# Mathematics for Artificial Intelligence Square Matrices and Related Matters 

Andres Mendez-Vazquez

March 2, 2020

## Outline

(1) Square Matrices

- Introduction
- The Inverse
- Solution to $A \boldsymbol{x}=\boldsymbol{y}$
- Algorithm for the Inverse of a Matrix

Determinants

- Introduction
- Complexity Increases
- Reducing the Complexity
- Some Consequences of the definition
- Special Determinants


## Outline

(1) Square Matrices

- Introduction

The Inverse

- Solution to $A x=y$
- Algorithm for the Inverse of a Matrix
(2) Determinants
- Introduction
- Complexity Increases
- Reducing the Complexity
- Some Consequences of the clefinition
- Special Determinants


## Square Matrices

## Observation

Square matrices are the only matrices that can have inverses.

## Square Matrices

## Observation

Square matrices are the only matrices that can have inverses.

## Further

In a system of linear algebraic equations:
(1) If the number of equations equals the number of unknowns
(2) Then the associated coefficient matrix A is square.

## Square Matrices

## Observation

Square matrices are the only matrices that can have inverses.

## Further

In a system of linear algebraic equations:
(1) If the number of equations equals the number of unknowns
(2) Then the associated coefficient matrix A is square.

## Now, use the Gauss-Jordan

What can happen?

## Outline

(1) Square Matrices

- Introduction
- The Inverse
- Solution to $A x=y$
- Algorithm for the Inverse of a Matrix
(2) Determinants
- Introduction
- Complexity Increases
- Reducing the Complexity
- Some Consequences of the clefinition
- Special Determinants


## We have two possibilities

## First case

The Gauss-Jordan form for $A_{n \times n}$ is the $n \times n$ identity matrix $I_{n}$

## We have two possibilities

## First case

The Gauss-Jordan form for $A_{n \times n}$ is the $n \times n$ identity matrix $I_{n}$

## Second case

The Gauss-Jordan form for $A$ has at least one row of zeros

## Explanation

## In the first case

We can show that $A$ is invertible.

## Explanation

## In the first case

We can show that $A$ is invertible.
How? Do you remember?

$$
E_{k} E_{k-1} \ldots E_{2} E_{1} A=I
$$

## Explanation

## In the first case

We can show that $A$ is invertible.

## How? Do you remember?

$$
E_{k} E_{k-1} \ldots E_{2} E_{1} A=I,
$$

Setting $B=E_{k} E_{k-1} \ldots E_{2} E_{1}$
We have $B A=I$ therefore $B=A^{-1}$

## Furthermore

We can build the following matrix

$$
E_{1}^{-1} E_{2}^{-1} \cdots E_{k}^{-1}
$$

## Furthermore

We can build the following matrix

$$
E_{1}^{-1} E_{2}^{-1} \cdots E_{k}^{-1}
$$

Then

$$
\left(E_{1}^{-1} E_{2}^{-1} \cdots E_{k}^{-1}\right) B A=\left(E_{1}^{-1} E_{2}^{-1} \cdots E_{k}^{-1}\right) I
$$

## Furthermore

We can build the following matrix

$$
E_{1}^{-1} E_{2}^{-1} \cdots E_{k}^{-1}
$$

Then

$$
\left(E_{1}^{-1} E_{2}^{-1} \cdots E_{k}^{-1}\right) B A=\left(E_{1}^{-1} E_{2}^{-1} \cdots E_{k}^{-1}\right) I
$$

## Thus

$$
\left(E_{1}^{-1} E_{2}^{-1} \cdots E_{k}^{-1}\right)\left(E_{k} E_{k-1} \cdots E_{2} E_{1}\right) A=\left(E_{1}^{-1} E_{2}^{-1} \cdots E_{k}^{-1}\right)
$$

## Therefore

We have

$$
A=\left(E_{1}^{-1} E_{2}^{-1} \cdots E_{k}^{-1}\right)
$$

## Therefore

## We have

$$
A=\left(E_{1}^{-1} E_{2}^{-1} \cdots E_{k}^{-1}\right)
$$

## Theorem

The following are equivalent:
(1) The square matrix $A$ is invertible.
(2) The Gauss-Jordan or reduced echelon form of $A$ is the identity matrix.
(3) Acan be written as a product of elementary matrices.

## The Second Case

The Gauss-Jordan form of $A_{n \times n}$

- It can only have at most $n$ leading entries.


## The Second Case

The Gauss-Jordan form of $A_{n \times n}$

- It can only have at most $n$ leading entries.

If the Gauss-Jordan form of $A$ is not $I$

- We have something quite different


## The Second Case

The Gauss-Jordan form of $A_{n \times n}$

- It can only have at most $n$ leading entries.

If the Gauss-Jordan form of $A$ is not $I$

- We have something quite different

Then the GJ form has $n-1$ or fewer leading entries

- Therefore, it has at least one row of zeros.


## Example

## Given

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

## Example

## Given

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

## What do we need to do?

Look at the blackboard...

## Example

## Given

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

## What do we need to do?

Look at the blackboard...
Therefore

$$
A^{-1}=E_{4} E_{3} E_{2} E_{1}
$$

## Outline

(1) Square Matrices

- Introduction
- The Inverse
- Solution to $A \boldsymbol{x}=\boldsymbol{y}$
- Algorithm for the Inverse of a Matrix
(2) Determinants
- Introduction
- Complexity Increases
- Reducing the Complexity
- Some Consequences of the clefinition
- Special Determinants

If $A$ is invertible a.k.a. full rank

Equation $A x=y$ has the unique solution

$$
A \boldsymbol{x}=\boldsymbol{y} \Leftrightarrow A^{-1} A \boldsymbol{x}=A^{-1} \boldsymbol{y} \Leftrightarrow \boldsymbol{x}=A^{-1} \boldsymbol{y}
$$

If $A$ is invertible a.k.a. full rank

Equation $A x=y$ has the unique solution

$$
A \boldsymbol{x}=\boldsymbol{y} \Leftrightarrow A^{-1} A \boldsymbol{x}=A^{-1} \boldsymbol{y} \Leftrightarrow \boldsymbol{x}=A^{-1} \boldsymbol{y}
$$

## If $A$ is not invertible

- Then there is at least one free variable.

If $A$ is invertible a.k.a. full rank

Equation $A x=y$ has the unique solution

$$
A \boldsymbol{x}=\boldsymbol{y} \Leftrightarrow A^{-1} A \boldsymbol{x}=A^{-1} \boldsymbol{y} \Leftrightarrow \boldsymbol{x}=A^{-1} \boldsymbol{y}
$$

## If $A$ is not invertible

- Then there is at least one free variable.
- There are non-trivial solutions to $A \boldsymbol{x}=\mathbf{0}$.

If $A$ is invertible a.k.a. full rank

Equation $A x=y$ has the unique solution

$$
A \boldsymbol{x}=\boldsymbol{y} \Leftrightarrow A^{-1} A \boldsymbol{x}=A^{-1} \boldsymbol{y} \Leftrightarrow \boldsymbol{x}=A^{-1} \boldsymbol{y}
$$

If $A$ is not invertible

- Then there is at least one free variable.
- There are non-trivial solutions to $A \boldsymbol{x}=\mathbf{0}$.


## If $\boldsymbol{y} \neq 0$

- Either $A \boldsymbol{x}=\boldsymbol{y}$ is inconsistent.

If $A$ is invertible a.k.a. full rank

Equation $A x=y$ has the unique solution

$$
A \boldsymbol{x}=\boldsymbol{y} \Leftrightarrow A^{-1} A \boldsymbol{x}=A^{-1} \boldsymbol{y} \Leftrightarrow \boldsymbol{x}=A^{-1} \boldsymbol{y}
$$

If $A$ is not invertible

- Then there is at least one free variable.
- There are non-trivial solutions to $A \boldsymbol{x}=\mathbf{0}$.


## If $\boldsymbol{y} \neq 0$

- Either $A \boldsymbol{x}=\boldsymbol{y}$ is inconsistent.
- Solutions to the system exist, but there are infinitely many.


## Outline

(1) Square Matrices

- Introduction
- The Inverse
- Solution to $A x=y$
- Algorithm for the Inverse of a Matrix
(2) Determinants
- Introduction
- Complexity Increases
- Reducing the Complexity
- Some Consequences of the definition

Special Determinants

## Something Quite Important

We have done something important
It leads immediately to an algorithm for constructing the inverse of $A$.

## Something Quite Important

## We have done something important

It leads immediately to an algorithm for constructing the inverse of $A$.

## Observation

Suppose $B_{n \times p}$ is another matrix with the same number of rows as $A_{n \times n}$

## Something Quite Important

## We have done something important

It leads immediately to an algorithm for constructing the inverse of $A$.

## Observation

Suppose $B_{n \times p}$ is another matrix with the same number of rows as $A_{n \times n}$
Then

$$
C=(A \mid B)_{n \times(n+p)}
$$

## Then

It is obvious

$$
E C=(E A \mid E B)_{n \times(n+p)}
$$

## It is obvious

$$
E C=(E A \mid E B)_{n \times(n+p)}
$$

## Where

- $E A$ is a $n \times n$ matrix.
- $E B$ is a $n \times p$ matrix


## Algorithm

Form the partitioned matrix

$$
C=(A \mid I)
$$

## Algorithm

Form the partitioned matrix

$$
C=(A \mid I)
$$

## Apply the Gauss-Jordan reduction

$$
E_{k} E_{k-1} \cdots E_{1}(A \mid I)=\left(E_{k} E_{k-1} \cdots E_{1} A \mid E_{k} E_{k-1} \cdots E_{1} I\right)
$$

## Algorithm

Form the partitioned matrix

$$
C=(A \mid I)
$$

Apply the Gauss-Jordan reduction

$$
E_{k} E_{k-1} \cdots E_{1}(A \mid I)=\left(E_{k} E_{k-1} \cdots E_{1} A \mid E_{k} E_{k-1} \cdots E_{1} I\right)
$$

Therefore, if $A$ is invertible

$$
\left(E_{k} E_{k-1} \cdots E_{1} A \mid E_{k} E_{k-1} \cdots E_{1} I\right)=\left(I \mid A^{-1}\right)
$$

## Remark

The individual factors in the product of $A^{-1}$ are not unique
They depend on how we do the row reduction.

## Outline

- Introduction
- The Inverse
- Solution to $A x=y$
- Algorithm for the Inverse of a Matrix

Determinants

- Introduction
- Complexity Increases
- Reducing the Complexity
- Some Consequences of the clefinition
- Special Determinants


## Before the Matrix we had the Determinant

You have seen determinants in your classes long ago

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \Longrightarrow \operatorname{det}(A)=a d-b c
$$

## Before the Matrix we had the Determinant

You have seen determinants in your classes long ago

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \Longrightarrow \operatorname{det}(A)=a d-b c
$$

## What about

$$
\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

## Before the Matrix we had the Determinant

You have seen determinants in your classes long ago

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \Longrightarrow \operatorname{det}(A)=a d-b c
$$

## What about

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

## Then

$$
\begin{aligned}
\operatorname{det}(A)= & a_{11} a_{22} a_{33}+a_{12} a_{21} a_{32}+a_{12} a_{23} a_{31}-\ldots \\
& a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}-a_{13} a_{22} a_{31}
\end{aligned}
$$

## Recursive Definition

## Definition

Let $A$ be a $n \times n$ matrix. Then the determinant of $A$ is defined as follow:

$$
\operatorname{det}(A)= \begin{cases}a_{11} & \text { if } n=1 \\ \sum_{i=1}^{n} a_{i 1} A_{i 1} & \text { if } n>1\end{cases}
$$

## Recursive Definition

## Definition

Let $A$ be a $n \times n$ matrix. Then the determinant of $A$ is defined as follow:

$$
\operatorname{det}(A)= \begin{cases}a_{11} & \text { if } n=1 \\ \sum_{i=1}^{n} a_{i 1} A_{i 1} & \text { if } n>1\end{cases}
$$

## Where

$A_{i j}$ is the $(i, j)$-cofactor where

$$
A_{i j}=(-1)^{i+j} \operatorname{det}\left(M_{i j}\right)
$$

## Recursive Definition

## Definition

Let $A$ be a $n \times n$ matrix. Then the determinant of $A$ is defined as follow:

$$
\operatorname{det}(A)= \begin{cases}a_{11} & \text { if } n=1 \\ \sum_{i=1}^{n} a_{i 1} A_{i 1} & \text { if } n>1\end{cases}
$$

## Where

$A_{i j}$ is the $(i, j)$-cofactor where

$$
A_{i j}=(-1)^{i+j} \operatorname{det}\left(M_{i j}\right)
$$

## Here

$M_{i j}$ is the $(n-1) \times(n-1)$ matrix obtained from $A$ by removing its $i^{t h}$ row and $j^{\text {th }}$ column.

## Example

We have

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right)
$$

## Outline

- Introduction
- The Inverse
- Solution to $A x=y$
- Algorithm for the Inverse of a Matrix

Determinants

- Introduction
- Complexity Increases
- Reducing the Complexity
- Some Consequences of the definition
- Special Determinants


## Problems Will Robinson!!!

We have that for a $A_{n \times n}$
$\operatorname{det}(A)$ has $n$ factorials $(n!)$ terms

## Problems Will Robinson!!!

We have that for a $A_{n \times n}$
$\operatorname{det}(A)$ has $n$ factorials $(n!)$ terms

## Problems

The fastest computer of the world will take forever to finish

## Thus, we have some problems with that

## Floating point arithmetic

It is not at all the same thing as working with real numbers.

Thus, we have some problems with that

## Floating point arithmetic

It is not at all the same thing as working with real numbers.
Representation

$$
\begin{equation*}
x=\left(d_{1} d_{2} d_{3} \cdots d_{n}\right) \times 2^{a_{1} a_{2} \cdots a_{m}} \tag{1}
\end{equation*}
$$

Thus, we have some problems with that

## Floating point arithmetic

It is not at all the same thing as working with real numbers.

Representation

$$
\begin{equation*}
x=\left(d_{1} d_{2} d_{3} \cdots d_{n}\right) \times 2^{a_{1} a_{2} \cdots a_{m}} \tag{1}
\end{equation*}
$$

The problem is at the round off
When we do a calculation on a computer, we almost never get the right answer.

## Another Problems

## We would love the floating points to be represented uniformly

The floating point numbers are distributed logarithmically which is quite different from the even distribution of the rationals.

## Another Problems

## We would love the floating points to be represented uniformly

The floating point numbers are distributed logarithmically which is quite different from the even distribution of the rationals.

## Computations do not scale well

- 2 multiplications and 1 addition to compute the $2 \times 2$ determinant


## Another Problems

## We would love the floating points to be represented uniformly

The floating point numbers are distributed logarithmically which is quite different from the even distribution of the rationals.

Computations do not scale well

- 2 multiplications and 1 addition to compute the $2 \times 2$ determinant
- 12 multiplications and 5 additions to compute the $3 \times 3$ determinant


## Another Problems

## We would love the floating points to be represented uniformly

The floating point numbers are distributed logarithmically which is quite different from the even distribution of the rationals.

Computations do not scale well

- 2 multiplications and 1 addition to compute the $2 \times 2$ determinant
- 12 multiplications and 5 additions to compute the $3 \times 3$ determinant
- 72 multiplications and 23 additions to


## Outline

- Introduction
- The Inverse
- Solution to $A x=y$
- Algorithm for the Inverse of a Matrix

Determinants

- Introduction
- Complexity Increases
- Reducing the Complexity
- Some Consequences of the definition
- Special Determinants


## Therefore

How do we avoid to get us into problems?
We need to define our determinant as a different structure....

## Therefore

How do we avoid to get us into problems?
We need to define our determinant as a different structure....

## Definition

The determinant of $A$ is a real-valued function of the rows of $A$ which we write as

$$
\operatorname{det}(A)=\operatorname{det}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{\boldsymbol{n}}\right)
$$

## Properties

Multiplying a row by the constant $c$ multiplies the determinant by $c$

$$
\operatorname{det}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, c \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{\boldsymbol{n}}\right)=\operatorname{cdet}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{\boldsymbol{n}}\right)
$$

## Properties

Multiplying a row by the constant $c$ multiplies the determinant by $c$

$$
\operatorname{det}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, c \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{\boldsymbol{n}}\right)=\operatorname{cdet}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{\boldsymbol{n}}\right)
$$

If row $i$ is the sum of the two row vectors $x$ and $y$

$$
\begin{aligned}
\operatorname{det}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{x}+\boldsymbol{y}, \ldots, \boldsymbol{r}_{n}\right)= & \operatorname{det}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{x}, \ldots, \boldsymbol{r}_{n}\right)+\ldots \\
& \operatorname{det}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{y}, \ldots, \boldsymbol{r}_{n}\right)
\end{aligned}
$$

## Properties

Multiplying a row by the constant $c$ multiplies the determinant by $c$

$$
\operatorname{det}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, c \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{n}\right)=\operatorname{cdet}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{n}\right)
$$

If row $i$ is the sum of the two row vectors $x$ and $y$

$$
\begin{aligned}
\operatorname{det}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{x}+\boldsymbol{y}, \ldots, \boldsymbol{r}_{n}\right)= & \operatorname{det}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{x}, \ldots, \boldsymbol{r}_{n}\right)+\ldots \\
& \operatorname{det}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{y}, \ldots, \boldsymbol{r}_{n}\right)
\end{aligned}
$$

## Meaning

The determinant is a linear function of each row.

## Further

Interchanging any two rows of the matrix changes the sign of the determinant

$$
\operatorname{det}\left(\ldots, \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{j}, \ldots, \ldots\right)=\operatorname{det}\left(\ldots, \boldsymbol{r}_{j}, \ldots, \boldsymbol{r}_{i}, \ldots, \ldots\right)
$$

## Further

Interchanging any two rows of the matrix changes the sign of the determinant

$$
\operatorname{det}\left(\ldots, \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{j}, \ldots, \ldots\right)=\operatorname{det}\left(\ldots, \boldsymbol{r}_{j}, \ldots, \boldsymbol{r}_{i}, \ldots, \ldots\right)
$$

## Finally

The determinant of any identity matrix is 1

## Outline

- The Inverse
- Solution to $A x=y$
- Algorithm for the Inverse of a Matrix

Determinants

- Introduction
- Complexity Increases

Reducing the Complexity

- Some Consequences of the definition
- Special Determinants


## Some Properties

## Property 1

If A has a row of zeros, then $\operatorname{det}(A)=0$.

## Some Properties

## Property 1

If A has a row of zeros, then $\operatorname{det}(A)=0$.

## Proof

(1) if $A=(\ldots, 0, \ldots)$, also $A=(\ldots, c 0, \ldots)$

## Some Properties

## Property 1

If A has a row of zeros, then $\operatorname{det}(A)=0$.

## Proof

(1) if $A=(\ldots, 0, \ldots)$, also $A=(\ldots, c 0, \ldots)$
(2) $\operatorname{det}(A)=c \times \operatorname{det}(A)$ for any $c$

## Some Properties

## Property 1

If A has a row of zeros, then $\operatorname{det}(A)=0$.

## Proof

(1) if $A=(\ldots, 0, \ldots)$, also $A=(\ldots, c 0, \ldots)$
(2) $\operatorname{det}(A)=c \times \operatorname{det}(A)$ for any $c$
(3) Thus $\operatorname{det}(A)=0$

## Next

## Property 2 <br> If $\boldsymbol{r}_{i}=\boldsymbol{r}_{j}, i \neq j$, then $\operatorname{det}(A)=0$.

## Next

> Property 2
> If $\boldsymbol{r}_{i}=\boldsymbol{r}_{j}, i \neq j$, then $\operatorname{det}(A)=0$.

## Proof <br> Quite easy (Hint sing being reversed).

## Finally

## Proposition 3

If $B$ is obtained from $A$ by replacing $\boldsymbol{r}_{i}$ with $\boldsymbol{r}_{i}+c \boldsymbol{r}_{j}$, then $\operatorname{det}(B)=\operatorname{det}(A)$

## Finally

## Proposition 3

If $B$ is obtained from $A$ by replacing $\boldsymbol{r}_{i}$ with $\boldsymbol{r}_{i}+c \boldsymbol{r}_{j}$, then $\operatorname{det}(B)=\operatorname{det}(A)$

## Proof

$$
\operatorname{det}(B)=\operatorname{det}\left(\ldots, \boldsymbol{r}_{i}+c \boldsymbol{r}_{j}, \ldots, \boldsymbol{r}_{j}, \ldots\right)
$$

## Finally

## Proposition 3

If $B$ is obtained from $A$ by replacing $\boldsymbol{r}_{i}$ with $\boldsymbol{r}_{i}+c \boldsymbol{r}_{j}$, then $\operatorname{det}(B)=\operatorname{det}(A)$

## Proof

$$
\begin{aligned}
\operatorname{det}(B) & =\operatorname{det}\left(\ldots, \boldsymbol{r}_{i}+c \boldsymbol{r}_{j}, \ldots, \boldsymbol{r}_{j}, \ldots\right) \\
& =\operatorname{det}\left(\ldots, \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{j}, \ldots\right)+\operatorname{det}\left(\ldots, c \boldsymbol{r}_{j}, \ldots, \boldsymbol{r}_{j}, \ldots\right)
\end{aligned}
$$

## Finally

## Proposition 3

If $B$ is obtained from $A$ by replacing $\boldsymbol{r}_{i}$ with $\boldsymbol{r}_{i}+c \boldsymbol{r}_{j}$, then $\operatorname{det}(B)=\operatorname{det}(A)$

## Proof

$$
\begin{aligned}
\operatorname{det}(B) & =\operatorname{det}\left(\ldots, \boldsymbol{r}_{i}+c \boldsymbol{r}_{j}, \ldots, \boldsymbol{r}_{j}, \ldots\right) \\
& =\operatorname{det}\left(\ldots, \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{j}, \ldots\right)+\operatorname{det}\left(\ldots, c \boldsymbol{r}_{j}, \ldots, \boldsymbol{r}_{j}, \ldots\right) \\
& =\operatorname{det}(A)+\operatorname{cdet}\left(\ldots, \boldsymbol{r}_{j}, \ldots, \boldsymbol{r}_{j}, \ldots\right)
\end{aligned}
$$

## Finally

## Proposition 3

If $B$ is obtained from $A$ by replacing $\boldsymbol{r}_{i}$ with $\boldsymbol{r}_{i}+c \boldsymbol{r}_{j}$, then $\operatorname{det}(B)=\operatorname{det}(A)$

## Proof

$$
\begin{aligned}
\operatorname{det}(B) & =\operatorname{det}\left(\ldots, \boldsymbol{r}_{i}+c \boldsymbol{r}_{j}, \ldots, \boldsymbol{r}_{j}, \ldots\right) \\
& =\operatorname{det}\left(\ldots, \boldsymbol{r}_{i}, \ldots, \boldsymbol{r}_{j}, \ldots\right)+\operatorname{det}\left(\ldots, c \boldsymbol{r}_{j}, \ldots, \boldsymbol{r}_{j}, \ldots\right) \\
& =\operatorname{det}(A)+\operatorname{det}\left(\ldots, \boldsymbol{r}_{j}, \ldots, \boldsymbol{r}_{j}, \ldots\right) \\
& =\operatorname{det}(A)+0
\end{aligned}
$$

## Outline

- Introduction
- The Inverse
- Solution to $A x=y$
- Algorithm for the Inverse of a Matrix

Determinants

- Introduction
- Complexity Increases
- Reducing the Complexity

Some Consequences of the definition

- Special Determinants


## Therefore

## Theorem

The determinant of an upper or lower triangular matrix is equal to the product of the entries on the main diagonal.

## Therefore

## Theorem

The determinant of an upper or lower triangular matrix is equal to the product of the entries on the main diagonal.

## Proof

- Suppose $A$ is upper triangular and that none of the entries on the main diagonal is 0 .


## Therefore

## Theorem

The determinant of an upper or lower triangular matrix is equal to the product of the entries on the main diagonal.

## Proof

- Suppose $A$ is upper triangular and that none of the entries on the main diagonal is 0 .
- This means all the entries beneath the main diagonal are zero.


## Therefore

## Theorem

The determinant of an upper or lower triangular matrix is equal to the product of the entries on the main diagonal.

## Proof

- Suppose $A$ is upper triangular and that none of the entries on the main diagonal is 0 .
- This means all the entries beneath the main diagonal are zero.
- Using Proposition 3, we can convert it into a diagonal matrix.


## Therefore

## Theorem

The determinant of an upper or lower triangular matrix is equal to the product of the entries on the main diagonal.

## Proof

- Suppose $A$ is upper triangular and that none of the entries on the main diagonal is 0 .
- This means all the entries beneath the main diagonal are zero.
- Using Proposition 3, we can convert it into a diagonal matrix.
- Then, by property 1
- $\operatorname{det}\left(A_{\text {diag }}\right)=\left[\prod_{i}^{n} a_{i i}\right] \operatorname{det}(I)=\prod_{i}^{n} a_{i i}$


## Remark

## Question

This is the property we use to compute determinants!!! How?

## Example

We have

$$
\left(\begin{array}{cc}
2 & 1 \\
3 & -4
\end{array}\right)
$$

## Example

## We have

$$
\left(\begin{array}{cc}
2 & 1 \\
3 & -4
\end{array}\right)
$$

First, we have

$$
\boldsymbol{r}_{1}=(2,1)=2\left(2, \frac{1}{2}\right)
$$

## Example

## We have

$$
\left(\begin{array}{cc}
2 & 1 \\
3 & -4
\end{array}\right)
$$

First, we have

$$
\boldsymbol{r}_{1}=(2,1)=2\left(2, \frac{1}{2}\right)
$$

Then

$$
\operatorname{det}(A)=2 \operatorname{det}\left[\begin{array}{cc}
1 & \frac{1}{2} \\
3 & -4
\end{array}\right]
$$

## Further

## We have by proposition 3

$$
\operatorname{det}(A)=2 \operatorname{det}\left[\begin{array}{cc}
1 & \frac{1}{2} \\
0 & -\frac{11}{2}
\end{array}\right]
$$

## Further

## We have by proposition 3

$$
\operatorname{det}(A)=2 \operatorname{det}\left[\begin{array}{cc}
1 & \frac{1}{2} \\
0 & -\frac{11}{2}
\end{array}\right]
$$

## Using Property 1

$$
\operatorname{det}(A)=2\left(-\frac{11}{2}\right) \operatorname{det}\left[\begin{array}{cc}
1 & \frac{1}{2} \\
0 & 1
\end{array}\right]
$$

## Further

We have by proposition 3

$$
\operatorname{det}(A)=2 \operatorname{det}\left[\begin{array}{cc}
1 & \frac{1}{2} \\
0 & -\frac{11}{2}
\end{array}\right]
$$

## Using Property 1

$$
\operatorname{det}(A)=2\left(-\frac{11}{2}\right) \operatorname{det}\left[\begin{array}{cc}
1 & \frac{1}{2} \\
0 & 1
\end{array}\right]
$$

## Therefore

$$
\operatorname{det}(A)=-11
$$

## Further Properties

## Property 4

The determinant of $A$ is the same as that of its transpose $A^{T}$.

## Further Properties

## Property 4

The determinant of $A$ is the same as that of its transpose $A^{T}$.

## Proof

- Hint: we do an elementary row operation on $A$. Then, $(E A)^{T}=A^{T} E^{T}$


## Finally

## Property 5

If $A$ and $B$ are square matrices of the same size, then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

## Finally

## Property 5

If $A$ and $B$ are square matrices of the same size, then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

## Therefore

If $A$ is invertible:

$$
\begin{aligned}
\operatorname{det}\left(A A^{-1}\right) & =\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right) \\
& =\operatorname{det}(I) \\
& =1
\end{aligned}
$$

## Finally

## Property 5

If $A$ and $B$ are square matrices of the same size, then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

## Therefore

If $A$ is invertible:

$$
\begin{aligned}
\operatorname{det}\left(A A^{-1}\right) & =\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right) \\
& =\operatorname{det}(I) \\
& =1
\end{aligned}
$$

Thus

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

## Finally

## Definition

- If the (square) matrix $A$ is invertible, then $A$ is said to be non-singular.
- Otherwise, $A$ is singular.

