best of Both
World, Min-Batch!!!
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Using the Mean Squared Error (MSE)

It is used to measure how good our estimators are
The average squared difference between the estimated values and
what is estimated

We have the following equation

MSE = 1
N

N∑
i=1

(yi − ŷi)2 = E
[
(y − ŷ)2

]
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(yi − ŷi)2 = E
[
(y − ŷ)2
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Then, we have that

This Measure is equal to (We know this as the Variance-Bias
Trade-off)

MSE = V arD (ŷ|x ∈ D)︸ ︷︷ ︸
V ariance

+ (ED [ŷ − y|x ∈ D])2︸ ︷︷ ︸
BIAS

If the MSE is small
We expect that, on average, the resulting estimates to be close to the
true value.
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Furthermore

What will happen if we can decrease the Variance at MSE
In such a way that the bias does not produce a too simplistic ŷ?

Then, we want as the process MSEt evolves over time
V ar

(t)
D (ŷ|x ∈ D)→ V > 0 as t→∞ to avoid over-fitting

(ED [ŷ − y|x ∈ D])2 → B > 0 as t→∞ to avoid over-fitting
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Therefore, if we think in the parameters w of a Linear
Model

We have a function

L (w) =
(
ED

[
wTx− y|x ∈ D

])2

We can see that the optimal w∗ as the root of the function ∇L the
minimal possible for L

∇wL (w∗) = ∇w

(
ED

[
w∗Tx− y|x ∈ D

])2
= 0 + ε with ε ∼ p (ε|θ)

and ε is small enough

65 / 225



Therefore, if we think in the parameters w of a Linear
Model

We have a function

L (w) =
(
ED

[
wTx− y|x ∈ D

])2

We can see that the optimal w∗ as the root of the function ∇L the
minimal possible for L

∇wL (w∗) = ∇w

(
ED

[
w∗Tx− y|x ∈ D

])2
= 0 + ε with ε ∼ p (ε|θ)

and ε is small enough

65 / 225



Outline
1. Introduction

Review Gradient Descent
The Problems of Gradient Descent with Large Data Sets
Convergence of gradient descent with fixed step size
Convergence Rate
Convex Functions
Back to the Main Problem

Accelerating the Gradient Descent
Even with such Speeds

2. Accelerating Gradient Descent
First, Analysis of Convergence of Mean Squared Error
Now Doing an Analysis of MSE

First, the Gradient Descent Method
Analysis about µ
What about the Mean-Square Error?
Stochastic Approximation
Robbins-Monro Theorem
Robbins-Monro Scheme for Minimum-Square Error
Convergence

3. Improving and Measuring Stochastic Gradient Descent
Example of SGD Vs BGD
Using The Expected Value, The Mini-Batch
Adaptive Learning Step
Regret in Optimization

4. Methods
MSE Linear Estimation
The Least-Mean Squares Adaptive Algorithm

Adaptive Gradient Algorithm (AdaGrad)
Subgradients

Adaptive Moment Estimation, The ADAM Algorithm
Looking into the Past

Conclusions 66 / 225



The MSE Linear Estimation, the Normal Equations

It was proved in slide set 2
The optimal Mean-Square Error estimate of y given the value
X = x is

E [y|x] = ŷ

I In general, a nonlinear function.

For Linear Estimators, in (x, y) ∈ Rd × R joint distributed random
variables of zero mean values

Our goal is to obtain an estimate of w ∈ Rd (Our Unknown θ) in the
linear estimator model

ŷ = wTx
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Thus, using MSE as the Cost Equation

Cost Function

J (w) = E
[
(y − ŷ)2

]
Thus, we are looking for an estimator that minimize the variance of
the error

ε = y − ŷ

We want to Minimize the cost function J (w) by finding an optimal
w∗

w∗ = arg min
w

J (w)
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We want to Minimize the cost function J (w) by finding an optimal
w∗

w∗ = arg min
w

J (w)

68 / 225



Thus, using MSE as the Cost Equation

Cost Function

J (w) = E
[
(y − ŷ)2
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w∗ = arg min
w

J (w)
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Then, we can simply use ∇J (w) = 0

We have

∇J (w) =∇E
[(
y −wTx

)2
]

=∇E
[(
y −wTx

) (
y −wTx

)]
=∇

{
E
[
y2
]
− 2wTE [xy] + wTE

[
xxT

]
wT

}
=− 2p + 2Σxw = 0

Where, we have

p = [E [yx1] , E [yx2] , ..., E [yxd]] = E [xy]

Σx =E
[
xxT

]
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This generates what is know as

Then, we get the Normal Equations

Σxw∗ = p
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We can use our gradient method[2]

Therefore, we have

wn+1 = wn − µ [−p + Σxwn]

Finally, we have that

wn = wn−1 + µ [p− Σxwn−1]

Then, the final idea is to find a µ
Which allows for convergence!!!
This is the first step in the idea of Stochastic Gradient Descent
(SGD)

I Given that SGD depends on specifics µ
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How can we do this?

We can use our error to measure the convergence by µ

cn = wn −w∗

Thus, we obtain

wn −w∗ = wn−1 + µ [p− Σxwn−1]−w∗

Then

cn = cn−1 + µ [p− Σx (cn−1 + w∗)]
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Therefore

Remembering Σxw
∗ = p

We can try to guess the rate of convergence:
cn = Icn−1 − µ [Σxcn−1] = [I − µΣx] cn−1

Remember that

Σx = QΛQT with QQT = I
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Then, we can build the following iterative process

We have

cn =
[
QQT − µQΛQT

]
cn−1 = Q [I − µΛ]QT cn−1

Finally, using vn = QT cn

vn = [I − µΛ] vn−1
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Iterating over all the sequence

We have by using recursion

v (i) = [I − µΛ]i v (0)

Thus, for each component

vji = (1− µλj)i vj0

Now, we have that

|1− µλj | < 1 for all j = 1, 2, ..., d
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Or in an equivalent way

We have that

−1 <1− µλmax < 1
−1 <− µλmax < 0

0 <µλmax < 2

Finally, we obtain a convergence condition

0 < µ <
2

λmax
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What about the Rate of Convergence?

As you can see the quadratic is faster than linear in convergence
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What about the Rate of Convergence?

Assume an ideal case for the evolution of vji as it converges

0 1 2 3 4 5
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Given the evolution of this curve, f (t)

Then, we can assume f (t) = exp {−t/τj}
We can try to guess the rate of convergence τi.

Then we have t = iT and t = (i− 1)T
Assuming a step size of T

Then, using vji = [1− µλj] vji−1

exp {−iT/τj} = [1− µλj ] exp {−(i−1)T/τj}
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Then, Solving the Equation

We have applying the function ln

− iT
τj

= ln [1− µλj ]−
(i− 1)T

τj

Solving, we have

τj = − 1
ln (1− µλj)

The time constant results as

τj ≈
1
µλj

for µ� 1

The slowest rate of convergence is associated with the
component that corresponds to the smallest eigenvalue.
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However

However, this is only true for small enough values of µ
Therefore, we need to consider something different
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Therefore, we take two extreme vases

Let us consider as an example the case of µ taking a value

µ ' 2
λmax

The value of |1− µλj| corresponding to the maximum eigenvalue
It will have an absolute value very close to one.

|1− µλmax| =
∣∣∣∣1− 2

λmax
λmax

∣∣∣∣ = 1
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Now, we have

On the other hand, when using the minimum eigenvalue in the
previous formula

|1− µλmin| =
∣∣∣∣1− 2

λmax
λmin

∣∣∣∣� 1

In such a case
The maximum eigenvalue exhibits slower convergence.
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The Optimal Value

We can use the following cost function

µ0 = arg min
µ

max
j
|1− µλj|

s.t. |1− µλj| < 1 j = 1, 2, ..., d

This has the following solution

µ0 = 2
λmax + λmin
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Graphically

We have the following situation

1
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The solution

This has the following solution

µ0 = 2
λmax + λmin
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Focusing on the mean-square error.

Adding and Subtracting w∗TΣxw
∗ and taking the definition

w∗ = arg min
w
J (w) and Σxw

∗ = p

Therefore, we have

J (w) = J (w∗) + (w −w∗)T Σx (w −w∗)
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Where we have that at the optimal

It is possible to see that

J (w∗) = σ2
y − pTΣ−1

x p = σ2
y −w∗TΣ−1

x w∗ = σ2
y − pw∗

The minimum at the optimal solution!!!
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Taking the orthonormality of the eigenvectors

Taking in account that Σx is a diagonal matrix

J (w) = J (w∗) +
d∑
j=1

λj |vji|2
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Therefore, we have

J (w) = J (w∗) +
d∑
j=1

λj (1− µλj)2i |vj0|2
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Convergence

This converges to the minimum value J (w∗) asymptotically
This convergence is monotonic, because λj (1− µλj)2 is positive.

The rates of convergence are finally

τj = −1
2 ln (1− µλj)

≈ 1
2µλj
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We have a problem

The previous analysis cannot be carried out
For the case of an iteration-dependent step-size.

I But we have a card in the sleeve
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It is possible to show in such cases

The Gradient Descent Algorithm convergences if

µi → 0, as i→∞
∞∑
i=1

µi =∞

A classic, which comply with both conditions
∞∑
i=1

µ2
i <∞ and

∞∑
i=1

µi =∞

For example

µi = 1
i
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Solving for the normal equations as well as using the
gradient descent

There is a small problem
You are required to have access to the analytical model.

Additionally
You need to have access to the second order statistics of the involved
variables

I The Covariance Matrix Σx

Σxw∗ = p
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Furthermore

We have a problem
This is not known and it has to be approximated using a set of
measurements.

But, we can solve the problem
By using stochastic methods resembling Monte Carlo ideas!!!
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We have that the Robbins-Monro Theorem[8]

The origins of such techniques are traced back to 1951
When Robbins and Monro introduced the method of stochastic
approximation

I DARPA project!!!

Setup, given a function M (w) and a constant α such that the
equation

M (w) = α

It has a unique root w = w∗
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Goal

We want to compute the root, w, of such equation

M (w∗) = α

Then, we want to generate values w1,w2, ...,wn−1 thus, we generate
wn from

1 M (w1) ,M (w2) , ...,M (wn−1)
2 and the possible derivatives M ′ (w1) ,M ′ (w2) , ...,M ′ (wn−1)

Thus, we would love that

lim
n→∞

wn = w∗

102 / 225



Goal

We want to compute the root, w, of such equation

M (w∗) = α

Then, we want to generate values w1,w2, ...,wn−1 thus, we generate
wn from

1 M (w1) ,M (w2) , ...,M (wn−1)
2 and the possible derivatives M ′ (w1) ,M ′ (w2) , ...,M ′ (wn−1)

Thus, we would love that

lim
n→∞

wn = w∗

102 / 225



Goal

We want to compute the root, w, of such equation

M (w∗) = α

Then, we want to generate values w1,w2, ...,wn−1 thus, we generate
wn from

1 M (w1) ,M (w2) , ...,M (wn−1)
2 and the possible derivatives M ′ (w1) ,M ′ (w2) , ...,M ′ (wn−1)

Thus, we would love that

lim
n→∞

wn = w∗

102 / 225



Instead, we suppose that for each w corresponds a
Random Variable Y = Y (w)

This Random Variable has a distribution function

Pr [Y (w) ≤ y] = H (y|w)

Such that

M (w) =
∫ ∞
−∞

ydH (y|w)
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We Postulate

First a bound to the M (w)

|M (w)| ≤ C <∞,
∫ ∞
−∞

(y −M (w))2 dH (y|w) ≤ σ2 <∞
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IMPORTANT

Neither the exact nature of H (y|w) nor that of M (w) is known
But an important assumption is that

M (w)− α = 0

It has only one root

Here is we use the α value to generate the root by assuming
M (w)− α ≤ 0 for w ≤ w∗ and M (w)− α ≥ 0 for w > w∗.
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Now, For a positive δ

M (w) is strictly increasing if

‖w∗ −w‖ < δ

And Finally

inf
‖w∗−w‖≥δ

|M (w)− α| > 0
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Now choose a sequence {µi}

Such that
∞∑
i=1

µ2
i = A <∞ and

∑∞
i=1 µi=∞

Now, we define a non-stationary Markov Chain {wn}

wn+1 −wn = µn (α− yn)

Where yn is a random variable such that

Pr [yn ≤ y|wn] = H (y|wn)
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Using the expected value!!!

Here, we define bn
bn = E [wn −w∗]2

We want conditions where this variance goes to zero

lim
n→∞

bn = 0

No matter what is the initial value w0.

108 / 225



Using the expected value!!!

Here, we define bn
bn = E [wn −w∗]2

We want conditions where this variance goes to zero

lim
n→∞

bn = 0

No matter what is the initial value w0.

108 / 225



We have then

Based on

wn+1 −wn = µn (α− yn)

We have then

bn+1 =E [wn+1 −w∗]2 = E
[
E [wn+1 −w∗]2 |wn

]
=E

[∫ ∞
−∞

[
wn −w∗ − µn (y − α)2] dH (y|wn)

]
=bn + µnE

[∫ ∞
−∞

(y − α)2 dH (y|wn)
]
− 2µnE [(wn −w∗) (M (wn)− α)]

=bn + µ2
nen − 2µndn
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With Values

We have

dn = E [(wn −w∗) (M (wn)− α)]

en = E

[∫ ∞
−∞

(y − α)2 dH (y|wn)
]

From M (w) ≤ α for w ≤ w∗ and M (w) ≥ α for w > w∗

dn ≥ 0
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Additionally

Now, assuming that exist C such that

Pr [|Y (w)| ≤ C] =
∫ C

−C
dH (y|w) = 1 ∀x

We can prove that

0 ≤ en ≤
[
C + |α|2

]
<∞

Now, given
∞∑
i=1

µ2
i = A <∞ and

∑∞
i=1 µi=∞
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Therefore ∑∞i=1 µ
2
i ei converges

Then, summing over i we obtain

bn+1 = b1 +
n∑
i=1

µ2
i ei − 2

n∑
i=1

µidi

Since bn+1 ≥ 0
n∑
i=1

µidi ≤
1
2

[
b1 +

n∑
i=1

µ2
i ei

]
<∞
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Then

Hence the positive-term series
∞∑
i=1

µidi converges

Then, limn→∞ bn exists and...

lim
n→∞

bn = b1 +
∞∑
i=1

µ2
i ei − 2

∞∑
i=1

µidi = b
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Therefore

If a sequence of {ki} of non-negative constants such that

di ≥ kibi,
∞∑
i=1

µiki =∞

We want to prove that
∞∑
i=1

µikibi <∞

114 / 225



Therefore

If a sequence of {ki} of non-negative constants such that

di ≥ kibi,
∞∑
i=1

µiki =∞

We want to prove that
∞∑
i=1

µikibi <∞

114 / 225



For this

We know that
∞∑
i=1

µidi converges

Therefore

kibi ≤ di ⇒ µikibi ≤ µidi
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Then

We have that
∞∑
i=1

µikibi ≤
∞∑
i=1

µidi <∞

Then, we have that
∞∑
i=1

µikibi <∞,
∑∞
i=1 µiki=∞
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Then

We have that
∞∑
i=1

µikibi ≤
∞∑
i=1

µidi <∞

Then, we have that
∞∑
i=1

µikibi <∞,
∑∞
i=1 µiki=∞

116 / 225



Finally

For any ε > 0 there must be infinitely values i such that bi < ε

Therefore given that limn→∞ bn = b then b = 0.
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Robbins and Monro Theorem (Original)

If {µn} is of type 1
n

Given a family of conditional probabilities

{H (y|w) = Pr (Y (w) ≤ y|w)}

We have the following Expected Risk

M (w) =
∫ ∞
−∞

ydH (y|w)
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Now

If we additionally have that

Pr (|Y (w)| ≤ C) =
∫ C

−C
dH (y|w) = 1 (3)

119 / 225



Then under the following constraints

For some δ > 0

M (w) ≤α− δ for w < w∗

M (w) ≥α+ δ for w > w∗ (4)

Or Else

M (w) <α for w < w∗

M (w∗) =α (5)
M (w) >α for w > w∗
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Next

Furthermore

M (w) is strictily increasing if |w −w∗| < δ (6)

And

inf
|w−w∗|≥δ

|M (w)− α| > 0 (7)

And Let {µi} be a sequence of positive numbers such that
∞∑
n=1

µn =∞ and
∞∑
n=1

µ2
n <∞ (8)
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Then

Let x1 an arbitrary number, then under the recursion

wn+1 = wn + µn (α− yn)

Where yn ∼ P (y|wn)

Theorem
If (3) and (8), either (4) or (5,6,7) hold, then wn converges
stochastically to w∗ given that b = 0.
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Recap of Robbins-Monro Proposal

Given the following function

f (w) = E [φ (w, η)] , w ∈ Rd+1

Given a series of i.i.d. observations x0, x1, · · ·
The following iterative procedure (Robbins-Monro Scheme)

wn = wn−1 − µnφ (wn−1,xn)
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Robbins-Monro Proposal

Starting from an arbitrary initial condition, w0

It converges to a root of M (w) = α

Under some general conditions about the step size

∞∑
i=0

µ2
i <∞

∞∑
i=0

µi →∞
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Mean-Square Error [2]

Cost function for MSE

J (w) = E [L (w,x, y)]

Also known as the expected risk or the expected loss.

Then, our objective is the reduction of the Expected Risk!!!
Thus, the simple thing to do is to derive the function and make such
gradient equal to zero.
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Therefore

We can get the Gradient of the Expected Cost Function

∇J (w) = E [∇L (w,x, y)]

where the expectation is w.r.t. the pair (x, y)

Therefore, everything depends on the form of the Loss function

L1 (w,x, y) = 1
2

∥∥∥wTx− y
∥∥∥2

2
(Least Squared Loss)

L2 (w,x, y) =
[ 1

1 + exp {wTx}

]1−y
 exp

{
wTx

}
1 + exp {wTx}

y (Logistic Loss)

L3 (w,x, y) =
N∑
n=1

K∑
k=1

tnk log
(
y

(l)
nk

)
(Cross-Entropy Loss)
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Therefore

We simply take α = 0 then

∇J (w) = E [∇L (w,x, y)] = 0

Then, we apply the Robbins-Monroe Schema to the function

f (w) = ∇J (w) = 0
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Then

Given the sequence of observations {(xi, yi)}i=1,2,... and values
{µi}i=1,2,...

We have that the iterative procedure becomes:

wn = wn−1 − µn∇L (wn,xn, yn)
I The Well known Vanilla Stochastic Gradient Descent (SGD)
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Geometrically

We have the following
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Therefore

However, although the theorem is important
it is not by itself enough.

One has to know something more concerning
The rate of convergence of such a scheme.

It has been shown that

µn = O

( 1
n

)
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Additionally

Assuming that iterations have brought the estimate close to the
optimal value

E (wn) =w∗ + 1
n

c

And

Cov (wn) = 1
n
V +O

( 1
n2

)
Where c and V are constants that depend on the form of the
expected risk.
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Meaning

Therefore
These formulas indicate that the parameter vector estimate fluctuates
around the optimal value.

However
Low complexity requirements makes this algorithmic family to be the
one that is selected in a number of practical applications.

I Given the problem with Batch Gradient Descent (BGD)
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Example of SGD for, 1
2
∑N
i=1

(
wTx− y

)2

We can see how from the Vanilla SGD improves over the Batch GD
with respect to Speed of Evaluation

Each Step is only one evaluation

Each Step consits of N evaluations
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Problems

However, we need to improve such Vanilla Stochastic Gradient
Descent
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Do you Remember?

Imagine the following signal from sin (θ)

Noisy Samples

139 / 225



What if we know the noise?

Given a series of observed samples {x̂1, x̂2, ..., x̂N} with noise
ε ∼ N (0, 1)
We could use our knowledge on the noise, for example additive:

x̂i = xi + ε

We can use our knowledge of probability to remove such noise

E [x̂i] = E [xi + ε] = E [xi] + E [ε]

Then, because E [ε] = 0

E [xi] = E [x̂i] ≈
1
N

N∑
i=1

x̂i
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In our example

We have a nice result
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Thus

Using a similar idea, you could use an average [9]

∇J (wk−1|xi:i+m, yi:i+m) =...
1
m

m∑
i=1
∇J (wk−1,xi, yi)

This allows to reduce the variance of the original Stochastic Gradient
It reduces the variance of the parameter updates, which can lead to
more stable convergence.
It can make use of highly optimized matrix optimizations common to
state-of-the-art deep learning libraries that make computing the
gradient w.r.t. a mini-batch very efficient.
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There are other more efficient options

We can update the w (k)
By Batches per epoch...

Therefore
1 for i in batch k

wk = wk−1 − α∇J (wk−1,xi, yi)
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Mini-batch gradient descent finally takes the best of both
worlds

Min-Batch(X)
Input:

Initialize w0 , Set number of epochs, L, Set learning
rate α

1 for k = 1 to L:
2 Randomly pick a mini batch of size m.
3 for i = 1 to m do:
4 Evaluate g (k) = ∇J (wk−1,xi, yi)
5 wk = wk−1 − αg (k)
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Notes

Remark, for α = 1
m
, the method is equivalent to average sample way

wk =wk−1 − α∇J (wk−1,xi, yi)− ...
α∇J (wk−1,xi+1, yi+1)− ...
α∇J (wk−1,xi+m, yi+m)

=wk−1 −
1
m

m∑
i=1
∇J (wk−1,xi, yi)
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Notes

We have the following
Common mini-batch sizes range between 50 and 256, but can vary for
different applications.
Mini-batch gradient descent is typically the algorithm of choice when
training a neural network.
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A Small Intuition

We have smoother version of the Stochastic Gradient Descent
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Drawbacks

Choosing a proper learning rate can be difficult
A learning rate that is too small leads to painfully slow convergence,
Too large can hinder convergence and cause the loss function to
fluctuate around the minimum or even to diverge.

Learning Rate Schedules
To adjust the learning rate during training by e.g. annealing
These schedules and thresholds, however, have to be defined in
advance not on-line

Another key challenge of minimizing highly non-convex error functions
For example, neural networks, it is avoiding getting trapped in their
numerous suboptimal local minima.
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Observations

Using Traditional Methods used in Gradient Descent
Golden Ratio
Bisection Method
etc

Nevertheless
Experiments with the Bisection Method has produced not so great
results!!!
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Adaptive Rate Speeds in SGD [10]

Structure of SGD with an adaptive learning rate

w (t+ 1) = w (t)− η (t) g (t)
η (t) = h (t)

Where
g (t) = ∇L (w (t))
h (t) is a continuous function
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First Order Methods

Gradient descent on the learning rate
Introducing the following function:

f :Rn → R
η → L (w (t)− ηg (t))

This comes a simple intuition
At time t using η (t), we suffer a loss of L (w (t)− ηg (t)) in the next
iteration:

I So f represents such loss in the future if we choose
w (t+ 1) = w (t)− ηg (t)
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Therefore

The first-order method is written as

w (t) = w (t)− η (t) g (t)
η (t+ 1) = η (t)− αf ′ (η (t))

Remark
This method introduces a new "meta" learning rate α.
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The final f ′ (η (t))

We have that ∀η

f ′ (η) = −g (t)T · ∇L (w (t)− ηg (t))

We can rewrite this as

f ′ (η) = −g (t)T · g (t+ 1)
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Intuition

If we continue in a similar direction
We increase the learning rate, if we backtrack then we decrease it.

However
The algorithm is not scale invariant anymore:

Different scales L′ (w) = λL (w) different results
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Second Order Methods

Remark
The previous method presents the problem of choosing another
meta-learning rate for optimizing the actual learning rate.

In order to avoid such problems
We can use a second-order Newton-Raphson optimization method

w (t) = w (t)− η (t) g (t)

η (t+ 1) = η (t)− f ′ (η (t))
f ′′ (η (t))

We get rid of the meta or hyper-parameter α
However, the second derivative of f requires building the loss Hessian
matrix
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Hessian Matrix

We have

f ′′ (η) = −g (t)T HL (w (t)− ηg (t))

Here, we can use an approximation
“Deep learning via hessian-free optimization” by James Martens

I They are actually know as finite Calculus (“Calculus of Finite
Differences” by Charles Jordan)

f ′ (η + ε) = f (η + 2ε)− f (η)
2ε (Forward Difference)

f ′ (η − ε) = f (η)− f (η − 2ε)
2ε (Backward Difference)
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Then

We have that

f ′′ (η) = f (η + 2ε) + f (η − 2ε)− 2f (η)
4ε2

Now, using the previous differences, we have

f ′ (η) = f (η + ε)− f (η − ε)
2ε
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Finally

We have an approximation to the η hyper-parameter

η (t+ 1) = η (t)− 2ε f (η + ε)− f (η − ε)
f (η + 2ε) + f (η − 2ε)− 2f (η)

Meaning
When slightly increasing, the learning rate corresponds to a lower loss
than slightly reducing it, then the numerator is negative.

In consequence
The learning rate is raised at this update, as pushing in the ascending
direction for the learning rate seems to help reducing the loss.
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Some Considerations

As you have notice in the second order method, we can have an
underflow

1 If f (η + 2ε) + f (η − 2ε)− 2f (η) ≈ 0
2 η (t+ 1) = η (t)− 2ε f(η+ε)−f(η−ε)

f(η+2ε)+f(η−2ε)−2f(η)+δ−6

A typical value for δ is 10−6

Furthermore, the order of operations needs to be maintained...
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At k Iteration,

we have a loss value L(k) and a learning rate value η(k)

At the k + 1 step, we have the five loss values f
(
η(k) + ε

)
,

f
(
η(k) − ε

)
, f
(
η(k) + 2ε

)
, f
(
η(k) − 2ε

)
and f

(
η(k)

)
I Actually five passes over the function f

Then, we calculate L(k+1) by

L(k+1) ← f
(
η(k)

)
Then the η (k + 1) update

η (t+ 1) = η (t)− 2ε f (η + ε)− f (η − ε)
f (η + 2ε) + f (η − 2ε)− 2f (η)
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Final Remark

Something Notable
First-order and second-order updates of the learning rate do not
guarantee positive learning rates

A simple way to avoid this problem is to use

η (k + 1) = max {η (t+ 1) , δ}

With an appropriate smoothing δ value.
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Introduction

We have been able to accelerate the speed with SGD
However, Is this enough?

I After all, we are dealing with large data sets that are costly to train on
them.

Therefore
We introduce the concept of regret which is used in on-line learning...

I After all SGD is a way of doing on-line learning!!!

What is regret?
It measures how “sorry” the learning algorithm is, in retrospect, of
not having followed the predictions of some hypothesis h ∈ H.
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A Better Intuition

Imagine you are playing a game where data is given to you

X1, X2, ..., Xt

Your task
To guess Xt+1 and an estimator of X, X̂

Clearly, you have looses
They could be exemplified by the square distance between(
X̂ −Xt+1

)2
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Strategies to minimize the regret

In the case of least squared error

X̂ = 1
T

T∑
t=i

Xt

Something Notable
This is actually a good estimate given, if we assume X ∼ N

(
µ, σ2)

The maximum likelihood estimator of X̂ = 1
N

∑N
t=1Xt

Furthermore

E
[
X̂
]

= µ
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Nevertheless

A common question in statistics
How well can I do using the information from my samples
compared to how well I could have done had I known the
distribution in advance?

A simple function

CostT (Alg)− Cost (OPT )
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Regret

Definition
The sum of all the previous difference between the on-line prediction
fi (wi) and the best optimal parameter fi (w∗)

R (T ) =
N∑
i=1

[fi (wi)− fi (w∗)] = f (T )

I Where w∗ = arg minw∈X
∑n

i=1 ft (w)

168 / 225



What do we want?

We want f (T ) = o (T ) (Little o) i.e.
f (T )
T
→ 0
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Example

The Expert Advice Model
On a sequence of rounds t = 1, ..., T a player choose an action
it ∈ {1, ..., n}
The adversary chooses cost or loses for each action
lt (1) , ..., lt (n) ∈ {0, 1}

It looks like a Min-Max Play from Artificial Intelligence
Theorem (Von Neumann Minimax Theorem)

min
y∈∆n

max
x∈∆m

ytAx = V = max
x∈∆m

min
y∈∆n

ytAx
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However, we want something more flexible

The player instead of picking highest cost
The player pick a distribution over the actions {1, ..., n}

Then, the player pays E [lt (I)] observes lt
Updates pt+1 ∈ ∆n , where ∆n is the probability simplex over the n
actions.

The probability simplex is the (n− 1)-dimensional simplex determined
by the unit vectors e1, ..., en ∈ R

It is the set of vectors that satisfy x < 0 with 1Tx = 1
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Furthermore

This is typically called the “Expert” or “Hedge” setting with regret

Regret =
T∑
t=1

ptlt − min
i∈{1,...,N}

T∑
t=1

lt (i)

We now introduce the Weighted Majority Algorithm
We define Lt (i) =

∑t
s=1 ls (i) to be the vector of cumulative losses of

the experts at time t.

The algorithm chooses an expert at time t by distribution pt where
wt (i) = exp {−ηLt (i)} Weight assigned to expert i at time t and
η > 0 is a parameter of the algorithm.
pt (i) = wt(i)∑n

j=1 wt(i)
Probability of choosing expert i at time t.
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Randomized Weighted-Majority(n experts)
Algorithm

Input: Penalty β ∈
[

1
2 , 1
)

1 for i = 1 to n
2 w1 (i) = 1
3 p1 (i) = 1

N

4 for t = 1 to T
5 for i = 1 to n
6 if lt (i) = 1:
7 wt+1 (i) = βwt (i)
8 else wt+1 (i) = wt (i)
9 Wt+1 =

∑n

i=1 wt+1 (i)
10 for i = 1 to n
11 pt+1 (i) = wt+1(i)

Wt+1

12 return wT+1

173 / 225



Randomized Weighted-Majority(n experts)
Algorithm

Input: Penalty β ∈
[

1
2 , 1
)

1 for i = 1 to n
2 w1 (i) = 1
3 p1 (i) = 1

N

4 for t = 1 to T
5 for i = 1 to n
6 if lt (i) = 1:
7 wt+1 (i) = βwt (i)
8 else wt+1 (i) = wt (i)
9 Wt+1 =

∑n

i=1 wt+1 (i)
10 for i = 1 to n
11 pt+1 (i) = wt+1(i)

Wt+1

12 return wT+1

173 / 225



Randomized Weighted-Majority(n experts)
Algorithm

Input: Penalty β ∈
[

1
2 , 1
)

1 for i = 1 to n
2 w1 (i) = 1
3 p1 (i) = 1

N

4 for t = 1 to T
5 for i = 1 to n
6 if lt (i) = 1:
7 wt+1 (i) = βwt (i)
8 else wt+1 (i) = wt (i)
9 Wt+1 =

∑n

i=1 wt+1 (i)
10 for i = 1 to n
11 pt+1 (i) = wt+1(i)

Wt+1

12 return wT+1

173 / 225



Randomized Weighted-Majority(n experts)
Algorithm

Input: Penalty β ∈
[

1
2 , 1
)

1 for i = 1 to n
2 w1 (i) = 1
3 p1 (i) = 1

N

4 for t = 1 to T
5 for i = 1 to n
6 if lt (i) = 1:
7 wt+1 (i) = βwt (i)
8 else wt+1 (i) = wt (i)
9 Wt+1 =

∑n

i=1 wt+1 (i)
10 for i = 1 to n
11 pt+1 (i) = wt+1(i)

Wt+1

12 return wT+1

173 / 225



Randomized Weighted-Majority(n experts)
Algorithm

Input: Penalty β ∈
[

1
2 , 1
)

1 for i = 1 to n
2 w1 (i) = 1
3 p1 (i) = 1

N

4 for t = 1 to T
5 for i = 1 to n
6 if lt (i) = 1:
7 wt+1 (i) = βwt (i)
8 else wt+1 (i) = wt (i)
9 Wt+1 =

∑n

i=1 wt+1 (i)
10 for i = 1 to n
11 pt+1 (i) = wt+1(i)

Wt+1

12 return wT+1

173 / 225



Then

Theorem
Then, for any T ≥ 1 , the expected cumulative loss of Randomized
Weighted-Majority can be bounded as follows

LT ≤
logn
1− β + (2− β)Lmin

T

with LT =
∑T
t=1 ptlt, Lmin

T = mini∈{1,...,N}
∑T
t=1 lt (i)

For β = 1−
√

logn
T when 1−

√
logn
T ≥ 1

2 ,

LT ≤ Lmin
T + 2

√
T logN
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Now, the proof

We define the following function

Wt =
n∑
i=1

wt (i)
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Where

We have that

Wt+1 =
∑

i:lt(i)=0
wt (i) + β

∑
i:lt(i)=1

wt (i)

Then

Wt+1 =
∑

i:lt(i)=0
wt (i) +

∑
i:lt(i)=1

wt (i)−
∑

i:lt(i)=1
wt (i) + β

∑
i:lt(i)=1

wt (i)
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Then

We have

Wt+1 = Wt + (β − 1)
∑

i:lt(i)=1
wt (i)× Wt

Wt

Then by using pt (i) = wt(i)
Wt

and assuming that

Wt+1 = Wt + (β − 1)Wt

∑
i:lt(i)=1

pt (i)

Finally

Wt+1 = Wt + (β − 1)WtLt = Wt (1− (1− β)Lt)
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Then, we have an upper bound

We have by recursion

WT+1 = n
T∏
t=1

(1− (1− β)Lt)

With W1 =
∑n
i=1 1 which correspond to the initialization of the

algorithm

Now, we have a lower bound lower bound

WT+1 ≥ max
i∈{1,...,N}

wT+1 (i) = βL
min
T
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Finally, we have that

Using βLmin
T ≤ n

∏T
t=1 [1− (1− β)LT ]

Lmin
T log β ≤ logn+

T∑
t=1

log [1− (1− β)LT ]

Then, we have by using the inequality ∀x < 1, log (1− x) ≤ −x

Lmin
T log β ≤ logn− (1− β)

T∑
t=1

LT
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Furthermore

We have that

Lmin
T log β ≤ logn− (1− β)LT

After a small math manipulation we have

LT ≤
logn
1− β −

log (1− (1− β))
1− β Lmin

T

Then using ∀x ∈
[
0, 1

2

]
,− log (1− x2) ≤ x+ x2

LT ≤
logn
1− β − (2− β)Lmin

T
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Finally

We have that Lmin
T = mini∈{1,...,N}

∑T
t=1 lt (i) ≤ T

LT ≤
logn
1− β − (1− β)T + Lmin

T

I leave this to you, please remember
For For β = 1−

√
logn
T when 1−

√
logn
T ≥ 1

2 ,

LT ≤ Lmin
T + 2

√
T logN
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The Stochastic Gradient Descent

Imagine the follow
We assume that the covariance matrix and the cross-correlation
vector are unknown.

We have that for a single sample

L (w, y,x) = 1
2
(
wTx− y

)2
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Therefore

We know
The solution corresponds to the root of the gradient of the cost
function:

Σxw − p = E
[
x
(
xTw − y

)]
= 0

We have

∇J (w) = Σxw − p = E
[
x
(
xTw − y

)]
= 0

Then

wn = wn−1 + µnxn
(
xTnwn−1 − yn

)
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The Least-Mean Squares Adaptive Algorithm

The stochastic gradient algorithm for MSE
It converges to the optimal mean-square error solution provided that
µn satisfies the two convergence conditions.

Once the algorithm has converged
It “locks” at the obtained solution.

In a case where the statistics of the involved process changes
The algorithm cannot track the changes.
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Therefore

if such changes occur, the error term

en = yn − xTnwn−1

It will get larger values.

However
Because µn is very small, the increased value of the error will not lead
to corresponding changes of the estimate at time n.
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Solution

This can be overcome if one sets the value of µn
To a preselected fixed value, µ.

The celebrated Least-Mean-Squares Algorithms
Algorithm LMS

1 w−1 = 0 ∈ Rd

2 Select a value µ
3 for n = 0, 1, ... do
4 en = yn − xT

n wn−1
5 wn = wn−1 + µenxn
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Complexity

Something Notable
The complexity of the algorithm amounts to 2d
multiplications/additions (MADs) per time update.

However
As the algorithm converges close the solution

Thus
The error term is expected to take small values making the updates
to remain close the solution
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Important

Given that µ has a constant value
The algorithm has now the “agility” to update the estimates

I In an attempt to “push” the error to lower values.

Something Notable
This small variation of the iterative scheme has important
implications.

No More a Robbins-Monro stochastic family
The resulting algorithm is no more a member of the Robbins-Monro
stochastic approximation family.
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AdaGrad

Adaptive Gradient Algorithm (AdaGrad) [11]
It is a variation of the SGD based on the subgradient idea

Definition (Subgradient) [12]
A vector g is a subgradient of a function f : Rd → R at a point
x ∈ domf , if for all z ∈ domf

f (z) ≥ f (x) + gT (z − x)
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Then

Example
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Standard Subgradient Algorithms

At Every Timestamp t, the learner gets the subgradient information
gt ∈ ∂ft (wt)

They move the predictor xt in the opposite direction of gt while
projecting the gradient update

wt+1 = ΠX (xt − ηgt) = arg min
w∈X

‖w − (wt − ηgt)‖22
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Graphically
As we can see the traditional setup does not get a faster convergence
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We need something faster

It has a problem when searching for the best w

Then, we need to have something way better and simpler!!!

We can do that by accumulating the gradients and use them for
mapping

G1:t =
[
g1 g2 · · · gt

]
It is the the matrix obtained by concatenating the sub-gradient
sequence in row format...

We denote the ith row of this matrix
The concatenation of the ith component of each sub-gradient by g1:t,i
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A First Approach

The Covariance matrix

Gt =
T∑
i=1

gig
T
i

It is an accumulation into the past of the previous gradients
Therefore, the larger changes happen at the beginning of the updates

I Not only that g1g
T
1 has rank 1

Therefore as we go into the building process of Gt

We might add new dimensions if the gt is not in the subspace of the
Gt−1
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Graphically
The gradient descent iterations start building a possible space of
projection
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Mahalanobis Idea

If we think in the Mahalanobis Norm ‖·‖A =
√
〈·, A·〉

Denoting the projection of a point y onto X according to A

ΠA
X (y) = arg min

w∈X
‖w − y‖2A = arg min

w∈X
〈w − y, A (w − y)〉

In Mahalonobis, the A generate a subspace where you are mapping
So, you can change the distance to obtain a better performance

The
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Using this, we define

Therefore, we can use the inverse of such a covariance matrix

wt+1 = ΠG
1/2
t
X

(
wt − ηG

− 1
2

t gt

)
gt = ∇f (wt)
G =

∑t
τ=1 gτg

T
τ
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Remarks

Given that G−
1
2

t is computationally intensive O (d3)
And the diagonal has the necessary information!!! We can choose the
information at the diagonal O (d):

wt+1 = Πdiag(G)
1
2

X

[
wt − ηdiag (G)−

1
2 gt

]
Basically, it looks as a normalization

G acts as memory for the variance of gt
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Remarks

Given that the diagonal elements Gj,j = ∑t
τ=1 g

2
τ,j, the parameters

are updated

wt+1
j = wtj −

η√
Gj,j

gj

Something Notable

Since the denominator in this factor,
√
Gj,j =

√∑t
τ=1 g

2
τ,j is the L2

norm.

We have that
Extreme parameter updates get dampened, while parameters that get
few or small updates receive higher learning rates.
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As in MSE [13]

We are interested in minimizing the expected value of f

E [f (w)]

Now, assuming gt = ∇wft (w)
The algorithm updates moving averages of the gradient mt and the
squared gradient vt.

Using combinations with β1, β2 ∈ [0, 1)

mt = β1mt−1 + (1− β1) gt
vt = β2vt−1 + (1− β2) g2

t
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Basically, they are the following quantities

You could thing on the following concepts

mt =
n∑
t=1

τngt ≈ E [gt] and vt =
n∑
t=1

τng
2
t ≈ E

[
(gt − 0)2

]

Therefore, given the decays by the following formulas

m̂t = mt

(1− βt1) and v̂t = vt
(1− βt2)

The algorithm tries to control the step size ∆t

∆t = α
m̂t(√
v̂t
)
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Therefore

We have two upper bounds
When 1− β1 >

√
1− β2

|∆t| ≤ α
(1− β1)√

1− β2

Otherwise

|∆t| ≤ α
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Therefore

Something Notable
Since α sets (an upper bound of) the magnitude of steps in
parameter space

I We can often deduce the right order of magnitude of α for the problem
at hand.

Furthermore, m̂t(√
v̂t

) can be seen as a Signal to Noise Ration (SNR)

This value becomes zero when reaching to the optimal.

Leading to smaller effective steps in parameter space
A form of automatic annealing.
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Finally, ADAM Algorithm
Adam Algorithm

Input: α step size, β1, β2 ∈ [0, 1), f (w) objective function, w0 Initial Parameter

1 m0 = 0, v0 = 0, 1st and 2nd moment vector respectively.
2 t = 0 initial time step

3 while wt not converged do

4 t = t+ 1

5 gt = ∇f (wt−1) ←Get gradients w.r.t. stochastic objective at timestep t

6 mt = β1mt−1 + (1− β1) gt ←Update raw first moment

7 vt = β2vt−1 + (1− β2) g2
t ←Update raw second moment

8 m̂t = mt

(1−βt
1) ←Bias correction pf the first moment

9 v̂t = vt

(1−βt
2) ←Bias correction pf the seconf moment

10 wt = wt−1 − α m̂t(√
v̂t+ε
)

11 Return wt
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Regret in ADAM

The adaptive method ADAM achieves

R (T ) = O
(
log d
√
n
)

Compared with the Online Gradient Descent
Hazan, Elad, Alexander Rakhlin, and Peter L. Bartlett. "Adaptive
online gradient descent." Advances in Neural Information Processing
Systems. 2008.

R (T ) = O
(√

dn
)

210 / 225



Regret in ADAM

The adaptive method ADAM achieves

R (T ) = O
(
log d
√
n
)

Compared with the Online Gradient Descent
Hazan, Elad, Alexander Rakhlin, and Peter L. Bartlett. "Adaptive
online gradient descent." Advances in Neural Information Processing
Systems. 2008.

R (T ) = O
(√

dn
)

210 / 225



Outline
1. Introduction

Review Gradient Descent
The Problems of Gradient Descent with Large Data Sets
Convergence of gradient descent with fixed step size
Convergence Rate
Convex Functions
Back to the Main Problem

Accelerating the Gradient Descent
Even with such Speeds

2. Accelerating Gradient Descent
First, Analysis of Convergence of Mean Squared Error
Now Doing an Analysis of MSE

First, the Gradient Descent Method
Analysis about µ
What about the Mean-Square Error?
Stochastic Approximation
Robbins-Monro Theorem
Robbins-Monro Scheme for Minimum-Square Error
Convergence

3. Improving and Measuring Stochastic Gradient Descent
Example of SGD Vs BGD
Using The Expected Value, The Mini-Batch
Adaptive Learning Step
Regret in Optimization

4. Methods
MSE Linear Estimation
The Least-Mean Squares Adaptive Algorithm

Adaptive Gradient Algorithm (AdaGrad)
Subgradients

Adaptive Moment Estimation, The ADAM Algorithm
Looking into the Past

Conclusions 211 / 225



Looking into the past

If we look at the following equations

mt = β1mt−1 + (1− β1) gt
vt = β2vt−1 + (1− β2) g2

t

with the update

m̂t = mt

(1− βt1) and v̂t = vt
(1− βt2)

Now, we have

wt = wt−1 − α
m̂t(√
v̂t + ε

)
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Then, if we apply the recursion to it

We have

wt = wt−2 − α

 m̂t−1(√
v̂t−1 + ε

) + m̂t(√
v̂t + ε

)


We notice that the term
√
v̂t+1 + ε

It works as a variance that if ∇f (wt−1) −→ 0 works as a dampener
in the search

Then, the final recursion takes to the point 0

wt = w0 − α
[

t∑
k=1

m̂k(√
v̂k + ε

)]
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Doing some Math work

We have that the last updating term look like when making ε = 0

t∑
k=1

m̂k(√
v̂k
) =

t∑
k=1

mk
(1−βk1 )(√ vk
(1−βk2 )

) =
t∑

k=1

(
1− βk2

) 1
2(

1− βk1
) × mk√

vk

Clearly (
1− βk2

) 1
2 → 1 and 1− βk1 → 1

But the first one faster than the second one
Therefore the steps modifications depend on the different values for
the betas.
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We have different cases

For Example, we could have
β1 = 0.9 and β2 = 0.9

I Making going to zero slower than when values are near to 0.
I A more detailed analysis is needed!!!

However, if we assume that they cancel each other, and if vk tend to
zero at slower pace

The terms in the past could be more important than the present ones
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Actually we need to analyze the convergence

We could have

216 / 225



In accordance with the Simulated Annealing part

This makes ADAMS adaptive
But with a limitation on the change because you always take the step

Making the past more important than the present when
When updating

Question
Can we make the algorithm more selective...smarter?
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The Problem with such approach

You require more information
After all, the ADAM is a compromise between adaptation and the
Zeroth methods

Making it quite light for problem as
Deep Neural Networks
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However

It could be a good idea to add such adaptivness to ADAM

I could result in something heavier, but more effective to obtain better
performance

A naive idea would be to substitute the term α(√
v̂t+ε

) by the Fisher

Information matrix [14]

wt = wt−1 − E
[
∂ log f (X|θ)

∂θ
|θ
]−1

m̂t

But that is another story
For Another Time...
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Final Remarks

ADAM is favored in Deep Learning given that
1 Given the use of stochastic gradient update:

1 It is Computationally Efficient
2 It requires Little memory.
3 It is suited for problems that are large in terms of data and/or

parameters.
2 Invariant to diagonal rescale of the gradients.
3 Appropriate for non-stationary objectives.
4 Appropriate for problems with very noisy/or sparse gradients.

Finally and most important
Hyper-parameters have intuitive interpretation and typically require
little tuning.

220 / 225



Final Remarks

ADAM is favored in Deep Learning given that
1 Given the use of stochastic gradient update:

1 It is Computationally Efficient
2 It requires Little memory.
3 It is suited for problems that are large in terms of data and/or

parameters.
2 Invariant to diagonal rescale of the gradients.
3 Appropriate for non-stationary objectives.
4 Appropriate for problems with very noisy/or sparse gradients.

Finally and most important
Hyper-parameters have intuitive interpretation and typically require
little tuning.

220 / 225



Final Remarks

ADAM is favored in Deep Learning given that
1 Given the use of stochastic gradient update:

1 It is Computationally Efficient
2 It requires Little memory.
3 It is suited for problems that are large in terms of data and/or

parameters.
2 Invariant to diagonal rescale of the gradients.
3 Appropriate for non-stationary objectives.
4 Appropriate for problems with very noisy/or sparse gradients.

Finally and most important
Hyper-parameters have intuitive interpretation and typically require
little tuning.

220 / 225



Final Remarks

ADAM is favored in Deep Learning given that
1 Given the use of stochastic gradient update:

1 It is Computationally Efficient
2 It requires Little memory.
3 It is suited for problems that are large in terms of data and/or

parameters.
2 Invariant to diagonal rescale of the gradients.
3 Appropriate for non-stationary objectives.
4 Appropriate for problems with very noisy/or sparse gradients.

Finally and most important
Hyper-parameters have intuitive interpretation and typically require
little tuning.

220 / 225



Final Remarks

ADAM is favored in Deep Learning given that
1 Given the use of stochastic gradient update:

1 It is Computationally Efficient
2 It requires Little memory.
3 It is suited for problems that are large in terms of data and/or

parameters.
2 Invariant to diagonal rescale of the gradients.
3 Appropriate for non-stationary objectives.
4 Appropriate for problems with very noisy/or sparse gradients.

Finally and most important
Hyper-parameters have intuitive interpretation and typically require
little tuning.

220 / 225



Outline
1. Introduction

Review Gradient Descent
The Problems of Gradient Descent with Large Data Sets
Convergence of gradient descent with fixed step size
Convergence Rate
Convex Functions
Back to the Main Problem

Accelerating the Gradient Descent
Even with such Speeds

2. Accelerating Gradient Descent
First, Analysis of Convergence of Mean Squared Error
Now Doing an Analysis of MSE

First, the Gradient Descent Method
Analysis about µ
What about the Mean-Square Error?
Stochastic Approximation
Robbins-Monro Theorem
Robbins-Monro Scheme for Minimum-Square Error
Convergence

3. Improving and Measuring Stochastic Gradient Descent
Example of SGD Vs BGD
Using The Expected Value, The Mini-Batch
Adaptive Learning Step
Regret in Optimization

4. Methods
MSE Linear Estimation
The Least-Mean Squares Adaptive Algorithm

Adaptive Gradient Algorithm (AdaGrad)
Subgradients

Adaptive Moment Estimation, The ADAM Algorithm
Looking into the Past

Conclusions 221 / 225



Conclusions

In Machine Learning
We need to have the best speedups to handle the problem dealing
with Big Data...

As we get more and more algorithms
It is clear that optimization for Big Data is one of the hottest trends
in Machine Learning

Take a look to
Leon Bottou, Frank E. Curtis, Jorge Nocedal: Optimization
Methods for Large-Scale Machine Learning. SIAM Review 60(2):
223-311 (2018)
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