
Introduction to Math for Artificial Introduction
Orthonormal Basis and Eigenvectors

Andres Mendez-Vazquez

March 23, 2020

1 / 127



Outline

1 Orthonormal Basis
Introduction
The Norm
The Row Space and Nullspace are Orthogonal sub-spaces inside Rn

Orthogonal Complements
Fundamental Theorems of Linear Algebra

Projections
Projection Onto a Subspace

Orthogonal Bases and Gram-Schmidt
Solving a Least Squared Error
The Gram Schmidt Process
The Gram Schmidt Algorithm and the QR Factorization

2 Eigenvectors
Introduction
What are eigenvector good for?
Modification on Distances
Relation with Invertibility
Finding Eigenvalues and Eigenvectors
Implications of Existence of Eigenvalues
Diagonalization of Matrices
Interesting Derivations

2 / 127



Outline

1 Orthonormal Basis
Introduction
The Norm
The Row Space and Nullspace are Orthogonal sub-spaces inside Rn

Orthogonal Complements
Fundamental Theorems of Linear Algebra

Projections
Projection Onto a Subspace

Orthogonal Bases and Gram-Schmidt
Solving a Least Squared Error
The Gram Schmidt Process
The Gram Schmidt Algorithm and the QR Factorization

2 Eigenvectors
Introduction
What are eigenvector good for?
Modification on Distances
Relation with Invertibility
Finding Eigenvalues and Eigenvectors
Implications of Existence of Eigenvalues
Diagonalization of Matrices
Interesting Derivations

3 / 127



The Dot Product

Definition
The dot product of two vectors v = [v1, v2, ..., vn]T and
w = [w1, w2, ..., wn]T

v ·w =
n∑

i=1
viwi
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Example!!! Splitting the Space?

For example, assume the following vector w and constant w0

w = (−1, 2)T and w0 = 0

Hyperplane
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Then, we have

The following results

g

((
1
2

))
= (−1, 2)

(
1
2

)
= −1× 1 + 2× 2 = 3

g

((
3
1

))
= (−1, 2)

(
3
1

)
= −1× 3 + 2× 1 = −1

YES!!! We have a positive side and a negative side!!!
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This product is also know as the Inner Product

Where
An inner product 〈· · · , · · · 〉 satisfies the following four properties (u,v,w
vectors and α a escalar):

1 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉
2 〈αv,w〉 = α 〈v,w〉
3 〈v,w〉 = 〈w,v〉
4 〈v,v〉 ≥ 0 and equal to zero if v = 0.
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The Norm as a dot product

We can define the longitude of a vector

‖v‖ =
√

v · v

A nice way to think about the longitude of a vector
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Orthogonal Vectors

We have that
Two vectors are orthogonal when their dot product is zero:

v ·w = 0 or vT w = 0

Remark
We want orthogonal bases and orthogonal sub-spaces.
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Some stuff about Row and Null Space

Something Notable
Every row of A is perpendicular to every solution of Ax = 0

In a similar way
Every column of A is perpendicular to every solution of AT x = 0

Meaning
What are the implications for the Column and Row Space?
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Implications

We have that under Ax = b

e = b−Ax

Remember
The error at the Least Squared Error.
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Orthogonal Spaces

Definition
Two sub-spaces V and W of a vector space are orthogonal if every vector
v ∈ V is perpendicular to every vector w ∈W .

In mathematical notation

vT w = 0 ∀v ∈ V and ∀w ∈W
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Examples

At your Room
The floor of your room (extended to infinity) is a subspace V . The line
where two walls meet is a subspace W (one-dimensional).

A more convoluted example
Two walls look perpendicular but they are not orthogonal sub-spaces!

Why?
Any Idea?
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For Example

Something Notable
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Yes!!

The Line Shared by the Two Planes in R3

Therefore!!!
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We have then
Theorem
The Null Space N (A) and the Row Space C

(
AT
)
, as the column space

of AT , are orthogonal sub-spaces in Rn

Proof
First, we have

Ax =


A1
A2
...
Am

x =


0
0
...
0


Therefore
Rows in A are perpendicular to x ⇒ Then x is also perpendicular to every
combination of the rows.
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Then

Therefore
The whole row space is orthogonal to the N (A)

Better proof x ∈ N (A)- Hint What is AT y?

x
(
AT y

)
= (Ax)T y = 0T y = 0

AT y are all the possible combinations of the row space!!!
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A little Bit of Notation

We use the following notation

N (A) ⊥ C
(
AT
)

Definition
The orthogonal complement of a subspace V contains every vector that is
perpendicular to V .

This orthogonal subspace is denoted by

V ⊥
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Thus, we have

Something Notable
By this definition, the nullspace is the orthogonal complement of the row
space.
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Look at this

The Orthogonality
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Orthogonal Complements

Definition
The orthogonal complement of a subspace V contains every vector
that is perpendicular to V .
This orthogonal subspace is denoted by V ⊥, pronounced “V prep”.

Something Notable
By this definition, the nullspace is the orthogonal complement of the row
space.

After All
Every x that is perpendicular to the rows satisfies Ax = 0.
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Quite Interesting

We have the following
If v is orthogonal to the nullspace, it must be in the row space.

Therefore, we can build a new matrix

A′ =
[
A
v

]

Problem
The row space starts to grow and can break the law
dim (R(A)) + dim (Ker (A)) = n.
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Additionally

The left nullspace and column space are orthogonal in Rm

Basically, they are orthogonal complements.

As always
Their dimensions dim

(
Ker

(
AT
))

and dim
(
R
(
AT
))

add to the full
dimension m.
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We have

Theorem
The column space and row space both have dimension r.

I The nullspaces have dimensions n− r and m− r.

Theorem
The nullspace of A is the orthogonal complement of the row space
C
(
AT
)
- Rn.

Theorem
The null space of AT is the orthogonal complement of the column space
C (A) - Rm.

25 / 127



We have

Theorem
The column space and row space both have dimension r.

I The nullspaces have dimensions n− r and m− r.

Theorem
The nullspace of A is the orthogonal complement of the row space
C
(
AT
)
- Rn.

Theorem
The null space of AT is the orthogonal complement of the column space
C (A) - Rm.

25 / 127



We have

Theorem
The column space and row space both have dimension r.

I The nullspaces have dimensions n− r and m− r.

Theorem
The nullspace of A is the orthogonal complement of the row space
C
(
AT
)
- Rn.

Theorem
The null space of AT is the orthogonal complement of the column space
C (A) - Rm.

25 / 127



Splitting the Vectors

The point of "complements"
x can be split into a row space component xr and a nullspace component
xn:

x = xr + xn

Therefore

Ax = A [xr + xn] = Axr +Axn = Axr

Basically
Every vector goes to the column space.
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Not only that

Every vector b in the column space
It comes from one and only one vector in the row space.

Proof
If Axr = Ax

′
r −→ the difference is in the nullspace xr − x

′
r.

It is also in the row space...
Given that the nullspace and the row space are orthogonal.
They only share the vector 0.
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And From Here

Something Notable
There is a r × r invertible matrix there hiding inside A.

If we throwaway the two nullspaces
From the row space to the column space, A is invertible

28 / 127



And From Here

Something Notable
There is a r × r invertible matrix there hiding inside A.

If we throwaway the two nullspaces
From the row space to the column space, A is invertible

28 / 127



Example

We have the matrix after echelon reduced

A =

 3 0 0 0 0
0 5 0 0 0
0 0 0 0 0


You have the following invertible matrix

B =
(

3 0
0 5

)
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Assume that you are in R3

Something like

31 / 127



Simple but complex

A simple question
What are the projections of b = (2, 3, 4) onto the z axis and the xy
plane?
Can we use matrices to talk about these projections?

First
We must have a projection matrix P with the following property:

P 2 = P

Why?
Ideas?
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Then, the Projection Pb

First
When b is projected onto a line, its projection p is the part of b along that
line.

Second
When b is projected onto a plane, its projection p is the part of the plane.
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In our case

The Projection Matrices for the coordinate systems

P1 =

 0 0 0
0 0 0
0 0 1

 , P2 =

 0 0 0
0 1 0
0 0 0

 , P3 =

 1 0 0
0 0 0
0 0 0
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Example

We have the following vector b = (2, 3, 4)T

Onto the z axis:

P1b =

 0 0 0
0 0 0
0 0 1


 2

3
4

 =

 0
0
4


What about the plane xy
Any idea?
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We have something more complex

Something Notable

P4 =

 1 0 0
0 1 0
0 0 0


Then

P4b =

 1 0 0
0 1 0
0 0 0


 2

3
4

 =

 2
3
0
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Assume the following

We have that
a1,a2, ...,an in Rm.

Assume they are linearly independent
They span a subspace, we want projections into the subspace

We want to project b into such subspace
How do we do it?

37 / 127



Assume the following

We have that
a1,a2, ...,an in Rm.

Assume they are linearly independent
They span a subspace, we want projections into the subspace

We want to project b into such subspace
How do we do it?

37 / 127



Assume the following

We have that
a1,a2, ...,an in Rm.

Assume they are linearly independent
They span a subspace, we want projections into the subspace

We want to project b into such subspace
How do we do it?

37 / 127



This is the important part

Problem
Find the combination p = x1a1 + x2a2 + · · ·+ xnan closest to vector b.

Something Notable
With n = 1 (only one vector a1) this projection onto a line.

This line is the column space of A
Basically the columns are spanned by a single column.
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In General

The matrix has n columns a1,a2, ...,an

The combinations in Rm are vectors Ax in the column space

We are looking for the particular combination
The nearest to the original b

p = Ax̂
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First

We look at the simplest case
The projection into a line...
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With a little of Geometry

We have the following

Projection

0
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Therefore

Using the fact that the projection is equal to

p = xa

Then, the error is equal to

e = b− xa

We have that a · e = 0

a · e = a · (b− xa) = a · b− xa · a = 0
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Therefore

We have that

x = a · b
a · a

= aT b

aT a

Or something quite simple

p = aT b

aT a
a
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By the Law of Cosines

Something Notable

‖a− b‖2 = ‖a‖2 + ‖b‖2 − 2 ‖a‖ ‖b‖ cos Θ
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We have

The following product

a · a− 2a · b + b · b = ‖a‖2 + ‖b‖2 − 2 ‖a‖ ‖b‖ cos Θ

Then

a · b = ‖a‖ ‖b‖ cos Θ
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With Length

Using the Norm

‖p‖ =
∣∣∣∣∣aT b

aT a

∣∣∣∣∣ ‖a‖ =
∣∣∣∣∣‖a‖ ‖b‖ cos Θ

‖a‖2

∣∣∣∣∣ ‖a‖ = ‖b‖ |cos Θ|
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Example

Project

b =

 1
1
1

 onto a =

 1
2
2


Find

p = xa
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What about the Projection Matrix in general

We have

p = ax = aaT b

aT a
= Pb

Then

P = aaT

aT a
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Example

Find the projection matrix for

b =

 1
1
1

 onto a =

 1
2
2
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What about the general case?

We have that
Find the combination p = x1a1 + x2a2 + · · ·+ xnan closest to vector b.

Now you need a vector
Find the vector x,find the projection p = Ax,find the matrix P .

Again, the error is perpendicular to the space

e = b−Ax
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Therefore

The error e = b− Ax

aT
1 (b−Ax) = 0

...
...

aT
n (b−Ax) = 0

Or  aT
1
...

aT
n

 [b−Ax] = 0
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Therefore

The error e = b− Ax

aT
1 (b−Ax) = 0

...
...

aT
n (b−Ax) = 0

Or  aT
1
...

aT
n

 [b−Ax] = 0
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Therefore

The Matrix with those rows is AT

AT (b−Ax) = 0

Therefore

AT b−ATAx = 0

Or the most know form

x =
(
ATA

)−1
AT b
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Therefore

The Projection is

p = Ax = A
(
ATA

)−1
AT b

Therefore

P = A
(
ATA

)−1
AT
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The key step was AT [b− Ax] = 0

Linear algebra gives this "normal equation"
1 Our subspace is the column space of A.
2 The error vector b−Ax is perpendicular to that column space.
3 Therefore b−Ax is in the nullspace of AT
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When A has independent columns, ATA is invertible

Theorem
ATA is invertible if and only if Ahas linearly independent columns.
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Proof

Consider the following

ATAx = 0

Here, Ax is in the null space of AT

Remember the column space and null space of AT are orthogonal
complements.

And Ax an element in the column space of A

Ax = 0
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Proof

If A has linearly independent columns

Ax = 0 =⇒ x = 0

Then, the null space

Null
(
ATA

)
= {0}

i.e ATA is full rank
Then, ATA is invertible...
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Finally

Theorem
When A has independent columns, ATA is square, symmetric
and invertible.
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Example

Use Gauss-Jordan for finding if ATA is invertible

A =

 1 2
1 2
0 0
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Example

Given

A =

 1 0
1 1
1 2

 and b =

 6
0
0


Find
x and p and P
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Now, we always like to make our life easier

Something Notable
Orthogonality makes easier to find x, p and P .

For this, we will find the orthogonal vectors
At the column space of A
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Orthonormal Vectors

Definition
The vectors q1, q2, ..., qn are orthonormal if

qT
i qj =

{
0 when i 6= j

1 when i = j

Then
A matrix with orthonormal columns is assigned the special letter Q

Properties
A matrix Q with orthonormal columns satisfies QTQ = I
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Additionally

Given that

QTQ = I

Therefore
When Q is square, QTQ = I means that QT = Q−1: transpose = inverse.
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Examples

Rotation (
cos Θ − sin Θ
sin Θ cos Θ

)

Permutation Matrix (
0 1
1 0

)

Reflection
Setting Q = I − 2uuT with u a unit vector.
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Finally

If Q has orthonormal columns
The lengths are unchanged

How?

‖Qx‖ =
√

xTQTQx =
√

xT x = ‖x‖
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Remark

Something Notable
When the columns of A were a basis for the subspace.

All Formulas involve

ATA

What happens when the basis vectors are orthonormal
ATA simplifies to QTQ = I
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Therefore, we have

The following
Ix = QT b and p = Qx and P = QIQT

Not only that
The solution of Qx = b is simply x = QT b
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Example

Given the following matrix
Verify that is a orthogonal matrix

1
3

 −1 2 2
2 −1 2
2 2 −1
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We have that

Given that using orthonormal bases is good
How do we generate such basis given an initial basis?

Graham Schmidt Process
We begin with three linear independent vectors a, b and c
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Then

We can do the following
Select a and rename it A

Start with b and subtract its projection along a

B = b− AT b

AT A
A

Properties
This vector B is what we have called the error vector e, perpendicular to
a.
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We can keep with such process

Now we do the same for the new c

C = c− AT c

AT A
A− BT c

BT B
B

Normalize them
To obtain the final result!!!

q1 = A

‖A‖
, q1 = B

‖B‖
, q3 = C

‖C‖
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Example

Suppose the independent non-orthogonal vectors a, b and c

a =

 1
−1
0

 , c =

 0
0
1

 ,d =

 0
1
1


Then

Do the procedure...
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We have the following process

We begin with a matrix A

A = [a, b, c]

We ended with the following matrix

Q = [q1, q2, q3]

How are these matrices related?
There is a third matrix!!!

A = QR
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Notice the following

Something Notable
The vectors a and A and q1 are all along a single line.

Then
The vectors a, b and A, B and q1, q2 are all in the same plane.

Further
The vectors a, b, c and A, B, B and q1, q2, q2 are all in the same
subspace.
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Therefore

It is possible to see that

a1,a2, ...,ak

They are combination of q1, q2, ..., qk

[a1,a2,a3] = [q1, q2, q3]

 qT
1 a qT

1 b qT
1 c

0 qT
2 b qT

2 c
0 0 qT

3 c



76 / 127



Therefore

It is possible to see that

a1,a2, ...,ak

They are combination of q1, q2, ..., qk

[a1,a2,a3] = [q1, q2, q3]

 qT
1 a qT

1 b qT
1 c

0 qT
2 b qT

2 c
0 0 qT

3 c



76 / 127



Gram-Schmidt

From linear independent vectors a1,a2, ...,an

Gram-Schmidt constructs orthonormal vectors q1, q2, ..., qn that when used
as column vectors in a matrix Q

These matrices satisfy

A = QR

Properties
Then R = QTA is a upper triangular matrix because later q′s are
orthogonal to earlier a′s.
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Therefore

Any m× n matrix A with linear independent columns can be factored
into QR

The m× n matrix Q has orthonormal columns.
The square matrix R is upper triangular with positive diagonal.

We must not forget why this is useful for least squares
ATA = RTQTQR = RTR

Least Squared Simplify to
RTRx = RTQT b or Rx = QT b or x = R−1QT b
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Algorithm

Basic Gram-Schmidt
1 for j = 1 to n
2 v = A (:, j)
3 for i = 1 to j − 1
4 R (i, j) = Q (:, i)T v

5 v = v −R (i, j)Q (:, i)
6 R (j, j) = ‖v‖
7 Q (:, j) = v

R(j,j)
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A as a change factor

Most vectors change direction when multiplied against a random A

Av −→ v′

Example
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However

There is a set of special vectors called eigenvectors

Av = λv

Here, the eigenvalue is λ and the eigenvector is v.

Definition
If T is a linear transformation from a vector space V over a field F ,
T : V −→ V , then v 6= 0 is an eigenvector of T if T (v) is a scalar
multiple of v.

Something quite interesting
Such linear transformations can be expressed by matrices A,
T (v) = Av
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A little bit of Geometry

Points in a direction in which it is stretched by the transformation A
Eigenspaces
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Implications

You can see the eigenvalues as the vector of change by the mapping

T (v) = Av

Therefore, for an Invertible Square Matrix A
If your rank is n ⇒ if you have {v1, v2, v3, ..., vn} eigenvalues
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A simple case

Given a vector v ∈ V
We then apply the linear transformation sequentially:

v, Av, A2v...

For example

A =
(

0.7 0.3
0.3 0.7

)

86 / 127



A simple case

Given a vector v ∈ V
We then apply the linear transformation sequentially:

v, Av, A2v...

For example

A =
(

0.7 0.3
0.3 0.7

)

86 / 127



We have the following sequence

As you can see

v =
(

0.5
1

)
, Av =

(
0.65
0.85

)
, ..., Akv =

(
0.75
0.75

)
, ...
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Geometrically

We have
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Notably

We have that
The eigenvalue λ tells whether the special vector v is stretched or
shrunk or reversed or left unchanged-when it is multiplied by A.

Something Notable
1 Eigenvalues can repeat!!!
2 Eigenvalues can be positive or negative
3 Eigenvalues could be 0

Properties
The eigenvectors make up the nullspace of (A− λI).
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An Intuition

Imagine that A is a symmetric real matrix
Then, we have that Av is a mapping

What happens to the unitary circle?{
v|vT v = 1

}
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We have something like

A modification of the distances

Unitary Circle 
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If we get the Q matrix

We go back to the unitary circle
A is a modification of distances

Therefore
Our best bet is to build A with specific properties at hand...
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Therefore

Relation with invertibility
What if (A− λI) v = 0?

What if v 6= 0?
Then, columns A− λI are not linear independents.

Then
A− λI is not invertible...
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Also for Determinants

If A− λI is not invertible
det (A− λI) = 0 ← How?

Theorem
A square matrix is invertible if and only if its determinant is non-zero.

Proof =⇒
We know for Jordan-Gauss that an invertible matrix can be reduced
to the identity by elementary matrix operations

A = E1E2 · · ·Ek
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Furthermore

We have then
det (A) = det (E1) · · · det (Ek)

An interesting thing is that, for example
Let A be a K ×K matrix. Let E be an elementary matrix obtained
by multiplying a row of the K ×K identity matrix I by a constant
c 6= 0. Then det (E) = c.
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The same for the other elementary matrices

Then, det (A) = det (E1) · · · det (Ek) 6= 0
Now, the return is quite simple

Then, A− λI is not invertible
det (A− λI) = 0
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Now, for eigenvalues

Theorem
The number λ is an eigenvalue ⇐⇒ (A− λI) is not invertible i.e. singular.

=⇒
The number λ is an eigenvalue ⇒ then ∃v such that (A− λI) v = 0

The columns of A− λI
They are linear dependent so (A− λI) is not invertible
What about ⇐=?
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Now, How do we find eigenvalues and eigenvectors?

Ok, we know that for each eigenvalue there is an eigenvector
We have seen that they represent the stretching of the vectors

How do we get such eigenvalues
Basically, use the fact that if λ ⇒ det [A− λI] = 0

In this way
We obtain a polynomial know as characteristic polynomial.
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Characteristic Polynomial

Then get the root of the polynomial i.e.
Values of λ that make

p (λ) = ao + a1λ+ a2λ+ · · ·+ anλ
n = 0

Then, once you have the eigenvalues
For each eigenvalue λ solve

(A− λI) v = 0 or Av = λv

It is quite simple
But a lot of theorems to get here!!!
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Example

Given

A =
(

1 2
2 4

)

Find
Its eigenvalues and eigenvectors.
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Summary

To solve the eigenvalue problem for an n× n matrix, follow these
steps

1 Compute the determinant of A− λI.
2 Find the roots of the polynomial det (A− λI) = 0.
3 For each eigenvalue solve (A− λI) v = 0 to find the eigenvector v.
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Some Remarks

Something Notable
If you add a row of A to another row, or exchange rows, the eigenvalues
usually change.

Nevertheless
1 The product of the n eigenvalues equals the determinant.
2 The sum of the n eigenvalues equals the sum of the n diagonal

entries.

105 / 127



Some Remarks

Something Notable
If you add a row of A to another row, or exchange rows, the eigenvalues
usually change.

Nevertheless
1 The product of the n eigenvalues equals the determinant.
2 The sum of the n eigenvalues equals the sum of the n diagonal

entries.

105 / 127



Outline

1 Orthonormal Basis
Introduction
The Norm
The Row Space and Nullspace are Orthogonal sub-spaces inside Rn

Orthogonal Complements
Fundamental Theorems of Linear Algebra

Projections
Projection Onto a Subspace

Orthogonal Bases and Gram-Schmidt
Solving a Least Squared Error
The Gram Schmidt Process
The Gram Schmidt Algorithm and the QR Factorization

2 Eigenvectors
Introduction
What are eigenvector good for?
Modification on Distances
Relation with Invertibility
Finding Eigenvalues and Eigenvectors
Implications of Existence of Eigenvalues
Diagonalization of Matrices
Interesting Derivations

106 / 127



They impact many facets of our life!!!

Example, given the composition of the linear function
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Then, for recurrent systems

Something like

vn+1 = Avn + b

Making b = 0

vn+1 = Avn

The eigenvalues are telling us if the recurrent system converges or not
For example if we modify the matrix A.
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For example
Here, iterations send the system to the infinity
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In another Example

Imagine the following example
1 F represents the number of foxes in a population
2 R represents the number of rabits in a population

Then, if we have that
The number of rabbits is related to the number of foxes in the
following way

I At each time you have three times the number of rabbits minus the
number of foxes
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Therefore

We have the following relation

dR

dt
= 3R− 1F

dF

dt
= 1F

Or as a matrix operations(
R′

F ′

)
=
(

3 −1
0 1

)(
R
F

)
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Geometrically

As you can see through the eigenvalues we have a stable population

Rabbits

Fo
xs
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Therefore

We can try to cast our problems as system of equations
Solve by methods found in linear algebra

Then, using properties of the eigenvectors
We can look at sought properties that we would like to have
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Assume a matrix A

Definition
An n× n matrix A is diagonalizable is called diagonalizable if there
exists an invertible matrix P such that P−1AP is a diagonal matrix.

Some remarks
Is every diagonalizable matrix invertible?
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Nope

Given the structure

P−1AP =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn


Then using the determinant

det
[
P−1AP

]
= det [P ]−1 det [A] det [P ] = det [A] =

n∏
i=
λi

if one of the eigenvalues of A is zero
The determinant of A is zero, and hence A is not invertible.
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Actually

Theorem
A diagonal matrix is invertible if and only if its eigenvalues are
nonzero.

Is Every Invertible Matrix Diagonalizable?
Consider the matrix:

A =
[

1 1
0 1

]

The determinant of A is 1, hence A is invertible (Characteristic
Polynomial)

p (λ) = det [A− λI] = (1− t)2
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Therefore, you have a repetition in the eigenvalue

Thus, the geometric multiplicity of the eigenvalue 1 is 1,
(

1 0
)T

Since the geometric multiplicity is strictly less than the algebraic
multiplicity, the matrix A is defective and not diagonalizable.

Why?
Let us to look at the eigenvectors for this answer
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Relation with Eigenvectors

Suppose that the n× n matrix A has n linearly independent
eigenvectors

v1,v2, ...,vn

Put them into an eigenvector matrix P

P =
[

v1 v2 ... vn

]
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We have

What if we apply it to the canonical basis elements?

P (ei) = vi

Then apply this to the matrix A

AP (ei) = λivi

Finally

P−1AP (ei) = λiei
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Therefore

ei is the set of eigenvectors of P−1AP

I =
[

e1 e2 · · · en

]
Then

P−1AP = P−1API =
[
λ1e1 λ2e2 · · · λnen

]
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Therefore

We have that

P−1AP =


λ1 0 · · · 0

0 λ2 0
...

... 0 . . . 0
0 · · · 0 λn

 = D

122 / 127



Therefore

We can see the diagonalization as a decomposition A

P
[
P−1AP

]
= IDP

In a similar way

A = PDP−1

Therefore
Only if we have n linearly independent eigenvectors (Different
Eigenvalues), we can diagonalize it.
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Some Interesting Properties

What is A2

Assuming n× n matrix that can be diagonlized.

Quite simple

Ak = SΛKS−1

What happens if for all |λi| < 1

Ak → 0 when k −→∞
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Some Basic Properties of the Symmetric Matrices

Symmetric Matrix
1 A symmetric matrix has only real eigenvalues.
2 The eigenvectors can be chosen orthonormal.
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Spectral Theorem

Theorem
Every symmetric matrix has the factorization A = QΛQT with the
real eigenvalues in Λ and orthonormal eigenvectors P = Q.

Proof
A direct proof from the previous ideas.
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