Introduction to Math for Artificial Introduction Orthonormal Basis and Eigenvectors

Andres Mendez-Vazquez

March 23, 2020

Outline

Orthonormal Basis

- Introduction
- The Norm
 - $lacel{eq: the relation}$ The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^n
 - Orthogonal Complements
 - Fundamental Theorems of Linear Algebra
- Projections
 - Projection Onto a Subspace
- Orthogonal Bases and Gram-Schmidt
 - Solving a Least Squared Error
 - The Gram Schmidt Process
 - The Gram Schmidt Algorithm and the QR Factorization

2 Eigenvectors

- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

イロト イヨト イヨト

Outline

Orthonormal Basis

The Norm

- $lacel{eq: Interval}$ The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^n
- Orthogonal Complements
- Fundamental Theorems of Linear Algebra
- Projections

Projection Onto a Subspace

- Orthogonal Bases and Gram-Schmidt
 - Solving a Least Squared Error
 - The Gram Schmidt Process
 - The Gram Schmidt Algorithm and the QR Factorization

2 Eigenvectors

- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

イロト イヨト イヨト

The Dot Product

Definition

The dot product of two vectors $\boldsymbol{v} = [v_1, v_2, ..., v_n]^T$ and $\boldsymbol{w} = [w_1, w_2, ..., w_n]^T$

$$oldsymbol{v}\cdotoldsymbol{w}=\sum_{i=1}^n v_iw_i$$

Example!!! Splitting the Space?

For example, assume the following vector $oldsymbol{w}$ and constant w_0

$$w = (-1,2)^T$$
 and $w_0 = 0$

Hyperplane

Example !!! Splitting the Space?

For example, assume the following vector \boldsymbol{w} and constant w_0

$$oldsymbol{w}=(-1,2)^T$$
 and $w_0=0$

Hyperplane

Then, we have

The following results

$$g\left(\left(\begin{array}{c}1\\2\end{array}\right)\right) = (-1,2)\left(\begin{array}{c}1\\2\end{array}\right) = -1 \times 1 + 2 \times 2 = 3$$
$$g\left(\left(\begin{array}{c}3\\1\end{array}\right)\right) = (-1,2)\left(\begin{array}{c}3\\1\end{array}\right) = -1 \times 3 + 2 \times 1 = -1$$

YES!!! We have a positive side and a negative side!!!

This product is also know as the Inner Product

Where

An inner product $\langle \cdots, \cdots \rangle$ satisfies the following four properties (u, v, w) vectors and α a escalar):

$$(\alpha \boldsymbol{v}, \boldsymbol{w}) = \alpha \langle \boldsymbol{v}, \boldsymbol{w} \rangle$$

$$(\boldsymbol{v}, \boldsymbol{w}) = \langle \boldsymbol{w}, \boldsymbol{v} \rangle$$

• $\langle \boldsymbol{v}, \boldsymbol{v} \rangle \geq 0$ and equal to zero if $\boldsymbol{v} = \boldsymbol{0}$.

Outline

2 Eigenvectors

- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

イロト イヨト イヨト

The Norm as a dot product

We can define the longitude of a vector

$$\|m{v}\| = \sqrt{m{v}\cdotm{v}}$$

A nice way to think about the longitude of a vector

< ロ > < 回 > < 回 > < 回 > < 回 >

The Norm as a dot product

We can define the longitude of a vector

$$\|m{v}\| = \sqrt{m{v}\cdotm{v}}$$

A nice way to think about the longitude of a vector

9/127

Orthogonal Vectors

We have that

Two vectors are orthogonal when their dot product is zero:

$$\boldsymbol{v}\cdot\boldsymbol{w}=0 \text{ or } \boldsymbol{v}^T\boldsymbol{w}=0$$

Remark

We want orthogonal bases and orthogonal sub-spaces

Orthogonal Vectors

We have that

Two vectors are orthogonal when their dot product is zero:

$$\boldsymbol{v}\cdot\boldsymbol{w}=0 \text{ or } \boldsymbol{v}^T\boldsymbol{w}=0$$

Remark

We want orthogonal bases and orthogonal sub-spaces.

Some stuff about Row and Null Space

Something Notable

Every row of A is perpendicular to every solution of $A \boldsymbol{x} = 0$

In a similar way

Every column of A is perpendicular to every solution of $A^T oldsymbol{x} = 0$.

Meaning

What are the implications for the Column and Row Space?

Some stuff about Row and Null Space

Something Notable

Every row of A is perpendicular to every solution of $A \boldsymbol{x} = 0$

In a similar way

Every column of A is perpendicular to every solution of $A^T \boldsymbol{x} = 0$

Meaning

What are the implications for the Column and Row Space?

Some stuff about Row and Null Space

Something Notable

Every row of A is perpendicular to every solution of $A \boldsymbol{x} = 0$

In a similar way

Every column of A is perpendicular to every solution of $A^T \boldsymbol{x} = 0$

Meaning

What are the implications for the Column and Row Space?

Implications

We have that under $A \boldsymbol{x} = b$

$$e = b - Ax$$

Remember

The error at the Least Squared Error.

Implications

We have that under $A \boldsymbol{x} = b$

$$e = b - Ax$$

Remember

The error at the Least Squared Error.

Orthogonal Spaces

Definition

Two sub-spaces V and W of a vector space are orthogonal if every vector $v \in V$ is perpendicular to every vector $w \in W$.

In mathematical notation

$oldsymbol{v}^Toldsymbol{w} = oldsymbol{0} \; orall oldsymbol{v} \in V$ and $orall oldsymbol{w} \in W$

< ロ > < 回 > < 回 > < 回 > < 回 >

Orthogonal Spaces

Definition

Two sub-spaces V and W of a vector space are orthogonal if every vector $v \in V$ is perpendicular to every vector $w \in W$.

In mathematical notation

$$oldsymbol{v}^Toldsymbol{w} = oldsymbol{0} \ orall oldsymbol{v} \in V \ ext{and} \ orall oldsymbol{w} \in W$$

Examples

At your Room

The floor of your room (extended to infinity) is a subspace V. The line where two walls meet is a subspace W (one-dimensional).

A more convoluted example

Two walls look perpendicular but they are not orthogonal sub-spaces!

Why?

Any Idea?

Examples

At your Room

The floor of your room (extended to infinity) is a subspace V. The line where two walls meet is a subspace W (one-dimensional).

A more convoluted example

Two walls look perpendicular but they are not orthogonal sub-spaces!

Why?

Any Idea?

Examples

At your Room

The floor of your room (extended to infinity) is a subspace V. The line where two walls meet is a subspace W (one-dimensional).

A more convoluted example

Two walls look perpendicular but they are not orthogonal sub-spaces!

Why?

Any Idea?

イロト イヨト イヨト

For Example

Something Notable

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

The Line Shared by the Two Planes in \mathbb{R}^3

Therefore!!!

We have then

Theorem

The Null Space N(A) and the Row Space $C(A^T)$, as the column space of A^T , are orthogonal sub-spaces in \mathbb{R}^n

Therefore

Rows in A are perpendicular to $x \Rightarrow$ Then x is also perpendicular to every combination of the rows.

We have then

Theorem

The Null Space N(A) and the Row Space $C(A^T)$, as the column space of A^T , are orthogonal sub-spaces in \mathbb{R}^n

Proof

First, we have

$$A\boldsymbol{x} = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Therefore

Rows in A are perpendicular to $oldsymbol{x} \Rightarrow$ Then $oldsymbol{x}$ is also perpendicular to every combination of the rows.

We have then

Theorem

The Null Space N(A) and the Row Space $C(A^T)$, as the column space of A^T , are orthogonal sub-spaces in \mathbb{R}^n

Proof

First, we have

$$A\boldsymbol{x} = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Therefore

Rows in A are perpendicular to $x \Rightarrow$ Then x is also perpendicular to every combination of the rows.

Therefore

The whole row space is orthogonal to the $N\left(A\right)$

Then

Therefore

The whole row space is orthogonal to the N(A)

Better proof $x \in N(A)$ - Hint What is $A^T y$?

$$\boldsymbol{x}(A^T\boldsymbol{y}) = (A\boldsymbol{x})^T \boldsymbol{y} = \boldsymbol{0}^T \boldsymbol{y} = 0$$

 $\mathbb{I}^T oldsymbol{y}$ are all the possible combinations of the row space!!!

Then

Therefore

The whole row space is orthogonal to the N(A)

Better proof $\boldsymbol{x} \in N(A)$ - Hint What is $A^T \boldsymbol{y}$?

$$\boldsymbol{x}(A^T\boldsymbol{y}) = (A\boldsymbol{x})^T\,\boldsymbol{y} = \boldsymbol{0}^T\boldsymbol{y} = 0$$

 $A^T \boldsymbol{y}$ are all the possible combinations of the row space!!!

A little Bit of Notation

We use the following notation

$$N\left(A\right) \perp C\left(A^{T}\right)$$

Definition

The orthogonal complement of a subspace V contains every vector that is perpendicular to V.

This orthogonal subspace is denoted by

< ロ > < 回 > < 回 > < 回 > < 回 >

A little Bit of Notation

We use the following notation

$$N\left(A\right) \perp C\left(A^{T}\right)$$

Definition

The orthogonal complement of a subspace ${\cal V}$ contains every vector that is perpendicular to ${\cal V}.$

19/127

A little Bit of Notation

We use the following notation

$$N\left(A\right) \perp C\left(A^{T}\right)$$

Definition

The orthogonal complement of a subspace V contains every vector that is perpendicular to $V. \end{tabular}$

イロト イヨト イヨト

Thus, we have

Something Notable

By this definition, the nullspace is the orthogonal complement of the row space.

Look at this

The Orthogonality

21/127

Definition

• The orthogonal complement of a subspace V contains every vector that is perpendicular to $V. \end{tabular}$

This orthogonal subspace is denoted by V[±], pronounced "V prepared

イロト イボト イヨト イヨト

Definition

- The orthogonal complement of a subspace V contains every vector that is perpendicular to $V. \end{tabular}$
- This orthogonal subspace is denoted by V^{\perp} , pronounced "V prep".

Something Notable By this definition, the nullspace is the orthogonal complement of the row space.

イロト イヨト イヨト

Definition

- The orthogonal complement of a subspace V contains every vector that is perpendicular to V.
- This orthogonal subspace is denoted by V^{\perp} , pronounced "V prep".

Something Notable

By this definition, the nullspace is the orthogonal complement of the row space.

Definition

- The orthogonal complement of a subspace V contains every vector that is perpendicular to V.
- This orthogonal subspace is denoted by V^{\perp} , pronounced "V prep".

Something Notable

By this definition, the nullspace is the orthogonal complement of the row space.

After All

Every x that is perpendicular to the rows satisfies Ax = 0.

イロト イヨト イヨト

Quite Interesting

We have the following

If v is orthogonal to the nullspace, it must be in the row space.

Therefore, we can build a new matrix.

Problem

The row space starts to grow and can break the law dim(R(A)) + dim(Ker(A)) = n.

イロト イロト イヨト イヨト

Quite Interesting

We have the following

If v is orthogonal to the nullspace, it must be in the row space.

Therefore, we can build a new matrix

$$A' = \left[\begin{array}{c} A \\ \boldsymbol{v} \end{array} \right]$$

Problem

The row space starts to grow and can break the law $dim \left(R(A) \right) + dim \left(Ker \left(A \right) \right) = n.$

イロト イロト イヨト イヨト

Quite Interesting

We have the following

If v is orthogonal to the nullspace, it must be in the row space.

Therefore, we can build a new matrix

$$A' = \left[\begin{array}{c} A \\ \boldsymbol{v} \end{array} \right]$$

Problem

The row space starts to grow and can break the law dim(R(A)) + dim(Ker(A)) = n.

イロト イヨト イヨト

Additionally

The left nullspace and column space are orthogonal in \mathbb{R}^m

Basically, they are orthogonal complements.

As always

Their dimensions $dim\left(Ker\left(A^T
ight)
ight)$ and $dim\left(R\left(A^T
ight)
ight)$ add to the full dimension m.

イロト イロト イヨト イヨト

Additionally

The left nullspace and column space are orthogonal in \mathbb{R}^m

Basically, they are orthogonal complements.

As always

Their dimensions $dim\left(Ker\left(A^{T}\right)\right)$ and $dim\left(R\left(A^{T}\right)\right)$ add to the full dimension m.

< ロ > < 同 > < 回 > < 回 >

We have

Theorem

• The column space and row space both have dimension r.

• The nullspaces have dimensions n - r and m - r.

Theorem

The nullspace of A is the orthogonal complement of the row space $C\left(A^{T}
ight)$ - $\mathbb{R}^{n}.$

Theorem

The null space of A^T is the orthogonal complement of the column space $C\left(A
ight)$ - $\mathbb{R}^m.$

We have

Theorem

• The column space and row space both have dimension r.

• The nullspaces have dimensions n - r and m - r.

Theorem

The nullspace of A is the orthogonal complement of the row space $C\left(A^{T}\right)$ - $\mathbb{R}^{n}.$

Theorem

The null space of A^T is the orthogonal complement of the column space C(A) - \mathbb{R}^m .

We have

Theorem

• The column space and row space both have dimension r.

• The nullspaces have dimensions n - r and m - r.

Theorem

The nullspace of A is the orthogonal complement of the row space $C\left(A^{T}\right)$ - $\mathbb{R}^{n}.$

Theorem

The null space of A^T is the orthogonal complement of the column space $C\left(A\right)$ - $\mathbb{R}^m.$

Splitting the Vectors

The point of "complements"

 $m{x}$ can be split into a row space component $m{x}_r$ and a nullspace component $m{x}_n$:

$$x = x_r + x_n$$

Therefore

$A\boldsymbol{x} = A\left[\boldsymbol{x}_r + \boldsymbol{x}_n\right] = A\boldsymbol{x}_r + A\boldsymbol{x}_n = A\boldsymbol{x}_r$

Basically

Every vector goes to the column space.

イロト イヨト イヨト

Splitting the Vectors

The point of "complements"

 $m{x}$ can be split into a row space component $m{x}_r$ and a nullspace component $m{x}_n$:

$$x = x_r + x_n$$

Therefore

$$A\boldsymbol{x} = A\left[\boldsymbol{x}_r + \boldsymbol{x}_n\right] = A\boldsymbol{x}_r + A\boldsymbol{x}_n = A\boldsymbol{x}_r$$

Basically

Every vector goes to the column space

Splitting the Vectors

The point of "complements"

 $m{x}$ can be split into a row space component $m{x}_r$ and a nullspace component $m{x}_n$:

$$x = x_r + x_n$$

Therefore

$$A\boldsymbol{x} = A\left[\boldsymbol{x}_r + \boldsymbol{x}_n\right] = A\boldsymbol{x}_r + A\boldsymbol{x}_n = A\boldsymbol{x}_r$$

Basically

Every vector goes to the column space.

イロト 不得 トイヨト イヨト 二日

Every vector \boldsymbol{b} in the column space

It comes from one and only one vector in the row space.

Every vector \boldsymbol{b} in the column space

It comes from one and only one vector in the row space.

Proof

• If $A x_r = A x_r^{'} \longrightarrow$ the difference is in the nullspace $x_r - x_r^{'}$.

- It is also in the row space.
- Given that the nullspace and the row space are orthogonal.
- They only share the vector 0.

イロト イヨト イヨト イヨト

Every vector \boldsymbol{b} in the column space

It comes from one and only one vector in the row space.

Proof

- If $A x_r = A x_r^{'} \longrightarrow$ the difference is in the nullspace $x_r x_r^{'}$.
- It is also in the row space...

Given that the nullspace and the row space are orthogonal

Every vector \boldsymbol{b} in the column space

It comes from one and only one vector in the row space.

Proof

- If $A x_r = A x_r^{'} \longrightarrow$ the difference is in the nullspace $x_r x_r^{'}$.
- It is also in the row space...
- Given that the nullspace and the row space are orthogonal.

Every vector \boldsymbol{b} in the column space

It comes from one and only one vector in the row space.

Proof

- If $A x_r = A x_r^{'} \longrightarrow$ the difference is in the nullspace $x_r x_r^{'}$.
- It is also in the row space...
- Given that the nullspace and the row space are orthogonal.
- They only share the vector **0**.

And From Here

Something Notable

There is a $r \times r$ invertible matrix there hiding inside A.

the two nullspaces

From the row space to the column space, A is invertible

イロト イロト イヨト イヨト

And From Here

Something Notable

There is a $r \times r$ invertible matrix there hiding inside A.

If we throwaway the two nullspaces

From the row space to the column space, A is invertible

Example

We have the matrix after echelon reduced

You have the following invertible matrix

$$B = \left(\begin{array}{cc} 3 & 0\\ 0 & 5 \end{array}\right)$$

イロト イロト イヨト イヨト

Example

We have the matrix after echelon reduced

You have the following invertible matrix

$$B = \left(\begin{array}{cc} 3 & 0\\ 0 & 5 \end{array}\right)$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

Introduction

- The Norm
 - $lacel{eq: Intermediate}$ The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^n
 - Orthogonal Complements
 - Fundamental Theorems of Linear Algebra

Projections

- Projection Onto a Subspace
- Orthogonal Bases and Gram-Schmidt
 - Solving a Least Squared Error
 - The Gram Schmidt Process
 - The Gram Schmidt Algorithm and the QR Factorization

2 Eigenvectors

- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

イロト イヨト イヨト

Assume that you are in \mathbb{R}^3

Simple but complex

A simple question

- What are the projections of b = (2, 3, 4) onto the z axis and the xy plane?
- Can we use matrices to talk about these projections?

First

We must have a projection matrix P with the following property:

$$P^2 = P$$

Why?

Ideas?

< ロ > < 回 > < 回 > < 回 > < 回 >

Simple but complex

A simple question

- What are the projections of b = (2, 3, 4) onto the z axis and the xy plane?
- Can we use matrices to talk about these projections?

First

We must have a projection matrix P with the following property:

$$P^2 = P$$

イロト イヨト イヨト

32 / 127

Why?

Ideas?

Simple but complex

A simple question

- What are the projections of b = (2, 3, 4) onto the z axis and the xy plane?
- Can we use matrices to talk about these projections?

First

We must have a projection matrix P with the following property:

$$P^2 = P$$

イロト イヨト イヨト

32/127

Why?

Ideas?

Then, the Projection $P\boldsymbol{b}$

First

When ${\boldsymbol{b}}$ is projected onto a line, its projection ${\boldsymbol{p}}$ is the part of ${\boldsymbol{b}}$ along that line.

When $m{b}$ is projected onto a plane, its projection $m{p}$ is the part of the plane.

イロト イヨト イヨト イヨト

Then, the Projection $P\boldsymbol{b}$

First

When b is projected onto a line, its projection p is the part of b along that line.

Second

When b is projected onto a plane, its projection p is the part of the plane.

イロト イヨト イヨト

In our case

The Projection Matrices for the coordinate systems

$$P_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, P_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

イロト イヨト イヨト イヨト

Example

We have the following vector $\boldsymbol{b} = (2, 3, 4)^T$

Onto the *z* axis:

$$P_1 \boldsymbol{b} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$$

What about the plane xy .

Any idea?

Example

We have the following vector $\boldsymbol{b} = (2, 3, 4)^T$

Onto the *z* axis:

$$P_1 \boldsymbol{b} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$$

What about the plane xy

Any idea?

We have something more complex

Something Notable

$$P_4 = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

$$P_4 b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$$

イロト イヨト イヨト イヨト

We have something more complex

Something Notable

$$P_4 = \left(\begin{array}{rrr} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{array}\right)$$

Then

$$P_4 \boldsymbol{b} = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right) \left(\begin{array}{r} 2 \\ 3 \\ 4 \end{array}\right) = \left(\begin{array}{r} 2 \\ 3 \\ 0 \end{array}\right)$$

Assume the following

We have that

 $oldsymbol{a}_1,oldsymbol{a}_2,...,oldsymbol{a}_n$ in $\mathbb{R}^m.$

Assume they are linearly independent.

They span a subspace, we want projections into the subspace

We want to project $m{b}$ into such subspace

How do we do it?

Assume the following

We have that

 $oldsymbol{a}_1,oldsymbol{a}_2,...,oldsymbol{a}_n$ in $\mathbb{R}^m.$

Assume they are linearly independent

They span a subspace, we want projections into the subspace

We want to project b into such subspace

How do we do it?

Assume the following

We have that

 $oldsymbol{a}_1,oldsymbol{a}_2,...,oldsymbol{a}_n$ in $\mathbb{R}^m.$

Assume they are linearly independent

They span a subspace, we want projections into the subspace

We want to project b into such subspace

How do we do it?

イロト イヨト イヨト

This is the important part

Problem

Find the combination $p = x_1a_1 + x_2a_2 + \cdots + x_na_n$ closest to vector b.

Something Notable

With n=1 (only one vector a_1) this projection onto a line.

This line is the column space of A

Basically the columns are spanned by a single column.

This is the important part

Problem

Find the combination $p = x_1a_1 + x_2a_2 + \cdots + x_na_n$ closest to vector b.

Something Notable

With n = 1 (only one vector a_1) this projection onto a line.

This line is the column space of $\scriptscriptstyle extsf{Z}$

Basically the columns are spanned by a single column.

This is the important part

Problem

Find the combination $p = x_1a_1 + x_2a_2 + \cdots + x_na_n$ closest to vector b.

Something Notable

With n = 1 (only one vector a_1) this projection onto a line.

This line is the column space of A

Basically the columns are spanned by a single column.

In General

The matrix has n columns $\boldsymbol{a}_1, \boldsymbol{a}_2, ..., \boldsymbol{a}_n$

The combinations in \mathbb{R}^m are vectors A x in the column space

We are looking for the particular combination

The nearest to the original **b**

$\boldsymbol{p} = A \widehat{\boldsymbol{x}}$

In General

The matrix has n columns $\boldsymbol{a}_1, \boldsymbol{a}_2, ..., \boldsymbol{a}_n$

The combinations in \mathbb{R}^m are vectors $A \boldsymbol{x}$ in the column space

We are looking for the particular combination

The nearest to the original \boldsymbol{b}

$$\boldsymbol{p} = A \widehat{\boldsymbol{x}}$$

We look at the simplest case

The projection into a line...

With a little of Geometry

Using the fact that the projection is equal to

 $\boldsymbol{p} = x\boldsymbol{a}$

Then, the error is equal to

e = b - xa

We have that $oldsymbol{a} \cdot oldsymbol{e} = oldsymbol{0}$

 $a \cdot e = a \cdot (b - xa) = a \cdot b - xa \cdot a = 0$

Using the fact that the projection is equal to

$$\boldsymbol{p} = x\boldsymbol{a}$$

Then, the error is equal to

$$e = b - xa$$

We have that $a \cdot e = 0$

 $a \cdot e = a \cdot (b - xa) = a \cdot b - xa \cdot a = 0$

Using the fact that the projection is equal to

$$\boldsymbol{p} = x\boldsymbol{a}$$

Then, the error is equal to

$$e = b - xa$$

We have that $oldsymbol{a}\cdotoldsymbol{e}=oldsymbol{0}$

$$\boldsymbol{a} \cdot \boldsymbol{e} = \boldsymbol{a} \cdot (\boldsymbol{b} - x\boldsymbol{a}) = \boldsymbol{a} \cdot \boldsymbol{b} - x\boldsymbol{a} \cdot \boldsymbol{a} = \boldsymbol{0}$$

We have that

$$x = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{a} \cdot \boldsymbol{a}} = \frac{\boldsymbol{a}^T \boldsymbol{b}}{\boldsymbol{a}^T \boldsymbol{a}}$$

Or something quite simple

$$p = rac{a^T b}{a^T a} a$$

We have that

$$x = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{a} \cdot \boldsymbol{a}} = \frac{\boldsymbol{a}^T \boldsymbol{b}}{\boldsymbol{a}^T \boldsymbol{a}}$$

Or something quite simple

$$p = rac{a^T b}{a^T a} a$$

By the Law of Cosines

Something Notable

$$\|\boldsymbol{a} - \boldsymbol{b}\|^2 = \|\boldsymbol{a}\|^2 + \|\boldsymbol{b}\|^2 - 2\|\boldsymbol{a}\|\|\boldsymbol{b}\|\cos\Theta$$

We have

The following product

$$a \cdot a - 2a \cdot b + b \cdot b = ||a||^2 + ||b||^2 - 2 ||a|| ||b|| \cos \Theta$$

l hen

$\boldsymbol{a} \cdot \boldsymbol{b} = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \cos \Theta$

イロト イロト イヨト イヨト

We have

The following product

$$a \cdot a - 2a \cdot b + b \cdot b = ||a||^2 + ||b||^2 - 2 ||a|| ||b|| \cos \Theta$$

Then

$$\boldsymbol{a}\cdot\boldsymbol{b} = \|\boldsymbol{a}\| \, \|\boldsymbol{b}\| \cos \Theta$$

With Length

Using the Norm

Ø

Example

Project

$$oldsymbol{b} = \left(egin{array}{c} 1 \ 1 \ 1 \end{array}
ight)$$
 onto $oldsymbol{a} = \left(egin{array}{c} 1 \ 2 \ 2 \end{array}
ight)$

Find

 $\boldsymbol{p} = x\boldsymbol{a}$

Example

Project

$$oldsymbol{b} = \left(egin{array}{c} 1 \\ 1 \\ 1 \end{array}
ight) ext{ onto } oldsymbol{a} = \left(egin{array}{c} 1 \\ 2 \\ 2 \end{array}
ight)$$

Find

$$\boldsymbol{p} = x\boldsymbol{a}$$

What about the Projection Matrix in general

We have $p = ax = \frac{aa^Tb}{a^Ta} = Pb$

What about the Projection Matrix in general

We have

$$p = ax = \frac{aa^Tb}{a^Ta} = Pb$$

Then

$$P = \frac{\boldsymbol{a}\boldsymbol{a}^T}{\boldsymbol{a}^T\boldsymbol{a}}$$

Example

Find the projection matrix for

$$oldsymbol{b} = \left(egin{array}{c} 1 \ 1 \ 1 \end{array}
ight)$$
 onto $oldsymbol{a} = \left(egin{array}{c} 1 \ 2 \ 2 \end{array}
ight)$

What about the general case?

We have that

Find the combination $p = x_1a_1 + x_2a_2 + \cdots + x_na_n$ closest to vector b.

Now you need a vector

Find the vector \boldsymbol{x} , find the projection $\boldsymbol{p}=A\boldsymbol{x}$, find the matrix P.

Again, the error is perpendicular to the space

$$e = b - Ax$$

イロト イヨト イヨト イヨト

What about the general case?

We have that

Find the combination $p = x_1a_1 + x_2a_2 + \cdots + x_na_n$ closest to vector b.

Now you need a vector

Find the vector \boldsymbol{x} , find the projection $\boldsymbol{p} = A\boldsymbol{x}$, find the matrix P.

Again, the error is perpendicular to the space

$$e = b - Ax$$

A D > A D > A D > A D >

What about the general case?

We have that

Find the combination $p = x_1a_1 + x_2a_2 + \cdots + x_na_n$ closest to vector b.

Now you need a vector

Find the vector \boldsymbol{x} , find the projection $\boldsymbol{p} = A\boldsymbol{x}$, find the matrix P.

Again, the error is perpendicular to the space

$$e = b - Ax$$

The error
$$\boldsymbol{e} = \boldsymbol{b} - A \boldsymbol{x}$$

$$\boldsymbol{a}_{1}^{T} \left(\boldsymbol{b} - A \boldsymbol{x} \right) = 0$$
$$\vdots$$
$$\boldsymbol{a}_{n}^{T} \left(\boldsymbol{b} - A \boldsymbol{x} \right) = 0$$

$$\left[egin{array}{c} m{a}_1^T \ dots \ m{a}_n^T \end{array}
ight] [m{b} - Am{x}] = 0$$

The error
$$\boldsymbol{e} = \boldsymbol{b} - A \boldsymbol{x}$$

$$\boldsymbol{a}_{1}^{T} \left(\boldsymbol{b} - A \boldsymbol{x} \right) = 0$$
$$\vdots$$
$$\boldsymbol{a}_{n}^{T} \left(\boldsymbol{b} - A \boldsymbol{x} \right) = 0$$

Or

$$\begin{bmatrix} \boldsymbol{a}_1^T \\ \vdots \\ \boldsymbol{a}_n^T \end{bmatrix} \begin{bmatrix} \boldsymbol{b} - A\boldsymbol{x} \end{bmatrix} = 0$$

(investav くロト (日) (主) (主) (主) (こ) 51/127

The Matrix with those rows is A^T

$$A^T \left(\boldsymbol{b} - A \boldsymbol{x} \right) = 0$$

I herefore

 $A^T \boldsymbol{b} - A^T A \boldsymbol{x} = 0$

Or the most know form

$$oldsymbol{x} = \left(A^T A\right)^{-1} A^T b$$

<ロ> <四> <ヨ> <ヨ>

The Matrix with those rows is A^T

$$A^T \left(\boldsymbol{b} - A \boldsymbol{x} \right) = 0$$

Therefore

$$A^T \boldsymbol{b} - A^T A \boldsymbol{x} = 0$$

Or the most know form

 $oldsymbol{x} = \left(A^T A\right)^{-1} A^T oldsymbol{b}$

ヘロト ヘロト ヘヨト ヘヨト

The Matrix with those rows is A^T

$$A^T \left(\boldsymbol{b} - A \boldsymbol{x} \right) = 0$$

Therefore

$$A^T \boldsymbol{b} - A^T A \boldsymbol{x} = 0$$

Or the most know form

$$\boldsymbol{x} = \left(A^T A\right)^{-1} A^T \boldsymbol{b}$$

The Projection is

$$\boldsymbol{p} = A\boldsymbol{x} = A\left(A^{T}A\right)^{-1}A^{T}\boldsymbol{b}$$

Therefore

The Projection is

$$\boldsymbol{p} = A\boldsymbol{x} = A\left(A^{T}A\right)^{-1}A^{T}\boldsymbol{b}$$

Therefore

$$P = A \left(A^T A \right)^{-1} A^T$$

The key step was $A^T [\boldsymbol{b} - A\boldsymbol{x}] = 0$

Linear algebra gives this "normal equation"

- Our subspace is the column space of A.
- 2 The error vector $\boldsymbol{b} A\boldsymbol{x}$ is perpendicular to that column space.
- 3 Therefore $\boldsymbol{b} A\boldsymbol{x}$ is in the nullspace of A^T

When A has independent columns, $A^T A$ is invertible

Theorem

 $A^{T}A$ is invertible if and only if Ahas linearly independent columns.

Consider the following

$$A^T A \boldsymbol{x} = 0$$

Here, Ax is in the null space of .

 Remember the column space and null space of A^T are orthogonal complements.

And $\mathcal{A}x$ an element in the column space of \mathcal{A}

$$A\boldsymbol{x}=0$$

イロト イヨト イヨト イヨト

Consider the following

$$A^T A \boldsymbol{x} = 0$$

Here, Ax is in the null space of A^T

• Remember the column space and null space of A^T are orthogonal complements.

And Ax an element in the column space of x

$$A\boldsymbol{x}=0$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Consider the following

$$A^T A \boldsymbol{x} = 0$$

Here, Ax is in the null space of A^{T}

• Remember the column space and null space of A^T are orthogonal complements.

And Ax an element in the column space of A

$$A\boldsymbol{x}=0$$

If A has linearly independent columns

$$A \boldsymbol{x} = 0 \Longrightarrow \boldsymbol{x} = 0$$

Then, the null space

i.e A^TA is full rank.

• Then, $A^T A$ is invertible...

If A has linearly independent columns

$$A \boldsymbol{x} = 0 \Longrightarrow \boldsymbol{x} = 0$$

Then, the null space

$$Null\left(A^{T}A\right) = \{0\}$$

i.e $A^{I}A$ is full rank –

• Then, $A^T A$ is invertible...

If A has linearly independent columns

$$A \boldsymbol{x} = 0 \Longrightarrow \boldsymbol{x} = 0$$

Then, the null space

$$Null\left(A^{T}A\right) = \{0\}$$

i.e $A^T A$ is full rank

• Then, $A^T A$ is invertible...

Finally

Theorem

• When A has independent columns, $A^T A$ is square, symmetric and invertible.

Use Gauss-Jordan for finding if $A^T A$ is invertible

$$A = \left(\begin{array}{rrr} 1 & 2\\ 1 & 2\\ 0 & 0 \end{array}\right)$$

Given

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \text{ and } \boldsymbol{b} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$$

Find

 $oldsymbol{x}$ and $oldsymbol{p}$ and P

Given

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \text{ and } \boldsymbol{b} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$$

Find

 $\boldsymbol{x} \text{ and } \boldsymbol{p} \text{ and } P$

Outline

- $lacel{eq: Interview}$ The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^n
- Orthogonal Complements
- Fundamental Theorems of Linear Algebra
- Projections
 - Projection Onto a Subspace

Orthogonal Bases and Gram-Schmidt

- Solving a Least Squared Error
- The Gram Schmidt Process
- The Gram Schmidt Algorithm and the QR Factorization

2 Eigenvectors

- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

イロト イヨト イヨト

Now, we always like to make our life easier

Something Notable

• Orthogonality makes easier to find x, p and P.

For this, we will find the orthogonal vectors

At the column space of A

Now, we always like to make our life easier

Something Notable

• Orthogonality makes easier to find \boldsymbol{x} , \boldsymbol{p} and P.

For this, we will find the orthogonal vectors

• At the column space of A

< ロ > < 回 > < 回 > < 回 > < 回 >

Orthonormal Vectors

Definition

The vectors $oldsymbol{q}_1, oldsymbol{q}_2, ..., oldsymbol{q}_n$ are orthonormal if

$$\boldsymbol{q}_i^T \boldsymbol{q}_j = \begin{cases} 0 & \text{when } i \neq j \\ 1 & \text{when } i = j \end{cases}$$

Then

ullet A matrix with orthonormal columns is assigned the special letter Q

Properties

• A matrix Q with orthonormal columns satisfies $Q^TQ=I$

イロト イロト イヨト イヨト

Orthonormal Vectors

Definition

The vectors $oldsymbol{q}_1, oldsymbol{q}_2, ..., oldsymbol{q}_n$ are orthonormal if

$$\boldsymbol{q}_i^T \boldsymbol{q}_j = \begin{cases} 0 & \text{when } i \neq j \\ 1 & \text{when } i = j \end{cases}$$

Then

 ${\ensuremath{\, \bullet }}$ A matrix with orthonormal columns is assigned the special letter Q

ullet A matrix Q with orthonormal columns satisfies $Q^TQ=I$

Orthonormal Vectors

Definition

The vectors $oldsymbol{q}_1, oldsymbol{q}_2, ..., oldsymbol{q}_n$ are orthonormal if

$$\boldsymbol{q}_i^T \boldsymbol{q}_j = \begin{cases} 0 & \text{when } i \neq j \\ 1 & \text{when } i = j \end{cases}$$

Then

 ${\ensuremath{\, \bullet }}$ A matrix with orthonormal columns is assigned the special letter Q

Properties

• A matrix Q with orthonormal columns satisfies $Q^T Q = I$

э

イロト 不得 トイヨト イヨト

Additionally

Given that

$$Q^TQ=I$$

Therefore

When Q is square, $Q^TQ=I$ means that $Q^T=Q^{-1}\colon$ transpose = inverse.

イロト イロト イヨト イヨト

Additionally

Given that

$$Q^TQ=I$$

Therefore

When Q is square, $Q^T Q = I$ means that $Q^T = Q^{-1}$: transpose = inverse.

Rotation

$$\left[\begin{array}{c} \cos\Theta & -\sin\Theta \\ \sin\Theta & \cos\Theta \end{array} \right]$$

Permutation Matrix

Reflection

• Setting $Q = I - 2\boldsymbol{u}\boldsymbol{u}^T$ with \boldsymbol{u} a unit vector.

Rotation

$$\begin{array}{ccc}
\cos\Theta & -\sin\Theta \\
\sin\Theta & \cos\Theta
\end{array}$$

Permutation Matrix

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Reflection

• Setting $Q = I - 2 \boldsymbol{u} \boldsymbol{u}^T$ with \boldsymbol{u} a unit vector.

Rotation

$$\begin{array}{c}
\cos\Theta & -\sin\Theta \\
\sin\Theta & \cos\Theta
\end{array}$$

Permutation Matrix

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Reflection

• Setting
$$Q = I - 2 \boldsymbol{u} \boldsymbol{u}^T$$
 with \boldsymbol{u} a unit vector.

イロン イヨン イヨン イヨン 三日

If Q has orthonormal columns

• The lengths are unchanged

How

$\|Q \boldsymbol{x}\| = \sqrt{\boldsymbol{x}^T Q^T Q \boldsymbol{x}} = \sqrt{\boldsymbol{x}^T \boldsymbol{x}} = \|\boldsymbol{x}\|$

イロト イヨト イヨト イヨト

If Q has orthonormal columns

• The lengths are unchanged

How?

$$\|Q\boldsymbol{x}\| = \sqrt{\boldsymbol{x}^T Q^T Q \boldsymbol{x}} = \sqrt{\boldsymbol{x}^T \boldsymbol{x}} = \|\boldsymbol{x}\|$$

Remark

Something Notable

When the columns of \boldsymbol{A} were a basis for the subspace.

All Formulas involve

What happens when the basis vectors are orthonormal \overline{M} A -inveltiges to \overline{M} A .

 $A^T A$ simplifies to $Q^T Q = I$

Remark

Something Notable

When the columns of A were a basis for the subspace.

All Formulas involve

 $A^T A$

What happens when the basis vectors are orthonormal $A^T A$ simplifies to $O^T O = I$

Remark

Something Notable

When the columns of A were a basis for the subspace.

All Formulas involve

$$A^T A$$

What happens when the basis vectors are orthonormal

 $A^T A$ simplifies to $Q^T Q = I$

Therefore, we have

The following

$$Ioldsymbol{x} = Q^Toldsymbol{b}$$
 and $oldsymbol{p} = Qoldsymbol{x}$ and $P = QIQ^T$

Not only that

The solution of $Qm{x} = m{b}$ is simply $m{x} = Q^Tm{b}$

Therefore, we have

The following

$$Ioldsymbol{x} = Q^Toldsymbol{b}$$
 and $oldsymbol{p} = Qoldsymbol{x}$ and $P = QIQ^T$

Not only that

The solution of $Q \boldsymbol{x} = \boldsymbol{b}$ is simply $\boldsymbol{x} = Q^T \boldsymbol{b}$

Given the following matrix

Verify that is a orthogonal matrix

$$\frac{1}{3} \left(\begin{array}{rrrr} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{array} \right)$$

イロン イロン イヨン イヨン

We have that

Given that using orthonormal bases is good

How do we generate such basis given an initial basis?

Graham Schmidt Process

We begin with three linear independent vectors $oldsymbol{a},oldsymbol{b}$ and $oldsymbol{c}$

Given that using orthonormal bases is good

How do we generate such basis given an initial basis?

Graham Schmidt Process

We begin with three linear independent vectors ${\boldsymbol{a}}, {\boldsymbol{b}}$ and ${\boldsymbol{c}}$

イロト イヨト イヨト

Then

We can do the following

ullet Select a and rename it A

Start with $m{b}$ and subtract its projection along $m{a}$

$$B = b - rac{A^T b}{A^T A} A$$

Properties

This vector $oldsymbol{B}$ is what we have called the error vector $oldsymbol{e}$, perpendicular to $oldsymbol{a}.$

Then

We can do the following

• Select $oldsymbol{a}$ and rename it $oldsymbol{A}$

Start with $m{b}$ and subtract its projection along $m{a}$

$$oldsymbol{B} = oldsymbol{b} - rac{oldsymbol{A}^Toldsymbol{b}}{oldsymbol{A}^Toldsymbol{A}}oldsymbol{A}$$

Properties

This vector $oldsymbol{B}$ is what we have called the error vector $oldsymbol{e}$, perpendicular to $oldsymbol{a}$.

Then

We can do the following

• Select *a* and rename it *A*

Start with $m{b}$ and subtract its projection along $m{a}$

$$oldsymbol{B} = oldsymbol{b} - rac{oldsymbol{A}^Toldsymbol{b}}{oldsymbol{A}^Toldsymbol{A}}oldsymbol{A}$$

Properties

This vector \boldsymbol{B} is what we have called the error vector \boldsymbol{e} , perpendicular to \boldsymbol{a} .

イロン イロン イヨン イヨン

We can keep with such process

Now we do the same for the new $oldsymbol{c}$

$$C = c - rac{A^T c}{A^T A} A - rac{B^T c}{B^T B} B$$

Normalize then

To obtain the final result!!!

イロト イロト イヨト イヨト

We can keep with such process

Now we do the same for the new $oldsymbol{c}$

$$C = c - rac{A^T c}{A^T A} A - rac{B^T c}{B^T B} B$$

Normalize then

To obtain the final result!!!

イロト イロト イヨト イヨト

We can keep with such process

Now we do the same for the new $oldsymbol{c}$

$$C = c - rac{A^T c}{A^T A} A - rac{B^T c}{B^T B} B$$

Normalize them

To obtain the final result!!!

$$q_1 = rac{oldsymbol{A}}{\|oldsymbol{A}\|}, q_1 = rac{oldsymbol{B}}{\|oldsymbol{B}\|}, q_3 = rac{oldsymbol{C}}{\|oldsymbol{C}\|}$$

イロト イヨト イヨト イヨト

Example

Suppose the independent non-orthogonal vectors ${\boldsymbol{a}}, {\boldsymbol{b}}$ and ${\boldsymbol{c}}$

$$oldsymbol{a} = \left(egin{array}{c} 1 \ -1 \ 0 \end{array}
ight), oldsymbol{c} = \left(egin{array}{c} 0 \ 0 \ 1 \end{array}
ight), oldsymbol{d} = \left(egin{array}{c} 0 \ 1 \ 1 \end{array}
ight)$$

[hen]

• Do the procedure...

Example

Suppose the independent non-orthogonal vectors $oldsymbol{a}, oldsymbol{b}$ and $oldsymbol{c}$

$$oldsymbol{a} = \left(egin{array}{c} 1 \ -1 \ 0 \end{array}
ight), oldsymbol{c} = \left(egin{array}{c} 0 \ 0 \ 1 \end{array}
ight), oldsymbol{d} = \left(egin{array}{c} 0 \ 1 \ 1 \end{array}
ight)$$

Then

• Do the procedure...

We have the following process

We begin with a matrix \boldsymbol{A}

$$A = [\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}]$$

We ended with the following matrix

 $Q = [q_1, q_2, q_3]$

How are these matrices related?

• There is a third matrix!!!

A=QR

イロン イロン イヨン イヨン

We have the following process

We begin with a matrix \boldsymbol{A}

$$A = [\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}]$$

We ended with the following matrix

$$Q = [q_1, q_2, q_3]$$

How are these matrices related?

There is a third matrix!!!

A = QR

イロン イロン イヨン イヨン

We have the following process

We begin with a matrix \boldsymbol{A}

$$A = [\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}]$$

We ended with the following matrix

$$Q = [q_1, q_2, q_3]$$

How are these matrices related?

• There is a third matrix!!!

$$A = QR$$

イロト イヨト イヨト

Notice the following

Something Notable

• The vectors \boldsymbol{a} and \boldsymbol{A} and q_1 are all along a single line.

Then

The vectors $oldsymbol{a},oldsymbol{b}$ and $oldsymbol{q}_1,oldsymbol{q}_2$ are all in the same plane.

Further

The vectors $oldsymbol{a}, oldsymbol{b}, oldsymbol{c}$ and $oldsymbol{A}, oldsymbol{B}, oldsymbol{B}$ and $oldsymbol{q}_1, oldsymbol{q}_2, oldsymbol{q}_2$ are all in the same subspace.

Notice the following

Something Notable

• The vectors \boldsymbol{a} and \boldsymbol{A} and q_1 are all along a single line.

Then

The vectors a, b and A, B and q_1, q_2 are all in the same plane.

Further

The vectors $oldsymbol{a}, oldsymbol{b}, oldsymbol{c}$ and $oldsymbol{A}_1, oldsymbol{q}_2, oldsymbol{q}_2$ are all in the same subspace.

Notice the following

Something Notable

• The vectors \boldsymbol{a} and \boldsymbol{A} and q_1 are all along a single line.

Then

The vectors $\boldsymbol{a}, \boldsymbol{b}$ and $\boldsymbol{A}, \boldsymbol{B}$ and q_1, q_2 are all in the same plane.

Further

The vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{B}$ and q_1, q_2, q_2 are all in the same subspace.

イロン イロン イヨン イヨン

It is possible to see that

$$a_1, a_2, ..., a_k$$

They are combination of $q_1, q_2, ..., q_k$

$$egin{aligned} [m{a}_1,m{a}_2,m{a}_3] = [q_1,q_2,q_3] \left[egin{aligned} q_1^Tm{a} & q_1^Tm{b} & q_1^Tm{c} \ 0 & q_2^Tm{b} & q_2^Tm{c} \ 0 & 0 & q_3^Tm{c} \end{bmatrix} \end{aligned}
ight.$$

It is possible to see that

$$a_1, a_2, ..., a_k$$

They are combination of $q_1, q_2, ..., q_k$

$$[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}] = [q_{1}, q_{2}, q_{3}] \begin{bmatrix} q_{1}^{T} \boldsymbol{a} & q_{1}^{T} \boldsymbol{b} & q_{1}^{T} \boldsymbol{c} \\ 0 & q_{2}^{T} \boldsymbol{b} & q_{2}^{T} \boldsymbol{c} \\ 0 & 0 & q_{3}^{T} \boldsymbol{c} \end{bmatrix}$$

Gram-Schmidt

From linear independent vectors $a_1, a_2, ..., a_n$

Gram-Schmidt constructs orthonormal vectors $q_1, q_2, ..., q_n$ that when used as column vectors in a matrix Q

These matrices satisfy

A = QR

Properties

Then $R = Q^T A$ is a upper triangular matrix because later $q^\prime s$ are orthogonal to earlier $a^\prime s$.

イロン イロン イヨン イヨン

Gram-Schmidt

From linear independent vectors $a_1, a_2, ..., a_n$

Gram-Schmidt constructs orthonormal vectors q_1,q_2,\ldots,q_n that when used as column vectors in a matrix Q

These matrices satisfy

$$A = QR$$

Properties

Then $R = Q^T A$ is a upper triangular matrix because later $q^\prime s$ are orthogonal to earlier $a^\prime s$.

イロト イロト イヨト イヨト

Gram-Schmidt

From linear independent vectors $\boldsymbol{a}_1, \boldsymbol{a}_2, ..., \boldsymbol{a}_n$

Gram-Schmidt constructs orthonormal vectors q_1,q_2,\ldots,q_n that when used as column vectors in a matrix Q

These matrices satisfy

$$A=QR$$

Properties

Then $R = Q^T A$ is a upper triangular matrix because later q's are orthogonal to earlier a's.

A D > A D > A D > A D >

Any $m\times n$ matrix A with linear independent columns can be factored into QR

- The $m \times n$ matrix Q has orthonormal columns.
- The square matrix R is upper triangular with positive diagonal.

We must not forget why this is useful for least squares

• $A^T A = R^T Q^T Q R = R^T R$

Least Squared Simplify to

 $R^T R oldsymbol{x} = R^T Q^T oldsymbol{b}$ or $R oldsymbol{x} = Q^T oldsymbol{b}$ or $oldsymbol{x} = R^{-1} Q^T oldsymbol{b}$

イロト イヨト イヨト イヨト

Any $m\times n$ matrix A with linear independent columns can be factored into QR

- The $m \times n$ matrix Q has orthonormal columns.
- The square matrix R is upper triangular with positive diagonal.

We must not forget why this is useful for least squares

•
$$A^T A = R^T Q^T Q R = R^T R$$

Least Squared Simplify to

 $R^T R oldsymbol{x} = R^T Q^T oldsymbol{b}$ or $R oldsymbol{x} = Q^T oldsymbol{b}$ or $oldsymbol{x} = R^{-1} Q^T oldsymbol{b}$

A D A A B A A B A A B A

Any $m\times n$ matrix A with linear independent columns can be factored into QR

- The $m \times n$ matrix Q has orthonormal columns.
- The square matrix R is upper triangular with positive diagonal.

We must not forget why this is useful for least squares

•
$$A^T A = R^T Q^T Q R = R^T R$$

Least Squared Simplify to

$$R^T R oldsymbol{x} = R^T Q^T oldsymbol{b}$$
 or $R oldsymbol{x} = Q^T oldsymbol{b}$ or $oldsymbol{x} = R^{-1} Q^T oldsymbol{b}$

イロト イヨト イヨト

Algorithm

Basic Gram-Schmidt

1	for $j=1$ to n
2	$oldsymbol{v}=A\left(:,j ight)$
3	for $i=1$ to $j-1$
4	$R\left(i,j ight) =Q\left(:,i ight) ^{T}oldsymbol{v}$
5	$oldsymbol{v}=oldsymbol{v}-R\left(i,j ight)Q\left(:,i ight)$
0	$R\left(j,j ight)=\left\Vert oldsymbol{v} ight\Vert$
0	$Q\left(:,j\right) = rac{\mathbf{v}}{R(j,j)}$

Outline

Orthonormal Basis

- Introduction
- The Norm
 - $lacel{eq: Intermediate}$ The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^n
 - Orthogonal Complements
 - Fundamental Theorems of Linear Algebra
- Projections

Projection Onto a Subspace

- Orthogonal Bases and Gram-Schmidt
 - Solving a Least Squared Error
 - The Gram Schmidt Process
 - The Gram Schmidt Algorithm and the QR Factorization

2 Eigenvectors

Introduction

- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

イロト イヨト イヨト

\boldsymbol{A} as a change factor

Most vectors change direction when multiplied against a random \boldsymbol{A}

$$A \boldsymbol{v} \longrightarrow \boldsymbol{v}'$$

Example

A as a change factor

Most vectors change direction when multiplied against a random A

$$A \boldsymbol{v} \longrightarrow \boldsymbol{v}'$$

Example

However

There is a set of special vectors called eigenvectors

 $A \boldsymbol{v} = \lambda \boldsymbol{v}$

• Here, the eigenvalue is λ and the eigenvector is v.

Definition

 If T is a linear transformation from a vector space V over a field F, T: V → V, then v ≠ 0 is an eigenvector of T if T(v) is a scalar multiple of v.

Something quite interesting

• Such linear transformations can be expressed by matrices A, T(v) = Av

However

There is a set of special vectors called eigenvectors

 $A \boldsymbol{v} = \lambda \boldsymbol{v}$

• Here, the eigenvalue is λ and the eigenvector is v.

Definition

 If T is a linear transformation from a vector space V over a field F, T: V → V, then v ≠ 0 is an eigenvector of T if T (v) is a scalar multiple of v.

Something quite interesting

Such linear transformations can be expressed by matrices A, $T\left(\boldsymbol{v}
ight) = A \boldsymbol{v}$

However

There is a set of special vectors called eigenvectors

 $A \boldsymbol{v} = \lambda \boldsymbol{v}$

• Here, the eigenvalue is λ and the eigenvector is v.

Definition

 If T is a linear transformation from a vector space V over a field F, T: V → V, then v ≠ 0 is an eigenvector of T if T (v) is a scalar multiple of v.

Something quite interesting

• Such linear transformations can be expressed by matrices A, $T\left(\boldsymbol{v}\right)=A\boldsymbol{v}$

A little bit of Geometry

イロト イヨト イヨト

Implications

You can see the eigenvalues as the vector of change by the mapping

 $T\left(\boldsymbol{v}\right)=A\boldsymbol{v}$

Therefore, for an Invertible Square Matrix $ar{a}$

ullet If your rank is $n \Rightarrow$ if you have $\{v_1, v_2, v_3, ..., v_n\}$ eigenvalues

Implications

You can see the eigenvalues as the vector of change by the mapping

 $T\left(\boldsymbol{v}\right)=A\boldsymbol{v}$

Therefore, for an Invertible Square Matrix A

• If your rank is $n \Rightarrow$ if you have $\{v_1, v_2, v_3, ..., v_n\}$ eigenvalues

A D > A D > A D > A D >

Outline

1 Orthonormal Basis

- Introduction
- The Norm
 - $lacel{eq: Interval}$ The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^n
 - Orthogonal Complements
 - Fundamental Theorems of Linear Algebra
- Projections

Projection Onto a Subspace

- Orthogonal Bases and Gram-Schmidt
 - Solving a Least Squared Error
 - The Gram Schmidt Process
 - The Gram Schmidt Algorithm and the QR Factorization

2 Eigenvectors

Introduction

What are eigenvector good for?

- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

イロト イヨト イヨト

A simple case

Given a vector $\boldsymbol{v} \in V$

• We then apply the linear transformation sequentially:

 $\boldsymbol{v}, A \boldsymbol{v}, A^2 \boldsymbol{v} ...$

A simple case

Given a vector $\boldsymbol{v} \in V$

• We then apply the linear transformation sequentially:

$$\boldsymbol{v}, A\boldsymbol{v}, A^2\boldsymbol{v}...$$

For example

$$A = \left(\begin{array}{cc} 0.7 & 0.3\\ 0.3 & 0.7 \end{array}\right)$$

We have the following sequence

As you can see

$$oldsymbol{v}=\left(egin{array}{c} 0.5\ 1\end{array}
ight),Aoldsymbol{v}=\left(egin{array}{c} 0.65\ 0.85\end{array}
ight),...,A^koldsymbol{v}=\left(egin{array}{c} 0.75\ 0.75\end{array}
ight),...$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Geometrically

We have

88 / 127

Notably

We have that

• The eigenvalue λ tells whether the special vector v is stretched or shrunk or reversed or left unchanged-when it is multiplied by A.

Something Notable

- Eigenvalues can repeat!!!
- Eigenvalues can be positive or negative
- Eigenvalues could be 0.

Properties

The eigenvectors make up the nullspace of $(A - \lambda I)$

Notably

We have that

 The eigenvalue λ tells whether the special vector v is stretched or shrunk or reversed or left unchanged-when it is multiplied by A.

Something Notable

- Eigenvalues can repeat!!!
- eigenvalues can be positive or negative
- Eigenvalues could be 0

The eigenvectors make up the nullspace of $(A-\lambda I).$

< ロ > < 同 > < 回 > < 回 >

Notably

We have that

• The eigenvalue λ tells whether the special vector v is stretched or shrunk or reversed or left unchanged-when it is multiplied by A.

Something Notable

- Eigenvalues can repeat!!!
- eigenvalues can be positive or negative
- Eigenvalues could be 0

Properties

The eigenvectors make up the nullspace of $(A - \lambda I)$.

< ロ > < 同 > < 回 > < 回 >

Outline

1 Orthonormal Basis

- Introduction
- The Norm
 - $lacel{eq: Interval}$ The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^n
 - Orthogonal Complements
 - Fundamental Theorems of Linear Algebra
- Projections

Projection Onto a Subspace

- Orthogonal Bases and Gram-Schmidt
 - Solving a Least Squared Error
 - The Gram Schmidt Process
 - The Gram Schmidt Algorithm and the QR Factorization

2 Eigenvectors

- Introduction
- What are eigenvector good for?

Modification on Distances

- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

イロト イヨト イヨト

An Intuition

Imagine that \boldsymbol{A} is a symmetric real matrix

ullet Then, we have that $Am{v}$ is a mapping

What happens to the unitary circle

An Intuition

Imagine that A is a symmetric real matrix

ullet Then, we have that $Am{v}$ is a mapping

What happens to the unitary circle?

$$\left\{ \boldsymbol{v} | \boldsymbol{v}^T \boldsymbol{v} = 1 \right\}$$

We have something like

A modification of the distances

イロト イヨト イヨト イヨト

If we get the Q matrix

We go back to the unitary circle

• A is a modification of distances

Therefore

• Our best bet is to build A with specific properties at hand...

If we get the Q matrix

We go back to the unitary circle

• A is a modification of distances

Therefore

 $\bullet\,$ Our best bet is to build A with specific properties at hand...

Outline

1 Orthonormal Basis

- Introduction
- The Norm
 - $lacel{eq: Interval}$ The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^n
 - Orthogonal Complements
 - Fundamental Theorems of Linear Algebra
- Projections

Projection Onto a Subspace

- Orthogonal Bases and Gram-Schmidt
 - Solving a Least Squared Error
 - The Gram Schmidt Process
 - The Gram Schmidt Algorithm and the QR Factorization

2 Eigenvectors

- Introduction
- What are eigenvector good for?
- Modification on Distances

Relation with Invertibility

- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

イロト イヨト イヨト

Therefore

Relation with invertibility

• What if $(A - \lambda I) v = 0$?

What if $oldsymbol{v} eq 0$

• Then, columns $A - \lambda I$ are not linear independents.

Then

• $A - \lambda I$ is not invertible...

Therefore

Relation with invertibility

• What if $(A - \lambda I) v = 0$?

What if $\boldsymbol{v} \neq 0$?

• Then, columns $A - \lambda I$ are not linear independents.

Then

• $A - \lambda I$ is not invertible...

Therefore

Relation with invertibility

• What if $(A - \lambda I) v = 0$?

What if $\boldsymbol{v} \neq 0$?

• Then, columns $A - \lambda I$ are not linear independents.

Then

• $A - \lambda I$ is not invertible...

Also for Determinants

If $A - \lambda I$ is not invertible

• $det(A - \lambda I) = 0 \leftarrow How?$

Theorem

A square matrix is invertible if and only if its determinant is non-zero.

Proof ——

 We know for Jordan-Gauss that an invertible matrix can be reduced to the identity by elementary matrix operations

 $A = E_1 E_2 \cdots E_k$

Also for Determinants

If $A - \lambda I$ is not invertible

•
$$det(A - \lambda I) = 0 \leftarrow How?$$

Theorem

• A square matrix is invertible if and only if its determinant is non-zero.

$^{ m Proof} \Longrightarrow$

 We know for Jordan-Gauss that an invertible matrix can be reduced to the identity by elementary matrix operations

 $A = E_1 E_2 \cdots E_k$

イロト イヨト イヨト イヨト

Also for Determinants

If $A - \lambda I$ is not invertible

•
$$det(A - \lambda I) = 0 \leftarrow How?$$

Theorem

• A square matrix is invertible if and only if its determinant is non-zero.

$\mathsf{Proof} \Longrightarrow$

• We know for Jordan-Gauss that an invertible matrix can be reduced to the identity by elementary matrix operations

$$A = E_1 E_2 \cdots E_k$$

イロト イヨト イヨト

Furthermore

We have then

• $det(A) = det(E_1) \cdots det(E_k)$

An interesting thing is that, for example

 Let A be a K × K matrix. Let E be an elementary matrix obtained by multiplying a row of the K × K identity matrix I by a constant c ≠ 0. Then det (E) = c.

Furthermore

We have then

•
$$det(A) = det(E_1) \cdots det(E_k)$$

An interesting thing is that, for example

• Let A be a $K \times K$ matrix. Let E be an elementary matrix obtained by multiplying a row of the $K \times K$ identity matrix I by a constant $c \neq 0$. Then det(E) = c.

イロト イヨト イヨト

The same for the other elementary matrices

Then, $det(A) = det(E_1) \cdots det(E_k) \neq 0$

• Now, the return is quite simple

Fhen, $A - \lambda I$ is not invertible

• $det(A - \lambda I) = 0$

The same for the other elementary matrices

Then, $det(A) = det(E_1) \cdots det(E_k) \neq 0$

• Now, the return is quite simple

Then,
$$A - \lambda I$$
 is not invertible

•
$$det(A - \lambda I) = 0$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Now, for eigenvalues

Theorem

The number λ is an eigenvalue $\iff (A - \lambda I)$ is not invertible i.e. singular.

• The number λ is an eigenvalue \Rightarrow then $\exists m{v}$ such that $(A-\lambda I)\,m{v}=0$

The columns of $A - \lambda$

- They are linear dependent so $(A \lambda I)$ is not invertible
- What about \Leftarrow ?

Now, for eigenvalues

Theorem

The number λ is an eigenvalue $\iff (A - \lambda I)$ is not invertible i.e. singular.

• The number λ is an eigenvalue \Rightarrow then $\exists v$ such that $(A - \lambda I) v = 0$

The columns of

• They are linear dependent so $(A-\lambda I)$ is not invertible

● What about ← ?

Now, for eigenvalues

Theorem

The number λ is an eigenvalue $\iff (A - \lambda I)$ is not invertible i.e. singular.

• The number λ is an eigenvalue \Rightarrow then $\exists {\pmb v}$ such that $(A-\lambda I)\,{\pmb v}=0$

The columns of $A - \lambda I$

- They are linear dependent so $(A \lambda I)$ is not invertible
- What about ⇐=?

Outline

1 Orthonormal Basis

- Introduction
- The Norm
 - $lacel{eq: Interval}$ The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^n
 - Orthogonal Complements
 - Fundamental Theorems of Linear Algebra
- Projections

Projection Onto a Subspace

- Orthogonal Bases and Gram-Schmidt
 - Solving a Least Squared Error
 - The Gram Schmidt Process
 - The Gram Schmidt Algorithm and the QR Factorization

2 Eigenvectors

- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility

Finding Eigenvalues and Eigenvectors

- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

< ロ > < 回 > < 回 > < 回 > < 回 >

Now, How do we find eigenvalues and eigenvectors?

Ok, we know that for each eigenvalue there is an eigenvector

• We have seen that they represent the stretching of the vectors

How do we get such eigenvalues

• Basically, use the fact that if $\lambda \Rightarrow det [A - \lambda I] = 0$

In this way

We obtain a polynomial know as characteristic polynomial.

Now, How do we find eigenvalues and eigenvectors?

Ok, we know that for each eigenvalue there is an eigenvector

• We have seen that they represent the stretching of the vectors

How do we get such eigenvalues

• Basically, use the fact that if $\lambda \Rightarrow det \left[A - \lambda I \right] = 0$

In this way

We obtain a polynomial know as characteristic polynomial.

Now, How do we find eigenvalues and eigenvectors?

Ok, we know that for each eigenvalue there is an eigenvector

• We have seen that they represent the stretching of the vectors

How do we get such eigenvalues

• Basically, use the fact that if $\lambda \Rightarrow det [A - \lambda I] = 0$

In this way

• We obtain a polynomial know as characteristic polynomial.

イロト 不得 トイヨト イヨト

Characteristic Polynomial

Then get the root of the polynomial i.e.

• Values of λ that make

$$p(\lambda) = a_o + a_1\lambda + a_2\lambda + \dots + a_n\lambda^n = 0$$

Then, once you have the eigenvalues

• For each eigenvalue λ solve

$$(A - \lambda I) \boldsymbol{v} = 0$$
 or $A \boldsymbol{v} = \lambda \boldsymbol{v}$

is quite simple

But a lot of theorems to get here!!!

イロン イロン イヨン イヨン

Characteristic Polynomial

Then get the root of the polynomial i.e.

• Values of λ that make

$$p(\lambda) = a_o + a_1\lambda + a_2\lambda + \dots + a_n\lambda^n = 0$$

Then, once you have the eigenvalues

• For each eigenvalue λ solve

$$(A - \lambda I) \, \boldsymbol{v} = 0$$
 or $A \boldsymbol{v} = \lambda \boldsymbol{v}$

It is quite simple.

But a lot of theorems to get here!!!

Characteristic Polynomial

Then get the root of the polynomial i.e.

• Values of λ that make

$$p(\lambda) = a_o + a_1\lambda + a_2\lambda + \dots + a_n\lambda^n = 0$$

Then, once you have the eigenvalues

• For each eigenvalue λ solve

$$(A - \lambda I) \boldsymbol{v} = 0$$
 or $A \boldsymbol{v} = \lambda \boldsymbol{v}$

It is quite simple

• But a lot of theorems to get here!!!

< ロ > < 同 > < 回 > < 回 >

Example

Given

$$A = \left(\begin{array}{cc} 1 & 2\\ 2 & 4 \end{array}\right)$$

Find

Its eigenvalues and eigenvectors.

Example

Given

$$A = \left(\begin{array}{rr} 1 & 2\\ 2 & 4 \end{array}\right)$$

Find

Its eigenvalues and eigenvectors.

Summary

To solve the eigenvalue problem for an $n\times n$ matrix, follow these steps

- Compute the determinant of $A \lambda I$.
- **②** Find the roots of the polynomial $det(A \lambda I) = 0$.
- Solution For each eigenvalue solve $(A \lambda I) v = 0$ to find the eigenvector v.

イロト イヨト イヨト

104 / 127

Some Remarks

Something Notable

If you add a row of ${\cal A}$ to another row, or exchange rows, the eigenvalues usually change.

Nevertheless

- The product of the n eigenvalues equals the determinant.
- The sum of the n eigenvalues equals the sum of the n diagonal entries.

Some Remarks

Something Notable

If you add a row of ${\cal A}$ to another row, or exchange rows, the eigenvalues usually change.

Nevertheless

- In the product of the n eigenvalues equals the determinant.
- The sum of the n eigenvalues equals the sum of the n diagonal entries.

< ロ > < 同 > < 回 > < 回 >

Outline

1 Orthonormal Basis

- Introduction
- The Norm
 - $lacel{eq: Interval}$ The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^n
 - Orthogonal Complements
 - Fundamental Theorems of Linear Algebra
- Projections

Projection Onto a Subspace

- Orthogonal Bases and Gram-Schmidt
 - Solving a Least Squared Error
 - The Gram Schmidt Process
 - The Gram Schmidt Algorithm and the QR Factorization

2 Eigenvectors

- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors

Implications of Existence of Eigenvalues

- Diagonalization of Matrices
- Interesting Derivations

イロト イヨト イヨト

They impact many facets of our life!!!

Example, given the composition of the linear function

ヘロト ヘロト ヘヨト ヘヨト

Then, for recurrent systems

Something like

$$\boldsymbol{v}_{n+1} = A\boldsymbol{v}_n + \boldsymbol{b}$$

Making $\boldsymbol{b} = 0$

$$\boldsymbol{v}_{n+1} = A \boldsymbol{v}_n$$

The eigenvalues are telling us if the recurrent system converges or no

• For example if we modify the matrix A.

Then, for recurrent systems

Something like

$$\boldsymbol{v}_{n+1} = A\boldsymbol{v}_n + \boldsymbol{b}$$

Making $\boldsymbol{b} = 0$

$$\boldsymbol{v}_{n+1} = A \boldsymbol{v}_n$$

The eigenvalues are telling us if the recurrent system converges or not

• For example if we modify the matrix A.

Then, for recurrent systems

Something like

$$\boldsymbol{v}_{n+1} = A\boldsymbol{v}_n + \boldsymbol{b}$$

Making $\boldsymbol{b} = 0$

$$\boldsymbol{v}_{n+1} = A \boldsymbol{v}_n$$

The eigenvalues are telling us if the recurrent system converges or not

• For example if we modify the matrix A.

イロト イヨト イヨト

For example

Here, iterations send the system to the infinity

In another Example

Imagine the following example

- ${\small \bigcirc } F \text{ represents the number of foxes in a population}$
- $\ensuremath{ 2 \ } R$ represents the number of rabits in a population

Then, if we have that

- The number of rabbits is related to the number of foxes in the following way
 - At each time you have three times the number of rabbits minus the number of foxes

In another Example

Imagine the following example

- $\ensuremath{ 2 \ } R$ represents the number of rabits in a population

Then, if we have that

- The number of rabbits is related to the number of foxes in the following way
 - At each time you have three times the number of rabbits minus the number of foxes

< ロ > < 回 > < 回 > < 回 > < 回 >

We have the following relation

$$\frac{dR}{dt} = 3R - 1F$$
$$\frac{dF}{dt} = 1F$$

Or as a matrix operations

$$\left(\begin{array}{c} R'\\ F'\end{array}\right)=\left(\begin{array}{cc} 3 & -1\\ 0 & 1\end{array}\right)\left(\begin{array}{c} R\\ F\end{array}\right)$$

イロト イロト イヨト イヨト

We have the following relation

$$\frac{dR}{dt} = 3R - 1F$$
$$\frac{dF}{dt} = 1F$$

Or as a matrix operations

$$\left(\begin{array}{c} R'\\ F'\end{array}\right) = \left(\begin{array}{cc} 3 & -1\\ 0 & 1\end{array}\right) \left(\begin{array}{c} R\\ F\end{array}\right)$$

2

イロト イロト イヨト イヨト

Geometrically

< ロ > < 同 > < 回 > < 回 >

We can try to cast our problems as system of equations

• Solve by methods found in linear algebra

hen, using properties of the eigenvectors

We can look at sought properties that we would like to have

< ロ > < 回 > < 回 > < 回 > < 回 >

We can try to cast our problems as system of equations

• Solve by methods found in linear algebra

Then, using properties of the eigenvectors

• We can look at sought properties that we would like to have

Outline

1 Orthonormal Basis

- Introduction
- The Norm
 - $lacel{eq: Interval}$ The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^n
 - Orthogonal Complements
 - Fundamental Theorems of Linear Algebra
- Projections

Projection Onto a Subspace

- Orthogonal Bases and Gram-Schmidt
 - Solving a Least Squared Error
 - The Gram Schmidt Process
 - The Gram Schmidt Algorithm and the QR Factorization

2 Eigenvectors

- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues

Diagonalization of Matrices

Interesting Derivations

イロト イヨト イヨト

Assume a matrix A

Definition

• An $n \times n$ matrix A is diagonalizable is called diagonalizable if there exists an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.

ne remarks

Is every diagonalizable matrix invertible?

Assume a matrix A

Definition

• An $n \times n$ matrix A is diagonalizable is called diagonalizable if there exists an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.

Some remarks

• Is every diagonalizable matrix invertible?

Nope

Given the structure

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Then using the determinant

 $det\left[P^{-1}AP\right] = det\left[P\right]^{-1}det\left[A\right]det\left[P\right] = det\left[A\right] = \prod_{i=1}^{n} \lambda_{i}$

if one of the eigenvalues of A is zero

ullet The determinant of A is zero, and hence A is not invertible

Cinvestav ≧ ∽ ९ २ २ 116 / 127

イロン イロン イヨン イヨン

Nope

Given the structure

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Then using the determinant

$$det\left[P^{-1}AP\right] = det\left[P\right]^{-1}det\left[A\right]det\left[P\right] = det\left[A\right] = \prod_{i=1}^{n} \lambda_{i}$$

if one of the eigenvalues of A is zero

The determinant of A is zero, and hence A is not invertible.

Cinvestav Ξ ∽ ९ ↔ 116 / 127

イロト イロト イヨト イヨト

Nope

Given the structure

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Then using the determinant

$$det\left[P^{-1}AP\right] = det\left[P\right]^{-1}det\left[A\right]det\left[P\right] = det\left[A\right] = \prod_{i=1}^{n} \lambda_{i}$$

if one of the eigenvalues of A is zero

• The determinant of A is zero, and hence A is not invertible.

Cinvestav ∽ < .~ 116 / 127

Actually

Theorem

• A diagonal matrix is invertible if and only if its eigenvalues are nonzero.

Actually

Theorem

• A diagonal matrix is invertible if and only if its eigenvalues are nonzero.

Is Every Invertible Matrix Diagonalizable?

• Consider the matrix:

$$A = \left[\begin{array}{rrr} 1 & 1 \\ 0 & 1 \end{array} \right]$$

The determinant of A is 1, hence A is invertible (Characteristic Polynomial)

$$p(\lambda) = det [A - \lambda I] = (1 - t)^{2}$$

Actually

Theorem

• A diagonal matrix is invertible if and only if its eigenvalues are nonzero.

Is Every Invertible Matrix Diagonalizable?

• Consider the matrix:

$$A = \left[\begin{array}{rrr} 1 & 1 \\ 0 & 1 \end{array} \right]$$

The determinant of A is 1, hence A is invertible (Characteristic Polynomial)

$$p(\lambda) = det [A - \lambda I] = (1 - t)^{2}$$

Cinvestav

イロト イヨト イヨト

Therefore, you have a repetition in the eigenvalue

Thus, the geometric multiplicity of the eigenvalue 1 is 1, $\begin{pmatrix} 1 & 0 \end{pmatrix}^{r}$

• Since the geometric multiplicity is strictly less than the algebraic multiplicity, the matrix A is defective and not diagonalizable.

Let us to look at the eigenvectors for this answer

Therefore, you have a repetition in the eigenvalue

Thus, the geometric multiplicity of the eigenvalue 1 is 1, $\begin{pmatrix} 1 & 0 \end{pmatrix}^{r}$

• Since the geometric multiplicity is strictly less than the algebraic multiplicity, the matrix A is defective and not diagonalizable.

Why?

• Let us to look at the eigenvectors for this answer

イロト 不得 トイヨト イヨト

Relation with Eigenvectors

Suppose that the $n\times n$ matrix A has n linearly independent eigenvectors

 $\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_n$

Put them into an eigenvector matrix

 $P = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$

Relation with Eigenvectors

Suppose that the $n\times n$ matrix A has n linearly independent eigenvectors

 $\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_n$

Put them into an eigenvector matrix P

$$P = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \dots & \boldsymbol{v}_n \end{bmatrix}$$

We have

What if we apply it to the canonical basis elements?

 $P(\boldsymbol{e}_i) = \boldsymbol{v}_i$

Then apply this to the matrix 2

 $AP(\boldsymbol{e}_i) = \lambda_i \boldsymbol{v}_i$

Finally

 $P^{-1}AP\left(\boldsymbol{e}_{i}\right)=\lambda_{i}\boldsymbol{e}_{i}$

イロン イロン イヨン イヨン

We have

What if we apply it to the canonical basis elements?

$$P(\boldsymbol{e}_i) = \boldsymbol{v}_i$$

Then apply this to the matrix A

$$AP(\boldsymbol{e}_i) = \lambda_i \boldsymbol{v}_i$$

Finally

 $P^{-1}AP\left(\boldsymbol{e}_{i}\right)=\lambda_{i}\boldsymbol{e}_{i}$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

We have

What if we apply it to the canonical basis elements?

$$P(\boldsymbol{e}_i) = \boldsymbol{v}_i$$

Then apply this to the matrix A

 $AP(\boldsymbol{e}_i) = \lambda_i \boldsymbol{v}_i$

Finally

$$P^{-1}AP\left(\boldsymbol{e}_{i}\right)=\lambda_{i}\boldsymbol{e}_{i}$$

e_i is the set of eigenvectors of $P^{-1}AP$

$$I = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix}$$

Ther

$P^{-1}AP = P^{-1}API = \begin{bmatrix} \lambda_1 e_1 & \lambda_2 e_2 & \cdots & \lambda_n e_n \end{bmatrix}$

e_i is the set of eigenvectors of $P^{-1}AP$

$$I = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix}$$

Then

$$P^{-1}AP = P^{-1}API = \begin{bmatrix} \lambda_1 e_1 & \lambda_2 e_2 & \cdots & \lambda_n e_n \end{bmatrix}$$

We have that

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix} = D$$

We can see the diagonalization as a decomposition \boldsymbol{A}

$$P\left[P^{-1}AP\right] = IDP$$

In a similar way

 $A = PDP^{-1}$

Therefore

Only if we have n linearly independent eigenvectors (Different Eigenvalues), we can diagonalize it.

We can see the diagonalization as a decomposition A

$$P\left[P^{-1}AP\right] = IDP$$

In a similar way

$$A = PDP^{-1}$$

Therefore

Only if we have n linearly independent eigenvectors (Different Eigenvalues), we can diagonalize it.

We can see the diagonalization as a decomposition A

$$P\left[P^{-1}AP\right] = IDP$$

In a similar way

$$A = PDP^{-1}$$

Therefore

Only if we have n linearly independent eigenvectors (Different Eigenvalues), we can diagonalize it.

イロト イヨト イヨト

Outline

1 Orthonormal Basis

- Introduction
- The Norm
 - $lacel{eq: Interval}$ The Row Space and Nullspace are Orthogonal sub-spaces inside \mathbb{R}^n
 - Orthogonal Complements
 - Fundamental Theorems of Linear Algebra
- Projections

Projection Onto a Subspace

- Orthogonal Bases and Gram-Schmidt
 - Solving a Least Squared Error
 - The Gram Schmidt Process
 - The Gram Schmidt Algorithm and the QR Factorization

2 Eigenvectors

- Introduction
- What are eigenvector good for?
- Modification on Distances
- Relation with Invertibility
- Finding Eigenvalues and Eigenvectors
- Implications of Existence of Eigenvalues
- Diagonalization of Matrices
- Interesting Derivations

Some Interesting Properties

What is A^2

 \bullet Assuming $n\times n$ matrix that can be diagonlized.

Quite simple

$$A^k = S\Lambda^K S^{-1}$$

What happens if for all $|\lambda_i| < |\lambda_i|$

 $A^k
ightarrow 0$ when $k \longrightarrow \infty$

Some Interesting Properties

What is A^2

• Assuming $n \times n$ matrix that can be diagonlized.

Quite simple

$$A^k = S\Lambda^K S^{-1}$$

What happens if for all $|\lambda_i|<1$

 $A^k o 0$ when $k \longrightarrow \infty$

Some Interesting Properties

What is A^2

• Assuming $n \times n$ matrix that can be diagonlized.

Quite simple

$$A^k = S\Lambda^K S^{-1}$$

What happens if for all $|\lambda_i| < 1$

$$A^k \to 0$$
 when $k \longrightarrow \infty$

Some Basic Properties of the Symmetric Matrices

Symmetric Matrix

A symmetric matrix has only real eigenvalues.

Intering the eigenvectors can be chosen orthonormal.

Spectral Theorem

Theorem

• Every symmetric matrix has the factorization $A = Q\Lambda Q^T$ with the real eigenvalues in Λ and orthonormal eigenvectors P = Q.

A direct proof from the previous ideas.

Spectral Theorem

Theorem

• Every symmetric matrix has the factorization $A = Q\Lambda Q^T$ with the real eigenvalues in Λ and orthonormal eigenvectors P = Q.

Proof

• A direct proof from the previous ideas.

