Introduction to Machine Learning Introduction

Andres Mendez-Vazquez

April 26, 2019

Outline

Why are we interested in Analyzing Data Automatically?

- Introduction
- The Infamous 5 V's
- Given all these things

2 Machine Learning

- Main Areas in Machine Learning
 - Supervised Learning
 - Unsupervised Learning
 - Other Main Areas
- Machine Learning Process
- Feature Generation and Extraction
 - Curse of Dimensionality
- Clustering
- Classification
 - the problem of Bias-Variance Trade-Off
 - Examples of Classification Algorithms

Outline

- The Infamous 5 V's
- Given all these things

2 Machine Learning

- Main Areas in Machine Learning
 - Supervised Learning
 - Unsupervised Learning
 - Other Main Areas
- Machine Learning Process
- Feature Generation and Extraction
 - Curse of Dimensionality
- Clustering
- Classification
 - the problem of Bias-Variance Trade-Off
 - Examples of Classification Algorithms

Projects • What projects can you do?

Data is being produced in great quantities

After all our business is about

Big Data

Definition

Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them.

4 / 58

ヘロト ヘ回ト ヘヨト ヘヨト

Data is being produced in great quantities

After all our business is about

Big Data

Definition

Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them.

4 / 58

< ロ > < 同 > < 回 > < 回 >

Outline

2 Machine Learning

- Main Areas in Machine Learning
 - Supervised Learning
 - Unsupervised Learning
 - Other Main Areas
- Machine Learning Process
- Feature Generation and Extraction
 - Curse of Dimensionality
- Clustering
- Classification
 - the problem of Bias-Variance Trade-Off
 - Examples of Classification Algorithms

VOLUMES of Information

- Terabyte(10¹² bits),
- Petabyte(10¹⁵ bits)
- UP!!!

VOLUMES of Information

- Terabyte(10¹² bits),
- Petabyte(10¹⁵ bits),
- UP!!!

- Records
- O Transactions
- Web Searches
- 🕘 etc

VOLUMES of Information

- Terabyte(10¹² bits),
- Petabyte(10¹⁵ bits),
- UP!!!

- Records
- **@** Transactions
- Web Searches
- 🕘 etc

VOLUMES of Information

- Terabyte(10¹² bits),
- Petabyte(10¹⁵ bits),
- UP!!!

VOLUMES of Information

- Terabyte(10¹² bits),
- Petabyte(10¹⁵ bits),
- UP!!!

Examples of these Volumes are

- Records
- 2 Transactions

Web Searches

VOLUMES of Information

- Terabyte(10¹² bits),
- Petabyte(10¹⁵ bits),
- UP!!!

- Records
- 2 Transactions
- Web Searches

VOLUMES of Information

- Terabyte(10¹² bits),
- Petabyte(10¹⁵ bits),
- UP!!!

Examples of these Volumes are

- Records
- 2 Transactions
- Web Searches
- etc

7 / 58

3

イロト 不得 トイヨト イヨト

Cautionary Tale

What constitutes truly "high" volume varies by industry and even geography!!!

Simply look at the DNA data for a cellular cycle.

<ロト < 回 > < 巨 > < 巨 > < 巨 > 三 の < C 8 / 58

Cautionary Tale

What constitutes truly "high" volume varies by industry and even geography!!!

• Simply look at the DNA data for a cellular cycle.

8 / 58

イロト イヨト イヨト イヨト

Cautionary Tale

What constitutes truly "high" volume varies by industry and even geography!!!

• Simply look at the DNA data for a cellular cycle.

VARIETY

When looking at the Structure of the Information, we have:

• Variety like there is not tomorrow:

It is structured, semi-structured and unstructured

When looking at the Structure of the Information, we have:

- Variety like there is not tomorrow:
 - It is structured, semi-structured and unstructured

Do you have some examples of such structures in Information?

イロト イロト イヨト イヨト

When looking at the Structure of the Information, we have:

- Variety like there is not tomorrow:
 - It is structured, semi-structured and unstructured

Question

• Do you have some examples of such structures in Information?

It refers to

• The **SPEED** at which the data is being generated.

The SPEED at which the data moves around

It refers to

- The **SPEED** at which the data is being generated.
- The SPEED at which the data moves around

It refers to

- The **SPEED** at which the data is being generated.
- The **SPEED** at which the data moves around

Problem: Latency

• There is a LAG TIME between capture or generation, and when it is available!!!

- Detecting fraudulent activities
- Detecting when sale and buy shares
- etc

It refers to

- The **SPEED** at which the data is being generated.
- The **SPEED** at which the data moves around

Problem: Latency

 There is a LAG TIME between capture or generation, and when it is available!!!

It can be catastrophic

- Detecting fraudulent activities
 - Detecting when sale and buy shares
- etc

It refers to

- The **SPEED** at which the data is being generated.
- The **SPEED** at which the data moves around

Problem: Latency

• There is a LAG TIME between capture or generation, and when it is available!!!

It can be catastrophic

- Detecting fraudulent activities
- Detecting when sale and buy shares

It refers to

- The **SPEED** at which the data is being generated.
- The **SPEED** at which the data moves around

Problem: Latency

 There is a LAG TIME between capture or generation, and when it is available!!!

It can be catastrophic

- Detecting fraudulent activities
- Detecting when sale and buy shares
- etc

Imagine that I have a stream of $m = 10^{30}$ integers with Ranges in $[1,...,10^8]$

Now, somebody ask you to find the most frequent item!!!

Imagine that I have a stream of $m=10^{30}$ integers with Ranges in $\left[1,...,10^8\right]$

Now, somebody ask you to find the most frequent item!!!

A naive algorithm

Take hash table with a counter.

en, put numbers in the hash table

Imagine that I have a stream of $m=10^{30}$ integers with Ranges in $\left[1,...,10^8\right]$

Now, somebody ask you to find the most frequent item!!!

A naive algorithm

Take hash table with a counter.

Provide the second s

Which problems we have?

Imagine that I have a stream of $m = 10^{30}$ integers with Ranges in $[1, ..., 10^8]$

Now, somebody ask you to find the most frequent item!!!

A naive algorithm

- Take hash table with a counter.
- 2 Then, put numbers in the hash table.

Problems

Which problems we have?

There is the

Count-Min Sketch Algorithm

Invented by

Charikar, Chen and Farch-Colton in 2004

With Properties

There is the

Count-Min Sketch Algorithm

Invented by

Charikar, Chen and Farch-Colton in 2004

With Properties

Space UsedError ProbabilityError $O\left(\frac{1}{\epsilon}\log\left(\frac{1}{\delta}\right)\cdot(\log m + \log n)\right)$ δ ϵ

14 / 58

э

イロン イ団 とく ヨン イヨン

There is the

Count-Min Sketch Algorithm

Invented by

Charikar, Chen and Farch-Colton in 2004

With Properties

Space Used	Error Probability	Error
$O\left(\frac{1}{\epsilon}\log\left(\frac{1}{\delta}\right)\cdot\left(\log m + \log n\right)\right)$	δ	ϵ

14 / 58

イロン イヨン イヨン イヨン 三日

VERACITY

15 / 58

э

イロト イヨト イヨト イヨト
It refers to

Messiness or Trustworthiness of the data

It refers to

Messiness or Trustworthiness of the data

However, some people claim

"The volumes often make up for the lack of quality or accuracy"

It refers to

Messiness or Trustworthiness of the data

However, some people claim

"The volumes often make up for the lack of quality or accuracy"

I say, it depends on

- The Noise on the Data
 - The Completeness on the Data
- The Representation of such Data

It refers to

Messiness or Trustworthiness of the data

However, some people claim

"The volumes often make up for the lack of quality or accuracy"

I say, it depends on

- The Noise on the Data
- The Completeness on the Data

The Representation of such Data

It refers to

Messiness or Trustworthiness of the data

However, some people claim

"The volumes often make up for the lack of quality or accuracy"

I say, it depends on

- The Noise on the Data
- The Completeness on the Data
- The Representation of such Data

It refers to

Messiness or Trustworthiness of the data

However, some people claim

"The volumes often make up for the lack of quality or accuracy"

I say, it depends on

- The Noise on the Data
- The Completeness on the Data
- The Representation of such Data
- etc!!!

Outline

2 Machine Learning

- Main Areas in Machine Learning
 - Supervised Learning
 - Unsupervised Learning
 - Other Main Areas
- Machine Learning Process
- Feature Generation and Extraction
 - Curse of Dimensionality
- Clustering
- Classification
 - the problem of Bias-Variance Trade-Off
 - Examples of Classification Algorithms

Given all these things

• It is necessary to correlate and share data across entities.

It is necessary to link, match and transform data

4回 ト 4日 ト 4 目 ト 4 目 ト 目 の Q (で 18 / 58

Given all these things

- It is necessary to correlate and share data across entities.
- It is necessary to link, match and transform data.

Complexity goes through the roof!!!

Given all these things

- It is necessary to correlate and share data across entities.
- It is necessary to link, match and transform data.

With this...

Complexity goes through the roof!!!

Example: Linking open-data community project

Something Notable

• In 1880 the USA made a Census of the Population in different aspects:

Population

- Mortality
- Agriculture
- Manufacturing

Something Notable

• In 1880 the USA made a Census of the Population in different aspects:

Population

- Mortality
- Agriculture
- Manufacturing

However

Something Notable

- In 1880 the USA made a Census of the Population in different aspects:
 - Population
 - Mortality
 - Agriculture
 - Manufacturing

However

Something Notable

- In 1880 the USA made a Census of the Population in different aspects:
 - Population
 - Mortality
 - Agriculture
 - Manufacturing

Something Notable

- In 1880 the USA made a Census of the Population in different aspects:
 - Population
 - Mortality
 - Agriculture
 - Manufacturing

Something Notable

- In 1880 the USA made a Census of the Population in different aspects:
 - Population
 - Mortality
 - Agriculture
 - Manufacturing

However

Something Notable

- In 1880 the USA made a Census of the Population in different aspects:
 - Population
 - Mortality
 - Agriculture
 - Manufacturing

However

The Tabulator Machine

Thus, Hollering came with the following machine (Circa 1890)!!!

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ 三 のQC 21/58

Hollering Tabulating Machine

It was basically a sorter and counter

• Using punching cards as memories.

Hollering Tabulating Machine

It was basically a sorter and counter

- Using punching cards as memories.
- And Mercury Sensors.

Hollering Tabulating Machine

It was basically a sorter and counter

- Using punching cards as memories.
- And Mercury Sensors.

Example

1		3	0	2	*	10	On	5	A	C	E	a	•	c	g	122		CB	30	Cn	oy		311	-	Dr	RIII	
2	2	4	1	3	E	15	Off	IS	в	D	F	b	d	1	h	122		SY	×	Fp	Cn	R	x	AI	Cg	Kg	
3	0	0	0	0	w	20		0	0	0	υ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
A	1	1	1	1	0	25	A.	1	1	1	1	1	1	1	1	1	1	1	O	1	1	1	1	1	1	1	
B	2	2	2	2	5	30	в	2	2		2	2	2	2	2	2	2	2	2	0	2	2	2	2	2	2	
с	3	3	3	3	0	3	c	3	3	3	0	3	3	3	3	3	3	'3	3	3	0	3	3	3	3	3	
D	4	4	4	4	1	4	D	4	4	4	4	0	4	4	4	4	4	4	4	4	4	0	4	4	.4	4	
E	5	5	5	5	2	C	E	5	5	5	5	5	O	5	5	5	5	5	5	5	5	5	C	5	5	5 ,	
F	6	6	6	6	A	D	F	6	6	6	6	6	6	O	6	6	6	6	6	6	6	6	6	C	6	6	
a	7	7	7	7	в	E	a	7	7	7	7	7	7	7		7	7	7	7	7	7	7	7	7	0	7	
н	8	8	8	8	a] F	н	8	8	8	8	8	8	8	8	0	8	8	8	8	8	8	8	8	8	0	
1	9	9	9	19	Ь	c	1	9	9	9	9	9	9	9	9	9	10	9	9	9	9	9	9	9	9	9	

It was FAST!!!

It took only!!!

2 years!!!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

It was FAST!!!

It took only!!!

2 years!!!

Nevertheless in 1837

Babbage's Difference engine was

The First General Computer!!!

Turing-complete!!!

Way more complex than the tabulator!!! 53 years earlier!!!

It was FAST !!!

It took only!!!

2 years!!!

Nevertheless in 1837

Babbage's Difference engine was

• The First General Computer!!!

• Way more complex than the tabulator!!! 53 years earlier!!!

It was FAST!!!

It took only!!!

2 years!!!

Nevertheless in 1837

Babbage's Difference engine was

- The First General Computer!!!
- Turing-complete!!!

ay more complex than the tabulator!!! 53 years earlier!!!

It was FAST!!!

It took only!!!

2 years!!!

Nevertheless in 1837

Babbage's Difference engine was

- The First General Computer!!!
- Turing-complete!!!
- Way more complex than the tabulator!!! 53 years earlier!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

Complexity is highly **DEPENDANT** on the way data is handled and represented

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

24 / 58

So Big Data without Analytic Tools is basically...

"A Great!!! I am storing a bunch of data, so what?"

You require to have some way to get insights on such data sets

You need

• Algorithms to find those insights that are useful

You need to apply them in the Large Data Set context

Here, it comes the Darling

Machine Learning!!! The Darling of Computer Science!!!

25 / 58

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

So Big Data without Analytic Tools is basically...

"A Great!!! I am storing a bunch of data, so what?"

You require to have some way to get insights on such data sets

You need

- Algorithms to find those insights that are useful
- You need to apply them in the Large Data Set context

Here, it comes the Darling

Machine Learning!!! The Darling of Computer Science!!!

So Big Data without Analytic Tools is basically...

"A Great!!! I am storing a bunch of data, so what?"

You require to have some way to get insights on such data sets

You need

- Algorithms to find those insights that are useful
- You need to apply them in the Large Data Set context

Here, it comes the Darling

Machine Learning!!! The Darling of Computer Science!!!

25/58

Definition

- Machine learning is the subfield of computer science that, according to Arthur Samuel, gives
 - "computers the ability to learn without being explicitly programmed."

Definition

- Machine learning is the subfield of computer science that, according to Arthur Samuel, gives
 - "computers the ability to learn without being explicitly programmed."

Therefore

• Learning Algorithms are devised to learn the input data

Definition

- Machine learning is the subfield of computer science that, according to Arthur Samuel, gives
 - "computers the ability to learn without being explicitly programmed."

Therefore

• Learning Algorithms are devised to learn the input data

Examples

- Artificial Neural Network (ANN)
 - Expectation-Maximization (EM)

Definition

- Machine learning is the subfield of computer science that, according to Arthur Samuel, gives
 - "computers the ability to learn without being explicitly programmed."

Therefore

Learning Algorithms are devised to learn the input data

Examples

- Artificial Neural Network (ANN)
- Support Vector Machine (SVM)

Expectation-Maximization (EM)

26 / 58

イロト イボト イヨト イヨト

Definition

- Machine learning is the subfield of computer science that, according to Arthur Samuel, gives
 - "computers the ability to learn without being explicitly programmed."

Therefore

• Learning Algorithms are devised to learn the input data

Examples

- Artificial Neural Network (ANN)
- Support Vector Machine (SVM)
- Expectation-Maximization (EM)
Outline

- Introduction
- The Infamous 5 V's
- Given all these things

2 Machine Learning

Main Areas in Machine Learning

- Supervised Learning
- Unsupervised Learning
- Other Main Areas
- Machine Learning Process
- Feature Generation and Extraction
 - Curse of Dimensionality
- Clustering
- Classification
 - the problem of Bias-Variance Trade-Off
 - Examples of Classification Algorithms

Projects What projects can you do?

Outline

- Introduction
- The Infamous 5 V's
- Given all these things

2 Machine Learning

Main Areas in Machine Learning

- Supervised Learning
- Unsupervised Learning
- Other Main Areas
- Machine Learning Process
- Feature Generation and Extraction
 - Curse of Dimensionality
- Clustering
- Classification
 - the problem of Bias-Variance Trade-Off
 - Examples of Classification Algorithms

Projects What projects can you do?

Supervised Learning

Basically

• Inputs and their desired outputs are given $\left\{(x_i,y_i)_{i=1}^N\right\}$

• Then, the goal is to learn a general rule that maps inputs to outputs $f: X \to Y$ with $f(x_i) = w + \epsilon$

Supervised Learning

Basically

- Inputs and their desired outputs are given $\left\{(x_i,y_i)_{i=1}^N\right\}$
- Then, the goal is to learn a general rule that maps inputs to outputs

Supervised Learning

Basically

- Inputs and their desired outputs are given $\left\{ (x_i, y_i)_{i=1}^N \right\}$
- Then, the goal is to learn a general rule that maps inputs to outputs $f: X \to Y$ with $f(x_i) = y_i + \epsilon$

29 / 58

イロン イ団 とく ヨン イヨン

Classifying two classes in \mathbb{R}^2

Outline

- Introduction
- The Infamous 5 V's
- Given all these things

2 Machine Learning

- Main Areas in Machine Learning
 - Supervised Learning

Unsupervised Learning

- Other Main Areas
- Machine Learning Process
- Feature Generation and Extraction
 - Curse of Dimensionality
- Clustering
- Classification
 - the problem of Bias-Variance Trade-Off
 - Examples of Classification Algorithms

Basically

• No labels are given to the learning algorithm, leaving it on its own to find structure in its input.

Basically

• No labels are given to the learning algorithm, leaving it on its own to find structure in its input.

Therefore, it is necessary to find the clusters of Data

• Using Cost Functions

Similarities

 $dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_A = \sqrt{(\mathbf{x} - \mathbf{y})^T A(\mathbf{x} - \mathbf{y})^T}$

Basically

• No labels are given to the learning algorithm, leaving it on its own to find structure in its input.

Therefore, it is necessary to find the clusters of Data

• Using Cost Functions

$$SSE = \sum_{k=1}^{K} \sum_{x \in c_k} dist \left(\mathbf{x}, \mathbf{v}_k \right)^2$$

Similarities

 $dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_A = \sqrt{(\mathbf{x} - \mathbf{y})^T A(\mathbf{x} - \mathbf{y})}$

Basically

• No labels are given to the learning algorithm, leaving it on its own to find structure in its input.

Therefore, it is necessary to find the clusters of Data

• Using Cost Functions

$$SSE = \sum_{k=1}^{K} \sum_{x \in c_k} dist \, (\mathbf{x}, \mathbf{v}_k)^2$$

Similarities

 $dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_A = \sqrt{(\mathbf{x} - \mathbf{y})^T A(\mathbf{x} - \mathbf{y})}$

Basically

• No labels are given to the learning algorithm, leaving it on its own to find structure in its input.

Therefore, it is necessary to find the clusters of Data

• Using Cost Functions

$$SSE = \sum_{k=1}^{K} \sum_{x \in c_k} dist \left(\mathbf{x}, \mathbf{v}_k \right)^2$$

Similarities

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_A = \sqrt{(\mathbf{x} - \mathbf{y})^T A(\mathbf{x} - \mathbf{y})}$$

Basically

• No labels are given to the learning algorithm, leaving it on its own to find structure in its input.

Therefore, it is necessary to find the clusters of Data

• Using Cost Functions

$$SSE = \sum_{k=1}^{K} \sum_{x \in c_k} dist \left(\mathbf{x}, \mathbf{v}_k \right)^2$$

Similarities

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_A = \sqrt{(\mathbf{x} - \mathbf{y})^T A(\mathbf{x} - \mathbf{y})}$$

Example

K-Means

Outline

- Introduction
- The Infamous 5 V's
- Given all these things

2 Machine Learning

Main Areas in Machine Learning

- Supervised Learning
- Unsupervised Learning

Other Main Areas

- Machine Learning Process
- Feature Generation and Extraction
 - Curse of Dimensionality
- Clustering
- Classification
 - the problem of Bias-Variance Trade-Off
 - Examples of Classification Algorithms

Projects • What projects can you do?

Semi-Supervised Learning

There is a training set with some (often many) of the target outputs missing.

Semi-Supervised Learning

There is a training set with some (often many) of the target outputs missing.

Reinforcement Learning

- The Program interacts with a dynamic environment to perform a certain goal.
 - The Program receives rewards and punishments given its actions.
 - Those inputs allows the Program to learn by reinforcement.

Semi-Supervised Learning

There is a training set with some (often many) of the target outputs missing.

Reinforcement Learning

- The Program interacts with a dynamic environment to perform a certain goal.
- The Program receives rewards and punishments given its actions.

Those inputs allows the Program to learn by reinforcement.

Meta Learning

- The system must include a learning subsystem, which adapts with experience.
- Experience is gained by exploiting meta knowledge extracted.
 - ▶ Thus, Learning Bias must be chosen dynamically.

Semi-Supervised Learning

There is a training set with some (often many) of the target outputs missing.

Reinforcement Learning

- The Program interacts with a dynamic environment to perform a certain goal.
- The Program receives rewards and punishments given its actions.
- Those inputs allows the Program to learn by reinforcement.

Meta Learning

- The system must include a learning subsystem, which adapts with experience.
- Experience is gained by exploiting meta knowledge extracted.
 - ▶ Thus, Learning Bias must be chosen dynamically.

Semi-Supervised Learning

There is a training set with some (often many) of the target outputs missing.

Reinforcement Learning

- The Program interacts with a dynamic environment to perform a certain goal.
- The Program receives rewards and punishments given its actions.
- Those inputs allows the Program to learn by reinforcement.

Meta Learning

 The system must include a learning subsystem, which adapts with experience.

Experience is gained by exploiting meta knowledge extracted.
Thus, Learning Bias must be chosen dynamically.

Semi-Supervised Learning

There is a training set with some (often many) of the target outputs missing.

Reinforcement Learning

- The Program interacts with a dynamic environment to perform a certain goal.
- The Program receives rewards and punishments given its actions.
- Those inputs allows the Program to learn by reinforcement.

Meta Learning

- The system must include a learning subsystem, which adapts with experience.
- Experience is gained by exploiting meta knowledge extracted.

Semi-Supervised Learning

There is a training set with some (often many) of the target outputs missing.

Reinforcement Learning

- The Program interacts with a dynamic environment to perform a certain goal.
- The Program receives rewards and punishments given its actions.
- Those inputs allows the Program to learn by reinforcement.

Meta Learning

- The system must include a learning subsystem, which adapts with experience.
- Experience is gained by exploiting meta knowledge extracted.
 - Thus, Learning Bias must be chosen dynamically.

Outline

Why are we interested in Analyzing Data Automatically

- Introduction
- The Infamous 5 V's
- Given all these things

2 Machine Learning

- Main Areas in Machine Learning
 - Supervised Learning
 - Unsupervised Learning
 - Other Main Areas

Machine Learning Process

- Feature Generation and Extraction
 - Curse of Dimensionality
- Clustering
- Classification
 - the problem of Bias-Variance Trade-Off
 - Examples of Classification Algorithms

Projects What projects can you do?

Process

- Preprocessing
 - Feature Extraction/Feature Generation
 -) Clustering pprox Class Identification pprox Unsupervised Learning
 - \circ Classification pprox Supervised Learning

Process

- Preprocessing
- **2** Feature Extraction/Feature Generation

We need to process a lot of data...!!!

Process

- Preprocessing
- **2** Feature Extraction/Feature Generation
- **③** Clustering \approx Class Identification \approx Unsupervised Learning

We need to process a lot of data...!!!

Process

- Preprocessing
- **2** Feature Extraction/Feature Generation
- § Clustering pprox Class Identification pprox Unsupervised Learning
- Classification \approx Supervised Learning

We need to process a lot of data...!!!

Process

- Preprocessing
- **2** Feature Extraction/Feature Generation
- § Clustering pprox Class Identification pprox Unsupervised Learning
- Classification \approx Supervised Learning

Then

We need to process a lot of data...!!!

イロト イヨト イヨト

Outline

- Introduction
- The Infamous 5 V's
- Given all these things

2 Machine Learning

- Main Areas in Machine Learning
 - Supervised Learning
 - Unsupervised Learning
- Other Main Areas
- Machine Learning Process

Feature Generation and Extraction

- Curse of Dimensionality
- Clustering
- Classification
 - the problem of Bias-Variance Trade-Off
 - Examples of Classification Algorithms

Feature Generation

• Given a set of measurements, the goal is to discover compact and informative representations of the obtained data.

39 / 58

3

イロン イ団 とく ヨン イヨン

Feature Generation

• Given a set of measurements, the goal is to discover compact and informative representations of the obtained data.

Examples

() The Karhunen–Loève transform pprox Principal Component Analysis

Popular for feature generation and Dimensionality Reduction

On The Singular Value Decomposition

Used for Dimensionality Reduction

Feature Generation

• Given a set of measurements, the goal is to discover compact and informative representations of the obtained data.

Examples

- **0** The Karhunen–Loève transform pprox Principal Component Analysis
 - **0** Popular for feature generation and Dimensionality Reduction
- On The Singular Value Decomposition
 - Used for Dimensionality Reduction

Feature Generation

• Given a set of measurements, the goal is to discover compact and informative representations of the obtained data.

Examples

- **0** The Karhunen–Loève transform pprox Principal Component Analysis
 - **0** Popular for feature generation and Dimensionality Reduction
- 2 The Singular Value Decomposition

Feature Generation

• Given a set of measurements, the goal is to discover compact and informative representations of the obtained data.

Examples

- **0** The Karhunen–Loève transform pprox Principal Component Analysis
 - **9** Popular for feature generation and Dimensionality Reduction
- 2 The Singular Value Decomposition
 - Used for Dimensionality Reduction

Feature Extraction

Definition

• Process to transform high-dimensional data into low-dimensional ones for improving accuracy, understanding, or removing noises.

Why?

 Curse of dimensionality: Complexity grows exponentially in volume by adding extra dimensions.

Feature Extraction

Definition

• Process to transform high-dimensional data into low-dimensional ones for improving accuracy, understanding, or removing noises.

Why?

• **Curse of dimensionality:** Complexity grows exponentially in volume by adding extra dimensions.

40 / 58

< ロ > < 回 > < 回 > < 回 > < 回 >
Outline

- Introduction
- The Infamous 5 V's
- Given all these things

2 Machine Learning

- Main Areas in Machine Learning
 - Supervised Learning
 - Unsupervised Learning
- Other Main Areas
- Machine Learning Process
- Feature Generation and Extraction
 Curse of Dimensionality
- Clustering
- Classification
 - the problem of Bias-Variance Trade-Off
 - Examples of Classification Algorithms

Curse of Dimensionality

Question

• Which features should be used for the classifier?

The Curse of Dimensionality!!!

Curse of Dimensionality

Question

• Which features should be used for the classifier?

The Curse of Dimensionality!!!

Hypothesis Testing to discriminate good features

$$H_1 : \Delta \mu = \mu_1 - \mu_2 \neq 0$$

$$H_0 : \Delta \mu = \mu_1 - \mu_2 = 0$$

43 / 58

Hypothesis Testing to discriminate good features

$$H_1 : \Delta \mu = \mu_1 - \mu_2 \neq 0$$

$$H_0 : \Delta \mu = \mu_1 - \mu_2 = 0$$

43 / 58

Using Measures for Class Separability

• Between-class scatter matrix:

$$S_b = \sum_{i=1}^{M} P_i \left(\boldsymbol{\mu}_i - \boldsymbol{\mu}_0\right) \left(\boldsymbol{\mu}_i - \boldsymbol{\mu}_0\right)^T$$
(1)

Using Measures for Class Separability

• Between-class scatter matrix:

$$S_b = \sum_{i=1}^{M} P_i \left(\boldsymbol{\mu}_i - \boldsymbol{\mu}_0\right) \left(\boldsymbol{\mu}_i - \boldsymbol{\mu}_0\right)^T$$
(1)

イロン イ団 とくほとう ほんし

Where

$$ullet$$
 $oldsymbol{\mu}_0$ is the global mean vector, $oldsymbol{\mu}_0 = \sum_{i=1}^M P_i oldsymbol{\mu}_i$

44 / 58

э

Using Measures for Class Separability

• Between-class scatter matrix:

$$S_b = \sum_{i=1}^{M} P_i \left(\boldsymbol{\mu}_i - \boldsymbol{\mu}_0 \right) \left(\boldsymbol{\mu}_i - \boldsymbol{\mu}_0 \right)^T$$
(1)

イロン イ団 とくほとう ほんし

Where

- μ_0 is the global mean vector, $\mu_0 = \sum_{i=1}^M P_i \mu_i$.
- μ_i the median of class ω_i .

44 / 58

Using Measures for Class Separability

Between-class scatter matrix:

$$S_b = \sum_{i=1}^{M} P_i \left(\boldsymbol{\mu}_i - \boldsymbol{\mu}_0\right) \left(\boldsymbol{\mu}_i - \boldsymbol{\mu}_0\right)^T$$
(1)

イロト イロト イヨト イヨト

Where

- μ_0 is the global mean vector, $\mu_0 = \sum_{i=1}^M P_i \mu_i$.
- μ_i the median of class ω_i .
- $P_i \cong \frac{n_i}{N}$.

44 / 58

Feature Subset Selection

- Examples:
 - Filter Approach
 - All combinations of features are used together with a separability measure.
 - Wrapper Approach:
 - * Use the decided classifier itself to find the best set.

Feature Subset Selection

- Examples:
 - Filter Approach
 - All combinations of features are used together with a separability measure.
 - ▶ Wrapper Approach:
 - Use the decided classifier itself to find the best set.

Feature Subset Selection

- Examples:
 - Filter Approach
 - ★ All combinations of features are used together with a separability measure.

Use the decided classifier itself to find the best set

45 / 58

3

イロト イヨト イヨト イヨト

Feature Subset Selection

- Examples:
 - Filter Approach
 - ★ All combinations of features are used together with a separability measure.
 - Wrapper Approach:

Feature Subset Selection

- Examples:
 - Filter Approach
 - ★ All combinations of features are used together with a separability measure.
 - Wrapper Approach:
 - $\star\,$ Use the decided classifier itself to find the best set.

45 / 58

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

Why are we interested in Analyzing Data Automatically

- Introduction
- The Infamous 5 V's
- Given all these things

2 Machine Learning

- Main Areas in Machine Learning
 - Supervised Learning
 - Unsupervised Learning
- Other Main Areas
- Machine Learning Process
- Feature Generation and Extraction
 - Curse of Dimensionality

Clustering

- Classification
 - the problem of Bias-Variance Trade-Off
 - Examples of Classification Algorithms

Projects What projects can you do?

Definition

Grouping unlabeled data into clusters, for the purpose of inference of hidden structures or information.

47 / 58

3

イロト イロト イヨト イヨト

Definition

Grouping unlabeled data into clusters, for the purpose of inference of hidden structures or information.

Using, for example

Dissimilarity measures

• Non-metric : Rank, Intensity, .

Distance : Euclidean (l_2) , Manhattan (l_1) , ...

Definition

Grouping unlabeled data into clusters, for the purpose of inference of hidden structures or information.

Using, for example

Dissimilarity measures

- Angle : Inner product, ...
 - Non-metric : Rank, Intensity, ...
 - \circ Distance : Euclidean (l_2) , Manhattan $(l_1), \ldots$

Definition

Grouping unlabeled data into clusters, for the purpose of inference of hidden structures or information.

Using, for example

Dissimilarity measures

- Angle : Inner product, ...
- Non-metric : Rank, Intensity, ...

Definition

Grouping unlabeled data into clusters, for the purpose of inference of hidden structures or information.

Using, for example

Dissimilarity measures

- Angle : Inner product, ...
- Non-metric : Rank, Intensity, ...
- Distance : Euclidean (l_2) , Manhattan (l_1) , ...

- Basic Clustering Algorithms
 Clustering Based in Cost Function
 Fuzzy Comeans
 - Hierarchical Clustering
 - Entropy based
- Clustering Based in Graph Theory

- Basic Clustering Algorithms
 K-means
 Clustering Based in Cost Fun
 Fuzzy Company
 - Possibilistic
 - Hierarchical Clustering
 - Entropy based
- Clustering Based in Graph Theory

- Basic Clustering Algorithms
 - K-means
- Olustering Based in Cost Functions
 - Fuzzy C-meansPossibilistic
- Hierarchical Clustering
 - Entropy based
- Clustering Based in Graph Theory

- Basic Clustering Algorithms
 - K-means
- Olustering Based in Cost Functions
 - Fuzzy C-means
 - Possibilistic
- Hierarchical Clustering
 - Entropy based
- Clustering Based in Graph Theory

- Basic Clustering Algorithms
 - K-means
- Olustering Based in Cost Functions
 - Fuzzy C-means
 - Possibilistic
- Hierarchical Clustering
 - Entropy based
- Clustering Based in Graph Theory

- Basic Clustering Algorithms
 - K-means
- Olustering Based in Cost Functions
 - Fuzzy C-means
 - Possibilistic
- Hierarchical Clustering
 - Entropy based
- Clustering Based in Graph Theory

- Basic Clustering Algorithms
 - K-means
- Olustering Based in Cost Functions
 - Fuzzy C-means
 - Possibilistic
- Hierarchical Clustering
 - Entropy based
 - Clustering Based in Graph Theory

Clustering

- Basic Clustering Algorithms
 - K-means
- Olustering Based in Cost Functions
 - Fuzzy C-means
 - Possibilistic
- Hierarchical Clustering
 - Entropy based
- Olustering Based in Graph Theory

48 / 58

< ロ > < 同 > < 回 > < 回 >

Outline

- Introduction
- The Infamous 5 V's
- Given all these things

2 Machine Learning

- Main Areas in Machine Learning
 - Supervised Learning
 - Unsupervised Learning
- Other Main Areas
- Machine Learning Process
- Feature Generation and Extraction
 - Curse of Dimensionality
- Clustering

Classification

- the problem of Bias-Variance Trade-Off
- Examples of Classification Algorithms

Classification

Definition

• A procedure dividing data into the given set of categories based on the training set in a supervised way.

Classification

Definition

• A procedure dividing data into the given set of categories based on the training set in a supervised way.

What do we want from classification?

- To Learn the pattern that relates $f(x) \iff y$ from the training set $\{(x_i, y_i)\}_{i=1}^n$.
- **2** To generalize new samples i.e. given a new sample x', f(x') gets the correct label.

Outline

- Introduction
- The Infamous 5 V's
- Given all these things

2 Machine Learning

- Main Areas in Machine Learning
 - Supervised Learning
 - Unsupervised Learning
- Other Main Areas
- Machine Learning Process
- Feature Generation and Extraction
 - Curse of Dimensionality
- Clustering
- Classification

• the problem of Bias-Variance Trade-Off

Examples of Classification Algorithms

Projects • What projects can you do?

The previous Controlled Over-fitting

We have a problem

Bias–Variance Trade-Off

Intuition - Bias

52 / 58

3

イロト イヨト イヨト イヨト

The previous Controlled Over-fitting

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

52 / 58

A the Other Hand

Possible Solution

Validation Error and Training Error

• Two Data Sets are used:

The other for training

Possible Solution

Validation Error and Training Error

- Two Data Sets are used:
 - One for validation

Possible Solution

Validation Error and Training Error

- Two Data Sets are used:
 - One for validation
 - The other for training

Possible Solution

Validation Error and Training Error

- Two Data Sets are used:
 - One for validation
 - The other for training

Outline

- Introduction
- The Infamous 5 V's
- Given all these things

2 Machine Learning

- Main Areas in Machine Learning
 - Supervised Learning
 - Unsupervised Learning
- Other Main Areas
- Machine Learning Process
- Feature Generation and Extraction
 - Curse of Dimensionality
- Clustering

Classification

- the problem of Bias-Variance Trade-Off
- Examples of Classification Algorithms

- Linear Classifiers: Perceptron
- Probability Classifiers: Naive Bayes
- Kernel Methods Classifiers : Support Vector Machines
- Non-Linear Classifiers: Artificial Neural Networks
- Graph Model Classifiers:
- 0....

- Linear Classifiers: Perceptron
- Probability Classifiers: Naive Bayes
- Kernel Methods Classifiers : Support Vector Machines
- Non-Linear Classifiers: Artificial Neural Networks
- Graph Model Classifiers:
- . . .

- Linear Classifiers: Perceptron
- Probability Classifiers: Naive Bayes
- Kernel Methods Classifiers : Support Vector Machines
- Non-Linear Classifiers: Artificial Neural Networks
- Graph Model Classifiers:

- Linear Classifiers: Perceptron
- Probability Classifiers: Naive Bayes
- Kernel Methods Classifiers : Support Vector Machines
- Non-Linear Classifiers: Artificial Neural Networks
- Graph Model Classifiers:

- Linear Classifiers: Perceptron
- Probability Classifiers: Naive Bayes
- Kernel Methods Classifiers : Support Vector Machines
- Non-Linear Classifiers: Artificial Neural Networks
- Graph Model Classifiers:

Many Possible Algorithms

- Linear Classifiers: Perceptron
- Probability Classifiers: Naive Bayes
- Kernel Methods Classifiers : Support Vector Machines
- Non-Linear Classifiers: Artificial Neural Networks
- Graph Model Classifiers:
- . . .

56 / 58

< ロ > < 同 > < 回 > < 回 >

Outline

- Introduction
- The Infamous 5 V's
- Given all these things

2 Machine Learning

- Main Areas in Machine Learning
 - Supervised Learning
 - Unsupervised Learning
 - Other Main Areas
- Machine Learning Process
- Feature Generation and Extraction
 - Curse of Dimensionality
- Clustering
- Classification
 - the problem of Bias-Variance Trade-Off
 - Examples of Classification Algorithms

57 / 58

< ロ > < 回 > < 回 > < 回 > < 回 >

Possible topic are:

- Oil exploration detection.
- Association Rule Preprocessing Project.
- Neural Network-Based Financial Market Forecasting Project.
- Page Ranking Improving over the Google Matrix
- Influence Maximization in Social Networks.
- Web Word Relevance Measures
- Recommendation Systems

Possible topic are:

- Oil exploration detection.
- Association Rule Preprocessing Project.
- Neural Network-Based Financial Market Forecasting Project.
- Page Ranking Improving over the Google Matrix
- Influence Maximization in Social Networks.
- Web Word Relevance Measures
- Recommendation Systems.

Possible topic are:

- Oil exploration detection.
- Association Rule Preprocessing Project.
- Neural Network-Based Financial Market Forecasting Project.
- Page Ranking Improving over the Google Matrix
- Influence Maximization in Social Networks.
- Web Word Relevance Measures
- Recommendation Systems

Possible topic are:

- Oil exploration detection.
- Association Rule Preprocessing Project.
- Neural Network-Based Financial Market Forecasting Project.
- Page Ranking Improving over the Google Matrix
- Influence Maximization in Social Networks.
- Web Word Relevance Measures
- Recommendation Systems.

Possible topic are:

- Oil exploration detection.
- Association Rule Preprocessing Project.
- Neural Network-Based Financial Market Forecasting Project.
- Page Ranking Improving over the Google Matrix
- Influence Maximization in Social Networks.
- Web Word Relevance Measures
- Recommendation Systems.

Possible topic are:

- Oil exploration detection.
- Association Rule Preprocessing Project.
- Neural Network-Based Financial Market Forecasting Project.
- Page Ranking Improving over the Google Matrix
- Influence Maximization in Social Networks.
- Web Word Relevance Measures.
- Recommendation Systems.

Possible topic are:

- Oil exploration detection.
- Association Rule Preprocessing Project.
- Neural Network-Based Financial Market Forecasting Project.
- Page Ranking Improving over the Google Matrix
- Influence Maximization in Social Networks.
- Web Word Relevance Measures.
- Recommendation Systems.

Possible topic are:

- Oil exploration detection.
- Association Rule Preprocessing Project.
- Neural Network-Based Financial Market Forecasting Project.
- Page Ranking Improving over the Google Matrix
- Influence Maximization in Social Networks.
- Web Word Relevance Measures.
- Recommendation Systems.

