Introduction to Machine Learning Introduction to Linear Classifiers

Andres Mendez-Vazquez

May 24, 2020

Outline

- Introduction
 - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $\boldsymbol{w}^T\boldsymbol{x} + w_0$ Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Basic Solution
- Multidimensional Solution
- Remember in matrices of 3 × 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity Notes Problem with Outliers
- Problem with High Number of Dimensions
- What can be done? Using Statistics to find Important Features

 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues
- Exercises
 - Some Stuff for the Lab

Outline

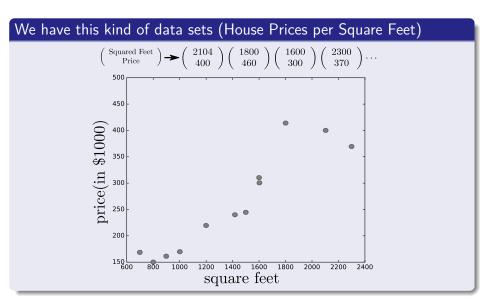
Introduction

Introduction

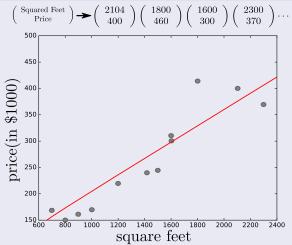
- Regression as approximation
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $oldsymbol{w}^Toldsymbol{x} + w_0$
- Augmenting the Vector

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Rasic Solution
- Multidimensional Solution
- Remember in matrices of 3 × 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity Notes
- Problem with Outliers
- Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues
- 3 Exercise
 - Some Stuff for the Lab

Many Times, we have things as regression



Thus



Thus, Our Objective

To find such hyperplane

To do forecasting on the prices of a house given its surface!!!

Basically, the process defined in Machine Learning!!!

Thus, Our Objective

To find such hyperplane

To do forecasting on the prices of a house given its surface!!!

Here, where "Learning" Machine Learning style comes around

Basically, the process defined in Machine Learning!!!

Outline

- Introduction
 - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $w^T x + w_0$ Augmenting the Vector
- Augmenting the Vec

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Rasic Solution
- Multidimensional Solution
- lacksquare Remember in matrices of 3 imes 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity Notes
- Problem with OutliersProblem with High Number of Dimensions
- Problem with Hig
 What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues
- 3 Exercise
 - Some Stuff for the Lab

Regression

Intuition

• The regression model is a procedure that allows to estimate certain relationship that relates two or more variables with an output.

- Linear Regression
- Non-Linear Regression

Regression

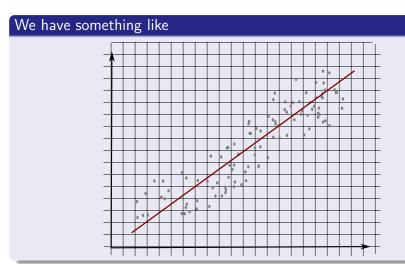
Intuition

• The regression model is a procedure that allows to estimate certain relationship that relates two or more variables with an output.

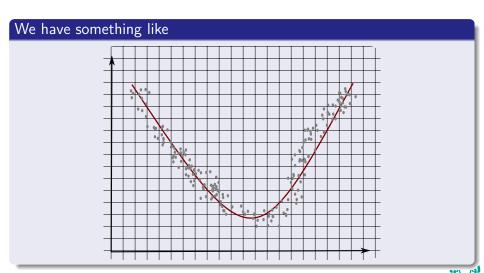
We have two types

- Linear Regression
- Non-Linear Regression

Linear Regression



Non-Linear Regression



As an Approximation

It is clear that in these univariate cases, we have

$$\{(x_i, y_i)\}_{i=1}^N$$
 with $x_i, y_i \in \mathbb{R}$

$$\min_{f} \bigotimes_{i=1}^{N} g \left\{ f \left(x_{i} \right) \oplus y_{i} \right\}$$

- ⊗, ⊕ are binary operators
- ullet g, f are functions

As an Approximation

It is clear that in these univariate cases, we have

$$\{(x_i, y_i)\}_{i=1}^N$$
 with $x_i, y_i \in \mathbb{R}$

Data to try to approximate by

$$\min_{f} \otimes_{i=1}^{N} g \left\{ f \left(x_{i} \right) \oplus y_{i} \right\}$$

- ⊗, ⊕ are binary operators
- g, f are functions

As an Approximation

It is clear that in these univariate cases, we have

$$\{(x_i, y_i)\}_{i=1}^N$$
 with $x_i, y_i \in \mathbb{R}$

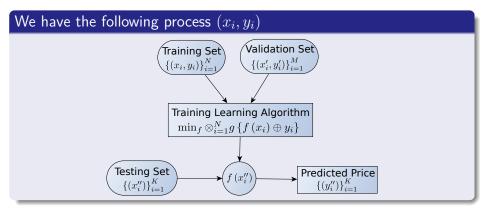
Data to try to approximate by

$$\min_{f} \bigotimes_{i=1}^{N} g \left\{ f \left(x_i \right) \oplus y_i \right\}$$

Where

- ullet \otimes, \oplus are binary operators
- \bullet g, f are functions

Then, in Supervised Training



Outline

- Introduction
 - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $\mathbf{w}^T \mathbf{x} + w_0$
 - Augmenting the Vector

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Basic Solution
- Multidimensional Solution
- Remember in matrices of 3 × 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity Notes Problem with Outliers
- Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

What is it?

First than anything, we have a parametric model!!!

Here, we have an hyperplane as a model:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 \tag{1}$$

Note: $\boldsymbol{w}^T\boldsymbol{x}$ is also know as dot product

We have

$$g\left(oldsymbol{x}
ight)=\left(w_{1},w_{2}
ight)\left(egin{array}{c}x_{1}\x_{2}\end{array}
ight)+w_{0}$$
 =

What is it?

First than anything, we have a parametric model!!!

Here, we have an hyperplane as a model:

$$g(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + w_0 \tag{1}$$

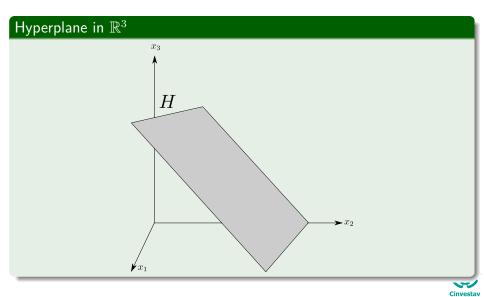
Note: $oldsymbol{w}^T oldsymbol{x}$ is also know as dot product

In the case of \mathbb{R}^2

We have:

$$g(\mathbf{x}) = (w_1, w_2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + w_0 = w_1 x_1 + w_2 x_2 + w_0$$
 (4)

Example

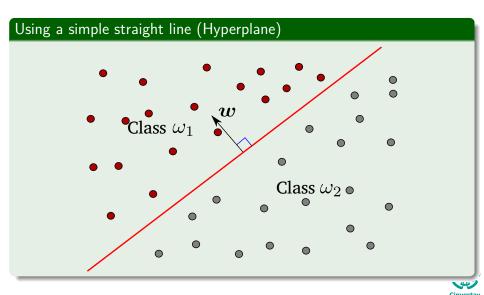


Outline

- Introduction
 - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $oldsymbol{w}^Toldsymbol{x} + w_0$
 - Augmenting the Vector

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Rasic Solution
- Multidimensional Solution
- Remember in matrices of 3 × 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity Notes
- Problem with Outliers
- Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues
- 3 Exercise
 - Some Stuff for the Lab

Splitting The Space \mathbb{R}^2



Splitting the Space?

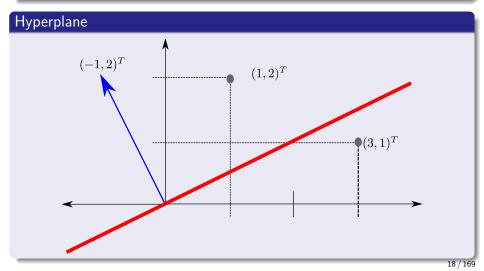
For example, assume the following vector ${m w}$ and constant w_0

$$\boldsymbol{w} = (-1,2)^T$$
 and $w_0 = 0$

Splitting the Space?

For example, assume the following vector ${m w}$ and constant w_0

$$\boldsymbol{w} = (-1,2)^T$$
 and $w_0 = 0$



Then, we have

The following results

$$g\left(\begin{pmatrix} 1\\2 \end{pmatrix}\right) = (-1,2)\begin{pmatrix} 1\\2 \end{pmatrix} = -1 \times 1 + 2 \times 2 = 3$$
$$g\left(\begin{pmatrix} 3\\1 \end{pmatrix}\right) = (-1,2)\begin{pmatrix} 3\\1 \end{pmatrix} = -1 \times 3 + 2 \times 1 = -1$$

YES!!! We have a positive side and a negative side!!!

Outline

Introduction

- Introduction
- Regression as approximation
- The Simplest Functions
- Splitting the Space Defining the Decision Surface
- Properties of the Hyperplane $\mathbf{w}^T \mathbf{x} + w_0$ Augmenting the Vector

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Basic Solution
- Multidimensional Solution
- Remember in matrices of 3 × 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues
- - Some Stuff for the Lab

The Decision Surface

The equation g(x) = 0 defines a decision surface

Separating the elements in classes, ω_1 and ω_2 .

Now assume x_1 and x_2 are both on the decision surface

$$\mathbf{w}^T \mathbf{x}_1 + \mathbf{w}_0 = 0$$
$$\mathbf{w}^T \mathbf{x}_2 + \mathbf{w}_0 = 0$$

 an^{T}

The Decision Surface

The equation g(x) = 0 defines a decision surface

Separating the elements in classes, ω_1 and ω_2 .

When g(x) is linear the decision surface is an hyperplane

Now assume $oldsymbol{x}_1$ and $oldsymbol{x}_2$ are both on the decision surface

$$\boldsymbol{w}^T \boldsymbol{x}_1 + w_0 = 0$$
$$\boldsymbol{w}^T \boldsymbol{x}_2 + w_0 = 0$$

The Decision Surface

The equation g(x) = 0 defines a decision surface

Separating the elements in classes, ω_1 and ω_2 .

When g(x) is linear the decision surface is an hyperplane

Now assume $oldsymbol{x}_1$ and $oldsymbol{x}_2$ are both on the decision surface

$$\boldsymbol{w}^T \boldsymbol{x}_1 + w_0 = 0$$
$$\boldsymbol{w}^T \boldsymbol{x}_2 + w_0 = 0$$

Thus

$$\boldsymbol{w}^T \boldsymbol{x}_1 + w_0 = \boldsymbol{w}^T \boldsymbol{x}_2 + w_0$$

(3)

Defining a Decision Surface

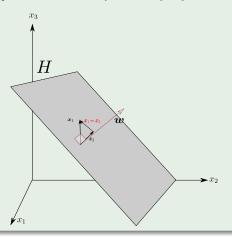
Then

$$\boldsymbol{w}^T \left(\boldsymbol{x}_1 - \boldsymbol{x}_2 \right) = 0$$

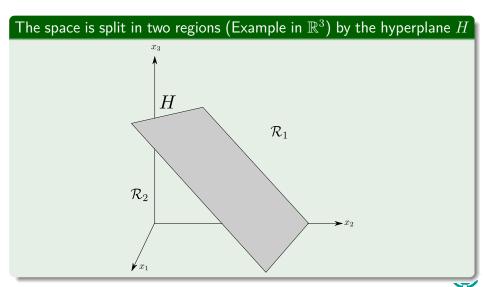
Therefore

$m{x}_1 - m{x}_2$ lives in the hyperplane i.e. it is perpendicular to $m{w}^T$

- Remark: any vector in the hyperplane is a linear combination of elements in the plane.
- ullet Therefore any vector in the plane is perpendicular to $oldsymbol{w}^T$



Therefore

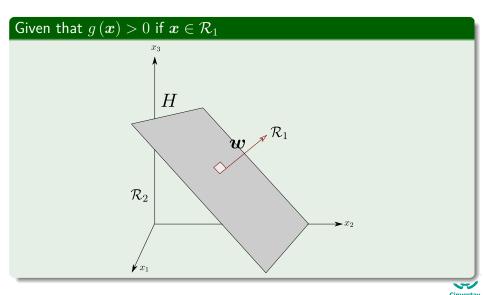


Outline

- 1 Introduction
 - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $w^T x + w_0$ Augmenting the Vector

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Basic Solution
- Multidimensional Solution
- Remember in matrices of 3 × 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Issues with Least Square
 Singularity Notes
- Problem with Outliers
- Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues
- 3 Exercis
 - Some Stuff for the Lab

Some Properties of the Hyperplane



It is more

We can say the following

ullet Any $oldsymbol{x} \in \mathcal{R}_1$ is on the positive side of H.

It is more

We can say the following

- ullet Any $oldsymbol{x} \in \mathcal{R}_1$ is on the positive side of H.
- ullet Any $x\in\mathcal{R}_2$ is on the negative side of H.

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- Any $x \in \mathcal{R}_2$ is on the negative side of H.

In addition, $g\left(\boldsymbol{x}\right)$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H

First, we express any $oldsymbol{x}$ as follows

$$x = x_p + r \frac{w}{\|w\|}$$

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- Any $x \in \mathcal{R}_2$ is on the negative side of H.

In addition, $g\left({m{x}} \right)$ can give us a way to obtain the distance from ${m{x}}$ to the hyperplane H

First, we express any $oldsymbol{x}$ as follows

$$\boldsymbol{x} = \boldsymbol{x}_p + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}$$

Where

ullet x_p is the normal projection of x onto H.

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- Any $x \in \mathcal{R}_2$ is on the negative side of H.

In addition, $g\left(\boldsymbol{x}\right)$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H

First, we express any $oldsymbol{x}$ as follows

$$\boldsymbol{x} = \boldsymbol{x}_p + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}$$

Where

- x_p is the normal projection of x onto H.
- r is the desired distance

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- Any $x \in \mathcal{R}_2$ is on the negative side of H.

In addition, $g\left(\boldsymbol{x}\right)$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H

First, we express any $oldsymbol{x}$ as follows

$$x = x_p + r \frac{w}{\|w\|}$$

Where

- x_p is the normal projection of x onto H.
- r is the desired distance
 - Positive, if x is in the positive side

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- ullet Any $oldsymbol{x} \in \mathcal{R}_2$ is on the negative side of H.

In addition, $g\left(\boldsymbol{x}\right)$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H

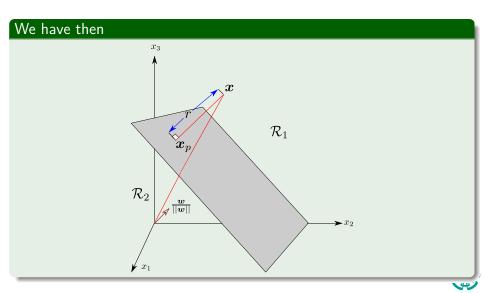
First, we express any $oldsymbol{x}$ as follows

$$\boldsymbol{x} = \boldsymbol{x}_p + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}$$

Where

- x_p is the normal projection of x onto H.
- r is the desired distance
 - ightharpoonup Positive, if x is in the positive side
 - lacktriangle Negative, if x is in the negative side

We have something like this



Since $g\left(\boldsymbol{x_p}\right) = 0$

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$

Since $g\left(\boldsymbol{x_p}\right) = 0$

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$
$$= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0$$

Since $g\left(\boldsymbol{x_{p}}\right)=0$

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$
$$= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0$$
$$= \mathbf{w}^T \mathbf{x}_p + w_0 + r\frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|}$$

Since $g\left(\overline{oldsymbol{x_p}}\right)=0$

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$

$$= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0$$

$$= \mathbf{w}^T \mathbf{x}_p + w_0 + r\frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|}$$

$$= g(\mathbf{x}_p) + r\frac{\|\mathbf{w}\|^2}{\|\mathbf{w}\|}$$

Since $g\left(\boldsymbol{x_p}\right) = 0$

We have that

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$

$$= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0$$

$$= \mathbf{w}^T \mathbf{x}_p + w_0 + r\frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|}$$

$$= g(\mathbf{x}_p) + r\frac{\|\mathbf{w}\|^2}{\|\mathbf{w}\|}$$

$$= r\|\mathbf{w}\|$$

Then, we have

Since $g\left(\boldsymbol{x}_{\boldsymbol{p}}\right)=0$

We have that

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$

$$= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0$$

$$= \mathbf{w}^T \mathbf{x}_p + w_0 + r\frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|}$$

$$= g(\mathbf{x}_p) + r\frac{\|\mathbf{w}\|^2}{\|\mathbf{w}\|}$$

$$= r\|\mathbf{w}\|$$

Then, we have

$$r = \frac{g\left(\boldsymbol{x}\right)}{\|\boldsymbol{x}\|}$$

(5)

The distance from the origin to H

$$r = \frac{g\left(\mathbf{0}\right)}{\|\boldsymbol{w}\|} = \frac{\boldsymbol{w}^{T}\left(\mathbf{0}\right) + w_{0}}{\|\boldsymbol{w}\|} = \frac{w_{0}}{\|\boldsymbol{w}\|}$$
(6)

The distance from the origin to H

$$r = \frac{g\left(\mathbf{0}\right)}{\|\mathbf{w}\|} = \frac{\mathbf{w}^{T}\left(\mathbf{0}\right) + w_{0}}{\|\mathbf{w}\|} = \frac{w_{0}}{\|\mathbf{w}\|}$$
(6)

Remarks

• If $w_0 > 0$, the origin is on the positive side of H.

The distance from the origin to H

$$r = \frac{g\left(\mathbf{0}\right)}{\|\mathbf{w}\|} = \frac{\mathbf{w}^{T}\left(\mathbf{0}\right) + w_{0}}{\|\mathbf{w}\|} = \frac{w_{0}}{\|\mathbf{w}\|}$$
(6)

Remarks

- If $w_0 > 0$, the origin is on the positive side of H.
- If $w_0 < 0$, the origin is on the negative side of H.

The distance from the origin to H

$$r = \frac{g\left(\mathbf{0}\right)}{\|\mathbf{w}\|} = \frac{\mathbf{w}^{T}\left(\mathbf{0}\right) + w_{0}}{\|\mathbf{w}\|} = \frac{w_{0}}{\|\mathbf{w}\|}$$
(6)

Remarks

- If $w_0 > 0$, the origin is on the positive side of H.
- If $w_0 < 0$, the origin is on the negative side of H.
- If $w_0 = 0$, the hyperplane has the homogeneous form $w^T x$ and hyperplane passes through the origin.

Outline

- Introduction
 - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $\mathbf{w}^T \mathbf{x} + w_0$

Augmenting the Vector

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Basic Solution
- Multidimensional Solution
- Remember in matrices of 3 × 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity Notes
- Problem with Outliers
- Problem with High Number of Dimensions
- Problem with High
 What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues
- 3 Exercise
 - Some Stuff for the Lab

We want to solve the independence of $\ensuremath{w_0}$

We would like w_0 as part of the dot product by making $x_0=1$

$$g\left(\boldsymbol{x}\right) = w_0 \times 1 + \sum_{i=1}^{a} w_i x_i =$$

We would like w_0 as part of the dot product by making $x_0=1$

$$g(\mathbf{x}) = w_0 \times 1 + \sum_{i=1}^{a} w_i x_i = w_0 \times x_0 + w_0 \times$$

We would like $w_{ m 0}$ as part of the dot product by making $x_{ m 0}=1$

$$g(\mathbf{x}) = w_0 \times 1 + \sum_{i=1}^{d} w_i x_i = w_0 \times x_0 + \sum_{i=1}^{d} w_i x_i = \sum_{i=0}^{d} w_i x_i$$
 (7)

By making

We would like w_0 as part of the dot product by making $x_0=1$

$$g(x) = w_0 \times 1 + \sum_{i=1}^{d} w_i x_i = w_0 \times x_0 + \sum_{i=1}^{d} w_i x_i = \sum_{i=0}^{d} w_i x_i$$
 (7)

By making

$$m{x}_{aug} = \left(egin{array}{c} 1 \ x_1 \ dots \ x_d \end{array}
ight) = \left(egin{array}{c} 1 \ m{x} \end{array}
ight)$$

We would like w_0 as part of the dot product by making $x_0=1$

$$g(\mathbf{x}) = w_0 \times 1 + \sum_{i=1}^{d} w_i x_i = w_0 \times x_0 + \sum_{i=1}^{d} w_i x_i = \sum_{i=0}^{d} w_i x_i$$
 (7)

By making

$$m{x}_{aug} = \left(egin{array}{c} 1 \ x_1 \ dots \ x_d \end{array}
ight) = \left(egin{array}{c} 1 \ m{x} \end{array}
ight)$$

Where

 x_{auq} is called an augmented feature vector.

In a similar way

We have the augmented weight vector

$$m{w}_{aug} = \left(egin{array}{c} w_0 \ w_1 \ dots \ w_d \end{array}
ight) = \left(egin{array}{c} w_0 \ m{w} \end{array}
ight)$$

In a similar way

We have the augmented weight vector

$$oldsymbol{w}_{aug} = \left(egin{array}{c} w_0 \ w_1 \ dots \ w_d \end{array}
ight) = \left(egin{array}{c} w_0 \ oldsymbol{w} \end{array}
ight)$$

Remarks

ullet The addition of a constant component to x preserves all the distance relationship between samples.

In a similar way

We have the augmented weight vector

$$m{w}_{aug} = \left(egin{array}{c} w_0 \ w_1 \ dots \ w_d \end{array}
ight) = \left(egin{array}{c} w_0 \ m{w} \end{array}
ight)$$

Remarks

- ullet The addition of a constant component to x preserves all the distance relationship between samples.
- ullet The resulting $oldsymbol{x}_{aug}$ vectors, all lie in a d-dimensional subspace which is the $oldsymbol{x}$ -space itself.

More Remarks

In addition

The hyperplane decision surface \widehat{H} defined by

$$\boldsymbol{w}_{aug}^T \boldsymbol{x}_{aug} = 0$$

passes through the origin in x_{auq} -space.

More Remarks

In addition

The hyperplane decision surface \widehat{H} defined by

$$\boldsymbol{w}_{auq}^T \boldsymbol{x}_{aug} = 0$$

passes through the origin in x_{auq} -space.

Even Though

The corresponding hyperplane H can be in any position of the x-space.

More Remarks

In addition

The distance from ${m y}$ to \widehat{H} is:

$$\frac{\left| \boldsymbol{w}_{aug}^{T} \boldsymbol{x}_{aug} \right|}{\left\| \boldsymbol{w}_{aug} \right\|} = \frac{\left| g \left(\boldsymbol{x}_{aug} \right) \right|}{\left\| \boldsymbol{w}_{aug} \right\|}$$

Is $\|oldsymbol{w}\| \leq \|oldsymbol{w}_{aug}\|$

• Ideas?

$$\sqrt{\sum_{i=1}^{d} w_i^2} \le \sqrt{\sum_{i=1}^{d} w_i^2 + w_0^2}$$

Because we only need to find a weight vector $m{w}_{aug}$ instead of finding the weight vector $m{w}$ and the threshold w_0 .

Is $\| oldsymbol{w} \| \leq \| oldsymbol{w}_{aug} \|$

• Ideas?

$$\sqrt{\sum_{i=1}^{d} w_i^2} \le \sqrt{\sum_{i=1}^{d} w_i^2 + w_0^2}$$

This mapping is quite useful

Because we only need to find a weight vector w_{aug} instead of finding the weight vector w and the threshold w_0 .

Outline

Introduction

- Introduction
- Regression as approximation
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $w^T x + w_0$ Augmenting the Vector

Developing a Solution

Least Squared Error Procedure

- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Basic Solution
- Multidimensional Solution
- lacksquare Remember in matrices of 3 imes 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

Remember

Our original function

$$\min_{f} \bigotimes_{i=1}^{N} g \left\{ f \left(x_{i} \right) \oplus y_{i} \right\}$$

Outline

- Introduction
- Regression as approximation
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\mathbf{w}^T \mathbf{x} + w_0$ Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Rasic Solution
- Multidimensional Solution
- Remember in matrices of 3 × 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity Notes Problem with Outliers
- Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

Some Stuff for the Lab

Initial Supposition

Suppose, we have

n samples $m{x}_1, m{x}_2, ..., m{x}_n$ some labeled ω_1 and some labeled $\omega_2.$

Initial Supposition

Suppose, we have

n samples $x_1, x_2, ..., x_n$ some labeled ω_1 and some labeled ω_2 .

We want a vector weight $oldsymbol{w}$ such that

• $\boldsymbol{w}^T \boldsymbol{x}_i > 0$, if $\boldsymbol{x}_i \in \omega_1$.

Initial Supposition

Suppose, we have

n samples $x_1, x_2, ..., x_n$ some labeled ω_1 and some labeled ω_2 .

We want a vector weight $oldsymbol{w}$ such that

- $\boldsymbol{w}^T \boldsymbol{x}_i > 0$, if $\boldsymbol{x}_i \in \omega_1$.
- $\boldsymbol{w}^T \boldsymbol{x}_i < 0$, if $\boldsymbol{x}_i \in \omega_2$.

Initial Supposition

Suppose, we have

n samples $x_1, x_2, ..., x_n$ some labeled ω_1 and some labeled ω_2 .

We want a vector weight $oldsymbol{w}$ such that

- $\boldsymbol{w}^T \boldsymbol{x}_i > 0$, if $\boldsymbol{x}_i \in \omega_1$.
- $\boldsymbol{w}^T \boldsymbol{x}_i < 0$, if $\boldsymbol{x}_i \in \omega_2$.

The name of this weight vector

It is called a separating vector or solution vector.

Imagine that your problem has two classes ω_1 and ω_2 in \mathbb{R}^2

- They are linearly separable!!!
- You require to label them.

Imagine that your problem has two classes ω_1 and ω_2 in \mathbb{R}^2

- They are linearly separable!!!
- 2 You require to label them.

Which is the problem?

Imagine that your problem has two classes ω_1 and ω_2 in \mathbb{R}^2

- They are linearly separable!!!
- 2 You require to label them.

We have a problem!!!

Which is the problem?

Imagine that your problem has two classes ω_1 and ω_2 in \mathbb{R}^2

- They are linearly separable!!!
- You require to label them.

We have a problem!!!

Which is the problem?

We do not know the hyperplane!!!

Thus, what distance each point has to the hyperplane?

Label the Classes

- $\bullet \ \omega_1 \Longrightarrow +1$
- \bullet $\omega_2 \Longrightarrow -1$

Label the Classes

- $\bullet \ \omega_1 \Longrightarrow +1$
- $\bullet \ \omega_2 \Longrightarrow -1$

We produce the following labels

Cinvestav

Label the Classes

- $\bullet \ \omega_1 \Longrightarrow +1$
- $\bullet \ \omega_2 \Longrightarrow -1$

We produce the following labels

- **1** if $x \in \omega_1$ then $y_{ideal} = g_{ideal}(x) = +1$.
- ② if $x \in \omega_2$ then $y_{ideal} = g_{ideal}(x) = -1$.

Label the Classes

- $\bullet \ \omega_1 \Longrightarrow +1$
- $\bullet \ \omega_2 \Longrightarrow -1$

We produce the following labels

- **1** if $\boldsymbol{x} \in \omega_1$ then $y_{ideal} = g_{ideal}\left(\boldsymbol{x}\right) = +1$.
- 2 if $x \in \omega_2$ then $y_{ideal} = g_{ideal}(x) = -1$.

Remark: We have a problem with this labels!!!

Outline

- Introduction
 - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $w^T x + w_0$ Augmenting the Vector
- Daveloning a S

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Basic Solution
- Multidimensional Solution
- lacksquare Remember in matrices of 3 imes 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues
- Exercis
 - Some Stuff for the Lab

Now, What?

Assume true function f is given by

$$y_{noise} = g_{noise}(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + w_0 + e \tag{8}$$

It has a $e \sim N(\mu, \sigma^2)$

$$y_{noise} = g_{noise}\left(\boldsymbol{x}\right) = g_{ideal}\left(\boldsymbol{x}\right) + e$$

Now, What?

Assume true function f is given by

$$y_{noise} = g_{noise}(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + w_0 + e$$
(8)

Where the e

It has a $e \sim N(\mu, \sigma^2)$

$$y_{noise} = g_{noise}(\mathbf{x}) = g_{ideal}(\mathbf{x}) + e$$

(0)

Now, What?

Assume true function f is given by

$$y_{noise} = g_{noise}\left(\boldsymbol{x}\right) = \boldsymbol{w}^T \boldsymbol{x} + w_0 + e$$

 $y_{noise} = g_{noise}(\mathbf{x}) = g_{ideal}(\mathbf{x}) + e$

Where the e

It has a $e \sim N(\mu, \sigma^2)$

Thus, we can do the following

40 + 48 + 43 + 43 + 3

Thus, we have

What to do?

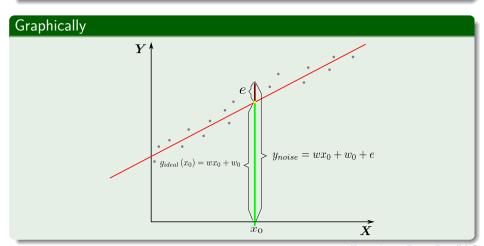
$$e = y_{noise} - g_{ideal}(\boldsymbol{x}) \tag{10}$$

Graphically

Thus, we have

What to do?

$$e = y_{noise} - g_{ideal}(\boldsymbol{x}) \tag{10}$$



Then, we have

A TRICK... Quite a good one!!! Instead of using y_{noise}

$$e = y_{noise} - g_{ideal}(\boldsymbol{x}) \tag{11}$$

$$e = y_{ideal} - g_{ideal}(\mathbf{x}) \tag{12}$$

How the geometry will solve the problem with using these labels.

Then, we have

A TRICK... Quite a good one!!! Instead of using y_{noise}

$$e = y_{noise} - g_{ideal}(\boldsymbol{x}) \tag{11}$$

We use $\overline{y_{ideal}}$

$$e = y_{ideal} - g_{ideal}(\boldsymbol{x}) \tag{12}$$

How the geometry will solve the problem with using these labels.



Then, we have

A TRICK... Quite a good one!!! Instead of using y_{noise}

$$e = y_{noise} - g_{ideal}(\boldsymbol{x}) \tag{11}$$

We use $\overline{y_{ideal}}$

$$e = y_{ideal} - g_{ideal}(\boldsymbol{x}) \tag{12}$$

We will see

How the geometry will solve the problem with using these labels.

Outline

Introduction

- Introduction
- Regression as approximation
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $w^T x + w_0$ Augmenting the Vector

Developing a Solution

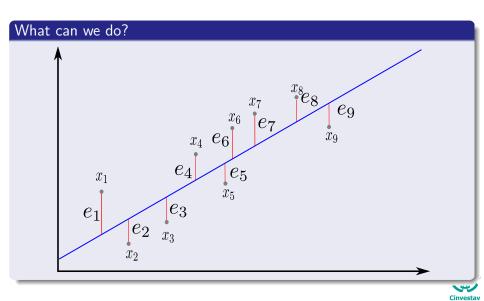
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
 The Error Idea

The Final Error Equation

- Rasic Solution
- Multidimensional Solution
- lacksquare Remember in matrices of 3 imes 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity NotesProblem with Outliers
- Problem with High Number of Dimensions
- Problem with High
 What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

Some Stuff for the Lab

Here, we have multiple errors



Sum Over All the Errors

We can do the following

$$J(\mathbf{w}) = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - g_{ideal}(\mathbf{x}_i))^2$$
 (13)

Remark: This is know as the Least Squared Error cost function

Sum Over All the Errors

We can do the following

$$J(\mathbf{w}) = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - g_{ideal}(\mathbf{x}_i))^2$$
(13)

Remark: This is know as the Least Squared Error cost function

Generalizing

ullet The dimensionality of each sample (data point) is d.

Sum Over All the Errors

We can do the following

$$J(\mathbf{w}) = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - g_{ideal}(\mathbf{x}_i))^2$$
(13)

Remark: This is know as the Least Squared Error cost function

Generalizing

- The dimensionality of each sample (data point) is d.
- You can extend each vector sample to be $x^T = (1, x')$.

Outline

- Introduction
- Introduction
- Regression as approximation
- The Simplest Functions
- Splitting the SpaceDefining the Decision Surface
- lacksquare Properties of the Hyperplane $oldsymbol{w}^Toldsymbol{x}+w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Basic Solution
- Multidimensional Solution
- lacksquare Remember in matrices of 3 imes 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity NotesProblem with Outliers
- Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

Some Stuff for the Lab

Assume that $x \in \mathbb{R}$

Then we have that the function looks like

$$f\left(x\right) = b_0 + b_1 x$$

$$L\left(b_1, b_2, \{x_i, y_i\}_{i=1}^N\right) = \sum_{i=1}^N e_i^2 = \sum_{i=1}^N \left[y_i - b_0 - b_1 x\right]^2$$

Assume that $x \in \mathbb{R}$

Then we have that the function looks like

$$f\left(x\right) = b_0 + b_1 x$$

Therefore the lose function looks like

$$L\left(b_{1}, b_{2}, \{x_{i}, y_{i}\}_{i=1}^{N}\right) = \sum_{i=1}^{N} e_{i}^{2} = \sum_{i=1}^{N} \left[y_{i} - b_{0} - b_{1}x\right]^{2}$$

Then, you use simple derivatives

Then, you have derivatives with respect to b_0

$$\frac{\partial \sum_{i=1}^{N} e_i^2}{\partial b_0} = -2 \sum_{i=1}^{N} [y_i - b_0 - b_1 x] = 0$$

$$\frac{\partial \sum_{i=1}^{N} e_i^2}{\partial b_1} = -2 \sum_{i=1}^{N} [y_i - b_0 - b_1 x] x = 0$$

Then, you use simple derivatives

Then, you have derivatives with respect to b_0

$$\frac{\partial \sum_{i=1}^{N} e_i^2}{\partial b_0} = -2 \sum_{i=1}^{N} [y_i - b_0 - b_1 x] = 0$$

Derivatives with respect to b_1

$$\frac{\partial \sum_{i=1}^{N} e_i^2}{\partial b_1} = -2 \sum_{i=1}^{N} [y_i - b_0 - b_1 x] x = 0$$

Previous equations are known as normal equations

Solving them

$$b_o = \overline{y} - b_1 \overline{x}$$

$$b_1 = \frac{\sum_{i=1}^{N} [x_i - \overline{x}] [y_i - \overline{y}]}{\sum_{i=1}^{N} [x_i - \overline{x}]^2}$$

Outline

- Introduction
 - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $\boldsymbol{w}^T\boldsymbol{x} + w_0$ Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Basic Solution
- Multidimensional Solution
- lacksquare Remember in matrices of 3 imes 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity NotesProblem with Outliers
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

We can use a trick

The following function

$$g_{ideal}\left(oldsymbol{x}
ight) = \left(egin{array}{cccc} 1 & x_1 & x_2 & ... & x_d \end{array}
ight) \left(egin{array}{c} w_0 \ w_2 \ w_3 \ dots \ w_d \end{array}
ight) = oldsymbol{x}^Toldsymbol{w}$$

$$J(w) = \sum_{i=1}^{N} (y_i - g_{ideal}(x_i))^2 = \sum_{i=1}^{N} (y_i - x_i^T w)^2$$
 (14)

We can use a trick

The following function

$$g_{ideal}\left(oldsymbol{x}
ight) = \left(egin{array}{cccc} 1 & x_1 & x_2 & ... & x_d \end{array}
ight) \left(egin{array}{c} w_0 \ w_2 \ w_3 \ dots \ w_d \end{array}
ight) = oldsymbol{x}^Toldsymbol{w}$$

We can rewrite the error equation as

$$J(\boldsymbol{w}) = \sum_{i=1}^{N} (y_i - g_{ideal}(\boldsymbol{x}_i))^2 = \sum_{i=1}^{N} (y_i - \boldsymbol{x}_i^T \boldsymbol{w})^2$$
(14)

Furthermore

Then stacking all the possible estimations into the product Data Matrix and weight vector

$$oldsymbol{X}oldsymbol{w} = \left(egin{array}{cccccc} 1 & (oldsymbol{x}_1)_1 & \cdots & (oldsymbol{x}_1)_j & \cdots & (oldsymbol{x}_1)_d \ dots & & dots & & dots \ 1 & (oldsymbol{x}_N)_1 & \cdots & (oldsymbol{x}_N)_j & \cdots & (oldsymbol{x}_N)_d \end{array}
ight) \left(egin{array}{c} w_1 \ w_2 \ w_3 \ dots \ w_3 \ dots \ w_{d+1} \end{array}
ight)$$

Note about other representations

We could have
$$\boldsymbol{x}^T = (x_1, x_2, ..., x_d, 1)$$
 thus
$$\boldsymbol{X} = \begin{pmatrix} (x_1)_1 & \cdots & (x_1)_j & \cdots & (x_1)_d & 1 \\ & & \vdots & & \vdots & \vdots \\ (x_i)_1 & & (x_i)_j & & (x_i)_d & 1 \\ & & \vdots & & \vdots & \vdots \\ (x_N)_1 & \cdots & (x_N)_j & \cdots & (x_N)_d & 1 \end{pmatrix}$$
 (15)

Then, we have the following trick with $oldsymbol{X}$

With the Data Matrix
$$\boldsymbol{X} w = \begin{pmatrix} \boldsymbol{x}_1^T \boldsymbol{w} \\ \boldsymbol{x}_2^T \boldsymbol{w} \\ \boldsymbol{x}_3^T \boldsymbol{w} \\ \vdots \\ \boldsymbol{x}_N^T \boldsymbol{w} \end{pmatrix}$$
 (16)

Therefore

We have that

$$\left(egin{array}{c} y_1 \ y_2 \ y_3 \ dots \ y_4 \end{array}
ight) = \left(egin{array}{c} oldsymbol{x}_1^T oldsymbol{w} \ oldsymbol{x}_2^T oldsymbol{w} \ oldsymbol{x}_3^T oldsymbol{w} \ dots \ oldsymbol{x}_N^T oldsymbol{w} \end{array}
ight) \equiv \left(egin{array}{c} y_1 - oldsymbol{x}_1^T oldsymbol{w} \ y_2 - oldsymbol{x}_2^T oldsymbol{w} \ y_3 - oldsymbol{x}_3^T oldsymbol{w} \ dots \ y_4 - oldsymbol{x}_N^T oldsymbol{w} \end{array}
ight)$$

We have that

$$\left(egin{array}{c} y_1 \ y_2 \ y_3 \ dots \ y_4 \end{array}
ight) = \left(egin{array}{c} oldsymbol{x}_1^Toldsymbol{w} \ oldsymbol{x}_2^Toldsymbol{w} \ oldsymbol{x}_3^Toldsymbol{w} \end{array}
ight) \equiv \left(egin{array}{c} y_1 - oldsymbol{x}_1^Toldsymbol{w} \ y_2 - oldsymbol{x}_2^Toldsymbol{w} \ y_3 - oldsymbol{x}_3^Toldsymbol{w} \end{array}
ight)$$

Then, we have the following equality

$$\left(\begin{array}{cccc} y_1 - \boldsymbol{x}_1^T \boldsymbol{w} & y_2 - \boldsymbol{x}_2^T \boldsymbol{w} & y_3 - \boldsymbol{x}_3^T \boldsymbol{w} & \cdots & y_4 - \boldsymbol{x}_N^T \boldsymbol{w} \end{array}\right) \left(\begin{array}{c} y_1 - \boldsymbol{x}_1^T \boldsymbol{w} \\ y_2 - \boldsymbol{x}_2^T \boldsymbol{w} \\ y_3 - \boldsymbol{x}_3^T \boldsymbol{w} \\ \vdots \\ y_4 - \boldsymbol{x}_N^T \boldsymbol{w} \end{array}\right) = \sum_{i=1}^N \left(y_i - \boldsymbol{x}_i^T \boldsymbol{w}\right)^2$$

Then, we have

The following equality

$$\sum_{i=1}^{N} (y_i - \boldsymbol{x}_i^T \boldsymbol{w})^2 = (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w})^T (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w}) = \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w}\|_2^2 \qquad (17)$$

We can expand our quadratic formula!!!

Thus

$$(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}) = \boldsymbol{y}^{T}\boldsymbol{y} - \boldsymbol{y}^{T}\boldsymbol{X}\boldsymbol{w} - \boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{y} + \boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w}$$
(18)

We can expand our quadratic formula!!!

Thus

$$(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}) = \boldsymbol{y}^{T}\boldsymbol{y} - \boldsymbol{y}^{T}\boldsymbol{X}\boldsymbol{w} - \boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{y} + \boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w}$$
(18)

Now

ullet Derive with respect to w

We can expand our quadratic formula!!!

Thus

$$(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}) = \boldsymbol{y}^{T}\boldsymbol{y} - \boldsymbol{y}^{T}\boldsymbol{X}\boldsymbol{w} - \boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{y} + \boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w}$$
(18)

Now

- ullet Derive with respect to w
- Assume that X^TX is invertible

Outline

- Introduction
- Introduction
- Regression as approximation
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $oldsymbol{w}^T oldsymbol{x} + w_0$
- Augmenting the Vector

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Rasic Solution
- Multidimensional Solution
- Remember in matrices of 3 × 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity Notes
- Problem with Outliers
- Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

Some Stuff for the Lab

Some Basic Definitions

Transpose of a Matrix

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}^{T} = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

Some Basic Definitions

Transpose of a Matrix

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}^T = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

$$\left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array}\right)^T = \left(\begin{array}{ccc} a_1 & a_2 & a_2 \end{array}\right)$$

We have

Given A and B matrices:

We have

Given A and B matrices:

$$(A+B)^T = A^T + B^T$$

• $x^TAy = \left[x^TAy\right]^T = y^TA^Tx$ given that the transpose of a number

 $x^*Ay = \begin{bmatrix} x^*Ay \end{bmatrix} = y^*A^*x$ given that the transpose of a numb the number itself.

We have

Given A and B matrices:

- $(A+B)^T = A^T + B^T$
- $(AB)^T = B^T A^T$

We have

Given A and B matrices:

- $(A+B)^T = A^T + B^T$
- \bullet $(AB)^T = B^T A^T$

Given vectors x, y and a matrix A such that you can multiply them:

We have

Given A and B matrices:

- $(A+B)^T = A^T + B^T$
- \bullet $(AB)^T = B^T A^T$

Given vectors x, y and a matrix A such that you can multiply them:

• $x^TAy = \begin{bmatrix} x^TAy \end{bmatrix}^T = y^TA^Tx$ given that the transpose of a number is the number itself.

Some Basic Definitions for

Derivative on Matrices

$$\frac{dAx}{dx} = \frac{d\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}{d\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}$$

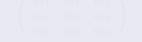
We have

$$\frac{d\begin{pmatrix} a_{11}x_{1} + & a_{12}x_{2} + & a_{13}x_{3} \\ a_{21}x_{1} + & a_{22}x_{2} + & a_{23}x_{3} \\ a_{31}x_{1} + & a_{32}x_{2} + & a_{33}x_{3} \end{pmatrix}}{d\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}} = \dots$$

We have

$$\frac{d\begin{pmatrix} a_{11}x_1 + & a_{12}x_2 + & a_{13}x_3 \\ a_{21}x_1 + & a_{22}x_2 + & a_{23}x_3 \\ a_{31}x_1 + & a_{32}x_2 + & a_{33}x_3 \end{pmatrix}}{d\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}} = \dots$$

$$\begin{pmatrix} \frac{d(a_{11}x_1 + a_{12}x_2 + a_{13}x_3)}{dx_1} & \frac{d(a_{11}x_1 + a_{12}x_2 + a_{13}x_3)}{dx_2} & \frac{d(a_{11}x_1 + a_{12}x_2 + a_{13}x_3)}{dx_3} \\ \frac{d(a_{21}x_1 + a_{22}x_2 + a_{23}x_3)}{dx_1} & \frac{d(a_{21}x_1 + a_{22}x_2 + a_{23}x_3)}{dx_2} & \frac{d(a_{21}x_1 + a_{22}x_2 + a_{23}x_3)}{dx_3} \\ \frac{d(a_{31}x_1 + a_{32}x_2 + a_{33}x_3)}{dx_1} & \frac{d(a_{31}x_1 + a_{32}x_2 + a_{33}x_3)}{dx_2} & \frac{d(a_{31}x_1 + a_{32}x_2 + a_{33}x_3)}{dx_3} \end{pmatrix} = \dots$$



We have

$$\frac{d\begin{pmatrix} a_{11}x_1 + & a_{12}x_2 + & a_{13}x_3 \\ a_{21}x_1 + & a_{22}x_2 + & a_{23}x_3 \\ a_{31}x_1 + & a_{32}x_2 + & a_{33}x_3 \end{pmatrix}}{d\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}} = \dots$$

$$\begin{pmatrix} \frac{d(a_{11}x_1 + a_{12}x_2 + a_{13}x_3)}{dx_1} & \frac{d(a_{11}x_1 + a_{12}x_2 + a_{13}x_3)}{dx_2} & \frac{d(a_{11}x_1 + a_{12}x_2 + a_{13}x_3)}{dx_3} \\ \frac{d(a_{21}x_1 + a_{22}x_2 + a_{23}x_3)}{dx_1} & \frac{d(a_{21}x_1 + a_{22}x_2 + a_{23}x_3)}{dx_2} & \frac{d(a_{21}x_1 + a_{22}x_2 + a_{23}x_3)}{dx_3} \\ \frac{d(a_{31}x_1 + a_{32}x_2 + a_{33}x_3)}{dx_1} & \frac{d(a_{31}x_1 + a_{32}x_2 + a_{33}x_3)}{dx_2} & \frac{d(a_{31}x_1 + a_{32}x_2 + a_{33}x_3)}{dx_3} \end{pmatrix} = \dots$$

$$\left(\begin{array}{cccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right)$$

We have the following equivalences

$$\frac{d\mathbf{w}^{T}A\mathbf{w}}{d\mathbf{w}} = \mathbf{w}^{T} \left(A + A^{T} \right), \ \frac{d\mathbf{w}^{T}A}{d\mathbf{w}} = A^{T}$$
 (19)

$$oldsymbol{y}^T oldsymbol{X} oldsymbol{w} = \left[oldsymbol{y}^T oldsymbol{X} oldsymbol{w}
ight]^T = oldsymbol{w}^T oldsymbol{X}^T oldsymbol{y}$$

We have the following equivalences

$$\frac{d\mathbf{w}^{T}A\mathbf{w}}{d\mathbf{w}} = \mathbf{w}^{T} \left(A + A^{T} \right), \ \frac{d\mathbf{w}^{T}A}{d\mathbf{w}} = A^{T}$$
 (19)

Now given that the transpose of a number is the number itself

$$oldsymbol{y}^T oldsymbol{X} oldsymbol{w} = egin{bmatrix} oldsymbol{y}^T oldsymbol{X} oldsymbol{w} \end{bmatrix}^T = oldsymbol{w}^T oldsymbol{X}^T oldsymbol{y}$$

We have then

$$\frac{d\left(\boldsymbol{y}^{T}\boldsymbol{y}-2\boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{y}+\boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w}\right)}{d\boldsymbol{w}}=-2\boldsymbol{y}^{T}\boldsymbol{X}+\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}+\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)\right)$$

We have then

$$\frac{d\left(\boldsymbol{y}^{T}\boldsymbol{y}-2\boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{y}+\boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w}\right)}{d\boldsymbol{w}}=-2\boldsymbol{y}^{T}\boldsymbol{X}+\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}+\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)\right)$$
$$=-2\boldsymbol{y}^{T}\boldsymbol{X}+2\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)$$

Making this equal to the zero row vector

We have then

$$\frac{d\left(\boldsymbol{y}^{T}\boldsymbol{y}-2\boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{y}+\boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w}\right)}{d\boldsymbol{w}}=-2\boldsymbol{y}^{T}\boldsymbol{X}+\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}+\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)\right)$$
$$=-2\boldsymbol{y}^{T}\boldsymbol{X}+2\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)$$

Making this equal to the zero row vector

$$-2\mathbf{y}^T \mathbf{X} + 2\mathbf{w}^T \left(\mathbf{X}^T \mathbf{X} \right) = 0$$

We apply the transpose

We have then

$$\frac{d\left(\boldsymbol{y}^{T}\boldsymbol{y}-2\boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{y}+\boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w}\right)}{d\boldsymbol{w}}=-2\boldsymbol{y}^{T}\boldsymbol{X}+\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}+\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)\right)$$
$$=-2\boldsymbol{y}^{T}\boldsymbol{X}+2\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)$$

Making this equal to the zero row vector

$$-2\boldsymbol{y}^{T}\boldsymbol{X} + 2\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right) = 0$$

We apply the transpose

$$\left[-2\boldsymbol{y}^T\boldsymbol{X} + 2\boldsymbol{w}^T\left(\boldsymbol{X}^T\boldsymbol{X}\right)\right]^T = [0]^T$$

Then, when we derive by w

We have then

$$\frac{d\left(\boldsymbol{y}^{T}\boldsymbol{y}-2\boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{y}+\boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w}\right)}{d\boldsymbol{w}}=-2\boldsymbol{y}^{T}\boldsymbol{X}+\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}+\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)\right)$$
$$=-2\boldsymbol{y}^{T}\boldsymbol{X}+2\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)$$

Making this equal to the zero row vector

$$-2\boldsymbol{y}^{T}\boldsymbol{X}+2\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)=0$$

We apply the transpose

$$\begin{bmatrix} 2a^T \mathbf{Y} \end{bmatrix}$$

 $\left[-2\boldsymbol{y}^{T}\boldsymbol{X}+2\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)\right]^{T}=\left[0\right]^{T}$ $-2\mathbf{X}^{T}\mathbf{y}+2\left(\mathbf{X}^{T}\mathbf{X}\right)\mathbf{w}=0$ (column vector)

68 / 169

Solving for $oldsymbol{w}$

We have then

$$\boldsymbol{w} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y} \tag{20}$$

Note: X^TX is always positive semi-definite. If it is also invertible, it is positive definite.

Any Ideas?

Solving for $oldsymbol{w}$

We have then

$$\boldsymbol{w} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y} \tag{20}$$

Note: X^TX is always positive semi-definite. If it is also invertible, it is positive definite.

Thus, How we get the discriminant function?

Any Ideas?

The Final Discriminant Function

Very Simple!!!

$$g(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{w} = \boldsymbol{x}^T \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$
 (21)

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and $rank\left(X\right) = m$. We call the matrix

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and $rank\left(X\right) = m.$ We call the matrix

$$\boldsymbol{X}^{+} = \left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T}$$

the pseudo inverse of X.

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and $rank\left(X\right) = m$. We call the matrix

$$\boldsymbol{X}^+ = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T$$

the pseudo inverse of X.

X^{\pm} inverts X on its image

- First a definition
- If an C image (V) then the
- $lacksquare \mathbb{R}$ If $oldsymbol{w} \in image(oldsymbol{X})$, then there is some $oldsymbol{v} \in \mathbb{R}^n$ such that $oldsymbol{w} = oldsymbol{X} oldsymbol{v}$
- ullet Hence, $X^+w=X^+Xv=(X^+X)-X^+Xv=v$

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and $rank\left(X\right) = m.$ We call the matrix

$$\boldsymbol{X}^+ = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T$$

the pseudo inverse of X.

Reason

 $oldsymbol{X}^+$ inverts $oldsymbol{X}$ on its image

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and $rank\left(X\right) = m.$ We call the matrix

$$\boldsymbol{X}^+ = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T$$

the pseudo inverse of X.

Reason

 $oldsymbol{X}^+$ inverts $oldsymbol{X}$ on its image

What?

First a definition

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and $rank\left(X\right) = m.$ We call the matrix

$$oldsymbol{X}^+ = \left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^T$$

the pseudo inverse of X.

Reason

 $oldsymbol{X}^+$ inverts $oldsymbol{X}$ on its image

What?

- First a definition
 - ▶ If $w \in image(X)$, then there is some $v \in \mathbb{R}^n$ such that w = Xv.

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and $rank\left(X\right) = m$. We call the matrix

$$\boldsymbol{X}^{+} = \left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T}$$

the pseudo inverse of X.

Reason

 $oldsymbol{X}^+$ inverts $oldsymbol{X}$ on its image

What?

- First a definition
 - ▶ If $w \in image(X)$, then there is some $v \in \mathbb{R}^n$ such that w = Xv.
- ullet Hence, $oldsymbol{X}^+oldsymbol{w} = oldsymbol{X}^+oldsymbol{X}oldsymbol{v} = oldsymbol{X}^Toldsymbol{X}oldsymbol{v} = oldsymbol{v}$

Outline

- Introduction
- Introduction
- Regression as approximation
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $w^T x + w_0$ Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Rasic Solution
- Multidimensional Solution
- \bullet Remember in matrices of 3×3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity Notes
- Problem with Outliers
- Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

We have that

The Data Matrix

$\boldsymbol{X} \in \mathbb{R}^{N \times (d+1)}$

 $oldsymbol{x_i} \in \mathbb{R}^d$

We have that

The Data Matrix

$\boldsymbol{X} \in \mathbb{R}^{N \times (d+1)}$

 $oldsymbol{x_i} \in \mathbb{R}^d$

We have that

The Data Matrix

$$\boldsymbol{X} \in \mathbb{R}^{N \times (d+1)}$$

$$oldsymbol{x_i} \in \mathbb{R}^d$$

The projected elements by the matrix

Definition Image(X)

ullet The column space of a matrix X is the span (set of all possible linear combinations) of its column vectors.

$$Image\left(\boldsymbol{X}\right) = span\left\{\boldsymbol{X}_{1}^{col},...,\boldsymbol{X}_{d+1}^{col}\right\}$$

▶ In other words, the image of a matrix $m{X}$ is all the vectors $m{X}m{v} \in \mathbb{R}^N$ with $m{v} \in \mathbb{R}^{d+1}$

The Data Samples

The Data Samples

 $oldsymbol{x_i} \in \mathbb{R}^d$

Additionally, we have that

The Weight Vector $oldsymbol{w}$

$$oldsymbol{w} \in \mathbb{R}^{d+1}$$

 $oldsymbol{X_i^{col}}, oldsymbol{y} \in \mathbb{R}^N$

Additionally, we have that

The Weight Vector $oldsymbol{w}$

$$oldsymbol{w} \in \mathbb{R}^{d+1}$$

What about the column space of X and the ideal input vector y

$$oldsymbol{X_i^{col}}, oldsymbol{y} \in \mathbb{R}^N$$

We can now see where $oldsymbol{y}$ is being projected

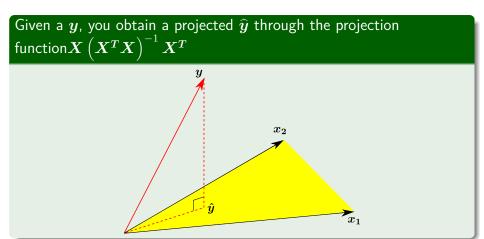
Basically y, the list of real inputs is being projected into

$$span\left\{oldsymbol{x}_{1},oldsymbol{x}_{2},...,oldsymbol{x}_{N}
ight\}$$

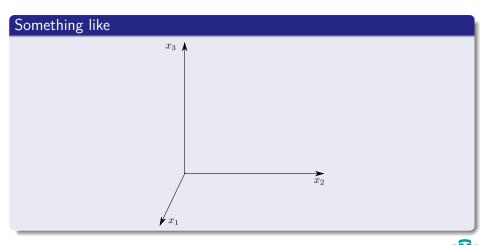
ullet by function $\widehat{oldsymbol{y}} = oldsymbol{X} \left(oldsymbol{X}^T oldsymbol{X}
ight)^{-1} oldsymbol{X}^T oldsymbol{y}.$

(22)

Geometrically



Why? Assume that you are in \mathbb{R}^3



Simple but complex

A simple question

- What are the projections of b=(2,3,4) onto the z axis and the xy plane?
- Can we use matrices to talk about these projections?

We must have a projection matrix P with the following property

$$P^2 = P$$

Ideas

Simple but complex

A simple question

- What are the projections of b=(2,3,4) onto the z axis and the xy plane?
- Can we use matrices to talk about these projections?

First

We must have a projection matrix P with the following property:

$$P^2 = P$$

Simple but complex

A simple question

- What are the projections of b=(2,3,4) onto the z axis and the xy plane?
- Can we use matrices to talk about these projections?

First

We must have a projection matrix P with the following property:

$$P^2 = P$$

Why?

Ideas?

Then, the Projection $P\boldsymbol{b}$

First

When ${m b}$ is projected onto a line, its projection ${m p}$ is the part of ${m b}$ along that line.

When $oldsymbol{b}$ is projected onto a plane, its projection $oldsymbol{p}$ is the part of the plane.

Then, the Projection $P\boldsymbol{b}$

First

When $m{b}$ is projected onto a line, its projection $m{p}$ is the part of $m{b}$ along that line.

Second

When ${m b}$ is projected onto a plane, its projection ${m p}$ is the part of the plane.

In our case

The Projection Matrices for the coordinate systems

$$P_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, P_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Example

We have the following vector $\mathbf{b} = (2, 3, 4)^T$

Onto the z axis:

$$P_1 \mathbf{b} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$$

Any idea?

Example

We have the following vector $\mathbf{b} = (2, 3, 4)^T$

Onto the z axis:

$$P_1 \mathbf{b} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$$

What about the plane xy

Any idea?

We have something more complex

Something Notable

$$P_4 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

$$C_4 b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$$

We have something more complex

Something Notable

$$P_4 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

Then

$$P_4 \mathbf{b} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$$

Assume the following

We have that

 $a_1, a_2, ..., a_n$ in \mathbb{R}^m .

They span a subspace, we want projections into the subspace

Ha... da ...a da :+2

Assume the following

We have that

 $oldsymbol{a}_1,oldsymbol{a}_2,...,oldsymbol{a}_n$ in \mathbb{R}^m .

Assume they are linearly independent

They span a subspace, we want projections into the subspace

How do we do it?

Assume the following

We have that

 $oldsymbol{a}_1,oldsymbol{a}_2,...,oldsymbol{a}_n$ in \mathbb{R}^m .

Assume they are linearly independent

They span a subspace, we want projections into the subspace

We want to project b into such subspace

How do we do it?

This is the important part

Problem

Find the combination $p = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$ closest to vector b.

With n=1 (only one vector a_1) this projection onto a line

Basically the columns are spanned by a single column.

This is the important part

Problem

Find the combination $p = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$ closest to vector b.

Something Notable

With n=1 (only one vector a_1) this projection onto a line.

Basically the columns are snanned by a single column

This is the important part

Problem

Find the combination $p = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$ closest to vector b.

Something Notable

With n=1 (only one vector a_1) this projection onto a line.

This line is the column space of A

Basically the columns are spanned by a single column.

In General

The matrix has n columns $a_1, a_2, ..., a_n$

The combinations in \mathbb{R}^m are vectors $A oldsymbol{x}$ in the column space

The nearest to the original $oldsymbol{b}$

 $p = A\hat{x}$

In General

The matrix has n columns $a_1, a_2, ..., a_n$

The combinations in \mathbb{R}^m are vectors Ax in the column space

We are looking for the particular combination

The nearest to the original b

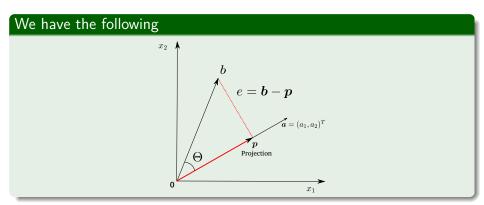
$$\boldsymbol{p} = A\hat{\boldsymbol{x}}$$

First

We look at the simplest case

The projection into a line...

With a little of Geometry



Using the fact that the projection is equal to

$$\boldsymbol{p} = x\boldsymbol{a}$$

Then th

e = b - xa

We have that a.

 $a \cdot e = a \cdot (b - xa) = a \cdot b - xa \cdot a = 0$

Using the fact that the projection is equal to

$$\boldsymbol{p} = x\boldsymbol{a}$$

Then, the error is equal to

$$e = b - xa$$

/e have that $a\cdot e=0$

 $a \cdot e = a \cdot (b - xa) = a \cdot b - xa \cdot a = 0$

Using the fact that the projection is equal to

$$\boldsymbol{p} = x\boldsymbol{a}$$

Then, the error is equal to

$$e = b - xa$$

We have that $a\cdot e=0$

$$a \cdot e = a \cdot (b - xa) = a \cdot b - xa \cdot a = 0$$

We have that

$$x = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{a} \cdot \boldsymbol{a}} = \frac{\boldsymbol{a}^T \boldsymbol{b}}{\boldsymbol{a}^T \boldsymbol{a}}$$

$$p = rac{a^T b}{a^T a} a$$

We have that

$$x = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{a} \cdot \boldsymbol{a}} = \frac{\boldsymbol{a}^T \boldsymbol{b}}{\boldsymbol{a}^T \boldsymbol{a}}$$

Or something quite simple

$$p = \frac{a^T b}{a^T a} a$$

By the Law of Cosines

Something Notable

$$\|\boldsymbol{a} - \boldsymbol{b}\|^2 = \|\boldsymbol{a}\|^2 + \|\boldsymbol{b}\|^2 - 2\|\boldsymbol{a}\|\|\boldsymbol{b}\|\cos\Theta$$

We have

The following product

$$a \cdot a - 2a \cdot b + b \cdot b = ||a||^2 + ||b||^2 - 2 ||a|| ||b|| \cos \Theta$$

 $a \cdot b = ||a|| \, ||b|| \cos \Theta$

We have

The following product

$$a \cdot a - 2a \cdot b + b \cdot b = ||a||^2 + ||b||^2 - 2 ||a|| ||b|| \cos \Theta$$

Then

$$\boldsymbol{a} \cdot \boldsymbol{b} = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \cos \Theta$$

With Length

Using the Norm

$$\|\boldsymbol{p}\| = \left| \frac{\boldsymbol{a}^T \boldsymbol{b}}{\boldsymbol{a}^T \boldsymbol{a}} \right| \|\boldsymbol{a}\| = \left| \frac{\|\boldsymbol{a}\| \|\boldsymbol{b}\| \cos \Theta}{\|\boldsymbol{a}\|^2} \right| \|\boldsymbol{a}\| = \|\boldsymbol{b}\| |\cos \Theta|$$

Example

Project

$$\boldsymbol{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 onto $\boldsymbol{a} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$

$$p = xa$$

Example

Project

$$\boldsymbol{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 onto $\boldsymbol{a} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$

Find

$$p = xa$$

What about the Projection Matrix in general

We have

$$p = ax = \frac{aa^Tb}{a^Ta} = Pb$$

$$P = \frac{aa^{T}}{a^{T}a}$$

What about the Projection Matrix in general

We have

$$p = ax = \frac{aa^Tb}{a^Ta} = Pb$$

Then

$$P = \frac{aa^T}{a^Ta}$$

Example

Find the projection matrix for

$$b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 onto $a = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$

What about the general case?

We have that

Find the combination $p = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$ closest to vector b.

Find the vector $oldsymbol{x}$, find the projection $oldsymbol{p} = A oldsymbol{x}$, find the matrix P

e = b - Ax

What about the general case?

We have that

Find the combination $p = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$ closest to vector b.

Now you need a vector

Find the vector x, find the projection p = Ax, find the matrix P.

What about the general case?

We have that

Find the combination $p = x_1a_1 + x_2a_2 + \cdots + x_na_n$ closest to vector b.

Now you need a vector

Find the vector x, find the projection p = Ax, find the matrix P.

Again, the error is perpendicular to the space

$$e = b - Ax$$

The error $\boldsymbol{e} = \boldsymbol{b} - A\boldsymbol{x}$

$$\boldsymbol{a}_1^T \left(\boldsymbol{b} - A \boldsymbol{x} \right) = 0$$
::

$$\boldsymbol{a}_{n}^{T}\left(\boldsymbol{b}-A\boldsymbol{x}\right)=0$$

$$\begin{bmatrix} a_1^T \\ \vdots \\ a_n^T \end{bmatrix} [b - Ax] = 0$$

The error e = b - Ax

$$a_1^T (\boldsymbol{b} - A\boldsymbol{x}) = 0$$

$$\vdots$$

$$a_n^T (\boldsymbol{b} - A\boldsymbol{x}) = 0$$

Or

$$\begin{bmatrix} \boldsymbol{a}_1^T \\ \vdots \\ \boldsymbol{a}_n^T \end{bmatrix} [\boldsymbol{b} - A\boldsymbol{x}] = 0$$

The Matrix with those rows is A^T

$$A^T \left(\boldsymbol{b} - A \boldsymbol{x} \right) = 0$$

Therefor

$$A^T \boldsymbol{b} - A^T A \boldsymbol{x} = 0$$

Or the most know form

$$\boldsymbol{x} = \left(A^T A\right)^{-1} A^T \boldsymbol{b}$$

The Matrix with those rows is A^T

$$A^{T}\left(\boldsymbol{b} - A\boldsymbol{x}\right) = 0$$

Therefore

$$A^T \boldsymbol{b} - A^T A \boldsymbol{x} = 0$$

$$oldsymbol{x} = \left(A^T A\right)^{-1} A^T oldsymbol{b}$$

The Matrix with those rows is A^T

$$A^{T}\left(\boldsymbol{b} - A\boldsymbol{x}\right) = 0$$

Therefore

$$A^T \boldsymbol{b} - A^T A \boldsymbol{x} = 0$$

Or the most know form

$$\boldsymbol{x} = \left(A^T A\right)^{-1} A^T \boldsymbol{b}$$

The Projection is

$$\boldsymbol{p} = A\boldsymbol{x} = A\left(A^TA\right)^{-1}A^T\boldsymbol{b}$$

$$P = A \left(A^T A \right)^{-1} A^T$$

The Projection is

$$\boldsymbol{p} = A\boldsymbol{x} = A\left(A^TA\right)^{-1}A^T\boldsymbol{b}$$

Therefore

$$P = A \left(A^T A \right)^{-1} A^T$$

The key step was $A^T [\boldsymbol{b} - A\boldsymbol{x}] = 0$

Linear algebra gives this "normal equation"

- lacktriangle Our subspace is the column space of A.
- ② The error vector b Ax is perpendicular to that column space.
- **3** Therefore b Ax is in the nullspace of A^T

When A has independent columns, A^TA is invertible

Theorem

 A^TA is invertible if and only if A has linearly independent columns.

Consider the following

$$A^T A \boldsymbol{x} = 0$$

ullet Remember the column space and null space of A^T are orthogonal complements

Ax = 0

Consider the following

$$A^T A \boldsymbol{x} = 0$$

Here, Ax is in the null space of A^T

 \bullet Remember the column space and null space of A^{T} are orthogonal complements.

Consider the following

$$A^T A \boldsymbol{x} = 0$$

Here, Ax is in the null space of A^T

 \bullet Remember the column space and null space of ${\cal A}^T$ are orthogonal complements.

And Ax an element in the column space of A

$$A\mathbf{x} = 0$$

If A has linearly independent columns

$$A\mathbf{x} = 0 \Longrightarrow \mathbf{x} = 0$$

Then, the null s

$$Null\left(A^{T}A\right) = \{0\}$$

• Then, A^TA is invertible...

If A has linearly independent columns

$$A\mathbf{x} = 0 \Longrightarrow \mathbf{x} = 0$$

Then, the null space

$$Null\left(A^TA\right) = \{0\}$$

• Then, A^TA is invertible...

If A has linearly independent columns

$$A\mathbf{x} = 0 \Longrightarrow \mathbf{x} = 0$$

Then, the null space

$$Null\left(A^T A\right) = \{0\}$$

i.e A^TA is full rank

• Then, A^TA is invertible...

Finally

Theorem

• When A has independent columns, A^TA is square, symmetric and invertible.

Outline

- - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $\mathbf{w}^T \mathbf{x} + w_0$ Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Rasic Solution
- Multidimensional Solution
- \bullet Remember in matrices of 3×3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity Notes Problem with Outliers
- Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

Some Stuff for the Lab

Geometric Interpretation

We have

The image of the mapping:

$$h: \boldsymbol{w} \longmapsto \boldsymbol{X} \boldsymbol{w}$$

$$h: \mathbb{R}^{d+1} \longmapsto \mathbb{R}^N$$

is a linear subspace of \mathbb{R}^N .

What about w?

$oldsymbol{w}$ moves through all points in \mathbb{R}^{d+1} when being generated

ullet Thus, the function value $h\left(m{w}
ight) = m{X}m{w}$ can move through all points in the image space:

$$image\left(oldsymbol{X}
ight) = span\left\{ oldsymbol{X}_{1}^{col}, oldsymbol{X}_{2}^{col}, ..., oldsymbol{X}_{d+1}^{col}
ight\}$$

 $h\left(oldsymbol{w}
ight) = oldsymbol{X}oldsymbol{w} = \sum_{i=1}^{d+1} w_i oldsymbol{X}_i^{col}$

What about w?

$oldsymbol{w}$ moves through all points in \mathbb{R}^{d+1} when being generated

ullet Thus, the function value $h\left(m{w}
ight) = m{X}m{w}$ can move through all points in the image space:

$$image\left(\boldsymbol{X}\right) = span\left\{\boldsymbol{X}_{1}^{col}, \boldsymbol{X}_{2}^{col}, ..., \boldsymbol{X}_{d+1}^{col}\right\}$$

Additionally, each w defines one point in $span\left\{ m{X}_1^{col}, m{X}_2^{col}, ..., m{X}_{d+1}^{col} \right\} \subseteq \mathbb{R}^N$

$$h\left(\boldsymbol{w}\right) = \boldsymbol{X}\boldsymbol{w} = \sum_{i=1}^{d+1} w_{i} \boldsymbol{X}_{i}^{col}.$$

What about the optimality of w?

We have a composition of functions that are convex

$$f(\mathbf{w}) = \mathbf{w}^{T} \mathbf{x}$$
$$g(t) = (y - t)$$
$$h(e) = \sum_{i=1}^{n} e^{2}$$

- Making the Least Squared Error a Convex function with a single minimum!!!
- The derivative method produces a \bar{w}
 - ullet Such that $\widehat{oldsymbol{w}}$ minimizes the distance $d\left(oldsymbol{y},image\left(oldsymbol{X}
 ight)
 ight)$

What about the optimality of w?

We have a composition of functions that are convex

$$f(\mathbf{w}) = \mathbf{w}^{T} \mathbf{x}$$
$$g(t) = (y - t)$$
$$h(e) = \sum_{i=1}^{n} e^{2}$$

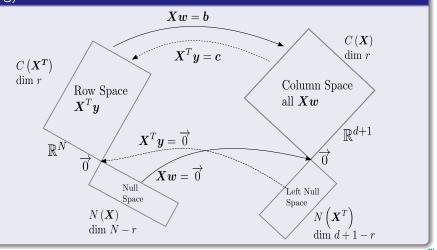
 Making the Least Squared Error a Convex function with a single minimum!!!

The derivative method produces a $\widehat{m{w}}$

• Such that $\widehat{\boldsymbol{w}}$ minimizes the distance $d\left(\boldsymbol{y},image\left(\boldsymbol{X}\right)\right)$.

This comes from the following representation

Given a matrix $oldsymbol{X}$ ("Linear Algebra and Its Applications" by Hilbert Strang)



Outline

- - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $\mathbf{w}^T \mathbf{x} + w_0$ Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Basic Solution
- Multidimensional Solution
- Remember in matrices of 3 × 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity Notes
- Problem with Outliers
- Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

Some Stuff for the Lab

This Resolve Our Problem

With the Labels being chosen at the beginning

Question? Did you noticed the following?

This Resolve Our Problem

With the Labels being chosen at the beginning

Question? Did you noticed the following?

We assume a similar number of elements in both classes

Outline

- Introduction
 - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the Space
 Defining the Decision Surface
 - Defining the Decision Surface
 - Properties of the Hyperplane $w^T x + w_0$ Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Rasic Solution
- Multidimensional Solution
- lacksquare Remember in matrices of 3 imes 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue

Multi-Class Solution

- Issues with Least Squares!!!
 - Singularity NotesProblem with Outliers
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

Some Stuff for the Lab

Multi-Class Solution

What to do?

 $\begin{tabular}{ll} \blacksquare \end{tabular} \begin{tabular}{ll} \blacksquare \end{$

Multi-Class Solution

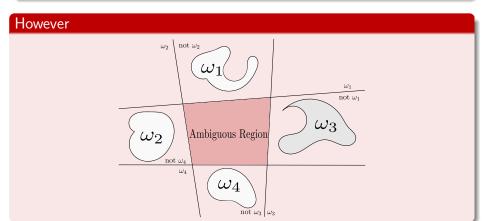
What to do?

- $\bullet \ \ \text{We might reduce the problem to} \ c-1 \ \text{two-class problems}.$
- ② We might use $\frac{c(c-1)}{2}$ linear discriminants, one for every pair of classes.

Multi-Class Solution

What to do?

- $\textbf{ 0} \ \ \text{We might reduce the problem to} \ c-1 \ \text{two-class problems}.$
- ${f 2}$ We might use $\frac{c(c-1)}{2}$ linear discriminants, one for every pair of classes.



What to Do?

Define c linear discriminant functions

$$g_i(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_{i0} \text{ for } i = 1, ..., c$$
 (23)

This is known as a linear machine

Rule: if $g_k(x) > g_j(x)$ for all $j \neq k \Longrightarrow x \in \omega_k$

What to Do?

Define c linear discriminant functions

$$g_i(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_{i0} \text{ for } i = 1, ..., c$$
 (23)

This is known as a linear machine

Rule: if $g_k(\boldsymbol{x}) > g_j(\boldsymbol{x})$ for all $j \neq k \Longrightarrow \boldsymbol{x} \in \omega_k$

Decision Regions are Singly Connected.

What to Do?

Define c linear discriminant functions

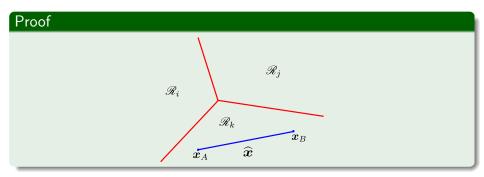
$$g_i(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_{i0} \text{ for } i = 1, ..., c$$
 (23)

This is known as a linear machine

Rule: if $g_k(\boldsymbol{x}) > g_j(\boldsymbol{x})$ for all $j \neq k \Longrightarrow \boldsymbol{x} \in \omega_k$

Nice Properties (It can be proved!!!)

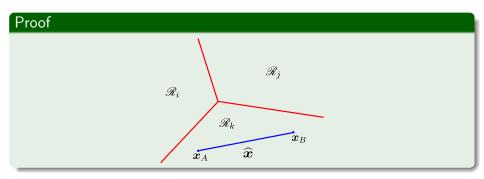
- Decision Regions are Singly Connected.
- ② Decision Regions are Convex.



Actually quite simple Given

 $y = \lambda x_A + (1 - \lambda) x_B$

with $\lambda \in (0,1)$.



Actually quite simple

Given

$$\boldsymbol{y} = \lambda \boldsymbol{x}_A + (1 - \lambda) \, \boldsymbol{x}_B$$

with $\lambda \in (0,1)$.

We know that

$$g_k(\boldsymbol{y}) = \boldsymbol{w}^T (\lambda \boldsymbol{x}_A + (1-\lambda)\boldsymbol{x}_B) + w_0$$

We know that

$$g_k(\mathbf{y}) = \mathbf{w}^T (\lambda \mathbf{x}_A + (1 - \lambda) \mathbf{x}_B) + w_0$$

= $\lambda \mathbf{w}^T \mathbf{x}_A + \lambda w_0 + (1 - \lambda) \mathbf{w}^T \mathbf{x}_B + (1 - \lambda) w_0$

Or...

y belongs to an area k defined by the rule!!!

This area is Convex and Singly Connected because the definition or

We know that

$$g_k(\mathbf{y}) = \mathbf{w}^T (\lambda \mathbf{x}_A + (1 - \lambda) \mathbf{x}_B) + w_0$$

= $\lambda \mathbf{w}^T \mathbf{x}_A + \lambda w_0 + (1 - \lambda) \mathbf{w}^T \mathbf{x}_B + (1 - \lambda) w_0$
= $\lambda g_k(\mathbf{x}_A) + (1 - \lambda) g_k(\mathbf{x}_A)$

- \bullet u belongs to an area k defined by the rule!!!
- This area is Convex and Singly Connected because the definition o

We know that

$$g_{k}(\boldsymbol{y}) = \boldsymbol{w}^{T} (\lambda \boldsymbol{x}_{A} + (1 - \lambda) \boldsymbol{x}_{B}) + w_{0}$$

$$= \lambda \boldsymbol{w}^{T} \boldsymbol{x}_{A} + \lambda w_{0} + (1 - \lambda) \boldsymbol{w}^{T} \boldsymbol{x}_{B} + (1 - \lambda) w_{0}$$

$$= \lambda g_{k}(\boldsymbol{x}_{A}) + (1 - \lambda) g_{k}(\boldsymbol{x}_{A})$$

$$> \lambda g_{j}(\boldsymbol{x}_{A}) + (1 - \lambda) g_{j}(\boldsymbol{x}_{A})$$

- u belongs to an area k defined by the rule!!!
- This area is Convex and Singly Connected because the definition o

We know that

$$g_{k}(\mathbf{y}) = \mathbf{w}^{T} (\lambda \mathbf{x}_{A} + (1 - \lambda) \mathbf{x}_{B}) + w_{0}$$

$$= \lambda \mathbf{w}^{T} \mathbf{x}_{A} + \lambda w_{0} + (1 - \lambda) \mathbf{w}^{T} \mathbf{x}_{B} + (1 - \lambda) w_{0}$$

$$= \lambda g_{k}(\mathbf{x}_{A}) + (1 - \lambda) g_{k}(\mathbf{x}_{A})$$

$$> \lambda g_{j}(\mathbf{x}_{A}) + (1 - \lambda) g_{j}(\mathbf{x}_{A})$$

$$> g_{j}(\lambda \mathbf{x}_{A} + (1 - \lambda) \mathbf{x}_{B})$$

For all $j \neq k$

- \bullet u belongs to an area k defined by the rule!!
- This area is Convex and Singly Connected because the definition of

We know that

$$g_{k}(\mathbf{y}) = \mathbf{w}^{T} (\lambda \mathbf{x}_{A} + (1 - \lambda) \mathbf{x}_{B}) + w_{0}$$

$$= \lambda \mathbf{w}^{T} \mathbf{x}_{A} + \lambda w_{0} + (1 - \lambda) \mathbf{w}^{T} \mathbf{x}_{B} + (1 - \lambda) w_{0}$$

$$= \lambda g_{k}(\mathbf{x}_{A}) + (1 - \lambda) g_{k}(\mathbf{x}_{A})$$

$$> \lambda g_{j}(\mathbf{x}_{A}) + (1 - \lambda) g_{j}(\mathbf{x}_{A})$$

$$> g_{j}(\lambda \mathbf{x}_{A} + (1 - \lambda) \mathbf{x}_{B})$$

$$> g_{j}(\mathbf{y})$$

For all $j \neq k$

- \bullet u belongs to an area k defined by the rule!!
- This area is Convex and Singly Connected because the definition of

We know that

$$g_{k}(\mathbf{y}) = \mathbf{w}^{T} (\lambda \mathbf{x}_{A} + (1 - \lambda) \mathbf{x}_{B}) + w_{0}$$

$$= \lambda \mathbf{w}^{T} \mathbf{x}_{A} + \lambda w_{0} + (1 - \lambda) \mathbf{w}^{T} \mathbf{x}_{B} + (1 - \lambda) w_{0}$$

$$= \lambda g_{k}(\mathbf{x}_{A}) + (1 - \lambda) g_{k}(\mathbf{x}_{A})$$

$$> \lambda g_{j}(\mathbf{x}_{A}) + (1 - \lambda) g_{j}(\mathbf{x}_{A})$$

$$> g_{j}(\lambda \mathbf{x}_{A} + (1 - \lambda) \mathbf{x}_{B})$$

$$> g_{j}(\mathbf{y})$$

For all $j \neq k$

- u belongs to an area k defined by the rule!!!
- This area is Convex and Singly Connected because the definition of

We know that

$$g_{k}(\mathbf{y}) = \mathbf{w}^{T} (\lambda \mathbf{x}_{A} + (1 - \lambda) \mathbf{x}_{B}) + w_{0}$$

$$= \lambda \mathbf{w}^{T} \mathbf{x}_{A} + \lambda w_{0} + (1 - \lambda) \mathbf{w}^{T} \mathbf{x}_{B} + (1 - \lambda) w_{0}$$

$$= \lambda g_{k}(\mathbf{x}_{A}) + (1 - \lambda) g_{k}(\mathbf{x}_{A})$$

$$> \lambda g_{j}(\mathbf{x}_{A}) + (1 - \lambda) g_{j}(\mathbf{x}_{A})$$

$$> g_{j}(\lambda \mathbf{x}_{A} + (1 - \lambda) \mathbf{x}_{B})$$

$$> g_{j}(\mathbf{y})$$

For all $j \neq k$

- y belongs to an area k defined by the rule!!!
- This area is Convex and Singly Connected because the definition of

We know that

$$g_{k}(\mathbf{y}) = \mathbf{w}^{T} (\lambda \mathbf{x}_{A} + (1 - \lambda) \mathbf{x}_{B}) + w_{0}$$

$$= \lambda \mathbf{w}^{T} \mathbf{x}_{A} + \lambda w_{0} + (1 - \lambda) \mathbf{w}^{T} \mathbf{x}_{B} + (1 - \lambda) w_{0}$$

$$= \lambda g_{k}(\mathbf{x}_{A}) + (1 - \lambda) g_{k}(\mathbf{x}_{A})$$

$$> \lambda g_{j}(\mathbf{x}_{A}) + (1 - \lambda) g_{j}(\mathbf{x}_{A})$$

$$> g_{j}(\lambda \mathbf{x}_{A} + (1 - \lambda) \mathbf{x}_{B})$$

$$> g_{j}(\mathbf{y})$$

For all $j \neq k$

Or...

- y belongs to an area k defined by the rule!!!
- This area is Convex and Singly Connected because the definition of

y.

However!!!

No so nice properties!!!

 It limits the power of classification for multi-objective function.

How do we train this Linear Machine?

We know that each ω_k class is described by

$$g_k(\boldsymbol{x}) = \boldsymbol{w}_k^T \boldsymbol{x} + w_0$$
 where $k = 1, ..., c$

 $g(x) = W^T x$

(24)

How do we train this Linear Machine?

We know that each ω_k class is described by

$$g_k(\boldsymbol{x}) = \boldsymbol{w}_k^T \boldsymbol{x} + w_0$$
 where $k = 1, ..., c$

We then design a single machine

$$g\left(\boldsymbol{x}\right) = \boldsymbol{W}^{T}\boldsymbol{x} \tag{24}$$

Where

We have the following

$$\boldsymbol{W}^{T} = \begin{pmatrix} 1 & w_{11} & w_{12} & \cdots & w_{1d} \\ 1 & w_{21} & w_{22} & \cdots & w_{2d} \\ 1 & w_{31} & w_{32} & \cdots & w_{3d} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & w_{c1} & w_{c2} & \cdots & w_{cd} \end{pmatrix}$$
(25)

VVII at about the labels

OK, we know how to do with 2 classes, What about many classes?

Where

We have the following

$$\mathbf{W}^{T} = \begin{pmatrix} 1 & w_{11} & w_{12} & \cdots & w_{1d} \\ 1 & w_{21} & w_{22} & \cdots & w_{2d} \\ 1 & w_{31} & w_{32} & \cdots & w_{3d} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & w_{c1} & w_{c2} & \cdots & w_{cd} \end{pmatrix}$$
(25)

What about the labels?

OK, we know how to do with 2 classes, What about many classes?

How do we train this Linear Machine?

Use a vector $oldsymbol{t}_i$ with dimensionality c to identify each element at each class

We have then the following dataset

$$\{x_i, t_i\}$$
 for $i = 1, 2, ..., N$

$$T = \left(\begin{array}{c} t_1^T \\ t_2^T \\ \vdots \\ t_{N-1}^T \\ t_N^T \end{array} \right)$$

How do we train this Linear Machine?

Use a vector \boldsymbol{t}_i with dimensionality c to identify each element at each class

We have then the following dataset

$$\{x_i, t_i\}$$
 for $i = 1, 2, ..., N$

We build the following Matrix of Vectors

$$oldsymbol{T} = \left(egin{array}{c} oldsymbol{t}_1^T \ oldsymbol{t}_2^T \ dots \ oldsymbol{t}_{N-1}^T \ oldsymbol{t}_N^T \end{array}
ight)$$

Examples for the \boldsymbol{t}_i

Vectors like (One Shot Representation)

$$x_i \neq 0, i \text{ Class} \rightarrow \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\neq -1, i \text{ Class} \rightarrow \begin{pmatrix} -1 \\ -1 \\ \vdots \\ -1 \\ 1 \\ -1 \\ \vdots \\ -1 \end{pmatrix}$$

Examples for the \boldsymbol{t}_i

Vectors like (One Shot Representation)

$$x_i \neq 0, i \text{ Class} \rightarrow \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Another possible vector

$$x_i \neq -1, i \text{ Class} \rightarrow \begin{pmatrix} -1 \\ -1 \\ \vdots \\ -1 \\ 1 \\ -1 \\ \vdots \\ -1 \end{pmatrix}$$

A Matrix containing all the required information

$$XW - T (27)$$

A Matrix containing all the required information

$$XW - T \tag{27}$$

Where we have the following vector

$$\left[\boldsymbol{x}_{i}^{T}\boldsymbol{w}_{1}, \boldsymbol{x}_{i}^{T}\boldsymbol{w}_{2}, \boldsymbol{x}_{i}^{T}\boldsymbol{w}_{3}, ..., \boldsymbol{x}_{i}^{T}\boldsymbol{w}_{c}\right]$$
 (28)

A Matrix containing all the required information

$$XW - T \tag{27}$$

Where we have the following vector

$$\left[\boldsymbol{x}_i^T \boldsymbol{w}_1, \boldsymbol{x}_i^T \boldsymbol{w}_2, \boldsymbol{x}_i^T \boldsymbol{w}_3, ..., \boldsymbol{x}_i^T \boldsymbol{w}_c\right]$$
 (28)

Remark: It is the vector result of multiplication of row i of X against W on XW.

A Matrix containing all the required information

$$XW - T \tag{27}$$

Where we have the following vector

$$\left[\boldsymbol{x}_{i}^{T}\boldsymbol{w}_{1}, \boldsymbol{x}_{i}^{T}\boldsymbol{w}_{2}, \boldsymbol{x}_{i}^{T}\boldsymbol{w}_{3}, ..., \boldsymbol{x}_{i}^{T}\boldsymbol{w}_{c}\right]$$
 (28)

Remark: It is the vector result of multiplication of row i of \boldsymbol{X} against \boldsymbol{W} on $\boldsymbol{X}\boldsymbol{W}$.

That is compared to the vector $oldsymbol{t}_i^T$ on $oldsymbol{T}$ by using the subtraction of vectors

$$e_i = \left[\boldsymbol{x}_i^T \boldsymbol{w}_1, \boldsymbol{x}_i^T \boldsymbol{w}_2, \boldsymbol{x}_i^T \boldsymbol{w}_3, ..., \boldsymbol{x}_i^T \boldsymbol{w}_c \right] - \boldsymbol{t}_i^T$$
 (29)

What do we want?

We want the quadratic error

$$\frac{1}{2}e_i^2$$

This specific quadratic errors are at the diagonal of the matrix

$$(XW-T)^{\perp}(XW-T)$$

$$J\left(\cdot\right) = \frac{1}{2} \sum_{i=1}^{N} e_{i}^{2}$$

What do we want?

We want the quadratic error

$$\frac{1}{2}e_i^2$$

This specific quadratic errors are at the diagonal of the matrix

$$(XW - T)^T (XW - T)$$

$$J\left(\cdot\right) = \frac{1}{2} \sum_{i=1}^{N} e_{i}^{2}$$

What do we want?

We want the quadratic error

$$\frac{1}{2}e_i^2$$

This specific quadratic errors are at the diagonal of the matrix

$$(XW - T)^T (XW - T)$$

We can use the trace function to generate the desired total error of

$$J(\cdot) = \frac{1}{2} \sum_{i=1}^{N} e_i^2$$
 (30)

Then

The trace allows to express the total error

$$J(\mathbf{W}) = \frac{1}{2} Trace \left\{ (\mathbf{X}\mathbf{W} - \mathbf{T})^T (\mathbf{X}\mathbf{W} - \mathbf{T}) \right\}$$
(31)

$$W = \left(X^T X\right)^{-1} X^T T = X^+ T \tag{32}$$

Then

The trace allows to express the total error

$$J(\mathbf{W}) = \frac{1}{2} Trace \left\{ (\mathbf{X}\mathbf{W} - \mathbf{T})^T (\mathbf{X}\mathbf{W} - \mathbf{T}) \right\}$$
(31)

Thus, we have by the same derivative method

$$\boldsymbol{W} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{T} = \boldsymbol{X}^+ \boldsymbol{T} \tag{32}$$

How do we obtain the discriminant?

Thus, we obtain the discriminant

$$g(x) = \mathbf{W}^{T} x = T^{T} \left(\mathbf{X}^{+} \right)^{T} x \tag{33}$$

Outline

- - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $\mathbf{w}^T \mathbf{x} + w_0$ Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Basic Solution
- Multidimensional Solution
- Remember in matrices of 3 × 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity Notes Problem with Outliers
- Problem with High Number of Dimensions
- What can be done?
- Using Statistics to find Important Features
- What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

Some Stuff for the Lab

Outline

- Introduction
 - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $w^T x + w_0$ Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Basic Solution
- Multidimensional Solution
- lacksquare Remember in matrices of 3 imes 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
- Problem with High Number of Dimensions
 What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression
- Observation About Eigenvalues

Some Stuff for the Lab

Let me show you the covariance matrix

We have in matrix notation

$$S = \frac{1}{N-1} \left(X - \mathbf{1} \overline{x}^T \right)^T \left(X - \mathbf{1} \overline{x}^T \right)$$

Thus, X^TX

It looks a lot like a covariance matrix

• It is the same dependency observed between the features in the dataset of the featured have been centered by \overline{x}

X after the featured have been centered by $\overline{x}.$

Let me show you the covariance matrix

We have in matrix notation

$$S = \frac{1}{N-1} \left(X - \mathbf{1} \overline{x}^T \right)^T \left(X - \mathbf{1} \overline{x}^T \right)$$

Thus, $oldsymbol{X}^Toldsymbol{X}$

It looks a lot like a covariance matrix

• It is the same dependency observed between the features in the data

 $oldsymbol{X}$ after the featured have been centered by $oldsymbol{\overline{x}}.$

Let me show you the covariance matrix

We have in matrix notation

$$S = \frac{1}{N-1} \left(X - \mathbf{1} \overline{x}^T \right)^T \left(X - \mathbf{1} \overline{x}^T \right)$$

Thus, $\boldsymbol{X}^T\boldsymbol{X}$

It looks a lot like a covariance matrix

Actually, the dependency observed in matrix $\boldsymbol{X}^T\boldsymbol{X}$ between its columns!!!

ullet It is the same dependency observed between the features in the data X after the featured have been centered by \overline{x} .

Thus

We can apply a similar analysis...

ullet To obtain some of the possible cases that make X^TX singular

- If there is a interdependence between features
 - Meaning some feature is an exact linear combination of the other features.
 - ightharpoonup The X^TX matrix of the features will be singular.

Thus

We can apply a similar analysis...

ullet To obtain some of the possible cases that make X^TX singular

A Classical One

- If there is a interdependence between features
 - Meaning some feature is an exact linear combination of the other features.
 - ▶ The X^TX matrix of the features will be singular.

When does this happen?

First

Number of features is equal or greater than the number of samples.

I wo or more teatures sum up to a constant

• For example, $x_2 - 5x_{10} = 0$

Two features are identical or differ merely in mean or variance

When does this happen?

First

Number of features is equal or greater than the number of samples.

Second

Two or more features sum up to a constant

• For example, $x_2 - 5x_{10} = 0$

Two features are identical or differ merely in mean or variance.

When does this happen?

First

Number of features is equal or greater than the number of samples.

Second

Two or more features sum up to a constant

• For example, $x_2 - 5x_{10} = 0$

Third

Two features are identical or differ merely in mean or variance.

Nevertheless

The least squares coefficients $\widehat{m{w}}$ are not uniquely defined.

ullet The fitted values $\widehat{m{y}} = m{X}\widehat{m{w}}$ are still the projection of $m{y}$ onto the column space of $m{X}$.

Additionally

Duplicate observations in a data set

• It will lead the matrix toward singularity.

 When doing some sort of imputation (Adding missing features), it is always beneficial (from both statistical and mathematical view) to add some noise to the imputed data.

Be careful

Additionally

Duplicate observations in a data set

• It will lead the matrix toward singularity.

Cautionary Tale

• When doing some sort of imputation (Adding missing features), it is always beneficial (from both statistical and mathematical view) to add some noise to the imputed data.

Be careful

Additionally

Duplicate observations in a data set

• It will lead the matrix toward singularity.

Cautionary Tale

• When doing some sort of imputation (Adding missing features), it is always beneficial (from both statistical and mathematical view) to add some noise to the imputed data.

This can happen in the preprocessing phase

• Be careful.

Also

It can happen also that

• $\boldsymbol{X}^T\boldsymbol{X}$ could be almost not invertible, making Least Squares numerically unstable.

High variance of predictions.

Also

It can happen also that

• X^TX could be almost not invertible, making Least Squares numerically unstable.

Statistical consequence

• High variance of predictions.

When can this happen?

The non-full-rank case occurs

 Most often when one or more qualitative (Categorical Variables/Dummy Variables) inputs are coded in a redundant fashion.

ullet Re-encode or dropping redundant columns in X

• They detect these redundancies and automatically implement some strategies for removing them.

When can this happen?

The non-full-rank case occurs

 Most often when one or more qualitative (Categorical Variables/Dummy Variables) inputs are coded in a redundant fashion.

How do we solve this?

ullet Re-encode or dropping redundant columns in $oldsymbol{X}$.

 They detect these redundancies and automatically implement some strategies for removing them.

strategies for removing them.

When can this happen?

The non-full-rank case occurs

 Most often when one or more qualitative (Categorical Variables/Dummy Variables) inputs are coded in a redundant fashion.

How do we solve this?

ullet Re-encode or dropping redundant columns in $oldsymbol{X}$.

Most regression software packages

• They detect these redundancies and automatically implement some strategies for removing them.

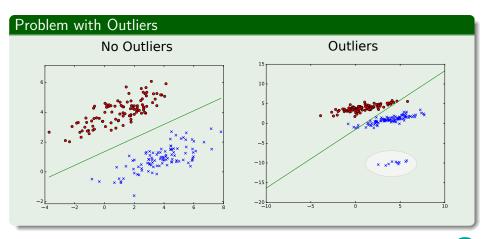
Outline

- Introduction
 - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $\boldsymbol{w}^T\boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Basic Solution
- Multidimensional Solution
- lacksquare Remember in matrices of 3 imes 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity NotesProblem with Outliers
- Problem with High Number of Dimensions
- What can be done?Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression
- Observation About Eigenvalues
- 3 Exercise
 - Some Stuff for the Lab

Issues with Least Squares



Outline

- Introduction
- Introduction
- Regression as approximation
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T\boldsymbol{x} + w_0$ Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Rasic Solution
- Multidimensional Solution
- \bullet Remember in matrices of 3×3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity NotesProblem with Outliers
- O Problem with High Number of Dimensions
- What can be done?
 Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

Some Stuff for the Lab

In Many Modern Problems

• Many dimensions/features/predictors (possibly thousands).

In Many Modern Problems

• Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important

• It needs some form of feature selection.

In Many Modern Problems

• Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important

- It needs some form of feature selection.
- Possible some type of regularization.

In Many Modern Problems

• Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important

- It needs some form of feature selection.
- Possible some type of regularization.

Why?

Least Square Error Regression treats all dimensions equally.

In Many Modern Problems

• Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important

- It needs some form of feature selection.
- Possible some type of regularization.

Why?

- Least Square Error Regression treats all dimensions equally.
- Relevant dimensions might be averaged with irrelevant ones.

Outline

- Introduction
 - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $w^T x + w_0$ Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Basic Solution
- Multidimensional Solution
- lacksquare Remember in matrices of 3 imes 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity NotesProblem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

Some Stuff for the Lab

Outline

- Introduction
- Introduction
- Regression as approximation
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $w^T x + w_0$ Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Rasic Solution
- Multidimensional Solution
- lacksquare Remember in matrices of 3 imes 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity NotesProblem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

Some Stuff for the Lab

We will start using some statistics

We want to obtain sampling properties for \widehat{w}

For this remember:

$$\hat{oldsymbol{w}} = \left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^Toldsymbol{y}$$

- The observations u_i are uncorrelated and have constant variance σ^i
- The x: are fixed = not random

We will start using some statistics

We want to obtain sampling properties for $\widehat{\boldsymbol{w}}$

For this remember:

$$\widehat{m{w}} = \left(m{X}^Tm{X}
ight)^{-1}m{X}^Tm{y}$$

For this assume,

- The observations y_i are uncorrelated and have constant variance σ^2 .
- The x_i are fixed = not random.

Then, we have the variance-covariance matrix

We have

$$Var\left(\hat{\boldsymbol{w}}\right) = Var\left[\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\boldsymbol{y}\right]$$

 $Var\left(A\boldsymbol{y}\right) = AVar\left(\boldsymbol{y}\right)A^{T}$

Then, we have the variance-covariance matrix

We have

$$Var\left(\hat{\boldsymbol{w}}\right) = Var\left[\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\boldsymbol{y}\right]$$

We have the following equivalence

$$Var(A\mathbf{y}) = AVar(\mathbf{y})A^{T}$$

Therefore

Something Notable

$$Var\left[\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\boldsymbol{y}\right] = \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}Var\left(\boldsymbol{y}\right)\boldsymbol{X}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}$$

Therefore

Something Notable

$$Var\left[\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\boldsymbol{y}\right] = \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}Var\left(\boldsymbol{y}\right)\boldsymbol{X}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}$$
$$= \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\sigma^{2}I\boldsymbol{X}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}$$

145 / 169

Something Notable

$$Var\left[\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\boldsymbol{y}\right] = \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}Var\left(\boldsymbol{y}\right)\boldsymbol{X}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}$$
$$= \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\sigma^{2}I\boldsymbol{X}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}$$
$$= \sigma^{2}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}$$

Something Notable

$$\begin{aligned} Var\left[\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\boldsymbol{y}\right] &= \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}Var\left(\boldsymbol{y}\right)\boldsymbol{X}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1} \\ &= \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\sigma^{2}I\boldsymbol{X}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1} \\ &= \sigma^{2}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1} \end{aligned}$$

Given that

$$Var(y) = \begin{bmatrix} Var(y_1) & Cov(y_1, y_2) & \cdots & Cov(y_1, y_N) \\ Cov(y_2, y_1) & \cdots Var(y_2) & \cdots & Cov(y_2, y_N) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(y_N, y_1) & Cov(y_N, y_2) & \cdots & Var(y_N) \end{bmatrix} = \begin{bmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & \sigma^2 \end{bmatrix}$$

Typically, we can use the following unbiased estimator

$$\widehat{\sigma}^2 = \frac{1}{N - d - 1} \sum_{i=1}^{N} (y_i - \widehat{y}_i)$$

• Which is an unbiased estimator $E\left[\hat{\sigma}^2\right] = \sigma^2$.

$$Y = E(Y|X_1, X_2, ..., X_d) + \epsilon$$

 $\bullet \ \epsilon \sim N\left(0,\sigma^2\right)$

Typically, we can use the following unbiased estimator

$$\widehat{\sigma}^2 = \frac{1}{N - d - 1} \sum_{i=1}^{N} (y_i - \widehat{y}_i)$$

• Which is an unbiased estimator $E\left[\hat{\sigma}^2\right] = \sigma^2$.

If we have the following relation

$$Y = E(Y|X_1, X_2, ..., X_d) + \epsilon$$

Typically, we can use the following unbiased estimator

$$\widehat{\sigma}^2 = \frac{1}{N - d - 1} \sum_{i=1}^{N} (y_i - \widehat{y}_i)$$

• Which is an unbiased estimator $E\left[\hat{\sigma}^2\right] = \sigma^2$.

If we have the following relation

$$Y = E(Y|X_1, X_2, ..., X_d) + \epsilon$$

Where

• $\epsilon \sim N(0, \sigma^2)$

Then

We have

$$\hat{\boldsymbol{w}} \sim N\left(\boldsymbol{w}, \sigma^2\left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}\right)$$

Thus, we can be a little bit smartt

$$H_0: w_j = 0$$

$$H: w_j \neq 0$$

$$z_j = rac{\widehat{w}_j - w_j}{\widehat{\sigma} \sqrt{v_j}} = rac{\widehat{w}_j}{\widehat{\sigma} \sqrt{v_j}}$$
 with v_j the j^{th} diagonal element at $\left(m{X}^T m{X}
ight)^{-1}$

Cinvestav

Then

We have

$$\hat{\boldsymbol{w}} \sim N\left(\boldsymbol{w}, \sigma^2\left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}\right)$$

Thus, we can be a little bit smart

$$H_0: w_j = 0$$
$$H_1: w_j \neq 0$$

 $z_j=rac{\widehat{w}_j-w_j}{\widehat{\sigma}_j}=rac{\widehat{w}_j}{\widehat{\sigma}_j}$ with v_j the j^{th} diagonal element at $\left(m{X}^{T}
ight)$

Then

We have

$$\hat{\boldsymbol{w}} \sim N\left(\boldsymbol{w}, \sigma^2\left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1}\right)$$

Thus, we can be a little bit smart

$$H_0: w_j = 0$$

$$H_1: w_j \neq 0$$

To test for Hypothesis $w_j = 0$, we get the following z-score

$$z_j = rac{\widehat{w}_j - w_j}{\widehat{\sigma} \sqrt{v_j}} = rac{\widehat{w}_j}{\widehat{\sigma} \sqrt{v_j}}$$
 with v_j the j^{th} diagonal element at $\left(m{X}^T m{X}
ight)^{-1}$

Cinvestay

$\overline{|z_i \sim t_{N-d-1}|}$ a t-student distribution

 \bullet Therefore, a large(absolute) value of z_j will lead to rejection of the Null Hypothesis

$z_j \sim t_{N-d-1}$ a t-student distribution

 \bullet Therefore, a large(absolute) value of z_j will lead to rejection of the Null Hypothesis

Therefore

You can use the simple rule:

$z_{j} \sim t_{N-d-1}$ a t-student distribution

ullet Therefore, a large(absolute) value of z_j will lead to rejection of the Null Hypothesis

Therefore

You can use the simple rule:

• Accept H_0 remove the feature

$z_i \sim t_{N-d-1}$ a t-student distribution

 \bullet Therefore, a large(absolute) value of z_j will lead to rejection of the Null Hypothesis

Therefore

You can use the simple rule:

- Accept H_0 remove the feature
- Reject H_0 keep the feature

$z_i \sim t_{N-d-1}$ a t-student distribution

 \bullet Therefore, a large(absolute) value of z_j will lead to rejection of the Null Hypothesis

Therefore

You can use the simple rule:

- Accept H_0 remove the feature
- Reject H_0 keep the feature

However

There are still more techniques for feature selection quite more advanced...

Outline

- Introduction
 - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the SpaceDefining the Decision Surface
 - Properties of the Hyperplane $\mathbf{w}^T \mathbf{x} + \mathbf{w}_0$
 - Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Rasic Solution
- Multidimensional Solution
- lacksquare Remember in matrices of 3 imes 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge RegressionObservation About Eigenvalues
- _ .
 - Some Stuff for the Lab

Definition

• A matrix which is not invertible is also called a singular matrix.

Definition

- A matrix which is not invertible is also called a **singular** matrix.
- A matrix which is invertible (not singular) is called regular.

Definition

- A matrix which is not invertible is also called a **singular** matrix.
- A matrix which is invertible (not singular) is called **regular**.

What is the Meaning?

Imagine the following in \mathbb{R}^3

$$A = \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right)$$

Definition

- A matrix which is not invertible is also called a **singular** matrix.
- A matrix which is invertible (not singular) is called regular.

What is the Meaning?

Imagine the following in \mathbb{R}^3

$$A = \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right)$$

Given that the columns are vectors

They span a subspace for those column vectors in \mathbb{R}^3

$$span\left\{ \left(\begin{array}{c} a_{11} \\ a_{21} \\ a_{31} \end{array}\right), \left(\begin{array}{c} a_{12} \\ a_{22} \\ a_{32} \end{array}\right), \left(\begin{array}{c} a_{13} \\ a_{23} \\ a_{33} \end{array}\right) \right\}$$

If a matrix is singular

Its Rank is less than 3, i.e :

If a matrix is singular

Its Rank is less than 3, i.e :

1 The subspace is squashed into a plane.

If a matrix is singular

Its Rank is less than 3, i.e :

- The subspace is squashed into a plane.
- 2 The subspace is squashed into a line.

If a matrix is singular

Its Rank is less than 3, i.e :

- The subspace is squashed into a plane.
- The subspace is squashed into a line.
- The subspace in the WORST CASE into a point.

Remember

That, we have

$$m{v} = \lambda_1 \left(egin{array}{c} a_{11} \ a_{21} \ a_{31} \end{array}
ight) + \lambda_2 \left(egin{array}{c} a_{12} \ a_{22} \ a_{32} \end{array}
ight) + \lambda_3 \left(egin{array}{c} a_{13} \ a_{23} \ a_{33} \end{array}
ight)$$

$$\begin{aligned} v &= & \lambda_1 \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + \lambda_2 \begin{bmatrix} \alpha_1 \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + \alpha_2 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} \end{bmatrix} + \lambda_3 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} \\ &= & c_1 \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + c_2 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} \text{ with } c_1 = \lambda_1 + \alpha_1 \lambda_2, c_2 = \alpha_2 \lambda_2 + \lambda_3 \end{aligned}$$

Remember

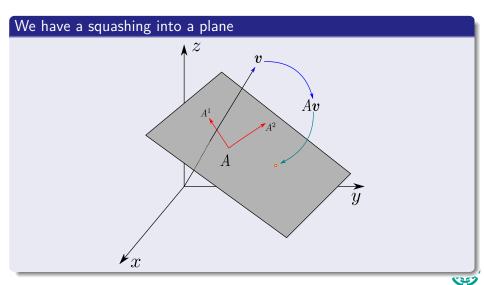
That, we have

$$m{v} = \lambda_1 \left(egin{array}{c} a_{11} \ a_{21} \ a_{31} \end{array}
ight) + \lambda_2 \left(egin{array}{c} a_{12} \ a_{22} \ a_{32} \end{array}
ight) + \lambda_3 \left(egin{array}{c} a_{13} \ a_{23} \ a_{33} \end{array}
ight)$$

Thus, if for example, the matrix projects into a plane

$$\begin{split} \boldsymbol{v} = & \lambda_1 \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + \lambda_2 \left[\alpha_1 \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + \alpha_2 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} \right] + \lambda_3 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} \\ = & c_1 \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + c_2 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} \text{ with } c_1 = \lambda_1 + \alpha_1 \lambda_2, c_2 = \alpha_2 \lambda_2 + \lambda_3 \end{split}$$

For Example



Computational Intuition

First Intuition

A singular matrix maps an entire linear subspace into a single point.

If a matrix maps points far away from each other to points very close to each other, it almost behaves like a singular matrix

Computational Intuition

First Intuition

A singular matrix maps an entire linear subspace into a single point.

Second Intuitions

If a matrix maps points far away from each other to points very close to each other, it almost behaves like a singular matrix.

Mapping is related to the eigenvalues!!!

• Large positive eigenvalues ⇒ the mapping is large!!!

Mapping is related to the eigenvalues!!!

- Large positive eigenvalues ⇒ the mapping is large!!!
- Small positive eigenvalues ⇒ the mapping is small!!!

There is a statement to support this

All this comes from the following statement

A positive semi-definite matrix A is singular \iff smallest eigenvalue is 0

If a statistical prediction involves the inverse of an almost-singular matrix the predictions become unreliable (high variance).

There is a statement to support this

All this comes from the following statement

A positive semi-definite matrix A is singular \iff smallest eigenvalue is 0

Consequence for Statistics

If a statistical prediction involves the inverse of an almost-singular matrix, the predictions become unreliable (high variance).

Outline

- Introduction
- Introduction
- Regression as approximation
- The Simplest Functions
- Splitting the SpaceDefining the Decision Surface
- Properties of the Hyperplane $\mathbf{w}^T \mathbf{x} + \mathbf{w}_0$
- Augmenting the Vector

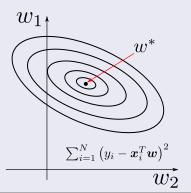
Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Basic Solution
- Multidimensional Solution
- lacksquare Remember in matrices of 3 imes 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression
- Observation About Eigenvalues

What can be done?

What could be the problem?

ullet Imagine that you finish with an over-fitting at the optimal w^*



Overfitting?

Basically (Intuition)

- $\boldsymbol{x}_i^T \boldsymbol{w}^* \approx y_i$
- - You are quite good with the training data
 - But Really bad with the validation and testing data

in sc

IDEAS?

Overfitting?

Basically (Intuition)

• $\boldsymbol{x}_i^T \boldsymbol{w}^* \approx y_i$

Then

- You are quite good with the training data
- But Really bad with the validation and testing data

IDEAS?

Overfitting?

Basically (Intuition)

 $\bullet \ \boldsymbol{x}_i^T \boldsymbol{w}^* \approx y_i$

Then

- You are quite good with the training data
- But Really bad with the validation and testing data

We need to pull the optimal in some way!!!

IDEAS?

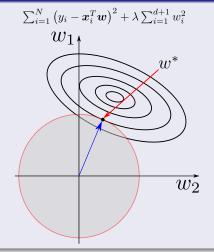
How do we integrate this solution to the Least Squared Error Solution?

We modify it by adding en extra parameter and tweak the λ

$$\sum_{i=1}^{N} \left(y_i - \boldsymbol{x}_i^T \boldsymbol{w} \right)^2 + \lambda \sum_{i=1}^{d+1} w_i^2$$
 (34)

How do we integrate this solution to the Least Squared Error Solution?

Geometrically Equivalent to pulling away the optimal, it is known as Ridge Regression



Outline

- Introduction
- Introduction
- Regression as approximation
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $w^T x + w_0$ Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Basic Solution
- Multidimensional Solution
- lacksquare Remember in matrices of 3 imes 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity Notes
- Problem with Outliers
- Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

Something quite interesting

The w_i in the vector \boldsymbol{w}^* are related to the eigenvalues in $\boldsymbol{X}^T\boldsymbol{X}$

• Thus, we can tweak the eigenvalues to obtain a similar effect than in the Ridge Regression

$$\sum_{i=1}^{N} \left(y_i - \boldsymbol{x}_i^T \boldsymbol{w} \right)^2 + \lambda \sum_{i=1}^{d+1} w_i^2$$
 (35)

It is equivalent to avoid eigenvalues to become zero!!!

Thus, we can do the following given that X^TX is positive definite

Assume that $\xi_1, \xi_2, ..., \xi_{d+1}$ are eigenvectors of $\boldsymbol{X^TX}$ with eigenvalues $\lambda_1, \lambda_2, ..., \lambda_{d+1}$

$$(X^T X) \xi_i = \lambda_i \xi_i \text{ for all } i = 1, ..., d+1$$
(36)

Given that $oldsymbol{X}^Toldsymbol{X}$ is singular, some λ_i is equal to 0.

$$(X^{T}X + \lambda I) \xi_{i} = (\lambda_{i} + \lambda) \xi_{i}$$
(37)

i.e. $\lambda_i + \lambda$ is an eigenvalue for $\left(oldsymbol{X}^T oldsymbol{X} + \lambda I
ight)$.

It is equivalent to avoid eigenvalues to become zero!!!

Thus, we can do the following given that X^TX is positive definite

Assume that $\xi_1, \xi_2, ..., \xi_{d+1}$ are eigenvectors of $\boldsymbol{X^TX}$ with eigenvalues $\lambda_1, \lambda_2, ..., \lambda_{d+1}$

We have

$$(\mathbf{X}^T \mathbf{X}) \xi_i = \lambda_i \xi_i \text{ for all } i = 1, ..., d+1$$
 (36)

Given that X^TX is singular, some λ_i is equal to 0.

$$(\mathbf{X}^T\mathbf{X} + \lambda I) \, \xi_i = (\lambda_i + \lambda) \, \xi_i$$

i.e. $\lambda_i + \lambda$ is an eigenvalue for $(\mathbf{X}^T \mathbf{X} + \lambda I)$.

It is equivalent to avoid eigenvalues to become zero!!!

Thus, we can do the following given that X^TX is positive definite

Assume that $\xi_1, \xi_2, ..., \xi_{d+1}$ are eigenvectors of $\boldsymbol{X^TX}$ with eigenvalues $\lambda_1, \lambda_2, ..., \lambda_{d+1}$

We have

$$(\boldsymbol{X}^T \boldsymbol{X}) \xi_i = \lambda_i \xi_i \text{ for all } i = 1, ..., d+1$$
 (36)

Given that X^TX is singular, some λ_i is equal to 0.

Very Simple, add a convenient λ

$$\left(\boldsymbol{X}^{T}\boldsymbol{X} + \lambda I\right)\xi_{i} = \left(\lambda_{i} + \lambda\right)\xi_{i} \tag{37}$$

i.e. $\lambda_i + \lambda$ is an eigenvalue for $(\mathbf{X}^T \mathbf{X} + \lambda I)$.

What does this mean?

Something Notable

You can control the singularity by detecting the smallest eigenvalue.

Thus

We add an appropriate tunning value λ .

What does this mean?

Something Notable

You can control the singularity by detecting the smallest eigenvalue.

Thus

We add an appropriate tunning value λ .

Ridge Regression

It tries to make least squares more robust if X^TX is almost singular.

Ridge Regression

It tries to make least squares more robust if $\boldsymbol{X}^T\boldsymbol{X}$ is almost singular.

Process

lacktriangle Find the eigenvalues of $m{X}^Tm{X}$

Ridge Regression

It tries to make least squares more robust if X^TX is almost singular.

Process

- Find the eigenvalues of X^TX
- ② If all of them are bigger enough than zero we are fine!!!

Ridge Regression

It tries to make least squares more robust if X^TX is almost singular.

Process

- Find the eigenvalues of X^TX
- ② If all of them are bigger enough than zero we are fine!!!
- 3 Find the smallest one, then tune if necessary.

Ridge Regression

It tries to make least squares more robust if X^TX is almost singular.

Process

- Find the eigenvalues of X^TX
- If all of them are bigger enough than zero we are fine!!!
- Find the smallest one, then tune if necessary.

Outline

- Introduction
 - Introduction
 - Regression as approximation
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
- Properties of the Hyperplane $w^T x + w_0$ Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Rasic Solution
- Multidimensional Solution
- lacksquare Remember in matrices of 3 imes 3
- What Lives Where?
- Geometric Interpretation
- Solving the Labeling Issue
- Multi-Class Solution
- Issues with Least Squares!!!
- Singularity Notes
- Problem with Outliers
- Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
- Ridge Regression
- Observation About Eigenvalues

Some Stuff for the Lab

Duda and Hart

Chapter 5

1, 3, 4, 7, 13, 17

Rishop

Chapter 4

• 4.1, 4.4, 4.7,

Chapter 3 - Problems

• Ex 3.5

Ev 3.6

Duda and Hart

Chapter 5

1, 3, 4, 7, 13, 17

Bishop

Chapter 4

• 4.1, 4.4, 4.7,

Chapter 3 - Problems

- Ex 3.5
- Ex 3.6

Duda and Hart

Chapter 5

1, 3, 4, 7, 13, 17

Bishop

Chapter 4

• 4.1, 4.4, 4.7,

Hastie-Tibishirani

Chapter 3 - Problems

- Ex 3.5
- Ex 3.6

Theodoridis

Chapter 3 - Problems

