Introduction to Machine Learning
 Regularization, Gradient Descent and Fisher Linear Discriminant

Andres Mendez-Vazquez

May 23, 2019

Outline

(1) More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration
(2) Linear Regression using Gradient Descent
- Introduction
- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain $\eta(k)$
- Gold Section
(3) The Gauss-Markov Theorem
- Statement
- Proof

4 Fisher Linear Discriminant

- History
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure
- The Cost Function
- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error
- What?
- Some Stuff for you to try

Outline

1 More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration

(2) Linear Regression using Gradient Descent

- Introduction
- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain $\eta(k)$
- Gold Section
(3) The Gauss-Markov Theorem
- Statement
- Proof
(4) Fisher Linear Discriminant
- History
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure
- The Cost Function
- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error

O What?

Some Stuff for you to try

Well-Posed Problem

Definition by Hadamard (Circa 1902)

- Models of physical phenomenas should have the following properties
(1) A solution exists,
(2) The solution is unique,
(3) The solution's behavior changes continuously with the initial conditions.

Well-Posed Problem

Definition by Hadamard (Circa 1902)

- Models of physical phenomenas should have the following properties
(1) A solution exists,
(2) The solution is unique,
(3) The solution's behavior changes continuously with the initial conditions.

Any other problem that fails in any of this conditions

- It is considered an III-Posed Problem.

Regularization in Linear Problems

In many applications of linear algebra
We want to find and estimation $\widehat{\boldsymbol{x}}$ to a vector $\boldsymbol{x} \in \mathbb{R}^{d}$ satisfying the approximation

Regularization in Linear Problems

In many applications of linear algebra
We want to find and estimation $\widehat{\boldsymbol{x}}$ to a vector $\boldsymbol{x} \in \mathbb{R}^{d}$ satisfying the approximation

$$
A \boldsymbol{x} \approx \boldsymbol{y}
$$

Regularization in Linear Problems

In many applications of linear algebra
We want to find and estimation $\widehat{\boldsymbol{x}}$ to a vector $\boldsymbol{x} \in \mathbb{R}^{d}$ satisfying the approximation

$$
A x \approx y
$$

When $A \in \mathbb{R}^{m \times d}$ is ill-conditioned or singular.

Regularization in Linear Problems

In many applications of linear algebra
We want to find and estimation $\widehat{\boldsymbol{x}}$ to a vector $\boldsymbol{x} \in \mathbb{R}^{d}$ satisfying the approximation

$$
A x \approx y
$$

When $A \in \mathbb{R}^{m \times d}$ is ill-conditioned or singular.
The importance of the problem
The problems generating these situations are:

Regularization in Linear Problems

In many applications of linear algebra
We want to find and estimation $\widehat{\boldsymbol{x}}$ to a vector $\boldsymbol{x} \in \mathbb{R}^{d}$ satisfying the approximation

$$
A \boldsymbol{x} \approx \boldsymbol{y}
$$

When $A \in \mathbb{R}^{m \times d}$ is ill-conditioned or singular.
The importance of the problem
The problems generating these situations are:
(1) Numerical differentiation of noisy data,

Regularization in Linear Problems

In many applications of linear algebra

We want to find and estimation $\widehat{\boldsymbol{x}}$ to a vector $\boldsymbol{x} \in \mathbb{R}^{d}$ satisfying the approximation

$$
A \boldsymbol{x} \approx \boldsymbol{y}
$$

When $A \in \mathbb{R}^{m \times d}$ is ill-conditioned or singular.
The importance of the problem
The problems generating these situations are:
(1) Numerical differentiation of noisy data,
(2) Non parametric smoothing of curves and surfaces defined by scattered data,

Regularization in Linear Problems

In many applications of linear algebra

We want to find and estimation $\widehat{\boldsymbol{x}}$ to a vector $\boldsymbol{x} \in \mathbb{R}^{d}$ satisfying the approximation

$$
A \boldsymbol{x} \approx \boldsymbol{y}
$$

When $A \in \mathbb{R}^{m \times d}$ is ill-conditioned or singular.

The importance of the problem
The problems generating these situations are:
(1) Numerical differentiation of noisy data,
(2) Non parametric smoothing of curves and surfaces defined by scattered data,
(3) Image reconstruction,

Regularization in Linear Problems

In many applications of linear algebra

We want to find and estimation $\widehat{\boldsymbol{x}}$ to a vector $\boldsymbol{x} \in \mathbb{R}^{d}$ satisfying the approximation

$$
A \boldsymbol{x} \approx \boldsymbol{y}
$$

When $A \in \mathbb{R}^{m \times d}$ is ill-conditioned or singular.

The importance of the problem

The problems generating these situations are:
(1) Numerical differentiation of noisy data,
(2) Non parametric smoothing of curves and surfaces defined by scattered data,
(3) Image reconstruction,
(3) Inverse Laplace transforms,

Regularization in Linear Problems

In many applications of linear algebra

We want to find and estimation $\widehat{\boldsymbol{x}}$ to a vector $\boldsymbol{x} \in \mathbb{R}^{d}$ satisfying the approximation

$$
A \boldsymbol{x} \approx \boldsymbol{y}
$$

When $A \in \mathbb{R}^{m \times d}$ is ill-conditioned or singular.

The importance of the problem

The problems generating these situations are:
(1) Numerical differentiation of noisy data,
(2) Non parametric smoothing of curves and surfaces defined by scattered data,
(3) Image reconstruction,
(9) Inverse Laplace transforms,
(3) etc.

In all such situations

The Vector \widehat{x} generated by
(1) $\widehat{\boldsymbol{x}}=A^{-1} \boldsymbol{y}$
(2) $\widehat{\boldsymbol{x}}=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{y}$

In all such situations

The Vector \widehat{x} generated by
(1) $\widehat{\boldsymbol{x}}=A^{-1} \boldsymbol{y}$
(2) $\widehat{\boldsymbol{x}}=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{y}$

If it exists at all

- It is usually a meaningless bad approximation to \boldsymbol{x}.

Even

Even with an estimation $\widehat{\boldsymbol{x}}=A \boldsymbol{y}$ as reasonable near to x^{*} (Square Case)

$$
\left\|\boldsymbol{x}^{*}-\widehat{\boldsymbol{x}}\right\|=\left\|A^{-1} A \boldsymbol{x}^{*}-A^{-1} \boldsymbol{y}\right\|
$$

Even

Even with an estimation $\widehat{x}=A \boldsymbol{y}$ as reasonable near to x^{*} (Square Case)

$$
\begin{aligned}
\left\|\boldsymbol{x}^{*}-\widehat{\boldsymbol{x}}\right\| & =\left\|A^{-1} A \boldsymbol{x}^{*}-A^{-1} \boldsymbol{y}\right\| \\
& \leq\left\|A^{-1}\right\|\left\|A \boldsymbol{x}^{*}-\boldsymbol{y}\right\| \text { Holder's Inequality }
\end{aligned}
$$

Even

Even with an estimation $\widehat{\boldsymbol{x}}=A \boldsymbol{y}$ as reasonable near to \boldsymbol{x}^{*} (Square Case)

$$
\begin{aligned}
\left\|\boldsymbol{x}^{*}-\widehat{\boldsymbol{x}}\right\| & =\left\|A^{-1} A \boldsymbol{x}^{*}-A^{-1} \boldsymbol{y}\right\| \\
& \leq\left\|A^{-1}\right\|\left\|A \boldsymbol{x}^{*}-\boldsymbol{y}\right\| \text { Holder's Inequality }
\end{aligned}
$$

- This Upper Bound is quite large.

Even

Even with an estimation $\widehat{x}=A y$ as reasonable near to x^{*} (Square Case)

$$
\begin{aligned}
\left\|\boldsymbol{x}^{*}-\widehat{\boldsymbol{x}}\right\| & =\left\|A^{-1} A \boldsymbol{x}^{*}-A^{-1} \boldsymbol{y}\right\| \\
& \leq\left\|A^{-1}\right\|\left\|A \boldsymbol{x}^{*}-\boldsymbol{y}\right\| \text { Holder's Inequality }
\end{aligned}
$$

- This Upper Bound is quite large.

With

(1) $\left\|A^{-1}\right\|=\sigma_{\max }(A)$ The largest singular value of matrix.

Even

Even with an estimation $\widehat{x}=A y$ as reasonable near to x^{*} (Square Case)

$$
\begin{aligned}
\left\|\boldsymbol{x}^{*}-\widehat{\boldsymbol{x}}\right\| & =\left\|A^{-1} A \boldsymbol{x}^{*}-A^{-1} \boldsymbol{y}\right\| \\
& \leq\left\|A^{-1}\right\|\left\|A \boldsymbol{x}^{*}-\boldsymbol{y}\right\| \text { Holder's Inequality }
\end{aligned}
$$

- This Upper Bound is quite large.

With

(1) $\left\|A^{-1}\right\|=\sigma_{\max }(A)$ The largest singular value of matrix.
(2) $\|A \boldsymbol{x}-\boldsymbol{y}\|=\sqrt{(A \boldsymbol{x}-\boldsymbol{y})^{T}(A \boldsymbol{x}-\boldsymbol{y})}$

Therefore

Regularization techniques are needed to obtain meaningful solutions

- To problems that are called ill-posed problems.

Therefore

Regularization techniques are needed to obtain meaningful solutions

- To problems that are called ill-posed problems.

Where some parameters are ill-determined

- By Least Square Methods
- in particular when the number of parameters is larger than the number of available measurements!!!

Outline

(1) More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration

(2) Linear Regression using Gradient Descent

- Introduction
- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain $\eta(k)$
- Gold Section
(3) The Gauss-Markov Theorem
- Statement
- Proof
(4) Fisher Linear DiscriminantHistory
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure
\odot
The Cost Function
- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error
- What?

Some Stuff for you to try

Modeling Smoothness

Geometrically, regularization for smoothness means that

- We seek the least rough function that gives a certain degree of fit to the observed data.

Modeling Smoothness

Geometrically, regularization for smoothness means that

- We seek the least rough function that gives a certain degree of fit to the observed data.

A way to measure smoothness

- It is look at how many derivatives can be done before $\nabla^{p} f(x)=0$

Here, we want to model the idea of "Smoothness"

For this, we consider a continuous function f

- Where we use a vector \boldsymbol{w} with features

$$
w_{i}=f\left(t_{i}\right)
$$

Here, we want to model the idea of "Smoothness"

For this, we consider a continuous function f

- Where we use a vector \boldsymbol{w} with features

$$
w_{i}=f\left(t_{i}\right)
$$

Thus, we can use a numerical differentiation method such that

$$
\boldsymbol{w}^{(1)}=\frac{d f(t)}{d t}
$$

Therefore, Assume Smoothness

We have a value such that $w=f(t)$

- Thus, we say that w is smooth "enough" if $w^{(1)}=\frac{d f(t)}{d t}$ exists.

Therefore, Assume Smoothness

We have a value such that $w=f(t)$

- Thus, we say that w is smooth "enough" if $w^{(1)}=\frac{d f(t)}{d t}$ exists.

Now this can be repeated p

$$
w^{(p)}=\frac{d^{(p)} f(t)}{d t^{(p)}}
$$

Thus, it is possible to look at this smoothness

Using our Linear Algebra, we can represent this as a Linear Operator
$w^{(p)}=S w$ (The Smoothing Matrix)

Thus

We can define the numerical differentiation of a $p+1$ times

- Over a continuously differentiable function

$$
y:[0,1] \longrightarrow \mathbb{R}
$$

Thus

We can define the numerical differentiation of a $p+1$ times

- Over a continuously differentiable function

$$
y:[0,1] \longrightarrow \mathbb{R}
$$

Thus, finding our estimate $x(t)=y^{\prime}(t)=\nabla y(t)$

- Basically our problem of solving the linear system $A x=y$

Thus

We can define the numerical differentiation of a $p+1$ times

- Over a continuously differentiable function

$$
y:[0,1] \longrightarrow \mathbb{R}
$$

Thus, finding our estimate $x(t)=y^{\prime}(t)=\nabla y(t)$

- Basically our problem of solving the linear system $A x=y$

Or in other words

$$
A x(t)=\int_{0}^{t} x(\tau) d \tau
$$

Therefore

The differentiability assumption says

$$
\boldsymbol{w}=\nabla^{p+1} y=\nabla^{p} x \text { is continous and bounded }
$$

Therefore

The differentiability assumption says

$$
\boldsymbol{w}=\nabla^{p+1} y=\nabla^{p} x \text { is continous and bounded }
$$

Given that $A=\nabla^{-1}$

- We may write the previous equation as

$$
x=A^{p} \boldsymbol{w}
$$

Furthermore, Based in the following equalities

We can define the Adjoint Integral Operator is defined
$\left\langle A^{T} x_{1}, x_{2}\right\rangle=\left\langle x_{1}, A x_{2}\right\rangle$

$$
\left\langle x_{1}, x_{2}\right\rangle=\int_{0}^{1} x_{1}(t) x_{2}(t) d t
$$

Furthermore, Based in the following equalities

We can define the Adjoint Integral Operator is defined
$\left\langle A^{T} x_{1}, x_{2}\right\rangle=\left\langle x_{1}, A x_{2}\right\rangle$

$$
\left\langle x_{1}, x_{2}\right\rangle=\int_{0}^{1} x_{1}(t) x_{2}(t) d t
$$

Thus with $A x_{i}=y_{i}$ and $x_{i}=\nabla y_{i}$

$$
\left\langle x_{1}, A x_{2}\right\rangle=\left\langle\nabla y_{1}, y_{2}\right\rangle=-\left\langle y_{1}, \nabla y_{2}\right\rangle=\left\langle-A x_{1}, x_{2}\right\rangle
$$

- By Partial Integration

Furthermore, Based in the following equalities
We can define the Adjoint Integral Operator is defined
$\left\langle A^{T} x_{1}, x_{2}\right\rangle=\left\langle x_{1}, A x_{2}\right\rangle$

$$
\left\langle x_{1}, x_{2}\right\rangle=\int_{0}^{1} x_{1}(t) x_{2}(t) d t
$$

Thus with $A x_{i}=y_{i}$ and $x_{i}=\nabla y_{i}$

$$
\left\langle x_{1}, A x_{2}\right\rangle=\left\langle\nabla y_{1}, y_{2}\right\rangle=-\left\langle y_{1}, \nabla y_{2}\right\rangle=\left\langle-A x_{1}, x_{2}\right\rangle
$$

- By Partial Integration

Then, under the following boundary conditions

- Assuming that y and its first $p+1$ derivatives vanish at $t=0$ and $t=1$.

How?

We have

$$
\left\langle\nabla y_{1}, y_{2}\right\rangle=\int_{0}^{1} \nabla y_{1}(t) y_{2}(t) d t
$$

How?

We have

$$
\begin{aligned}
\left\langle\nabla y_{1}, y_{2}\right\rangle & =\int_{0}^{1} \nabla y_{1}(t) y_{2}(t) d t \\
& =\left.y_{1}(t) y_{2}(t)\right|_{0} ^{1}-\int_{0}^{1} y_{1}(t) \nabla y_{2}(t) d t
\end{aligned}
$$

We have

$$
\begin{aligned}
\left\langle\nabla y_{1}, y_{2}\right\rangle & =\int_{0}^{1} \nabla y_{1}(t) y_{2}(t) d t \\
& =\left.y_{1}(t) y_{2}(t)\right|_{0} ^{1}-\int_{0}^{1} y_{1}(t) \nabla y_{2}(t) d t \\
& =-\left\langle y_{1}, \nabla y_{2}\right\rangle
\end{aligned}
$$

Then, if we assume that all entries in A are in \mathbb{R}

- $A^{T}=-A$

Therefore

We have the following relation

$$
\nabla y(t)=A^{-1} y(t)
$$

Therefore

We have the following relation

$$
\nabla y(t)=A^{-1} y(t)
$$

Thus, it is possible to write the condition $x=A^{p} w$ as $x=S w$

- By absorbing the sign into w

$$
S= \begin{cases}\left(A^{T} A\right)^{\frac{p}{2}} & \text { if } p \text { is even } \\ \left(A^{T} A\right)^{\frac{p-1}{2}} A^{T} & \text { if } p \text { is even }\end{cases}
$$

- For $p \geq 1$.

Outline

(1) More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration

2. Linear Regression using Gradient Descent

- Introduction
- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain $\eta(k)$
- Gold Section
(3) The Gauss-Markov Theorem
- Statement
- Proof
(4) Fisher Linear Discriminant
- History
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure
- The Cost Function
- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error
- What?

The key to the treatment of ill-posed Linear Systems

It is a process called regularization that replaces A^{-1} by a family $C_{h}, h>0$

- Of approximate inverses of A in such a way that, as $h \longrightarrow 0$, the product $C_{h} A \rightarrow I$ in an appropriately restricted sense.
- The parameter h is called the regularization parameter.

Therefore

It is usually possible to choose the C_{h} such that

- For a suitable exponent p (often $p=1$ or 2), the constants
(1) $\gamma_{1}=\sup _{h>0} h\left\|C_{h}\right\|$.
(2) $\gamma_{2}=\sup _{h>0} h^{-p}\left\|\left(I-C_{h} A\right) S\right\|$

Therefore

It is usually possible to choose the C_{h} such that

- For a suitable exponent p (often $p=1$ or 2), the constants
(1) $\gamma_{1}=\sup _{h>0} h\left\|C_{h}\right\|$.
(2) $\gamma_{2}=\sup _{h>0} h^{-p}\left\|\left(I-C_{h} A\right) S\right\|$

They are finite and of reasonable size

- From this... we have...

The Following Theorem

Theorem

- Suppose $x=S w$, and $\|A x-y\| \leq \Delta\|w\|$ for some $\Delta>0$.

The Following Theorem

Theorem

- Suppose $x=S w$, and $\|A x-y\| \leq \Delta\|w\|$ for some $\Delta>0$.
- Then γ_{1} and γ_{2} implies

The Following Theorem

Theorem

- Suppose $x=S w$, and $\|A x-y\| \leq \Delta\|w\|$ for some $\Delta>0$.
- Then γ_{1} and γ_{2} implies

$$
\left\|x-C_{h} y\right\| \leq\left[\gamma_{1} \frac{\Delta}{h}+\gamma_{2} h^{p}\right]\|w\|
$$

For Example

For a well-posed data fitting problem

- One with a well-conditioned normal equation matrix $A^{T} A$

For Example

For a well-posed data fitting problem

- One with a well-conditioned normal equation matrix $A^{T} A$

The least squares estimate

- It has an error of the order of Δ.

For Example

For a well-posed data fitting problem

- One with a well-conditioned normal equation matrix $A^{T} A$

The least squares estimate

- It has an error of the order of Δ.

For example

- $C_{h}=\left(A^{T} A\right)^{-1} A^{T}=A^{+} \Longrightarrow h^{-1}=\left\|A^{+}\right\|=O(1)$ with $\gamma_{1}=1$ and $\gamma_{2}=0$ independent of p

Outline

(1) More in Regularization

O Introduction

- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration

(2) Linear Regression using Gradient Descent

- Introduction
- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain $\eta(k)$
- Gold Section
(3) The Gauss-Markov Theorem
- Statement
- Proof
(4) Fisher Linear DiscriminantHistory
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measureThe Cost Function
- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error
- What?

Now, we have

When A is rank deficient or becomes increasingly ill-conditioned

- We may improve the condition by modifying $A^{T} A$.

Now, we have

When A is rank deficient or becomes increasingly ill-conditioned

- We may improve the condition by modifying $A^{T} A$.

The simplest way to achieve this is by adding a small multiple of the identity

- Since $A^{T} A$ is symmetric and positive semidefinite.

Now, we have

When A is rank deficient or becomes increasingly ill-conditioned

- We may improve the condition by modifying $A^{T} A$.

The simplest way to achieve this is by adding a small multiple of the identity

- Since $A^{T} A$ is symmetric and positive semidefinite.

The matrix $A^{T} A+h^{2} I$ has its eigenvalues

- They are in the interval $\left[h^{2}, h^{2}+\|A\|^{2}\right]$

Here

The Condition Number of a Positive Definite Matrix Σ

$$
\operatorname{cond}(\Sigma)=\frac{\lambda_{\max }(\Sigma)}{\lambda_{\min }(\Sigma)}
$$

- What happens

Here

The Condition Number of a Positive Definite Matrix Σ

$$
\operatorname{cond}(\Sigma)=\frac{\lambda_{\max }(\Sigma)}{\lambda_{\min }(\Sigma)}
$$

- What happens

Which is related to the Maximum Likelihood of a Gaussian Distribution under a restriction

$$
\begin{aligned}
& \max M L(\Sigma) \\
& \text { s.t.cond }(\Sigma) \leq k
\end{aligned}
$$

- "Condition Number Regularized Covariance Estimation" by Won et. al

Here the Condition Number

It is

$$
\operatorname{cond}\left(A^{T} A+h^{2} I\right) \leq \frac{h^{2}+\|A\|^{2}}{h^{2}}
$$

Here the Condition Number

It is

$$
\operatorname{cond}\left(A^{T} A+h^{2} I\right) \leq \frac{h^{2}+\|A\|^{2}}{h^{2}}
$$

Therefore, we have from the previous slides

$$
\widehat{x}=\left(A^{T} A+h^{2} I\right)^{-1} A^{T} y
$$

Here the Condition Number

It is

$$
\operatorname{cond}\left(A^{T} A+h^{2} I\right) \leq \frac{h^{2}+\|A\|^{2}}{h^{2}}
$$

Therefore, we have from the previous slides

$$
\widehat{x}=\left(A^{T} A+h^{2} I\right)^{-1} A^{T} y
$$

Formula first derived by Tikhonov in 1963

- "Solution of incorrectly formulated problems and the regularization method," Soviet Math. Dokl. 4 (1963), pp. 1035-1038.

Finally

Corresponds to the family of approximate inverses (Tikhonov Regularization)

$$
C_{h}=\left(A^{T} A+h^{2} I\right)^{-1} A^{T}
$$

Outline

(1) More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration
(2) Linear Regression using Gradient Descent
- Introduction
- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain η (k)
- Gold Section
(3) The Gauss-Markov Theorem
- Statement
- Proof
(4) Fisher Linear DiscriminantHistory
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure
-

The Cost Function

- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error
- What?

A Classic Example, The Finite-Dimensional Case

Given a Matrix K of $N \times N$

- with decomposition

$$
K=Q \Sigma Q^{t}
$$

- Such that $Q Q^{T}=I$

A Classic Example, The Finite-Dimensional Case

Given a Matrix K of $N \times N$

- with decomposition

$$
K=Q \Sigma Q^{t}
$$

- Such that $Q Q^{T}=I$

Where

- Σ is the matrix $\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}\right)$ of eigenvalues with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{N}$
- $Q=\left[\begin{array}{llll}q_{1} & q_{2} & \cdots & q_{N}\end{array}\right]$ the corresponding eigenvectors.

A Classic Example, The Finite-Dimensional Case

Given a Matrix K of $N \times N$

- with decomposition

$$
K=Q \Sigma Q^{t}
$$

- Such that $Q Q^{T}=I$

Where

- Σ is the matrix $\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}\right)$ of eigenvalues with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{N}$
- $Q=\left[\begin{array}{llll}q_{1} & q_{2} & \cdots & q_{N}\end{array}\right]$ the corresponding eigenvectors.

Then, it is possible to write the following estimation

$$
\widehat{\boldsymbol{x}}=K^{-1} Y=Q \Sigma^{-1} Q^{T} \boldsymbol{y}=\sum_{i=1}^{n} \frac{1}{\sigma_{i}}\left\langle q_{i}, Y\right\rangle q_{i}
$$

Therefore

If we start to see really small σ_{i}, the solution will be unstable

- It is more, if there are zero eigenvalues, the matrix will be impossible to invert.

Therefore

If we start to see really small σ_{i}, the solution will be unstable

- It is more, if there are zero eigenvalues, the matrix will be impossible to invert.

Clearly, the coefficients of \widehat{x} will go infinity

$$
x_{i}=\frac{1}{\sigma_{i}}\left\langle q_{i}, Y\right\rangle \rightarrow \infty
$$

- Or Statistical High Variance...

A Classic By Tikhonov

Add an extra term λ to avoid such problems

$$
\widehat{\boldsymbol{x}}=(K+n \lambda I)^{-1} Y=Q \Sigma^{-1} Q^{T} \boldsymbol{y}
$$

A Classic By Tikhonov

Add an extra term λ to avoid such problems

$$
\widehat{\boldsymbol{x}}=(K+n \lambda I)^{-1} Y=Q \Sigma^{-1} Q^{T} \boldsymbol{y}
$$

Again simple linear algebra

- The eigenvalues are padded by the same value, and we do not care about the effect in the eigenvectors given that we care only in the directions!!!

Thus

If we rewrite the equations

$$
\widehat{\boldsymbol{x}}=Q(\Sigma+n \lambda I)^{-1} Q^{T} \boldsymbol{y}=\sum_{i=1}^{n} \frac{1}{\sigma_{i}+n \lambda}\left\langle q_{i}, Y\right\rangle q_{i}
$$

Thus

If we rewrite the equations

$$
\widehat{\boldsymbol{x}}=Q(\Sigma+n \lambda I)^{-1} Q^{T} \boldsymbol{y}=\sum_{i=1}^{n} \frac{1}{\sigma_{i}+n \lambda}\left\langle q_{i}, Y\right\rangle q_{i}
$$

Actually, regularization filters out the undesired components

- If $\sigma_{i} \gg \lambda n$ then $\frac{1}{\sigma_{i}+n \lambda} \sim \frac{1}{\sigma_{i}}$
- If $\sigma_{i} \ll \lambda n$ then $\frac{1}{\sigma_{i}+n \lambda} \sim \frac{1}{n \lambda}$

In a more general setup

Let be $G_{\lambda}(\sigma)$ a regularization function for the eigenvalues, we can then decompose K as

$$
G_{\lambda}(K)=Q G_{\lambda}(\sigma) Q^{T}
$$

In a more general setup

Let be $G_{\lambda}(\sigma)$ a regularization function for the eigenvalues, we can then decompose K as

$$
G_{\lambda}(K)=Q G_{\lambda}(\sigma) Q^{T}
$$

Therefore our estimation, finishes as

$$
G_{\lambda}(K) \boldsymbol{y}=\sum_{i=1}^{n} G_{\lambda}(\sigma)\left\langle q_{i}, Y\right\rangle q_{i}
$$

Clearly

For Tikhonov

$$
G_{\lambda}(\sigma)=\frac{1}{\sigma_{i}+n \lambda}
$$

Remarks

First

- In the inverse problems literature, many algorithms are known besides Tikhonov regularization.

Remarks

First

- In the inverse problems literature, many algorithms are known besides Tikhonov regularization.

These algorithms are defined by a suitable G

- They are not necessarily based on Regularized Empirical Risk Minimization (ERM):

$$
R_{e m p}(f)=\frac{1}{n} \sum_{i=1}^{n} L\left(f\left(x_{i}\right), y_{i}\right)
$$

- However, they perform spectral regularization (Eigenvalue Based Regularization).

Spectral Filtering

Examples

(1) Gradient Descent (or Landweber Iteration or L_{2} Boosting)
(2) ν-accelerated Landweber

- Iterated Tikhonov Regularization
- Truncated Singular Value Decomposition (TSVD)
- Principle Component Regression (PCR)

Outline

(1) More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration
(2) Linear Regression using Gradient Descent
- Introduction
- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain η (k)
- Gold Section

3- The Gauss-Markov Theorem

- Statement
- Proof
(4) Fisher Linear Discriminant
-

History

- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measureThe Cost Function
- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error
- What?

The Landweber Iteration

The Landweber iteration or Landweber algorithm

- It is an algorithm to solve ill-posed linear inverse problems

The Landweber Iteration

The Landweber iteration or Landweber algorithm

- It is an algorithm to solve ill-posed linear inverse problems

It is quite old...

- The method was first proposed in the 1950s by Louis Landweber,

The Landweber Iteration

The Landweber iteration or Landweber algorithm

- It is an algorithm to solve ill-posed linear inverse problems

It is quite old...

- The method was first proposed in the 1950s by Louis Landweber,

Remarks

- When A is nonsingular, then an explicit solution is $x=A^{-1} y$

Therefore

The Landweber algorithm is an attempt to regularize the problem

- The algorithm tries to solve the minimization

$$
\min _{\boldsymbol{w}} \frac{\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}\|_{2}^{2}}{2}
$$

Therefore

The Landweber algorithm is an attempt to regularize the problem

- The algorithm tries to solve the minimization

$$
\min _{\boldsymbol{w}} \frac{\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}\|_{2}^{2}}{2}
$$

Using the update

$$
\boldsymbol{w}_{k+1}=\boldsymbol{w}_{k}+\eta \boldsymbol{X}^{T}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}_{k}\right)
$$

- where $0<\eta<2\left\|\boldsymbol{X}^{T} \boldsymbol{X}\right\|_{2}^{-1}=2 \sigma$

Therefore

The Landweber algorithm is an attempt to regularize the problem

- The algorithm tries to solve the minimization

$$
\min _{\boldsymbol{w}} \frac{\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}\|_{2}^{2}}{2}
$$

Using the update

$$
\boldsymbol{w}_{k+1}=\boldsymbol{w}_{k}+\eta \boldsymbol{X}^{T}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}_{k}\right)
$$

- where $0<\eta<2\left\|\boldsymbol{X}^{T} \boldsymbol{X}\right\|_{2}^{-1}=2 \sigma$

This is given by the taking in account

$$
\phi(\boldsymbol{w})=\frac{\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}\|_{2}^{2}}{2}
$$

Then

It is possible to show that the gradient of is $\phi(\boldsymbol{w})$

$$
\phi(\boldsymbol{w})=-\boldsymbol{X}^{T}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}_{k}\right)
$$

Then

It is possible to show that the gradient of is $\phi(\boldsymbol{w})$

$$
\phi(\boldsymbol{w})=-\boldsymbol{X}^{T}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}_{k}\right)
$$

Therefore

- Each step in Landweber's method is a step in the direction of steepest descent.

Outline

More in Regularization

－Introduction
－Smoothness of the Estimation
－The Error Estimate
－Choosing approximate inverses
－A Classic Example，Regularization as a Filter
－Another Example，The Landweber Iteration

（2）Linear Regression using Gradient Descent

－Introduction
What is the Gradient of the Equation？
－The Basic Algorithm
－How to obtain $\eta(k)$
－Gold Section
（3）The Gauss－Markov Theorem
－Statement
－Proof
（4）Fisher Linear Discriminant
－History
－The Projection and The Rotation Idea
－Classifiers as Machines for dimensionality reduction
－Solution
－Use the mean of each Class
－Scatter measure
－The Cost Function
－A Transformation for simplification and defining the cost function
－Where is this used？
－Applications
－Relation with Least Squared Error
O What？

Given that the Canonical Solution has problems

We can develop a more robust algorithm
Using the Gradient Descent Idea

Given that the Canonical Solution has problems

We can develop a more robust algorithm Using the Gradient Descent Idea

Basically, The Gradient Descent

It uses the change in the surface of the cost function to obtain a direction of improvement.

Gradient Descent

The basic procedure is as follow
(1) Start with a random weight vector $\boldsymbol{w}(1)$.

Gradient Descent

The basic procedure is as follow
(1) Start with a random weight vector $\boldsymbol{w}(1)$.
(2) Compute the gradient vector $\nabla J(\boldsymbol{w}(1))$.

Gradient Descent

The basic procedure is as follow
(1) Start with a random weight vector $\boldsymbol{w}(1)$.
(2) Compute the gradient vector $\nabla J(\boldsymbol{w}(1))$.

- Obtain value $\boldsymbol{w}(2)$ by moving from $\boldsymbol{w}(1)$ in the direction of the steepest descent:

Gradient Descent

The basic procedure is as follow

(1) Start with a random weight vector $\boldsymbol{w}(1)$.
(2) Compute the gradient vector $\nabla J(\boldsymbol{w}(1))$.
(3) Obtain value $\boldsymbol{w}(2)$ by moving from $\boldsymbol{w}(1)$ in the direction of the steepest descent:

$$
\begin{equation*}
\boldsymbol{w}(k+1)=\boldsymbol{w}(k)-\eta(k) \nabla J(\boldsymbol{w}(k)) \tag{1}
\end{equation*}
$$

Gradient Descent

The basic procedure is as follow

(1) Start with a random weight vector $\boldsymbol{w}(1)$.
(2) Compute the gradient vector $\nabla J(\boldsymbol{w}(1))$.
(3) Obtain value $\boldsymbol{w}(2)$ by moving from $\boldsymbol{w}(1)$ in the direction of the steepest descent:

$$
\begin{equation*}
\boldsymbol{w}(k+1)=\boldsymbol{w}(k)-\eta(k) \nabla J(\boldsymbol{w}(k)) \tag{1}
\end{equation*}
$$

$\eta(k)$ is a positive scale factor or learning rate!!!

Geometrically

We have the following

Outline

More in Regularization
－Introduction
－Smoothness of the Estimation
－The Error Estimate
－Choosing approximate inverses
－A Classic Example，Regularization as a Filter
－Another Example，The Landweber Iteration

（2）Linear Regression using Gradient Descent

introduction
－What is the Gradient of the Equation？
－The Basic Algorithm
－How to obtain $\eta(k)$
－Gold Section
（3）The Gauss－Markov Theorem
－Statement
－Proof
（4）Fisher Linear Discriminant
－History
－The Projection and The Rotation Idea
－Classifiers as Machines for dimensionality reduction
－Solution
－Use the mean of each Class
－Scatter measure
－The Cost Function
－A Transformation for simplification and defining the cost function
－Where is this used？
－Applications
－Relation with Least Squared Error
－What？

For our full regularized equation

We have

$$
\begin{equation*}
J(\boldsymbol{w})=\frac{1}{2} \sum_{i=1}^{N}\left(y_{i}-\sum_{j=1}^{d+1} x_{j}^{i} w_{j}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{d+1} w_{j}^{2} \tag{2}
\end{equation*}
$$

For our full regularized equation

We have

$$
\begin{equation*}
J(\boldsymbol{w})=\frac{1}{2} \sum_{i=1}^{N}\left(y_{i}-\sum_{j=1}^{d+1} x_{j}^{i} w_{j}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{d+1} w_{j}^{2} \tag{2}
\end{equation*}
$$

Then, for each w_{j}

$$
\begin{equation*}
\frac{d J(\boldsymbol{w})}{d w_{j}}=-\sum_{i=1}^{N}\left[\left(y_{i}-\sum_{j=1}^{d+1} x_{j}^{i} w_{j}\right) x_{j}^{i}\right]+\lambda w_{j} \tag{3}
\end{equation*}
$$

For our full regularized equation

We have

$$
\begin{equation*}
J(\boldsymbol{w})=\frac{1}{2} \sum_{i=1}^{N}\left(y_{i}-\sum_{j=1}^{d+1} x_{j}^{i} w_{j}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{d+1} w_{j}^{2} \tag{2}
\end{equation*}
$$

Then, for each w_{j}

$$
\begin{equation*}
\frac{d J(\boldsymbol{w})}{d w_{j}}=-\sum_{i=1}^{N}\left[\left(y_{i}-\sum_{j=1}^{d+1} x_{j}^{i} w_{j}\right) x_{j}^{i}\right]+\lambda w_{j} \tag{3}
\end{equation*}
$$

Therefore

$$
\nabla J(\boldsymbol{w}(k))=\left(\begin{array}{c}
-\sum_{i=1}^{N}\left[\left(y_{i}-\sum_{j=1}^{d+1} x_{j}^{i} w_{j}\right) x_{1}^{i}\right]+\lambda w_{1} \\
\vdots \\
-\sum_{i=1}^{N}\left[\left(y_{i}-\sum_{j=1}^{d+1} x_{j}^{i} w_{j}\right) x_{d+1}^{i}\right]+\lambda w_{d+1}
\end{array}\right)
$$

Outline

More in Regularization
－Introduction
－Smoothness of the Estimation
－The Error Estimate
－Choosing approximate inverses
－A Classic Example，Regularization as a Filter
－Another Example，The Landweber Iteration

（2）Linear Regression using Gradient Descent

－Introduction
What is the Gradient of the Equation？
－The Basic Algorithm
－How to obtain η（ k ）
－Gold Section
（3）The Gauss－Markov Theorem
－Statement
－Proof
（4）Fisher Linear Discriminant
－History
－The Projection and The Rotation Idea
－Classifiers as Machines for dimensionality reduction
－Solution
－Use the mean of each Class
－Scatter measure
－The Cost Function
－A Transformation for simplification and defining the cost function
－Where is this used？
－Applications
－Relation with Least Squared Error
O What？

Algorithm

Gradient Decent

(1) Initialize \boldsymbol{w}, criterion $\theta, \eta(\cdot), k=0$

Algorithm

Gradient Decent

(1) Initialize \boldsymbol{w}, criterion $\theta, \eta(\cdot), k=0$
(2) do $k=k+1$

Algorithm

Gradient Decent

(1) Initialize \boldsymbol{w}, criterion $\theta, \eta(\cdot), k=0$
(2) do $k=k+1$
©

$$
\boldsymbol{w}(k)=\boldsymbol{w}(k-1)-\eta(k) \nabla J(\boldsymbol{w}(k-1))
$$

Algorithm

Gradient Decent

(1) Initialize \boldsymbol{w}, criterion $\theta, \eta(\cdot), k=0$
(2) do $k=k+1$
(3) $\boldsymbol{w}(k)=\boldsymbol{w}(k-1)-\eta(k) \nabla J(\boldsymbol{w}(k-1))$
(9) until $\eta(k) \nabla J(\boldsymbol{w}(k))<\theta$

Algorithm

Gradient Decent

(1) Initialize \boldsymbol{w}, criterion $\theta, \eta(\cdot), k=0$
(2) do $k=k+1$
(3) $\boldsymbol{w}(k)=\boldsymbol{w}(k-1)-\eta(k) \nabla J(\boldsymbol{w}(k-1))$
(9) until $\eta(k) \nabla J(\boldsymbol{w}(k))<\theta$
(5) return \boldsymbol{w}

Algorithm

Gradient Decent

(1) Initialize \boldsymbol{w}, criterion $\theta, \eta(\cdot), k=0$
(2) do $k=k+1$
(3) $\boldsymbol{w}(k)=\boldsymbol{w}(k-1)-\eta(k) \nabla J(\boldsymbol{w}(k-1))$
(9) until $\eta(k) \nabla J(\boldsymbol{w}(k))<\theta$
(5) return \boldsymbol{w}

Problem!!! How to choose the learning rate?

- If $\eta(k)$ is too small, convergence is quite slow!!!

Algorithm

Gradient Decent

(1) Initialize \boldsymbol{w}, criterion $\theta, \eta(\cdot), k=0$
(2) do $k=k+1$
©

$$
\boldsymbol{w}(k)=\boldsymbol{w}(k-1)-\eta(k) \nabla J(\boldsymbol{w}(k-1))
$$

(9) until $\eta(k) \nabla J(\boldsymbol{w}(k))<\theta$
(6) return \boldsymbol{w}

Problem!!! How to choose the learning rate?

- If $\eta(k)$ is too small, convergence is quite slow!!!
- If $\eta(k)$ is too large, correction will overshot and can even diverge!!!

Outline

More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration

(2) Linear Regression using Gradient Descent

- Introduction
- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain $\eta(k)$
- Gold Section
(3) The Gauss-Markov Theorem
- Statement
- Proof
(4) Fisher Linear Discriminant
- History
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure
- The Cost Function
- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error

O What?

Some Stuff for you to try

Using the Taylor's second-order expansion around value $w(k)$

We do the following

$$
\begin{equation*}
J(\boldsymbol{w})=J(\boldsymbol{w}(k))+\nabla J^{T}(\boldsymbol{w}-\boldsymbol{w}(k))+\frac{1}{2}(\boldsymbol{w}-\boldsymbol{w}(k))^{T} \boldsymbol{H}(\boldsymbol{w}-\boldsymbol{w}(k)) \tag{4}
\end{equation*}
$$

Using the Taylor's second-order expansion around value $w(k)$

We do the following

$$
\begin{equation*}
J(\boldsymbol{w})=J(\boldsymbol{w}(k))+\nabla J^{T}(\boldsymbol{w}-\boldsymbol{w}(k))+\frac{1}{2}(\boldsymbol{w}-\boldsymbol{w}(k))^{T} \boldsymbol{H}(\boldsymbol{w}-\boldsymbol{w}(k)) \tag{4}
\end{equation*}
$$

Remark: This is know as Taylor's Second Order expansion!!!

Using the Taylor's second-order expansion around value $\boldsymbol{w}(k)$

We do the following

$$
\begin{equation*}
J(\boldsymbol{w})=J(\boldsymbol{w}(k))+\nabla J^{T}(\boldsymbol{w}-\boldsymbol{w}(k))+\frac{1}{2}(\boldsymbol{w}-\boldsymbol{w}(k))^{T} \boldsymbol{H}(\boldsymbol{w}-\boldsymbol{w}(k)) \tag{4}
\end{equation*}
$$

Remark: This is know as Taylor's Second Order expansion!!!

Here, we have

- ∇J is the vector of partial derivatives $\frac{\partial J}{\partial w_{i}}$ evaluated at $\boldsymbol{w}(k)$.

Using the Taylor's second-order expansion around value $\boldsymbol{w}(k)$

We do the following

$$
\begin{equation*}
J(\boldsymbol{w})=J(\boldsymbol{w}(k))+\nabla J^{T}(\boldsymbol{w}-\boldsymbol{w}(k))+\frac{1}{2}(\boldsymbol{w}-\boldsymbol{w}(k))^{T} \boldsymbol{H}(\boldsymbol{w}-\boldsymbol{w}(k)) \tag{4}
\end{equation*}
$$

Remark: This is know as Taylor's Second Order expansion!!!

Here, we have

- ∇J is the vector of partial derivatives $\frac{\partial J}{\partial w_{i}}$ evaluated at $\boldsymbol{w}(k)$.
- \boldsymbol{H} is the Hessian matrix of second partial derivatives $\frac{\partial^{2} J}{\partial w_{i} \partial w_{j}}$ evaluated at $\boldsymbol{w}(k)$.

Then

We substitute (Eq. 1) into (Eq. 4)

$$
\begin{equation*}
\boldsymbol{w}(k+1)-\boldsymbol{w}(k)=\eta(k) \nabla J(\boldsymbol{w}(k)) \tag{5}
\end{equation*}
$$

Then

We substitute (Eq. 1) into (Eq. 4)

$$
\begin{equation*}
\boldsymbol{w}(k+1)-\boldsymbol{w}(k)=\eta(k) \nabla J(\boldsymbol{w}(k)) \tag{5}
\end{equation*}
$$

We have then

$$
\begin{aligned}
J(\boldsymbol{w}(k+1)) \cong & J(\boldsymbol{w}(k))+\nabla J^{T}(-\eta(k) \nabla J(\boldsymbol{w}(k)))+\ldots \\
& \frac{1}{2}(-\eta(k) \nabla J(\boldsymbol{w}(k)))^{T} \boldsymbol{H}(-\eta(k) \nabla J(\boldsymbol{w}(k)))
\end{aligned}
$$

Then

We substitute (Eq. 1) into (Eq. 4)

$$
\begin{equation*}
\boldsymbol{w}(k+1)-\boldsymbol{w}(k)=\eta(k) \nabla J(\boldsymbol{w}(k)) \tag{5}
\end{equation*}
$$

We have then

$$
\begin{aligned}
J(\boldsymbol{w}(k+1)) \cong & J(\boldsymbol{w}(k))+\nabla J^{T}(-\eta(k) \nabla J(\boldsymbol{w}(k)))+\ldots \\
& \frac{1}{2}(-\eta(k) \nabla J(\boldsymbol{w}(k)))^{T} \boldsymbol{H}(-\eta(k) \nabla J(\boldsymbol{w}(k)))
\end{aligned}
$$

Finally, we have

$$
\begin{equation*}
J(\boldsymbol{w}(k+1)) \cong J(\boldsymbol{w}(k))-\eta(k)\|\nabla J\|^{2}+\frac{1}{2} \eta^{2}(k) \nabla J^{T} \boldsymbol{H} \nabla J \tag{6}
\end{equation*}
$$

Derive with respect to $\eta(k)$ and make the result equal to zero

We have then

$$
\begin{equation*}
-\|\nabla J\|^{2}+\eta(k) \nabla J^{T} \boldsymbol{H} \nabla J=0 \tag{7}
\end{equation*}
$$

Derive with respect to $\eta(k)$ and make the result equal to zero

We have then

$$
\begin{equation*}
-\|\nabla J\|^{2}+\eta(k) \nabla J^{T} \boldsymbol{H} \nabla J=0 \tag{7}
\end{equation*}
$$

Finally

$$
\begin{equation*}
\eta(k)=\frac{\|\nabla J\|^{2}}{\nabla J^{T} \boldsymbol{H} \nabla J} \tag{8}
\end{equation*}
$$

Remark This is the optimal step size!!!

Derive with respect to $\eta(k)$ and make the result equal to zero

We have then

$$
\begin{equation*}
-\|\nabla J\|^{2}+\eta(k) \nabla J^{T} \boldsymbol{H} \nabla J=0 \tag{7}
\end{equation*}
$$

Finally

$$
\begin{equation*}
\eta(k)=\frac{\|\nabla J\|^{2}}{\nabla J^{T} \boldsymbol{H} \nabla J} \tag{8}
\end{equation*}
$$

Remark This is the optimal step size!!!

Problem!!!

Calculating \boldsymbol{H} can be quite expansive!!!

We can have an adaptive linear search!!!

We can use the idea of having everything fixed, but $\eta(k)$
Then, we can have the following function
$f(\eta(k))=J(\boldsymbol{w}(k)-\eta(k) \nabla J(\boldsymbol{w}(k)))$

We can have an adaptive linear search!!!

We can use the idea of having everything fixed, but $\eta(k)$

Then, we can have the following function
$f(\eta(k))=J(\boldsymbol{w}(k)-\eta(k) \nabla J(\boldsymbol{w}(k)))$

- We can optimized using linear search methods

We can have an adaptive linear search!!!

We can use the idea of having everything fixed, but $\eta(k)$
Then, we can have the following function
$f(\eta(k))=J(\boldsymbol{w}(k)-\eta(k) \nabla J(\boldsymbol{w}(k)))$

- We can optimized using linear search methods

Linear Search Methods

- Backtracking linear search

We can have an adaptive linear search!!!

We can use the idea of having everything fixed, but $\eta(k)$
Then, we can have the following function
$f(\eta(k))=J(\boldsymbol{w}(k)-\eta(k) \nabla J(\boldsymbol{w}(k)))$

- We can optimized using linear search methods

Linear Search Methods

- Backtracking linear search
- Bisection method

We can have an adaptive linear search!!!

We can use the idea of having everything fixed, but $\eta(k)$
Then, we can have the following function
$f(\eta(k))=J(\boldsymbol{w}(k)-\eta(k) \nabla J(\boldsymbol{w}(k)))$

- We can optimized using linear search methods

Linear Search Methods

- Backtracking linear search
- Bisection method
- Golden ratio

We can have an adaptive linear search!!!

We can use the idea of having everything fixed, but $\eta(k)$
Then, we can have the following function
$f(\eta(k))=J(\boldsymbol{w}(k)-\eta(k) \nabla J(\boldsymbol{w}(k)))$

- We can optimized using linear search methods

Linear Search Methods

- Backtracking linear search
- Bisection method
- Golden ratio
- Etc.

Outline

More in Regularization
－Introduction
－Smoothness of the Estimation
－The Error Estimate
－Choosing approximate inverses
－A Classic Example，Regularization as a Filter
－Another Example，The Landweber Iteration

（2）Linear Regression using Gradient Descent

－Introduction
－What is the Gradient of the Equation？
－The Basic Algorithm
－How to obtain $\eta(k)$
－Gold Section
（3）The Gauss－Markov Theorem
－Statement
－Proof
（4）Fisher Linear Discriminant
－History
－The Projection and The Rotation Idea
－Classifiers as Machines for dimensionality reduction
－Solution
－Use the mean of each Class
－Scatter measure
－The Cost Function
－A Transformation for simplification and defining the cost function
－Where is this used？
－Applications
－Relation with Least Squared Error
O What？

Gold Section

We have $f(\eta(k))=J(\boldsymbol{w}(k)-\eta(k) \nabla J(\boldsymbol{w}(k)))$

Golden Section

Thus the idea is to use an evaluation f_{4} to decide which subsection to drop

What is the Golden Ratio Idea?

Basically, given an interval $\left[x_{1}, x_{3}\right]$

Then, we select a point x_{2} and x_{3} such that we have a two possible intervals of search for the minimum
(1) $\left[x_{1}, x_{4}\right]$
(2) $\left[x_{2}, x_{3}\right]$

What is the Golden Ratio Idea?

Basically, given an interval $\left[x_{1}, x_{3}\right]$

Then, we select a point x_{2} and x_{3} such that we have a two possible intervals of search for the minimum
(1) $\left[x_{1}, x_{4}\right]$
(2) $\left[x_{2}, x_{3}\right]$

The Golden Linear Search requires these intervals be equal!!!
If they are not,

- You could run to a series of search wider intervals slowing down the rate of convergence.

How?

By the equality $b=a+c$

Therefore

We have the following question?
Where do you place x_{2} ? Thus you can generate x_{4}

Therefore

We have the following question?
Where do you place x_{2} ? Thus you can generate x_{4}
You want to avoid

- x_{2} to close to x_{1} or x_{3}

The process is as follow

We define

- $f_{1}=f\left(x_{1}\right)$
- $f_{2}=f\left(x_{2}\right)$
- $f_{3}=f\left(x_{3}\right)$
- $f_{4}=f\left(x_{4}\right)$

Two Cases

If $f_{2}<f_{4}$ then the minimum lies between x_{1} and x_{4} and the new triplet is x_{1}, x_{2} and x_{4}.

Here, we have the realization that

We have interval size reduction

$$
x_{4}-x_{1}=\varphi\left(x_{3}-x_{1}\right) \longmapsto x_{4}=x_{1}+\varphi x_{3}-\varphi x_{1}
$$

Here, we have the realization that

We have interval size reduction

$$
x_{4}-x_{1}=\varphi\left(x_{3}-x_{1}\right) \longmapsto x_{4}=x_{1}+\varphi x_{3}-\varphi x_{1}
$$

Then

$$
x_{4}=(1-\varphi) x_{1}+\varphi x_{3}
$$

Two Cases

If $f_{4}<f_{2}$ then the minimum lies between x_{2} and x_{3} and the new triplet is x_{2}, x_{4} and x_{3}.

Then

We want

$$
x_{3}-x_{2}=\varphi\left(x_{3}-x_{1}\right) \longmapsto-x_{2}=\varphi x_{3}-\varphi x_{1}-x_{3}
$$

Then

We want

$$
x_{3}-x_{2}=\varphi\left(x_{3}-x_{1}\right) \longmapsto-x_{2}=\varphi x_{3}-\varphi x_{1}-x_{3}
$$

Therefore

$$
x_{2}=\varphi x_{1}+(1-\varphi) x_{3}
$$

Then

We want

$$
x_{3}-x_{2}=\varphi\left(x_{3}-x_{1}\right) \longmapsto-x_{2}=\varphi x_{3}-\varphi x_{1}-x_{3}
$$

Therefore

$$
x_{2}=\varphi x_{1}+(1-\varphi) x_{3}
$$

Thus, once we obtain φ, we get x_{2} and x_{4}

- For this, we make the following assumption $\left[x_{1}, x_{3}\right]=[0,1]$

Therefore

If we have $f_{2}<f_{4}$

$$
x_{2}=1-\varphi
$$

Therefore

If we have $f_{2}<f_{4}$

$$
x_{2}=1-\varphi
$$

Then, if we have the new function evaluation at the left of x_{2}

With a Little Algebra

Then, x_{2} is between the the interval $[0, \varphi]$ and assume is a convex combination of such values

$$
1-\varphi=(1-\varphi) 0+\varphi \varphi \longmapsto \varphi^{2}+\varphi-\mathbf{1}=\mathbf{0}
$$

With a Little Algebra

Then, x_{2} is between the the interval $[0, \varphi]$ and assume is a convex combination of such values

$$
1-\varphi=(1-\varphi) 0+\varphi \varphi \longmapsto \varphi^{2}+\varphi-1=\mathbf{0}
$$

With Solution

$$
\varphi=\frac{-1+\sqrt{5}}{2}=0.6180
$$

Finally, we have the algorithm

Golden Ratio

INPUT: $x_{1}, x_{3}, \tau, \varphi, f$
OUTPUT: $\frac{x_{3}-x_{1}}{2}$
(1) $x_{2}=\varphi x_{1}+(1-\varphi) x_{3}$

Finally, we have the algorithm

Golden Ratio

INPUT: $x_{1}, x_{3}, \tau, \varphi, f$ OUTPUT: $\frac{x_{3}-x_{1}}{2}$
(1) $x_{2}=\varphi x_{1}+(1-\varphi) x_{3}$
(2) $x_{4}=(1-\varphi) x_{1}+\varphi x_{3}$

Finally, we have the algorithm

Golden Ratio

INPUT: $x_{1}, x_{3}, \tau, \varphi, f$
OUTPUT: $\frac{x_{3}-x_{1}}{2}$
(1) $x_{2}=\varphi x_{1}+(1-\varphi) x_{3}$
(2) $x_{4}=(1-\varphi) x_{1}+\varphi x_{3}$
(3) while $\left|x_{3}-x_{1}\right|>\tau\left(\left|x_{2}\right|+\left|x_{4}\right|\right)$

Finally, we have the algorithm

Golden Ratio

INPUT: $x_{1}, x_{3}, \tau, \varphi, f$
OUTPUT: $\frac{x_{3}-x_{1}}{2}$
(1) $x_{2}=\varphi x_{1}+(1-\varphi) x_{3}$
(2) $x_{4}=(1-\varphi) x_{1}+\varphi x_{3}$
(3) while $\left|x_{3}-x_{1}\right|>\tau\left(\left|x_{2}\right|+\left|x_{4}\right|\right)$
(4) if $f\left(x_{2}\right)<f\left(x_{4}\right)$:
(5)

$$
\begin{aligned}
& x_{3}=x_{4} \\
& x_{4}=x_{2} \\
& x_{2}=\varphi x_{1}+(1-\varphi) x_{3}
\end{aligned}
$$

Finally, we have the algorithm

Golden Ratio

INPUT: $x_{1}, x_{3}, \tau, \varphi, f$ OUTPUT: $\frac{x_{3}-x_{1}}{2}$
(1) $x_{2}=\varphi x_{1}+(1-\varphi) x_{3}$
(2) $x_{4}=(1-\varphi) x_{1}+\varphi x_{3}$
(3) while $\left|x_{3}-x_{1}\right|>\tau\left(\left|x_{2}\right|+\left|x_{4}\right|\right)$
(4) if $f\left(x_{2}\right)<f\left(x_{4}\right)$:
(5)

$$
\begin{aligned}
& x_{3}=x_{4} \\
& x_{4}=x_{2} \\
& x_{2}=\varphi x_{1}+(1-\varphi) x_{3}
\end{aligned}
$$

else
(9)

$$
\begin{aligned}
& x_{1}=x_{2} \\
& x_{2}=x_{4} \\
& x_{4}=(1-\varphi) x_{1}+\varphi x_{3}
\end{aligned}
$$

Finally, we have the algorithm

Golden Ratio

INPUT: $x_{1}, x_{3}, \tau, \varphi, f$
OUTPUT: $\frac{x_{3}-x_{1}}{2}$
(1) $x_{2}=\varphi x_{1}+(1-\varphi) x_{3}$
(2) $x_{4}=(1-\varphi) x_{1}+\varphi x_{3}$
(3) while $\left|x_{3}-x_{1}\right|>\tau\left(\left|x_{2}\right|+\left|x_{4}\right|\right)$
(4) if $f\left(x_{2}\right)<f\left(x_{4}\right)$:
(5)
(6)
(1)

$$
\begin{aligned}
& x_{3}=x_{4} \\
& x_{4}=x_{2} \\
& x_{2}=\varphi x_{1}+(1-\varphi) x_{3}
\end{aligned}
$$

else
(9)
(10) $\begin{aligned} & x_{2}=x_{4} \\ & \text { (1) } \begin{array}{ll}x_{4} & =(1-\varphi) x_{1}+\varphi x_{3} \\ \text { (1) return } \frac{x_{3}-x_{1}}{2}\end{array}\end{aligned}$

Iteratively

$69 / 132$

Iteratively

Repeat the procedure!!!
Until a error threshold is reached.

Iteratively

Repeat the procedure!!!

Until a error threshold is reached.
For more, please read the paper
"SEQUENTIAL MINIMAX SEARCH FOR A MAXIMUM" by J. Kiefer

There are better versions

Take a look
The papers at the repository.

Outline

More in Regularization

－Introduction
－Smoothness of the Estimation
－The Error Estimate
－Choosing approximate inverses
－A Classic Example，Regularization as a Filter
－Another Example，The Landweber Iteration
2）Linear Regression using Gradient Descent
－Introduction
－What is the Gradient of the Equation？
－The Basic Algorithm
－How to obtain η（ k ）
－Gold Section

3 The Gauss－Markov Theorem
 －Statement

－Proof

（4）Fisher Linear Discriminant
－History
－The Projection and The Rotation Idea
－Classifiers as Machines for dimensionality reduction
－Solution
－Use the mean of each Class
－Scatter measure
－The Cost Function
－A Transformation for simplification and defining the cost function
－Where is this used？
－Applications
－Relation with Least Squared Error
－What？

The Gauss-Markov Theorem

Given the Linear Estimation Model

$$
\boldsymbol{y}=X \boldsymbol{w}+\boldsymbol{\epsilon}
$$

The Gauss-Markov Theorem

Given the Linear Estimation Model

$$
\boldsymbol{y}=X \boldsymbol{w}+\boldsymbol{\epsilon}
$$

Under the following assumptions
(1) $E[\boldsymbol{\epsilon} \mid \boldsymbol{x}]=\mathbf{0}$ for all \boldsymbol{x} (Mean Independence).
(2) $\operatorname{Var}[\boldsymbol{\epsilon}]=E\left[\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{T} \mid \boldsymbol{x}\right]=\sigma_{\epsilon}^{2} I_{N}$ (Homoskedasticity).

The Gauss-Markov Theorem

Given the Linear Estimation Model

$$
\boldsymbol{y}=X \boldsymbol{w}+\boldsymbol{\epsilon}
$$

Under the following assumptions
(1) $E[\boldsymbol{\epsilon} \mid \boldsymbol{x}]=\mathbf{0}$ for all \boldsymbol{x} (Mean Independence).
(2) $\operatorname{Var}[\boldsymbol{\epsilon}]=E\left[\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{T} \mid \boldsymbol{x}\right]=\sigma_{\epsilon}^{2} I_{N}$ (Homoskedasticity).

The Gauss-Markov Theorem states

$$
\widehat{\boldsymbol{w}}=\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y}
$$

is the Best Linear Unbiased Estimator (BLUE), if $\boldsymbol{\epsilon}$ satisfies 1. and 2.!!!

Outline

More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration

2) Linear Regression using Gradient Descent

- Introduction
- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain $\eta(k)$
- Gold Section

(3) The Gauss-Markov Theorem

- Statement
- Proof
(4) Fisher Linear Discriminant
- History
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure
- The Cost Function
- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error

O What?

Proof

First and Fore most

- "An estimator is "best" in a class if it has smaller variance than others estimators in the same class."

Proof

First and Fore most

- "An estimator is "best" in a class if it has smaller variance than others estimators in the same class."

Also

- We are restricting our search for estimators to the class of linear, unbiased ones

Proof

First and Fore most

－＂An estimator is＂best＂in a class if it has smaller variance than others estimators in the same class．＂

Also

－We are restricting our search for estimators to the class of linear， unbiased ones

Unbiased Estimator

Given a sequence of observations $x_{1}, x_{2}, \ldots, x_{N} \sim P(X \mid \theta)$ then bias is the mean of the difference

$$
b_{d}(\theta)=E[d(X)-h(\theta)]
$$

with $d(X)$ is an estimator of the statistic $h(\theta)$ ．

Remark

We need to calculate estimators which have covariances

- The best estimator in a class of estimators is the one with the "smallest" covariance matrix

Remark

We need to calculate estimators which have covariances

- The best estimator in a class of estimators is the one with the "smallest" covariance matrix

Thus

- We will look at such covariance matrix for the BLUE estimator.

Therefore, going back to our unbiased estimators

If $b_{d}(\theta)=0$ for all values of the parameter

- Then, $d(X)$ is called an unbiased estimator.

Therefore, going back to our unbiased estimators

If $b_{d}(\theta)=0$ for all values of the parameter

- Then, $d(X)$ is called an unbiased estimator.

Now, the data are the \boldsymbol{y}, we are looking at estimators that are linear functions of \boldsymbol{y}

$$
\widetilde{\boldsymbol{w}}=\boldsymbol{m}+M \boldsymbol{y}
$$

Therefore, going back to our unbiased estimators

If $b_{d}(\theta)=0$ for all values of the parameter

- Then, $d(X)$ is called an unbiased estimator.

Now, the data are the \boldsymbol{y}, we are looking at estimators that are linear functions of \boldsymbol{y}

$$
\widetilde{\boldsymbol{w}}=\boldsymbol{m}+M \boldsymbol{y}
$$

Here

- $\widetilde{\boldsymbol{w}}$ is a $k \times 1$ parameter vector
- \boldsymbol{m} is a $k \times 1$ vector of constants,
- M is a $k \times N$ matrix of constants,
- The data vector \boldsymbol{y} is $N \times 1$.

Now

We are looking at unbiased estimators

$$
E[\widetilde{\boldsymbol{w}}]=\boldsymbol{w}
$$

Now

We are looking at unbiased estimators

$$
E[\widetilde{\boldsymbol{w}}]=\boldsymbol{w}
$$

if $\widetilde{\boldsymbol{w}}$ is to be unbiased

$$
E[\widetilde{\boldsymbol{w}} \mid X]=\boldsymbol{m}+M E[\boldsymbol{y} \mid X]
$$

Now

We are looking at unbiased estimators

$$
E[\widetilde{\boldsymbol{w}}]=\boldsymbol{w}
$$

if $\widetilde{\boldsymbol{w}}$ is to be unbiased

$$
\begin{aligned}
E[\widetilde{\boldsymbol{w}} \mid X] & =\boldsymbol{m}+M E[\boldsymbol{y} \mid X] \\
& =\boldsymbol{m}+M E[X \boldsymbol{w}+\boldsymbol{\epsilon} \mid X]
\end{aligned}
$$

Now

We are looking at unbiased estimators

$$
E[\widetilde{\boldsymbol{w}}]=\boldsymbol{w}
$$

if $\widetilde{\boldsymbol{w}}$ is to be unbiased

$$
\begin{aligned}
E[\widetilde{\boldsymbol{w}} \mid X] & =\boldsymbol{m}+M E[\boldsymbol{y} \mid X] \\
& =\boldsymbol{m}+M E[X \boldsymbol{w}+\boldsymbol{\epsilon} \mid X] \\
& =\boldsymbol{m}+M X \boldsymbol{w}
\end{aligned}
$$

Now, we are forced

Given that we are looking for an unbiased estimator

$$
\boldsymbol{m}=0 \text { with } M X=I_{k}
$$

Now, we are forced

Given that we are looking for an unbiased estimator

$$
\boldsymbol{m}=0 \text { with } M X=I_{k}
$$

For the least squared error

$$
M=\left(X^{T} X\right)^{-1} X^{T} \Longleftrightarrow M X=\left(X^{T} X\right)^{-1} X^{T} X=I_{k}
$$

Now, we are forced

Given that we are looking for an unbiased estimator

$$
\boldsymbol{m}=0 \text { with } M X=I_{k}
$$

For the least squared error

$$
M=\left(X^{T} X\right)^{-1} X^{T} \Longleftrightarrow M X=\left(X^{T} X\right)^{-1} X^{T} X=I_{k}
$$

Looking for linear unbiased estimators requires to look for estimators as

$$
\widetilde{\boldsymbol{w}}=M \boldsymbol{y} \text { with } M X=I_{k}
$$

Therefore

We are looking at matrices as

$$
M=\left(X^{T} X\right)^{-1} X^{T}+C
$$

Therefore

We are looking at matrices as

$$
M=\left(X^{T} X\right)^{-1} X^{T}+C
$$

where C is some $k \times n$ matrix.

Therefore

We are looking at matrices as

$$
M=\left(X^{T} X\right)^{-1} X^{T}+C
$$

where C is some $k \times n$ matrix.

Now

$$
M X=\left[\left(X^{T} X\right)^{-1} X^{T}+C\right] X
$$

Therefore

We are looking at matrices as

$$
M=\left(X^{T} X\right)^{-1} X^{T}+C
$$

where C is some $k \times n$ matrix.

Now

$$
\begin{aligned}
M X & =\left[\left(X^{T} X\right)^{-1} X^{T}+C\right] X \\
& =I_{k}+C X=I_{k}
\end{aligned}
$$

Therefore

We are looking at matrices as

$$
M=\left(X^{T} X\right)^{-1} X^{T}+C
$$

where C is some $k \times n$ matrix.

Now

$$
\begin{aligned}
M X & =\left[\left(X^{T} X\right)^{-1} X^{T}+C\right] X \\
& =I_{k}+C X=I_{k} \\
& \Longrightarrow C X=0
\end{aligned}
$$

Therefore, we can compute the covariance matrix

For all alternative estimators $\widetilde{\boldsymbol{w}}$

$$
\widetilde{\boldsymbol{w}}=M \boldsymbol{y}
$$

Therefore, we can compute the covariance matrix

For all alternative estimators $\widetilde{\boldsymbol{w}}$

$$
\begin{aligned}
\widetilde{\boldsymbol{w}} & =M \boldsymbol{y} \\
& =M[X \boldsymbol{w}+\boldsymbol{\epsilon}]
\end{aligned}
$$

Therefore, we can compute the covariance matrix

For all alternative estimators $\widetilde{\boldsymbol{w}}$

$$
\begin{aligned}
\widetilde{\boldsymbol{w}} & =M \boldsymbol{y} \\
& =M[X \boldsymbol{w}+\boldsymbol{\epsilon}] \\
& =\boldsymbol{w}+M \boldsymbol{\epsilon}
\end{aligned}
$$

Therefore, we can compute the covariance matrix

For all alternative estimators $\widetilde{\boldsymbol{w}}$

$$
\begin{aligned}
\widetilde{\boldsymbol{w}} & =M \boldsymbol{y} \\
& =M[X \boldsymbol{w}+\boldsymbol{\epsilon}] \\
& =\boldsymbol{w}+M \boldsymbol{\epsilon}
\end{aligned}
$$

Therefore, the difference is $\widetilde{\boldsymbol{w}}-\boldsymbol{w}=M \boldsymbol{\epsilon}$

- And since the $\widetilde{\boldsymbol{w}}$ is unbiased, $E[\widetilde{\boldsymbol{w}}-\boldsymbol{w} \mid X]=0$

We have

The Covariance Matrix

$$
E\left[(\widetilde{\boldsymbol{w}}-\boldsymbol{w})(\widetilde{\boldsymbol{w}}-\boldsymbol{w})^{T} \mid X\right]=E\left[M \boldsymbol{\epsilon}(M \boldsymbol{\epsilon})^{T} \mid X\right]
$$

We have

The Covariance Matrix

$$
\begin{aligned}
E\left[(\widetilde{\boldsymbol{w}}-\boldsymbol{w})(\widetilde{\boldsymbol{w}}-\boldsymbol{w})^{T} \mid X\right] & =E\left[M \boldsymbol{\epsilon}(M \boldsymbol{\epsilon})^{T} \mid X\right] \\
& =E\left[M \boldsymbol{\epsilon} \boldsymbol{\epsilon}^{T} M^{T} \mid X\right]
\end{aligned}
$$

We have

The Covariance Matrix

$$
\begin{aligned}
E\left[(\widetilde{\boldsymbol{w}}-\boldsymbol{w})(\widetilde{\boldsymbol{w}}-\boldsymbol{w})^{T} \mid X\right] & =E\left[M \boldsymbol{\epsilon}(M \boldsymbol{\epsilon})^{T} \mid X\right] \\
& =E\left[M \boldsymbol{\epsilon} \boldsymbol{\epsilon}^{T} M^{T} \mid X\right] \\
& =M E\left[\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{T} \mid X\right] M^{T}
\end{aligned}
$$

We have

The Covariance Matrix

$$
\begin{aligned}
E\left[(\tilde{\boldsymbol{w}}-\boldsymbol{w})(\tilde{\boldsymbol{w}}-\boldsymbol{w})^{T} \mid X\right] & =E\left[M \boldsymbol{\epsilon}(M \boldsymbol{\epsilon})^{T} \mid X\right] \\
& =E\left[M \boldsymbol{\epsilon} \boldsymbol{\epsilon}^{T} M^{T} \mid X\right] \\
& =M E\left[\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{T} \mid X\right] M^{T} \\
& =M \sigma_{\epsilon}^{2} I_{N} M^{T}
\end{aligned}
$$

We have

The Covariance Matrix

$$
\begin{aligned}
E\left[(\widetilde{\boldsymbol{w}}-\boldsymbol{w})(\widetilde{\boldsymbol{w}}-\boldsymbol{w})^{T} \mid X\right] & =E\left[M \boldsymbol{\epsilon}(M \boldsymbol{\epsilon})^{T} \mid X\right] \\
& =E\left[M \boldsymbol{\epsilon} \boldsymbol{\epsilon}^{T} M^{T} \mid X\right] \\
& =M E\left[\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{T} \mid X\right] M^{T} \\
& =M \sigma_{\epsilon}^{2} I_{N} M^{T} \\
& =\sigma_{\epsilon}^{2} M M^{T}
\end{aligned}
$$

Finally

Given that $C X=0$

$$
M M^{T}=\left[\left(X^{T} X\right)^{-1} X^{T}+C\right]\left[\left(X^{T} X\right)^{-1} X^{T}+C\right]^{T}
$$

Finally

Given that $C X=0$

$$
\begin{aligned}
M M^{T} & =\left[\left(X^{T} X\right)^{-1} X^{T}+C\right]\left[\left(X^{T} X\right)^{-1} X^{T}+C\right]^{T} \\
& =\left(X^{T} X\right)^{-1} X^{T} X\left(X^{T} X\right)^{-1}+\left(X^{T} X\right)^{-1} X^{T} C \\
& +C X\left(X^{T} X\right)^{-1}+C C^{T}
\end{aligned}
$$

Finally

Given that $C X=0$

$$
\begin{aligned}
M M^{T} & =\left[\left(X^{T} X\right)^{-1} X^{T}+C\right]\left[\left(X^{T} X\right)^{-1} X^{T}+C\right]^{T} \\
& =\left(X^{T} X\right)^{-1} X^{T} X\left(X^{T} X\right)^{-1}+\left(X^{T} X\right)^{-1} X^{T} C \\
& +C X\left(X^{T} X\right)^{-1}+C C^{T} \\
& =\left(X^{T} X\right)^{-1}+C C^{T}
\end{aligned}
$$

Finally

Given that $C X=0$

$$
\begin{aligned}
M M^{T} & =\left[\left(X^{T} X\right)^{-1} X^{T}+C\right]\left[\left(X^{T} X\right)^{-1} X^{T}+C\right]^{T} \\
& =\left(X^{T} X\right)^{-1} X^{T} X\left(X^{T} X\right)^{-1}+\left(X^{T} X\right)^{-1} X^{T} C \\
& +C X\left(X^{T} X\right)^{-1}+C C^{T} \\
& =\left(X^{T} X\right)^{-1}+C C^{T}
\end{aligned}
$$

Now the matrix $C C^{T}$ is a $k \times k$ "cross products" matrix

- By construction is positive semi-definite

Thus

Given

- The best estimator in a class of estimators is the one with the "smallest" covariance matrix

Thus

Given

- The best estimator in a class of estimators is the one with the "smallest" covariance matrix

Where by "small"

- The covariance matrix associated with any other estimator in the class minus the covariance matrix of the best estimator is a positive definite matrix

Formally

The following difference is positive definite

$$
M M^{T}+C C^{T}-C o v_{b e s t}
$$

Then

Since $M M^{T}+C C^{T}-C o v_{b e s t}$ is minimized when we set the matrix C equal to the 0 matrix

- i.e. $M=\left(X^{T} X\right)^{-1} X$
- The best estimator in the class $\widehat{\boldsymbol{w}}$.

Then

Since $M M^{T}+C C^{T}-C o v_{b e s t}$ is minimized when we set the matrix C equal to the 0 matrix

- i.e. $M=\left(X^{T} X\right)^{-1} X$
- The best estimator in the class $\widehat{\boldsymbol{w}}$.

Any other estimator M in this class

- It has strictly "larger" covariance matrix

Then

Since $M M^{T}+C C^{T}-C o v_{\text {best }}$ is minimized when we set the matrix C equal to the 0 matrix

- i.e. $M=\left(X^{T} X\right)^{-1} X$
- The best estimator in the class $\widehat{\boldsymbol{w}}$.

Any other estimator M in this class

- It has strictly "larger" covariance matrix

Therefore the Least Square Error estimator \widehat{w}

- It is BLUE under the two conditions of mean independence and homoskedastic!!!

Outline

More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration

2) Linear Regression using Gradient Descent

- Introduction
- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain $\eta(k)$
- Gold Section
(3) The Gauss-Markov Theorem
- Statement
- Proof
(4) Fisher Linear Discriminant
- History
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure
- The Cost Function
- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error
- What?

Invented Originally by

Sir Ronald Fisher

Invented Originally by

Sir Ronald Fisher

Anders Hald called him

"A genius who almost single-handedly created the foundations for modern statistical science."

Invented Originally by

Sir Ronald Fisher

Anders Hald called him

"A genius who almost single-handedly created the foundations for modern statistical science."

The Darkest Side

- In 1910 he joined the Eugenics Society at Cambridge, whose members included John Maynard Keynes, R. C. Punnett, and Horace Darwin.

Invented Originally by

Sir Ronald Fisher

Anders Hald called him

"A genius who almost single-handedly created the foundations for modern statistical science."

The Darkest Side

- In 1910 he joined the Eugenics Society at Cambridge, whose members included John Maynard Keynes, R. C. Punnett, and Horace Darwin.
- He opposed UNESCO's The Race Question, believing that evidence and everyday experience showed that human groups differ profoundly.

Outline

More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration
(2) Linear Regression using Gradient Descent
- Introduction
- What is the Gradient of the Equation?
- Thie Basic Algorithm
- How to obtain η (k)
- Gold Section

3) The Gauss-Markov Theorem

- Statement
- Proof
(4) Fisher Linear Discriminant
- History
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure
-

The Cost Function

- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error

O What?

Some Stuff for you to try

Intuition

Something Notable - Projecting into a Line

A Better Line

Something Notable－Projecting into a Line

Rotation

Projecting

Projecting well-separated samples onto an arbitrary line usually produces a confused mixture of samples from all of the classes and thus produces poor recognition performance.

Rotation

Projecting

Projecting well-separated samples onto an arbitrary line usually produces a confused mixture of samples from all of the classes and thus produces poor recognition performance.

Something Notable

However, moving and rotating the line around might result in an orientation for which the projected samples are well separated.

Rotation

Projecting

Projecting well-separated samples onto an arbitrary line usually produces a confused mixture of samples from all of the classes and thus produces poor recognition performance.

Something Notable

However, moving and rotating the line around might result in an orientation for which the projected samples are well separated.

Fisher Linear Discriminant (FLD)

It is a discriminant analysis seeking directions that are efficient for discriminating binary classification problem.

Outline

More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration

2) Linear Regression using Gradient Descent

- Introduction
- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain η (k)
- Gold Section
(3) The Gauss-Markov Theorem
- Statement
- Proof

4) Fisher Linear Discriminant

- History

The Projection and The Rotation Idea

- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measureThe Cost Function
- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error
- What?

Some Stuff for you to try
三
$92 / 132$

This is actually coming from...

Classifier as

A machine for dimensionality reduction.

This is actually coming from...

Classifier as

A machine for dimensionality reduction.

Initial Setup

We have:

This is actually coming from...

Classifier as

A machine for dimensionality reduction.

Initial Setup

We have:

- $N d$-dimensional samples $x_{1}, x_{2}, \ldots, x_{N}$.

This is actually coming from...

Classifier as

A machine for dimensionality reduction.

Initial Setup

We have:

- $N d$-dimensional samples $x_{1}, x_{2}, \ldots, x_{N}$.
- N_{i} is the number of samples in class C_{i} for $i=1,2$.

This is actually coming from...

Classifier as

A machine for dimensionality reduction.

Initial Setup

We have:

- $N d$-dimensional samples $x_{1}, x_{2}, \ldots, x_{N}$.
- N_{i} is the number of samples in class C_{i} for $i=1,2$.

Then, we ask for the projection of each x_{i} into the line by means of

$$
\begin{equation*}
y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \tag{9}
\end{equation*}
$$

Outline

More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration
(2) Linear Regression using Gradient Descent
- Introduction
- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain $\eta(k)$
- Gold Section

3) The Gauss-Markov Theorem

- Statement
- Proof
(4) Fisher Linear Discriminant

O History

- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure
- The Cost Function
- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error
- What?

Outline

More in Regularization

－Introduction
－Smoothness of the Estimation
－The Error Estimate
－Choosing approximate inverses
－A Classic Example，Regularization as a Filter
－Another Example，The Landweber Iteration
2）Linear Regression using Gradient Descent
－Introduction
－What is the Gradient of the Equation？
－The Basic Algorithm
－How to obtain $\eta(k)$
－Gold Section
（3）The Gauss－Markov Theorem
－Statement
－Proof
4）Fisher Linear Discriminant
－History
－The Projection and The Rotation Idea
－Classifiers as Machines for dimensionality reduction
－Solution
－Use the mean of each Class
－Scatter measure
－The Cost Function
－A Transformation for simplification and defining the cost function
－Where is this used？
－Applications
－Relation with Least Squared Error
－What？

Use the mean of each Class

Then

Select \boldsymbol{w} such that class separation is maximized

Use the mean of each Class

Then

Select \boldsymbol{w} such that class separation is maximized

We then define the mean sample for ecah class

(1) $C_{1} \Rightarrow \boldsymbol{m}_{1}=\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \boldsymbol{x}_{i}$

Use the mean of each Class

Then

Select \boldsymbol{w} such that class separation is maximized

We then define the mean sample for ecah class

(1) $C_{1} \Rightarrow \boldsymbol{m}_{1}=\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \boldsymbol{x}_{i}$
(2) $C_{2} \Rightarrow \boldsymbol{m}_{2}=\frac{1}{N_{2}} \sum_{i=1}^{N_{2}} \boldsymbol{x}_{i}$

Use the mean of each Class

Then

Select \boldsymbol{w} such that class separation is maximized

We then define the mean sample for ecah class
(1) $C_{1} \Rightarrow \boldsymbol{m}_{1}=\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \boldsymbol{x}_{i}$
(2) $C_{2} \Rightarrow \boldsymbol{m}_{2}=\frac{1}{N_{2}} \sum_{i=1}^{N_{2}} \boldsymbol{x}_{i}$

Ok!!! This is giving us a measure of distance

Thus, we want to maximize the distance the projected means:

Use the mean of each Class

Then

Select \boldsymbol{w} such that class separation is maximized

We then define the mean sample for ecah class
(1) $C_{1} \Rightarrow \boldsymbol{m}_{1}=\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \boldsymbol{x}_{i}$
(2) $C_{2} \Rightarrow \boldsymbol{m}_{2}=\frac{1}{N_{2}} \sum_{i=1}^{N_{2}} \boldsymbol{x}_{i}$

Ok!!! This is giving us a measure of distance

Thus, we want to maximize the distance the projected means:

$$
\begin{equation*}
m_{1}-m_{2}=\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) \tag{10}
\end{equation*}
$$

where $m_{k}=\boldsymbol{w}^{T} \boldsymbol{m}_{k}$ for $k=1,2$.

However

We could simply seek

$$
\begin{gathered}
\max _{\boldsymbol{w}} \boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) \\
\text { s.t. } \sqrt{\boldsymbol{w}^{T} \boldsymbol{w}}=1
\end{gathered}
$$

However

We could simply seek

$$
\begin{gathered}
\max _{\boldsymbol{w}} \boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) \\
\text { s.t. } \sqrt{\boldsymbol{w}^{T} \boldsymbol{w}}=1
\end{gathered}
$$

After all

We do not care about the magnitude of \boldsymbol{w}.

Example

Outline

More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration

2) Linear Regression using Gradient Descent

- Introduction
- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain $\eta(k)$
- Gold Section
(3) The Gauss-Markov Theorem
- Statement
- Proof

4) Fisher Linear Discriminant

- History
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure

The Cost Function

- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error
- What?

Fixing the Problem

To obtain good separation of the projected data
The difference between the means should be large relative to some measure of the standard deviations for each class.

Fixing the Problem

To obtain good separation of the projected data
The difference between the means should be large relative to some measure of the standard deviations for each class.

We define a SCATTER measure (Based in the Sample Variance)

$$
\begin{equation*}
s_{k}^{2}=\sum_{\boldsymbol{x}_{i} \in C_{k}}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}-m_{k}\right)^{2}=\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{k}}\left(y_{i}-m_{k}\right)^{2} \tag{11}
\end{equation*}
$$

Fixing the Problem

To obtain good separation of the projected data
The difference between the means should be large relative to some measure of the standard deviations for each class.

We define a SCATTER measure (Based in the Sample Variance)

$$
\begin{equation*}
s_{k}^{2}=\sum_{\boldsymbol{x}_{i} \in C_{k}}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}-m_{k}\right)^{2}=\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{k}}\left(y_{i}-m_{k}\right)^{2} \tag{11}
\end{equation*}
$$

We define then within-class variance for the whole data

$$
\begin{equation*}
s_{1}^{2}+s_{2}^{2} \tag{12}
\end{equation*}
$$

Outline

More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration
(2) Linear Regression using Gradient Descent
- Introduction
- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain $\eta(k)$
- Gold Section

3) The Gauss-Markov Theorem

- Statement
- Proof
(4) Fisher Linear Discriminant
- History
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure
- The Cost Function
- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error
- What?

Finally, a Cost Function

The between-class variance

$$
\begin{equation*}
\left(m_{1}-m_{2}\right)^{2} \tag{13}
\end{equation*}
$$

Finally, a Cost Function

The between-class variance

$$
\begin{equation*}
\left(m_{1}-m_{2}\right)^{2} \tag{13}
\end{equation*}
$$

The Fisher criterion (A Ratio)

between-class variance within-class variance

Finally, a Cost Function

The between-class variance

$$
\begin{equation*}
\left(m_{1}-m_{2}\right)^{2} \tag{13}
\end{equation*}
$$

The Fisher criterion (A Ratio)

$$
\frac{\text { between-class variance }}{\text { within-class variance }}
$$

Finally

$$
\begin{equation*}
J(\boldsymbol{w})=\frac{\left(m_{1}-m_{2}\right)^{2}}{s_{1}^{2}+s_{2}^{2}} \tag{15}
\end{equation*}
$$

Outline

More in Regularization
-
Introduction

- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration

2) Linear Regression using Gradient Descent

-

Introduction

- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain $\eta(k)$
- Gold Section
(3) The Gauss-Markov Theorem
-

Statement

- Proof

4) Fisher Linear Discriminant

- History
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure
- The Cost Function
- A Transformation for simplification and defining the cost function
- Where is this used?
- ApplicationsRelation with Least Squared Error
(-) What?

Some Stuff for you to try

三

We use a transformation to simplify our life

First

$$
\begin{equation*}
J(\boldsymbol{w})=\frac{\left(\boldsymbol{w}^{T} \boldsymbol{m}_{1}-\boldsymbol{w}^{T} \boldsymbol{m}_{2}\right)^{2}}{\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{1}}\left(y_{i}-m_{1}\right)^{2}+\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{2}}\left(y_{i}-m_{2}\right)^{2}} \tag{16}
\end{equation*}
$$

We use a transformation to simplify our life

First

$$
\begin{equation*}
J(\boldsymbol{w})=\frac{\left(\boldsymbol{w}^{T} \boldsymbol{m}_{1}-\boldsymbol{w}^{T} \boldsymbol{m}_{2}\right)^{2}}{\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{1}}\left(y_{i}-m_{1}\right)^{2}+\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{2}}\left(y_{i}-m_{2}\right)^{2}} \tag{16}
\end{equation*}
$$

Second

$$
\begin{equation*}
\frac{\left(\boldsymbol{w}^{T} \boldsymbol{m}_{1}-\boldsymbol{w}^{T} \boldsymbol{m}_{2}\right)\left(\boldsymbol{w}^{T} \boldsymbol{m}_{1}-\boldsymbol{w}^{T} \boldsymbol{m}_{2}\right)^{T}}{\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{1}}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}-m_{1}\right)\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}-m_{1}\right)^{T}+\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{2}}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}-m_{2}\right)\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}-m_{2}\right)^{T}} \tag{17}
\end{equation*}
$$

We use a transformation to simplify our life

First

$$
\begin{equation*}
J(\boldsymbol{w})=\frac{\left(\boldsymbol{w}^{T} \boldsymbol{m}_{1}-\boldsymbol{w}^{T} \boldsymbol{m}_{2}\right)^{2}}{\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{1}}\left(y_{i}-m_{1}\right)^{2}+\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{2}}\left(y_{i}-m_{2}\right)^{2}} \tag{16}
\end{equation*}
$$

Second

$$
\begin{equation*}
\frac{\left(\boldsymbol{w}^{T} \boldsymbol{m}_{1}-\boldsymbol{w}^{T} \boldsymbol{m}_{2}\right)\left(\boldsymbol{w}^{T} \boldsymbol{m}_{1}-\boldsymbol{w}^{T} \boldsymbol{m}_{2}\right)^{T}}{\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{1}}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}-m_{1}\right)\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}-m_{1}\right)^{T}+\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{2}}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}-m_{2}\right)\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}-m_{2}\right)^{T}} \tag{17}
\end{equation*}
$$

Third

$\frac{\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\right)^{T}}{\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{1}} \boldsymbol{w}^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{1}\right)\left(\boldsymbol{w}^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{1}\right)\right)^{T}+\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{2}} \boldsymbol{w}^{T}\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{w}^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{2}\right)\right)^{T}}$

Transformation

Fourth

$$
\begin{equation*}
\frac{\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w}}{\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{1}} \boldsymbol{w}^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{1}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{1}\right)^{T} \boldsymbol{w}+\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{2}} \boldsymbol{w}^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w}} \tag{19}
\end{equation*}
$$

Transformation

Fourth

$$
\begin{equation*}
\frac{\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{\boldsymbol{2}}\right)^{T} \boldsymbol{w}}{\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{1}} \boldsymbol{w}^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{1}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{1}\right)^{T} \boldsymbol{w}+\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{2}} \boldsymbol{w}^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w}} \tag{19}
\end{equation*}
$$

Fifth

$$
\begin{equation*}
\frac{\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w}}{\boldsymbol{w}^{T}\left[\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{1}}\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{1}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{1}\right)^{T}+\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{2}}\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{2}\right)^{T}\right] \boldsymbol{w}} \tag{20}
\end{equation*}
$$

Transformation

Fourth

$$
\begin{equation*}
\frac{\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w}}{\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{1}} \boldsymbol{w}^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{1}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{1}\right)^{T} \boldsymbol{w}+\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{2}} \boldsymbol{w}^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w}} \tag{19}
\end{equation*}
$$

Fifth

$$
\begin{equation*}
\frac{\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w}}{\boldsymbol{w}^{T}\left[\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{1}}\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{1}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{1}\right)^{T}+\sum_{y_{i}=\boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{2}}\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{2}\right)^{T}\right] \boldsymbol{w}} \tag{20}
\end{equation*}
$$

Now Rename

$$
\begin{equation*}
J(\boldsymbol{w})=\frac{\boldsymbol{w}^{T} \boldsymbol{S}_{B} \boldsymbol{w}}{\boldsymbol{w}^{T} \boldsymbol{S}_{w} \boldsymbol{w}} \tag{21}
\end{equation*}
$$

Derive with respect to w

Thus

$$
\begin{equation*}
\frac{d J(\boldsymbol{w})}{d \boldsymbol{w}}=\frac{d\left(\boldsymbol{w}^{T} \boldsymbol{S}_{B} \boldsymbol{w}\right)\left(\boldsymbol{w}^{T} \boldsymbol{S}_{w} \boldsymbol{w}\right)^{-1}}{d \boldsymbol{w}}=0 \tag{22}
\end{equation*}
$$

Derive with respect to w

Thus

$$
\begin{equation*}
\frac{d J(\boldsymbol{w})}{d \boldsymbol{w}}=\frac{d\left(\boldsymbol{w}^{T} \boldsymbol{S}_{B} \boldsymbol{w}\right)\left(\boldsymbol{w}^{T} \boldsymbol{S}_{w} \boldsymbol{w}\right)^{-1}}{d \boldsymbol{w}}=0 \tag{22}
\end{equation*}
$$

Then
$\frac{d J(\boldsymbol{w})}{d \boldsymbol{w}}=\left(\boldsymbol{S}_{B} \boldsymbol{w}+\boldsymbol{S}_{B}^{T} w\right)\left(\boldsymbol{w}^{T} \boldsymbol{S}_{w} \boldsymbol{w}\right)^{-1}-\left(\boldsymbol{w}^{T} \boldsymbol{S}_{B} \boldsymbol{w}\right)\left(\boldsymbol{w}^{T} \boldsymbol{S}_{w} \boldsymbol{w}\right)^{-2}\left(\boldsymbol{S}_{w} \boldsymbol{w}+\boldsymbol{S}_{w}^{T} w\right)=0$

Derive with respect to w

Thus

$$
\begin{equation*}
\frac{d J(\boldsymbol{w})}{d \boldsymbol{w}}=\frac{d\left(\boldsymbol{w}^{T} \boldsymbol{S}_{B} \boldsymbol{w}\right)\left(\boldsymbol{w}^{T} \boldsymbol{S}_{w} \boldsymbol{w}\right)^{-1}}{d \boldsymbol{w}}=0 \tag{22}
\end{equation*}
$$

Then

$\frac{d J(\boldsymbol{w})}{d \boldsymbol{w}}=\left(\boldsymbol{S}_{B} \boldsymbol{w}+\boldsymbol{S}_{B}^{T} w\right)\left(\boldsymbol{w}^{T} \boldsymbol{S}_{w} \boldsymbol{w}\right)^{-1}-\left(\boldsymbol{w}^{T} \boldsymbol{S}_{B} \boldsymbol{w}\right)\left(\boldsymbol{w}^{T} \boldsymbol{S}_{w} \boldsymbol{w}\right)^{-2}\left(\boldsymbol{S}_{w} \boldsymbol{w}+\boldsymbol{S}_{w}^{T} w\right)=0$

Now because the symmetry in S_{B} and S_{w}

$$
\begin{equation*}
\frac{d J(\boldsymbol{w})}{d \boldsymbol{w}}=\frac{\boldsymbol{S}_{B} \boldsymbol{w}}{\left(\boldsymbol{w}^{T} \boldsymbol{S}_{w} \boldsymbol{w}\right)}-\frac{\boldsymbol{w}^{T} \boldsymbol{S}_{B} \boldsymbol{w} \boldsymbol{S}_{w} \boldsymbol{w}}{\left(\boldsymbol{w}^{T} \boldsymbol{S}_{w} \boldsymbol{w}\right)^{2}}=0 \tag{24}
\end{equation*}
$$

Derive with respect to w

Thus

$$
\begin{equation*}
\frac{d J(\boldsymbol{w})}{d \boldsymbol{w}}=\frac{\boldsymbol{S}_{B} \boldsymbol{w}}{\left(\boldsymbol{w}^{T} \boldsymbol{S}_{w} \boldsymbol{w}\right)}-\frac{\boldsymbol{w}^{T} \boldsymbol{S}_{B} \boldsymbol{w} \boldsymbol{S}_{w} \boldsymbol{w}}{\left(\boldsymbol{w}^{T} \boldsymbol{S}_{w} \boldsymbol{w}\right)^{2}}=0 \tag{25}
\end{equation*}
$$

Derive with respect to w

Thus

$$
\begin{equation*}
\frac{d J(\boldsymbol{w})}{d \boldsymbol{w}}=\frac{\boldsymbol{S}_{B} \boldsymbol{w}}{\left(\boldsymbol{w}^{T} \boldsymbol{S}_{w} \boldsymbol{w}\right)}-\frac{\boldsymbol{w}^{T} \boldsymbol{S}_{B} \boldsymbol{w} \boldsymbol{S}_{w} \boldsymbol{w}}{\left(\boldsymbol{w}^{T} \boldsymbol{S}_{w} \boldsymbol{w}\right)^{2}}=0 \tag{25}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(\boldsymbol{w}^{T} \boldsymbol{S}_{w} \boldsymbol{w}\right) \boldsymbol{S}_{B} \boldsymbol{w}=\left(\boldsymbol{w}^{T} \boldsymbol{S}_{B} \boldsymbol{w}\right) \boldsymbol{S}_{w} \boldsymbol{w} \tag{26}
\end{equation*}
$$

Now, Several Tricks!!!

First

$$
\begin{equation*}
\boldsymbol{S}_{B} \boldsymbol{w}=\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w}=\alpha\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) \tag{27}
\end{equation*}
$$

Now, Several Tricks!!!

First

$$
\begin{equation*}
\boldsymbol{S}_{B} \boldsymbol{w}=\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w}=\alpha\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) \tag{27}
\end{equation*}
$$

Where $\alpha=\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w}$ is a simple constant
It means that $\boldsymbol{S}_{B} \boldsymbol{w}$ is always in the direction $\boldsymbol{m}_{1}-\boldsymbol{m}_{2}$!!!

Now, Several Tricks!!!

First

$$
\begin{equation*}
\boldsymbol{S}_{B} \boldsymbol{w}=\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w}=\alpha\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) \tag{27}
\end{equation*}
$$

Where $\alpha=\left(m_{1}-m_{2}\right)^{T} \boldsymbol{w}$ is a simple constant
It means that $\boldsymbol{S}_{B} \boldsymbol{w}$ is always in the direction $\boldsymbol{m}_{1}-\boldsymbol{m}_{2}$!!!

```
In addition
\mp@subsup{\boldsymbol{w}}{}{T}}\mp@subsup{\boldsymbol{S}}{w}{}\boldsymbol{w}\mathrm{ and }\mp@subsup{\boldsymbol{w}}{}{T}\mp@subsup{\boldsymbol{S}}{B}{}\boldsymbol{w}\mathrm{ are constants
```


Now, Several Tricks!!!

Finally, we only need the direction

$$
\begin{equation*}
\boldsymbol{S}_{w} \boldsymbol{w} \propto\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) \Rightarrow \boldsymbol{w} \propto \boldsymbol{S}_{w}^{-1}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) \tag{28}
\end{equation*}
$$

Now, Several Tricks!!!

Finally, we only need the direction

$$
\begin{equation*}
\boldsymbol{S}_{w} \boldsymbol{w} \propto\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) \Rightarrow \boldsymbol{w} \propto \boldsymbol{S}_{w}^{-1}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) \tag{28}
\end{equation*}
$$

Once the data is transformed into y_{i}

- Use a threshold $y_{0} \Rightarrow x \in C_{1}$ iff $y(x) \geq y_{0}$ or $x \in C_{2}$ iff $y(x)<y_{0}$

Now, Several Tricks!!!

Finally, we only need the direction

$$
\begin{equation*}
\boldsymbol{S}_{w} \boldsymbol{w} \propto\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) \Rightarrow \boldsymbol{w} \propto \boldsymbol{S}_{w}^{-1}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) \tag{28}
\end{equation*}
$$

Once the data is transformed into y_{i}

- Use a threshold $y_{0} \Rightarrow x \in C_{1}$ iff $y(x) \geq y_{0}$ or $x \in C_{2}$ iff $y(x)<y_{0}$
- Or ML with a Gussian can be used to classify the new transformed data using a Naive Bayes (Central Limit Theorem and $y=\boldsymbol{w}^{T} \boldsymbol{x}$ sum of random variables).

Outline

More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration

2) Linear Regression using Gradient Descent

- Introduction
- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain $\eta(k)$
- Gold Section
(3) The Gauss-Markov Theorem
- Statement
- Proof
(4) Fisher Linear Discriminant
- History
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure
- The Cost Function
- A Transformation for simplification and defining the cost function
- Where is this used?

Applications

- Relation with Least Squared Error
- What?

Outline

More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration
(2) Linear Regression using Gradient Descent
- Introduction
- What is the Gradient of the Equation?
- Thie Basic Algorithm
- How to obtain η (k)
- Gold Section

3) The Gauss-Markov Theorem

- Statement
- Proof
(4) Fisher Linear Discriminant
- History
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure
- The Cost Function

A Transformation for simplification and defining the cost function

- Where is this used?
- Applications

Relation with Least Squared Error
O What?

- Some Stuff for you to try

三

Applications

Something Notable

- Bankruptcy prediction

Applications

Something Notable

- Bankruptcy prediction
- In bankruptcy prediction based on accounting ratios and other financial variables, linear discriminant analysis was the first statistical method applied to systematically explain which firms entered bankruptcy vs. survived.

Applications

Something Notable

- Bankruptcy prediction
- In bankruptcy prediction based on accounting ratios and other financial variables, linear discriminant analysis was the first statistical method applied to systematically explain which firms entered bankruptcy vs. survived.
- Face recognition

Applications

Something Notable

- Bankruptcy prediction
- In bankruptcy prediction based on accounting ratios and other financial variables, linear discriminant analysis was the first statistical method applied to systematically explain which firms entered bankruptcy vs. survived.
- Face recognition
- In computerized face recognition, each face is represented by a large number of pixel values.

Applications

Something Notable

- Bankruptcy prediction
- In bankruptcy prediction based on accounting ratios and other financial variables, linear discriminant analysis was the first statistical method applied to systematically explain which firms entered bankruptcy vs. survived.
- Face recognition
- In computerized face recognition, each face is represented by a large number of pixel values.
- The linear combinations obtained using Fisher's linear discriminant are called Fisher faces.

Applications

Something Notable

- Bankruptcy prediction
- In bankruptcy prediction based on accounting ratios and other financial variables, linear discriminant analysis was the first statistical method applied to systematically explain which firms entered bankruptcy vs. survived.
- Face recognition
- In computerized face recognition, each face is represented by a large number of pixel values.
- The linear combinations obtained using Fisher's linear discriminant are called Fisher faces.
- Marketing

Applications

Something Notable

- Bankruptcy prediction
- In bankruptcy prediction based on accounting ratios and other financial variables, linear discriminant analysis was the first statistical method applied to systematically explain which firms entered bankruptcy vs. survived.
- Face recognition
- In computerized face recognition, each face is represented by a large number of pixel values.
- The linear combinations obtained using Fisher's linear discriminant are called Fisher faces.
- Marketing
- In marketing, discriminant analysis was once often used to determine the factors which distinguish different types of customers and/or products on the basis of surveys or other forms of collected data.

Applications

Something Notable

- Bankruptcy prediction
- In bankruptcy prediction based on accounting ratios and other financial variables, linear discriminant analysis was the first statistical method applied to systematically explain which firms entered bankruptcy vs. survived.
- Face recognition
- In computerized face recognition, each face is represented by a large number of pixel values.
- The linear combinations obtained using Fisher's linear discriminant are called Fisher faces.
- Marketing
- In marketing, discriminant analysis was once often used to determine the factors which distinguish different types of customers and/or products on the basis of surveys or other forms of collected data.

Applications

Something Notable

- Biomedical studies

Applications

Something Notable

- Biomedical studies
- The main application of discriminant analysis in medicine is the assessment of severity state of a patient and prognosis of disease outcome.

Please

Your Reading Material, it is about the Multi-class
 4.1.6 Fisher's discriminant for multiple classes AT "Pattern Recognition" by Bishop

Outline

More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration
(2) Linear Regression using Gradient Descent
- Introduction
- What is the Gradient of the Equation?
- Thie Basic Algorithm
- How to obtain $\eta(k)$
- Gold Section

3) The Gauss-Markov Theorem

- Statement
- Proof
(4) Fisher Linear Discriminant
- History
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure
- The Cost Function
- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error
- What?
- Some Stuff for you to try

三
$115 / 132$

Outline

More in Regularization

- Introduction
- Smoothness of the Estimation
- The Error Estimate
- Choosing approximate inverses
- A Classic Example, Regularization as a Filter
- Another Example, The Landweber Iteration
(2) Linear Regression using Gradient Descent
- Introduction
- What is the Gradient of the Equation?
- The Basic Algorithm
- How to obtain $\eta(k)$
- Gold Section

3) The Gauss-Markov Theorem

- Statement
- Proof
(4) Fisher Linear Discriminant
- History
- The Projection and The Rotation Idea
- Classifiers as Machines for dimensionality reduction
- Solution
- Use the mean of each Class
- Scatter measure
- The Cost Function
- A Transformation for simplification and defining the cost function
- Where is this used?
- Applications
- Relation with Least Squared Error
- What?
- Some Stuff for you to try

三

Relation with Least Squared Error

First

The least-squares approach to the determination of a linear discriminant was based on the goal of making the model predictions as close as possible to a set of target values.

Relation with Least Squared Error

First

The least-squares approach to the determination of a linear discriminant was based on the goal of making the model predictions as close as possible to a set of target values.

Second

The Fisher criterion was derived by requiring maximum class separation in the output space.

How do we do this?

First

- We have N samples.

How do we do this?

First

- We have N samples.
- We have N_{1} samples for class C_{1}.

How do we do this?

First

- We have N samples.
- We have N_{1} samples for class C_{1}.
- We have N_{2} samples for class C_{2}.

How do we do this?

First

- We have N samples.
- We have N_{1} samples for class C_{1}.
- We have N_{2} samples for class C_{2}.

So, we decide the following for the targets on each class

- We have then for class C_{1} is $t_{1}=\frac{N}{N_{1}}$.
- We have then for class C_{2} is $t_{2}=-\frac{N}{N_{2}}$.

Thus

The new cost function (Our Classic Linear Model)

$$
\begin{equation*}
E=\frac{1}{2} \sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}-t_{n}\right)^{2} \tag{29}
\end{equation*}
$$

Thus

The new cost function (Our Classic Linear Model)

$$
\begin{equation*}
E=\frac{1}{2} \sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}-t_{n}\right)^{2} \tag{29}
\end{equation*}
$$

Deriving with respect to w

$$
\begin{equation*}
\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}-t_{n}\right) \boldsymbol{x}_{n}=0 \tag{30}
\end{equation*}
$$

Thus

The new cost function (Our Classic Linear Model)

$$
\begin{equation*}
E=\frac{1}{2} \sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}-t_{n}\right)^{2} \tag{29}
\end{equation*}
$$

Deriving with respect to w

$$
\begin{equation*}
\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}-t_{n}\right) \boldsymbol{x}_{n}=0 \tag{30}
\end{equation*}
$$

Deriving with respect to w_{0}

$$
\begin{equation*}
\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}-t_{n}\right)=0 \tag{31}
\end{equation*}
$$

Then

We have that

$$
\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}-t_{n}\right)=\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}\right)-\sum_{n=1}^{N} t_{n}
$$

Then

We have that

$$
\begin{aligned}
\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}-t_{n}\right) & =\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}\right)-\sum_{n=1}^{N} t_{n} \\
& =\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}\right)-N_{1} \frac{N}{N_{1}}+N_{2} \frac{N}{N_{2}}
\end{aligned}
$$

Then

We have that

$$
\begin{aligned}
\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}-t_{n}\right) & =\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}\right)-\sum_{n=1}^{N} t_{n} \\
& =\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}\right)-N_{1} \frac{N}{N_{1}}+N_{2} \frac{N}{N_{2}} \\
& =\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}\right)
\end{aligned}
$$

Then

$$
\left(\sum_{n=1}^{N} \boldsymbol{w}^{T} \boldsymbol{x}_{n}\right)+N w_{0}=0
$$

Then

We have that

$$
w_{0}=-\boldsymbol{w}^{T}\left(\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{n}\right)
$$

Then

We have that

$$
w_{0}=-\boldsymbol{w}^{T}\left(\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{n}\right)
$$

We rename $\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{n}=\boldsymbol{m}$

$$
\boldsymbol{m}=\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{n}=\frac{1}{N}\left[N_{1} \boldsymbol{m}_{1}+N_{2} \boldsymbol{m}_{2}\right]
$$

Then

We have that

$$
w_{0}=-\boldsymbol{w}^{T}\left(\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{n}\right)
$$

We rename $\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{n}=\boldsymbol{m}$

$$
\boldsymbol{m}=\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{n}=\frac{1}{N}\left[N_{1} \boldsymbol{m}_{1}+N_{2} \boldsymbol{m}_{2}\right]
$$

Finally

$$
w_{0}=-\boldsymbol{w}^{T} \boldsymbol{m}
$$

Now

In a similar way

$$
\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}\right) \boldsymbol{x}_{n}-\sum_{n=1}^{N} t_{n} \boldsymbol{x}_{n}=0
$$

Thus, we have

Something Notable

$$
\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}\right) \boldsymbol{x}_{n}-\frac{N}{N_{1}} \sum_{n=1}^{N_{1}} \boldsymbol{x}_{n}+\frac{N}{N_{2}} \sum_{n=1}^{N_{2}} \boldsymbol{x}_{n}=0
$$

Thus, we have

Something Notable

$$
\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}\right) \boldsymbol{x}_{n}-\frac{N}{N_{1}} \sum_{n=1}^{N_{1}} \boldsymbol{x}_{n}+\frac{N}{N_{2}} \sum_{n=1}^{N_{2}} \boldsymbol{x}_{n}=0
$$

Thus

$$
\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}\right) \boldsymbol{x}_{n}-N\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)=0
$$

Next

Then, using $w_{0}=-\boldsymbol{w}^{T} \boldsymbol{m}$

$$
\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}-\boldsymbol{w}^{T} \boldsymbol{m}\right) \boldsymbol{x}_{n}=N\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)
$$

Next

Then, using $w_{0}=-\boldsymbol{w}^{T} \boldsymbol{m}$

$$
\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}-\boldsymbol{w}^{T} \boldsymbol{m}\right) \boldsymbol{x}_{n}=N\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)
$$

Thus

$$
\left[\sum_{n=1}^{N}\left(\boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{x}_{n}-\boldsymbol{w}^{T} \boldsymbol{m}\right) \boldsymbol{x}_{n}\right]=N\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)
$$

Now, Do you have the solution?

You have a version in Duda and Hart Section 5.8

$$
\widehat{\boldsymbol{w}}=\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{y}
$$

Now, Do you have the solution?

You have a version in Duda and Hart Section 5.8

$$
\widehat{\boldsymbol{w}}=\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{y}
$$

Thus

$$
\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X} \widehat{\boldsymbol{w}}=\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{y}
$$

Now, Do you have the solution?

You have a version in Duda and Hart Section 5.8

$$
\widehat{\boldsymbol{w}}=\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{y}
$$

Thus

$$
\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X} \widehat{\boldsymbol{w}}=\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{y}
$$

Now, we rewrite the data matrix

$$
\boldsymbol{X}=\left[\begin{array}{cc}
\mathbf{1}_{1} & \boldsymbol{X}_{1} \\
-\mathbf{1}_{2} & -\boldsymbol{X}_{2}
\end{array}\right]
$$

In addition

Our old augmented \boldsymbol{w}

$$
\boldsymbol{w}=\left[\begin{array}{c}
w_{0} \\
\boldsymbol{w}
\end{array}\right]
$$

In addition

Our old augmented \boldsymbol{w}

$$
\boldsymbol{w}=\left[\begin{array}{c}
w_{0} \\
\boldsymbol{w}
\end{array}\right]
$$

And our new \boldsymbol{y}

$$
\boldsymbol{y}=\left[\begin{array}{c}
\frac{N}{N_{1}} \mathbf{1}_{1} \tag{32}\\
\frac{N}{N_{2}} \mathbf{1}_{2}
\end{array}\right]
$$

Thus, we have

Something Notable

$$
\left[\begin{array}{cc}
\mathbf{1}_{1}^{\boldsymbol{T}} & -\mathbf{1}_{\mathbf{2}}^{\boldsymbol{T}} \\
\boldsymbol{X}_{\mathbf{1}}^{\boldsymbol{T}} & -\boldsymbol{X}_{\mathbf{2}}^{\boldsymbol{T}}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{1}_{\mathbf{1}} & \boldsymbol{X}_{\mathbf{1}} \\
\mathbf{- 1}_{\mathbf{2}} & -\boldsymbol{X}_{\mathbf{2}}
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
\boldsymbol{w}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1}_{1}^{T} & -\mathbf{1}_{2}^{T} \\
\boldsymbol{X}_{1}^{T} & -\boldsymbol{X}_{2}^{T}
\end{array}\right]\left[\begin{array}{c}
\frac{N}{N_{1}} \mathbf{1}_{1} \\
\frac{N}{N_{2}} \mathbf{1}_{2}
\end{array}\right]
$$

Thus, we have

Something Notable

$$
\left[\begin{array}{cc}
\mathbf{1}_{1}^{\boldsymbol{T}} & -\mathbf{1}_{\mathbf{2}}^{\boldsymbol{T}} \\
\boldsymbol{X}_{\mathbf{1}}^{\boldsymbol{T}} & -\boldsymbol{X}_{\mathbf{2}}^{\boldsymbol{T}}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{1}_{\mathbf{1}} & \boldsymbol{X}_{\mathbf{1}} \\
\mathbf{- 1}_{\mathbf{2}} & -\boldsymbol{X}_{\mathbf{2}}
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
\boldsymbol{w}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1}_{1}^{T} & -\mathbf{1}_{2}^{T} \\
\boldsymbol{X}_{1}^{T} & -\boldsymbol{X}_{2}^{T}
\end{array}\right]\left[\begin{array}{c}
\frac{N}{N_{1}} \mathbf{1}_{1} \\
\frac{N}{N_{2}} \mathbf{1}_{2}
\end{array}\right]
$$

Thus, if we use the following definitions for $i=1,2$

- $\boldsymbol{m}_{i}=\frac{1}{N_{i}} \sum_{\boldsymbol{x} \in C_{i}} \boldsymbol{x}$

Thus, we have

Something Notable

$$
\left[\begin{array}{cc}
\mathbf{1}_{1}^{\boldsymbol{T}} & -\mathbf{1}_{\mathbf{2}}^{\boldsymbol{T}} \\
\boldsymbol{X}_{\mathbf{1}}^{\boldsymbol{T}} & -\boldsymbol{X}_{\mathbf{2}}^{\boldsymbol{T}}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{1}_{\mathbf{1}} & \boldsymbol{X}_{\mathbf{1}} \\
-\mathbf{1}_{\mathbf{2}} & -\boldsymbol{X}_{\mathbf{2}}
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
\boldsymbol{w}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1}_{1}^{T} & -\mathbf{1}_{2}^{T} \\
\boldsymbol{X}_{1}^{T} & -\boldsymbol{X}_{2}^{T}
\end{array}\right]\left[\begin{array}{c}
\frac{N}{N_{1}} \mathbf{1}_{1} \\
\frac{N}{N_{2}} \mathbf{1}_{2}
\end{array}\right]
$$

Thus, if we use the following definitions for $i=1,2$

- $\boldsymbol{m}_{i}=\frac{1}{N_{i}} \sum_{\boldsymbol{x} \in C_{i}} \boldsymbol{x}$
- $S_{w}=$
$\sum_{\boldsymbol{x}_{i} \in C_{1}}\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{1}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{1}\right)^{T}+\sum_{\boldsymbol{x}_{i} \in C_{2}}\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{2}\right)^{T}$

Then

If we multiply the previous matrices

$$
\left[\begin{array}{cc}
N & \left(N_{1} \boldsymbol{m}_{1}+N_{2} \boldsymbol{m}_{2}\right)^{T} \\
\left(N_{1} \boldsymbol{m}_{1}+N_{2} \boldsymbol{m}_{2}\right) & S_{w}+N_{1} \boldsymbol{m}_{1} \boldsymbol{m}_{1}^{T}+N_{2} \boldsymbol{m}_{2} \boldsymbol{m}_{2}^{T}
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
\boldsymbol{w}
\end{array}\right]=\left[\begin{array}{c}
0 \\
N\left[\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right]
\end{array}\right]
$$

Then

If we multiply the previous matrices

$$
\left[\begin{array}{cc}
N & \left(N_{1} \boldsymbol{m}_{1}+N_{2} \boldsymbol{m}_{2}\right)^{T} \\
\left(N_{1} \boldsymbol{m}_{1}+N_{2} \boldsymbol{m}_{2}\right) & S_{w}+N_{1} \boldsymbol{m}_{1} \boldsymbol{m}_{1}^{T}+N_{2} \boldsymbol{m}_{2} \boldsymbol{m}_{2}^{T}
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
\boldsymbol{w}
\end{array}\right]=\left[\begin{array}{c}
0 \\
N\left[\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right]
\end{array}\right]
$$

Then

$$
\left[\begin{array}{c}
N w_{0}+\left(N_{1} \boldsymbol{m}_{1}+N_{2} \boldsymbol{m}_{2}\right)^{T} \boldsymbol{w} \\
\left(N_{1} \boldsymbol{m}_{1}+N_{2} \boldsymbol{m}_{2}\right) w_{0}+\left[S_{w}+N_{1} \boldsymbol{m}_{1} \boldsymbol{m}_{1}^{T}+N_{2} \boldsymbol{m}_{2} \boldsymbol{m}_{2}^{T}\right]
\end{array}\right]=\left[\begin{array}{c}
0 \\
N\left[\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right]
\end{array}\right]
$$

Thus

We have that

$$
\begin{aligned}
w_{0} & =-\boldsymbol{w}^{T} \boldsymbol{m} \\
{\left[\frac{1}{N} S_{w}+\frac{N_{1} N_{2}}{N^{2}}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T}\right] \boldsymbol{w} } & =\boldsymbol{m}_{1}-\boldsymbol{m}_{2}
\end{aligned}
$$

Thus

We have that

$$
w_{0}=-\boldsymbol{w}^{T} \boldsymbol{m}
$$

$$
\left[\frac{1}{N} S_{w}+\frac{N_{1} N_{2}}{N^{2}}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T}\right] \boldsymbol{w}=\boldsymbol{m}_{1}-\boldsymbol{m}_{2}
$$

Thus

Since the vector $\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w}$ is in the direction of $\boldsymbol{m}_{1}-\boldsymbol{m}_{2}$

$$
\alpha=\frac{N_{1} N_{2}}{N^{2}}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w}
$$

Thus

We have that

$$
w_{0}=-\boldsymbol{w}^{T} \boldsymbol{m}
$$

$$
\left[\frac{1}{N} S_{w}+\frac{N_{1} N_{2}}{N^{2}}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T}\right] \boldsymbol{w}=\boldsymbol{m}_{1}-\boldsymbol{m}_{2}
$$

Thus

Since the vector $\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w}$ is in the direction of $\boldsymbol{m}_{1}-\boldsymbol{m}_{2}$

$$
\alpha=\frac{N_{1} N_{2}}{N^{2}}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w}
$$

We have that

$$
\frac{1}{N} S_{w} \boldsymbol{w}=(1-\alpha)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)
$$

Finally

We have that

$$
\begin{equation*}
\boldsymbol{w}=(1-\alpha) N S_{w}^{-1}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) \propto S_{w}^{-1}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) \tag{33}
\end{equation*}
$$

Outline

More in Regularization

－Introduction
－Smoothness of the Estimation
－The Error Estimate
－Choosing approximate inverses
－A Classic Example，Regularization as a Filter
－Another Example，The Landweber Iteration
2）Linear Regression using Gradient Descent
－Introduction
－What is the Gradient of the Equation？
－The Basic Algorithm
－How to obtain $\eta(k)$
－Gold Section
3）The Gauss－Markov Theorem
－Statement
－Proof
4 Fisher Linear Discriminant
－History
－The Projection and The Rotation Idea
－Classifiers as Machines for dimensionality reduction
－Solution
－Use the mean of each Class
－Scatter measure
－The Cost Function
－A Transformation for simplification and defining the cost function
－Where is this used？
－Applications
－Relation with Least Squared Error
－What？
－Some Stuff for you to try

Exercises

Machine Learning Theodoridis

Chapter 7

- 7.10, 7.13

Exercises

Machine Learning Theodoridis

Chapter 7

- 7.10, 7.13

Bishop

Chapter 4

- $4.4,4.5,4.6,4.8$

