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Well-Posed Problem

Definition by Hadamard (Circa 1902)
Models of physical phenomenas should have the following properties

1 A solution exists,
2 The solution is unique,
3 The solution’s behavior changes continuously with the initial conditions.

Any other problem that fails in any of this conditions
It is considered an Ill-Posed Problem.
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Regularization in Linear Problems
In many applications of linear algebra
We want to find and estimation x̂ to a vector x ∈ Rd satisfying the
approximation

Ax ≈ y

When A ∈ Rm×d is ill-conditioned or singular.

The importance of the problem
The problems generating these situations are:

1 Numerical differentiation of noisy data,
2 Non parametric smoothing of curves and surfaces defined by scattered

data,
3 Image reconstruction,
4 Inverse Laplace transforms,
5 etc.
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In all such situations

The Vector x̂ generated by
1 x̂ = A−1y

2 x̂ =
(
ATA

)−1
ATy

If it exists at all
It is usually a meaningless bad approximation to x.
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Even

Even with an estimation x̂ = Ay as reasonable near to x∗ (Square
Case)

‖x∗ − x̂‖ =
∥∥∥A−1Ax∗ −A−1y

∥∥∥
≤
∥∥∥A−1

∥∥∥ ‖Ax∗ − y‖ Holder’s Inequality

This Upper Bound is quite large.

With
1
∥∥A−1∥∥ = σmax (A) The largest singular value of matrix.

2 ‖Ax− y‖ =
√

(Ax− y)T (Ax− y)
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Therefore

Regularization techniques are needed to obtain meaningful solutions
To problems that are called ill-posed problems.

Where some parameters are ill-determined
By Least Square Methods

I in particular when the number of parameters is larger than the number
of available measurements!!!
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Modeling Smoothness

Geometrically, regularization for smoothness means that
We seek the least rough function that gives a certain degree of fit to
the observed data.

A way to measure smoothness
It is look at how many derivatives can be done before ∇pf (x) = 0
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Here, we want to model the idea of “Smoothness”

For this, we consider a continuous function f
Where we use a vector w with features

wi = f (ti)

Thus, we can use a numerical differentiation method such that

w(1) = df (t)
dt
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Therefore, Assume Smoothness

We have a value such that w = f (t)
Thus, we say that w is smooth “enough” if w(1) = df(t)

dt exists.

Now this can be repeated p

w(p) = d(p)f (t)
dt(p)
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Thus, it is possible to look at this smoothness

Using our Linear Algebra, we can represent this as a Linear Operator

w(p) = Sw (The Smoothing Matrix)
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Thus

We can define the numerical differentiation of a p+ 1 times
Over a continuously differentiable function

y : [0, 1] −→ R

Thus, finding our estimate x (t) = y′ (t) = ∇y (t)
Basically our problem of solving the linear system Ax = y

Or in other words

Ax (t) =
∫ t

0
x (τ) dτ
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Therefore

The differentiability assumption says

w = ∇p+1y = ∇px is continous and bounded

Given that A = ∇−1

We may write the previous equation as

x = Apw

15 / 132



Therefore

The differentiability assumption says

w = ∇p+1y = ∇px is continous and bounded

Given that A = ∇−1

We may write the previous equation as

x = Apw

15 / 132



Furthermore, Based in the following equalities

We can define the Adjoint Integral Operator is defined〈
ATx1, x2

〉
= 〈x1, Ax2〉

〈x1, x2〉 =
∫ 1

0
x1 (t)x2 (t) dt

Thus with Axi = yi and xi = ∇yi
〈x1, Ax2〉 = 〈∇y1, y2〉 = −〈y1,∇y2〉 = 〈−Ax1, x2〉

By Partial Integration

Then, under the following boundary conditions
Assuming that y and its first p+ 1 derivatives vanish at t = 0 and
t = 1.
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How?

We have

〈∇y1, y2〉 =
∫ 1

0
∇y1 (t) y2 (t) dt

= y1 (t) y2 (t) |10 −
∫ 1

0
y1 (t)∇y2 (t) dt

= −〈y1,∇y2〉

Then, if we assume that all entries in A are in R
AT = −A

17 / 132



How?

We have

〈∇y1, y2〉 =
∫ 1

0
∇y1 (t) y2 (t) dt

= y1 (t) y2 (t) |10 −
∫ 1

0
y1 (t)∇y2 (t) dt

= −〈y1,∇y2〉

Then, if we assume that all entries in A are in R
AT = −A

17 / 132



How?

We have

〈∇y1, y2〉 =
∫ 1

0
∇y1 (t) y2 (t) dt

= y1 (t) y2 (t) |10 −
∫ 1

0
y1 (t)∇y2 (t) dt

= −〈y1,∇y2〉

Then, if we assume that all entries in A are in R
AT = −A

17 / 132



Therefore

We have the following relation

∇y (t) = A−1y (t)

Thus, it is possible to write the condition x = Apw as x = Sw

By absorbing the sign into w

S =
{

(ATA)
p
2 if p is even

(ATA)
p−1

2 AT if p is even

For p ≥ 1.
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The key to the treatment of ill-posed Linear Systems

It is a process called regularization that replaces A−1 by a family
Ch, h > 0

Of approximate inverses of A in such a way that, as h −→ 0, the
product ChA→ I in an appropriately restricted sense.

I The parameter h is called the regularization parameter.
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Therefore

It is usually possible to choose the Ch such that
For a suitable exponent p (often p = 1 or 2), the constants

1 γ1 = suph>0 h ‖Ch‖.
2 γ2 = suph>0 h

−p ‖(I − ChA)S‖

They are finite and of reasonable size
From this... we have...
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The Following Theorem

Theorem
Suppose x = Sw, and ‖Ax− y‖ ≤ ∆ ‖w‖ for some ∆ > 0.
Then γ1 and γ2 implies

‖x− Chy‖ ≤
[
γ1

∆
h

+ γ2h
p
]
‖w‖
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For Example

For a well-posed data fitting problem
One with a well-conditioned normal equation matrix ATA

The least squares estimate
It has an error of the order of ∆.

For example
Ch = (ATA)−1AT = A+ =⇒ h−1 =

∥∥A+∥∥ = O (1) with γ1 = 1 and
γ2 = 0 independent of p
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Now, we have

When A is rank deficient or becomes increasingly ill-conditioned
We may improve the condition by modifying ATA.

The simplest way to achieve this is by adding a small multiple of the
identity

Since ATA is symmetric and positive semidefinite.

The matrix ATA+ h2I has its eigenvalues
They are in the interval

[
h2, h2 + ‖A‖2

]
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Here

The Condition Number of a Positive Definite Matrix Σ

cond (Σ) = λmax (Σ)
λmin (Σ)

What happens

Which is related to the Maximum Likelihood of a Gaussian
Distribution under a restriction

max ML (Σ)
s.t.cond (Σ) ≤ k

“Condition Number Regularized Covariance Estimation” by Won et. al
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Here the Condition Number

It is

cond
(
ATA+ h2I

)
≤ h2 + ‖A‖2

h2

Therefore, we have from the previous slides

x̂ =
(
ATA+ h2I

)−1
AT y

Formula first derived by Tikhonov in 1963
“Solution of incorrectly formulated problems and the regularization
method,” Soviet Math. Dokl. 4 (1963), pp. 1035–1038.
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Finally

Corresponds to the family of approximate inverses (Tikhonov
Regularization)

Ch =
(
ATA+ h2I

)−1
AT

28 / 132
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A Classic Example, The Finite-Dimensional Case
Given a Matrix K of N ×N

with decomposition

K = QΣQt

Such that QQT = I

Where
Σ is the matrix diag (σ1, σ2, ..., σN ) of eigenvalues with
σ1 ≥ σ2 ≥ ... ≥ σN
Q =

[
q1 q2 · · · qN

]
the corresponding eigenvectors.

Then, it is possible to write the following estimation

x̂ = K−1Y = QΣ−1QTy =
n∑
i=1

1
σi
〈qi, Y 〉 qi
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Therefore

If we start to see really small σi, the solution will be unstable
It is more, if there are zero eigenvalues, the matrix will be impossible
to invert.

Clearly, the coefficients of x̂ will go infinity

xi = 1
σi
〈qi, Y 〉 → ∞

Or Statistical High Variance...
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A Classic By Tikhonov

Add an extra term λ to avoid such problems

x̂ = (K + nλI)−1 Y = QΣ−1QTy

Again simple linear algebra
The eigenvalues are padded by the same value, and we do not care
about the effect in the eigenvectors given that we care only in the
directions!!!
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Thus

If we rewrite the equations

x̂ = Q (Σ + nλI)−1QTy =
n∑
i=1

1
σi + nλ

〈qi, Y 〉 qi

Actually, regularization filters out the undesired components
If σi � λn then 1

σi+nλ ∼
1
σi

If σi � λn then 1
σi+nλ ∼

1
nλ
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In a more general setup

Let be Gλ (σ) a regularization function for the eigenvalues, we can
then decompose K as

Gλ (K) = QGλ (σ)QT

Therefore our estimation, finishes as

Gλ (K)y =
n∑
i=1

Gλ (σ) 〈qi, Y 〉 qi
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Clearly

For Tikhonov

Gλ (σ) = 1
σi + nλ
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Remarks

First
In the inverse problems literature, many algorithms are known besides
Tikhonov regularization.

These algorithms are defined by a suitable G
They are not necessarily based on Regularized Empirical Risk
Minimization (ERM):

Remp (f) = 1
n

n∑
i=1

L (f (xi) , yi)

However, they perform spectral regularization (Eigenvalue Based
Regularization).
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Spectral Filtering

Examples
1 Gradient Descent (or Landweber Iteration or L2 Boosting)
2 ν-accelerated Landweber
3 Iterated Tikhonov Regularization
4 Truncated Singular Value Decomposition (TSVD)
5 Principle Component Regression (PCR)
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The Landweber Iteration

The Landweber iteration or Landweber algorithm
It is an algorithm to solve ill-posed linear inverse problems

It is quite old...
The method was first proposed in the 1950s by Louis Landweber,

Remarks
When A is nonsingular, then an explicit solution is x = A−1y
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Therefore
The Landweber algorithm is an attempt to regularize the problem

The algorithm tries to solve the minimization

min
w

‖y −Xw‖22
2

Using the update

wk+1 = wk + ηXT (y −Xwk)

where 0 < η < 2
∥∥∥XTX

∥∥∥−1

2
= 2σ

This is given by the taking in account

φ (w) = ‖y −Xw‖
2
2

2
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Then

It is possible to show that the gradient of is φ (w)

φ (w) = −XT (y −Xwk)

Therefore
Each step in Landweber’s method is a step in the direction of steepest
descent.
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Given that the Canonical Solution has problems

We can develop a more robust algorithm
Using the Gradient Descent Idea

Basically, The Gradient Descent
It uses the change in the surface of the cost function to obtain a direction
of improvement.
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Gradient Descent

The basic procedure is as follow
1 Start with a random weight vector w (1).
2 Compute the gradient vector ∇J (w (1)).
3 Obtain value w (2) by moving from w (1) in the direction of the

steepest descent:

w (k + 1) = w (k)− η (k)∇J (w (k)) (1)

η (k) is a positive scale factor or learning rate!!!
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Geometrically

We have the following
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For our full regularized equation
We have

J (w) = 1
2

N∑
i=1

(
yi −

d+1∑
j=1

xijwj

)2

+ λ

2

d+1∑
j=1

w2
j (2)

Then, for each wj

dJ (w)
dwj

= −
N∑
i=1

yi − d+1∑
j=1

xijwj

xij
+ λwj (3)

Therefore

∇J (w (k)) =


−
∑N
i=1

[(
yi −

∑d+1
j=1 x

i
jwj

)
xi1

]
+ λw1

...
−
∑N
i=1

[(
yi −

∑d+1
j=1 x

i
jwj

)
xid+1

]
+ λwd+1
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Algorithm

Gradient Decent
1 Initialize w, criterion θ, η (·), k = 0
2 do k = k + 1
3 w (k) = w (k − 1)− η (k)∇J (w (k − 1))
4 until η (k)∇J (w (k)) < θ

5 return w

Problem!!! How to choose the learning rate?
If η (k) is too small, convergence is quite slow!!!
If η (k) is too large, correction will overshot and can even diverge!!!
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Using the Taylor’s second-order expansion around value
w (k)

We do the following

J (w) = J (w (k)) +∇JT (w −w (k)) + 1
2 (w −w (k))T H (w −w (k)) (4)

Remark: This is know as Taylor’s Second Order expansion!!!

Here, we have
∇J is the vector of partial derivatives ∂J

∂wi
evaluated at w (k).

H is the Hessian matrix of second partial derivatives ∂2J
∂wi∂wj

evaluated at w (k).
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Then

We substitute (Eq. 1) into (Eq. 4)

w (k + 1)−w (k) = η (k)∇J (w (k)) (5)

We have then

J (w (k + 1)) ∼=J (w (k)) +∇JT (−η (k)∇J (w (k))) + ...

1
2 (−η (k)∇J (w (k)))T H (−η (k)∇J (w (k)))

Finally, we have

J (w (k + 1)) ∼= J (w (k))− η (k) ‖∇J‖2 + 1
2η

2 (k)∇JTH∇J (6)
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Derive with respect to η (k) and make the result equal to
zero

We have then

−‖∇J‖2 + η (k)∇JTH∇J = 0 (7)

Finally

η (k) = ‖∇J‖2

∇JTH∇J
(8)

Remark This is the optimal step size!!!

Problem!!!
Calculating H can be quite expansive!!!
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We can have an adaptive linear search!!!

We can use the idea of having everything fixed, but η (k)
Then, we can have the following function
f (η (k)) = J (w (k)− η (k)∇J (w (k)))

We can optimized using linear search methods

Linear Search Methods
Backtracking linear search
Bisection method
Golden ratio
Etc.
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Gold Section

We have f (η (k)) = J (w (k)− η (k)∇J (w (k)))
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Golden Section

Thus the idea is to use an evaluation f4 to decide which subsection to
drop
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What is the Golden Ratio Idea?

Basically, given an interval [x1, x3]
Then, we select a point x2 and x3 such that we have a two possible
intervals of search for the minimum

1 [x1, x4]
2 [x2, x3]

The Golden Linear Search requires these intervals be equal!!!
If they are not,

You could run to a series of search wider intervals slowing down the
rate of convergence.
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How?

By the equality b = a+ c
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Therefore

We have the following question?
Where do you place x2? Thus you can generate x4

You want to avoid
x2 to close to x1 or x3
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The process is as follow

We define
f1 = f (x1)
f2 = f (x2)
f3 = f (x3)
f4 = f (x4)
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Two Cases

If f2 < f4 then the minimum lies between x1 and x4 and the new
triplet is x1, x2 and x4.
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Here,we have the realization that

We have interval size reduction

x4 − x1 = ϕ (x3 − x1) 7−→ x4 = x1 + ϕx3 − ϕx1

Then

x4 = (1− ϕ)x1 + ϕx3
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Two Cases

If f4 < f2 then the minimum lies between x2 and x3 and the new
triplet is x2, x4 and x3.
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Then

We want

x3 − x2 = ϕ (x3 − x1) 7−→ −x2 = ϕx3 − ϕx1 − x3

Therefore

x2 = ϕx1 + (1− ϕ)x3

Thus, once we obtain ϕ, we get x2 and x4

For this, we make the following assumption [x1, x3] = [0, 1]
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Therefore

If we have f2 < f4

x2 = 1− ϕ

Then, if we have the new function evaluation at the left of x2
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With a Little Algebra

Then, x2 is between the the interval [0, ϕ] and assume is a convex
combination of such values

1− ϕ = (1− ϕ) 0 + ϕϕ 7−→ ϕ2 + ϕ− 1 = 0

With Solution

ϕ = −1 +
√

5
2 = 0.6180
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Finally, we have the algorithm
Golden Ratio

INPUT: x1, x3, τ, ϕ, f

OUTPUT: x3−x1
2

1 x2 = ϕx1 + (1− ϕ)x3

2 x4 = (1− ϕ)x1 + ϕx3

3 while |x3 − x1| > τ (|x2|+ |x4|)
4 if f (x2) < f (x4):
5 x3 = x4

6 x4 = x2

7 x2 = ϕx1 + (1− ϕ)x3

8 else
9 x1 = x2

10 x2 = x4

11 x4 = (1− ϕ)x1 + ϕx3

12 return x3−x1
2
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Iteratively

Repeat the procedure!!!
Until a error threshold is reached.

For more, please read the paper
“SEQUENTIAL MINIMAX SEARCH FOR A MAXIMUM” by J. Kiefer
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There are better versions

Take a look
The papers at the repository.
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The Gauss-Markov Theorem

Given the Linear Estimation Model

y = Xw + ε

Under the following assumptions
1 E [ε|x] = 0 for all x (Mean Independence).
2 V ar [ε] = E

[
εεT |x

]
= σ2

ε IN (Homoskedasticity).

The Gauss-Markov Theorem states

ŵ =
(
XTX

)−1
XTy

is the Best Linear Unbiased Estimator (BLUE), if ε satisfies 1. and 2.!!!
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Proof

First and Fore most
“An estimator is “best” in a class if it has smaller variance than
others estimators in the same class.”

Also
We are restricting our search for estimators to the class of linear,
unbiased ones

Unbiased Estimator
Given a sequence of observations x1, x2, ..., xN ∼ P (X|θ) then bias is the
mean of the difference

bd (θ) = E [d (X)− h (θ)]

with d (X) is an estimator of the statistic h (θ).
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Remark

We need to calculate estimators which have covariances
The best estimator in a class of estimators is the one with the
“smallest” covariance matrix

Thus
We will look at such covariance matrix for the BLUE estimator.
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Therefore, going back to our unbiased estimators

If bd (θ) = 0 for all values of the parameter
Then, d (X) is called an unbiased estimator.

Now, the data are the y, we are looking at estimators that are linear
functions of y

w̃ = m+My

Here
w̃ is a k × 1 parameter vector
m is a k × 1 vector of constants,
M is a k ×N matrix of constants,
The data vector y is N × 1.

76 / 132



Therefore, going back to our unbiased estimators

If bd (θ) = 0 for all values of the parameter
Then, d (X) is called an unbiased estimator.

Now, the data are the y, we are looking at estimators that are linear
functions of y

w̃ = m+My

Here
w̃ is a k × 1 parameter vector
m is a k × 1 vector of constants,
M is a k ×N matrix of constants,
The data vector y is N × 1.

76 / 132



Therefore, going back to our unbiased estimators

If bd (θ) = 0 for all values of the parameter
Then, d (X) is called an unbiased estimator.

Now, the data are the y, we are looking at estimators that are linear
functions of y

w̃ = m+My

Here
w̃ is a k × 1 parameter vector
m is a k × 1 vector of constants,
M is a k ×N matrix of constants,
The data vector y is N × 1.

76 / 132



Now

We are looking at unbiased estimators

E [w̃] = w

if w̃ is to be unbiased

E [w̃|X] = m+ME [y|X]
= m+ME [Xw + ε|X]
= m+MXw
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Now, we are forced

Given that we are looking for an unbiased estimator

m = 0 with MX = Ik

For the least squared error

M =
(
XTX

)−1
XT Z=⇒MX =

(
XTX

)−1
XTX = Ik

Looking for linear unbiased estimators requires to look for estimators
as

w̃ = My with MX = Ik
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Therefore

We are looking at matrices as

M =
(
XTX

)−1
XT + C

where C is some k × n matrix.

Now

MX =
[(
XTX

)−1
XT + C

]
X

= Ik + CX = Ik

=⇒ CX = 0
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Therefore, we can compute the covariance matrix

For all alternative estimators w̃

w̃ = My

= M [Xw + ε]
= w +Mε

Therefore, the difference is w̃ −w = Mε

And since the w̃ is unbiased, E [w̃ −w|X] = 0
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We have

The Covariance Matrix

E
[
(w̃ −w) (w̃ −w)T |X

]
= E

[
Mε (Mε)T |X

]
= E

[
MεεTMT |X

]
= ME

[
εεT |X

]
MT

= Mσ2
ε INM

T

= σ2
εMMT
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Finally

Given that CX = 0

MMT =
[(
XTX

)−1
XT + C

] [(
XTX

)−1
XT + C

]T
=
(
XTX

)−1
XTX

(
XTX

)−1
+
(
XTX

)−1
XTC

+ CX
(
XTX

)−1
+ CCT

=
(
XTX

)−1
+ CCT

Now the matrix CCT is a k × k “cross products” matrix
By construction is positive semi-definite
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Thus

Given
The best estimator in a class of estimators is the one with the
“smallest” covariance matrix

Where by “small”
The covariance matrix associated with any other estimator in the
class minus the covariance matrix of the best estimator is a positive
definite matrix
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Formally

The following difference is positive definite

MMT + CCT − Covbest
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Then

Since MMT + CCT − Covbest is minimized when we set the matrix
C equal to the 0 matrix

i.e. M =
(
XTX

)−1
X

I The best estimator in the class ŵ.

Any other estimator M in this class
It has strictly “larger” covariance matrix

Therefore the Least Square Error estimator ŵ
It is BLUE under the two conditions of mean independence and
homoskedastic!!!
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Invented Originally by
Sir Ronald Fisher

Anders Hald called him
"A genius who almost single-handedly created the foundations for modern statistical
science."

The Darkest Side
In 1910 he joined the Eugenics Society at Cambridge, whose members included
John Maynard Keynes, R. C. Punnett, and Horace Darwin.
He opposed UNESCO’s The Race Question, believing that evidence and everyday
experience showed that human groups differ profoundly.
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Intuition

Something Notable - Projecting into a Line
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A Better Line

Something Notable - Projecting into a Line
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Rotation

Projecting
Projecting well-separated samples onto an arbitrary line usually produces a
confused mixture of samples from all of the classes and thus produces poor
recognition performance.

Something Notable
However, moving and rotating the line around might result in an
orientation for which the projected samples are well separated.

Fisher Linear Discriminant (FLD)
It is a discriminant analysis seeking directions that are efficient for
discriminating binary classification problem.
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This is actually coming from...

Classifier as
A machine for dimensionality reduction.

Initial Setup
We have:

Nd-dimensional samples x1, x2, ..., xN .
Ni is the number of samples in class Ci for i=1,2.

Then, we ask for the projection of each xi into the line by means of

yi = wTxi (9)
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Use the mean of each Class

Then
Select w such that class separation is maximized

We then define the mean sample for ecah class
1 C1 ⇒m1 = 1

N1

∑N1
i=1 xi

2 C2 ⇒m2 = 1
N2

∑N2
i=1 xi

Ok!!! This is giving us a measure of distance
Thus, we want to maximize the distance the projected means:

m1 −m2 = wT (m1 −m2) (10)

where mk = wTmk for k = 1, 2.
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However

We could simply seek

max
w

wT (m1 −m2)

s.t.
√
wTw = 1

After all
We do not care about the magnitude of w.
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Example

Here, we have the problem... The Scattering!!!
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Fixing the Problem

To obtain good separation of the projected data
The difference between the means should be large relative to some
measure of the standard deviations for each class.

We define a SCATTER measure (Based in the Sample Variance)

s2
k =

∑
xi∈Ck

(
wTxi −mk

)2
=

∑
yi=wTxi∈Ck

(yi −mk)2 (11)

We define then within-class variance for the whole data

s2
1 + s2

2 (12)
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Finally, a Cost Function

The between-class variance

(m1 −m2)2 (13)

The Fisher criterion (A Ratio)
between-class variance
within-class variance (14)

Finally

J (w) = (m1 −m2)2

s2
1 + s2

2
(15)
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We use a transformation to simplify our life
First

J (w) =

(
wT m1 − wT m2

)2∑
yi=wT xi∈C1

(yi − m1)2 +
∑

yi=wT xi∈C2
(yi − m2)2

(16)

Second

(
wT m1 − wT m2

)(
wT m1 − wT m2

)T∑
yi=wT xi∈C1

(
wT xi − m1

)(
wT xi − m1

)T
+
∑

yi=wT xi∈C2

(
wT xi − m2

)(
wT xi − m2

)T

(17)

Third

wT (m1 − m2)
(

wT (m1 − m2)
)T∑

yi=wT xi∈C1
wT (xi − m1)

(
wT (xi − m1)

)T
+
∑

yi=wT xi∈C2
wT (xi − m2)

(
wT (xi − m2)

)T

(18)
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Transformation

Fourth

wT (m1 − m2) (m1 − m2)T w∑
yi=wT xi∈C1

wT (xi − m1) (xi − m1)T w +
∑

yi=wT xi∈C2
wT (xi − m2) (xi − m2)T w

(19)

Fifth
wT (m1 − m2) (m1 − m2)T w

wT

[∑
yi=wT xi∈C1

(xi − m1) (xi − m1)T +
∑

yi=wT xi∈C2
(xi − m2) (xi − m2)T

]
w

(20)

Now Rename

J (w) = wTSBw

wTSww
(21)
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Derive with respect to w

Thus
dJ (w)
dw

=
d
(
wTSBw

) (
wTSww

)−1

dw
= 0 (22)

Then

dJ (w)
dw

=
(
SBw + STBw

) (
wTSww

)−1−
(
wTSBw

) (
wTSww

)−2 (
Sww + STww

)
= 0

(23)

Now because the symmetry in SB and Sw
dJ (w)
dw

= SBw

(wTSww) −
wTSBwSww

(wTSww)2 = 0 (24)
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Now, Several Tricks!!!

First
SBw = (m1 −m2) (m1 −m2)T w = α (m1 −m2) (27)

Where α = (m1 −m2)T w is a simple constant
It means that SBw is always in the direction m1 −m2!!!

In addition
wTSww and wTSBw are constants
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Now, Several Tricks!!!

Finally, we only need the direction

Sww ∝ (m1 −m2)⇒ w ∝ S−1
w (m1 −m2) (28)

Once the data is transformed into yi
Use a threshold y0 ⇒ x ∈ C1 iff y (x) ≥ y0 or x ∈ C2 iff y (x) < y0

Or ML with a Gussian can be used to classify the new transformed
data using a Naive Bayes (Central Limit Theorem and y = wTx sum
of random variables).
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Applications
Something Notable

Bankruptcy prediction
I In bankruptcy prediction based on accounting ratios and other financial

variables, linear discriminant analysis was the first statistical method
applied to systematically explain which firms entered bankruptcy vs.
survived.

Face recognition
I In computerized face recognition, each face is represented by a large

number of pixel values.
I The linear combinations obtained using Fisher’s linear discriminant are

called Fisher faces.

Marketing
I In marketing, discriminant analysis was once often used to determine

the factors which distinguish different types of customers and/or
products on the basis of surveys or other forms of collected data.
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I In marketing, discriminant analysis was once often used to determine
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Applications

Something Notable
Biomedical studies

I The main application of discriminant analysis in medicine is the
assessment of severity state of a patient and prognosis of disease
outcome.
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Please

Your Reading Material, it is about the Multi-class
4.1.6 Fisher’s discriminant for multiple classes AT “Pattern Recognition”
by Bishop
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Relation with Least Squared Error

First
The least-squares approach to the determination of a linear discriminant
was based on the goal of making the model predictions as close as
possible to a set of target values.

Second
The Fisher criterion was derived by requiring maximum class separation in
the output space.
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How do we do this?

First
We have N samples.
We have N1samples for class C1.
We have N2 samples for class C2.

So, we decide the following for the targets on each class
We have then for class C1 is t1 = N

N1
.

We have then for class C2 is t2 = − N
N2

.
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Thus

The new cost function (Our Classic Linear Model)

E = 1
2

N∑
n=1

(
wTxn + w0 − tn

)2
(29)

Deriving with respect to w
N∑
n=1

(
wTxn + w0 − tn

)
xn = 0 (30)

Deriving with respect to w0

N∑
n=1

(
wTxn + w0 − tn

)
= 0 (31)
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Then

We have that
N∑
n=1

(
wTxn + w0 − tn

)
=

N∑
n=1

(
wTxn + w0

)
−

N∑
n=1

tn

=
N∑
n=1

(
wTxn + w0

)
−N1

N

N1
+N2

N

N2

=
N∑
n=1

(
wTxn + w0

)

Then (
N∑
n=1

wTxn

)
+Nw0 = 0
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Then

We have that

w0 = −wT

(
1
N

N∑
n=1

xn

)

We rename 1
N

∑N
n=1 xn = m

m = 1
N

N∑
n=1

xn = 1
N

[N1m1 +N2m2]

Finally

w0 = −wTm
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Now

In a similar way
N∑
n=1

(
wTxn + w0

)
xn −

N∑
n=1

tnxn = 0
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Thus, we have

Something Notable
N∑
n=1

(
wTxn + w0

)
xn −

N

N1

N1∑
n=1

xn + N

N2

N2∑
n=1

xn = 0

Thus
N∑
n=1

(
wTxn + w0

)
xn −N (m1 −m2) = 0
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Next

Then, using w0 = −wTm

N∑
n=1

(
wTxn −wTm

)
xn = N (m1 −m2)

Thus [
N∑
n=1

(
wTxn −wTm

)
xn

]
= N (m1 −m2)
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Now, Do you have the solution?

You have a version in Duda and Hart Section 5.8

ŵ =
(
XTX

)−1
XTy

Thus

XTXŵ = XTy

Now, we rewrite the data matrix

X =
[

11 X1
−12 −X2

]
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In addition

Our old augmented w

w =
[
w0
w

]

And our new y

y =
[

N
N1

11
N
N2

12

]
(32)
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Thus, we have

Something Notable

[
1T

1 −1T
2

XT
1 −XT

2

] [
11 X1

−12 −X2

] [
w0
w

]
=
[

1T
1 −1T

2
XT

1 −XT
2

] [ N
N1

11
N
N2

12

]

Thus, if we use the following definitions for i = 1, 2
mi = 1

Ni

∑
x∈Ci x

Sw =∑
xi∈C1 (xi −m1) (xi −m1)T +

∑
xi∈C2 (xi −m2) (xi −m2)T
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Then

If we multiply the previous matrices[
N (N1m1 +N2m2)T

(N1m1 +N2m2) Sw +N1m1m
T
1 +N2m2m

T
2

][
w0
w

]
=
[

0
N [m1 −m2]

]

Then[
Nw0 + (N1m1 +N2m2)T w

(N1m1 +N2m2)w0 +
[
Sw +N1m1m

T
1 +N2m2m

T
2
] ] =

[
0

N [m1 −m2]

]
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Thus
We have that

w0 = −wTm[
1
N
Sw + N1N2

N2 (m1 −m2) (m1 −m2)T

]
w = m1 −m2

Thus
Since the vector (m1 −m2) (m1 −m2)T w is in the direction of
m1 −m2

α = N1N2
N2 (m1 −m2)T w

We have that
1
N
Sww = (1− α) (m1 −m2)
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Finally

We have that

w = (1− α)NS−1
w (m1 −m2) ∝ S−1

w (m1 −m2) (33)
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