Mathematics for Artificial Intelligence Vector Spaces

Andres Mendez-Vazquez

March 14, 2020

Outline

(1) Why Liner Algebra

- Why and What?
- A Little Bit of History
(2) The Beginning
- Fields
(3) Vector Space
- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Combinations

4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions

5 Application in Machine Learning

- Feature Vector
- Least Squared Error

Outline

(1) Why Liner Algebra

- Why and What?
- A Little Bit of History
(2) The Beginning
- Fields
(3) Vector Space
- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Combinations

4. Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions
(3) Application in Machine Learning
- Feature Vector
- Least Squared Error

Introduction

What is this class about?

It is clear that the use of mathematics is essential for the data mining and machine learning fields.

Introduction

What is this class about?

It is clear that the use of mathematics is essential for the data mining and machine learning fields.

Therefore...
The understanding of Mathematical Modeling is part of the deal...

Introduction

What is this class about?

It is clear that the use of mathematics is essential for the data mining and machine learning fields.

Therefore...

The understanding of Mathematical Modeling is part of the deal...

If you want to be
A Good Data Scientist!!!

Example

Imagine

A web surfer moves from a web page to another web page...

- Question: How do you model this?

Example

Imagine

A web surfer moves from a web page to another web page...

- Question: How do you model this?

You can use a graph!!!

Now

Add Some Probabilities

Thus

We can build a matrix

$$
M=\left(\begin{array}{cccc}
P_{11} & P_{12} & \cdots & P_{1 N} \tag{1}\\
P_{21} & P_{22} & \cdots & P_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
P_{N 1} & P_{N 2} & \cdots & P_{N N}
\end{array}\right)
$$

Thus

We can build a matrix

$$
M=\left(\begin{array}{cccc}
P_{11} & P_{12} & \cdots & P_{1 N} \tag{1}\\
P_{21} & P_{22} & \cdots & P_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
P_{N 1} & P_{N 2} & \cdots & P_{N N}
\end{array}\right)
$$

Thus, it is possible to obtain certain information by looking at the eigenvector and eigenvalues
These vectors $\boldsymbol{v}_{\lambda}^{\prime} s$ and values $\lambda^{\prime} s$ have the property that

$$
\begin{equation*}
M \boldsymbol{v}_{\lambda}=\lambda \boldsymbol{v}_{\lambda} \tag{2}
\end{equation*}
$$

This is the Basis of Page Rank in Google

For example

- Look at this example...

Outline

(1) Why Liner Algebra

- Why and What?
- A Little Bit of History
(2) The Beginning
- Fields
(3) Vector Space
- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Combinations
(4) Basis and Dimensions
- Basis
- Coordinates
- Basis and Dimensions

5. Application in Machine Learning

- Feature Vector
- Least Squared Error

About 4000 years ago

Babylonians knew how to solve the following kind of systems

$$
\begin{aligned}
& a x+b y=c \\
& d x+e y=f
\end{aligned}
$$

About 4000 years ago

Babylonians knew how to solve the following kind of systems

$$
\begin{aligned}
a x+b y & =c \\
d x+e y & =f
\end{aligned}
$$

As always the first steps in any field of knowledge tend to be slow
It is only after the death of Plato and Aristotle, that the Chinese (Nine Chapters of the Mathematical Art 200 B.C.) were able to solve 3×3 system.

About 4000 years ago

Babylonians knew how to solve the following kind of systems

$$
\begin{aligned}
& a x+b y=c \\
& d x+e y=f
\end{aligned}
$$

As always the first steps in any field of knowledge tend to be slow
It is only after the death of Plato and Aristotle, that the Chinese (Nine Chapters of the Mathematical Art 200 B.C.) were able to solve 3×3 system.

By working an "elimination method"
Similar to the one devised by Gauss 2000 years later for general systems.

Not only that

The Matrix

Gauss defined implicitly the concept of a Matrix as linear transformations in his book "Disquisitions."

Not only that

The Matrix

Gauss defined implicitly the concept of a Matrix as linear transformations in his book "Disquisitions."

The Final Definition of Matrix

It was introduced by Cayley in two papers in 1850 and 1858 respectively, which allowed him to prove the important Cayley-Hamilton Theorem.

Not only that

The Matrix

Gauss defined implicitly the concept of a Matrix as linear transformations in his book "Disquisitions."

The Final Definition of Matrix
 It was introduced by Cayley in two papers in 1850 and 1858 respectively, which allowed him to prove the important Cayley-Hamilton Theorem.

There is quite a lot
Kleiner, I., A History of Abstract Algebra (Birkhäuser Boston, 2007).

Matrix can help to represent many things

They are important for many calculations as

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{2}
\end{gathered}
$$

Matrix can help to represent many things

They are important for many calculations as

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{2} .
\end{gathered}
$$

It is clear

We would like to collect those linear equations in a compact structure that allows for simpler manipulation.

Therefore, we have

For example

$$
\boldsymbol{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \boldsymbol{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right) \text { and } A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

Therefore, we have

For example

$$
\boldsymbol{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \boldsymbol{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right) \text { and } A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

Using a little of notation

$$
A \boldsymbol{x}=\boldsymbol{b}
$$

Outline

(1) Why Liner Algebra

- Why and What?
- A Little Bit of History
(2) The Beginning
- Fields
(3) Vector Space
- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Combinations
(4) Basis and Dimensions
- Basis
- Coordinates
- Basis and Dimensions
(5) Application in Machine Learning
- Feature Vector
- Least Squared Error

Introduction

As always, we star with a simple fact

Everything is an element in a set.

Introduction

As always, we star with a simple fact

Everything is an element in a set.

For example

- The set of Real Numbers \mathbb{R}.

Introduction

As always, we star with a simple fact

Everything is an element in a set.

For example

- The set of Real Numbers \mathbb{R}.
- The set of n-tuples in \mathbb{R}^{n}.

Introduction

As always, we star with a simple fact

Everything is an element in a set.

For example

- The set of Real Numbers \mathbb{R}.
- The set of n-tuples in \mathbb{R}^{n}.
- The set of Complex Number \mathbb{C}.

Definition

We shall say that K is a field if it satisfies the following conditions for the addition

Property	Formalism
Addition is Commutative	$x+y=y+x$ for all $x, y \in K$
Addition is associative	$x+(y+z)=(x+y)+z$ for all $x, y, z \in K$
Existence of 0	$x+0=x$, for every $x \in K$
Existence of the inverse	$\forall x$ there is $\exists-x \Longrightarrow x+(-x)=0$

Furthermore

We have the following properties for the product

Property	Formalism
Product is Commutative	$x y=y x$ for all $x, y \in K$
Product is associative	$x(y z)=(x y) z$ for all $x, y, z \in K$
Existence of 1	$1 x=x 1=x$, for every $x \in K$.
Existence of the inverse	x^{-1} or $\frac{1}{x}$ in K such that $x x^{-1}=1$.
Multiplication is Distributive over addition	$x(y+z)=x y+x z$, for all $x, y, z \in K$

Therefore

Examples

(1) For example the reals \mathbb{R} and the \mathbb{C}.

Therefore

Examples

(1) For example the reals \mathbb{R} and the \mathbb{C}.
(2) In addition, we have the rationals \mathbb{Q} too.

Therefore

Examples

(1) For example the reals \mathbb{R} and the \mathbb{C}.
(O In addition, we have the rationals \mathbb{Q} too.
The elements of the field will be also called numbers Thus, we will use this ideas to define the Vector Space V over a field K.

Then, we get a crazy moment

How do we relate these numbers to obtain certain properties

- We have then the vector and matrix structures for this...

$$
\left(\begin{array}{cccc}
a_{11} & \cdots & \cdots & a_{1 n} \\
a_{21} & \cdots & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & \cdots & \cdots & a_{n n}
\end{array}\right) \text { and }\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{n 1}
\end{array}\right)
$$

Outline

(1) Why Liner Algebra

- Why and What?
- A Little Bit of History
(2) The Beginning
- Fields
(3) Vector Space
- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Combinations
(4) Basis and Dimensions
- Basis
- Coordinates
- Basis and Dimensions
(5) Application in Machine Learning
- Feature Vector
- Least Squared Error三

Vector Space V

Definition

A vector space V over the field K is a set of objects which can be added and multiplied by elements of K.

Vector Space V

Definition

A vector space V over the field K is a set of objects which can be added and multiplied by elements of K.

Where

- The sum of two elements of V is again an element of V.

Vector Space V

Definition

A vector space V over the field K is a set of objects which can be added and multiplied by elements of K.

Where

- The sum of two elements of V is again an element of V.
- The product of an element of V by an element of K is an element of V.

Vector Space V

Definition

A vector space V over the field K is a set of objects which can be added and multiplied by elements of K.

Where

- The sum of two elements of V is again an element of V.
- The product of an element of V by an element of K is an element of V.

Properties

We have then

(1) Given elements $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of V, we have $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$.

Properties

We have then

(1) Given elements $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of V, we have $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$.
(2) There is an element of V, denoted by O, such that $O+\boldsymbol{u}=\boldsymbol{u}+O=\boldsymbol{u}$ for all elements \boldsymbol{u} of V.

Properties

We have then

(1) Given elements $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of V, we have $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$.
(2) There is an element of V, denoted by O, such that $O+\boldsymbol{u}=\boldsymbol{u}+O=\boldsymbol{u}$ for all elements \boldsymbol{u} of V.
(3) Given an element \boldsymbol{u} of V, there exists an element $-\boldsymbol{u}$ in V such that $\boldsymbol{u}+(-\boldsymbol{u})=O$.

Properties

We have then

(1) Given elements $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of V, we have $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$.
(2) There is an element of V, denoted by O, such that $O+\boldsymbol{u}=\boldsymbol{u}+O=\boldsymbol{u}$ for all elements \boldsymbol{u} of V.
(3) Given an element \boldsymbol{u} of V, there exists an element $-\boldsymbol{u}$ in V such that $\boldsymbol{u}+(-\boldsymbol{u})=O$.
(c) For all elements $\boldsymbol{u}, \boldsymbol{v}$ of V, we have $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$.

Properties

We have then

(1) Given elements $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of V, we have $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$.
(2) There is an element of V, denoted by O, such that $O+\boldsymbol{u}=\boldsymbol{u}+O=\boldsymbol{u}$ for all elements \boldsymbol{u} of V.
(3) Given an element \boldsymbol{u} of V, there exists an element $-\boldsymbol{u}$ in V such that $\boldsymbol{u}+(-\boldsymbol{u})=O$.
(c) For all elements $\boldsymbol{u}, \boldsymbol{v}$ of V, we have $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$.
(c) For all elements \boldsymbol{u} of V, we have $1 \cdot \boldsymbol{u}=\boldsymbol{u}$.

Properties

We have then

(1) Given elements $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of V, we have $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$.
(2) There is an element of V, denoted by O, such that $O+\boldsymbol{u}=\boldsymbol{u}+O=\boldsymbol{u}$ for all elements \boldsymbol{u} of V.
(3) Given an element \boldsymbol{u} of V, there exists an element $-\boldsymbol{u}$ in V such that $\boldsymbol{u}+(-\boldsymbol{u})=O$.
(9) For all elements $\boldsymbol{u}, \boldsymbol{v}$ of V, we have $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$.
(9) For all elements \boldsymbol{u} of V, we have $1 \cdot \boldsymbol{u}=\boldsymbol{u}$.
(6) If c is a number, then $c(\boldsymbol{u}+\boldsymbol{v})=c \boldsymbol{u}+c \boldsymbol{v}$.

Properties

We have then

(1) Given elements $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of V, we have $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$.
(2) There is an element of V, denoted by O, such that $O+\boldsymbol{u}=\boldsymbol{u}+O=\boldsymbol{u}$ for all elements \boldsymbol{u} of V.
(3) Given an element \boldsymbol{u} of V, there exists an element $-\boldsymbol{u}$ in V such that $\boldsymbol{u}+(-\boldsymbol{u})=O$.
(c) For all elements $\boldsymbol{u}, \boldsymbol{v}$ of V, we have $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$.
(6) For all elements \boldsymbol{u} of V, we have $1 \cdot \boldsymbol{u}=\boldsymbol{u}$.
(6) If c is a number, then $c(\boldsymbol{u}+\boldsymbol{v})=c \boldsymbol{u}+c \boldsymbol{v}$.
(0) if a, b are two numbers, then $(a b) \boldsymbol{v}=a(b \boldsymbol{v})$.

Properties

We have then

(1) Given elements $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of V, we have $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$.
(2) There is an element of V, denoted by O, such that $O+\boldsymbol{u}=\boldsymbol{u}+O=\boldsymbol{u}$ for all elements \boldsymbol{u} of V.
(3) Given an element \boldsymbol{u} of V, there exists an element $-\boldsymbol{u}$ in V such that $\boldsymbol{u}+(-\boldsymbol{u})=O$.
(c) For all elements $\boldsymbol{u}, \boldsymbol{v}$ of V, we have $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$.
(c) For all elements \boldsymbol{u} of V, we have $1 \cdot \boldsymbol{u}=\boldsymbol{u}$.
(6) If c is a number, then $c(\boldsymbol{u}+\boldsymbol{v})=c \boldsymbol{u}+c \boldsymbol{v}$.
(3) if a, b are two numbers, then $(a b) \boldsymbol{v}=a(b \boldsymbol{v})$.
(8) If a, b are two numbers, then $(a+b) \boldsymbol{v}=a \boldsymbol{v}+b \boldsymbol{v}$.

Outline

(1) Why Liner Algebra

- Why and What?
- A Little Bit of History
(2) The Beginning
- Fields
(3) Vector Space
- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Combinations

4. Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions
(3) Application in Machine Learning
- Feature Vector
- Least Squared Error

Notation

First, $u+(-v)$
As $\boldsymbol{u}-\boldsymbol{v}$.

Notation

First, $\boldsymbol{u}+(-\boldsymbol{v})$
As $\boldsymbol{u}-\boldsymbol{v}$.

For O

We will write sometimes 0 .

Notation

First, $u+(-v)$
As $\boldsymbol{u}-\boldsymbol{v}$.

For O

We will write sometimes 0 .
The elements in the field K
They can receive the name of number or scalar.

Outline

(1) Why Liner Algebra

- Why and What?
- A Little Bit of History
(2) The Beginning
- Fields
(3) Vector Space
- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Combinations
(4) Basis and Dimensions
- Basis
- Coordinates
- Basis and Dimensions
(5) Application in Machine Learning
- Feature Vector
- Least Squared Error

Many Times

We have this kind of data sets (House Prices)

Therefore

We can represent these relations as vectors

$$
\binom{\text { Squared Feet }}{\text { Price }}=\left\{\binom{2104}{400},\binom{1800}{460},\binom{1600}{300}, \ldots\right\}
$$

Therefore

We can represent these relations as vectors

$$
\binom{\text { Squared Feet }}{\text { Price }}=\left\{\binom{2104}{400},\binom{1800}{460},\binom{1600}{300}, \ldots\right\}
$$

Thus, we can start using

- All the tools that Linear Algebra can provide!!!

Thus

We can adjust a line/hyper-plane to be able to forecast prices

$$
\binom{\text { Squared Feet }}{\text { Price }} \rightarrow\binom{2104}{400}\binom{1800}{460}\binom{1600}{300}\binom{2300}{370} \cdots
$$

Thus, Our Objective

To find such hyper-plane

- To do forecasting on the prices of a house given its surface size!!!

Thus, Our Objective

To find such hyper-plane

- To do forecasting on the prices of a house given its surface size!!!

Here, where "Learning" comes around

- Basically, the process defined in Machine Learning!!!

Outline

(1) Why Liner Algebra

- Why and What?
- A Little Bit of History
(2) The Beginning
- Fields
(3) Vector Space
- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression..
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Combinations
(4) Basis and Dimensions
- Basis
- Coordinates
- Basis and Dimensions
(5) Application in Machine Learning
- Feature Vector
- Least Squared Error

Sub-spaces

Definition

Let V a vector space and $W \subseteq V$, thus W is a subspace if:

Sub-spaces

Definition

Let V a vector space and $W \subseteq V$, thus W is a subspace if:
(1) If $\boldsymbol{v}, \boldsymbol{w} \in W$, then $\boldsymbol{v}+\boldsymbol{w} \in W$.

Sub-spaces

Definition

Let V a vector space and $W \subseteq V$, thus W is a subspace if:
(1) If $\boldsymbol{v}, \boldsymbol{w} \in W$, then $\boldsymbol{v}+\boldsymbol{w} \in W$.
(2) If $\boldsymbol{v} \in W$ and $c \in K$, then $c \boldsymbol{v} \in W$.

Sub-spaces

Definition

Let V a vector space and $W \subseteq V$, thus W is a subspace if:
(1) If $\boldsymbol{v}, \boldsymbol{w} \in W$, then $\boldsymbol{v}+\boldsymbol{w} \in W$.
(2) If $\boldsymbol{v} \in W$ and $c \in K$, then $c \boldsymbol{v} \in W$.
(3) The element $0 \in V$ is also an element of W.

Outline

(1) Why Liner Algebra

- Why and What?
- A Little Bit of History
(2) The Beginning
- Fields
(3) Vector Space
- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression.
- Sub-spaces and Linear Combinations - Recognizing Sub-spaces
- Combinations

4. Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions
(3) Application in Machine Learning
- Feature Vector
- Least Squared Error

Some ways of recognizing Sub-spaces

Theorem

A non-empty subset W of V is a subspace of V if and only if for each pair of vectors $\boldsymbol{v}, \boldsymbol{w} \in W$ and each scalar $c \in K$ the vector $c \boldsymbol{v}+\boldsymbol{w} \in W$.

Example

For \mathbb{R}^{2}

Outline

(1) Why Liner Algebra

- Why and What?
- A Little Bit of History
(2) The Beginning
- Fields
(3) Vector Space
- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression.
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Combinations

4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions
(5) Application in Machine Learning
- Feature Vector
- Least Squared Error

Linear Combinations

Definition

Let V an arbitrary vector space, and let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n} \in V$ and $x_{1}, x_{2}, \ldots, x_{n} \in K$. Then, an expression like

$$
\begin{equation*}
x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\ldots+x_{n} \boldsymbol{v}_{n} \tag{3}
\end{equation*}
$$

is called a linear combination of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$.

Classic Examples

Endmember Representation in Hyperspectral Images

Look at the board

Classic Examples

Endmember Representation in Hyperspectral Images
Look at the board
Geometric Representation of addition of forces in Physics
Look at the board!!

Properties and Definitions

Theorem

Let V be a vector space over the field K. The intersection of any collection of sub-spaces of V is a subspace of V.

Properties and Definitions

Theorem

Let V be a vector space over the field K. The intersection of any collection of sub-spaces of V is a subspace of V.

Definition

- Let S be a set of vectors in a vector space V.

Properties and Definitions

Theorem

Let V be a vector space over the field K. The intersection of any collection of sub-spaces of V is a subspace of V.

Definition

- Let S be a set of vectors in a vector space V.
- The sub-space spanned by S is defined as the intersection W of all sub-spaces of V which contains S.

Properties and Definitions

Theorem

Let V be a vector space over the field K. The intersection of any collection of sub-spaces of V is a subspace of V.

Definition

- Let S be a set of vectors in a vector space V.
- The sub-space spanned by S is defined as the intersection W of all sub-spaces of V which contains S.
- When S is a finite set of vectors, $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$, we shall simply call W the sub-space spanned by the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$.

We get the following Theorem

Theorem

The subspace spanned by $S \neq \emptyset$ is the set of all linear combinations of vectors in S.

Outline

（1）Why Liner Algebra
－Why and What？
－A Little Bit of History
（2）The Beginning
－Fields
（3）Vector Space
－Introduction
－Some Notes in Notation
－Use of Linear Algebra in Regression．．．
－Sub－spaces and Linear Combinations
－Recognizing Sub－spaces
－Combinations
4 Basis and Dimensions
－Basis
－Coordinates
－Basis and Dimensions
（3）Application in Machine Learning
－Feature Vector
－Least Squared Error

Linear Independence

Definition

Let V be a vector space over a field K, and let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n} \in V$. We have that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ are linearly dependent over K if there are elements $a_{1}, a_{2}, \ldots, a_{n} \in K$ not all equal to 0 such that

$$
a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\ldots+a_{n} \boldsymbol{v}_{n}=O
$$

Linear Independence

Definition

Let V be a vector space over a field K, and let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n} \in V$. We have that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ are linearly dependent over K if there are elements $a_{1}, a_{2}, \ldots, a_{n} \in K$ not all equal to 0 such that

$$
a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\ldots+a_{n} \boldsymbol{v}_{n}=O
$$

Thus

Therefore, if there are not such numbers, then we say that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ are linearly independent.

Linear Independence

Definition

Let V be a vector space over a field K, and let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n} \in V$. We have that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ are linearly dependent over K if there are elements $a_{1}, a_{2}, \ldots, a_{n} \in K$ not all equal to 0 such that

$$
a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\ldots+a_{n} \boldsymbol{v}_{n}=O
$$

Thus

Therefore, if there are not such numbers, then we say that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ are linearly independent.

We have the following

Example!!!

Basis

Definition

If elements $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ generate V and in addition are linearly independent, then $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is called a basis of V. In other words the elements $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ form a basis of V.

Basis

Definition

If elements $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ generate V and in addition are linearly independent, then $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is called a basis of V. In other words the elements $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ form a basis of V.

Examples

The Classic Ones!!!

Outline

(1) Why Liner Algebra

- Why and What?
- A Little Bit of History
(2) The Beginning
- Fields
(3) Vector Space
- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Combinations

4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions
(5) Application in Machine Learning
- Feature Vector
- Least Squared Error

Cinvestav

Coordinates

Theorem

Let V be a vector space. Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ be linearly independent elements of V . Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be numbers. Suppose that we have

$$
\begin{equation*}
x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{n} \boldsymbol{v}_{n}=y_{1} \boldsymbol{v}_{1}+y_{2} \boldsymbol{v}_{2}+\cdots+y_{n} \boldsymbol{v}_{n} \tag{4}
\end{equation*}
$$

Then, $x_{i}=y_{i}$ for all $i=1, \ldots, n$.

Coordinates

Let V be a vector space, and let $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be a basis of V
For all $\boldsymbol{v} \in V, \boldsymbol{v}=x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{n} \boldsymbol{v}_{n}$.

Coordinates

Let V be a vector space, and let $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be a basis of V
For all $\boldsymbol{v} \in V, \boldsymbol{v}=x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{n} \boldsymbol{v}_{n}$.
Thus, this n-tuple is uniquely determined by v
We will call $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as the coordinates of \boldsymbol{v} with respect to the basis.

Coordinates

Let V be a vector space, and let $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be a basis of V
For all $\boldsymbol{v} \in V, \boldsymbol{v}=x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{n} \boldsymbol{v}_{n}$.
Thus, this n-tuple is uniquely determined by v
We will call $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as the coordinates of \boldsymbol{v} with respect to the basis.

The n-tuple $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
It is the coordinate vector of \boldsymbol{v} with respect to the basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$.

Outline

(1) Why Liner Algebra

- Why and What?
- A Little Bit of History
(2) The Beginning
- Fields
(3) Vector Space
- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Combinations
(4) Basis and Dimensions
- Basis
- Coordinates
- Basis and Dimensions
(5) Application in Machine Learning
- Feature Vector
- Least Squared Error

Properties of a Basis

Theorem - (Limit in the size of the basis)

Let V be a vector space over a field K with a basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m}\right\}$. Let $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}$ be elements of V, and assume that $n>m$. Then $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}$ are linearly dependent.

Properties of a Basis

Theorem - (Limit in the size of the basis)

Let V be a vector space over a field K with a basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m}\right\}$. Let $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}$ be elements of V, and assume that $n>m$. Then $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}$ are linearly dependent.

Properties of a Basis

Theorem - (Limit in the size of the basis)

Let V be a vector space over a field K with a basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m}\right\}$. Let $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}$ be elements of V, and assume that $n>m$. Then $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}$ are linearly dependent.

Examples

- Matrix Space
- Canonical Space vectors
- etc

Some Basic Definitions

We will define the dimension of a vector space V over K
As the number of elements in the basis.

- Denoted by $\operatorname{dim}_{K} V$, or simply $\operatorname{dim} V$

Some Basic Definitions

We will define the dimension of a vector space V over K
As the number of elements in the basis.

- Denoted by $\operatorname{dim}_{K} V$, or simply $\operatorname{dim} V$

Therefore

A vector space with a basis consisting of a finite number of elements, or the zero vector space, is called a finite dimensional.

Some Basic Definitions

We will define the dimension of a vector space V over K

As the number of elements in the basis.

- Denoted by $\operatorname{dim}_{K} V$, or simply $\operatorname{dim} V$

Therefore

A vector space with a basis consisting of a finite number of elements, or the zero vector space, is called a finite dimensional.

Now

Is this number unique?

Maximal Set of Linearly Independent Elements

Theorem

Let V be a vector space, and $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ a maximal set of linearly independent elements of V. Then, $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a basis of V.

Maximal Set of Linearly Independent Elements

Theorem

Let V be a vector space, and $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ a maximal set of linearly independent elements of V. Then, $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a basis of V.

Maximal Set of Linearly Independent Elements

Theorem

Let V be a vector space, and $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ a maximal set of linearly independent elements of V. Then, $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a basis of V.

Theorem

Let V be a vector space of dimension n, and let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ be linearly independent elements of V. Then, $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ constitutes a basis of V.

Equality between Basis

Corollary

Let V be a vector space and let W be a subspace. If $\operatorname{dim} W=\operatorname{dim} V$ then $V=W$.

Equality between Basis

Corollary

Let V be a vector space and let W be a subspace. If $\operatorname{dim} W=\operatorname{dim} V$ then $V=W$.

Proof

At the Board...

Equality between Basis

Corollary

Let V be a vector space and let W be a subspace. If $\operatorname{dim} W=\operatorname{dim} V$ then $V=W$.

Proof

At the Board...

Corollary

Let V be a vector space of dimension n. Let r be a positive integer with $r<n$, and let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ be linearly independent elements of V . Then one can find elements $\boldsymbol{v}_{r+1}, \boldsymbol{v}_{r+2}, \ldots, \boldsymbol{v}_{n}$ such that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a basis of V.

Equality between Basis

Corollary

Let V be a vector space and let W be a subspace. If $\operatorname{dim} W=\operatorname{dim} V$ then $V=W$.

Proof

At the Board...

Corollary

Let V be a vector space of dimension n. Let r be a positive integer with $r<n$, and let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ be linearly independent elements of V . Then one can find elements $\boldsymbol{v}_{r+1}, \boldsymbol{v}_{r+2}, \ldots, \boldsymbol{v}_{n}$ such that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a basis of V.

Proof

At the Board...

Finally

Theorem

Let V be a vector space having a basis consisting of n elements. Let W be a subspace which does not consist of O alone. Then W has a basis, and the dimension of W is $\leq n$.

Finally

Theorem

Let V be a vector space having a basis consisting of n elements. Let W be a subspace which does not consist of O alone. Then W has a basis, and the dimension of W is $\leq n$.

Proof

At the Board...

Outline

(1) Why Liner Algebra

- Why and What?
- A Little Bit of History
(2) The Beginning
- Fields
(3) Vector Space
- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Combinations
(4) Basis and Dimensions
- Basis
- Coordinates
- Basis and Dimensions
(5) Application in Machine Learning
- Feature Vector
- Least Squared Error

Feature Vector

Definition

A feature vector is a n-dimensional vector of numerical features that represent an object.

Feature Vector

Definition

A feature vector is a n-dimensional vector of numerical features that represent an object.

Why is this important?

This allows to use linear algebra to represent basic classification algorithms because

- The tuples $\left\{(\boldsymbol{x}, y) \mid \boldsymbol{x} \in K^{n}, y \in K\right\}$ can be easily used to design specific algorithms.

Outline

(1) Why Liner Algebra

- Why and What?
- A Little Bit of History
(2) The Beginning
- Fields
(3) Vector Space
- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Combinations
(4) Basis and Dimensions
- Basis
- Coordinates
- Basis and Dimensions
(5) Application in Machine Learning
- Feature Vector
- Least Squared Error

Least Squared Error

We need to fit a series of points against a certain function

Least Squared Error

We need to fit a series of points against a certain function

We want

The general problem is given a set of functions $f_{1}, f_{2}, \ldots, f_{K}$ find values of coefficients $a_{1}, a_{2}, \ldots, a_{k}$ such that the linear combination:

$$
\begin{equation*}
y=a_{1} f_{1}(x)+\cdots+a_{K} f_{K}(x) \tag{5}
\end{equation*}
$$

Thus

We have that given the datasets $\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{N}, y_{N}\right)\right\}$

$$
\begin{equation*}
\overline{\boldsymbol{x}}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i} . \tag{6}
\end{equation*}
$$

Thus

We have that given the datasets $\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{N}, y_{N}\right)\right\}$

$$
\begin{equation*}
\overline{\boldsymbol{x}}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i} \tag{6}
\end{equation*}
$$

Thus, we have the following problem
A Possible High Variance on the Data itself

Thus

We have that given the datasets $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$

$$
\begin{equation*}
\overline{\boldsymbol{x}}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i} \tag{6}
\end{equation*}
$$

Thus, we have the following problem
A Possible High Variance on the Data itself

Variance

$$
\begin{equation*}
\sigma_{\boldsymbol{x}}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right) \tag{7}
\end{equation*}
$$

Now

Assume
A linear equation $y=a x+b$, then $y-(a x+b) \approx 0$.

Now

Assume

A linear equation $y=a x+b$, then $y-(a x+b) \approx 0$.

We get a series of errors given the following observations
$\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$

$$
\left\{y_{1}-\left(a x_{1}+b\right), \ldots, y_{N}-\left(a x_{N}+b\right)\right\} .
$$

Now

Assume

A linear equation $y=a x+b$, then $y-(a x+b) \approx 0$.

We get a series of errors given the following observations $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$

$$
\left\{y_{1}-\left(a x_{1}+b\right), \ldots, y_{N}-\left(a x_{N}+b\right)\right\}
$$

Then, the mean should be really small (If it is a good fit)

$$
\begin{equation*}
\sigma_{y-(a x+b)}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2} \tag{8}
\end{equation*}
$$

Thus

We can define the following error $E_{i}(a, b)=y-(a x+b)$

$$
\begin{equation*}
E(a, b)=\sum_{i=1}^{N} E_{i}(a, b)=\sum_{i=1}^{N}\left(y_{i}-\left(a x_{i}+b\right)\right) \tag{9}
\end{equation*}
$$

Thus

We can define the following error $E_{i}(a, b)=y-(a x+b)$

$$
\begin{equation*}
E(a, b)=\sum_{i=1}^{N} E_{i}(a, b)=\sum_{i=1}^{N}\left(y_{i}-\left(a x_{i}+b\right)\right) \tag{9}
\end{equation*}
$$

We want to minimize the previous equation

$$
\begin{aligned}
& \frac{\partial E}{\partial a}=0, \\
& \frac{\partial E}{\partial b}=0 .
\end{aligned}
$$

Finally

Look at the Board

We need to obtain the necessary equations.

