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As we saw in the previous introduction

The Development of Linear Algebra
It is as a natural extension of trying to solve systems of linear equations.

From those early attempts - Gauss and Company
Cayley have the need to formalize fully the concept of Matrices,

I From this simple concept a new era in Mathematics would arise.
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Example

A classic problem is to solve systems of linear equations like

3x + 3y = 12
x− 2y = 1

With
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However

It is clear that once the dimension of the vector space increases
beyond two
We do not have a simple geometric method to solve this problem.

We can use our knowledge of Matrices(
3 3
1 −2

)(
x
y

)
=
(

12
1

)

Thus, we have the equation in the following format Ax = y

x =
(

x
y

)
, y =

(
12
1

)
and A =

(
3 3
1 −2

)
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Definition of Matrices

Definition
Let K be a field, and let n, m be two integers≥ 1. An array of scalars in
K: 

a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn


is called a matrix in K. We can abbreviate the notation writing (aij) ,
i = 1, ..., m and j = 1, ..., n.
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Further

We call aij the ij−entry of the matrix, and the ith row is defined as
Ai = (ai1, ai2, ..., ain)

The jth column is denoted as

Aj =


a1j

a2j
...

amj
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Addition of Matrices

Definition
Let A = (aij) and B = (bij) be two m× n matrices. We define A + B be
a matrix whose entry in the ith row and jth column is aij + bij .

Therefore, Is this possible?(
1 −1 0
2 3 4

)
+
(

5 1
2 1

)
=?
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The Zero Matrix

Definition
Let A = (aij) be q m× n matrix whose entries are all 0. This matrix is
the zero matrix, 0mn.

Example
Look at the Jupyter...
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Multiplication By Scalar

Definition
The multiplication by an scalar element which is defined simply as, given a
matrix A and scalar c, a matrix cA whose ij−component is caij .

Example at Jupyter

Remarks
It is easy to see that the set of matrices of size m× n with components in
a field K form a vector space over K which can be denoted by
Matm×n (K).

13 / 96



Multiplication By Scalar

Definition
The multiplication by an scalar element which is defined simply as, given a
matrix A and scalar c, a matrix cA whose ij−component is caij .

Example at Jupyter

Remarks
It is easy to see that the set of matrices of size m× n with components in
a field K form a vector space over K which can be denoted by
Matm×n (K).

13 / 96



Some Other Definitions

Definition
Let A = (aij) be an m× n matrix. The matrix B = (bij) such that
bji = aij is called transpose of A, and is also denoted by AT .

Example at Jupyter

Additionally
A matrix is said to be symmetric if it is equal to its transpose i.e. if
AT = A.
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Matrix Multiplication

Definition
If the number of columns of A (m× k) equals the number of rows of B
(k × n), then the product C = AB is defined by

cij =
k∑

h=1
aikbkj (1)
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Something Like

We have
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Example

Multiply the following matrices using numpy

A =
(

1 2 3
−1 0 4

)
, B =

 −1 0
4 2
1 3
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A Change on Basis

We can do the following
You have a vector x in certain space V with a basis B = {v1, v2, ..., vn}.

Thus, we have

x = a1v1 + a2v2 + · · ·+ anvn
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We have

Then in the basis B = {v1, v2, ..., vn}

[x]B =


a1
a2
...

an


B
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We need to solve the following system of equations

Solving the following system

a1v1 + a2v2 + · · ·+ anvn = x

Or

[
v1 v2 · · · vn

]


a1
a2
...

an


B

= xst
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What if...?

if we have another basis for such space A = {w1, w2, ..., wn}

w1 = b11v1 + b21v2 + · · ·+ bn1vm

w2 = b12v1 + b22v2 + · · ·+ bn2vm

... =
...

wn = b1nv1 + b2nw2 + · · ·+ bnnvm

Therefore, we generate the following matrix
b11 b12 · · · b1n

b21 b22 · · · b2n
...

... . . . ...
bn1 bn2 · · · bnn
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Therefore

We have that each column represent a vector wj in standard basis

wj =


b1j

b2j
...

bnj
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We have

If we have y =
(

c1 c2 · · · cn

)T
in the coordinates at basis

A = {w1, w2, ..., wn}
Using the transition matrix idea

b11 b12 · · · b1n

b21 b22 · · · b2n
...

... . . . ...
bn1 bn2 · · · bnn




c1
c2
...

cn

 =


d1
d2
...

dn


Where

b11 b12 · · · b1n

b21 b22 · · · b2n
...

... . . . ...
bn1 bn2 · · · bnn




c1
c2
...

cn

 = c1w1 + c2w2 + ... + cnwn
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With the following property

Then using the B = {v1, v2, ..., vn} representation

ciwi = cib1iv1 + cib2iv2 + · · ·+ cibnivm

Therefore

(c1b11 + ... + cnb1n) v1 + · · ·+ (c1bn1 + ... + cnbnn) vn = [x]B
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Or

The Coordinates for the System in basis {v1, v2, ..., vn}

Nice, What about {v1, v2, ..., vn} → {w1, w2, ..., wn}?

But Normally, we want to go from {v1, v2, ..., vn} to
{w1, w2, ..., wn}

Simply, given
(

d1 d2 · · · dn

)T


c1
c2
...

cn

 =


b11 b12 · · · b1n

b21 b22 · · · b2n
...

... . . . ...
bn1 bn2 · · · bnn


−1

d1
d2
...

dn
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Then

This is basically a way to represent the change of basis
By inner product, multiplication of matrices, inverses and matrix-vector
multiplication.

27 / 96



Outline
1 System of Linear Equations

Introduction
System of Linear Equations
Matrices and Their Operations
Using the Matrix Operations
Example
Going back to the problem

2 Elementary row operations
Introduction
Elementary Matrices
Properties of the Elementary Matrices
The Theorem for the Gauss-Jordan Algorithm
The Gauss-Jordan Algorithm
Application to the solutions of Ax = y

Consistency and Inconsistency

3 Homogeneous and In-Homogeneous Systems
Homogeneous systems

Basic Properties
Linear combinations and the superposition principle

Inhomogeneous Systems

28 / 96



Example

We have

B =


 1

2
−1

 ,

 2
1
4

 ,

 3
2
1


 , [v]B =

 4
1
−5


B

Transition Matrix

P =

 1 2 3
2 −1 2
−1 4 1
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Therefore, we can see that

We can calculate the determinant, det 6= 0 linear independence

det

 1 2 3
2 −1 2
−1 4 1

 6= 0

We derive the standard coordinates of v

v =

 1 2 3
2 −1 2
−1 4 1


 4

1
−5


B
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Now, we have that to move from one basis to another

What if we have a element in basis S

[v]S =

 5
7
−3


We derive the B coordinates of vector v 5

7
−3

 ==

 1 2 3
2 −1 2
−1 4 1


 a1

a2
a3
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Then, we have

Solve the system or get the inverse 1 2 3
2 −1 2
−1 4 1


−1  5

7
−3

 =

 a1
a2
a3


Make the following example

B =


 1

0
0

 ,

 0
1
0

 ,

 0
0
1
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Then, we have

Solve the system or get the inverse 1 2 3
2 −1 2
−1 4 1
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Change of basis from B to B′

Given an old basis B of Rn with transition matrix PB

And a new basis B′ with transition matrix PB′

How do we change from coords in the basis B to coords in the basis
B′?

Coordinates in B, then using v = PB [v]B we change the coordinates
to standard coordinates.

Then, we can do

[v]B′ = P−1
B′ v
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Therefore, we have

We have the following situation

[v]B′ = P−1
B′ PB [v]B

Then, the final transition matrix

M = P−1
B′ PB = P−1

B′

[
v1 v2 · · · vn

]
In other words

M = P−1
B′

[
P−1

B′ v1 P−1
B′ v2 · · · P−1

B′ vn

]
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Therefore, we have

Something Notable
The columns of the transition matrix M from the old basis B to the
new basis B′

I They are the coordinate vectors of the old basis B with respect to the
new basis B′.
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Fianlly, packing everything

Theorem
If B and B′ are two bases of Rn , with B = {v1, v2, · · · , vn} then
the transition matrix from B coordinates to B′ coordinates is given by

M = [[v1]B′ , [v2]B′ , ..., [vn]B′ ]

36 / 96
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Going Back to the Problem

We have (
3x + 3y
x− 2y

)
=
(

12
1

)

Nevertheless
This not simplify the way in which we solve it.

The variables x and y can be eliminated from the computation
By simply writing down a matrix in which:

1 The coefficients of x are in the first column.
2 The coefficients of y are in the second column.
3 The right hand side of the system is the third column.
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Therefore

We have (Basically columns as place makers)(
3 3 12
1 −2 1

)

Then, look at the following(
3 3 12
3 −6 3

)
: Multiply the second row by 3

Further (
6 6 24
3 −6 3

)
: Multiply the first row by 2

39 / 96
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Add row one and two

We have (
6 6 24
9 0 27

)

Therefore x = 3
From it we can get y = 1.

Not Only that
All “equivalent” systems of equations have the same solutions.
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Augmented Matrix

Definition
The previous matrix is called the augmented matrix of the system, and can
be written in matrix shorthand as (A|y).

Note
The previous system can be solved in different ways.

Additionally, the system of equations (Two Equations)
1 There’s just one,
2 There is no solution,
3 There are an infinite number of solutions.
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What about?

Example

2x− 4y + z = 1
4x + y − z = 3

Then the augmented matrix(
2 −4 1 1
4 1 −1 3

)
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Therefore

We have (
1 −2 1

2
1
2

4 1 −1 3

)
: Mult row 1 by 1

2

Then (
1 −2 1

2
1
2

0 9 −3 1

)
: Mult row 2 by -4 and add it to eqn 2

Further, we get a augmented matrix called an echelon form(
1 −2 1

2
1
2

0 1 −1
3 1

)
: Mult row 2 by 1
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Finally

We get a reduced echelon form(
1 0 −1

6
13
18

0 1 −1
3 1

)
: Multiply Row 2 and add to row 1

We have clearly a free variable

It is the variable z
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What operations we have been doing in the augmented
matrices?

First
1 Multiply any equation by a non-zero real number (scalar).
2 Equivalent to multiplying a row of the matrix by a scalar.

Second
1 Replace any equation by the original equation plus a scalar multiple of

another equation.
2 Equivalent to replace any row of a matrix by that row plus a multiple

of another row.

Third
1 Interchange two equations.
2 Equivalent to two rows of the augmented matrix.
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Then

Definition
These three operations are called elementary row operations.
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How we use only matrix operations?

Take a look at this example

A =
(

3 4 5
2 −1 0

)

We have the following elementary matrix coming from the identity
matrix

E1 =
(

1
3 0
0 1

)

We get

E1A =
(

1 4
3

5
3

2 −1 0

)
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Further

To add −2×(row one) to row 2 in the identity matrix

E2 =
(

1 0
−2 1

)

Then

E2E1A =
(

1 4
3

5
3

0 −11
3 −10

3

)

Finally we can use the matrix E3 =
(

1 0
0 − 3

11

)

E3E2E1A =
(

1 4
3

5
3

0 1 10
11

)
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Finally, we have

E4 =
(

1 −4
3

0 1

)

E4E3E2E1A =
(

1 0 5
11

0 1 10
11

)

Definition
The matrix R is said to be in echelon form provided that:

1 The leading entry of every non-zero row is a 1.
2 If the leading entry of row i is in position k, and the next row is not a

row of zeros, then the leading entry of row i + 1 is in position k + j,
where j ≥ 1.

3 All zero rows are at the bottom of the matrix.
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Then

Examples (
1 ∗
0 1

)
,

 1 ∗ ∗
0 0 1
0 0 0

 and

 0 1 ∗ ∗
0 0 1 ∗
0 0 0 1


This leads to
R is in reduced echelon form (Gauss-Jordan Form) if

1 R is in echelon form
2 Each leading entry is the only non-zero entry in its column.

51 / 96



Then

Examples (
1 ∗
0 1

)
,

 1 ∗ ∗
0 0 1
0 0 0

 and

 0 1 ∗ ∗
0 0 1 ∗
0 0 0 1


This leads to
R is in reduced echelon form (Gauss-Jordan Form) if

1 R is in echelon form
2 Each leading entry is the only non-zero entry in its column.

51 / 96



Example

We have(
1 0
0 1

)
,

 1 ∗ 0 ∗
0 0 1 ∗
0 0 0 0

 and

 0 1 0 0 ∗
0 0 1 0 ∗
0 0 0 1 ∗


Question
Suppose A is n×m matrix. What is the maximum number of leading 1’s
that can appear when it’s been reduced to echelon form?
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From these

You can reduce a square matrix A into a Gauss-Jordan Form

Ek · · ·E2E1A = I

What is the name of

B = Ek · · ·E2E1
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Elementary Matrices

Definition
Elementary Matrices are constructed by performing the given row
operation on the identity matrix:

1 To multiply row j of A by the scalar c use the matrix E obtained
from I by multiplying jth row of I by c.

2 To add c× rowj (A) to rowk (A), use the identity matrix with its kth

row replaced by (0, ..., 0, c, 0, ..., 0, 1, 0, ...).
3 To interchange rows j and k, use the identity matrix with rows j and

k interchanged.
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Properties

Elementary matrices are always square
Directly from the definition.

Elementary matrices are invertible
Basically you can revert the operations using another elementary matrix.
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Therefore

Theorem
Elementary row operations applied to either Ax = y or the corresponding
augmented matrix (A|y) do not change the set of solutions to the system.

Proof
Given the augmented matrix (A|y), we multiply the by an elementary
matrix E

We get

E (A|y) = (EA|Ey)
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Then

We have this correspond to

EAx = Ey

Now, assume that x is a solution to Ax = y

Then, it solves the previous system!!!

Conversely
If x solves the new system, EAx = Ey, multiplication by E−1 gives
Ax = y
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Therefore

The end result of all the row operations on (A|y)

(EkEk−1 · · ·E2E1A|EkEk−1 · · ·E2E1y) = R

Where
R is an echelon form of (A|y).

Remark
And if R is in echelon form, we can easily work out the solution.
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Algorithm
Gauss-Jordan (A, y)

1 Write the augmented matrix of the system.
2 Use row operations to transform the augmented matrix in the form

described below, which is called the reduced row echelon form:
1 The rows (if any) consisting entirely of zeros are grouped together at

the bottom of the matrix.
2 In each row that does not consist entirely of zeros, the leftmost

nonzero element is a 1 (called a leading 1 or a pivot).
3 Each column that contains a leading 1 has zeros in all other entries.
4 The leading 1 in any row is to the left of any leading 1’s in the rows

below it.
3 Stop process in step 2 if you obtain a row whose elements are all

zeros except the last one on the right. In that case, the system is
inconsistent and has no solutions.

4 Otherwise, finish step 2 and read the solutions of the system from the
final matrix.
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Example

Look at the Board for an example
Why not to try programming it!!!
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Some Definitions

Definition
A system of equations Ax = y is consistent if there is at least one
solution x.
If there is no solution, then the system is inconsistent.

Now Assume that the augmented (A|y) has been reduced

To either echelon or Gauss-Jordan Form
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Gauss-Jordan Form?

Definition
The matrix A is upper triangular if any entry aij with i > j satisfies
aij = 0.

Thus
The row echelon form of the matrix is upper triangular.

Therefore
To continue the reduction to Gauss-Jordan form, it is only necessary to use
each leading 1 to clean out any remaining non-zero entries in its column.
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Example

Therefore
It is only necessary to use each leading 1 to clean out any remaining
non-zero entries in its column.

Example  1 ∗ 0 0 ∗
0 1 0 ∗

1 ∗
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More Definitions

Definition
Suppose the augmented matrix for the linear system Ax = y has been
brought to echelon form.

If there is a leading 1 in any column except the last
The corresponding variable is called a leading variable.

Then
Any variable which is not a leading variable is a free variable:

|Leading Variables|+ |Free Variables| = |Number of Columns of A|
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First

We have
If the system is consistent and there are no free variables, then the solution
is unique.

Example 
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1
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Second

If the system is consistent and there are one or more free variables
There are infinitely many solutions.

Example 
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 0
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Finally

The Last Case, we have a free variable, but a 1 in the last column 1 ∗ ∗
0 0 1
0 0 0
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We have

Definition
A homogeneous system of linear algebraic equations is one in which all the
numbers on the right hand side are equal to 0:

a11x1 + a12x2 + ... + a1nxn =0,

a21x1 + a22x2 + ... + a2nxn =0,

· · · · · · · · · · · · · · · · · · · · · · · ·
am1x1 + am2x2 + ... + amnxn =0.

Remark
The homogeneous system Ax = 0 always has the solution x = 0.
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Thus

Non-Trivial Solutions
Any non-zero solutions to Ax = 0, if they exist, are called non-trivial
solutions.

We can use the Gauss-Jordan Algorithm
Reducing (A|0)
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Example

You have the following homogeneous system

(A|0) =

 1 2 0 −1 0
−2 −2 4 5 0
2 4 0 −2 0


Therefore, we have after reduction 1 2 0 −1 0

0 1 4 3 0
0 0 0 0 0
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Given that the column of zeros does not change

After row operations, we will use 1 2 0 −1
0 1 4 3
0 0 0 0


Therefore
We have that

1 Leading variables x1, x2
2 Free variables x3, x4

I Since there are no leading entries in the third or fourth columns.
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We can re-write

As echelon reduced form 1 0 −8 −7
0 1 4 3
0 0 0 0


Therefore, we have, using the free variable ideas

x1 = 8s + 7t

x2 = −4s− 3t

x3 = s

x4 = t
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Therefore

We have in vector format

xH =




x1
x2
x3
x4

 = s


8
−4
1
0

+ t


7
−3
0
1

 |∀s, t ∈
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We have

Basic Properties for a Am×n

1 The number of leading variables is ≤ min (m, n)
2 The number of non-zero equations in the echelon form of the system

is equal to the number of leading entries.
3 The number of free variables plus the number of leading variables

= n, the number of columns of A.
4 The homogeneous system Ax = 0 has non-trivial solutions if and only

if there are free variables.
5 A homogeneous system of equations is always consistent (At least a

solution)
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We have

Theorem
If x is a solution to Ax = 0, then so is cx for any real number c.

Proof: Quite simple

Theorem
If x and y are two solutions to the homogeneous equation, then so is
x + y.

Proof
It is also simple!!!
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Superposition Principle

We have
These two properties constitute the famous principle of superposition
which holds for homogeneous systems.

Restating
If x and y are two solutions to the homogeneous equation Ax = 0, then
any linear combination of x and y is also a solution.
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We have

Definition
The system Ax = y is inhomogeneous if it is not homogeneous.

Example

x1 + 2x2 − x4 = 1
−2x1 − 3x2 + 4x3 + 5x4 = 2

2x1 + 4x2 − 2x4 = 3
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Example

Augmented Matrix

(A|y) =

 1 2 0 −1 1
−2 −3 4 5 2
2 4 0 −2 3


The row echelon form of the augmented matrix is 1 2 0 −1 1

0 1 4 3 4
0 0 0 0 1
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Example

The reduced echelon form is 1 0 −8 −7 0
0 1 4 3 0
0 0 0 0 1


Problem, the third equation now reads

0x1 + 0x2 + 0x3 + 0x4 = 1
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Reasoning

If the original system has a solution
Then performing elementary row operations will give us an equivalent
system with the same solution.

But this equivalent system of equations is inconsistent
So the original system is also inconsistent.

In General

If the echelon form of (A|y) has a leading 1 in any position of the last
column, the system of equations is inconsistent.
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Then

It is not true that any inhomogeneous system with the same matrix A
is inconsistent
It depends completely on the particular y which sits on the right hand side
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Are all the inhomogeneous matrices inconsistent?
Nope

(A|y) =

 1 2 0 −1 1
−2 −3 4 5 2
2 4 0 −2 2


After echelon form  1 2 0 −1 1

0 1 4 3 4
0 0 0 0 0


In reduced form  1 0 −8 −7 −7

0 1 4 3 4
0 0 0 0 0
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Therefore

We have

x1 = 8s + 7t− 7
x2 = −4s− 3t + 4
x3 = s

x4 = t

It is similar to the homogeneous system

x1 = 8s + 7t

x2 = −4s− 3t

x3 = s

x4 = t
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Or

We have

xI =




x1
x2
x3
x4

 = s


8
−4
1
0

+ t


7
−3
0
1

+


−7
4
0
0

 |∀s, t ∈
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Thus, by fixing

For example, s = t = 0

xp =


−7
4
0
0


The general solution to the inhomogeneous system

xI = xH + xp
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Finally

Theorem
Let x1

p and x2
p be two solutions to Ax = y. Then their difference

x1
p − x2

p is a solution to the homogeneous equation Ax = 0.
The general solution to Ax = y can be written as xI = xH + xp

where xH denotes the general solution to the homogeneous system.
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