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Going further than solving Ax = y

We can go further
We can think on the matrix A as a function!!!

In general
A function f whose domain Rn and defines a rule that associate x ∈ Rn

to a vector y ∈ Rm

y = f (x) equivalently f : Rn −→ Rm

We like the second expression because
1 It is easy to identify the domain Rn

2 It is easy to find the range Rm

4 / 140



Going further than solving Ax = y

We can go further
We can think on the matrix A as a function!!!

In general
A function f whose domain Rn and defines a rule that associate x ∈ Rn

to a vector y ∈ Rm

y = f (x) equivalently f : Rn −→ Rm

We like the second expression because
1 It is easy to identify the domain Rn

2 It is easy to find the range Rm

4 / 140



Going further than solving Ax = y

We can go further
We can think on the matrix A as a function!!!

In general
A function f whose domain Rn and defines a rule that associate x ∈ Rn

to a vector y ∈ Rm

y = f (x) equivalently f : Rn −→ Rm

We like the second expression because
1 It is easy to identify the domain Rn

2 It is easy to find the range Rm

4 / 140



Going further than solving Ax = y

We can go further
We can think on the matrix A as a function!!!

In general
A function f whose domain Rn and defines a rule that associate x ∈ Rn

to a vector y ∈ Rm

y = f (x) equivalently f : Rn −→ Rm

We like the second expression because
1 It is easy to identify the domain Rn

2 It is easy to find the range Rm

4 / 140



Examples

f : R→ R3

f (t) =

 x (t)
y (t)
z (t)

 =

 t
3t2 + 1
sin (t)


This are called parametric functions

Depending on the context, it could represent the position or the
velocity of a mass point.
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A Classic Example

We have
if A is a m× n, we can use A to define a function.

We will call them

fA : Rn → Rm

In other words

fA (x) = Ax
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Example

Let

A2×3 =
(

1 2 3
4 5 6

)

This allows to define

fA

 x
y
z

 =
(

1 2 3
4 5 6

) x
y
z

 =
(

x+ 2y + z
4x+ 5y + 6z

)

We have
For each vector x ∈ R3 to the vector Ax ∈ R2
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We have

Definition
A function f : Rn → Rm is said to be linear if

1 f (x1 + x2) = f (x1) + f (x2)
2 f (cx) = cf (x)

for all x1,x2 ∈ Rn and for all the scalars c.

Thus
A linear function f is also known as a linear transformation.
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We have the following proposition

Proposition
f : Rn → Rm is linear ⇐⇒ for all vectors x1,x2 ∈ Rn and for all the
scalars c1, c2:

f (c1x1 + c2x2) = c1f (x1) + c2f (x2)

Proof
Any idea?
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Proof

If Am×n is a matrix, fA is a linear transformation
How?

First

fA (x1 + x2) = A (x1 + x2) = Ax1 +Ax2 = fA (x1) + fA (x2)

Second
What about fA (cx1)?
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We have

Definition (Actually related the null-space)
If f : Rn → Rm is linear, the kernel of f is defined by

Ker (f) = {v ∈ Rn|f (v) = 0}

Definition
If f : Rn → Rm is linear, the range of f is defined by

Range (f) = {y ∈ Rm|y = f (x) for somer x ∈ Rn}
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We have also the following Spaces

Row Space
We have that the span of the row vectors of A form a subspace.

Column Space
We have that the span of the column vectors of A, also, form a subspace.
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From This

It can be shown that
Ker (f) is a subspace of Rn

Also
Range (f) is a subspace of Rm
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Assume the following

Let

e1 =


1
0
...
0


n×1

, e3 =


0
1
...
0


n×1

, ..., en =


0
0
...
1


n×1

Then any vector x ∈ Rn

x =


x1
x2
...
xn

 = x1e1 + x2e2 + ...+ xnen
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Then

Applying f

f (x) = x1f (e1) + x2f (e2) + ...+ xnf (en)

A linear combination of elements

{f (e1) , f (e2) , ..., f (en)}

They are column vectors in Rm

A = (f (e1) |f (e2) |...|f (en))m×n
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Thus, we have

Finally, we have

f (x) = (f (e1) |f (e2) |...|f (en))x = Ax

Definition
The matrix A defined above for the function f is called the matrix of
f in the standard basis.
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Given an m× n matrix A

The set of all solutions to the homogeneous equation Ax
It is a subspace V of Rn.

Ax = 0

Remember how to prove the subspaces...

x2 + x2 ∈ V and cx ∈ V

Do you remember?
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Then, we have

Definition
This important subspace is called the null space of A, and is denoted
Null(A)

It is also known as

xH = {x|Ax = 0}
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Knowing that Range(f) and Ker(f) are sub-spaces

Which ones they are?
Any Idea?

Range(f)
The column space of the matrix A.

Ker(f)
It is the null space of A.
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We have a nice theorem

Dimension Theorem
Let f : Rn → Rm be linear. Then

dim (domain (f)) = dim (Range (f)) + dim (Ker (f))

Where
The dimension of V , written dim(V ), is the number of elements in any
basis of V .
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Rank and Nullity of a Matrix

Definition
The rank of the matrix A is the dimension of the row space of A, and
is denoted R(A).

Example
The rank of In×n is n.
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Then

Theorem
The rank of a matrix in Gauss-Jordan form is equal to the number of
leading variables.

Proof
In the G form of a matrix, every non-zero row has a leading 1, which
is the only non-zero entry in its column.

Then
No elementary row operation can zero out a leading 1, so these
non-zero rows are linearly independent.
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Thus

We have
Since all the other rows are zero, the dimension of the row space of
the Gauss-Jordan form is equal to the number of leading 1’s.

Finally
This is the same as the number of leading variables. Q.E.D.
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About the Nullity of the Matrix

Definition
The nullity of the matrix A is the dimension of the null space of A,
and is denoted by dim [N(A)].

Example
The nullity of I is 0.

30 / 140



About the Nullity of the Matrix

Definition
The nullity of the matrix A is the dimension of the null space of A,
and is denoted by dim [N(A)].

Example
The nullity of I is 0.

30 / 140



About the Nullity of the Matrix

Definition
The nullity of the matrix A is the dimension of the null space of A,
and is denoted by dim [N(A)].

Example
The nullity of I is 0.

30 / 140



Number of Free Variables

Theorem
The nullity of a matrix in Gauss-Jordan form is equal to the number of
free variables.

Proof
Suppose A is m× n, and that the Gauss-Jordan form has j leading
variables and k free variables:

j + k = n
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Proof

Then, when computing the solution to the homogeneous equation
We solve for the first j (leading) variables in terms of the remaining k
free variables:

s1, s2, s3, ..., sk

Then
Then the general solution to the homogeneous equation are:

s1v1 + s2v2 + s3v3 + · · ·+ skvk
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Where

The vectors are the Canonical Ones
Here, a trick!!!

Meaning in v1, we have 1, after many 0
It appears at position j + 1, with zeros afterwards, and so on.

Therefore the vectors are linearly independents

v1,v2,v3, · · · ,vk
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Therefore

They are a basis for the null space of A
And there are k of them, the same as the number of free variables.
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Now

Definition
The matrix B is said to be row equivalent to A (B ∼ A) if B can be
obtained from A by a finite sequence of elementary row operations.

In matrix terms
B ∼ A ⇔ There exist elementary matrices such that

B = EkEk−1Ek−1 · · ·E1A

If we write C = EkEk−1Ek−1 · · ·E1

B is row equivalent to A if B = CA with C invertible.
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Then, we have

Theorem
If B ∼ A, then Null(B) = Null(A).

Theorem
If B ∼ A, then the row space of B is identical to that of A.

Summarizing
Row operations change neither the row space nor the null space of A.
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Corollaries

Corollary 1
If R is the Gauss-Jordan form of A, then R has the same null space
and row space as A.

Corollary 2
If B ∼ A, then R(B) = R(A), and N(B) = N(A).

37 / 140



Corollaries

Corollary 1
If R is the Gauss-Jordan form of A, then R has the same null space
and row space as A.

Corollary 2
If B ∼ A, then R(B) = R(A), and N(B) = N(A).

37 / 140



Then

Theorem
The number of linearly independent rows of the matrix A is equal to
the number of linearly independent columns of A.

Thus
In particular, the rank of A is also equal to the number of linearly
independent columns, and hence to the dimension of the column
space of A

Therefore
The number of linearly independent columns of A is then just the
number of leading entries in the Gauss-Jordan form of A which is, as
we know, the same as the rank of A.
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Proof of the theorem (Dimension Theorem)

First
The rank of A is the same as the rank of the Gauss-Jordan form of A
which is equal to the number of leading entries in the Gauss-Jordan
form.

Additionally
The dimension of the null space is equal to the number of free
variables in the reduced echelon (Gauss-Jordan) form of A.

Then
We know further that the number of free variables plus the number of
leading entries is exactly the number of columns.
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Finally

We have

dim (domain (f)) = dim (Range (f)) + dim (Ker (f))
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As we know

Many Times
We want to obtain a maximum or a minimum of a cost function expressed
in terms of matrices....

We need then to define matrix derivatives
Thus, this discussion is useful in Machine Learning.
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Basic Definition

Let ψ (x) = y

Where y is an m-element vector, and x is an n-element vector

Then, we define the derivative with respect to a vector

∂y

∂x
=


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn...

... . . . ...
∂ym
∂x1

∂ym
∂x2

· · · ∂ym
∂xn



43 / 140



Basic Definition

Let ψ (x) = y

Where y is an m-element vector, and x is an n-element vector

Then, we define the derivative with respect to a vector

∂y

∂x
=


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn...

... . . . ...
∂ym
∂x1

∂ym
∂x2

· · · ∂ym
∂xn



43 / 140



What is this

The Matrix denotes the m× n matrix of first order partial derivatives
Such a matrix is called the Jacobian matrix of the transformation
ψ (x).

Then, we can get our first ideas on derivatives
For Linear Transformations.
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Derivative of y = Ax

Theorem
Let y = Ax where y is a m× 1, x is a n× 1, A is a m× n and A
does not depend on x, then

∂y

∂x
= A
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Proof

Each ith element of y is given by

yi =
N∑

k=1
aikxk

We have that
∂yi

∂xj
= aij

for all i = 1, 2, ...,m and j = 1, 2, ..., n

Hence
∂y

∂x
= A
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Derivative of yTAx

Theorem
Let the scalar α be defined by

α = yTAx

where
y is a m× 1, x is a n× 1, A is a m× n and A does not depend on x and
y, then

∂α

∂x
= yTA and ∂α

∂y
= xTAT
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Proof

Define

wT = yTA

Note

α = wTx

By the previous theorem
∂α

∂x
= wT = yTA

In a similar way, you can prove the other statement.
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What is it?

First than anything, we have a parametric model!!!
Here, we have an hyperplane as a model:

g(x) = wTx+ w0 (1)

Note: wTx is also know as dot product

In the case of R2

We have:

g (x) = (w1, w2)
(
x1
x2

)
+ w0 = w1x1 + w2x2 + w0 (2)
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Example

Hyperplane in R3
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Splitting The Space R2

Using a simple straight line (Hyperplane)

Class 

Class

55 / 140



Splitting the Space?

For example, assume the following vector w and constant w0

w = (−1, 2)T and w0 = 0

Hyperplane
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Then, we have

The following results

g

((
1
2

))
= (−1, 2)

(
1
2

)
= −1× 1 + 2× 2 = 3

g

((
3
1

))
= (−1, 2)

(
3
1

)
= −1× 3 + 2× 1 = −1

YES!!! We have a positive side and a negative side!!!
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The Decision Surface

The equation g (x) = 0 defines a decision surface
Separating the elements in classes, ω1 and ω2.

When g (x) is linear the decision surface is an hyperplane
Now assume x1 and x2 are both on the decision surface

wTx1 + w0 = 0
wTx2 + w0 = 0

Thus

wTx1 + w0 = wTx2 + w0 (3)
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Defining a Decision Surface

Then

wT (x1 − x2) = 0 (4)
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Therefore
x1 − x2 lives in the hyperplane i.e. it is perpendicular to wT

Remark: any vector in the hyperplane is a linear combination of
elements in a basis
Therefore any vector in the plane is perpendicular to wT
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Therefore

The space is split in two regions (Example in R3) by the hyperplane H
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Some Properties of the Hyperplane

Given that g (x) > 0 if x ∈ R1
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It is more
We can say the following

Any x ∈ R1 is on the positive side of H.
Any x ∈ R2 is on the negative side of H.

In addition, g (x) can give us a way to obtain the distance from x to
the hyperplane H
First, we express any x as follows

x = xp + r
w

‖w‖

Where
xp is the normal projection of x onto H.
r is the desired distance

I Positive, if x is in the positive side
I Negative, if x is in the negative side

65 / 140



It is more
We can say the following

Any x ∈ R1 is on the positive side of H.
Any x ∈ R2 is on the negative side of H.

In addition, g (x) can give us a way to obtain the distance from x to
the hyperplane H
First, we express any x as follows

x = xp + r
w

‖w‖

Where
xp is the normal projection of x onto H.
r is the desired distance

I Positive, if x is in the positive side
I Negative, if x is in the negative side

65 / 140



It is more
We can say the following

Any x ∈ R1 is on the positive side of H.
Any x ∈ R2 is on the negative side of H.

In addition, g (x) can give us a way to obtain the distance from x to
the hyperplane H
First, we express any x as follows

x = xp + r
w

‖w‖

Where
xp is the normal projection of x onto H.
r is the desired distance

I Positive, if x is in the positive side
I Negative, if x is in the negative side

65 / 140



It is more
We can say the following

Any x ∈ R1 is on the positive side of H.
Any x ∈ R2 is on the negative side of H.

In addition, g (x) can give us a way to obtain the distance from x to
the hyperplane H
First, we express any x as follows

x = xp + r
w

‖w‖

Where
xp is the normal projection of x onto H.
r is the desired distance

I Positive, if x is in the positive side
I Negative, if x is in the negative side

65 / 140



It is more
We can say the following

Any x ∈ R1 is on the positive side of H.
Any x ∈ R2 is on the negative side of H.

In addition, g (x) can give us a way to obtain the distance from x to
the hyperplane H
First, we express any x as follows

x = xp + r
w

‖w‖

Where
xp is the normal projection of x onto H.
r is the desired distance

I Positive, if x is in the positive side
I Negative, if x is in the negative side

65 / 140



It is more
We can say the following

Any x ∈ R1 is on the positive side of H.
Any x ∈ R2 is on the negative side of H.

In addition, g (x) can give us a way to obtain the distance from x to
the hyperplane H
First, we express any x as follows

x = xp + r
w

‖w‖

Where
xp is the normal projection of x onto H.
r is the desired distance

I Positive, if x is in the positive side
I Negative, if x is in the negative side

65 / 140



It is more
We can say the following

Any x ∈ R1 is on the positive side of H.
Any x ∈ R2 is on the negative side of H.

In addition, g (x) can give us a way to obtain the distance from x to
the hyperplane H
First, we express any x as follows

x = xp + r
w

‖w‖

Where
xp is the normal projection of x onto H.
r is the desired distance

I Positive, if x is in the positive side
I Negative, if x is in the negative side

65 / 140



We have something like this

We have then
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Now
Since g (xp) = 0
We have that

g (x) = g

(
xp + r

w

‖w‖

)
= wT

(
xp + r

w

‖w‖

)
+ w0

= wTxp + w0 + r
wTw

‖w‖

= g (xp) + r
‖w‖2

‖w‖
= r ‖w‖

Then, we have

r = g (x)
‖w‖

(5)
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In particular

The distance from the origin to H

r = g (0)
‖w‖

= wT (0) + w0
‖w‖

= w0
‖w‖

(6)

Remarks
If w0 > 0, the origin is on the positive side of H.
If w0 < 0, the origin is on the negative side of H.
If w0 = 0, the hyperplane has the homogeneous form wTx and
hyperplane passes through the origin.

68 / 140



In particular

The distance from the origin to H

r = g (0)
‖w‖

= wT (0) + w0
‖w‖

= w0
‖w‖

(6)

Remarks
If w0 > 0, the origin is on the positive side of H.
If w0 < 0, the origin is on the negative side of H.
If w0 = 0, the hyperplane has the homogeneous form wTx and
hyperplane passes through the origin.

68 / 140



In particular

The distance from the origin to H

r = g (0)
‖w‖

= wT (0) + w0
‖w‖

= w0
‖w‖

(6)

Remarks
If w0 > 0, the origin is on the positive side of H.
If w0 < 0, the origin is on the negative side of H.
If w0 = 0, the hyperplane has the homogeneous form wTx and
hyperplane passes through the origin.

68 / 140



In particular

The distance from the origin to H

r = g (0)
‖w‖

= wT (0) + w0
‖w‖

= w0
‖w‖

(6)

Remarks
If w0 > 0, the origin is on the positive side of H.
If w0 < 0, the origin is on the negative side of H.
If w0 = 0, the hyperplane has the homogeneous form wTx and
hyperplane passes through the origin.

68 / 140



Outline
1 Linear Transformation

Introduction
Functions that can be defined using matrices
Linear Functions
Kernel and Range
The Matrix of a Linear Transformation
Going Back to Homogeneous Equations
The Rank-Nullity Theorem

2 Derivative of Transformations
Introduction
Derivative of a Linear Transformation
Derivative of a Quadratic Transformation

3 Linear Regression
The Simplest Functions
Splitting the Space
Defining the Decision Surface
Properties of the Hyperplane wT x + w0
Augmenting the Vector
Least Squared Error Procedure
The Geometry of a Two-Category Linearly-Separable Case

The Error Idea
The Final Error Equation

4 Principal Component Analysis
Karhunen-Loeve Transform
Projecting the Data
Lagrange Multipliers
The Process
Example

5 Singular Value Decomposition
Introduction
Image Compression 69 / 140



We want to solve the independence of w0

We would like w0 as part of the dot product by making x0 = 1

g (x) = w0 × 1 +
d∑

i=1
wixi = w0 × x0 +

d∑
i=1

wixi =
d∑

i=0
wixi (7)

By making

xaug =


1
x1
...
xd

 =


1

x



Where
xaug is called an augmented feature vector.
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In a similar way

We have the augmented weight vector

waug =


w0
w1
...
wd

 =


w0

w



Remarks
The addition of a constant component to x preserves all the distance
relationship between samples.
The resulting xaug vectors, all lie in a d-dimensional subspace which
is the x-space itself.
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More Remarks

In addition
The hyperplane decision surface Ĥ defined by

wT
augxaug = 0

passes through the origin in xaug-space.

Even Though
The corresponding hyperplane H can be in any position of the x-space.

72 / 140



More Remarks

In addition
The hyperplane decision surface Ĥ defined by
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More Remarks

In addition
The distance from y to Ĥ is:∣∣∣wT

augxaug

∣∣∣
‖waug‖

= |g (xaug)|
‖waug‖
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Now

Is ‖w‖ ≤ ‖waug‖
Ideas? √√√√ d∑

i=1
w2

i ≤

√√√√ d∑
i=1

w2
i + w2

0

This mapping is quite useful
Because we only need to find a weight vector waug instead of finding the
weight vector w and the threshold w0.
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Initial Supposition

Suppose, we have
n samples x1,x2, ...,xn some labeled ω1 and some labeled ω2.

We want a vector weight w such that
wTxi > 0, if xi ∈ ω1.
wTxi < 0, if xi ∈ ω2.

The name of this weight vector
It is called a separating vector or solution vector.
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Now, assume the following

Imagine that your problem has two classes ω1 and ω2 in R2

1 They are linearly separable!!!
2 You require to label them.

We have a problem!!!
Which is the problem?

We do not know the hyperplane!!!
Thus, what distance each point has to the hyperplane?
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A Simple Solution For Our Quandary

Label the Classes
ω1 =⇒ +1
ω2 =⇒ −1

We produce the following labels
1 if x ∈ ω1 then yideal = gideal (x) = +1.
2 if x ∈ ω2 then yideal = gideal (x) = −1.

Remark: We have a problem with this labels!!!
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Now, What?

Assume true function f is given by

ynoise = gnoise (x) = wTx+ w0 + e (8)

Where the e
It has a e ∼ N

(
µ, σ2)

Thus, we can do the following

ynoise = gnoise (x) = gideal (x) + e (9)
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Thus, we have

What to do?

e = ynoise − gideal (x) (10)

Graphically
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Then, we have

A TRICK... Quite a good one!!! Instead of using ynoise

e = ynoise − gideal (x) (11)

We use yideal

e = yideal − gideal (x) (12)

We will see
How the geometry will solve the problem with using these labels.
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Here, we have multiple errors

What can we do?
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Sum Over All the Errors

We can do the following

J (w) =
N∑

i=1
e2

i =
N∑

i=1
(yi − gideal (xi))2 (13)

Remark: This is know as the Least Squared Error cost function

Generalizing
The dimensionality of each sample (data point) is d.
You can extend each vector sample to be xT = (1,x′).
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We can use a trick

The following function

gideal (x) =
(

1 x1 x2 ... xd

)

w0
w2
w3
...
wd

 = xTw

We can rewrite the error equation as

J (w) =
N∑

i=1
(yi − gideal (xi))2 =

N∑
i=1

(
yi − xT

i w
)2

(14)
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Furthermore

Then stacking all the possible estimations into the product Data
Matrix and weight vector

Xw =



1 (x1)1 · · · (x1)j · · · (x1)d
...

...
...

1 (xi)1 (xi)j (xi)d
...

...
...

1 (xN )1 · · · (xN )j · · · (xN )d




w1
w2
w3
...

wd+1
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Note about other representations

We could have xT = (x1, x2, ..., xd, 1) thus

X =



(x1)1 · · · (x1)j · · · (x1)d 1
...

...
...

(xi)1 (xi)j (xi)d 1
...

...
...

(xN )1 · · · (xN )j · · · (xN )d 1


(15)
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Then, we have the following trick with X

With the Data Matrix

Xw =


xT

1w
xT

2w
xT

3w
...

xT
Nw

 (16)
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Therefore

We have that 
y1
y2
y3
...
y4

−

xT

1w
xT

2w
xT

3w
...

xT
Nw

 =


y1 − xT

1w
y2 − xT

2w
y3 − xT

3w
...

y4 − xT
Nw


Then, we have the following equality

(
y1 − xT

1 w y2 − xT
2 w y3 − xT

3 w · · · y4 − xT
N w

)
y1 − xT

1 w

y2 − xT
2 w

y3 − xT
3 w

...
y4 − xT

N w

 =

N∑
i=1

(
yi − x

T
i w
)2

91 / 140



Therefore

We have that 
y1
y2
y3
...
y4

−

xT

1w
xT

2w
xT

3w
...

xT
Nw

 =


y1 − xT

1w
y2 − xT

2w
y3 − xT

3w
...

y4 − xT
Nw


Then, we have the following equality

(
y1 − xT

1 w y2 − xT
2 w y3 − xT

3 w · · · y4 − xT
N w

)
y1 − xT

1 w

y2 − xT
2 w

y3 − xT
3 w

...
y4 − xT

N w

 =

N∑
i=1

(
yi − x

T
i w
)2

91 / 140



Then, we have

The following equality
N∑

i=1

(
yi − xT

i w
)2

= (y −Xw)T (y −Xw) = ‖y −Xw‖22 (17)
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We can expand our quadratic formula!!!

Thus

(y −Xw)T (y −Xw) = yTy− yTXw−wTXT y+wTXTXw (18)

Now
Derive with respect to w
Assume that XTX is invertible
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Therefore

We have the following equivalences
dwTAw

dw
= wT

(
A+AT

)
,
dwTA

dw
= AT (19)

Now given that the transpose of a number is the number itself

yTXw =
[
yTXw

]T
= wTXTy
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Then, when we derive by w
We have then

d
(
yTy − 2wTXT y +wTXTXw

)
dw

= −2yTX +wT
(
XTX +

(
XTX

))
= −2yTX + 2wT

(
XTX

)
Making this equal to the zero row vector

− 2yTX + 2wT
(
XTX

)
= 0

We apply the transpose

[
−2yTX + 2wT

(
XTX

)]T
= [0]T

− 2XTy + 2
(
XTX

)
w = 0 (column vector)
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Solving for w

We have then

w =
(
XTX

)−1
XTy (20)

Note:XTX is always positive semi-definite. If it is also invertible, it is
positive definite.

Thus, How we get the discriminant function?
Any Ideas?
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The Final Discriminant Function

Very Simple!!!

g(x) = xTw = xT
(
XTX

)−1
XTy (21)
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Also Known as Karhunen-Loeve Transform

Setup
Consider a data set of observations {xn} with n = 1, 2, ..., N and
xn ∈ Rd.

Goal
Project data onto space with dimensionality m < d (We assume m is
given)
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Dimensional Variance

Remember the Variance Sample in R

V AR(X) =
∑N

i=1 (xi − x)2

N − 1 (22)

You can do the same in the case of two variables X and Y

COV (x, y) =
∑N

i=1 (xi − x) (yi − y)
N − 1 (23)
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Now, Define

Given the data

x1,x2, ...,xN (24)

where xi is a column vector

Construct the sample mean

x = 1
N

N∑
i=1
xi (25)

Center data

x1 − x,x2 − x, ...,xN − x (26)
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Build the Sample Mean

The Covariance Matrix

S = 1
N − 1

N∑
i=1

(xi − x) (xi − x)T (27)

Properties
1 The ijth value of S is equivalent to σ2

ij .
2 The iith value of S is equivalent to σ2

ii.
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Using S to Project Data

For this we use a u1

with uT
1 u1 = 1, an orthonormal vector

Question
What is the Sample Variance of the Projected Data?
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Thus we have

Variance of the projected data

1
N − 1

N∑
i=1

[u1xi − u1x] = uT
1 Su1 (28)

Use Lagrange Multipliers to Maximize

uT
1 Su1 + λ1

(
1− uT

1 u1
)

(29)
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Derive by u1

We get

Su1 = λ1u1 (30)

Then
u1 is an eigenvector of S.

If we left-multiply by u1

uT
1 Su1 = λ1 (31)
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What about the second eigenvector u2

We have the following optimization problem

max uT
2 Su2

s.t. uT
2 u2 = 1
uT

2 u1 = 0

Lagrangian

L (u2, λ1, λ2) = uT
2 Su2 − λ1

(
uT

2 u2 − 1
)
− λ2

(
uT

2 u1 − 0
)
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Explanation

First the constrained minimization
We want to to maximize uT

2 Su2

Given that the second eigenvector is orthonormal
We have then uT

2 u2 = 1

Under orthonormal vectors
The covariance goes to zero
cov (u1,u2) = uT

2 Su1 = u2λ1u1 = λ1u
T
1 u2 = 0
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Meaning

The PCA’s are perpendicular

L (u2, λ1, λ2) = uT
2 Su2 − λ1

(
uT

2 u2 − 1
)
− λ2

(
uT

2 u1 − 0
)

The the derivative with respect to u2

∂L (u2, λ1, λ2)
∂u2

= Su2 − λ1u2 − λ2u1 = 0

Then, we left multiply u1

uT
1 Su2 − λ1u

T
1 u2 − λ2u

T
1 u1 = 0
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∂u2

= Su2 − λ1u2 − λ2u1 = 0

Then, we left multiply u1

uT
1 Su2 − λ1u

T
1 u2 − λ2u

T
1 u1 = 0
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Then, we have that

Something Notable

0− 0− λ2 = 0

We have

Su2 − λ2u2 = 0

Implying
u2 is the eigenvector of S with second largest eigenvalue λ2.
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Thus
Variance will be the maximum when

uT
1 Su1 = λ1 (32)

is set to the largest eigenvalue. Also know as the First Principal
Component

By Induction
It is possible for M -dimensional space to define M eigenvectors
u1,u2, ...,uM of the data covariance S corresponding to λ1, λ2, ..., λM

that maximize the variance of the projected data.

Computational Cost
1 Full eigenvector decomposition O

(
d3)

2 Power Method O
(
Md2) “Golub and Van Loan, 1996)”

3 Use the Expectation Maximization Algorithm
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We have the following steps

Determine covariance matrix

S = 1
N − 1

N∑
i=1

(xi − x) (xi − x)T (33)

Generate the decomposition

S = UΣUT

With
Eigenvalues in Σ and eigenvectors in the columns of U .
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Then

Project samples xi into subspaces dim=k

zi = UT
Kxi

With Uk is a matrix with k columns
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Example

From Bishop
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What happened with no-square matrices

We can still diagonalize it
Thus, we can obtain certain properties.

We want to avoid the problems with

S−1AS

The eigenvectors in S have three big problems
1 They are usually not orthogonal.
2 There are not always enough eigenvectors.
3 Ax = λx requires A to be square.
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Therefore, we can look at the following problem

We have a series of vectors

{x1,x2, ...,xd}

Then imagine a set of projection vectors and differences

{β1,β2, ...,βd} and {α1,α2, ...,αd}

We want to know a little bit of the relations between them
After all, we are looking at the possibility of using them for our
problem
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Using the Hypotenuse
A little bit of Geometry, we get
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Therefore

We have two possible quantities for each j

αT
j αj = xT

j xj − aT
j aj

aT
j aj = xT

j xj −αT
j αj

Then, we can minimize and maximize given that xT
j xj is a constant

min
n∑

j=1
αT

j αj

max
n∑

j=1
aT

j aj
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Actually this is know as the dual problem (Weak Duality)

An example of this

min wTx

s.tAx ≤b
x ≥0

Then, using what is know as slack variables

Ax+A′x = b

Each row lives in the column space, but the yi lives in the column
space (

Ax+A′x
)

i → yi and x′ ≥ 0
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Then, we have that

Example  0 0
0 1
1 0


Element in the column space of dimensionality have three dimensions

But in the row space their dimension is 2

Properties
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We have then

Stack such vectors that in the d-dimensional space
In a matrix A of n× d

A =


aT

1
aT

2
...
aT

n


The matrix works as a Projection Matrix

We are looking for a unit vector v such that length of the projection
is maximized.
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Why? Do you remember the Projection to a single vector
p?

Definition of the projection under unitary vector

p = vTai

vTv
v =

[
vTai

]
v

Therefore the length of the projected vector is∥∥∥[vTai

]
v
∥∥∥ =

∣∣∣vTai

∣∣∣
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Then

Thus with a little bit of notation

Av =


aT

1
aT

2
...
aT

d

v =


aT

1 v
aT

2 v
...

aT
d v


Therefore

‖Av‖ =

√√√√ d∑
i=1

(
aT

i v
)2
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Then

It is possible to ask to maximize the longitude of such vector
(Singular Vector)

v1 = arg max
‖v‖=1

‖Av‖

Then, we can define the following singular value

σ1 (A) = ‖Av1‖
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This is known as

Definition
The best-fit line problem describes the problem of finding the best
line for a set of data points, where the quality of the line is measured
by the sum of squared (perpendicular) distances of the points to the
line.

I Remember, we are looking at the dual problem....

Generalization
This can be transferred to higher dimensions: One can find the
best-fit d-dimensional subspace, so the subspace which minimizes the
sum of the squared distances of the points to the subspace
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Then, in a Greedy Fashion

The second singular vector v2

v2 = arg max
v⊥v1,‖v‖=1

‖Av‖

Them you go through this process
Stop when we have found all the following vectors:

v1,v2, ...,vr

As singular vectors and

arg max
v ⊥ v1,v2, ...,vr

‖v‖ = 1

‖Av‖
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Proving that the strategy is good

Theorem
Let A be an n× d matrix where v1,v2, ...,vr are the singular vectors
defined above. For 1 ≤ k ≤ r, let Vk be the subspace spanned by
v1,v2, ...,vk. Then for each k, Vk is the best-fit k-dimensional
subspace for A.
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Proof

For k = 1
What about k = 2? Let W be a best-fit 2- dimensional subspace for
A.

For any basis w1,w2 of W
|Aw1|2 + |Aw2|2 is the sum of the squared lengths of the projections
of the rows of A to W .

Now, choose a basis w1,w2 so that w2 is perpendicular to v1

This can be a unit vector perpendicular to v1 projection in W .
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Do you remember v1 = arg max‖v‖=1 ‖Av‖?

Therefore

|Aw1|2 ≤ |Av1|2 and |Aw2|2 ≤ |Av2|2

Then

|Aw1|2 + |Aw2|2 ≤ |Av1|2 + |Av2|2

In a similar way for k > 2
Vk is at least as good as W and hence is optimal.
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Remarks

Every Matrix has a singular value decomposition

A = UΣV T

Where
The columns of U are an orthonormal basis for the column space.
The columns of V are an orthonormal basis for the row space.
The Σ is diagonal and the entries on its diagonal σi = Σii are positive
real numbers, called the singular values of A.
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Properties of the Singular Value Decomposition

First
The eigenvalues of the symmetric matrix ATA are equal to the square of
the singular values of A

ATA = V ΣUTUT ΣV T = V Σ2V T

Second
The rank of a matrix is equal to the number of non-zero singular values.
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Singular Value Decomposition as Sums

The singular value decomposition can be viewed as a sum of rank 1
matrices

A = A1 +A2 + ...+AR (34)

Why?

u1A = U

 σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σR

V
T =
(

u1 u2 · · · uR

) σ1vT
1

σ2vT
2

...
σRvT

R


=σ1u1v

T
1 + σ2u2v

T
2 + · · · + σRuRv

T
R
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Truncating
Truncating the singular value decomposition allows us to represent
the matrix with less parameters

For a 512× 512
Full Representation 512× 512 = 262, 144
Rank 10 approximation 512×10 + 10 + 10× 512 = 10, 250
Rank 40 approximation 512×40 + 40 + 40× 512 = 41, 000
Rank 80 approximation 512×80 + 80 + 80× 512 = 82, 000
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