Mathematics for Artificial Intelligence Transformation and Applications

Andres Mendez-Vazquez

April 9, 2020

Outline

1 Linear Transformation

- Introduction
- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation

3 Linear Regression

- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation

4 Principal Component Analysis

- Karhunen-Loeve Transform
- Projecting the Data
- Lagrange Multipliers
- The Process
- Example

5 Singular Value Decomposition

- Introduction
- Image Compression

Outline

（1）Linear Transformation
－Introduction
－Functions that can be defined using matrices
－Linear Functions
－Kernel and Range
－The Matrix of a Linear Transformation
－Going Back to Homogeneous Equations
－The Rank－Nullity Theorem
（2）Derivative of Transformations
－Introduction
－Derivative of a Linear Transformation
－Derivative of a Quadratic Transformation
（3）Linear Regression
－The Simplest Functions
－Splitting the Space
－Defining the Decision Surface
－Properties of the Hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$
－Augmenting the Vector
－Least Squared Error Procedure
－The Geometry of a Two－Category Linearly－Separable Case
－The Error Idea
－The Final Error Equation
（4）Principal Component Analysis
－
Karhunen－Loeve Transform
－Projecting the Data
－Lagrange Multipliers
－The Process
－
Example
5 Singular Value Decomposition
－Introduction
－Image Compression

Going further than solving $A \boldsymbol{x}=\boldsymbol{y}$

We can go further
We can think on the matrix A as a function!!!

Going further than solving $A \boldsymbol{x}=\boldsymbol{y}$

We can go further

We can think on the matrix A as a function!!!

In general

A function f whose domain \mathbb{R}^{n} and defines a rule that associate $\boldsymbol{x} \in \mathbb{R}^{n}$ to a vector $\boldsymbol{y} \in \mathbb{R}^{m}$

$$
\boldsymbol{y}=f(\boldsymbol{x}) \text { equivalently } f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}
$$

Going further than solving $A \boldsymbol{x}=\boldsymbol{y}$

We can go further

We can think on the matrix A as a function!!!

In general

A function f whose domain \mathbb{R}^{n} and defines a rule that associate $\boldsymbol{x} \in \mathbb{R}^{n}$ to a vector $\boldsymbol{y} \in \mathbb{R}^{m}$

$$
\boldsymbol{y}=f(\boldsymbol{x}) \text { equivalently } f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}
$$

We like the second expression because

(1) It is easy to identify the domain \mathbb{R}^{n}

Going further than solving $A \boldsymbol{x}=\boldsymbol{y}$

We can go further

We can think on the matrix A as a function!!!

In general

A function f whose domain \mathbb{R}^{n} and defines a rule that associate $\boldsymbol{x} \in \mathbb{R}^{n}$ to a vector $\boldsymbol{y} \in \mathbb{R}^{m}$

$$
\boldsymbol{y}=f(\boldsymbol{x}) \text { equivalently } f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}
$$

We like the second expression because

(1) It is easy to identify the domain \mathbb{R}^{n}
(2) It is easy to find the range \mathbb{R}^{m}

Examples

$f: \mathbb{R} \rightarrow \mathbb{R}^{3}$

$$
f(t)=\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=\left(\begin{array}{c}
t \\
3 t^{2}+1 \\
\sin (t)
\end{array}\right)
$$

Examples

$f: \mathbb{R} \rightarrow \mathbb{R}^{3}$

$$
f(t)=\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=\left(\begin{array}{c}
t \\
3 t^{2}+1 \\
\sin (t)
\end{array}\right)
$$

This are called parametric functions

- Depending on the context, it could represent the position or the velocity of a mass point.

Outline

1 Linear Transformation
Introduction

- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation
(3) Linear Regression
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable CaseThe Error Idea
- The Final Error Equation
(4) Principal Component Analysis
-

Karhunen-Loeve Transform
-
Projecting the Data
-
Lagrange Multipliers
-
The Process
-
Example
15. Singular Value DecompositionIntroduction
Image Compression

A Classic Example

We have
if A is a $m \times n$, we can use A to define a function.

A Classic Example

We have

if A is a $m \times n$, we can use A to define a function.

We will call them

$$
f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

A Classic Example

We have

if A is a $m \times n$, we can use A to define a function.

We will call them

$$
f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

In other words

$$
f_{A}(\boldsymbol{x})=A x
$$

Example

Let

$$
A_{2 \times 3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

Example

Let

$$
A_{2 \times 3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

This allows to define

$$
f_{A}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{x+2 y+z}{4 x+5 y+6 z}
$$

Example

Let

$$
A_{2 \times 3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

This allows to define

$$
f_{A}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{x+2 y+z}{4 x+5 y+6 z}
$$

We have

- For each vector $\boldsymbol{x} \in \mathbb{R}^{3}$ to the vector $A \boldsymbol{x} \in \mathbb{R}^{2}$

Outline

(1) Linear Transformation

- Introduction
- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation

3 Linear Regression

- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Ecuation
(4) Principal Component Analysis
-

Karhunen-Loeve Transform

- Projecting the Data
- Lagrange Multipliers
- The Process
- Example
(5.) Singular Value Decomposition
- Introduction
- Image Compression

We have

Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be linear if
(1) $f\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right)=f\left(\boldsymbol{x}_{1}\right)+f\left(\boldsymbol{x}_{2}\right)$
(2) $f(c \boldsymbol{x})=c f(\boldsymbol{x})$
for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathbb{R}^{n}$ and for all the scalars c.

We have

Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be linear if
(1) $f\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right)=f\left(\boldsymbol{x}_{1}\right)+f\left(\boldsymbol{x}_{2}\right)$
(2) $f(c \boldsymbol{x})=c f(\boldsymbol{x})$
for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathbb{R}^{n}$ and for all the scalars c.

Thus

A linear function f is also known as a linear transformation.

We have the following proposition

Proposition

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear \Longleftrightarrow for all vectors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathbb{R}^{n}$ and for all the scalars c_{1}, c_{2} :

$$
f\left(c_{1} \boldsymbol{x}_{1}+c_{2} \boldsymbol{x}_{2}\right)=c_{1} f\left(\boldsymbol{x}_{1}\right)+c_{2} f\left(\boldsymbol{x}_{2}\right)
$$

We have the following proposition

Proposition

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear \Longleftrightarrow for all vectors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathbb{R}^{n}$ and for all the scalars c_{1}, c_{2} :

$$
f\left(c_{1} \boldsymbol{x}_{1}+c_{2} \boldsymbol{x}_{2}\right)=c_{1} f\left(\boldsymbol{x}_{1}\right)+c_{2} f\left(\boldsymbol{x}_{2}\right)
$$

Proof

Any idea?

Proof

If $A_{m \times n}$ is a matrix, f_{A} is a linear transformation

 How?
Proof

If $A_{m \times n}$ is a matrix, f_{A} is a linear transformation

How?

First

$$
f_{A}\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right)=A\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right)=A \boldsymbol{x}_{1}+A \boldsymbol{x}_{2}=f_{A}\left(\boldsymbol{x}_{1}\right)+f_{A}\left(\boldsymbol{x}_{2}\right)
$$

Proof

If $A_{m \times n}$ is a matrix, f_{A} is a linear transformation

How?

First

$$
f_{A}\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right)=A\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right)=A \boldsymbol{x}_{1}+A \boldsymbol{x}_{2}=f_{A}\left(\boldsymbol{x}_{1}\right)+f_{A}\left(\boldsymbol{x}_{2}\right)
$$

Second

What about $f_{A}\left(c \boldsymbol{x}_{1}\right)$?

Outline

1 Linear Transformation

- Introduction
- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range

The Matrix of a Linear Transformation

- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem

2. Derivative of Transformations

- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation
(3) Linear Regression
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $w^{T} x+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation

4 Principal Component AnalysisKarhunen-Loeve Transform

- Projecting the Data
- Lagrange Multipliers
- The Process

0
Example
(5) Singular Value DecompositionIntroduction

- Image Compression

三
$13 / 140$

We have

Definition (Actually related the null-space)
If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear, the kernel of f is defined by

$$
\operatorname{Ker}(f)=\left\{\boldsymbol{v} \in \mathbb{R}^{n} \mid f(\boldsymbol{v})=0\right\}
$$

We have

Definition (Actually related the null-space)

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear, the kernel of f is defined by

$$
\operatorname{Ker}(f)=\left\{\boldsymbol{v} \in \mathbb{R}^{n} \mid f(\boldsymbol{v})=0\right\}
$$

Definition

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear, the range of f is defined by

$$
\text { Range }(f)=\left\{\boldsymbol{y} \in \mathbb{R}^{m} \mid \boldsymbol{y}=f(\boldsymbol{x}) \text { for somer } \boldsymbol{x} \in \mathbb{R}^{n}\right\}
$$

We have also the following Spaces

Row Space

We have that the span of the row vectors of A form a subspace.

We have also the following Spaces

Row Space

We have that the span of the row vectors of A form a subspace.

Column Space

We have that the span of the column vectors of A, also, form a subspace.

From This

It can be shown that

$\operatorname{Ker}(f)$ is a subspace of \mathbb{R}^{n}

From This

It can be shown that

$\operatorname{Ker}(f)$ is a subspace of \mathbb{R}^{n}

```
Also
Range \((f)\) is a subspace of \(\mathbb{R}^{m}\)
```


Outline

1 Linear Transformation

- Introduction
- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation
(3) Linear Regression
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $w^{T} x+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
-

The Error Idea

- The Final Error Equation
(4) Principal Component Analysis
-

Karhunen-Loeve Transform

- Projecting the Data
- Lagrange Multipliers
- The Process
- Example
(5. Singular Value Decomposition
- Introduction
- Image Compression

三

Assume the following

Let

$$
\boldsymbol{e}_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)_{n \times 1}, \boldsymbol{e}_{3}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right)_{n \times 1}, \ldots, \boldsymbol{e}_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)_{n \times 1}
$$

Assume the following

Let

$$
\boldsymbol{e}_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)_{n \times 1}, \boldsymbol{e}_{3}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right)_{n \times 1}, \ldots, \boldsymbol{e}_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)_{n \times 1}
$$

Then any vector $\boldsymbol{x} \in \mathbb{R}^{n}$

$$
\boldsymbol{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=x_{1} \boldsymbol{e}_{1}+x_{2} \boldsymbol{e}_{2}+\ldots+x_{n} \boldsymbol{e}_{n}
$$

Then

Applying f

$$
f(\boldsymbol{x})=x_{1} f\left(\boldsymbol{e}_{1}\right)+x_{2} f\left(\boldsymbol{e}_{2}\right)+\ldots+x_{n} f\left(\boldsymbol{e}_{n}\right)
$$

Then

Applying f

$$
f(\boldsymbol{x})=x_{1} f\left(\boldsymbol{e}_{1}\right)+x_{2} f\left(\boldsymbol{e}_{2}\right)+\ldots+x_{n} f\left(\boldsymbol{e}_{n}\right)
$$

A linear combination of elements

$$
\left\{f\left(e_{1}\right), f\left(e_{2}\right), \ldots, f\left(e_{n}\right)\right\}
$$

Then

Applying f

$$
f(\boldsymbol{x})=x_{1} f\left(\boldsymbol{e}_{1}\right)+x_{2} f\left(\boldsymbol{e}_{2}\right)+\ldots+x_{n} f\left(\boldsymbol{e}_{n}\right)
$$

A linear combination of elements

$$
\left\{f\left(e_{1}\right), f\left(e_{2}\right), \ldots, f\left(e_{n}\right)\right\}
$$

They are column vectors in \mathbb{R}^{m}

$$
A=\left(f\left(\boldsymbol{e}_{1}\right)\left|f\left(\boldsymbol{e}_{2}\right)\right| \ldots \mid f\left(\boldsymbol{e}_{n}\right)\right)_{m \times n}
$$

Thus, we have

Finally, we have

$$
f(\boldsymbol{x})=\left(f\left(\boldsymbol{e}_{1}\right)\left|f\left(\boldsymbol{e}_{2}\right)\right| \ldots \mid f\left(\boldsymbol{e}_{n}\right)\right) \boldsymbol{x}=A \boldsymbol{x}
$$

Thus, we have

Finally, we have

$$
f(\boldsymbol{x})=\left(f\left(\boldsymbol{e}_{1}\right)\left|f\left(\boldsymbol{e}_{2}\right)\right| \ldots \mid f\left(\boldsymbol{e}_{n}\right)\right) \boldsymbol{x}=A \boldsymbol{x}
$$

Definition

- The matrix A defined above for the function f is called the matrix of f in the standard basis.

Outline

1 Linear Transformation

- Introduction
- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of TransformationsIntroduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation
(3) Linear Regression
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable CaseThe Error Idea
- The Final Error Equation
(4) Principal Component AnalysisKarhunen-Loeve Transform
O
Projecting the Data
Θ
Lagrange Multipliers
-

The Process
-
Example
(5) Singular Value DecompositionIntroduction
Image Compression

Given an $m \times n$ matrix A

The set of all solutions to the homogeneous equation $A x$

- It is a subspace V of \mathbb{R}^{n}.

$$
A x=0
$$

Given an $m \times n$ matrix A

The set of all solutions to the homogeneous equation $A \boldsymbol{x}$

- It is a subspace V of \mathbb{R}^{n}.

$$
A x=0
$$

Remember how to prove the subspaces...

$$
\boldsymbol{x}_{2}+\boldsymbol{x}_{2} \in V \text { and } c \boldsymbol{x} \in V
$$

- Do you remember?

Then, we have

Definition

- This important subspace is called the null space of A, and is denoted Null(A)

Then, we have

Definition

- This important subspace is called the null space of A, and is denoted $\operatorname{Null}(A)$

It is also known as

$$
\boldsymbol{x}_{H}=\{\boldsymbol{x} \mid A \boldsymbol{x}=0\}
$$

Knowing that Range (f) and $\operatorname{Ker}(f)$ are sub-spaces

Which ones they are?
Any Idea?

Knowing that Range (f) and $\operatorname{Ker}(f)$ are sub-spaces

Which ones they are?
Any Idea?
Range (f)
The column space of the matrix A.

Knowing that Range (f) and $\operatorname{Ker}(f)$ are sub-spaces

Which ones they are?
Any Idea?
Range (f)
The column space of the matrix A.
$\operatorname{Ker}(f)$
It is the null space of A.

Outline

1 Linear Transformation

- Introduction
- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation

3 Linear Regression

- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
(4) Principal Component Analysis
- Karhunen-Loeve Transform
- Projecting the Data
- Lagrange Multipliers
- The Process
- Example

5. Singular Value Decomposition

- Introduction
- Image Compression

三

We have a nice theorem

Dimension Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be linear. Then

$$
\operatorname{dim}(\operatorname{domain}(f))=\operatorname{dim}(\operatorname{Range}(f))+\operatorname{dim}(\operatorname{Ker}(f))
$$

We have a nice theorem

Dimension Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be linear. Then

$$
\operatorname{dim}(\operatorname{domain}(f))=\operatorname{dim}(\operatorname{Range}(f))+\operatorname{dim}(\operatorname{Ker}(f))
$$

Where

The dimension of V, written $\operatorname{dim}(V)$, is the number of elements in any basis of V.

Rank and Nullity of a Matrix

Definition

- The rank of the matrix A is the dimension of the row space of A, and is denoted $R(A)$.

Rank and Nullity of a Matrix

Definition

- The rank of the matrix A is the dimension of the row space of A, and is denoted $R(A)$.

Example

- The rank of $I_{n \times n}$ is n.

Then

Theorem
The rank of a matrix in Gauss-Jordan form is equal to the number of leading variables.

Then

Theorem

The rank of a matrix in Gauss-Jordan form is equal to the number of leading variables.

Proof

- In the G form of a matrix, every non-zero row has a leading 1 , which is the only non-zero entry in its column.

Then

Theorem

The rank of a matrix in Gauss-Jordan form is equal to the number of leading variables.

Proof

- In the G form of a matrix, every non-zero row has a leading 1 , which is the only non-zero entry in its column.

Then

- No elementary row operation can zero out a leading 1 , so these non-zero rows are linearly independent.

Thus

We have

- Since all the other rows are zero, the dimension of the row space of the Gauss-Jordan form is equal to the number of leading 1's.

Thus

We have

- Since all the other rows are zero, the dimension of the row space of the Gauss-Jordan form is equal to the number of leading 1's.

Finally

- This is the same as the number of leading variables. Q.E.D.

About the Nullity of the Matrix

About the Nullity of the Matrix

Example

- The nullity of I is 0 .

About the Nullity of the Matrix

Definition

- The nullity of the matrix A is the dimension of the null space of A, and is denoted by $\operatorname{dim}[N(A)]$.

Example

- The nullity of I is 0 .

Number of Free Variables

Theorem

The nullity of a matrix in Gauss-Jordan form is equal to the number of free variables.

Proof

- Suppose A is $m \times n$, and that the Gauss-Jordan form has j leading variables and k free variables:

$$
j+k=n
$$

Proof

Then, when computing the solution to the homogeneous equation

- We solve for the first j (leading) variables in terms of the remaining k free variables:

$$
s_{1}, s_{2}, s_{3}, \ldots, s_{k}
$$

Proof

Then, when computing the solution to the homogeneous equation

- We solve for the first j (leading) variables in terms of the remaining k free variables:

$$
s_{1}, s_{2}, s_{3}, \ldots, s_{k}
$$

Proof

Then, when computing the solution to the homogeneous equation

- We solve for the first j (leading) variables in terms of the remaining k free variables:

$$
s_{1}, s_{2}, s_{3}, \ldots, s_{k}
$$

Then

- Then the general solution to the homogeneous equation are:

$$
s_{1} \boldsymbol{v}_{1}+s_{2} \boldsymbol{v}_{2}+s_{3} \boldsymbol{v}_{3}+\cdots+s_{k} \boldsymbol{v}_{k}
$$

Where

The vectors are the Canonical Ones

- Here, a trick!!!

Where

The vectors are the Canonical Ones

- Here, a trick!!!

Meaning in \boldsymbol{v}_{1}, we have 1 , after many 0

- It appears at position $j+1$, with zeros afterwards, and so on.

Where

The vectors are the Canonical Ones

- Here, a trick!!!

Meaning in \boldsymbol{v}_{1}, we have 1 , after many 0

- It appears at position $j+1$, with zeros afterwards, and so on.

Therefore the vectors are linearly independents

$$
\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \cdots, \boldsymbol{v}_{k}
$$

Therefore

They are a basis for the null space of A
And there are k of them, the same as the number of free variables.

Now

Definition

The matrix B is said to be row equivalent to $A(B \sim A)$ if B can be obtained from A by a finite sequence of elementary row operations.

Now

Definition

The matrix B is said to be row equivalent to $A(B \sim A)$ if B can be obtained from A by a finite sequence of elementary row operations.

In matrix terms

$B \sim A \Leftrightarrow$ There exist elementary matrices such that

$$
B=E_{k} E_{k-1} E_{k-1} \cdots E_{1} A
$$

Now

Definition

The matrix B is said to be row equivalent to $A(B \sim A)$ if B can be obtained from A by a finite sequence of elementary row operations.

In matrix terms

$B \sim A \Leftrightarrow$ There exist elementary matrices such that

$$
B=E_{k} E_{k-1} E_{k-1} \cdots E_{1} A
$$

If we write $C=E_{k} E_{k-1} E_{k-1} \cdots E_{1}$
B is row equivalent to A if $B=C A$ with C invertible.

Then, we have

Theorem
If $B \sim A$, then $\operatorname{Null}(B)=\operatorname{Null}(A)$.

Then, we have

Theorem

If $B \sim A$, then $\operatorname{Null}(B)=\operatorname{Null}(A)$.

Theorem

If $B \sim A$, then the row space of B is identical to that of A.

Then, we have

Theorem

If $B \sim A$, then $\operatorname{Null}(B)=\operatorname{Null}(A)$.

Theorem
If $B \sim A$, then the row space of B is identical to that of A.

Summarizing

Row operations change neither the row space nor the null space of A.

Corollaries

Corollary 1

- If R is the Gauss-Jordan form of A, then R has the same null space and row space as A.

Corollaries

Corollary 1

- If R is the Gauss-Jordan form of A, then R has the same null space and row space as A.

Corollary 2

- If $B \sim A$, then $R(B)=R(A)$, and $N(B)=N(A)$.

Then

Theorem

- The number of linearly independent rows of the matrix A is equal to the number of linearly independent columns of A.

Then

Theorem

- The number of linearly independent rows of the matrix A is equal to the number of linearly independent columns of A.

Thus

- In particular, the rank of A is also equal to the number of linearly independent columns, and hence to the dimension of the column space of A

Then

Theorem

- The number of linearly independent rows of the matrix A is equal to the number of linearly independent columns of A.

Thus

- In particular, the rank of A is also equal to the number of linearly independent columns, and hence to the dimension of the column space of A

Therefore

- The number of linearly independent columns of A is then just the number of leading entries in the Gauss-Jordan form of A which is, as we know, the same as the rank of A.

Proof of the theorem (Dimension Theorem)

First

- The rank of A is the same as the rank of the Gauss-Jordan form of A which is equal to the number of leading entries in the Gauss-Jordan form.

Proof of the theorem (Dimension Theorem)

First

- The rank of A is the same as the rank of the Gauss-Jordan form of A which is equal to the number of leading entries in the Gauss-Jordan form.

Additionally

- The dimension of the null space is equal to the number of free variables in the reduced echelon (Gauss-Jordan) form of A.

Proof of the theorem (Dimension Theorem)

First

- The rank of A is the same as the rank of the Gauss-Jordan form of A which is equal to the number of leading entries in the Gauss-Jordan form.

Additionally

- The dimension of the null space is equal to the number of free variables in the reduced echelon (Gauss-Jordan) form of A.

Then

We know further that the number of free variables plus the number of leading entries is exactly the number of columns.

Finally

We have

$$
\operatorname{dim}(\operatorname{domain}(f))=\operatorname{dim}(\operatorname{Range}(f))+\operatorname{dim}(\operatorname{Ker}(f))
$$

Outline

- Introduction
- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem

(2) Derivative of Transformations

- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation
(3) Linear Regression
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $w^{T} x+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation

4. Principal Component Analysis

- Karhunen-Loeve Transform
- Projecting the Data
- Lagrange Multipliers
- The Process
- Example

5. Singular Value Decomposition

- Introduction
- Image Compression

As we know

Many Times

We want to obtain a maximum or a minimum of a cost function expressed in terms of matrices....

As we know

Many Times

We want to obtain a maximum or a minimum of a cost function expressed in terms of matrices....

We need then to define matrix derivatives

Thus, this discussion is useful in Machine Learning.

Basic Definition

Let $\psi(x)=\boldsymbol{y}$
Where \boldsymbol{y} is an m-element vector, and \boldsymbol{x} is an n-element vector

Basic Definition

Let $\psi(\boldsymbol{x})=\boldsymbol{y}$

Where \boldsymbol{y} is an m-element vector, and \boldsymbol{x} is an n-element vector
Then, we define the derivative with respect to a vector

$$
\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}}=\left[\begin{array}{cccc}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{2}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial y_{m}}{\partial x_{1}} & \frac{\partial y_{m}}{\partial x_{2}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right]
$$

What is this

The Matrix denotes the $m \times n$ matrix of first order partial derivatives

- Such a matrix is called the Jacobian matrix of the transformation $\psi(\boldsymbol{x})$.

What is this

The Matrix denotes the $m \times n$ matrix of first order partial derivatives

- Such a matrix is called the Jacobian matrix of the transformation $\psi(\boldsymbol{x})$.

Then, we can get our first ideas on derivatives

- For Linear Transformations.

Outline

Linear Transformation

- Introduction
- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation

3 Linear Regression

- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
(4) Principal Component Analysis
-

Karhunen-Loeve Transform

- Projecting the Data
- Lagrange Multipliers
- The Process
- Example

5. Singular Value Decomposition

- Introduction
- Image Compression

三
Cinvestav

Derivative of $\boldsymbol{y}=A \boldsymbol{x}$

Theorem

- Let $\boldsymbol{y}=A \boldsymbol{x}$ where \boldsymbol{y} is a $m \times 1, \boldsymbol{x}$ is a $n \times 1, A$ is a $m \times n$ and A does not depend on \boldsymbol{x}, then

$$
\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}}=A
$$

Proof

Each $i^{\text {th }}$ element of \boldsymbol{y} is given by

$$
y_{i}=\sum_{k=1}^{N} a_{i k} x_{k}
$$

Proof

Each $i^{\text {th }}$ element of \boldsymbol{y} is given by

$$
y_{i}=\sum_{k=1}^{N} a_{i k} x_{k}
$$

We have that

$$
\frac{\partial y_{i}}{\partial x_{j}}=a_{i j}
$$

for all $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$

Proof

Each $i^{\text {th }}$ element of y is given by

$$
y_{i}=\sum_{k=1}^{N} a_{i k} x_{k}
$$

We have that

$$
\frac{\partial y_{i}}{\partial x_{j}}=a_{i j}
$$

for all $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$

Hence

$$
\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}}=A
$$

Outline

Linear Transformation

－
Introduction
－Functions that can be defined using matrices
－Linear Functions
－Kernel and Range
－The Matrix of a Linear Transformation
－Going Back to Homogeneous Equations
－The Rank－Nullity Theorem

（2）Derivative of Transformations

－Introduction
－Derivative of a Linear Transformation
－Derivative of a Quadratic Transformation
（3）Linear Regression
－The Simplest Functions
－Splitting the Space
－Defining the Decision Surface
－Properties of the Hyperplane $w^{T} \boldsymbol{x}+w_{0}$
－Augmenting the Vector
－Least Squared Error Procedure
O The Geometry of a Two－Category Linearly－Separable Case
－The Error Idea
－The Final Error Equation
4 Principal Component Analysis
－
Karhunen－Loeve Transform
－Projecting the Data
－Lagrange Multipliers
－The Process
－Example
（5）Singular Value DecompositionIntroduction
－Image Compression

Derivative of $\boldsymbol{y}^{T} A \boldsymbol{x}$

Theorem

- Let the scalar α be defined by

$$
\alpha=\boldsymbol{y}^{T} A \boldsymbol{x}
$$

Derivative of $\boldsymbol{y}^{T} A \boldsymbol{x}$

Theorem

- Let the scalar α be defined by

$$
\alpha=\boldsymbol{y}^{T} A \boldsymbol{x}
$$

where

\boldsymbol{y} is a $m \times 1, \boldsymbol{x}$ is a $n \times 1, A$ is a $m \times n$ and A does not depend on \boldsymbol{x} and \boldsymbol{y}, then

$$
\frac{\partial \alpha}{\partial \boldsymbol{x}}=\boldsymbol{y}^{T} A \text { and } \frac{\partial \alpha}{\partial \boldsymbol{y}}=\boldsymbol{x}^{T} A^{T}
$$

Proof

Define

$$
\boldsymbol{w}^{T}=\boldsymbol{y}^{T} A
$$

Proof

Define

$$
\boldsymbol{w}^{T}=\boldsymbol{y}^{T} A
$$

Note

$$
\alpha=\boldsymbol{w}^{T} \boldsymbol{x}
$$

Proof

Define

$$
\boldsymbol{w}^{T}=\boldsymbol{y}^{T} A
$$

Note

$$
\alpha=\boldsymbol{w}^{T} \boldsymbol{x}
$$

By the previous theorem

$$
\frac{\partial \alpha}{\partial \boldsymbol{x}}=\boldsymbol{w}^{T}=\boldsymbol{y}^{T} A
$$

In a similar way, you can prove the other statement.

Outline

0
Introduction

- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation

(3) Linear Regression

- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
-

The Error Idea

- The Final Error Equation
(4) Principal Component AnalysisKarhunen-Loeve Transform
-

Projecting the Data
-
Lagrange Multipliers
-
The Process
-
Example
(5) Singular Value DecompositionIntroduction
Image Compression

What is it?

First than anything, we have a parametric model!!!
Here, we have an hyperplane as a model:

$$
\begin{equation*}
g(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}+w_{0} \tag{1}
\end{equation*}
$$

Note: $\boldsymbol{w}^{T} \boldsymbol{x}$ is also know as dot product

What is it?

First than anything, we have a parametric model!!!

Here, we have an hyperplane as a model:

$$
\begin{equation*}
g(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}+w_{0} \tag{1}
\end{equation*}
$$

Note: $\boldsymbol{w}^{T} \boldsymbol{x}$ is also know as dot product

In the case of \mathbb{R}^{2}

We have:

$$
\begin{equation*}
g(\boldsymbol{x})=\left(w_{1}, w_{2}\right)\binom{x_{1}}{x_{2}}+w_{0}=w_{1} x_{1}+w_{2} x_{2}+w_{0} \tag{2}
\end{equation*}
$$

Example

Hyperplane in \mathbb{R}^{3}

Outline

Linear Transformation
－Introduction
－Functions that can be defined using matrices
－Linear Functions
－Kernel and Range
－The Matrix of a Linear Transformation
－Going Back to Homogeneous Equations
－The Rank－Nullity Theorem
（2）Derivative of Transformations
－Introduction
－Derivative of a Linear Transformation
－Derivative of a Quadratic Transformation

（3）Linear Regression

－The Simplest Functions
－Splitting the Space
－Defining the Decision Surface
－Properties of the Hyperplane $w^{T} x+w_{0}$
－Augmenting the Vector
－Least Squared Error Procedure
－The Geometry of a Two－Category Linearly－Separable Case
－The Error Idea
－The Final Error Equation
4．Principal Component Analysis
O Karhunen－Loeve Transform
－Projecting the Data
－Lagrange Multipliers
－The Process
－Example
（5）Singular Value Decomposition
－Introduction
－Image Compression

Splitting The Space \mathbb{R}^{2}

Using a simple straight line (Hyperplane)

Splitting the Space?

For example, assume the following vector \boldsymbol{w} and constant w_{0}

$$
\boldsymbol{w}=(-1,2)^{T} \text { and } w_{0}=0
$$

Splitting the Space?

For example, assume the following vector \boldsymbol{w} and constant w_{0}

$$
\boldsymbol{w}=(-1,2)^{T} \text { and } w_{0}=0
$$

Hyperplane

Then, we have

The following results

$$
\begin{aligned}
& g\left(\binom{1}{2}\right)=(-1,2)\binom{1}{2}=-1 \times 1+2 \times 2=3 \\
& g\left(\binom{3}{1}\right)=(-1,2)\binom{3}{1}=-1 \times 3+2 \times 1=-1
\end{aligned}
$$

YES!!! We have a positive side and a negative side!!!

Outline

0
Introduction
－Functions that can be defined using matrices
－Linear Functions
－Kernel and Range
－The Matrix of a Linear Transformation
－Going Back to Homogeneous Equations
－The Rank－Nullity Theorem
（2）Derivative of Transformations
－Introduction
－Derivative of a Linear Transformation
－Derivative of a Quadratic Transformation

（3）Linear Regression

－The Simplest Functions
－Splitting the Space
－Defining the Decision Surface
－Properties of the Hyperplane $w^{T} x+w_{0}$
－Augmenting the Vector
－Least Squared Error Procedure
O The Geometry of a Two－Category Linearly－Separable CaseThe Error Idea
－The Final Error Equation
4 Principal Component Analysis
－
Karhunen－Loeve Transform
－
Projecting the Data
－
Lagrange Multipliers
0
The Process
－
Example
（5）Singular Value DecompositionIntroduction
Image Compression

The Decision Surface

The equation $g(x)=0$ defines a decision surface
Separating the elements in classes, ω_{1} and ω_{2}.

The Decision Surface

The equation $g(x)=0$ defines a decision surface
Separating the elements in classes, ω_{1} and ω_{2}.

When $g(x)$ is linear the decision surface is an hyperplane
Now assume \boldsymbol{x}_{1} and \boldsymbol{x}_{2} are both on the decision surface

$$
\begin{aligned}
\boldsymbol{w}^{T} \boldsymbol{x}_{1}+w_{0} & =0 \\
\boldsymbol{w}^{T} \boldsymbol{x}_{2}+w_{0} & =0
\end{aligned}
$$

The Decision Surface

The equation $g(x)=0$ defines a decision surface
Separating the elements in classes, ω_{1} and ω_{2}.
When $g(x)$ is linear the decision surface is an hyperplane
Now assume \boldsymbol{x}_{1} and \boldsymbol{x}_{2} are both on the decision surface

$$
\begin{aligned}
\boldsymbol{w}^{T} \boldsymbol{x}_{1}+w_{0} & =0 \\
\boldsymbol{w}^{T} \boldsymbol{x}_{2}+w_{0} & =0
\end{aligned}
$$

Thus

$$
\begin{equation*}
\boldsymbol{w}^{T} \boldsymbol{x}_{1}+w_{0}=\boldsymbol{w}^{T} \boldsymbol{x}_{2}+w_{0} \tag{3}
\end{equation*}
$$

Defining a Decision Surface

Then

$$
\begin{equation*}
\boldsymbol{w}^{T}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)=0 \tag{4}
\end{equation*}
$$

Therefore

$x_{1}-x_{2}$ lives in the hyperplane i.e. it is perpendicular to \boldsymbol{w}^{T}

- Remark: any vector in the hyperplane is a linear combination of elements in a basis
- Therefore any vector in the plane is perpendicular to \boldsymbol{w}^{T}

Therefore

The space is split in two regions (Example in \mathbb{R}^{3}) by the hyperplane H

Outline

0
Introduction
－Functions that can be defined using matrices
－Linear Functions
－Kernel and Range
－The Matrix of a Linear Transformation
－Going Back to Homogeneous Equations
－The Rank－Nullity Theorem
（2）Derivative of Transformations
－Introduction
－Derivative of a Linear Transformation
－Derivative of a Quadratic Transformation

（3）Linear Regression

－The Simplest Functions
－Splitting the Space
－Defining the Decision Surface
－Properties of the Hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$
－Augmenting the Vector
－Least Squared Error Procedure
The Geometry of a Two－Category Linearly－Separable Case
－
The Error Idea
－The Final Error Equation
4 Principal Component AnalysisKarhunen－Loeve Transform
－
Projecting the Data
－ 1
Lagrange Multipliers
－
The Process
－
Example
（5）Singular Value DecompositionIntroduction
Image Compression

Some Properties of the Hyperplane

Given that $g(x)>0$ if $x \in \mathcal{R}_{1}$

It is more

We can say the following

- Any $\boldsymbol{x} \in \mathcal{R}_{1}$ is on the positive side of H.

It is more

We can say the following

- Any $\boldsymbol{x} \in \mathcal{R}_{1}$ is on the positive side of H.
- Any $\boldsymbol{x} \in \mathcal{R}_{2}$ is on the negative side of H.

It is more

We can say the following

- Any $\boldsymbol{x} \in \mathcal{R}_{1}$ is on the positive side of H.
- Any $\boldsymbol{x} \in \mathcal{R}_{2}$ is on the negative side of H.

In addition, $g(\boldsymbol{x})$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H
First, we express any \boldsymbol{x} as follows

$$
\boldsymbol{x}=\boldsymbol{x}_{p}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}
$$

It is more

We can say the following

- Any $\boldsymbol{x} \in \mathcal{R}_{1}$ is on the positive side of H.
- Any $\boldsymbol{x} \in \mathcal{R}_{2}$ is on the negative side of H.

In addition, $g(\boldsymbol{x})$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H
First, we express any \boldsymbol{x} as follows

$$
\boldsymbol{x}=\boldsymbol{x}_{p}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}
$$

Where

- \boldsymbol{x}_{p} is the normal projection of \boldsymbol{x} onto H.

It is more

We can say the following

- Any $\boldsymbol{x} \in \mathcal{R}_{1}$ is on the positive side of H.
- Any $\boldsymbol{x} \in \mathcal{R}_{2}$ is on the negative side of H.

In addition, $g(\boldsymbol{x})$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H
First, we express any \boldsymbol{x} as follows

$$
\boldsymbol{x}=\boldsymbol{x}_{p}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}
$$

Where

- \boldsymbol{x}_{p} is the normal projection of \boldsymbol{x} onto H.
- r is the desired distance

It is more

We can say the following

- Any $\boldsymbol{x} \in \mathcal{R}_{1}$ is on the positive side of H.
- Any $\boldsymbol{x} \in \mathcal{R}_{2}$ is on the negative side of H.

In addition, $g(\boldsymbol{x})$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H
First, we express any \boldsymbol{x} as follows

$$
\boldsymbol{x}=\boldsymbol{x}_{p}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}
$$

Where

- \boldsymbol{x}_{p} is the normal projection of \boldsymbol{x} onto H.
- r is the desired distance
- Positive, if \boldsymbol{x} is in the positive side

It is more

We can say the following

- Any $\boldsymbol{x} \in \mathcal{R}_{1}$ is on the positive side of H.
- Any $\boldsymbol{x} \in \mathcal{R}_{2}$ is on the negative side of H.

In addition, $g(x)$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H
First, we express any \boldsymbol{x} as follows

$$
\boldsymbol{x}=\boldsymbol{x}_{p}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}
$$

Where

- \boldsymbol{x}_{p} is the normal projection of \boldsymbol{x} onto H.
- r is the desired distance
- Positive, if \boldsymbol{x} is in the positive side
- Negative, if \boldsymbol{x} is in the negative side

We have something like this

We have then

Now
Since $g\left(x_{p}\right)=0$
We have that

$$
g(\boldsymbol{x})=g\left(\boldsymbol{x}_{p}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right)
$$

Now
Since $g\left(x_{p}\right)=0$
We have that

$$
\begin{aligned}
g(\boldsymbol{x}) & =g\left(\boldsymbol{x}_{p}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right) \\
& =\boldsymbol{w}^{T}\left(\boldsymbol{x}_{p}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right)+w_{0}
\end{aligned}
$$

Now

Since $g\left(x_{p}\right)=0$
We have that

$$
\begin{aligned}
g(\boldsymbol{x}) & =g\left(\boldsymbol{x}_{p}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right) \\
& =\boldsymbol{w}^{T}\left(\boldsymbol{x}_{p}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right)+w_{0} \\
& =\boldsymbol{w}^{T} \boldsymbol{x}_{p}+w_{0}+r \frac{\boldsymbol{w}^{T} \boldsymbol{w}}{\|\boldsymbol{w}\|}
\end{aligned}
$$

Now

Since $g\left(x_{p}\right)=0$

We have that

$$
\begin{aligned}
g(\boldsymbol{x}) & =g\left(\boldsymbol{x}_{p}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right) \\
& =\boldsymbol{w}^{T}\left(\boldsymbol{x}_{p}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right)+w_{0} \\
& =\boldsymbol{w}^{T} \boldsymbol{x}_{p}+w_{0}+r \frac{\boldsymbol{w}^{T} \boldsymbol{w}}{\|\boldsymbol{w}\|} \\
& =g\left(\boldsymbol{x}_{\boldsymbol{p}}\right)+r \frac{\|\boldsymbol{w}\|^{2}}{\|\boldsymbol{w}\|}
\end{aligned}
$$

Now

Since $g\left(x_{p}\right)=0$
We have that

$$
\begin{aligned}
g(\boldsymbol{x}) & =g\left(\boldsymbol{x}_{p}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right) \\
& =\boldsymbol{w}^{T}\left(\boldsymbol{x}_{p}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right)+w_{0} \\
& =\boldsymbol{w}^{T} \boldsymbol{x}_{p}+w_{0}+r \frac{\boldsymbol{w}^{T} \boldsymbol{w}}{\|\boldsymbol{w}\|} \\
& =g\left(\boldsymbol{x}_{\boldsymbol{p}}\right)+r \frac{\|\boldsymbol{w}\|^{2}}{\|\boldsymbol{w}\|} \\
& =r\|\boldsymbol{w}\|
\end{aligned}
$$

Then, we have

Now

Since $g\left(x_{p}\right)=0$
We have that

$$
\begin{aligned}
g(\boldsymbol{x}) & =g\left(\boldsymbol{x}_{p}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right) \\
& =\boldsymbol{w}^{T}\left(\boldsymbol{x}_{p}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right)+w_{0} \\
& =\boldsymbol{w}^{T} \boldsymbol{x}_{p}+w_{0}+r \frac{\boldsymbol{w}^{T} \boldsymbol{w}}{\|\boldsymbol{w}\|} \\
& =g\left(\boldsymbol{x}_{\boldsymbol{p}}\right)+r \frac{\|\boldsymbol{w}\|^{2}}{\|\boldsymbol{w}\|} \\
& =r\|\boldsymbol{w}\|
\end{aligned}
$$

Then, we have

$$
\begin{equation*}
r=\frac{g(\boldsymbol{x})}{\|\boldsymbol{w}\|} \tag{5}
\end{equation*}
$$

In particular

The distance from the origin to H

$$
\begin{equation*}
r=\frac{g(\mathbf{0})}{\|\boldsymbol{w}\|}=\frac{\boldsymbol{w}^{T}(\mathbf{0})+w_{0}}{\|\boldsymbol{w}\|}=\frac{w_{0}}{\|\boldsymbol{w}\|} \tag{6}
\end{equation*}
$$

In particular

The distance from the origin to H

$$
\begin{equation*}
r=\frac{g(\mathbf{0})}{\|\boldsymbol{w}\|}=\frac{\boldsymbol{w}^{T}(\mathbf{0})+w_{0}}{\|\boldsymbol{w}\|}=\frac{w_{0}}{\|\boldsymbol{w}\|} \tag{6}
\end{equation*}
$$

Remarks

- If $w_{0}>0$, the origin is on the positive side of H.

In particular

The distance from the origin to H

$$
\begin{equation*}
r=\frac{g(\mathbf{0})}{\|\boldsymbol{w}\|}=\frac{\boldsymbol{w}^{T}(\mathbf{0})+w_{0}}{\|\boldsymbol{w}\|}=\frac{w_{0}}{\|\boldsymbol{w}\|} \tag{6}
\end{equation*}
$$

Remarks

- If $w_{0}>0$, the origin is on the positive side of H.
- If $w_{0}<0$, the origin is on the negative side of H.

In particular

The distance from the origin to H

$$
\begin{equation*}
r=\frac{g(\mathbf{0})}{\|\boldsymbol{w}\|}=\frac{\boldsymbol{w}^{T}(\mathbf{0})+w_{0}}{\|\boldsymbol{w}\|}=\frac{w_{0}}{\|\boldsymbol{w}\|} \tag{6}
\end{equation*}
$$

Remarks

- If $w_{0}>0$, the origin is on the positive side of H.
- If $w_{0}<0$, the origin is on the negative side of H.
- If $w_{0}=0$, the hyperplane has the homogeneous form $\boldsymbol{w}^{T} \boldsymbol{x}$ and hyperplane passes through the origin.

Outline

1 Linear Transformation

- Introduction
- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation

(3) Linear Regression
 - The Simplest Functions

- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $w^{T} x+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
(4) Principal Component AnalysisKarhunen-Loeve Transform
- Projecting the Data
- Lagrange Multipliers
- The Process
$-$
Example

15. Singular Value DecompositionIntroduction
Image Compression

We want to solve the independence of w_{0}
We would like w_{0} as part of the dot product by making $x_{0}=1$

$$
g(\boldsymbol{x})=w_{0} \times 1+\sum_{i=1}^{d} w_{i} x_{i}=
$$

We want to solve the independence of w_{0}
We would like w_{0} as part of the dot product by making $x_{0}=1$

$$
g(\boldsymbol{x})=w_{0} \times 1+\sum_{i=1}^{d} w_{i} x_{i}=w_{0} \times x_{0}+\sum_{i=1}^{d} w_{i} x_{i}=
$$

We want to solve the independence of w_{0}
We would like w_{0} as part of the dot product by making $x_{0}=1$

$$
\begin{equation*}
g(\boldsymbol{x})=w_{0} \times 1+\sum_{i=1}^{d} w_{i} x_{i}=w_{0} \times x_{0}+\sum_{i=1}^{d} w_{i} x_{i}=\sum_{i=0}^{d} w_{i} x_{i} \tag{7}
\end{equation*}
$$

By making

We want to solve the independence of w_{0}
We would like w_{0} as part of the dot product by making $x_{0}=1$

$$
\begin{equation*}
g(\boldsymbol{x})=w_{0} \times 1+\sum_{i=1}^{d} w_{i} x_{i}=w_{0} \times x_{0}+\sum_{i=1}^{d} w_{i} x_{i}=\sum_{i=0}^{d} w_{i} x_{i} \tag{7}
\end{equation*}
$$

By making

$$
\boldsymbol{x}_{a u g}=\left(\begin{array}{c}
1 \\
x_{1} \\
\vdots \\
x_{d}
\end{array}\right)=\binom{1}{\boldsymbol{x}}
$$

Where

We want to solve the independence of w_{0}
We would like w_{0} as part of the dot product by making $x_{0}=1$

$$
\begin{equation*}
g(\boldsymbol{x})=w_{0} \times 1+\sum_{i=1}^{d} w_{i} x_{i}=w_{0} \times x_{0}+\sum_{i=1}^{d} w_{i} x_{i}=\sum_{i=0}^{d} w_{i} x_{i} \tag{7}
\end{equation*}
$$

By making

$$
\boldsymbol{x}_{a u g}=\left(\begin{array}{c}
1 \\
x_{1} \\
\vdots \\
x_{d}
\end{array}\right)=\binom{1}{\boldsymbol{x}}
$$

Where

$\boldsymbol{x}_{\text {aug }}$ is called an augmented feature vector.

In a similar way

We have the augmented weight vector

$$
\boldsymbol{w}_{\text {aug }}=\left(\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{d}
\end{array}\right)=\binom{w_{0}}{\boldsymbol{w}}
$$

In a similar way

We have the augmented weight vector

$$
\boldsymbol{w}_{a u g}=\left(\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{d}
\end{array}\right)=\binom{w_{0}}{\boldsymbol{w}}
$$

Remarks

- The addition of a constant component to \boldsymbol{x} preserves all the distance relationship between samples.

In a similar way

We have the augmented weight vector

$$
\boldsymbol{w}_{a u g}=\left(\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{d}
\end{array}\right)=\binom{w_{0}}{\boldsymbol{w}}
$$

Remarks

- The addition of a constant component to \boldsymbol{x} preserves all the distance relationship between samples.
- The resulting $\boldsymbol{x}_{\text {aug }}$ vectors, all lie in a d-dimensional subspace which is the \boldsymbol{x}-space itself.

More Remarks

In addition

The hyperplane decision surface \widehat{H} defined by

$$
\boldsymbol{w}_{a u g}^{T} \boldsymbol{x}_{a u g}=0
$$

passes through the origin in $\boldsymbol{x}_{a u g}$-space.

More Remarks

In addition

The hyperplane decision surface \widehat{H} defined by

$$
\boldsymbol{w}_{a u g}^{T} \boldsymbol{x}_{a u g}=0
$$

passes through the origin in $\boldsymbol{x}_{a u g}$-space.

Even Though

The corresponding hyperplane H can be in any position of the \boldsymbol{x}-space.

More Remarks

In addition

The distance from \boldsymbol{y} to \hat{H} is:

$$
\frac{\left|\boldsymbol{w}_{a u g}^{T} \boldsymbol{x}_{a u g}\right|}{\left\|\boldsymbol{w}_{a u g}\right\|}=\frac{\left|g\left(\boldsymbol{x}_{a u g}\right)\right|}{\left\|\boldsymbol{w}_{a u g}\right\|}
$$

Now

Is $\|w\| \leq\left\|w_{\text {aug }}\right\|$

- Ideas?

$$
\sqrt{\sum_{i=1}^{d} w_{i}^{2}} \leq \sqrt{\sum_{i=1}^{d} w_{i}^{2}+w_{0}^{2}}
$$

Now

Is $\|w\| \leq\left\|w_{\text {aug }}\right\|$

- Ideas?

$$
\sqrt{\sum_{i=1}^{d} w_{i}^{2}} \leq \sqrt{\sum_{i=1}^{d} w_{i}^{2}+w_{0}^{2}}
$$

This mapping is quite useful
Because we only need to find a weight vector $\boldsymbol{w}_{\text {aug }}$ instead of finding the weight vector \boldsymbol{w} and the threshold w_{0}.

Outline

0
Introduction
－Functions that can be defined using matrices
－Linear Functions
－Kernel and Range
－The Matrix of a Linear Transformation
－Going Back to Homogeneous Equations
－The Rank－Nullity Theorem
（2）Derivative of Transformations
－Introduction
－Derivative of a Linear Transformation
－Derivative of a Quadratic Transformation

（3）Linear Regression

－The Simplest Functions
－Splitting the Space
－Defining the Decision Surface
－Properties of the Hyperplane $w^{T} x+w_{0}$
－Augmenting the Vector
－Least Squared Error Procedure
The Geometry of a Two－Category Linearly－Separable Case
－The Error Idea
－The Final Error Equation
4 Principal Component AnalysisKarhunen－Loeve Transform
－Projecting the Data
－Lagrange Multipliers
－The Process
－
Example
（5）Singular Value DecompositionIntroduction
Image Compression

Outline

1 Linear Transformation
0
Introduction

- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation

(3) Linear Regression

- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $w^{T} x+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
(4) Principal Component AnalysisKarhunen-Loeve Transform
-

Projecting the Data
-
Lagrange Multipliers
-
The Process
-
Example
(5) Singular Value DecompositionIntroduction
Image Compression

Initial Supposition

Suppose, we have

n samples $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$ some labeled ω_{1} and some labeled ω_{2}.

Initial Supposition

Suppose, we have

n samples $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$ some labeled ω_{1} and some labeled ω_{2}.
We want a vector weight \boldsymbol{w} such that

- $\boldsymbol{w}^{T} \boldsymbol{x}_{i}>0$, if $\boldsymbol{x}_{i} \in \omega_{1}$.

Initial Supposition

Suppose, we have

n samples $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$ some labeled ω_{1} and some labeled ω_{2}.
We want a vector weight \boldsymbol{w} such that

- $\boldsymbol{w}^{T} \boldsymbol{x}_{i}>0$, if $\boldsymbol{x}_{i} \in \omega_{1}$.
- $\boldsymbol{w}^{T} \boldsymbol{x}_{i}<0$, if $\boldsymbol{x}_{i} \in \omega_{2}$.

Initial Supposition

Suppose, we have

n samples $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$ some labeled ω_{1} and some labeled ω_{2}.

We want a vector weight \boldsymbol{w} such that

- $\boldsymbol{w}^{T} \boldsymbol{x}_{i}>0$, if $\boldsymbol{x}_{i} \in \omega_{1}$.
- $\boldsymbol{w}^{T} \boldsymbol{x}_{i}<0$, if $\boldsymbol{x}_{i} \in \omega_{2}$.

The name of this weight vector
It is called a separating vector or solution vector.

Now, assume the following

Imagine that your problem has two classes ω_{1} and ω_{2} in \mathbb{R}^{2}
(1) They are linearly separable!!!

Now, assume the following

Imagine that your problem has two classes ω_{1} and ω_{2} in \mathbb{R}^{2}
(1) They are linearly separable!!!
(2) You require to label them.

Now, assume the following

Imagine that your problem has two classes ω_{1} and ω_{2} in \mathbb{R}^{2}
(1) They are linearly separable!!!
(2) You require to label them.

We have a problem!!!
Which is the problem?

Now, assume the following

Imagine that your problem has two classes ω_{1} and ω_{2} in \mathbb{R}^{2}
(1) They are linearly separable!!!
(2) You require to label them.

We have a problem!!!

Which is the problem?

We do not know the hyperplane!!!
Thus, what distance each point has to the hyperplane?

A Simple Solution For Our Quandary

Label the Classes

- $\omega_{1} \Longrightarrow+1$
- $\omega_{2} \Longrightarrow-1$

A Simple Solution For Our Quandary

Label the Classes

- $\omega_{1} \Longrightarrow+1$
- $\omega_{2} \Longrightarrow-1$

We produce the following labels
(1) if $\boldsymbol{x} \in \omega_{1}$ then $y_{\text {ideal }}=g_{\text {ideal }}(\boldsymbol{x})=+1$.

A Simple Solution For Our Quandary

Label the Classes

- $\omega_{1} \Longrightarrow+1$
- $\omega_{2} \Longrightarrow-1$

We produce the following labels
(1) if $\boldsymbol{x} \in \omega_{1}$ then $y_{\text {ideal }}=g_{\text {ideal }}(\boldsymbol{x})=+1$.
(2) if $\boldsymbol{x} \in \omega_{2}$ then $y_{\text {ideal }}=g_{\text {ideal }}(\boldsymbol{x})=-1$.

A Simple Solution For Our Quandary

Label the Classes

- $\omega_{1} \Longrightarrow+1$
- $\omega_{2} \Longrightarrow-1$

We produce the following labels
(1) if $\boldsymbol{x} \in \omega_{1}$ then $y_{\text {ideal }}=g_{\text {ideal }}(\boldsymbol{x})=+1$.
(2) if $\boldsymbol{x} \in \omega_{2}$ then $y_{\text {ideal }}=g_{\text {ideal }}(\boldsymbol{x})=-1$.

Remark: We have a problem with this labels!!!

Outline

- Introduction
- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation

(3) Linear Regression

- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $w^{T} x+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure

The Geometry of a Two-Category Linearly-Separable Case

- The Error Idea
- The Final Error Equation

4 Principal Component Analysis

- Karhunen-Loeve Transform
- Projecting the Data
- Lagrange Multipliers
- The Process
- Example
(5) Singular Value Decomposition
- Introduction

三

- Image Compression

Now, What?

Assume true function f is given by

$$
\begin{equation*}
y_{n o i s e}=g_{n o i s e}(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}+e \tag{8}
\end{equation*}
$$

Now, What?

Assume true function f is given by

$$
\begin{equation*}
y_{\text {noise }}=g_{\text {noise }}(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}+e \tag{8}
\end{equation*}
$$

Where the e

It has a $e \sim N\left(\mu, \sigma^{2}\right)$

Now, What?

Assume true function f is given by

$$
\begin{equation*}
y_{\text {noise }}=g_{\text {noise }}(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}+e \tag{8}
\end{equation*}
$$

Where the e

It has a $e \sim N\left(\mu, \sigma^{2}\right)$

Thus, we can do the following

$$
\begin{equation*}
y_{\text {noise }}=g_{\text {noise }}(\boldsymbol{x})=g_{\text {ideal }}(\boldsymbol{x})+e \tag{9}
\end{equation*}
$$

Thus, we have

What to do?

$$
\begin{equation*}
e=y_{n o i s e}-g_{\text {ideal }}(\boldsymbol{x}) \tag{10}
\end{equation*}
$$

Thus, we have

What to do?

$$
\begin{equation*}
e=y_{n o i s e}-g_{\text {ideal }}(\boldsymbol{x}) \tag{10}
\end{equation*}
$$

Graphically

Then, we have

A TRICK... Quite a good one!!! Instead of using $y_{\text {noise }}$

$$
\begin{equation*}
e=y_{\text {noise }}-g_{\text {ideal }}(\boldsymbol{x}) \tag{11}
\end{equation*}
$$

Then, we have

A TRICK... Quite a good one!!! Instead of using $y_{\text {noise }}$

$$
\begin{equation*}
e=y_{\text {noise }}-g_{\text {ideal }}(\boldsymbol{x}) \tag{11}
\end{equation*}
$$

We use $y_{\text {ideal }}$

$$
\begin{equation*}
e=y_{\text {ideal }}-g_{\text {ideal }}(\boldsymbol{x}) \tag{12}
\end{equation*}
$$

Then, we have

A TRICK... Quite a good one!!! Instead of using $y_{\text {noise }}$

$$
\begin{equation*}
e=y_{\text {noise }}-g_{\text {ideal }}(\boldsymbol{x}) \tag{11}
\end{equation*}
$$

We use $y_{\text {ideal }}$

$$
\begin{equation*}
e=y_{\text {ideal }}-g_{\text {ideal }}(\boldsymbol{x}) \tag{12}
\end{equation*}
$$

We will see

How the geometry will solve the problem with using these labels.

Outline

Linear Transformation

- Introduction
- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation

(3) Linear Regression
 - The Simplest Functions

- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $w^{T} x+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
(4) Principal Component Analysis
- Karhunen-Loeve Transform
- Projecting the Data
- Lagrange Multipliers
- The Process
- Example

5. Singular Value Decomposition

- Introduction

三

- Image Compression

Here, we have multiple errors

What can we do?

Sum Over All the Errors

We can do the following

$$
\begin{equation*}
J(\boldsymbol{w})=\sum_{i=1}^{N} e_{i}^{2}=\sum_{i=1}^{N}\left(y_{i}-g_{\text {ideal }}\left(\boldsymbol{x}_{i}\right)\right)^{2} \tag{13}
\end{equation*}
$$

Remark: This is know as the Least Squared Error cost function

Sum Over All the Errors

We can do the following

$$
\begin{equation*}
J(\boldsymbol{w})=\sum_{i=1}^{N} e_{i}^{2}=\sum_{i=1}^{N}\left(y_{i}-g_{\text {ideal }}\left(\boldsymbol{x}_{i}\right)\right)^{2} \tag{13}
\end{equation*}
$$

Remark: This is know as the Least Squared Error cost function

Generalizing

- The dimensionality of each sample (data point) is d.

Sum Over All the Errors

We can do the following

$$
\begin{equation*}
J(\boldsymbol{w})=\sum_{i=1}^{N} e_{i}^{2}=\sum_{i=1}^{N}\left(y_{i}-g_{\text {ideal }}\left(\boldsymbol{x}_{i}\right)\right)^{2} \tag{13}
\end{equation*}
$$

Remark: This is know as the Least Squared Error cost function

Generalizing

- The dimensionality of each sample (data point) is d.
- You can extend each vector sample to be $\boldsymbol{x}^{T}=\left(\mathbf{1}, \boldsymbol{x}^{\prime}\right)$.

We can use a trick

The following function

$$
g_{\text {ideal }}(\boldsymbol{x})=\left(\begin{array}{ccccc}
1 & x_{1} & x_{2} & \ldots & x_{d}
\end{array}\right)\left(\begin{array}{c}
w_{0} \\
w_{2} \\
w_{3} \\
\vdots \\
w_{d}
\end{array}\right)=\boldsymbol{x}^{T} \boldsymbol{w}
$$

We can use a trick

The following function

$$
g_{\text {ideal }}(\boldsymbol{x})=\left(\begin{array}{ccccc}
1 & x_{1} & x_{2} & \ldots & x_{d}
\end{array}\right)\left(\begin{array}{c}
w_{0} \\
w_{2} \\
w_{3} \\
\vdots \\
w_{d}
\end{array}\right)=\boldsymbol{x}^{T} \boldsymbol{w}
$$

We can rewrite the error equation as

$$
\begin{equation*}
J(\boldsymbol{w})=\sum_{i=1}^{N}\left(y_{i}-g_{\text {ideal }}\left(\boldsymbol{x}_{i}\right)\right)^{2}=\sum_{i=1}^{N}\left(y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{w}\right)^{2} \tag{14}
\end{equation*}
$$

Furthermore

Then stacking all the possible estimations into the product Data Matrix and weight vector

$$
\boldsymbol{X} \boldsymbol{w}=\left(\begin{array}{cccccc}
1 & \left(\boldsymbol{x}_{1}\right)_{1} & \cdots & \left(\boldsymbol{x}_{1}\right)_{j} & \cdots & \left(\boldsymbol{x}_{1}\right)_{d} \\
\vdots & & & \vdots & & \vdots \\
1 & \left(\boldsymbol{x}_{i}\right)_{1} & & \left(\boldsymbol{x}_{i}\right)_{j} & & \left(\boldsymbol{x}_{i}\right)_{d} \\
\vdots & & & \vdots & & \vdots \\
1 & \left(\boldsymbol{x}_{N}\right)_{1} & \cdots & \left(\boldsymbol{x}_{N}\right)_{j} & \cdots & \left(\boldsymbol{x}_{N}\right)_{d}
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
w_{2} \\
w_{3} \\
\vdots \\
w_{d+1}
\end{array}\right)
$$

Note about other representations

We could have $\boldsymbol{x}^{T}=\left(x_{1}, x_{2}, \ldots, x_{d}, 1\right)$ thus

$$
\boldsymbol{X}=\left(\begin{array}{cccccc}
\left(\boldsymbol{x}_{1}\right)_{1} & \cdots & \left(\boldsymbol{x}_{1}\right)_{j} & \cdots & \left(\boldsymbol{x}_{1}\right)_{d} & 1 \tag{15}\\
& & \vdots & & \vdots & \vdots \\
\left(\boldsymbol{x}_{i}\right)_{1} & & \left(\boldsymbol{x}_{i}\right)_{j} & & \left(\boldsymbol{x}_{i}\right)_{d} & 1 \\
& & \vdots & & \vdots & \vdots \\
\left(\boldsymbol{x}_{N}\right)_{1} & \cdots & \left(\boldsymbol{x}_{N}\right)_{j} & \cdots & \left(\boldsymbol{x}_{N}\right)_{d} & 1
\end{array}\right)
$$

Then, we have the following trick with \boldsymbol{X}

With the Data Matrix

$$
\boldsymbol{X} w=\left(\begin{array}{c}
\boldsymbol{x}_{1}^{T} \boldsymbol{w} \tag{16}\\
\boldsymbol{x}_{2}^{T} \boldsymbol{w} \\
\boldsymbol{x}_{3}^{T} \boldsymbol{w} \\
\vdots \\
\boldsymbol{x}_{N}^{T} \boldsymbol{w}
\end{array}\right)
$$

Therefore

We have that

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{4}
\end{array}\right)-\left(\begin{array}{c}
\boldsymbol{x}_{1}^{T} \boldsymbol{w} \\
\boldsymbol{x}_{2}^{T} \boldsymbol{w} \\
\boldsymbol{x}_{3}^{T} \boldsymbol{w} \\
\vdots \\
\boldsymbol{x}_{N}^{T} \boldsymbol{w}
\end{array}\right)=\left(\begin{array}{c}
y_{1}-\boldsymbol{x}_{1}^{T} \boldsymbol{w} \\
y_{2}-\boldsymbol{x}_{2}^{T} \boldsymbol{w} \\
y_{3}-\boldsymbol{x}_{3}^{T} \boldsymbol{w} \\
\vdots \\
y_{4}-\boldsymbol{x}_{N}^{T} \boldsymbol{w}
\end{array}\right)
$$

Therefore

We have that

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{4}
\end{array}\right)-\left(\begin{array}{c}
\boldsymbol{x}_{1}^{T} \boldsymbol{w} \\
\boldsymbol{x}_{2}^{T} \boldsymbol{w} \\
\boldsymbol{x}_{3}^{T} \boldsymbol{w} \\
\vdots \\
\boldsymbol{x}_{N}^{T} \boldsymbol{w}
\end{array}\right)=\left(\begin{array}{c}
y_{1}-\boldsymbol{x}_{1}^{T} \boldsymbol{w} \\
y_{2}-\boldsymbol{x}_{2}^{T} \boldsymbol{w} \\
y_{3}-\boldsymbol{x}_{3}^{T} \boldsymbol{w} \\
\vdots \\
y_{4}-\boldsymbol{x}_{N}^{T} \boldsymbol{w}
\end{array}\right)
$$

Then, we have the following equality

$$
\left(\begin{array}{ccccc}
y_{1}-\boldsymbol{x}_{1}^{T} \boldsymbol{w} & y_{2}-\boldsymbol{x}_{2}^{T} \boldsymbol{w} & y_{3}-\boldsymbol{x}_{3}^{T} \boldsymbol{w} & \cdots & y_{4}-\boldsymbol{x}_{N}^{T} \boldsymbol{w}
\end{array}\right)\left(\begin{array}{c}
y_{1}-\boldsymbol{x}_{1}^{T} \boldsymbol{w} \\
y_{2}-\boldsymbol{x}_{2}^{T} \boldsymbol{w} \\
y_{3}-\boldsymbol{x}_{3}^{T} \boldsymbol{w} \\
\vdots \\
y_{4}-\boldsymbol{x}_{N}^{T} \boldsymbol{w}
\end{array}\right)=\sum_{i=1}^{N}\left(y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{w}\right)^{2}
$$

Then, we have

The following equality

$$
\begin{equation*}
\sum_{i=1}^{N}\left(y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{w}\right)^{2}=(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w})=\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}\|_{2}^{2} \tag{17}
\end{equation*}
$$

We can expand our quadratic formula!!!

Thus

$$
(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w})=\boldsymbol{y}^{T} \boldsymbol{y}-\boldsymbol{y}^{T} \boldsymbol{X} \boldsymbol{w}-\boldsymbol{w}^{T} \boldsymbol{X}^{T} y+\boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}
$$

We can expand our quadratic formula!!!

Thus

$$
(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w})=\boldsymbol{y}^{T} \boldsymbol{y}-\boldsymbol{y}^{T} \boldsymbol{X} \boldsymbol{w}-\boldsymbol{w}^{T} \boldsymbol{X}^{T} y+\boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}
$$

Now

- Derive with respect to \boldsymbol{w}

We can expand our quadratic formula!!!

Thus

$$
(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w})=\boldsymbol{y}^{T} \boldsymbol{y}-\boldsymbol{y}^{T} \boldsymbol{X} \boldsymbol{w}-\boldsymbol{w}^{T} \boldsymbol{X}^{T} y+\boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}
$$

Now

- Derive with respect to \boldsymbol{w}
- Assume that $\boldsymbol{X}^{T} \boldsymbol{X}$ is invertible

Therefore

We have the following equivalences

$$
\begin{equation*}
\frac{d \boldsymbol{w}^{T} A \boldsymbol{w}}{d \boldsymbol{w}}=\boldsymbol{w}^{T}\left(A+A^{T}\right), \frac{d \boldsymbol{w}^{T} A}{d \boldsymbol{w}}=A^{T} \tag{19}
\end{equation*}
$$

Therefore

We have the following equivalences

$$
\begin{equation*}
\frac{d \boldsymbol{w}^{T} A \boldsymbol{w}}{d \boldsymbol{w}}=\boldsymbol{w}^{T}\left(A+A^{T}\right), \frac{d \boldsymbol{w}^{T} A}{d \boldsymbol{w}}=A^{T} \tag{19}
\end{equation*}
$$

Now given that the transpose of a number is the number itself

$$
\boldsymbol{y}^{T} \boldsymbol{X} \boldsymbol{w}=\left[\boldsymbol{y}^{T} \boldsymbol{X} \boldsymbol{w}\right]^{T}=\boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{y}
$$

Then, when we derive by \boldsymbol{w}
We have then

$$
\frac{d\left(\boldsymbol{y}^{T} \boldsymbol{y}-2 \boldsymbol{w}^{T} \boldsymbol{X}^{T} y+\boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}\right)}{d \boldsymbol{w}}=-2 \boldsymbol{y}^{T} \boldsymbol{X}+\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}+\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)\right)
$$

Then, when we derive by \boldsymbol{w}
We have then

$$
\begin{aligned}
\frac{d\left(\boldsymbol{y}^{T} \boldsymbol{y}-2 \boldsymbol{w}^{T} \boldsymbol{X}^{T} y+\boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}\right)}{d \boldsymbol{w}} & =-2 \boldsymbol{y}^{T} \boldsymbol{X}+\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}+\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)\right) \\
& =-2 \boldsymbol{y}^{T} \boldsymbol{X}+2 \boldsymbol{w}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)
\end{aligned}
$$

Making this equal to the zero row vector

Then, when we derive by \boldsymbol{w}
We have then

$$
\begin{aligned}
\frac{d\left(\boldsymbol{y}^{T} \boldsymbol{y}-2 \boldsymbol{w}^{T} \boldsymbol{X}^{T} y+\boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}\right)}{d \boldsymbol{w}} & =-2 \boldsymbol{y}^{T} \boldsymbol{X}+\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}+\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)\right) \\
& =-2 \boldsymbol{y}^{T} \boldsymbol{X}+2 \boldsymbol{w}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)
\end{aligned}
$$

Making this equal to the zero row vector

$$
-2 \boldsymbol{y}^{T} \boldsymbol{X}+2 \boldsymbol{w}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)=0
$$

We apply the transpose

Then, when we derive by \boldsymbol{w}
We have then

$$
\begin{aligned}
\frac{d\left(\boldsymbol{y}^{T} \boldsymbol{y}-2 \boldsymbol{w}^{T} \boldsymbol{X}^{T} y+\boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}\right)}{d \boldsymbol{w}} & =-2 \boldsymbol{y}^{T} \boldsymbol{X}+\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}+\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)\right) \\
& =-2 \boldsymbol{y}^{T} \boldsymbol{X}+2 \boldsymbol{w}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)
\end{aligned}
$$

Making this equal to the zero row vector

$$
-2 \boldsymbol{y}^{T} \boldsymbol{X}+2 \boldsymbol{w}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)=0
$$

We apply the transpose

$$
\left[-2 \boldsymbol{y}^{T} \boldsymbol{X}+2 \boldsymbol{w}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)\right]^{T}=[0]^{T}
$$

Then, when we derive by \boldsymbol{w}
We have then

$$
\begin{aligned}
\frac{d\left(\boldsymbol{y}^{T} \boldsymbol{y}-2 \boldsymbol{w}^{T} \boldsymbol{X}^{T} y+\boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}\right)}{d \boldsymbol{w}} & =-2 \boldsymbol{y}^{T} \boldsymbol{X}+\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}+\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)\right) \\
& =-2 \boldsymbol{y}^{T} \boldsymbol{X}+2 \boldsymbol{w}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)
\end{aligned}
$$

Making this equal to the zero row vector

$$
-2 \boldsymbol{y}^{T} \boldsymbol{X}+2 \boldsymbol{w}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)=0
$$

We apply the transpose

$$
\begin{aligned}
{\left[-2 \boldsymbol{y}^{T} \boldsymbol{X}+2 \boldsymbol{w}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)\right]^{T} } & =[0]^{T} \\
-2 \boldsymbol{X}^{T} \boldsymbol{y}+2\left(\boldsymbol{X}^{T} \boldsymbol{X}\right) \boldsymbol{w} & =0 \text { (column vector) }
\end{aligned}
$$

Solving for \boldsymbol{w}

We have then

$$
\begin{equation*}
w=\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{y} \tag{20}
\end{equation*}
$$

Note: $\boldsymbol{X}^{T} \boldsymbol{X}$ is always positive semi-definite. If it is also invertible, it is positive definite.

Solving for \boldsymbol{w}

We have then

$$
\begin{equation*}
w=\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{y} \tag{20}
\end{equation*}
$$

Note: $\boldsymbol{X}^{T} \boldsymbol{X}$ is always positive semi-definite. If it is also invertible, it is positive definite.

Thus, How we get the discriminant function?

Any Ideas?

The Final Discriminant Function

Very Simple!!!

$$
\begin{equation*}
g(\boldsymbol{x})=\boldsymbol{x}^{T} \boldsymbol{w}=\boldsymbol{x}^{T}\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{y} \tag{21}
\end{equation*}
$$

Outline

\bigcirc
Introduction
－Functions that can be defined using matrices
－Linear Functions
－Kernel and Range
－The Matrix of a Linear Transformation
－Going Back to Homogeneous Equations
－The Rank－Nullity Theorem
（2）Derivative of Transformations
－Introduction
－Derivative of a Linear Transformation
－Derivative of a Quadratic Transformation
（3）Linear Regression
－The Simplest Functions
－Splitting the Space
－Defining the Decision Surface
－Properties of the Hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$
－Augmenting the Vector
－Least Squared Error Procedure
－The Geometry of a Two－Category Linearly－Separable Case
－
The Error Idea
－The Final Error Equation
4 Principal Component Analysis
－Karhunen－Loeve Transform
－Projecting the Data
－
Lagrange Multipliers
－
The Process
－
Example
（5）Singular Value Decomposition
－Introduction
Image Compression

Also Known as Karhunen-Loeve Transform

Setup

- Consider a data set of observations $\left\{\boldsymbol{x}_{n}\right\}$ with $n=1,2, \ldots, N$ and $x_{n} \in R^{d}$.

Also Known as Karhunen-Loeve Transform

Setup

- Consider a data set of observations $\left\{\boldsymbol{x}_{n}\right\}$ with $n=1,2, \ldots, N$ and $x_{n} \in R^{d}$.

Goal

Project data onto space with dimensionality $m<d$ (We assume m is given)

Dimensional Variance

Remember the Variance Sample in \mathbb{R}

$$
\begin{equation*}
V A R(X)=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{N-1} \tag{22}
\end{equation*}
$$

Dimensional Variance

Remember the Variance Sample in \mathbb{R}

$$
\begin{equation*}
\operatorname{VAR}(X)=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{N-1} \tag{22}
\end{equation*}
$$

You can do the same in the case of two variables X and Y

$$
\begin{equation*}
\operatorname{COV}(x, y)=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{N-1} \tag{23}
\end{equation*}
$$

Now, Define

Given the data

$$
\begin{equation*}
\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N} \tag{24}
\end{equation*}
$$

where \boldsymbol{x}_{i} is a column vector

Now, Define

Given the data

$$
\begin{equation*}
\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N} \tag{24}
\end{equation*}
$$

where \boldsymbol{x}_{i} is a column vector

Construct the sample mean

$$
\begin{equation*}
\overline{\boldsymbol{x}}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i} \tag{25}
\end{equation*}
$$

Now, Define

Given the data

$$
\begin{equation*}
\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N} \tag{24}
\end{equation*}
$$

where \boldsymbol{x}_{i} is a column vector

Construct the sample mean

$$
\begin{equation*}
\overline{\boldsymbol{x}}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i} \tag{25}
\end{equation*}
$$

Center data

$$
\begin{equation*}
\boldsymbol{x}_{1}-\overline{\boldsymbol{x}}, \boldsymbol{x}_{2}-\overline{\boldsymbol{x}}, \ldots, \boldsymbol{x}_{N}-\overline{\boldsymbol{x}} \tag{26}
\end{equation*}
$$

Build the Sample Mean

The Covariance Matrix

$$
\begin{equation*}
S=\frac{1}{N-1} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T} \tag{27}
\end{equation*}
$$

Build the Sample Mean

The Covariance Matrix

$$
\begin{equation*}
S=\frac{1}{N-1} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T} \tag{27}
\end{equation*}
$$

Properties

(1) The $i j$ th value of S is equivalent to $\sigma_{i j}^{2}$.
(2) The $i i$ th value of S is equivalent to $\sigma_{i i}^{2}$.

Outline

0
Introduction

- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation

3 Linear Regression

- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
-

The Error Idea

- The Final Error Equation
(4) Principal Component Analysis
- Karhunen-Loeve Transform
- Projecting the Data
- Lagrange Multipliers
-

The Process
-
Example
(5) Singular Value DecompositionIntroduction

- Image Compression

Using S to Project Data

Using S to Project Data

For this we use a \boldsymbol{u}_{1}

- with $\boldsymbol{u}_{1}^{T} \boldsymbol{u}_{1}=1$, an orthonormal vector

Using S to Project Data

For this we use a \boldsymbol{u}_{1}

- with $\boldsymbol{u}_{1}^{T} \boldsymbol{u}_{1}=1$, an orthonormal vector

Question

- What is the Sample Variance of the Projected Data?

Outline

0
Introduction

- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation
(3) Linear Regression
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable CaseThe Error Idea
- The Final Error Equation
(4) Principal Component Analysis
- Karhunen-Loeve Transform
- Projecting the Data
- Lagrange Multipliers
- The Process
- Example
(5) Singular Value DecompositionIntroduction
三
Image Compression

Thus we have

Variance of the projected data

$$
\begin{equation*}
\frac{1}{N-1} \sum_{i=1}^{N}\left[\boldsymbol{u}_{1} \boldsymbol{x}_{i}-\boldsymbol{u}_{1} \overline{\boldsymbol{x}}\right]=\boldsymbol{u}_{1}^{T} S \boldsymbol{u}_{1} \tag{28}
\end{equation*}
$$

Thus we have

Variance of the projected data

$$
\begin{equation*}
\frac{1}{N-1} \sum_{i=1}^{N}\left[\boldsymbol{u}_{1} \boldsymbol{x}_{i}-\boldsymbol{u}_{1} \overline{\boldsymbol{x}}\right]=\boldsymbol{u}_{1}^{T} S \boldsymbol{u}_{1} \tag{28}
\end{equation*}
$$

Use Lagrange Multipliers to Maximize

$$
\begin{equation*}
\boldsymbol{u}_{1}^{T} S \boldsymbol{u}_{1}+\lambda_{1}\left(1-\boldsymbol{u}_{1}^{T} \boldsymbol{u}_{1}\right) \tag{29}
\end{equation*}
$$

Derive by \boldsymbol{u}_{1}

We get

$$
\begin{equation*}
S \boldsymbol{u}_{1}=\lambda_{1} \boldsymbol{u}_{1} \tag{30}
\end{equation*}
$$

Derive by \boldsymbol{u}_{1}

We get

$$
\begin{equation*}
S \boldsymbol{u}_{1}=\lambda_{1} \boldsymbol{u}_{1} \tag{30}
\end{equation*}
$$

Then
 \boldsymbol{u}_{1} is an eigenvector of S.

Derive by \boldsymbol{u}_{1}

We get

$$
\begin{equation*}
S \boldsymbol{u}_{1}=\lambda_{1} \boldsymbol{u}_{1} \tag{30}
\end{equation*}
$$

Then

\boldsymbol{u}_{1} is an eigenvector of S.

If we left-multiply by \boldsymbol{u}_{1}

$$
\begin{equation*}
\boldsymbol{u}_{1}^{T} S \boldsymbol{u}_{1}=\lambda_{1} \tag{31}
\end{equation*}
$$

What about the second eigenvector \boldsymbol{u}_{2}

We have the following optimization problem

$$
\begin{aligned}
\max & \boldsymbol{u}_{2}^{T} S \boldsymbol{u}_{2} \\
\text { s.t. } & \boldsymbol{u}_{2}^{T} \boldsymbol{u}_{2}=1 \\
& \boldsymbol{u}_{2}^{T} \boldsymbol{u}_{1}=0
\end{aligned}
$$

What about the second eigenvector \boldsymbol{u}_{2}

We have the following optimization problem

$$
\begin{aligned}
\max & \boldsymbol{u}_{2}^{T} S \boldsymbol{u}_{2} \\
\text { s.t. } & \boldsymbol{u}_{2}^{T} \boldsymbol{u}_{2}=1 \\
& \boldsymbol{u}_{2}^{T} \boldsymbol{u}_{1}=0
\end{aligned}
$$

Lagrangian

$$
L\left(\boldsymbol{u}_{2}, \lambda_{1}, \lambda_{2}\right)=\boldsymbol{u}_{2}^{T} S \boldsymbol{u}_{2}-\lambda_{1}\left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{2}-1\right)-\lambda_{2}\left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{1}-0\right)
$$

Explanation

First the constrained minimization

- We want to to maximize $\boldsymbol{u}_{2}^{T} S \boldsymbol{u}_{2}$

Explanation

First the constrained minimization

- We want to to maximize $\boldsymbol{u}_{2}^{T} S \boldsymbol{u}_{2}$

Given that the second eigenvector is orthonormal

- We have then $\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{2}=1$

Explanation

First the constrained minimization

- We want to to maximize $\boldsymbol{u}_{2}^{T} S \boldsymbol{u}_{2}$

Given that the second eigenvector is orthonormal

- We have then $\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{2}=1$

Under orthonormal vectors

- The covariance goes to zero

$$
\operatorname{cov}\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right)=\boldsymbol{u}_{2}^{T} S \boldsymbol{u}_{1}=\boldsymbol{u}_{2} \lambda_{1} \boldsymbol{u}_{1}=\lambda_{1} \boldsymbol{u}_{1}^{T} \boldsymbol{u}_{2}=0
$$

Meaning

The PCA's are perpendicular

$$
L\left(\boldsymbol{u}_{2}, \lambda_{1}, \lambda_{2}\right)=\boldsymbol{u}_{2}^{T} S \boldsymbol{u}_{2}-\lambda_{1}\left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{2}-1\right)-\lambda_{2}\left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{1}-0\right)
$$

Meaning

The PCA's are perpendicular

$$
L\left(\boldsymbol{u}_{2}, \lambda_{1}, \lambda_{2}\right)=\boldsymbol{u}_{2}^{T} S \boldsymbol{u}_{2}-\lambda_{1}\left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{2}-1\right)-\lambda_{2}\left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{1}-0\right)
$$

The the derivative with respect to \boldsymbol{u}_{2}

$$
\frac{\partial L\left(\boldsymbol{u}_{2}, \lambda_{1}, \lambda_{2}\right)}{\partial \boldsymbol{u}_{2}}=S \boldsymbol{u}_{2}-\lambda_{1} \boldsymbol{u}_{2}-\lambda_{2} \boldsymbol{u}_{1}=0
$$

Meaning

The PCA's are perpendicular

$$
L\left(\boldsymbol{u}_{2}, \lambda_{1}, \lambda_{2}\right)=\boldsymbol{u}_{2}^{T} S \boldsymbol{u}_{2}-\lambda_{1}\left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{2}-1\right)-\lambda_{2}\left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{1}-0\right)
$$

The the derivative with respect to u_{2}

$$
\frac{\partial L\left(\boldsymbol{u}_{2}, \lambda_{1}, \lambda_{2}\right)}{\partial \boldsymbol{u}_{2}}=S \boldsymbol{u}_{2}-\lambda_{1} \boldsymbol{u}_{2}-\lambda_{2} \boldsymbol{u}_{1}=0
$$

Then, we left multiply u_{1}

$$
\boldsymbol{u}_{1}^{T} S \boldsymbol{u}_{2}-\lambda_{1} \boldsymbol{u}_{1}^{T} \boldsymbol{u}_{2}-\lambda_{2} \boldsymbol{u}_{1}^{T} \boldsymbol{u}_{1}=0
$$

Then, we have that

Something Notable

$$
0-0-\lambda_{2}=0
$$

Then, we have that

Something Notable

$$
0-0-\lambda_{2}=0
$$

We have

$$
S \boldsymbol{u}_{2}-\lambda_{2} \boldsymbol{u}_{2}=0
$$

Then, we have that

Something Notable

$$
0-0-\lambda_{2}=0
$$

We have

$$
S \boldsymbol{u}_{2}-\lambda_{2} \boldsymbol{u}_{2}=0
$$

Implying

- \boldsymbol{u}_{2} is the eigenvector of S with second largest eigenvalue λ_{2}.

Thus

Variance will be the maximum when

$$
\begin{equation*}
\boldsymbol{u}_{1}^{T} S \boldsymbol{u}_{1}=\lambda_{1} \tag{32}
\end{equation*}
$$

is set to the largest eigenvalue. Also know as the First Principal Component

Thus

Variance will be the maximum when

$$
\begin{equation*}
\boldsymbol{u}_{1}^{T} S \boldsymbol{u}_{1}=\lambda_{1} \tag{32}
\end{equation*}
$$

is set to the largest eigenvalue. Also know as the First Principal Component

By Induction

It is possible for M-dimensional space to define M eigenvectors $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{M}$ of the data covariance S corresponding to $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{M}$ that maximize the variance of the projected data.

Thus

Variance will be the maximum when

$$
\begin{equation*}
\boldsymbol{u}_{1}^{T} S \boldsymbol{u}_{1}=\lambda_{1} \tag{32}
\end{equation*}
$$

is set to the largest eigenvalue. Also know as the First Principal Component

By Induction

It is possible for M-dimensional space to define M eigenvectors $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{M}$ of the data covariance S corresponding to $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{M}$ that maximize the variance of the projected data.

Computational Cost

(1) Full eigenvector decomposition $O\left(d^{3}\right)$
(2) Power Method $O\left(M d^{2}\right)$ "Golub and Van Loan, 1996)"
(3) Use the Expectation Maximization Algorithm

Outline

0
Introduction

- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation
(3) Linear Regression
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $w^{T} x+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
-

The Error Idea

- The Final Error Equation
(4) Principal Component Analysis
- Karhunen-Loeve Transform
- Projecting the Data
- Lagrange Multipliers
- The Process
- Example
(5) Singular Value Decomposition

Introduction
O Image Compression

We have the following steps

Determine covariance matrix

$$
\begin{equation*}
S=\frac{1}{N-1} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T} \tag{33}
\end{equation*}
$$

We have the following steps

Determine covariance matrix

$$
\begin{equation*}
S=\frac{1}{N-1} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T} \tag{33}
\end{equation*}
$$

Generate the decomposition

$$
S=U \Sigma U^{T}
$$

We have the following steps

Determine covariance matrix

$$
\begin{equation*}
S=\frac{1}{N-1} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T} \tag{33}
\end{equation*}
$$

Generate the decomposition

$$
S=U \Sigma U^{T}
$$

With

- Eigenvalues in Σ and eigenvectors in the columns of U.

Then

Project samples \boldsymbol{x}_{i} into subspaces $\operatorname{dim}=k$

$$
z_{i}=U_{K}^{T} \boldsymbol{x}_{i}
$$

- With U_{k} is a matrix with k columns

Outline

0
Introduction

- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation
(3) Linear Regression
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
(4) Principal Component Analysis
- Karhunen-Loeve Transform
- Projecting the Data
- Lagrange Multipliers
- The Process
- Example
(5) Singular Value DecompositionIntroduction

三

- Image Compression

Example

From Bishop

Example

From Bishop

Example

From Bishop

Outline

0
Introduction

- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation
(3) Linear Regression
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
-

The Error Idea

- The Final Error Equation
(4) Principal Component Analysis
- Karhunen-Loeve Transform
-

Projecting the Data

- Lagrange Multipliers
- The Process
- Example
(5) Singular Value Decomposition

What happened with no-square matrices

We can still diagonalize it

Thus, we can obtain certain properties.

What happened with no-square matrices

We can still diagonalize it

Thus, we can obtain certain properties.

We want to avoid the problems with

$$
S^{-1} A S
$$

What happened with no-square matrices

We can still diagonalize it

Thus, we can obtain certain properties.

We want to avoid the problems with

$$
S^{-1} A S
$$

The eigenvectors in S have three big problems
(1) They are usually not orthogonal.
(2) There are not always enough eigenvectors.
(3) $A \boldsymbol{x}=\lambda \boldsymbol{x}$ requires A to be square.

Therefore, we can look at the following problem

We have a series of vectors

$$
\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{d}\right\}
$$

Therefore, we can look at the following problem

We have a series of vectors

$$
\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{d}\right\}
$$

Then imagine a set of projection vectors and differences

$$
\left\{\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \ldots, \boldsymbol{\beta}_{d}\right\} \text { and }\left\{\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \ldots, \boldsymbol{\alpha}_{d}\right\}
$$

Therefore, we can look at the following problem

We have a series of vectors

$$
\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{d}\right\}
$$

Then imagine a set of projection vectors and differences

$$
\left\{\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \ldots, \boldsymbol{\beta}_{d}\right\} \text { and }\left\{\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \ldots, \boldsymbol{\alpha}_{d}\right\}
$$

We want to know a little bit of the relations between them

- After all, we are looking at the possibility of using them for our problem

Using the Hypotenuse
A little bit of Geometry, we get

Therefore

We have two possible quantities for each j

$$
\begin{aligned}
\boldsymbol{\alpha}_{j}^{T} \boldsymbol{\alpha}_{j} & =\boldsymbol{x}_{j}^{T} \boldsymbol{x}_{j}-\boldsymbol{a}_{j}^{T} \boldsymbol{a}_{j} \\
\boldsymbol{a}_{j}^{T} \boldsymbol{a}_{j} & =\boldsymbol{x}_{j}^{T} \boldsymbol{x}_{j}-\boldsymbol{\alpha}_{j}^{T} \boldsymbol{\alpha}_{j}
\end{aligned}
$$

Therefore

We have two possible quantities for each j

$$
\begin{aligned}
\boldsymbol{\alpha}_{j}^{T} \boldsymbol{\alpha}_{j} & =\boldsymbol{x}_{j}^{T} \boldsymbol{x}_{j}-\boldsymbol{a}_{j}^{T} \boldsymbol{a}_{j} \\
\boldsymbol{a}_{j}^{T} \boldsymbol{a}_{j} & =\boldsymbol{x}_{j}^{T} \boldsymbol{x}_{j}-\boldsymbol{\alpha}_{j}^{T} \boldsymbol{\alpha}_{j}
\end{aligned}
$$

Then, we can minimize and maximize given that $\boldsymbol{x}_{j}^{T} \boldsymbol{x}_{j}$ is a constant

$$
\begin{aligned}
& \min \sum_{j=1}^{n} \boldsymbol{\alpha}_{j}^{T} \boldsymbol{\alpha}_{j} \\
& \max \sum_{j=1}^{n} \boldsymbol{a}_{j}^{T} \boldsymbol{a}_{j}
\end{aligned}
$$

Actually this is know as the dual problem (Weak Duality)

An example of this

$$
\begin{aligned}
& \min \boldsymbol{w}^{T} \boldsymbol{x} \\
& s . t \mathrm{~A} \boldsymbol{x} \leq \boldsymbol{b} \\
& \boldsymbol{x} \geq 0
\end{aligned}
$$

Actually this is know as the dual problem (Weak Duality)

An example of this

$$
\begin{aligned}
& \min \boldsymbol{w}^{T} \boldsymbol{x} \\
& s . t \mathrm{~A} \boldsymbol{x} \leq \boldsymbol{b} \\
& \boldsymbol{x} \geq 0
\end{aligned}
$$

Then, using what is know as slack variables

$$
A \boldsymbol{x}+A^{\prime} \boldsymbol{x}=b
$$

Actually this is know as the dual problem (Weak Duality)
An example of this

$$
\begin{aligned}
& \min \boldsymbol{w}^{T} \boldsymbol{x} \\
& s . t \mathrm{~A} \boldsymbol{x} \leq \boldsymbol{b} \\
& \boldsymbol{x} \geq 0
\end{aligned}
$$

Then, using what is know as slack variables

$$
A \boldsymbol{x}+A^{\prime} \boldsymbol{x}=b
$$

Each row lives in the column space, but the y_{i} lives in the column space

$$
\left(A \boldsymbol{x}+A^{\prime} \boldsymbol{x}\right)_{i} \rightarrow y_{i} \text { and } \boldsymbol{x}^{\prime} \geq 0
$$

Then, we have that

Example

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

Then, we have that

Example

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

Element in the column space of dimensionality have three dimensions

- But in the row space their dimension is 2

Then, we have that

Example

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

Element in the column space of dimensionality have three dimensions

- But in the row space their dimension is 2

Properties

We have then

Stack such vectors that in the d-dimensional space

- In a matrix A of $n \times d$

$$
A=\left[\begin{array}{c}
\boldsymbol{a}_{1}^{T} \\
\boldsymbol{a}_{2}^{T} \\
\vdots \\
\boldsymbol{a}_{n}^{T}
\end{array}\right]
$$

We have then

Stack such vectors that in the d-dimensional space

- In a matrix A of $n \times d$

$$
A=\left[\begin{array}{c}
\boldsymbol{a}_{1}^{T} \\
\boldsymbol{a}_{2}^{T} \\
\vdots \\
\boldsymbol{a}_{n}^{T}
\end{array}\right]
$$

The matrix works as a Projection Matrix

- We are looking for a unit vector \boldsymbol{v} such that length of the projection is maximized.

Why? Do you remember the Projection to a single vector p ?

Definition of the projection under unitary vector

$$
\boldsymbol{p}=\frac{\boldsymbol{v}^{T} \boldsymbol{a}_{i}}{\boldsymbol{v}^{T} \boldsymbol{v}} \boldsymbol{v}=\left[\boldsymbol{v}^{T} \boldsymbol{a}_{i}\right] \boldsymbol{v}
$$

Why? Do you remember the Projection to a single vector p ?

Definition of the projection under unitary vector

$$
\boldsymbol{p}=\frac{\boldsymbol{v}^{T} \boldsymbol{a}_{i}}{\boldsymbol{v}^{T} \boldsymbol{v}} \boldsymbol{v}=\left[\boldsymbol{v}^{T} \boldsymbol{a}_{i}\right] \boldsymbol{v}
$$

Therefore the length of the projected vector is

$$
\left\|\left[\boldsymbol{v}^{T} \boldsymbol{a}_{i}\right] \boldsymbol{v}\right\|=\left|\boldsymbol{v}^{T} \boldsymbol{a}_{i}\right|
$$

Then

Thus with a little bit of notation

$$
A \boldsymbol{v}=\left[\begin{array}{c}
\boldsymbol{a}_{1}^{T} \\
\boldsymbol{a}_{2}^{T} \\
\vdots \\
\boldsymbol{a}_{d}^{T}
\end{array}\right] \boldsymbol{v}=\left[\begin{array}{c}
\boldsymbol{a}_{1}^{T} \boldsymbol{v} \\
\boldsymbol{a}_{2}^{T} \boldsymbol{v} \\
\vdots \\
\boldsymbol{a}_{d}^{T} \boldsymbol{v}
\end{array}\right]
$$

Then

Thus with a little bit of notation

$$
A \boldsymbol{v}=\left[\begin{array}{c}
\boldsymbol{a}_{1}^{T} \\
\boldsymbol{a}_{2}^{T} \\
\vdots \\
\boldsymbol{a}_{d}^{T}
\end{array}\right] \boldsymbol{v}=\left[\begin{array}{c}
\boldsymbol{a}_{1}^{T} \boldsymbol{v} \\
\boldsymbol{a}_{2}^{T} \boldsymbol{v} \\
\vdots \\
\boldsymbol{a}_{d}^{T} \boldsymbol{v}
\end{array}\right]
$$

Therefore

$$
\|A \boldsymbol{v}\|=\sqrt{\sum_{i=1}^{d}\left(\boldsymbol{a}_{i}^{T} \boldsymbol{v}\right)^{2}}
$$

Then

It is possible to ask to maximize the longitude of such vector (Singular Vector)

$$
\boldsymbol{v}_{1}=\arg \max _{\|\boldsymbol{v}\|=1}\|A \boldsymbol{v}\|
$$

Then

It is possible to ask to maximize the longitude of such vector (Singular Vector)

$$
\boldsymbol{v}_{1}=\arg \max _{\|\boldsymbol{v}\|=1}\|A \boldsymbol{v}\|
$$

Then, we can define the following singular value

$$
\sigma_{1}(A)=\left\|A \boldsymbol{v}_{1}\right\|
$$

This is known as

Definition

- The best-fit line problem describes the problem of finding the best line for a set of data points, where the quality of the line is measured by the sum of squared (perpendicular) distances of the points to the line.
- Remember, we are looking at the dual problem....

This is known as

Definition

- The best-fit line problem describes the problem of finding the best line for a set of data points, where the quality of the line is measured by the sum of squared (perpendicular) distances of the points to the line.
- Remember, we are looking at the dual problem....

Generalization

- This can be transferred to higher dimensions: One can find the best-fit d-dimensional subspace, so the subspace which minimizes the sum of the squared distances of the points to the subspace

Then, in a Greedy Fashion

The second singular vector v_{2}

$$
\boldsymbol{v}_{2}=\arg \max _{\boldsymbol{v} \perp \boldsymbol{v}_{1},\|\boldsymbol{v}\|=1}\|A \boldsymbol{v}\|
$$

Then, in a Greedy Fashion

The second singular vector \boldsymbol{v}_{2}

$$
\boldsymbol{v}_{2}=\arg \max _{\boldsymbol{v} \perp \boldsymbol{v}_{1},\|\boldsymbol{v}\|=1}\|A \boldsymbol{v}\|
$$

Them you go through this process

- Stop when we have found all the following vectors:

$$
\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}
$$

Then, in a Greedy Fashion

The second singular vector \boldsymbol{v}_{2}

$$
\boldsymbol{v}_{2}=\arg \max _{\boldsymbol{v} \perp \boldsymbol{v}_{1},\|\boldsymbol{v}\|=1}\|A \boldsymbol{v}\|
$$

Them you go through this process

- Stop when we have found all the following vectors:

$$
\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}
$$

As singular vectors and

$$
\arg \max _{\substack{\boldsymbol{v} \perp \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r} \\\|\boldsymbol{v}\|=1}}\|A \boldsymbol{v}\|
$$

Proving that the strategy is good

Theorem

- Let A be an $n \times d$ matrix where $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ are the singular vectors defined above. For $1 \leq k \leq r$, let V_{k} be the subspace spanned by $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}$. Then for each k, V_{k} is the best-fit k-dimensional subspace for A.

Proof

For $k=1$

- What about $k=2$? Let W be a best-fit 2- dimensional subspace for A.

Proof

For $k=1$

- What about $k=2$? Let W be a best-fit 2- dimensional subspace for A.

For any basis $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}$ of W

- $\left|A \boldsymbol{w}_{1}\right|^{2}+\left|A \boldsymbol{w}_{2}\right|^{2}$ is the sum of the squared lengths of the projections of the rows of A to W.

Proof

For $k=1$

- What about $k=2$? Let W be a best-fit 2- dimensional subspace for A.

For any basis $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}$ of W

- $\left|A \boldsymbol{w}_{1}\right|^{2}+\left|A \boldsymbol{w}_{2}\right|^{2}$ is the sum of the squared lengths of the projections of the rows of A to W.

Now, choose a basis $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}$ so that \boldsymbol{w}_{2} is perpendicular to \boldsymbol{v}_{1}

- This can be a unit vector perpendicular to \boldsymbol{v}_{1} projection in W.

Do you remember $\boldsymbol{v}_{1}=\arg \max _{\|\boldsymbol{v}\|=1}\|A \boldsymbol{v}\|$?

Therefore

$$
\left|A \boldsymbol{w}_{1}\right|^{2} \leq\left|A \boldsymbol{v}_{1}\right|^{2} \text { and }\left|A \boldsymbol{w}_{2}\right|^{2} \leq\left|A \boldsymbol{v}_{2}\right|^{2}
$$

$$
\left|A \boldsymbol{w}_{1}\right|^{2}+\left|A \boldsymbol{w}_{2}\right|^{2} \leq\left|A \boldsymbol{v}_{1}\right|^{2}+\left|A \boldsymbol{v}_{2}\right|^{2}
$$

Do you remember $\boldsymbol{v}_{1}=\arg \max _{\|\boldsymbol{v}\|=1}\|A \boldsymbol{v}\|$?

Therefore

$$
\left|A \boldsymbol{w}_{1}\right|^{2} \leq\left|A \boldsymbol{v}_{1}\right|^{2} \text { and }\left|A \boldsymbol{w}_{2}\right|^{2} \leq\left|A \boldsymbol{v}_{2}\right|^{2}
$$

Then

$$
\left|A \boldsymbol{w}_{1}\right|^{2}+\left|A \boldsymbol{w}_{2}\right|^{2} \leq\left|A \boldsymbol{v}_{1}\right|^{2}+\left|A \boldsymbol{v}_{2}\right|^{2}
$$

Do you remember $\boldsymbol{v}_{1}=\arg \max _{\|\boldsymbol{v}\|=1}\|A \boldsymbol{v}\|$?

Therefore

$$
\left|A \boldsymbol{w}_{1}\right|^{2} \leq\left|A \boldsymbol{v}_{1}\right|^{2} \text { and }\left|A \boldsymbol{w}_{2}\right|^{2} \leq\left|A \boldsymbol{v}_{2}\right|^{2}
$$

Then

$$
\left|A \boldsymbol{w}_{1}\right|^{2}+\left|A \boldsymbol{w}_{2}\right|^{2} \leq\left|A \boldsymbol{v}_{1}\right|^{2}+\left|A \boldsymbol{v}_{2}\right|^{2}
$$

In a similar way for $k>2$

- V_{k} is at least as good as W and hence is optimal.

Remarks

Every Matrix has a singular value decomposition

$$
A=U \Sigma V^{T}
$$

Remarks

Every Matrix has a singular value decomposition

$$
A=U \Sigma V^{T}
$$

Where

- The columns of U are an orthonormal basis for the column space.
- The columns of V are an orthonormal basis for the row space.

Remarks

Every Matrix has a singular value decomposition

$$
A=U \Sigma V^{T}
$$

Where

- The columns of U are an orthonormal basis for the column space.
- The columns of V are an orthonormal basis for the row space.
- The Σ is diagonal and the entries on its diagonal $\sigma_{i}=\Sigma_{i i}$ are positive real numbers, called the singular values of A.

Properties of the Singular Value Decomposition

First

The eigenvalues of the symmetric matrix $A^{T} A$ are equal to the square of the singular values of A

$$
A^{T} A=V \Sigma U^{T} U^{T} \Sigma V^{T}=V \Sigma^{2} V^{T}
$$

Properties of the Singular Value Decomposition

First

The eigenvalues of the symmetric matrix $A^{T} A$ are equal to the square of the singular values of A

$$
A^{T} A=V \Sigma U^{T} U^{T} \Sigma V^{T}=V \Sigma^{2} V^{T}
$$

Second

The rank of a matrix is equal to the number of non-zero singular values.

Outline

0
Introduction

- Functions that can be defined using matrices
- Linear Functions
- Kernel and Range
- The Matrix of a Linear Transformation
- Going Back to Homogeneous Equations
- The Rank-Nullity Theorem
(2) Derivative of Transformations
- Introduction
- Derivative of a Linear Transformation
- Derivative of a Quadratic Transformation
(3) Linear Regression
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$
- Augmenting the Vector
- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
(4) Principal Component Analysis
- Karhunen-Loeve Transform
- Projecting the Data
- Lagrange Multipliers
- The Process
- Example
(5) Singular Value Decomposition
- Introduction

O Image Compression

Singular Value Decomposition as Sums

The singular value decomposition can be viewed as a sum of rank 1 matrices

$$
\begin{equation*}
A=A_{1}+A_{2}+\ldots+A_{R} \tag{34}
\end{equation*}
$$

Singular Value Decomposition as Sums

The singular value decomposition can be viewed as a sum of rank 1 matrices

$$
\begin{equation*}
A=A_{1}+A_{2}+\ldots+A_{R} \tag{34}
\end{equation*}
$$

Why?

$$
\begin{array}{r}
\boldsymbol{u}_{1} A=U\left(\begin{array}{cccc}
\sigma_{1} & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{R}
\end{array}\right) V^{T}=\left(\begin{array}{llll}
\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \cdots & \boldsymbol{u}_{R}
\end{array}\right)\left(\begin{array}{c}
\sigma_{1} \boldsymbol{v}_{1}^{T} \\
\sigma_{2} \boldsymbol{v}_{2}^{T} \\
\vdots \\
\sigma_{R} \boldsymbol{v}_{R}^{T}
\end{array}\right) \\
\\
=\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{T}+\sigma_{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}^{T}+\cdots+\sigma_{R} \boldsymbol{u}_{R} \boldsymbol{v}_{R}^{T}
\end{array}
$$

Truncating

Truncating the singular value decomposition allows us to represent the matrix with less parameters

Truncating

Truncating the singular value decomposition allows us to represent the matrix with less parameters

For a 512×512

- Full Representation $512 \times 512=262,144$
- Rank 10 approximation $512 \times 10+10+10 \times 512=10,250$

Truncating

Truncating the singular value decomposition allows us to represent the matrix with less parameters

For a 512×512

- Full Representation $512 \times 512=262,144$
- Rank 10 approximation $512 \times 10+10+10 \times 512=10,250$
- Rank 40 approximation $512 \times 40+40+40 \times 512=41,000$

Truncating

Truncating the singular value decomposition allows us to represent the matrix with less parameters

For a 512×512

- Full Representation $512 \times 512=262,144$
- Rank 10 approximation $512 \times 10+10+10 \times 512=10,250$
- Rank 40 approximation $512 \times 40+40+40 \times 512=41,000$
- Rank 80 approximation $512 \times 80+80+80 \times 512=82,000$

