Mathematics for Artificial Intelligence
 System of Linear Equations

Andres Mendez-Vazquez

March 2, 2020

Outline

(1) System of Linear Equations

- Introduction
- System of Linear Equations
- Matrices and Their Operations
- Using the Matrix Operations
- Example
- Going back to the problem
(2) Elementary row operations
- Introduction
- Elementary Matrices
- Properties of the Elementary Matrices
- The Theorem for the Gauss-Jordan Algorithm
- The Gauss-Jordan Algorithm
- Application to the solutions of $A \boldsymbol{x}=\boldsymbol{y}$
- Consistency and Inconsistency
(3) Homogeneous and In-Homogeneous Systems
- Homogeneous systems
- Basic Properties
- Linear combinations and the superposition principle
- Inhomogeneous Systems

Outline

(1) System of Linear Equations

- Introduction
- System of Linear Equations
- Matrices and Their Operations
- Using the Matrix Operations
- Example
- Going back to the problem
(2) Elementary row operations
- Introduction
- Elementary Matrices
- Properties of the Elementary Matrices
- The Theorem for the Gauss-Jordan Algorithm
- The Gauss-Jordan Algorithm
- Application to the solutions of $A x=y$
- Consistency and Inconsistency
(3) Homogeneous and In-Homogeneous Systems
- Homogeneous systems
- Basic Properties
- Linear combinations and the superposition principle
- Inhomogeneous Systems

As we saw in the previous introduction

The Development of Linear Algebra

It is as a natural extension of trying to solve systems of linear equations.

As we saw in the previous introduction

The Development of Linear Algebra

It is as a natural extension of trying to solve systems of linear equations.

From those early attempts - Gauss and Company

- Cayley have the need to formalize fully the concept of Matrices,
- From this simple concept a new era in Mathematics would arise.

Outline

(1) System of Linear Equations

- Introduction
- System of Linear Equations
- Matrices and Their Operations
- Using the Matrix Operations
- Example
- Going back to the problem
(2) Elementary row operations
- Introduction
- Elementary Matrices
- Properties of the Elementary Matrices
- The Theorem for the Gauss-Jordan Algorithm
- The Gauss-Jordan Algorithm
- Application to the solutions of $A x=y$
- Consistency and Inconsistency
(3) Homogeneous and In-Homogeneous Systems
- Homogeneous systems
- Basic Properties
- Linear combinations and the superposition principle
- Inhomogeneous Systems

Example

A classic problem is to solve systems of linear equations like

$$
\begin{aligned}
3 x+3 y & =12 \\
x-2 y & =1
\end{aligned}
$$

Example

A classic problem is to solve systems of linear equations like

$$
\begin{aligned}
3 x+3 y & =12 \\
x-2 y & =1
\end{aligned}
$$

With

However

It is clear that once the dimension of the vector space increases beyond two

We do not have a simple geometric method to solve this problem.

However

It is clear that once the dimension of the vector space increases beyond two

We do not have a simple geometric method to solve this problem.

We can use our knowledge of Matrices

$$
\left(\begin{array}{cc}
3 & 3 \\
1 & -2
\end{array}\right)\binom{x}{y}=\binom{12}{1}
$$

However

It is clear that once the dimension of the vector space increases beyond two
We do not have a simple geometric method to solve this problem.
We can use our knowledge of Matrices

$$
\left(\begin{array}{cc}
3 & 3 \\
1 & -2
\end{array}\right)\binom{x}{y}=\binom{12}{1}
$$

Thus, we have the equation in the following format $A x=y$

$$
\boldsymbol{x}=\binom{x}{y}, \boldsymbol{y}=\binom{12}{1} \text { and } A=\left(\begin{array}{cc}
3 & 3 \\
1 & -2
\end{array}\right)
$$

Outline

(1) System of Linear Equations

- Introduction
- System of Linear Equations
- Matrices and Their Operations
- Using the Matrix Operations
- Example
- Going back to the problem
(2) Elementary row operations
- Introduction
- Elementary Matrices
- Properties of the Elementary Matrices
- The Theorem for the Gauss-Jordan Algorithm
- The Gauss-Jordan Algorithm
- Application to the solutions of $A x=y$
- Consistency and Inconsistency
(3) Homogeneous and In-Homogeneous Systems
- Homogeneous systems
- Basic Properties
- Linear combinations and the superposition principle
- Inhomogeneous Systems

Definition of Matrices

Definition

Let K be a field, and let n, m be two integers ≥ 1. An array of scalars in K :

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

is called a matrix in K . We can abbreviate the notation writing $\left(a_{i j}\right)$,
$i=1, \ldots, m$ and $j=1, \ldots, n$.

Further

We call $a_{i j}$ the $i j$-entry of the matrix, and the $i^{\text {th }}$ row is defined as

$$
A_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)
$$

Further

We call $a_{i j}$ the $i j$-entry of the matrix, and the $i^{\text {th }}$ row is defined as

$$
A_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)
$$

The $j^{\text {th }}$ column is denoted as

$$
A^{j}=\left(\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\vdots \\
a_{m j}
\end{array}\right)
$$

Addition of Matrices

Definition

Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be two $m \times n$ matrices. We define $A+B$ be a matrix whose entry in the $i^{\text {th }}$ row and $j^{\text {th }}$ column is $a_{i j}+b_{i j}$.

Addition of Matrices

Definition

Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be two $m \times n$ matrices. We define $A+B$ be a matrix whose entry in the $i^{\text {th }}$ row and $j^{\text {th }}$ column is $a_{i j}+b_{i j}$.

Therefore, Is this possible?

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4
\end{array}\right)+\left(\begin{array}{ll}
5 & 1 \\
2 & 1
\end{array}\right)=?
$$

The Zero Matrix

Definition

Let $A=\left(a_{i j}\right)$ be $\mathrm{q} m \times n$ matrix whose entries are all 0 . This matrix is the zero matrix, $\mathbf{0}_{m n}$.

The Zero Matrix

Definition

Let $A=\left(a_{i j}\right)$ be $\mathrm{q} m \times n$ matrix whose entries are all 0 . This matrix is the zero matrix, $\mathbf{0}_{m n}$.

Example

Look at the Jupyter...

Multiplication By Scalar

Definition

The multiplication by an scalar element which is defined simply as, given a matrix A and scalar c, a matrix $c A$ whose $i j$-component is $c a_{i j}$.

Example at Jupyter

Multiplication By Scalar

Definition

The multiplication by an scalar element which is defined simply as, given a matrix A and scalar c, a matrix $c A$ whose $i j$-component is $c a_{i j}$.

Example at Jupyter

Remarks

It is easy to see that the set of matrices of size $m \times n$ with components in a field K form a vector space over K which can be denoted by Mat $_{m \times n}(K)$.

Some Other Definitions

Definition

Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix. The matrix $B=\left(b_{i j}\right)$ such that $b_{j i}=a_{i j}$ is called transpose of A, and is also denoted by A^{T}.

Example at Jupyter

Some Other Definitions

Definition

Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix. The matrix $B=\left(b_{i j}\right)$ such that $b_{j i}=a_{i j}$ is called transpose of A, and is also denoted by A^{T}.

Example at Jupyter

Additionally

A matrix is said to be symmetric if it is equal to its transpose i.e. if $A^{T}=A$.

Matrix Multiplication

Definition

If the number of columns of $A(m \times k)$ equals the number of rows of B ($k \times n$), then the product $C=A B$ is defined by

$$
\begin{equation*}
c_{i j}=\sum_{h=1}^{k} a_{i k} b_{k j} \tag{1}
\end{equation*}
$$

Something Like

We have

Example

Multiply the following matrices using numpy

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & 4
\end{array}\right), B=\left(\begin{array}{cc}
-1 & 0 \\
4 & 2 \\
1 & 3
\end{array}\right)
$$

Outline

（1）System of Linear Equations
－Introduction
－System of Linear Equations
－Matrices and Their Operations
－Using the Matrix Operations
－Example
－Going back to the problem
（2）Elementary row operations
－Introduction
－Elementary Matrices
－Properties of the Elementary Matrices
－The Theorem for the Gauss－Jordan Algorithm
－The Gauss－Jordan Algorithm
－Application to the solutions of $A x=y$
－Consistency and Inconsistency
（3）Homogeneous and In－Homogeneous Systems
－Homogeneous systems
－Basic Properties
－Linear combinations and the superposition principle
－Inhomogeneous Systems

A Change on Basis

We can do the following

You have a vector \boldsymbol{x} in certain space V with a basis $B=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$.

A Change on Basis

We can do the following

You have a vector \boldsymbol{x} in certain space V with a basis $B=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$.
Thus, we have

$$
\boldsymbol{x}=a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\cdots+a_{n} \boldsymbol{v}_{n}
$$

We have

Then in the basis $B=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$

$$
[\boldsymbol{x}]_{B}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)_{B}
$$

We need to solve the following system of equations

Solving the following system

$$
a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\cdots+a_{n} \boldsymbol{v}_{n}=\boldsymbol{x}
$$

We need to solve the following system of equations

Solving the following system

$$
a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\cdots+a_{n} \boldsymbol{v}_{n}=\boldsymbol{x}
$$

Or

$$
\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{n}
\end{array}\right]\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)_{B}=\boldsymbol{x}_{s t}
$$

What if...?

if we have another basis for such space $A=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}\right\}$

$$
\begin{aligned}
& \boldsymbol{w}_{1}=b_{11} \boldsymbol{v}_{1}+b_{21} \boldsymbol{v}_{2}+\cdots+b_{n 1} \boldsymbol{v}_{m} \\
& \boldsymbol{w}_{2}=b_{12} \boldsymbol{v}_{1}+b_{22} \boldsymbol{v}_{2}+\cdots+b_{n 2} \boldsymbol{v}_{m} \\
& \vdots \\
&=\vdots \\
& \boldsymbol{w}_{n}=b_{1 n} \boldsymbol{v}_{1}+b_{2 n} \boldsymbol{w}_{2}+\cdots+b_{n n} \boldsymbol{v}_{m}
\end{aligned}
$$

What if...?

if we have another basis for such space $A=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}\right\}$

$$
\begin{aligned}
& \boldsymbol{w}_{1}=b_{11} \boldsymbol{v}_{1}+b_{21} \boldsymbol{v}_{2}+\cdots+b_{n 1} \boldsymbol{v}_{m} \\
& \boldsymbol{w}_{2}=b_{12} \boldsymbol{v}_{1}+b_{22} \boldsymbol{v}_{2}+\cdots+b_{n 2} \boldsymbol{v}_{m} \\
& \vdots \\
&=\vdots \\
& \boldsymbol{w}_{n}=b_{1 n} \boldsymbol{v}_{1}+b_{2 n} \boldsymbol{w}_{2}+\cdots+b_{n n} \boldsymbol{v}_{m}
\end{aligned}
$$

Therefore, we generate the following matrix

$$
\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]
$$

Therefore

We have that each column represent a vector \boldsymbol{w}_{j} in standard basis

$$
\boldsymbol{w}_{j}=\left(\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{n j}
\end{array}\right)
$$

We have

$$
\begin{aligned}
& \text { If we have } \boldsymbol{y}=\left(\begin{array}{llll}
c_{1} & c_{2} & \cdots & c_{n}
\end{array}\right)^{T} \text { in the coordinates at basis } \\
& A=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}\right\}
\end{aligned}
$$

- Using the transition matrix idea

$$
\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{n}
\end{array}\right)
$$

We have

> If we have $\boldsymbol{y}=\left(\begin{array}{llll}c_{1} & c_{2} & \cdots & c_{n}\end{array}\right)^{T}$ in the coordinates at basis $A=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}\right\}$

- Using the transition matrix idea

$$
\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{n}
\end{array}\right)
$$

Where

$$
\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=c_{1} \boldsymbol{w}_{1}+c_{2} \boldsymbol{w}_{2}+\ldots+c_{n} \boldsymbol{w}_{n}
$$

With the following property

Then using the $B=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ representation

$$
c_{i} \boldsymbol{w}_{i}=c_{i} b_{1 i} \boldsymbol{v}_{1}+c_{i} b_{2 i} \boldsymbol{v}_{2}+\cdots+c_{i} b_{n i} \boldsymbol{v}_{m}
$$

With the following property

Then using the $B=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ representation

$$
c_{i} \boldsymbol{w}_{i}=c_{i} b_{1 i} \boldsymbol{v}_{1}+c_{i} b_{2 i} \boldsymbol{v}_{2}+\cdots+c_{i} b_{n i} \boldsymbol{v}_{m}
$$

Therefore

$$
\left(c_{1} b_{11}+\ldots+c_{n} b_{1 n}\right) \boldsymbol{v}_{1}+\cdots+\left(c_{1} b_{n 1}+\ldots+c_{n} b_{n n}\right) \boldsymbol{v}_{n}=[\boldsymbol{x}]_{B}
$$

Or
The Coordinates for the System in basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$

Nice, What about $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\} \rightarrow\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}\right\}$?

Or
The Coordinates for the System in basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$

Nice, What about $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\} \rightarrow\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}\right\}$?

$$
\begin{aligned}
& \text { But Normally, we want to go from }\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\} \text { to } \\
& \left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}\right\}
\end{aligned}
$$

Or
The Coordinates for the System in basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$
Nice, What about $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\} \rightarrow\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}\right\}$?

But Normally, we want to go from $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ to $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}\right\}$

Simply, given $\left(\begin{array}{llll}d_{1} & d_{2} & \cdots & d_{n}\end{array}\right)^{T}$

$$
\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]^{-1}\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{n}
\end{array}\right)
$$

Then

This is basically a way to represent the change of basis
By inner product, multiplication of matrices, inverses and matrix-vector multiplication.

Outline

（1）System of Linear Equations

－Introduction
－System of Linear Equations
－Matrices and Their Operations
－Using the Matrix Operations
－Example
－Going back to the problem
（2）Elementary row operations
－Introduction
－Elementary Matrices
－Properties of the Elementary Matrices
－The Theorem for the Gauss－Jordan Algorithm
－The Gauss－Jordan Algorithm
－Application to the solutions of $A x=y$
－Consistency and Inconsistency
（3）Homogeneous and In－Homogeneous Systems
－Homogeneous systems
－Basic Properties
－Linear combinations and the superposition principle
－Inhomogeneous Systems

Example

We have

$$
B=\left\{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]\right\},[\boldsymbol{v}]_{B}=\left[\begin{array}{c}
4 \\
1 \\
-5
\end{array}\right]_{B}
$$

Example

We have

$$
B=\left\{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]\right\},[\boldsymbol{v}]_{B}=\left[\begin{array}{c}
4 \\
1 \\
-5
\end{array}\right]_{B}
$$

Transition Matrix

$$
P=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 2 \\
-1 & 4 & 1
\end{array}\right]
$$

Therefore, we can see that

We can calculate the determinant, $\operatorname{det} \neq 0$ linear independence

$$
\operatorname{det}\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 2 \\
-1 & 4 & 1
\end{array}\right] \neq 0
$$

Therefore, we can see that

We can calculate the determinant, det $\neq 0$ linear independence

$$
\operatorname{det}\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 2 \\
-1 & 4 & 1
\end{array}\right] \neq 0
$$

We derive the standard coordinates of v

$$
\boldsymbol{v}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 2 \\
-1 & 4 & 1
\end{array}\right]\left[\begin{array}{c}
4 \\
1 \\
-5
\end{array}\right]_{B}
$$

Now, we have that to move from one basis to another

What if we have a element in basis S

$$
[\boldsymbol{v}]_{S}=\left[\begin{array}{c}
5 \\
7 \\
-3
\end{array}\right]
$$

Now, we have that to move from one basis to another

What if we have a element in basis S

$$
[\boldsymbol{v}]_{S}=\left[\begin{array}{c}
5 \\
7 \\
-3
\end{array}\right]
$$

We derive the B coordinates of vector \boldsymbol{v}

$$
\left[\begin{array}{c}
5 \\
7 \\
-3
\end{array}\right]==\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 2 \\
-1 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

Then, we have

Solve the system or get the inverse

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 2 \\
-1 & 4 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
5 \\
7 \\
-3
\end{array}\right]=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

Then, we have

Solve the system or get the inverse

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 2 \\
-1 & 4 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
5 \\
7 \\
-3
\end{array}\right]=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

Make the following example

$$
B=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Change of basis from B to B^{\prime}

Given an old basis B of \mathbb{R}^{n} with transition matrix P_{B}

- And a new basis B^{\prime} with transition matrix $P_{B^{\prime}}$

Change of basis from B to B^{\prime}

Given an old basis B of \mathbb{R}^{n} with transition matrix P_{B}

- And a new basis B^{\prime} with transition matrix $P_{B^{\prime}}$

How do we change from coords in the basis B to coords in the basis B^{\prime} ?

- Coordinates in B, then using $\boldsymbol{v}=P_{B}[\boldsymbol{v}]_{B}$ we change the coordinates to standard coordinates.

Change of basis from B to B^{\prime}

Given an old basis B of \mathbb{R}^{n} with transition matrix P_{B}

- And a new basis B^{\prime} with transition matrix $P_{B^{\prime}}$

How do we change from coords in the basis B to coords in the basis B^{\prime} ?

- Coordinates in B, then using $\boldsymbol{v}=P_{B}[\boldsymbol{v}]_{B}$ we change the coordinates to standard coordinates.

Then, we can do

$$
[\boldsymbol{v}]_{B^{\prime}}=P_{B^{\prime}}^{-1} \boldsymbol{v}
$$

Therefore, we have

We have the following situation

$$
[\boldsymbol{v}]_{B^{\prime}}=P_{B^{\prime}}^{-1} P_{B}[\boldsymbol{v}]_{B}
$$

Therefore, we have

We have the following situation

$$
[\boldsymbol{v}]_{B^{\prime}}=P_{B^{\prime}}^{-1} P_{B}[\boldsymbol{v}]_{B}
$$

Then, the final transition matrix

$$
M=P_{B^{\prime}}^{-1} P_{B}=P_{B^{\prime}}^{-1}\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{n}
\end{array}\right]
$$

Therefore, we have

We have the following situation

$$
[\boldsymbol{v}]_{B^{\prime}}=P_{B^{\prime}}^{-1} P_{B}[\boldsymbol{v}]_{B}
$$

Then, the final transition matrix

$$
M=P_{B^{\prime}}^{-1} P_{B}=P_{B^{\prime}}^{-1}\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{n}
\end{array}\right]
$$

In other words

$$
M=P_{B^{\prime}}^{-1}\left[\begin{array}{llll}
P_{B^{\prime}}^{-1} \boldsymbol{v}_{1} & P_{B^{\prime}}^{-1} \boldsymbol{v}_{2} & \cdots & P_{B^{\prime}}^{-1} \boldsymbol{v}_{n}
\end{array}\right]
$$

Therefore, we have

Something Notable

- The columns of the transition matrix M from the old basis B to the new basis B^{\prime}
- They are the coordinate vectors of the old basis B with respect to the new basis B^{\prime}.

Fianlly, packing everything

Theorem

- If B and B^{\prime} are two bases of \mathbb{R}^{n}, with $B=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}\right\}$ then the transition matrix from B coordinates to B^{\prime} coordinates is given by

$$
M=\left[\left[\boldsymbol{v}_{1}\right]_{B^{\prime}},\left[\boldsymbol{v}_{2}\right]_{B^{\prime}}, \ldots,\left[\boldsymbol{v}_{n}\right]_{B^{\prime}}\right]
$$

Outline

(1) System of Linear Equations

- Introduction
- System of Linear Equations
- Matrices and Their Operations
- Using the Matrix Operations
- Example
- Going back to the problem
(2) Elementary row operations
- Introduction
- Elementary Matrices
- Properties of the Elementary Matrices
- The Theorem for the Gauss-Jordan Algorithm
- The Gauss-Jordan Algorithm
- Application to the solutions of $A x=y$
- Consistency and Inconsistency
(3) Homogeneous and In-Homogeneous Systems
- Homogeneous systems
- Basic Properties
- Linear combinations and the superposition principle
- Inhomogeneous Systems

Going Back to the Problem

We have

$$
\binom{3 x+3 y}{x-2 y}=\binom{12}{1}
$$

Going Back to the Problem

We have

$$
\binom{3 x+3 y}{x-2 y}=\binom{12}{1}
$$

Nevertheless

This not simplify the way in which we solve it.

Going Back to the Problem

We have

$$
\binom{3 x+3 y}{x-2 y}=\binom{12}{1}
$$

Nevertheless

This not simplify the way in which we solve it.

The variables x and y can be eliminated from the computation

By simply writing down a matrix in which:

Going Back to the Problem

We have

$$
\binom{3 x+3 y}{x-2 y}=\binom{12}{1}
$$

Nevertheless

This not simplify the way in which we solve it.
The variables x and y can be eliminated from the computation
By simply writing down a matrix in which:
(1) The coefficients of x are in the first column.

Going Back to the Problem

We have

$$
\binom{3 x+3 y}{x-2 y}=\binom{12}{1}
$$

Nevertheless

This not simplify the way in which we solve it.
The variables x and y can be eliminated from the computation
By simply writing down a matrix in which:
(1) The coefficients of x are in the first column.
(2) The coefficients of y are in the second column.

Going Back to the Problem

We have

$$
\binom{3 x+3 y}{x-2 y}=\binom{12}{1}
$$

Nevertheless

This not simplify the way in which we solve it.

The variables x and y can be eliminated from the computation
By simply writing down a matrix in which:
(1) The coefficients of x are in the first column.
(2) The coefficients of y are in the second column.
(3) The right hand side of the system is the third column.

Therefore

We have (Basically columns as place makers)

$$
\left(\begin{array}{ccc}
3 & 3 & 12 \\
1 & -2 & 1
\end{array}\right)
$$

Therefore

We have (Basically columns as place makers)

$$
\left(\begin{array}{ccc}
3 & 3 & 12 \\
1 & -2 & 1
\end{array}\right)
$$

Then, look at the following

$$
\left(\begin{array}{ccc}
3 & 3 & 12 \\
3 & -6 & 3
\end{array}\right) \text { : Multiply the second row by } 3
$$

Therefore

We have (Basically columns as place makers)

$$
\left(\begin{array}{ccc}
3 & 3 & 12 \\
1 & -2 & 1
\end{array}\right)
$$

Then, look at the following

$$
\left(\begin{array}{ccc}
3 & 3 & 12 \\
3 & -6 & 3
\end{array}\right) \text { : Multiply the second row by } 3
$$

Further

$$
\left(\begin{array}{ccc}
6 & 6 & 24 \\
3 & -6 & 3
\end{array}\right) \text { : Multiply the first row by } 2
$$

Add row one and two

We have

$$
\left(\begin{array}{lll}
6 & 6 & 24 \\
9 & 0 & 27
\end{array}\right)
$$

Add row one and two

We have

$$
\left(\begin{array}{lll}
6 & 6 & 24 \\
9 & 0 & 27
\end{array}\right)
$$

Therefore $x=3$
From it we can get $y=1$.

Add row one and two

We have

$$
\left(\begin{array}{lll}
6 & 6 & 24 \\
9 & 0 & 27
\end{array}\right)
$$

Therefore $x=3$
From it we can get $y=1$.

Not Only that

All "equivalent" systems of equations have the same solutions.

Augmented Matrix

Definition

The previous matrix is called the augmented matrix of the system, and can be written in matrix shorthand as (A|y).

Augmented Matrix

Definition

The previous matrix is called the augmented matrix of the system, and can be written in matrix shorthand as (A|y).

Note

The previous system can be solved in different ways.

Augmented Matrix

Definition

The previous matrix is called the augmented matrix of the system, and can be written in matrix shorthand as (A|y).

Note

The previous system can be solved in different ways.

Additionally, the system of equations (Two Equations)

(1) There's just one,

Augmented Matrix

Definition

The previous matrix is called the augmented matrix of the system, and can be written in matrix shorthand as (A|y).

Note

The previous system can be solved in different ways.

Additionally, the system of equations (Two Equations)

(1) There's just one,
(2) There is no solution,

Augmented Matrix

Definition

The previous matrix is called the augmented matrix of the system, and can be written in matrix shorthand as (A|y).

Note

The previous system can be solved in different ways.

Additionally, the system of equations (Two Equations)

(1) There's just one,
(2) There is no solution,
(3) There are an infinite number of solutions.

What about?

Example

$$
\begin{array}{r}
2 x-4 y+z=1 \\
4 x+y-z=3
\end{array}
$$

What about?

Example

$$
\begin{array}{r}
2 x-4 y+z=1 \\
4 x+y-z=3
\end{array}
$$

Then the augmented matrix

$$
\left(\begin{array}{cccc}
2 & -4 & 1 & 1 \\
4 & 1 & -1 & 3
\end{array}\right)
$$

Therefore

We have

$$
\left(\begin{array}{cccc}
1 & -2 & \frac{1}{2} & \frac{1}{2} \\
4 & 1 & -1 & 3
\end{array}\right): \text { Mult row } 1 \text { by } \frac{1}{2}
$$

Therefore

We have

$$
\left(\begin{array}{cccc}
1 & -2 & \frac{1}{2} & \frac{1}{2} \\
4 & 1 & -1 & 3
\end{array}\right): \text { Mult row } 1 \text { by } \frac{1}{2}
$$

Then

$$
\left(\begin{array}{cccc}
1 & -2 & \frac{1}{2} & \frac{1}{2} \\
0 & 9 & -3 & 1
\end{array}\right): \text { Mult row } 2 \text { by }-4 \text { and add it to eqn } 2
$$

Therefore

We have

$$
\left(\begin{array}{cccc}
1 & -2 & \frac{1}{2} & \frac{1}{2} \\
4 & 1 & -1 & 3
\end{array}\right): \text { Mult row } 1 \text { by } \frac{1}{2}
$$

Then

$$
\left(\begin{array}{cccc}
1 & -2 & \frac{1}{2} & \frac{1}{2} \\
0 & 9 & -3 & 1
\end{array}\right): \text { Mult row } 2 \text { by }-4 \text { and add it to eqn } 2
$$

Further, we get a augmented matrix called an echelon form

$$
\left(\begin{array}{cccc}
1 & -2 & \frac{1}{2} & \frac{1}{2} \\
0 & 1 & -\frac{1}{3} & 1
\end{array}\right): \text { Mult row } 2 \text { by } \frac{1}{9}
$$

Finally

We get a reduced echelon form

$$
\left(\begin{array}{cccc}
1 & 0 & -\frac{1}{6} & \frac{13}{18} \\
0 & 1 & -\frac{1}{3} & 1
\end{array}\right): \text { Multiply Row } 2 \text { and add to row } 1
$$

Finally

We get a reduced echelon form

$$
\left(\begin{array}{cccc}
1 & 0 & -\frac{1}{6} & \frac{13}{18} \\
0 & 1 & -\frac{1}{3} & 1
\end{array}\right): \text { Multiply Row } 2 \text { and add to row } 1
$$

We have clearly a free variable

It is the variable z

What operations we have been doing in the augmented matrices?

First

(1) Multiply any equation by a non-zero real number (scalar).
(2) Equivalent to multiplying a row of the matrix by a scalar.

What operations we have been doing in the augmented matrices?

First

(1) Multiply any equation by a non-zero real number (scalar).
(2) Equivalent to multiplying a row of the matrix by a scalar.

Second

(1) Replace any equation by the original equation plus a scalar multiple of another equation.
(2) Equivalent to replace any row of a matrix by that row plus a multiple of another row.

What operations we have been doing in the augmented matrices?

First

(1) Multiply any equation by a non-zero real number (scalar).
(2) Equivalent to multiplying a row of the matrix by a scalar.

Second

(1) Replace any equation by the original equation plus a scalar multiple of another equation.
(2) Equivalent to replace any row of a matrix by that row plus a multiple of another row.

Third

(1) Interchange two equations.
(2) Equivalent to two rows of the augmented matrix.

Then

Definition

These three operations are called elementary row operations.

Outline

(1) System of Linear Equations

- Introduction
- System of Linear Equations
- Matrices and Their Operations
- Using the Matrix Operations
- Example
- Going back to the problem
(2) Elementary row operations
- Introduction
- Elementary Matrices
- Properties of the Elementary Matrices
- The Theorem for the Gauss-Jordan Algorithm
- The Gauss-Jordan Algorithm
- Application to the solutions of $A x=y$
- Consistency and Inconsistency
(3) Homogeneous and In-Homogeneous Systems
- Homogeneous systems
- Basic Properties
- Linear combinations and the superposition principle
- Inhomogeneous Systems

How we use only matrix operations?
Take a look at this example

$$
A=\left(\begin{array}{ccc}
3 & 4 & 5 \\
2 & -1 & 0
\end{array}\right)
$$

How we use only matrix operations?
Take a look at this example

$$
A=\left(\begin{array}{ccc}
3 & 4 & 5 \\
2 & -1 & 0
\end{array}\right)
$$

We have the following elementary matrix coming from the identity matrix

$$
E_{1}=\left(\begin{array}{cc}
\frac{1}{3} & 0 \\
0 & 1
\end{array}\right)
$$

How we use only matrix operations?
Take a look at this example

$$
A=\left(\begin{array}{ccc}
3 & 4 & 5 \\
2 & -1 & 0
\end{array}\right)
$$

We have the following elementary matrix coming from the identity matrix

$$
E_{1}=\left(\begin{array}{cc}
\frac{1}{3} & 0 \\
0 & 1
\end{array}\right)
$$

We get

$$
E_{1} A=\left(\begin{array}{ccc}
1 & \frac{4}{3} & \frac{5}{3} \\
2 & -1 & 0
\end{array}\right)
$$

Further

To add $-2 \times$ (row one) to row 2 in the identity matrix

$$
E_{2}=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)
$$

Further

To add $-2 \times$ (row one) to row 2 in the identity matrix

$$
E_{2}=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)
$$

Then

$$
E_{2} E_{1} A=\left(\begin{array}{ccc}
1 & \frac{4}{3} & \frac{5}{3} \\
0 & -\frac{11}{3} & -\frac{10}{3}
\end{array}\right)
$$

Further

To add $-2 \times$ (row one) to row 2 in the identity matrix

$$
E_{2}=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)
$$

Then

$$
E_{2} E_{1} A=\left(\begin{array}{ccc}
1 & \frac{4}{3} & \frac{5}{3} \\
0 & -\frac{11}{3} & -\frac{10}{3}
\end{array}\right)
$$

Finally we can use the matrix $E_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -\frac{3}{11}\end{array}\right)$

$$
E_{3} E_{2} E_{1} A=\left(\begin{array}{ccc}
1 & \frac{4}{3} & \frac{5}{3} \\
0 & 1 & \frac{10}{11}
\end{array}\right)
$$

Finally, we have

$$
\begin{aligned}
E_{4}=\left(\begin{array}{cc}
1 & -\frac{4}{3} \\
0 & 1
\end{array}\right) & \\
& E_{4} E_{3} E_{2} E_{1} A=\left(\begin{array}{lll}
1 & 0 & \frac{5}{11} \\
0 & 1 & \frac{10}{11}
\end{array}\right)
\end{aligned}
$$

Finally, we have

$$
\begin{aligned}
E_{4}=\left(\begin{array}{cc}
1 & -\frac{4}{3} \\
0 & 1
\end{array}\right) & \\
& E_{4} E_{3} E_{2} E_{1} A=\left(\begin{array}{ccc}
1 & 0 & \frac{5}{11} \\
0 & 1 & \frac{10}{11}
\end{array}\right)
\end{aligned}
$$

Definition

The matrix R is said to be in echelon form provided that:

Finally, we have

$$
\begin{aligned}
E_{4}=\left(\begin{array}{cc}
1 & -\frac{4}{3} \\
0 & 1
\end{array}\right) & \\
& E_{4} E_{3} E_{2} E_{1} A=\left(\begin{array}{ccc}
1 & 0 & \frac{5}{11} \\
0 & 1 & \frac{10}{11}
\end{array}\right)
\end{aligned}
$$

Definition

The matrix R is said to be in echelon form provided that:
(1) The leading entry of every non-zero row is a 1 .

Finally, we have

$$
\begin{aligned}
E_{4}=\left(\begin{array}{cc}
1 & -\frac{4}{3} \\
0 & 1
\end{array}\right) & E_{4} E_{3} E_{2} E_{1} A=\left(\begin{array}{ccc}
1 & 0 & \frac{5}{11} \\
0 & 1 & \frac{10}{11}
\end{array}\right)
\end{aligned}
$$

Definition

The matrix R is said to be in echelon form provided that:
(1) The leading entry of every non-zero row is a 1 .
(2) If the leading entry of row i is in position k, and the next row is not a row of zeros, then the leading entry of row $i+1$ is in position $k+j$, where $j \geq 1$.

Finally, we have

$$
E_{4}=\left(\begin{array}{cc}
1 & -\frac{4}{3} \\
0 & 1
\end{array}\right)
$$

$$
E_{4} E_{3} E_{2} E_{1} A=\left(\begin{array}{lll}
1 & 0 & \frac{5}{11} \\
0 & 1 & \frac{10}{11}
\end{array}\right)
$$

Definition

The matrix R is said to be in echelon form provided that:
(1) The leading entry of every non-zero row is a 1 .
(2) If the leading entry of row i is in position k, and the next row is not a row of zeros, then the leading entry of row $i+1$ is in position $k+j$, where $j \geq 1$.
(3) All zero rows are at the bottom of the matrix.

Then

Examples

$$
\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & * & * \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \text { and }\left(\begin{array}{cccc}
0 & 1 & * & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Then

Examples

$$
\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & * & * \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \text { and }\left(\begin{array}{cccc}
0 & 1 & * & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 1
\end{array}\right)
$$

This leads to

R is in reduced echelon form (Gauss-Jordan Form) if
(1) R is in echelon form
(3) Each leading entry is the only non-zero entry in its column.

Example

We have

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & * & 0 & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 0
\end{array}\right) \text { and }\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & * \\
0 & 0 & 1 & 0 & * \\
0 & 0 & 0 & 1 & *
\end{array}\right)
$$

Example

We have

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & * & 0 & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 0
\end{array}\right) \text { and }\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & * \\
0 & 0 & 1 & 0 & * \\
0 & 0 & 0 & 1 & *
\end{array}\right)
$$

Question

Suppose A is $n \times m$ matrix. What is the maximum number of leading 1 's that can appear when it's been reduced to echelon form?

From these

You can reduce a square matrix A into a Gauss-Jordan Form

$$
E_{k} \cdots E_{2} E_{1} A=I
$$

From these

You can reduce a square matrix A into a Gauss-Jordan Form

$$
E_{k} \cdots E_{2} E_{1} A=I
$$

What is the name of

$$
B=E_{k} \cdots E_{2} E_{1}
$$

Outline

(1) System of Linear Equations

- Introduction
- System of Linear Equations
- Matrices and Their Operations
- Using the Matrix Operations
- Example
- Going back to the problem
(2) Elementary row operations
- Introduction
- Elementary Matrices
- Properties of the Elementary Matrices
- The Theorem for the Gauss-Jordan Algorithm
- The Gauss-Jordan Algorithm
- Application to the solutions of $A x=y$
- Consistency and Inconsistency

3 Homogeneous and In-Homogeneous Systems

- Homogeneous systems
- Basic Properties
- Linear combinations and the superposition principle
- Inhomogeneous Systems

Elementary Matrices

Definition

Elementary Matrices are constructed by performing the given row operation on the identity matrix:

Elementary Matrices

Definition

Elementary Matrices are constructed by performing the given row operation on the identity matrix:
(1) To multiply row j of A by the scalar c use the matrix E obtained from I by multiplying $j^{\text {th }}$ row of I by c.

Elementary Matrices

Definition

Elementary Matrices are constructed by performing the given row operation on the identity matrix:
(1) To multiply row j of A by the scalar c use the matrix E obtained from I by multiplying $j^{\text {th }}$ row of I by c.
(2) To add $c \times \operatorname{row}_{j}(A)$ to $\operatorname{row}_{k}(A)$, use the identity matrix with its $k^{t h}$ row replaced by $(0, \ldots, 0, c, 0, \ldots, 0,1,0, \ldots)$.

Elementary Matrices

Definition

Elementary Matrices are constructed by performing the given row operation on the identity matrix:
(1) To multiply row j of A by the scalar c use the matrix E obtained from I by multiplying $j^{\text {th }}$ row of I by c.
(2) To add $c \times \operatorname{row}_{j}(A)$ to $\operatorname{row}_{k}(A)$, use the identity matrix with its $k^{t h}$ row replaced by $(0, \ldots, 0, c, 0, \ldots, 0,1,0, \ldots)$.
(3) To interchange rows j and k, use the identity matrix with rows j and k interchanged.

Outline

(1) System of Linear Equations

- Introduction
- System of Linear Equations
- Matrices and Their Operations
- Using the Matrix Operations
- Example
- Going back to the problem
(2) Elementary row operations
- Introduction
- Elementary Matrices
- Properties of the Elementary Matrices
- The Theorem for the Gauss-Jordan Algorithm
- The Gauss-Jordan Algorithm
- Application to the solutions of $A x=y$
- Consistency and Inconsistency

3 Homogeneous and In-Homogeneous Systems

- Homogeneous systems
- Basic Properties
- Linear combinations and the superposition principle
- Inhomogeneous Systems

Properties

Elementary matrices are always square
Directly from the definition.

Properties

Elementary matrices are always square

Directly from the definition.
Elementary matrices are invertible
Basically you can revert the operations using another elementary matrix.

Outline

(1) System of Linear Equations

- Introduction
- System of Linear Equations
- Matrices and Their Operations
- Using the Matrix Operations
- Example
- Going back to the problem
(2) Elementary row operations
- Introduction
- Elementary Matrices
- Properties of the Elementary Matrices
- The Theorem for the Gauss-Jordan Algorithm
- The Gauss-Jordan Algorithm
- Application to the solutions of $A x=y$
- Consistency and Inconsistency
(3) Homogeneous and In-Homogeneous Systems
- Homogeneous systems
- Basic Properties
- Linear combinations and the superposition principle
- Inhomogeneous Systems

Therefore

Theorem

Elementary row operations applied to either $A \boldsymbol{x}=\boldsymbol{y}$ or the corresponding augmented matrix $(A \mid \boldsymbol{y})$ do not change the set of solutions to the system.

Therefore

Theorem

Elementary row operations applied to either $A \boldsymbol{x}=\boldsymbol{y}$ or the corresponding augmented matrix $(A \mid \boldsymbol{y})$ do not change the set of solutions to the system.

Proof

Given the augmented matrix $(A \mid y)$, we multiply the by an elementary matrix E

Therefore

Theorem

Elementary row operations applied to either $A \boldsymbol{x}=\boldsymbol{y}$ or the corresponding augmented matrix $(A \mid \boldsymbol{y})$ do not change the set of solutions to the system.

Proof

Given the augmented matrix $(A \mid y)$, we multiply the by an elementary matrix E

We get

$$
E(A \mid y)=(E A \mid E \boldsymbol{y})
$$

Then

We have this correspond to

$$
E A \boldsymbol{x}=E \boldsymbol{y}
$$

Then

We have this correspond to

$$
E A \boldsymbol{x}=E \boldsymbol{y}
$$

Now, assume that \boldsymbol{x} is a solution to $A \boldsymbol{x}=\boldsymbol{y}$
Then, it solves the previous system!!!

Then

We have this correspond to

$$
E A \boldsymbol{x}=E \boldsymbol{y}
$$

Now, assume that \boldsymbol{x} is a solution to $A \boldsymbol{x}=\boldsymbol{y}$
Then, it solves the previous system!!!

Conversely

If \boldsymbol{x} solves the new system, $E A \boldsymbol{x}=E \boldsymbol{y}$, multiplication by E^{-1} gives $A \boldsymbol{x}=\boldsymbol{y}$

Therefore

The end result of all the row operations on $(A \mid \boldsymbol{y})$

$$
\left(E_{k} E_{k-1} \cdots E_{2} E_{1} A \mid E_{k} E_{k-1} \cdots E_{2} E_{1} \boldsymbol{y}\right)=R
$$

Therefore

The end result of all the row operations on $(A \mid y)$

$$
\left(E_{k} E_{k-1} \cdots E_{2} E_{1} A \mid E_{k} E_{k-1} \cdots E_{2} E_{1} \boldsymbol{y}\right)=R
$$

Where

R is an echelon form of $(A \mid y)$.

Therefore

The end result of all the row operations on $(A \mid \boldsymbol{y})$

$$
\left(E_{k} E_{k-1} \cdots E_{2} E_{1} A \mid E_{k} E_{k-1} \cdots E_{2} E_{1} \boldsymbol{y}\right)=R
$$

Where

R is an echelon form of $(A \mid y)$.

Remark

And if R is in echelon form, we can easily work out the solution.

Outline

(1) System of Linear Equations

- Introduction
- System of Linear Equations
- Matrices and Their Operations
- Using the Matrix Operations
- Example
- Going back to the problem
(2) Elementary row operations
- Introduction
- Elementary Matrices
- Properties of the Elementary Matrices
- The Theorem for the Gauss-Jordan Algorithm
- The Gauss-Jordan Algorithm
- Application to the solutions of $A x=y$
- Consistency and Inconsistency

3 Homogeneous and In-Homogeneous Systems

- Homogeneous systems
- Basic Properties
- Linear combinations and the superposition principle
- Inhomogeneous Systems

Algorithm

Gauss-Jordan (A, \boldsymbol{y})

(1) Write the augmented matrix of the system.
(2) Use row operations to transform the augmented matrix in the form described below, which is called the reduced row echelon form:
(1) The rows (if any) consisting entirely of zeros are grouped together at the bottom of the matrix.
(2) In each row that does not consist entirely of zeros, the leftmost nonzero element is a 1 (called a leading 1 or a pivot).
(3) Each column that contains a leading 1 has zeros in all other entries.
(4) The leading 1 in any row is to the left of any leading 1 's in the rows below it.
(3) Stop process in step 2 if you obtain a row whose elements are all zeros except the last one on the right. In that case, the system is inconsistent and has no solutions.
(9) Otherwise, finish step 2 and read the solutions of the system from the final matrix.

Example

Look at the Board for an example

Why not to try programming it!!!

Outline

(1) System of Linear Equations

- Introduction
- System of Linear Equations
- Matrices and Their Operations
- Using the Matrix Operations
- Example
- Going back to the problem
(2) Elementary row operations
- Introduction
- Elementary Matrices
- Properties of the Elementary Matrices
- The Theorem for the Gauss-Jordan Algorithm
- The Gauss-Jordan Algorithm
- Application to the solutions of $A \boldsymbol{x}=\boldsymbol{y}$
- Consistency and Inconsistency
(3) Homogeneous and In-Homogeneous Systems
- Homogeneous systems
- Basic Properties
- Linear combinations and the superposition principle
- Inhomogeneous Systems

Some Definitions

Definition

- A system of equations $A \boldsymbol{x}=\boldsymbol{y}$ is consistent if there is at least one solution \boldsymbol{x}.
- If there is no solution, then the system is inconsistent.

Some Definitions

Definition

- A system of equations $A \boldsymbol{x}=\boldsymbol{y}$ is consistent if there is at least one solution \boldsymbol{x}.
- If there is no solution, then the system is inconsistent.

Now Assume that the augmented $(A \mid y)$ has been reduced

To either echelon or Gauss-Jordan Form

Gauss-Jordan Form?

Definition

The matrix A is upper triangular if any entry $a_{i j}$ with $i>j$ satisfies $a_{i j}=0$.

Gauss-Jordan Form?

Definition

The matrix A is upper triangular if any entry $a_{i j}$ with $i>j$ satisfies $a_{i j}=0$.

Thus

The row echelon form of the matrix is upper triangular.

Gauss-Jordan Form?

Definition

The matrix A is upper triangular if any entry $a_{i j}$ with $i>j$ satisfies $a_{i j}=0$.

Abstract

Thus The row echelon form of the matrix is upper triangular.

Therefore

To continue the reduction to Gauss-Jordan form, it is only necessary to use each leading 1 to clean out any remaining non-zero entries in its column.

Example

Therefore

It is only necessary to use each leading 1 to clean out any remaining non-zero entries in its column.

Example

Therefore

It is only necessary to use each leading 1 to clean out any remaining non-zero entries in its column.

Example

$$
\left(\begin{array}{lllll}
1 & * & 0 & 0 & * \\
& 0 & 1 & 0 & * \\
& & & 1 & *
\end{array}\right)
$$

More Definitions

Definition

Suppose the augmented matrix for the linear system $A \boldsymbol{x}=\boldsymbol{y}$ has been brought to echelon form.

More Definitions

Definition

Suppose the augmented matrix for the linear system $A \boldsymbol{x}=\boldsymbol{y}$ has been brought to echelon form.

If there is a leading 1 in any column except the last
The corresponding variable is called a leading variable.

More Definitions

Definition

Suppose the augmented matrix for the linear system $A \boldsymbol{x}=\boldsymbol{y}$ has been brought to echelon form.

If there is a leading 1 in any column except the last

The corresponding variable is called a leading variable.

Then

Any variable which is not a leading variable is a free variable:
\mid Leading Variables $|+|$ Free Variables $|=|$ Number of Columns of $A \mid$

Outline

(1) System of Linear Equations

- Introduction
- System of Linear Equations
- Matrices and Their Operations
- Using the Matrix Operations
- Example
- Going back to the problem
(2) Elementary row operations
- Introduction
- Elementary Matrices
- Properties of the Elementary Matrices
- The Theorem for the Gauss-Jordan Algorithm
- The Gauss-Jordan Algorithm
- Application to the solutions of $A \boldsymbol{x}=\boldsymbol{y}$
- Consistency and Inconsistency

Homogeneous and In-Homogeneous Systems

- Homogeneous systems
- Basic Properties
- Linear combinations and the superposition principle
- Inhomogeneous Systems

First

We have

If the system is consistent and there are no free variables, then the solution is unique.

First

We have

If the system is consistent and there are no free variables, then the solution is unique.

Example

$$
\left(\begin{array}{llll}
1 & * & * & * \\
0 & 1 & * & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Second

If the system is consistent and there are one or more free variables
There are infinitely many solutions.

Second

If the system is consistent and there are one or more free variables

There are infinitely many solutions．

Example

$$
\left(\begin{array}{llll}
1 & * & * & * \\
0 & 1 & * & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Finally

The Last Case, we have a free variable, but a 1 in the last column

$$
\left(\begin{array}{lll}
1 & * & * \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Outline

(1) System of Linear Equations

- Introduction
- System of Linear Equations
- Matrices and Their Operations
- Using the Matrix Operations
- Example
- Going back to the problem
(2) Elementary row operations
- Introduction
- Elementary Matrices
- Properties of the Elementary Matrices
- The Theorem for the Gauss-Jordan Algorithm
- The Gauss-Jordan Algorithm
- Application to the solutions of $A x=y$
- Consistency and Inconsistency
(3) Homogeneous and In-Homogeneous Systems
- Homogeneous systems
- Basic Properties
- Linear combinations and the superposition principle
- Inhomogeneous Systems

We have

Definition

A homogeneous system of linear algebraic equations is one in which all the numbers on the right hand side are equal to 0 :

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=0 \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=0
\end{gathered}
$$

We have

Definition

A homogeneous system of linear algebraic equations is one in which all the numbers on the right hand side are equal to 0 :

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=0 \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=0
\end{gathered}
$$

Remark

The homogeneous system $A \boldsymbol{x}=0$ always has the solution $\boldsymbol{x}=0$.

Thus

Non-Trivial Solutions

Any non-zero solutions to $A x=0$, if they exist, are called non-trivial solutions.

Thus

Non-Trivial Solutions

Any non-zero solutions to $\mathrm{Ax}=0$, if they exist, are called non-trivial solutions.

We can use the Gauss-Jordan Algorithm
Reducing ($A \mid \mathbf{0}$)

Example

You have the following homogeneous system

$$
(A \mid \mathbf{0})=\left(\begin{array}{ccccc}
1 & 2 & 0 & -1 & 0 \\
-2 & -2 & 4 & 5 & 0 \\
2 & 4 & 0 & -2 & 0
\end{array}\right)
$$

Example

You have the following homogeneous system

$$
(A \mid \mathbf{0})=\left(\begin{array}{ccccc}
1 & 2 & 0 & -1 & 0 \\
-2 & -2 & 4 & 5 & 0 \\
2 & 4 & 0 & -2 & 0
\end{array}\right)
$$

Therefore, we have after reduction

$$
\left(\begin{array}{ccccc}
1 & 2 & 0 & -1 & 0 \\
0 & 1 & 4 & 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Given that the column of zeros does not change

After row operations, we will use

$$
\left(\begin{array}{cccc}
1 & 2 & 0 & -1 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Given that the column of zeros does not change

After row operations, we will use

$$
\left(\begin{array}{cccc}
1 & 2 & 0 & -1 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Therefore

We have that
(1) Leading variables x_{1}, x_{2}
(2) Free variables x_{3}, x_{4}

- Since there are no leading entries in the third or fourth columns.

We can re-write

As echelon reduced form

$$
\left(\begin{array}{cccc}
1 & 0 & -8 & -7 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We can re-write

As echelon reduced form

$$
\left(\begin{array}{cccc}
1 & 0 & -8 & -7 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Therefore, we have, using the free variable ideas

$$
\begin{aligned}
& x_{1}=8 s+7 t \\
& x_{2}=-4 s-3 t \\
& x_{3}=s \\
& x_{4}=t
\end{aligned}
$$

Therefore

We have in vector format

$$
\boldsymbol{x}_{H}=\left\{\left.\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=s\left(\begin{array}{c}
8 \\
-4 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{c}
7 \\
-3 \\
0 \\
1
\end{array}\right) \right\rvert\, \forall s, t \in\right\}
$$

Outline

(1) System of Linear Equations

- Introduction
- System of Linear Equations
- Matrices and Their Operations
- Using the Matrix Operations
- Example
- Going back to the problem
(2) Elementary row operations
- Introduction
- Elementary Matrices
- Properties of the Elementary Matrices
- The Theorem for the Gauss-Jordan Algorithm
- The Gauss-Jordan Algorithm
- Application to the solutions of $A x=y$
- Consistency and Inconsistency
(3) Homogeneous and In-Homogeneous Systems
- Homogeneous systems
- Basic Properties
- Linear combinations and the superposition principle
- Inhomogeneous Systems

We have

Basic Properties for a $A_{m \times n}$

(1) The number of leading variables is $\leq \min (m, n)$

We have

Basic Properties for a $A_{m \times n}$

(1) The number of leading variables is $\leq \min (m, n)$
(2) The number of non-zero equations in the echelon form of the system is equal to the number of leading entries.

We have

Basic Properties for a $A_{m \times n}$

(1) The number of leading variables is $\leq \min (m, n)$
(2) The number of non-zero equations in the echelon form of the system is equal to the number of leading entries.
(3) The number of free variables plus the number of leading variables $=n$, the number of columns of A.

We have

Basic Properties for a $A_{m \times n}$

(1) The number of leading variables is $\leq \min (m, n)$
(2) The number of non-zero equations in the echelon form of the system is equal to the number of leading entries.
(3) The number of free variables plus the number of leading variables $=n$, the number of columns of A.
(9) The homogeneous system $A x=0$ has non-trivial solutions if and only if there are free variables.

We have

Basic Properties for a $A_{m \times n}$

(1) The number of leading variables is $\leq \min (m, n)$
(2) The number of non-zero equations in the echelon form of the system is equal to the number of leading entries.
(3) The number of free variables plus the number of leading variables $=n$, the number of columns of A.
(9) The homogeneous system $A x=0$ has non-trivial solutions if and only if there are free variables.
(3) A homogeneous system of equations is always consistent (At least a solution)

Outline

(1) System of Linear Equations

- Introduction
- System of Linear Equations
- Matrices and Their Operations
- Using the Matrix Operations
- Example
- Going back to the problem
(2) Elementary row operations
- Introduction
- Elementary Matrices
- Properties of the Elementary Matrices
- The Theorem for the Gauss-Jordan Algorithm
- The Gauss-Jordan Algorithm
- Application to the solutions of $A x=y$
- Consistency and Inconsistency
(3) Homogeneous and In-Homogeneous Systems
- Homogeneous systems
- Basic Properties
- Linear combinations and the superposition principle
- Inhomogeneous Systems

We have

Theorem
If x is a solution to $A \boldsymbol{x}=0$, then so is $c x$ for any real number c. Proof: Quite simple

We have

Theorem

If x is a solution to $A \boldsymbol{x}=0$, then so is $c x$ for any real number c. Proof: Quite simple

Theorem

If \boldsymbol{x} and \boldsymbol{y} are two solutions to the homogeneous equation, then so is $\boldsymbol{x}+\boldsymbol{y}$.

We have

Theorem

If x is a solution to $A \boldsymbol{x}=0$, then so is $c x$ for any real number c. Proof: Quite simple

Theorem

If \boldsymbol{x} and \boldsymbol{y} are two solutions to the homogeneous equation, then so is $\boldsymbol{x}+\boldsymbol{y}$.

Proof

It is also simple!!!

Superposition Principle

We have
These two properties constitute the famous principle of superposition which holds for homogeneous systems.

Superposition Principle

We have

These two properties constitute the famous principle of superposition which holds for homogeneous systems.

Restating

If \boldsymbol{x} and \boldsymbol{y} are two solutions to the homogeneous equation $A \boldsymbol{x}=0$, then any linear combination of \boldsymbol{x} and \boldsymbol{y} is also a solution.

Outline

(1) System of Linear Equations

- Introduction
- System of Linear Equations
- Matrices and Their Operations
- Using the Matrix Operations
- Example
- Going back to the problem
(2) Elementary row operations
- Introduction
- Elementary Matrices
- Properties of the Elementary Matrices
- The Theorem for the Gauss-Jordan Algorithm
- The Gauss-Jordan Algorithm
- Application to the solutions of $A x=y$
- Consistency and Inconsistency
(3) Homogeneous and In-Homogeneous Systems
- Homogeneous systems
- Basic Properties
- Linear combinations and the superposition principle
- Inhomogeneous Systems

We have

Definition

The system $A \boldsymbol{x}=\boldsymbol{y}$ is inhomogeneous if it is not homogeneous.

We have

Definition

The system $A \boldsymbol{x}=\boldsymbol{y}$ is inhomogeneous if it is not homogeneous.

Example

$$
\begin{array}{r}
x_{1}+2 x_{2}-x_{4}=1 \\
-2 x_{1}-3 x_{2}+4 x_{3}+5 x_{4}=2 \\
2 x_{1}+4 x_{2}-2 x_{4}=3
\end{array}
$$

Example

Augmented Matrix

$$
(A \mid y)=\left(\begin{array}{ccccc}
1 & 2 & 0 & -1 & 1 \\
-2 & -3 & 4 & 5 & 2 \\
2 & 4 & 0 & -2 & 3
\end{array}\right)
$$

Example

Augmented Matrix

$$
(A \mid y)=\left(\begin{array}{ccccc}
1 & 2 & 0 & -1 & 1 \\
-2 & -3 & 4 & 5 & 2 \\
2 & 4 & 0 & -2 & 3
\end{array}\right)
$$

The row echelon form of the augmented matrix is

$$
\left(\begin{array}{ccccc}
1 & 2 & 0 & -1 & 1 \\
0 & 1 & 4 & 3 & 4 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Example

The reduced echelon form is

$$
\left(\begin{array}{ccccc}
1 & 0 & -8 & -7 & 0 \\
0 & 1 & 4 & 3 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Example

The reduced echelon form is

$$
\left(\begin{array}{ccccc}
1 & 0 & -8 & -7 & 0 \\
0 & 1 & 4 & 3 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Problem, the third equation now reads

$$
0 x_{1}+0 x_{2}+0 x_{3}+0 x_{4}=1
$$

Reasoning

If the original system has a solution

Then performing elementary row operations will give us an equivalent system with the same solution.

If the echelon form of $(A \mid y)$ has a leading 1 in any position of the last column, the system of equations is inconsistent.

Reasoning

If the original system has a solution

Then performing elementary row operations will give us an equivalent system with the same solution.

But this equivalent system of equations is inconsistent

So the original system is also inconsistent.

If the echelon form of $(A \mid y)$ has a leading 1 in any position of the last column, the system of equations is inconsistent.

Reasoning

If the original system has a solution

Then performing elementary row operations will give us an equivalent system with the same solution.

But this equivalent system of equations is inconsistent

So the original system is also inconsistent.

In General

If the echelon form of $(A \mid y)$ has a leading 1 in any position of the last column, the system of equations is inconsistent.

Then

> It is not true that any inhomogeneous system with the same matrix A
> is inconsistent
> It depends completely on the particular \boldsymbol{y} which sits on the right hand side

Are all the inhomogeneous matrices inconsistent?
Nope

$$
(A \mid y)=\left(\begin{array}{ccccc}
1 & 2 & 0 & -1 & 1 \\
-2 & -3 & 4 & 5 & 2 \\
2 & 4 & 0 & -2 & 2
\end{array}\right)
$$

Are all the inhomogeneous matrices inconsistent?
Nope

$$
(A \mid y)=\left(\begin{array}{ccccc}
1 & 2 & 0 & -1 & 1 \\
-2 & -3 & 4 & 5 & 2 \\
2 & 4 & 0 & -2 & 2
\end{array}\right)
$$

After echelon form

$$
\left(\begin{array}{ccccc}
1 & 2 & 0 & -1 & 1 \\
0 & 1 & 4 & 3 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Are all the inhomogeneous matrices inconsistent?
Nope

$$
(A \mid y)=\left(\begin{array}{ccccc}
1 & 2 & 0 & -1 & 1 \\
-2 & -3 & 4 & 5 & 2 \\
2 & 4 & 0 & -2 & 2
\end{array}\right)
$$

After echelon form

$$
\left(\begin{array}{ccccc}
1 & 2 & 0 & -1 & 1 \\
0 & 1 & 4 & 3 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

In reduced form

$$
\left(\begin{array}{ccccc}
1 & 0 & -8 & -7 & -7 \\
0 & 1 & 4 & 3 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Therefore

We have

$$
\begin{aligned}
& x_{1}=8 s+7 t-7 \\
& x_{2}=-4 s-3 t+4 \\
& x_{3}=s \\
& x_{4}=t
\end{aligned}
$$

Therefore

We have

$$
\begin{aligned}
& x_{1}=8 s+7 t-7 \\
& x_{2}=-4 s-3 t+4 \\
& x_{3}=s \\
& x_{4}=t
\end{aligned}
$$

It is similar to the homogeneous system

$$
\begin{aligned}
& x_{1}=8 s+7 t \\
& x_{2}=-4 s-3 t \\
& x_{3}=s \\
& x_{4}=t
\end{aligned}
$$

Or

We have

$$
\boldsymbol{x}_{I}=\left\{\left.\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=s\left(\begin{array}{c}
8 \\
-4 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{c}
7 \\
-3 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{c}
-7 \\
4 \\
0 \\
0
\end{array}\right) \right\rvert\, \forall s, t \in\right\}
$$

Thus, by fixing

For example, $s=t=0$

$$
\boldsymbol{x}_{p}=\left(\begin{array}{c}
-7 \\
4 \\
0 \\
0
\end{array}\right)
$$

Thus, by fixing

For example, $s=t=0$

$$
\boldsymbol{x}_{p}=\left(\begin{array}{c}
-7 \\
4 \\
0 \\
0
\end{array}\right)
$$

The general solution to the inhomogeneous system

$$
\boldsymbol{x}_{I}=\boldsymbol{x}_{H}+\boldsymbol{x}_{p}
$$

Finally

Theorem

- Let \boldsymbol{x}_{p}^{1} and \boldsymbol{x}_{p}^{2} be two solutions to $A x=y$. Then their difference $\boldsymbol{x}_{p}^{1}-\boldsymbol{x}_{p}^{2}$ is a solution to the homogeneous equation $A \boldsymbol{x}=0$.
- The general solution to $A \boldsymbol{x}=\boldsymbol{y}$ can be written as $\boldsymbol{x}_{I}=\boldsymbol{x}_{H}+\boldsymbol{x}_{p}$ where \boldsymbol{x}_{H} denotes the general solution to the homogeneous system.

