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Square Matrices

Observation
Square matrices are the only matrices that can have inverses.

Further
In a system of linear algebraic equations:

1 If the number of equations equals the number of unknowns
2 Then the associated coefficient matrix A is square.

Now, use the Gauss-Jordan
What can happen?
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We have two possibilities

First case
The Gauss-Jordan form for An×n is the n× n identity matrix In

Second case
The Gauss-Jordan form for A has at least one row of zeros
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Explanation

In the first case
We can show that A is invertible.

How? Do you remember?

EkEk−1...E2E1A = I,

Setting B = EkEk−1...E2E1

We have BA = I therefore B = A−1
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Furthermore

We can build the following matrix

E−1
1 E−1

2 · · ·E
−1
k

Then (
E−1

1 E−1
2 · · ·E

−1
k

)
BA =

(
E−1

1 E−1
2 · · ·E

−1
k

)
I

Thus (
E−1

1 E−1
2 · · ·E

−1
k

)
(EkEk−1...E2E1) A =

(
E−1

1 E−1
2 · · ·E

−1
k

)
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Therefore

We have

A =
(
E−1

1 E−1
2 · · ·E

−1
k

)
Theorem
The following are equivalent:

1 The square matrix A is invertible.
2 The Gauss-Jordan or reduced echelon form of A is the identity matrix.
3 Acan be written as a product of elementary matrices.
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The Second Case

The Gauss-Jordan form of An×n

It can only have at most n leading entries.

If the Gauss-Jordan form of A is not I

We have something quite different

Then the GJ form has n− 1 or fewer leading entries
Therefore, it has at least one row of zeros.
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Example

Given

A =
(

2 1
1 2

)

What do we need to do?
Look at the blackboard...

Therefore

A−1 = E4E3E2E1

11 / 42



Example

Given

A =
(

2 1
1 2

)

What do we need to do?
Look at the blackboard...

Therefore

A−1 = E4E3E2E1

11 / 42



Example

Given

A =
(

2 1
1 2

)

What do we need to do?
Look at the blackboard...

Therefore

A−1 = E4E3E2E1

11 / 42



Outline

1 Square Matrices
Introduction
The Inverse
Solution to Ax = y
Algorithm for the Inverse of a Matrix

2 Determinants
Introduction
Complexity Increases
Reducing the Complexity
Some Consequences of the definition
Special Determinants

12 / 42



If A is invertible a.k.a. full rank

Equation Ax = y has the unique solution

Ax = y ⇔ A−1Ax = A−1y ⇔ x = A−1y

If A is not invertible
Then there is at least one free variable.
There are non-trivial solutions to Ax = 0.

If y 6= 0
Either Ax = y is inconsistent.
Solutions to the system exist, but there are infinitely many.
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Something Quite Important

We have done something important
It leads immediately to an algorithm for constructing the inverse of A.

Observation
Suppose Bn×p is another matrix with the same number of rows as An×n

Then

C = (A|B)n×(n+p)
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Then

It is obvious

EC = (EA|EB)n×(n+p)

Where
EA is a n× n matrix.
EB is a n× p matrix
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Algorithm

Form the partitioned matrix

C = (A|I)

Apply the Gauss-Jordan reduction

EkEk−1 · · ·E1 (A|I) = (EkEk−1 · · ·E1A|EkEk−1 · · ·E1I)

Therefore, if A is invertible

(EkEk−1 · · ·E1A|EkEk−1 · · ·E1I) =
(
I|A−1

)

17 / 42



Algorithm

Form the partitioned matrix

C = (A|I)

Apply the Gauss-Jordan reduction

EkEk−1 · · ·E1 (A|I) = (EkEk−1 · · ·E1A|EkEk−1 · · ·E1I)

Therefore, if A is invertible

(EkEk−1 · · ·E1A|EkEk−1 · · ·E1I) =
(
I|A−1

)

17 / 42



Algorithm

Form the partitioned matrix

C = (A|I)

Apply the Gauss-Jordan reduction

EkEk−1 · · ·E1 (A|I) = (EkEk−1 · · ·E1A|EkEk−1 · · ·E1I)

Therefore, if A is invertible

(EkEk−1 · · ·E1A|EkEk−1 · · ·E1I) =
(
I|A−1

)

17 / 42



Remark

The individual factors in the product of A−1 are not unique
They depend on how we do the row reduction.
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Before the Matrix we had the Determinant

You have seen determinants in your classes long ago

A =
(

a b
c d

)
=⇒ det (A) = ad− bc

What about  a11 a12 a13
a21 a22 a23
a31 a32 a33


Then

det (A) =a11a22a33 + a12a21a32 + a12a23a31 − ...

a12a21a33 − a11a23a32 − a13a22a31
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Recursive Definition

Definition
Let A be a n× n matrix. Then the determinant of A is defined as follow:

det (A) =
{

a11 if n = 1∑n
i=1 ai1Ai1 if n > 1

Where
Aij is the (i, j)−cofactor where

Aij = (−1)i+j det (Mij)

Here
Mij is the (n− 1)× (n− 1) matrix obtained from A by removing its ith

row and jth column.
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Example

We have  1 1 1
0 2 1
0 0 3
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Problems Will Robinson!!!

We have that for a An×n

det (A) has n factorials (n!)terms

Problems
The fastest computer of the world will take forever to finish
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Thus, we have some problems with that

Floating point arithmetic
It is not at all the same thing as working with real numbers.

Representation

x = (d1d2d3 · · · dn)× 2a1a2···am (1)

The problem is at the round off
When we do a calculation on a computer, we almost never get the right
answer.
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Another Problems

We would love the floating points to be represented uniformly
The floating point numbers are distributed logarithmically which is quite
different from the even distribution of the rationals.

Computations do not scale well
2 multiplications and 1 addition to compute the 2× 2 determinant
12 multiplications and 5 additions to compute the 3× 3 determinant
72 multiplications and 23 additions to
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Therefore

How do we avoid to get us into problems?
We need to define our determinant as a different structure....

Definition
The determinant of A is a real-valued function of the rows of A which we
write as

det (A) = det (r1, r2, ..., rn)

28 / 42



Therefore

How do we avoid to get us into problems?
We need to define our determinant as a different structure....

Definition
The determinant of A is a real-valued function of the rows of A which we
write as

det (A) = det (r1, r2, ..., rn)

28 / 42



Properties

Multiplying a row by the constant c multiplies the determinant by c

det (r1, r2, ..., cri, ..., rn) = cdet (r1, r2, ..., ri, ..., rn)

If row i is the sum of the two row vectors x and y

det (r1, r2, ..., x + y, ..., rn) =det (r1, r2, ..., x, ..., rn) + ...

det (r1, r2, ..., y, ..., rn)

Meaning
The determinant is a linear function of each row.
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Further

Interchanging any two rows of the matrix changes the sign of the
determinant

det (..., ri, ..., rj , ..., ...) = det (..., rj , ..., ri, ..., ...)

Finally
The determinant of any identity matrix is 1
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Some Properties

Property 1
If A has a row of zeros, then det(A) = 0.

Proof
1 if A = (..., 0, ...), also A = (..., c0, ...)
2 det (A) = c× det (A) for any c

3 Thus det (A) = 0
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Next

Property 2
If ri = rj , i 6= j, then det(A) = 0.

Proof
Quite easy (Hint sing being reversed).
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Finally

Proposition 3
If B is obtained from A by replacing ri with ri + crj , then
det(B) = det(A)

Proof

det (B) = det (..., ri + crj , ..., rj , ...)
= det (..., ri, ..., rj , ...) + det (..., crj , ..., rj , ...)
= det (A) + cdet (..., rj , ..., rj , ...)
= det (A) + 0
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Therefore

Theorem
The determinant of an upper or lower triangular matrix is equal to the
product of the entries on the main diagonal.

Proof
Suppose A is upper triangular and that none of the entries on the
main diagonal is 0.
This means all the entries beneath the main diagonal are zero.
Using Proposition 3, we can convert it into a diagonal matrix.
Then, by property 1

I det (Adiag) = [
∏n

i aii] det (I) =
∏n

i aii
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Remark

Question
This is the property we use to compute determinants!!! How?
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Example

We have (
2 1
3 −4

)

First, we have

r1 = (2, 1) = 2
(

2,
1
2

)

Then

det (A) = 2det

[
1 1

2
3 −4

]
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Further

We have by proposition 3

det (A) = 2det

[
1 1

2
0 −11

2

]

Using Property 1

det (A) = 2
(
−11

2

)
det

[
1 1

2
0 1

]

Therefore

det (A) = −11
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Further Properties

Property 4
The determinant of A is the same as that of its transpose AT .

Proof
Hint: we do an elementary row operation on A. Then,
(EA)T = AT ET
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Finally
Property 5
If A and B are square matrices of the same size, then

det (AB) = det (A) det (B)

Therefore
If A is invertible:

det
(
AA−1

)
= det (A) det

(
A−1

)
= det (I)
= 1

Thus

det
(
A−1

)
= 1

det (A)
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Finally

Definition
If the (square) matrix A is invertible, then A is said to be
non-singular.
Otherwise, A is singular.
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