Introduction to Math for Artificial Introduction
 Orthonormal Basis and Eigenvectors

Andres Mendez-Vazquez

March 23, 2020

Outline

(1) Orthonormal Basis

- Introduction
- The Norm
- The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^{n}
- Orthogonal Complements
- Fundamental Theorems of Linear Algebra
- Projections
- Projection Onto a Subspace
- Orthogonal Bases and Gram-Schmidt
- Solving a Least Squared Error
- The Gram Schmidt Process
- The Gram Schmidt Algorithm and the QR Factorization
(2) Eigenvectors
- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

Outline

1) Orthonormal Basis
 - Introduction

- The Norm
- The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^{n}
- Orthogonal Complements
- Fundamental Theorems of Linear AlgebraProjections
- Projection Onto a SubspaceOrthogonal Bases and Gram-Schmidt
- Solving a Least Squared Error
- The Gram Schmidt Process
- The Gram Schmidt Algorithm and the QR Factorization
(2) Eigenvectors
- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

The Dot Product

Definition

The dot product of two vectors $\boldsymbol{v}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]^{T}$ and $\boldsymbol{w}=\left[w_{1}, w_{2}, \ldots, w_{n}\right]^{T}$

$$
\boldsymbol{v} \cdot \boldsymbol{w}=\sum_{i=1}^{n} v_{i} w_{i}
$$

Example!!! Splitting the Space?

For example, assume the following vector \boldsymbol{w} and constant w_{0}

$$
\boldsymbol{w}=(-1,2)^{T} \text { and } w_{0}=0
$$

Example!!! Splitting the Space?

For example, assume the following vector \boldsymbol{w} and constant w_{0}

$$
\boldsymbol{w}=(-1,2)^{T} \text { and } w_{0}=0
$$

Hyperplane

Then, we have

The following results

$$
\begin{aligned}
& g\left(\binom{1}{2}\right)=(-1,2)\binom{1}{2}=-1 \times 1+2 \times 2=3 \\
& g\left(\binom{3}{1}\right)=(-1,2)\binom{3}{1}=-1 \times 3+2 \times 1=-1
\end{aligned}
$$

YES!!! We have a positive side and a negative side!!!

This product is also know as the Inner Product

Where

An inner product $\langle\cdots, \cdots\rangle$ satisfies the following four properties ($\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ vectors and α a escalar):
(1) $\langle\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{w}\rangle=\langle\boldsymbol{u}, \boldsymbol{w}\rangle+\langle\boldsymbol{v}, \boldsymbol{w}\rangle$
(2) $\langle\alpha \boldsymbol{v}, \boldsymbol{w}\rangle=\alpha\langle\boldsymbol{v}, \boldsymbol{w}\rangle$
(3) $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\langle\boldsymbol{w}, \boldsymbol{v}\rangle$
(9) $\langle\boldsymbol{v}, \boldsymbol{v}\rangle \geq 0$ and equal to zero if $\boldsymbol{v}=\mathbf{0}$.

Outline

(1) Orthonormal Basis

- Introduction
- The Norm
- The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^{n}
- Orthogonal Complements
- Fundamental Theorems of Linear AlgebraProjections
- Projection Onto a SubspaceOrthogonal Bases and Gram-Schmidt
- Solving a Least Squared Error
- The Gram Schmidt Process
- The Gram Schmidt Algorithm and the QR Factorization
(2) Eigenvectors
- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

The Norm as a dot product

We can define the longitude of a vector

$$
\|\boldsymbol{v}\|=\sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}
$$

The Norm as a dot product
We can define the longitude of a vector

$$
\|\boldsymbol{v}\|=\sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}
$$

A nice way to think about the longitude of a vector

Orthogonal Vectors

We have that

Two vectors are orthogonal when their dot product is zero:

$$
\boldsymbol{v} \cdot \boldsymbol{w}=0 \text { or } \boldsymbol{v}^{T} \boldsymbol{w}=0
$$

Orthogonal Vectors

We have that

Two vectors are orthogonal when their dot product is zero:

$$
\boldsymbol{v} \cdot \boldsymbol{w}=0 \text { or } \boldsymbol{v}^{T} \boldsymbol{w}=0
$$

Remark

We want orthogonal bases and orthogonal sub-spaces.

Some stuff about Row and Null Space

Something Notable

Every row of A is perpendicular to every solution of $A \boldsymbol{x}=0$

Some stuff about Row and Null Space

Something Notable

Every row of A is perpendicular to every solution of $A \boldsymbol{x}=0$

In a similar way
Every column of A is perpendicular to every solution of $A^{T} \boldsymbol{x}=0$

Some stuff about Row and Null Space

Something Notable

Every row of A is perpendicular to every solution of $A \boldsymbol{x}=0$
In a similar way
Every column of A is perpendicular to every solution of $A^{T} \boldsymbol{x}=0$

Meaning

What are the implications for the Column and Row Space?

Implications

We have that under $A \boldsymbol{x}=b$

$$
e=b-A \boldsymbol{x}
$$

Implications

We have that under $A \boldsymbol{x}=b$

$$
e=b-A \boldsymbol{x}
$$

Remember

The error at the Least Squared Error.

Orthogonal Spaces

Definition

Two sub-spaces V and W of a vector space are orthogonal if every vector $\boldsymbol{v} \in V$ is perpendicular to every vector $\boldsymbol{w} \in W$.

Orthogonal Spaces

Definition

Two sub-spaces V and W of a vector space are orthogonal if every vector $\boldsymbol{v} \in V$ is perpendicular to every vector $\boldsymbol{w} \in W$.

In mathematical notation

$$
\boldsymbol{v}^{T} \boldsymbol{w}=\mathbf{0} \forall \boldsymbol{v} \in V \text { and } \forall \boldsymbol{w} \in W
$$

Examples

At your Room

The floor of your room (extended to infinity) is a subspace V. The line where two walls meet is a subspace W (one-dimensional).

Examples

At your Room

The floor of your room (extended to infinity) is a subspace V. The line where two walls meet is a subspace W (one-dimensional).

A more convoluted example

Two walls look perpendicular but they are not orthogonal sub-spaces!

Examples

At your Room

The floor of your room (extended to infinity) is a subspace V. The line where two walls meet is a subspace W (one-dimensional).

A more convoluted example
Two walls look perpendicular but they are not orthogonal sub-spaces!

Why?

Any Idea?

For Example

Something Notable

Yes!!

The Line Shared by the Two Planes in \mathbb{R}^{3}
Therefore!!!

We have then

Theorem

The Null Space $N(A)$ and the Row Space $C\left(A^{T}\right)$, as the column space of A^{T}, are orthogonal sub-spaces in \mathbb{R}^{n}

We have then

Theorem

The Null Space $N(A)$ and the Row Space $C\left(A^{T}\right)$, as the column space of A^{T}, are orthogonal sub-spaces in \mathbb{R}^{n}

Proof

First, we have

$$
A \boldsymbol{x}=\left[\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{m}
\end{array}\right] \boldsymbol{x}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

We have then

Theorem

The Null Space $N(A)$ and the Row Space $C\left(A^{T}\right)$, as the column space of A^{T}, are orthogonal sub-spaces in \mathbb{R}^{n}

Proof

First, we have

$$
A \boldsymbol{x}=\left[\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{m}
\end{array}\right] \boldsymbol{x}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Therefore

Rows in A are perpendicular to $\boldsymbol{x} \Rightarrow$ Then \boldsymbol{x} is also perpendicular to every combination of the rows.

Then

Therefore

The whole row space is orthogonal to the $N(A)$

Then

Therefore

The whole row space is orthogonal to the $N(A)$

Better proof $\boldsymbol{x} \in N(A)$ - Hint What is $A^{T} \boldsymbol{y}$?

$$
\boldsymbol{x}\left(A^{T} \boldsymbol{y}\right)=(A \boldsymbol{x})^{T} \boldsymbol{y}=\mathbf{0}^{T} \boldsymbol{y}=0
$$

Then

Therefore

The whole row space is orthogonal to the $N(A)$

Better proof $\boldsymbol{x} \in N(A)$ - Hint What is $A^{T} \boldsymbol{y}$?

$$
\boldsymbol{x}\left(A^{T} \boldsymbol{y}\right)=(A \boldsymbol{x})^{T} \boldsymbol{y}=\mathbf{0}^{T} \boldsymbol{y}=0
$$

$A^{T} \boldsymbol{y}$ are all the possible combinations of the row space!!!

A little Bit of Notation

We use the following notation

$$
N(A) \perp C\left(A^{T}\right)
$$

A little Bit of Notation

We use the following notation

$$
N(A) \perp C\left(A^{T}\right)
$$

Definition

The orthogonal complement of a subspace V contains every vector that is perpendicular to V.

A little Bit of Notation

We use the following notation

$$
N(A) \perp C\left(A^{T}\right)
$$

Definition

The orthogonal complement of a subspace V contains every vector that is perpendicular to V.

This orthogonal subspace is denoted by

$$
V^{\perp}
$$

Thus, we have

Something Notable

By this definition, the nullspace is the orthogonal complement of the row space.

Look at this

The Orthogonality

Orthogonal Complements

Definition

- The orthogonal complement of a subspace V contains every vector that is perpendicular to V.

Orthogonal Complements

Definition

- The orthogonal complement of a subspace V contains every vector that is perpendicular to V.
- This orthogonal subspace is denoted by V^{\perp}, pronounced " V prep".

Orthogonal Complements

Definition

- The orthogonal complement of a subspace V contains every vector that is perpendicular to V.
- This orthogonal subspace is denoted by V^{\perp}, pronounced " V prep".

Something Notable

By this definition, the nullspace is the orthogonal complement of the row space.

Orthogonal Complements

Definition

- The orthogonal complement of a subspace V contains every vector that is perpendicular to V.
- This orthogonal subspace is denoted by V^{\perp}, pronounced " V prep".

Something Notable

By this definition, the nullspace is the orthogonal complement of the row space.

After All

Every \boldsymbol{x} that is perpendicular to the rows satisfies $A \boldsymbol{x}=\mathbf{0}$.

Quite Interesting

We have the following
If \boldsymbol{v} is orthogonal to the nullspace, it must be in the row space.

Quite Interesting

We have the following

If \boldsymbol{v} is orthogonal to the nullspace, it must be in the row space.

Therefore, we can build a new matrix

$$
A^{\prime}=\left[\begin{array}{l}
A \\
\boldsymbol{v}
\end{array}\right]
$$

Quite Interesting

We have the following

If \boldsymbol{v} is orthogonal to the nullspace, it must be in the row space.

Therefore, we can build a new matrix

$$
A^{\prime}=\left[\begin{array}{l}
A \\
\boldsymbol{v}
\end{array}\right]
$$

Problem

The row space starts to grow and can break the law $\operatorname{dim}(R(A))+\operatorname{dim}(\operatorname{Ker}(A))=n$.

Additionally

The left nullspace and column space are orthogonal in \mathbb{R}^{m}
Basically, they are orthogonal complements.

Additionally

The left nullspace and column space are orthogonal in \mathbb{R}^{m}
Basically, they are orthogonal complements.

As always

Their dimensions $\operatorname{dim}\left(\operatorname{Ker}\left(A^{T}\right)\right)$ and $\operatorname{dim}\left(R\left(A^{T}\right)\right)$ add to the full dimension m.

We have

Theorem

- The column space and row space both have dimension r.
- The nullspaces have dimensions $n-r$ and $m-r$.

We have

Theorem

- The column space and row space both have dimension r.
- The nullspaces have dimensions $n-r$ and $m-r$.

Theorem

The nullspace of A is the orthogonal complement of the row space $C\left(A^{T}\right)-\mathbb{R}^{n}$.

We have

Theorem

- The column space and row space both have dimension r.
- The nullspaces have dimensions $n-r$ and $m-r$.

Theorem

The nullspace of A is the orthogonal complement of the row space $C\left(A^{T}\right)-\mathbb{R}^{n}$.

Theorem

The null space of A^{T} is the orthogonal complement of the column space $C(A)-\mathbb{R}^{m}$.

Splitting the Vectors

The point of "complements"
\boldsymbol{x} can be split into a row space component \boldsymbol{x}_{r} and a nullspace component \boldsymbol{x}_{n} :

$$
\boldsymbol{x}=\boldsymbol{x}_{r}+\boldsymbol{x}_{n}
$$

Splitting the Vectors

The point of "complements"
\boldsymbol{x} can be split into a row space component \boldsymbol{x}_{r} and a nullspace component \boldsymbol{x}_{n} :

$$
\boldsymbol{x}=\boldsymbol{x}_{r}+\boldsymbol{x}_{n}
$$

Therefore

$$
A \boldsymbol{x}=A\left[\boldsymbol{x}_{r}+\boldsymbol{x}_{n}\right]=A \boldsymbol{x}_{r}+A \boldsymbol{x}_{n}=A \boldsymbol{x}_{r}
$$

Splitting the Vectors

The point of "complements"

\boldsymbol{x} can be split into a row space component \boldsymbol{x}_{r} and a nullspace component \boldsymbol{x}_{n} :

$$
\boldsymbol{x}=\boldsymbol{x}_{r}+\boldsymbol{x}_{n}
$$

Therefore

$$
A \boldsymbol{x}=A\left[\boldsymbol{x}_{r}+\boldsymbol{x}_{n}\right]=A \boldsymbol{x}_{r}+A \boldsymbol{x}_{n}=A \boldsymbol{x}_{r}
$$

Basically

Every vector goes to the column space.

Not only that

Every vector b in the column space

It comes from one and only one vector in the row space.

Not only that

Every vector b in the column space

It comes from one and only one vector in the row space.

Proof

- If $A \boldsymbol{x}_{r}=A \boldsymbol{x}_{r}^{\prime} \longrightarrow$ the difference is in the nullspace $\boldsymbol{x}_{r}-\boldsymbol{x}_{r}^{\prime}$.

Not only that

Every vector b in the column space

It comes from one and only one vector in the row space.

Proof

- If $A \boldsymbol{x}_{r}=A \boldsymbol{x}_{r}^{\prime} \longrightarrow$ the difference is in the nullspace $\boldsymbol{x}_{r}-\boldsymbol{x}_{r}^{\prime}$.
- It is also in the row space...

Not only that

Every vector b in the column space

It comes from one and only one vector in the row space.

Proof

- If $A \boldsymbol{x}_{r}=A \boldsymbol{x}_{r}^{\prime} \longrightarrow$ the difference is in the nullspace $\boldsymbol{x}_{r}-\boldsymbol{x}_{r}^{\prime}$.
- It is also in the row space...
- Given that the nullspace and the row space are orthogonal.

Not only that

Every vector b in the column space

It comes from one and only one vector in the row space.

Proof

- If $A \boldsymbol{x}_{r}=A \boldsymbol{x}_{r}^{\prime} \longrightarrow$ the difference is in the nullspace $\boldsymbol{x}_{r}-\boldsymbol{x}_{r}^{\prime}$.
- It is also in the row space...
- Given that the nullspace and the row space are orthogonal.
- They only share the vector $\mathbf{0}$.

And From Here

Something Notable

There is a $r \times r$ invertible matrix there hiding inside A.

And From Here

Something Notable

There is a $r \times r$ invertible matrix there hiding inside A.
If we throwaway the two nullspaces
From the row space to the column space, A is invertible

Example

We have the matrix after echelon reduced

$$
A=\left(\begin{array}{lllll}
3 & 0 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Example

We have the matrix after echelon reduced

$$
A=\left(\begin{array}{lllll}
3 & 0 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

You have the following invertible matrix

$$
B=\left(\begin{array}{ll}
3 & 0 \\
0 & 5
\end{array}\right)
$$

Outline

(1) Orthonormal Basis

- Introduction
- The Norm
- The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^{n}
- Orthogonal Complements
- Fundamental Theorems of Linear Algebra
- Projections
- Projection Onto a Subspace
-

Orthogonal Bases and Gram-Schmidt

- Solving a Least Squared Error
- The Gram Schmidt Process
- The Gram Schmidt Algorithm and the QR Factorization
(2) Eigenvectors
- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

Assume that you are in \mathbb{R}^{3}

Something like

Simple but complex

A simple question

- What are the projections of $b=(2,3,4)$ onto the z axis and the $x y$ plane?
- Can we use matrices to talk about these projections?

Simple but complex

A simple question

- What are the projections of $b=(2,3,4)$ onto the z axis and the $x y$ plane?
- Can we use matrices to talk about these projections?

First

We must have a projection matrix P with the following property:

$$
P^{2}=P
$$

Simple but complex

A simple question

- What are the projections of $b=(2,3,4)$ onto the z axis and the $x y$ plane?
- Can we use matrices to talk about these projections?

First

We must have a projection matrix P with the following property:

$$
P^{2}=P
$$

Why?
Ideas?

Then, the Projection Pb

First

When \boldsymbol{b} is projected onto a line, its projection \boldsymbol{p} is the part of \boldsymbol{b} along that line.

Then, the Projection Pb

First

When \boldsymbol{b} is projected onto a line, its projection \boldsymbol{p} is the part of \boldsymbol{b} along that line.

Second

When \boldsymbol{b} is projected onto a plane, its projection \boldsymbol{p} is the part of the plane.

In our case

The Projection Matrices for the coordinate systems

$$
P_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), P_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), P_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Example

We have the following vector $\boldsymbol{b}=(2,3,4)^{T}$
Onto the \boldsymbol{z} axis:

$$
P_{1} \boldsymbol{b}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
4
\end{array}\right)
$$

Example

We have the following vector $\boldsymbol{b}=(2,3,4)^{T}$
Onto the \boldsymbol{z} axis:

$$
P_{1} \boldsymbol{b}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
4
\end{array}\right)
$$

What about the plane $x y$

Any idea?

We have something more complex

Something Notable

$$
P_{4}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

We have something more complex

Something Notable

$$
P_{4}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then

$$
P_{4} \boldsymbol{b}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)=\left(\begin{array}{l}
2 \\
3 \\
0
\end{array}\right)
$$

Assume the following

We have that

$\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$ in \mathbb{R}^{m}.

Assume the following

We have that

$\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$ in \mathbb{R}^{m}.

Assume they are linearly independent

They span a subspace, we want projections into the subspace

Assume the following

We have that

$\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$ in \mathbb{R}^{m}.

Assume they are linearly independent
They span a subspace, we want projections into the subspace

We want to project b into such subspace

How do we do it?

This is the important part

Problem

Find the combination $\boldsymbol{p}=x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}$ closest to vector \boldsymbol{b}.

This is the important part

Problem

Find the combination $\boldsymbol{p}=x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}$ closest to vector \boldsymbol{b}.

Something Notable

With $n=1$ (only one vector a_{1}) this projection onto a line.

This is the important part

Problem

Find the combination $\boldsymbol{p}=x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}$ closest to vector \boldsymbol{b}.

Something Notable

With $n=1$ (only one vector a_{1}) this projection onto a line.

This line is the column space of A
Basically the columns are spanned by a single column.

In General

The matrix has n columns $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$
The combinations in \mathbb{R}^{m} are vectors $A \boldsymbol{x}$ in the column space

In General

The matrix has n columns $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$
The combinations in \mathbb{R}^{m} are vectors $A \boldsymbol{x}$ in the column space
We are looking for the particular combination
The nearest to the original b

$$
\boldsymbol{p}=A \widehat{\boldsymbol{x}}
$$

First

We look at the simplest case
The projection into a line...

With a little of Geometry

We have the following

Therefore

Using the fact that the projection is equal to

$$
\boldsymbol{p}=x \boldsymbol{a}
$$

Therefore

Using the fact that the projection is equal to

$$
\boldsymbol{p}=x \boldsymbol{a}
$$

Then, the error is equal to

$$
\boldsymbol{e}=\boldsymbol{b}-x \boldsymbol{a}
$$

Therefore

Using the fact that the projection is equal to

$$
\boldsymbol{p}=x \boldsymbol{a}
$$

Then, the error is equal to

$$
\boldsymbol{e}=\boldsymbol{b}-x \boldsymbol{a}
$$

We have that $\boldsymbol{a} \cdot \boldsymbol{e}=\mathbf{0}$

$$
\boldsymbol{a} \cdot \boldsymbol{e}=\boldsymbol{a} \cdot(\boldsymbol{b}-x \boldsymbol{a})=\boldsymbol{a} \cdot \boldsymbol{b}-x \boldsymbol{a} \cdot \boldsymbol{a}=\mathbf{0}
$$

Therefore

We have that

$$
x=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{a} \cdot \boldsymbol{a}}=\frac{\boldsymbol{a}^{T} \boldsymbol{b}}{\boldsymbol{a}^{T} \boldsymbol{a}}
$$

Therefore

We have that

$$
x=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{a} \cdot \boldsymbol{a}}=\frac{\boldsymbol{a}^{T} \boldsymbol{b}}{\boldsymbol{a}^{T} \boldsymbol{a}}
$$

Or something quite simple

$$
\boldsymbol{p}=\frac{\boldsymbol{a}^{T} \boldsymbol{b}}{\boldsymbol{a}^{T} \boldsymbol{a}} \boldsymbol{a}
$$

By the Law of Cosines

Something Notable

$$
\|\boldsymbol{a}-\boldsymbol{b}\|^{2}=\|\boldsymbol{a}\|^{2}+\|\boldsymbol{b}\|^{2}-2\|\boldsymbol{a}\|\|\boldsymbol{b}\| \cos \Theta
$$

We have

The following product

$$
\boldsymbol{a} \cdot \boldsymbol{a}-2 \boldsymbol{a} \cdot \boldsymbol{b}+\boldsymbol{b} \cdot \boldsymbol{b}=\|\boldsymbol{a}\|^{2}+\|\boldsymbol{b}\|^{2}-2\|\boldsymbol{a}\|\|\boldsymbol{b}\| \cos \Theta
$$

We have

The following product

$$
\boldsymbol{a} \cdot \boldsymbol{a}-2 \boldsymbol{a} \cdot \boldsymbol{b}+\boldsymbol{b} \cdot \boldsymbol{b}=\|\boldsymbol{a}\|^{2}+\|\boldsymbol{b}\|^{2}-2\|\boldsymbol{a}\|\|\boldsymbol{b}\| \cos \Theta
$$

Then

$$
\boldsymbol{a} \cdot \boldsymbol{b}=\|\boldsymbol{a}\|\|\boldsymbol{b}\| \cos \Theta
$$

With Length

Using the Norm

$$
\|\boldsymbol{p}\|=\left|\frac{\boldsymbol{a}^{T} \boldsymbol{b}}{\boldsymbol{a}^{T} \boldsymbol{a}}\right|\|\boldsymbol{a}\|=\left|\frac{\|\boldsymbol{a}\|\|\boldsymbol{b}\| \cos \Theta}{\|\boldsymbol{a}\|^{2}}\right|\|\boldsymbol{a}\|=\|\boldsymbol{b}\||\cos \Theta|
$$

Example

Project

$$
\boldsymbol{b}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \text { onto } \boldsymbol{a}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)
$$

Example

Project

$$
\boldsymbol{b}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \text { onto } \boldsymbol{a}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)
$$

Find

$$
\boldsymbol{p}=x \boldsymbol{a}
$$

What about the Projection Matrix in general

We have

$$
\boldsymbol{p}=\boldsymbol{a} x=\frac{\boldsymbol{a} \boldsymbol{a}^{T} \boldsymbol{b}}{\boldsymbol{a}^{T} \boldsymbol{a}}=P \boldsymbol{b}
$$

What about the Projection Matrix in general

We have

$$
\boldsymbol{p}=\boldsymbol{a} x=\frac{\boldsymbol{a} \boldsymbol{a}^{T} \boldsymbol{b}}{\boldsymbol{a}^{T} \boldsymbol{a}}=P \boldsymbol{b}
$$

Then

$$
P=\frac{\boldsymbol{a} \boldsymbol{a}^{T}}{\boldsymbol{a}^{T} \boldsymbol{a}}
$$

Example

Find the projection matrix for

$$
\boldsymbol{b}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \text { onto } \boldsymbol{a}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)
$$

What about the general case?

We have that

Find the combination $\boldsymbol{p}=x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}$ closest to vector \boldsymbol{b}.

What about the general case?

We have that

Find the combination $\boldsymbol{p}=x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}$ closest to vector \boldsymbol{b}.

Now you need a vector
Find the vector \boldsymbol{x}, find the projection $\boldsymbol{p}=A \boldsymbol{x}$, find the matrix P.

What about the general case?

We have that

Find the combination $\boldsymbol{p}=x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}$ closest to vector \boldsymbol{b}.

Now you need a vector

Find the vector \boldsymbol{x}, find the projection $\boldsymbol{p}=A \boldsymbol{x}$, find the matrix P.

Again, the error is perpendicular to the space

$$
\boldsymbol{e}=\boldsymbol{b}-A \boldsymbol{x}
$$

Therefore

The error $\boldsymbol{e}=\boldsymbol{b}-A \boldsymbol{x}$

$$
\begin{gathered}
\boldsymbol{a}_{1}^{T}(\boldsymbol{b}-A \boldsymbol{x})=0 \\
\vdots \\
\boldsymbol{a}_{n}^{T}(\boldsymbol{b}-A \boldsymbol{x})=0
\end{gathered}
$$

Therefore

The error $e=b-A x$

$$
\begin{gathered}
\boldsymbol{a}_{1}^{T}(\boldsymbol{b}-A \boldsymbol{x})=0 \\
\vdots \\
\boldsymbol{a}_{n}^{T}(\boldsymbol{b}-A \boldsymbol{x})=0
\end{gathered}
$$

Or

$$
\left[\begin{array}{c}
\boldsymbol{a}_{1}^{T} \\
\vdots \\
\boldsymbol{a}_{n}^{T}
\end{array}\right][\boldsymbol{b}-A \boldsymbol{x}]=0
$$

Therefore

The Matrix with those rows is A^{T}

$$
A^{T}(\boldsymbol{b}-A \boldsymbol{x})=0
$$

Therefore

The Matrix with those rows is A^{T}

$$
A^{T}(\boldsymbol{b}-A \boldsymbol{x})=0
$$

Therefore

$$
A^{T} \boldsymbol{b}-A^{T} A \boldsymbol{x}=0
$$

Therefore

The Matrix with those rows is A^{T}

$$
A^{T}(\boldsymbol{b}-A \boldsymbol{x})=0
$$

Therefore

$$
A^{T} \boldsymbol{b}-A^{T} A \boldsymbol{x}=0
$$

Or the most know form

$$
\boldsymbol{x}=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}
$$

Therefore

The Projection is

$$
\boldsymbol{p}=A \boldsymbol{x}=A\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}
$$

Therefore

The Projection is

$$
\boldsymbol{p}=A \boldsymbol{x}=A\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}
$$

Therefore

$$
P=A\left(A^{T} A\right)^{-1} A^{T}
$$

The key step was $A^{T}[\boldsymbol{b}-A \boldsymbol{x}]=0$

Linear algebra gives this "normal equation"
(1) Our subspace is the column space of A.
(2) The error vector $\boldsymbol{b}-\boldsymbol{A x}$ is perpendicular to that column space.

- Therefore $\boldsymbol{b}-A \boldsymbol{x}$ is in the nullspace of A^{T}

When A has independent columns, $A^{T} A$ is invertible

Theorem

$A^{T} A$ is invertible if and only if A has linearly independent columns.

Proof

Consider the following

$$
A^{T} A \boldsymbol{x}=0
$$

Proof

Consider the following

$$
A^{T} A \boldsymbol{x}=0
$$

Here, $A x$ is in the null space of A^{T}

- Remember the column space and null space of A^{T} are orthogonal complements.

Proof

Consider the following

$$
A^{T} A \boldsymbol{x}=0
$$

Here, $A x$ is in the null space of A^{T}

- Remember the column space and null space of A^{T} are orthogonal complements.

And $A x$ an element in the column space of A

$$
A \boldsymbol{x}=0
$$

Proof

If A has linearly independent columns

$$
A \boldsymbol{x}=0 \Longrightarrow \boldsymbol{x}=0
$$

Proof

If A has linearly independent columns

$$
A x=0 \Longrightarrow x=0
$$

Then, the null space

$$
\operatorname{Null}\left(A^{T} A\right)=\{0\}
$$

Proof

If A has linearly independent columns

$$
A x=0 \Longrightarrow x=0
$$

Then, the null space

$$
\operatorname{Null}\left(A^{T} A\right)=\{0\}
$$

i.e $A^{T} A$ is full rank

- Then, $A^{T} A$ is invertible...

Finally

Theorem

- When A has independent columns, $A^{T} A$ is square, symmetric and invertible.

Example

Use Gauss-Jordan for finding if $A^{T} A$ is invertible

$$
A=\left(\begin{array}{ll}
1 & 2 \\
1 & 2 \\
0 & 0
\end{array}\right)
$$

Example

Given

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right] \text { and } \boldsymbol{b}=\left(\begin{array}{l}
6 \\
0 \\
0
\end{array}\right)
$$

Example

Given

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right] \text { and } \boldsymbol{b}=\left(\begin{array}{c}
6 \\
0 \\
0
\end{array}\right)
$$

Find
 \boldsymbol{x} and \boldsymbol{p} and P

Outline

(1) Orthonormal Basis

- Introduction
- The Norm

The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^{n}

- Orthogonal Complements
- Fundamental Theorems of Linear Algebra
- Projections
- Projection Onto a Subspace
- Orthogonal Bases and Gram-Schmidt
- Solving a Least Squared Error
- The Gram Schmidt Process
- The Gram Schmidt Algorithm and the QR Factorization
(2) Eigenvectors
- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

Now, we always like to make our life easier

Something Notable

- Orthogonality makes easier to find $\boldsymbol{x}, \boldsymbol{p}$ and P.

Now, we always like to make our life easier

Something Notable

- Orthogonality makes easier to find $\boldsymbol{x}, \boldsymbol{p}$ and P.

For this, we will find the orthogonal vectors

- At the column space of A

Orthonormal Vectors

Definition

The vectors $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \ldots, \boldsymbol{q}_{n}$ are orthonormal if

$$
\boldsymbol{q}_{i}^{T} \boldsymbol{q}_{j}= \begin{cases}0 & \text { when } i \neq j \\ 1 & \text { when } i=j\end{cases}
$$

Orthonormal Vectors

Definition

The vectors $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \ldots, \boldsymbol{q}_{n}$ are orthonormal if

$$
\boldsymbol{q}_{i}^{T} \boldsymbol{q}_{j}= \begin{cases}0 & \text { when } i \neq j \\ 1 & \text { when } i=j\end{cases}
$$

Then

- A matrix with orthonormal columns is assigned the special letter Q

Orthonormal Vectors

Definition

The vectors $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \ldots, \boldsymbol{q}_{n}$ are orthonormal if

$$
\boldsymbol{q}_{i}^{T} \boldsymbol{q}_{j}= \begin{cases}0 & \text { when } i \neq j \\ 1 & \text { when } i=j\end{cases}
$$

Then

- A matrix with orthonormal columns is assigned the special letter Q

Properties

- A matrix Q with orthonormal columns satisfies $Q^{T} Q=I$

Additionally

Given that

$$
Q^{T} Q=I
$$

Additionally

Given that

$$
Q^{T} Q=I
$$

Therefore
When Q is square, $Q^{T} Q=I$ means that $Q^{T}=Q^{-1}$: transpose $=$ inverse.

Examples

Rotation

$$
\left(\begin{array}{cc}
\cos \Theta & -\sin \Theta \\
\sin \Theta & \cos \Theta
\end{array}\right)
$$

Examples

Rotation

$$
\left(\begin{array}{cc}
\cos \Theta & -\sin \Theta \\
\sin \Theta & \cos \Theta
\end{array}\right)
$$

Permutation Matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Examples

Rotation

$$
\left(\begin{array}{cc}
\cos \Theta & -\sin \Theta \\
\sin \Theta & \cos \Theta
\end{array}\right)
$$

Permutation Matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Reflection

- Setting $Q=I-2 \boldsymbol{u} \boldsymbol{u}^{T}$ with \boldsymbol{u} a unit vector.

Finally

If Q has orthonormal columns

- The lengths are unchanged

Finally

If Q has orthonormal columns

－The lengths are unchanged
How？

$$
\|Q \boldsymbol{x}\|=\sqrt{\boldsymbol{x}^{T} Q^{T} Q \boldsymbol{x}}=\sqrt{\boldsymbol{x}^{T} \boldsymbol{x}}=\|\boldsymbol{x}\|
$$

Remark

Something Notable

When the columns of A were a basis for the subspace.

Remark

Something Notable

When the columns of A were a basis for the subspace.

All Formulas involve

$$
A^{T} A
$$

Remark

Something Notable

When the columns of A were a basis for the subspace.

All Formulas involve

$$
A^{T} A
$$

What happens when the basis vectors are orthonormal
$A^{T} A$ simplifies to $Q^{T} Q=I$

Therefore, we have

The following
$I \boldsymbol{x}=Q^{T} \boldsymbol{b}$ and $\boldsymbol{p}=Q \boldsymbol{x}$ and $P=Q I Q^{T}$

Therefore, we have

> The following
> $I \boldsymbol{x}=Q^{T} \boldsymbol{b}$ and $\boldsymbol{p}=Q \boldsymbol{x}$ and $P=Q I Q^{T}$

Not only that

The solution of $Q \boldsymbol{x}=\boldsymbol{b}$ is simply $\boldsymbol{x}=Q^{T} \boldsymbol{b}$

Example

Given the following matrix

Verify that is a orthogonal matrix

$$
\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right)
$$

We have that

Given that using orthonormal bases is good How do we generate such basis given an initial basis?

We have that

Given that using orthonormal bases is good

How do we generate such basis given an initial basis?

Graham Schmidt Process

We begin with three linear independent vectors $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c}

Then

We can do the following

- Select \boldsymbol{a} and rename it \boldsymbol{A}

Then

We can do the following

- Select \boldsymbol{a} and rename it \boldsymbol{A}

Start with \boldsymbol{b} and subtract its projection along \boldsymbol{a}

$$
\boldsymbol{B}=\boldsymbol{b}-\frac{\boldsymbol{A}^{T} \boldsymbol{b}}{\boldsymbol{A}^{T} \boldsymbol{A}} \boldsymbol{A}
$$

Then

We can do the following

- Select \boldsymbol{a} and rename it \boldsymbol{A}

Start with b and subtract its projection along a

$$
\boldsymbol{B}=\boldsymbol{b}-\frac{\boldsymbol{A}^{T} \boldsymbol{b}}{\boldsymbol{A}^{T} \boldsymbol{A}} \boldsymbol{A}
$$

Properties

This vector \boldsymbol{B} is what we have called the error vector \boldsymbol{e}, perpendicular to a.

We can keep with such process

Now we do the same for the new \boldsymbol{c}

$$
\boldsymbol{C}=\boldsymbol{c}-\frac{\boldsymbol{A}^{T} \boldsymbol{c}}{\boldsymbol{A}^{T} \boldsymbol{A}} \boldsymbol{A}-\frac{\boldsymbol{B}^{T} \boldsymbol{c}}{\boldsymbol{B}^{T} \boldsymbol{B}} \boldsymbol{B}
$$

We can keep with such process

Now we do the same for the new \boldsymbol{c}

$$
\boldsymbol{C}=\boldsymbol{c}-\frac{\boldsymbol{A}^{T} \boldsymbol{c}}{\boldsymbol{A}^{T} \boldsymbol{A}} \boldsymbol{A}-\frac{\boldsymbol{B}^{T} \boldsymbol{c}}{\boldsymbol{B}^{T} \boldsymbol{B}} \boldsymbol{B}
$$

We can keep with such process

Now we do the same for the new \boldsymbol{c}

$$
\boldsymbol{C}=\boldsymbol{c}-\frac{\boldsymbol{A}^{T} \boldsymbol{c}}{\boldsymbol{A}^{T} \boldsymbol{A}} \boldsymbol{A}-\frac{\boldsymbol{B}^{T} \boldsymbol{c}}{\boldsymbol{B}^{T} \boldsymbol{B}} \boldsymbol{B}
$$

Normalize them
To obtain the final result!!!

$$
q_{1}=\frac{\boldsymbol{A}}{\|\boldsymbol{A}\|}, q_{1}=\frac{\boldsymbol{B}}{\|\boldsymbol{B}\|}, q_{3}=\frac{\boldsymbol{C}}{\|\boldsymbol{C}\|}
$$

Example

Suppose the independent non-orthogonal vectors $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c}

$$
\boldsymbol{a}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \boldsymbol{c}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \boldsymbol{d}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Example

Suppose the independent non-orthogonal vectors $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c}

$$
\boldsymbol{a}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \boldsymbol{c}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \boldsymbol{d}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Then

- Do the procedure...

We have the following process

We begin with a matrix A

$$
A=[\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}]
$$

We have the following process

We begin with a matrix A

$$
A=[\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}]
$$

We ended with the following matrix

$$
Q=\left[q_{1}, q_{2}, q_{3}\right]
$$

We have the following process

We begin with a matrix A

$$
A=[\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}]
$$

We ended with the following matrix

$$
Q=\left[q_{1}, q_{2}, q_{3}\right]
$$

How are these matrices related?

- There is a third matrix!!!

$$
A=Q R
$$

Notice the following

Something Notable

- The vectors \boldsymbol{a} and \boldsymbol{A} and q_{1} are all along a single line.

Notice the following

Something Notable

- The vectors \boldsymbol{a} and \boldsymbol{A} and q_{1} are all along a single line.

Then
The vectors $\boldsymbol{a}, \boldsymbol{b}$ and $\boldsymbol{A}, \boldsymbol{B}$ and q_{1}, q_{2} are all in the same plane.

Notice the following

Something Notable

- The vectors \boldsymbol{a} and \boldsymbol{A} and q_{1} are all along a single line.

Then

The vectors $\boldsymbol{a}, \boldsymbol{b}$ and $\boldsymbol{A}, \boldsymbol{B}$ and q_{1}, q_{2} are all in the same plane.

Further

The vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{B}$ and q_{1}, q_{2}, q_{2} are all in the same subspace.

Therefore

It is possible to see that

$$
\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{k}
$$

Therefore

It is possible to see that

$$
\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{k}
$$

They are combination of $q_{1}, q_{2}, \ldots, q_{k}$

$$
\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right]=\left[q_{1}, q_{2}, q_{3}\right]\left[\begin{array}{ccc}
q_{1}^{T} \boldsymbol{a} & q_{1}^{T} \boldsymbol{b} & q_{1}^{T} \boldsymbol{c} \\
0 & q_{2}^{T} \boldsymbol{b} & q_{2}^{T} \boldsymbol{c} \\
0 & 0 & q_{3}^{T} \boldsymbol{c}
\end{array}\right]
$$

Gram-Schmidt

From linear independent vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$

Gram-Schmidt constructs orthonormal vectors $q_{1}, q_{2}, \ldots, q_{n}$ that when used as column vectors in a matrix Q

Gram-Schmidt

From linear independent vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$

Gram-Schmidt constructs orthonormal vectors $q_{1}, q_{2}, \ldots, q_{n}$ that when used as column vectors in a matrix Q

These matrices satisfy

$$
A=Q R
$$

Gram-Schmidt

From linear independent vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$
Gram-Schmidt constructs orthonormal vectors $q_{1}, q_{2}, \ldots, q_{n}$ that when used as column vectors in a matrix Q

These matrices satisfy

$$
A=Q R
$$

Properties

Then $R=Q^{T} A$ is a upper triangular matrix because later $q^{\prime} s$ are orthogonal to earlier $a^{\prime} s$.

Therefore

Any $m \times n$ matrix A with linear independent columns can be factored into $Q R$

- The $m \times n$ matrix Q has orthonormal columns.
- The square matrix R is upper triangular with positive diagonal.

Therefore

Any $m \times n$ matrix A with linear independent columns can be factored into $Q R$

- The $m \times n$ matrix Q has orthonormal columns.
- The square matrix R is upper triangular with positive diagonal.

We must not forget why this is useful for least squares

- $A^{T} A=R^{T} Q^{T} Q R=R^{T} R$

Therefore

Any $m \times n$ matrix A with linear independent columns can be factored into $Q R$

- The $m \times n$ matrix Q has orthonormal columns.
- The square matrix R is upper triangular with positive diagonal.

We must not forget why this is useful for least squares

- $A^{T} A=R^{T} Q^{T} Q R=R^{T} R$

$$
\begin{aligned}
& \text { Least Squared Simplify to } \\
& R^{T} R \boldsymbol{x}=R^{T} Q^{T} \boldsymbol{b} \text { or } R \boldsymbol{x}=Q^{T} \boldsymbol{b} \text { or } \boldsymbol{x}=R^{-1} Q^{T} \boldsymbol{b}
\end{aligned}
$$

Algorithm

Basic Gram-Schmidt

(1) for $j=1$ to n
(2) $\quad v=A(:, j)$
(3) for $i=1$ to $j-1$
(9) $R(i, j)=Q(:, i)^{T} \boldsymbol{v}$
(6) $\quad \boldsymbol{v}=\boldsymbol{v}-R(i, j) Q(:, i)$
(0) $R(j, j)=\|\boldsymbol{v}\|$
(1) $Q(:, j)=\frac{v}{R(j, j)}$

Outline

(1) Orthonormal Basis

O
Introduction
-
the Norm

- The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^{n}
- Orthogonal Complements
- Fundamental Theorems of Linear AlgebraProjections
- Projection Onto a SubspaceOrthogonal Bases and Gram-Schmidt
- Solving a Least Squared Error
- The Gram Schmidt Process
- The Gram Schmidt Algorithm and the QR Factorization
(2) Eigenvectors
- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
-

Finding Eigenvalues and Eigenvectors

- Implications of Existence of Eigenvalues
-

Diagonalization of Matrices
-
Interesting Derivations

A as a change factor

Most vectors change direction when multiplied against a random A

$$
A \boldsymbol{v} \longrightarrow \boldsymbol{v}^{\prime}
$$

A as a change factor

Most vectors change direction when multiplied against a random A

$$
A \boldsymbol{v} \longrightarrow \boldsymbol{v}^{\prime}
$$

Example

However

There is a set of special vectors called eigenvectors

$$
A \boldsymbol{v}=\lambda \boldsymbol{v}
$$

- Here, the eigenvalue is λ and the eigenvector is \boldsymbol{v}.

However

There is a set of special vectors called eigenvectors

$$
A \boldsymbol{v}=\lambda \boldsymbol{v}
$$

- Here, the eigenvalue is λ and the eigenvector is \boldsymbol{v}.

Definition

- If T is a linear transformation from a vector space V over a field F, $T: V \longrightarrow V$, then $\boldsymbol{v} \neq 0$ is an eigenvector of T if $T(\boldsymbol{v})$ is a scalar multiple of \boldsymbol{v}.

However

There is a set of special vectors called eigenvectors

$$
A \boldsymbol{v}=\lambda \boldsymbol{v}
$$

- Here, the eigenvalue is λ and the eigenvector is \boldsymbol{v}.

Definition

- If T is a linear transformation from a vector space V over a field F, $T: V \longrightarrow V$, then $\boldsymbol{v} \neq 0$ is an eigenvector of T if $T(\boldsymbol{v})$ is a scalar multiple of \boldsymbol{v}.

Something quite interesting

- Such linear transformations can be expressed by matrices A, $T(\boldsymbol{v})=A \boldsymbol{v}$

A little bit of Geometry

Points in a direction in which it is stretched by the transformation A

Implications

You can see the eigenvalues as the vector of change by the mapping

$$
T(\boldsymbol{v})=A \boldsymbol{v}
$$

Implications

You can see the eigenvalues as the vector of change by the mapping

$$
T(\boldsymbol{v})=A \boldsymbol{v}
$$

Therefore, for an Invertible Square Matrix A

- If your rank is $n \Rightarrow$ if you have $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ eigenvalues

Outline

(1) Orthonormal Basis

O
Introduction
-
ore Norm

- The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^{n}
- Orthogonal Complements
- Fundamental Theorems of Linear AlgebraProjections
- Projection Onto a SubspaceOrthogonal Bases and Gram-Schmidt
- Solving a Least Squared Error- The Gram Schimidt Process
- The Gram Schmidt Algorithm and the QR Factorization
(2) Eigenvectors
- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

A simple case

Given a vector $v \in V$

- We then apply the linear transformation sequentially:

$$
\boldsymbol{v}, A \boldsymbol{v}, A^{2} \boldsymbol{v} \ldots
$$

A simple case

Given a vector $v \in V$

- We then apply the linear transformation sequentially:

$$
\boldsymbol{v}, A \boldsymbol{v}, A^{2} \boldsymbol{v} \ldots
$$

For example

$$
A=\left(\begin{array}{ll}
0.7 & 0.3 \\
0.3 & 0.7
\end{array}\right)
$$

We have the following sequence

As you can see

$$
\boldsymbol{v}=\binom{0.5}{1}, A \boldsymbol{v}=\binom{0.65}{0.85}, \ldots, A^{k} \boldsymbol{v}=\binom{0.75}{0.75}, \ldots
$$

Geometrically

We have

Notably

We have that

- The eigenvalue λ tells whether the special vector \boldsymbol{v} is stretched or shrunk or reversed or left unchanged-when it is multiplied by A.

Notably

We have that

- The eigenvalue λ tells whether the special vector \boldsymbol{v} is stretched or shrunk or reversed or left unchanged-when it is multiplied by A.

Something Notable

(1) Eigenvalues can repeat!!!
(2) Eigenvalues can be positive or negative
(3) Eigenvalues could be 0

Notably

We have that

- The eigenvalue λ tells whether the special vector \boldsymbol{v} is stretched or shrunk or reversed or left unchanged-when it is multiplied by A.

Something Notable

(1) Eigenvalues can repeat!!!
(2) Eigenvalues can be positive or negative
(3) Eigenvalues could be 0

Properties

The eigenvectors make up the nullspace of $(A-\lambda I)$.

Outline

(1) Orthonormal Basis

O
Introduction
-
the Norm

- The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^{n}
- Orthogonal Complements
- Fundamental Theorems of Linear AlgebraProjections
- Projection Onto a SubspaceOrthogonal Bases and Gram-Schmidt
- Solving a Least Squared Error
- The Gram Schmidt Process
- The Gram Schmidt Algorithm and the QR Factorization
(2) Eigenvectors
- Introduction

What are eigenvector good for?

- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

An Intuition

Imagine that A is a symmetric real matrix

- Then, we have that $A \boldsymbol{v}$ is a mapping

An Intuition

Imagine that A is a symmetric real matrix

- Then, we have that $A \boldsymbol{v}$ is a mapping

What happens to the unitary circle?

$$
\left\{\boldsymbol{v} \mid \boldsymbol{v}^{T} \boldsymbol{v}=1\right\}
$$

We have something like

A modification of the distances

If we get the Q matrix

We go back to the unitary circle

- A is a modification of distances

If we get the Q matrix

We go back to the unitary circle

- A is a modification of distances

Therefore

- Our best bet is to build A with specific properties at hand...

Outline

(1) Orthonormal Basis
-
Introduction
-
the Norm

- The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^{n}
- Orthogonal Complements
- Fundamental Theorems of Linear AlgebraProjections
- Projection Onto a SubspaceOrthogonal Bases and Gram-Schmidt
- Solving a Least Squared Error- The Gram Schmidt Process
- The Gram Schmidt Algorithm and the QR Factorization

(2) Eigenvectors

- Introduction
- What are eigenvector good for?

Modification on Distances

- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

Therefore

Relation with invertibility

- What if $(A-\lambda I) \boldsymbol{v}=0$?

Therefore

Relation with invertibility

- What if $(A-\lambda I) \boldsymbol{v}=0$?

What if $v \neq 0$?

- Then, columns $A-\lambda I$ are not linear independents.

Therefore

Relation with invertibility

- What if $(A-\lambda I) \boldsymbol{v}=0$?

What if $v \neq 0$?

- Then, columns $A-\lambda I$ are not linear independents.

Then

- $A-\lambda I$ is not invertible...

Also for Determinants

If $A-\lambda I$ is not invertible

- $\operatorname{det}(A-\lambda I)=0 \leftarrow$ How?

Also for Determinants

If $A-\lambda I$ is not invertible

- $\operatorname{det}(A-\lambda I)=0 \leftarrow$ How?

Theorem

- A square matrix is invertible if and only if its determinant is non-zero.

Also for Determinants

If $A-\lambda I$ is not invertible

- $\operatorname{det}(A-\lambda I)=0 \leftarrow$ How?

Theorem

- A square matrix is invertible if and only if its determinant is non-zero.

Proof \Longrightarrow

- We know for Jordan-Gauss that an invertible matrix can be reduced to the identity by elementary matrix operations

$$
A=E_{1} E_{2} \cdots E_{k}
$$

Furthermore

We have then

- $\operatorname{det}(A)=\operatorname{det}\left(E_{1}\right) \cdots \operatorname{det}\left(E_{k}\right)$

Furthermore

We have then

- $\operatorname{det}(A)=\operatorname{det}\left(E_{1}\right) \cdots \operatorname{det}\left(E_{k}\right)$

An interesting thing is that, for example

- Let A be a $K \times K$ matrix. Let E be an elementary matrix obtained by multiplying a row of the $K \times K$ identity matrix I by a constant $c \neq 0$. Then $\operatorname{det}(E)=c$.

The same for the other elementary matrices

Then, $\operatorname{det}(A)=\operatorname{det}\left(E_{1}\right) \cdots \operatorname{det}\left(E_{k}\right) \neq 0$

- Now, the return is quite simple

The same for the other elementary matrices

Then, $\operatorname{det}(A)=\operatorname{det}\left(E_{1}\right) \cdots \operatorname{det}\left(E_{k}\right) \neq 0$

- Now, the return is quite simple

Then, $A-\lambda I$ is not invertible

- $\operatorname{det}(A-\lambda I)=0$

Now, for eigenvalues

Theorem

The number λ is an eigenvalue $\Longleftrightarrow(A-\lambda I)$ is not invertible i.e. singular.

Now, for eigenvalues

Theorem

The number λ is an eigenvalue $\Longleftrightarrow(A-\lambda I)$ is not invertible i.e. singular.

- The number λ is an eigenvalue \Rightarrow then $\exists \boldsymbol{v}$ such that $(A-\lambda I) \boldsymbol{v}=0$

Now, for eigenvalues

Theorem

The number λ is an eigenvalue $\Longleftrightarrow(A-\lambda I)$ is not invertible i.e. singular.

- The number λ is an eigenvalue \Rightarrow then $\exists \boldsymbol{v}$ such that $(A-\lambda I) \boldsymbol{v}=0$

The columns of $A-\lambda I$

- They are linear dependent so $(A-\lambda I)$ is not invertible
- What about \Longleftarrow ?

Outline

(1) Orthonormal Basis

O
Introduction
-
the Norm

- The Row Space and Nullspace are Orthogonal sub-spaces inside $\mathbb{R}^{\text {nh }}$
- Orthogonal Complements
- Fundamental Theorems of Linear AlgebraProjections
- Projection Onto a Subspace
-

Orthogonal Bases and Gram-Schmidt

- Solving a Least Squared Error
- The Gram Schmidt Process
- The Gram Schmidt Algorithm and the QR Factorization
(2) Eigenvectors
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

Now, How do we find eigenvalues and eigenvectors?

Ok, we know that for each eigenvalue there is an eigenvector

- We have seen that they represent the stretching of the vectors

Now, How do we find eigenvalues and eigenvectors?

Ok, we know that for each eigenvalue there is an eigenvector

- We have seen that they represent the stretching of the vectors

How do we get such eigenvalues

- Basically, use the fact that if $\lambda \Rightarrow \operatorname{det}[A-\lambda I]=0$

Now, How do we find eigenvalues and eigenvectors?

Ok, we know that for each eigenvalue there is an eigenvector

- We have seen that they represent the stretching of the vectors

How do we get such eigenvalues

- Basically, use the fact that if $\lambda \Rightarrow \operatorname{det}[A-\lambda I]=0$

In this way

- We obtain a polynomial know as characteristic polynomial.

Characteristic Polynomial

Then get the root of the polynomial i.e.

- Values of λ that make

$$
p(\lambda)=a_{o}+a_{1} \lambda+a_{2} \lambda+\cdots+a_{n} \lambda^{n}=0
$$

Characteristic Polynomial

Then get the root of the polynomial i.e.

- Values of λ that make

$$
p(\lambda)=a_{o}+a_{1} \lambda+a_{2} \lambda+\cdots+a_{n} \lambda^{n}=0
$$

Then, once you have the eigenvalues

- For each eigenvalue λ solve

$$
(A-\lambda I) \boldsymbol{v}=0 \text { or } A \boldsymbol{v}=\lambda \boldsymbol{v}
$$

Characteristic Polynomial

Then get the root of the polynomial i.e.

- Values of λ that make

$$
p(\lambda)=a_{o}+a_{1} \lambda+a_{2} \lambda+\cdots+a_{n} \lambda^{n}=0
$$

Then, once you have the eigenvalues

- For each eigenvalue λ solve

$$
(A-\lambda I) \boldsymbol{v}=0 \text { or } A \boldsymbol{v}=\lambda \boldsymbol{v}
$$

It is quite simple

- But a lot of theorems to get here!!!

Example

Given

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
$$

Example

Given

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
$$

Find

Its eigenvalues and eigenvectors.

Summary

To solve the eigenvalue problem for an $n \times n$ matrix, follow these steps

(1) Compute the determinant of $A-\lambda I$.
(2) Find the roots of the polynomial $\operatorname{det}(A-\lambda I)=0$.
(3) For each eigenvalue solve $(A-\lambda I) \boldsymbol{v}=0$ to find the eigenvector \boldsymbol{v}.

Some Remarks

Something Notable

If you add a row of A to another row, or exchange rows, the eigenvalues usually change.

Some Remarks

Something Notable

If you add a row of A to another row, or exchange rows, the eigenvalues usually change.

Nevertheless

(1) The product of the n eigenvalues equals the determinant.
(2) The sum of the n eigenvalues equals the sum of the n diagonal entries.

Outline

(1) Orthonormal Basis
-
Introduction
-
the Norm

- The Row Space and Nullspace are Orthogonal sub-spaces inside $\mathbb{R}^{\text {nh }}$
- Orthogonal Complements
- Fundamental Theorems of Linear Algebra
-

Projections

- Projection Onto a Subspace
-

Orthogonal Bases and Gram-Schmidt

- Solving a Least Squared Error
- The Gram Schmidt Process
- The Gram Schmidt Algorithm and the QR Factorization
(2) Eigenvectors
- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

They impact many facets of our life!!!

Example, given the composition of the linear function

Then, for recurrent systems

Something like

$$
\boldsymbol{v}_{n+1}=A \boldsymbol{v}_{n}+\boldsymbol{b}
$$

Then, for recurrent systems

Something like

$$
\boldsymbol{v}_{n+1}=A \boldsymbol{v}_{n}+\boldsymbol{b}
$$

Making $b=0$

$$
\boldsymbol{v}_{n+1}=A \boldsymbol{v}_{n}
$$

Then, for recurrent systems

Something like

$$
\boldsymbol{v}_{n+1}=A \boldsymbol{v}_{n}+\boldsymbol{b}
$$

Making $b=0$

$$
\boldsymbol{v}_{n+1}=A \boldsymbol{v}_{n}
$$

The eigenvalues are telling us if the recurrent system converges or not

- For example if we modify the matrix A.

For example

Here, iterations send the system to the infinity

In another Example

Imagine the following example

(1) F represents the number of foxes in a population
(2) R represents the number of rabits in a population

In another Example

Imagine the following example

(1) F represents the number of foxes in a population
(2) R represents the number of rabits in a population

Then, if we have that

- The number of rabbits is related to the number of foxes in the following way
- At each time you have three times the number of rabbits minus the number of foxes

Therefore

We have the following relation

$$
\begin{aligned}
& \frac{d R}{d t}=3 R-1 F \\
& \frac{d F}{d t}=1 F
\end{aligned}
$$

Therefore

We have the following relation

$$
\begin{aligned}
& \frac{d R}{d t}=3 R-1 F \\
& \frac{d F}{d t}=1 F
\end{aligned}
$$

Or as a matrix operations

$$
\binom{R^{\prime}}{F^{\prime}}=\left(\begin{array}{cc}
3 & -1 \\
0 & 1
\end{array}\right)\binom{R}{F}
$$

Geometrically

As you can see through the eigenvalues we have a stable population

Therefore

We can try to cast our problems as system of equations

- Solve by methods found in linear algebra

Therefore

We can try to cast our problems as system of equations

- Solve by methods found in linear algebra

Then, using properties of the eigenvectors

- We can look at sought properties that we would like to have

Outline

（1）Orthonormal Basis
O
Introduction
－
The Norm
－The Row Space and Nullspace are Orthogonal sub－spaces inside \mathbb{R}^{n}
－Orthogonal Complements
－Fundamental Theorems of Linear AlgebraProjections
－Projection Onto a SubspaceOrthogonal Bases and Gram－Schmidt
－Solving a Least Squared Error
－The Gram Schmidt Process
－The Gram Schmidt Algorithm and the QR Factorization
（2）Eigenvectors
－Introduction
－What are eigenvector good for？
－Modification on Distances
－Relation with Invertibility
－Finding Eigenvalues and Eigenvectors
－Implications of Existence of Eigenvalues
－Diagonalization of Matrices
－Interesting Derivations

Assume a matrix A

Definition

- An $n \times n$ matrix A is diagonalizable is called diagonalizable if there exists an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix.

Assume a matrix A

Definition

- An $n \times n$ matrix A is diagonalizable is called diagonalizable if there exists an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix.

Some remarks

- Is every diagonalizable matrix invertible?

Nope

Given the structure

$$
P^{-1} A P=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Nope

Given the structure

$$
P^{-1} A P=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Then using the determinant

$$
\operatorname{det}\left[P^{-1} A P\right]=\operatorname{det}[P]^{-1} \operatorname{det}[A] \operatorname{det}[P]=\operatorname{det}[A]=\prod_{i=}^{n} \lambda_{i}
$$

Nope

Given the structure

$$
P^{-1} A P=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Then using the determinant

$$
\operatorname{det}\left[P^{-1} A P\right]=\operatorname{det}[P]^{-1} \operatorname{det}[A] \operatorname{det}[P]=\operatorname{det}[A]=\prod_{i=}^{n} \lambda_{i}
$$

if one of the eigenvalues of A is zero

- The determinant of A is zero, and hence A is not invertible.

Actually

Theorem

- A diagonal matrix is invertible if and only if its eigenvalues are nonzero.

Actually

Theorem

- A diagonal matrix is invertible if and only if its eigenvalues are nonzero.

Is Every Invertible Matrix Diagonalizable?

- Consider the matrix:

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Actually

Theorem

- A diagonal matrix is invertible if and only if its eigenvalues are nonzero.

Is Every Invertible Matrix Diagonalizable?

- Consider the matrix:

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

The determinant of A is 1 , hence A is invertible (Characteristic Polynomial)

$$
p(\lambda)=\operatorname{det}[A-\lambda I]=(1-t)^{2}
$$

Therefore, you have a repetition in the eigenvalue

Thus, the geometric multiplicity of the eigenvalue 1 is $1,\left(\begin{array}{ll}1 & 0\end{array}\right)^{T}$

- Since the geometric multiplicity is strictly less than the algebraic multiplicity, the matrix A is defective and not diagonalizable.

Therefore, you have a repetition in the eigenvalue

Thus, the geometric multiplicity of the eigenvalue 1 is $1,\left(\begin{array}{ll}1 & 0\end{array}\right)^{T}$

- Since the geometric multiplicity is strictly less than the algebraic multiplicity, the matrix A is defective and not diagonalizable.

Why?

- Let us to look at the eigenvectors for this answer

Relation with Eigenvectors

Suppose that the $n \times n$ matrix A has n linearly independent eigenvectors

$$
\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}
$$

Relation with Eigenvectors

Suppose that the $n \times n$ matrix A has n linearly independent eigenvectors

$$
\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}
$$

Put them into an eigenvector matrix P

$$
P=\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \ldots & \boldsymbol{v}_{n}
\end{array}\right]
$$

We have

What if we apply it to the canonical basis elements?

$$
P\left(\boldsymbol{e}_{i}\right)=\boldsymbol{v}_{i}
$$

We have

What if we apply it to the canonical basis elements?

$$
P\left(\boldsymbol{e}_{i}\right)=\boldsymbol{v}_{i}
$$

Then apply this to the matrix A

$$
A P\left(\boldsymbol{e}_{i}\right)=\lambda_{i} \boldsymbol{v}_{i}
$$

We have

What if we apply it to the canonical basis elements?

$$
P\left(\boldsymbol{e}_{i}\right)=\boldsymbol{v}_{i}
$$

Then apply this to the matrix A

$$
A P\left(\boldsymbol{e}_{i}\right)=\lambda_{i} \boldsymbol{v}_{i}
$$

Finally

$$
P^{-1} A P\left(\boldsymbol{e}_{i}\right)=\lambda_{i} \boldsymbol{e}_{i}
$$

Therefore

e_{i} is the set of eigenvectors of $P^{-1} A P$

$$
I=\left[\begin{array}{llll}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \cdots & \boldsymbol{e}_{n}
\end{array}\right]
$$

Therefore

e_{i} is the set of eigenvectors of $P^{-1} A P$

$$
I=\left[\begin{array}{llll}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \cdots & \boldsymbol{e}_{n}
\end{array}\right]
$$

Then

$$
P^{-1} A P=P^{-1} A P I=\left[\begin{array}{llll}
\lambda_{1} \boldsymbol{e}_{1} & \lambda_{2} \boldsymbol{e}_{2} & \cdots & \lambda_{n} \boldsymbol{e}_{n}
\end{array}\right]
$$

Therefore

We have that

$$
P^{-1} A P=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & 0 & \vdots \\
\vdots & 0 & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right]=D
$$

Therefore

We can see the diagonalization as a decomposition A

$$
P\left[P^{-1} A P\right]=I D P
$$

Therefore

We can see the diagonalization as a decomposition A

$$
P\left[P^{-1} A P\right]=I D P
$$

In a similar way

$$
A=P D P^{-1}
$$

Therefore

We can see the diagonalization as a decomposition A

$$
P\left[P^{-1} A P\right]=I D P
$$

In a similar way

$$
A=P D P^{-1}
$$

Therefore

Only if we have n linearly independent eigenvectors (Different Eigenvalues), we can diagonalize it.

Outline

（1）Orthonormal Basis
－
Introduction
－
the Norm
－The Row Space and Nullspace are Orthogonal sub－spaces inside \mathbb{R}^{n}
－Orthogonal Complements
－Fundamental Theorems of Linear AlgebraProjections
－Projection Onto a SubspaceOrthogonal Bases and Gram－Schmidt
－Solving a Least Squared Error
－The Gram Schmidt Process
－The Gram Schmidt Algorithm and the QR Factorization
（2）Eigenvectors
－Introduction
－What are eigenvector good for？
－Modification on Distances
－Relation with Invertibility
－Finding Eigenvalues and Eigenvectors
－Implications of Existence of Eigenvalues
－Diagonalization of Matrices
－Interesting Derivations

Some Interesting Properties

What is A^{2}

- Assuming $n \times n$ matrix that can be diagonlized.

Some Interesting Properties

What is A^{2}

- Assuming $n \times n$ matrix that can be diagonlized.

Quite simple

$$
A^{k}=S \Lambda^{K} S^{-1}
$$

Some Interesting Properties

What is A^{2}

- Assuming $n \times n$ matrix that can be diagonlized.

Quite simple

$$
A^{k}=S \Lambda^{K} S^{-1}
$$

What happens if for all $\left|\lambda_{i}\right|<1$

$$
A^{k} \rightarrow 0 \text { when } k \longrightarrow \infty
$$

Some Basic Properties of the Symmetric Matrices

Symmetric Matrix

(1) A symmetric matrix has only real eigenvalues.
(2) The eigenvectors can be chosen orthonormal.

Spectral Theorem

Theorem

- Every symmetric matrix has the factorization $A=Q \Lambda Q^{T}$ with the real eigenvalues in Λ and orthonormal eigenvectors $P=Q$.

Spectral Theorem

Theorem

- Every symmetric matrix has the factorization $A=Q \Lambda Q^{T}$ with the real eigenvalues in Λ and orthonormal eigenvectors $P=Q$.

Proof

- A direct proof from the previous ideas.

