### Mathematics for Artificial Intelligence Vector Spaces

Andres Mendez-Vazquez

March 14, 2020

### Outline

#### Why Liner Algebra

- Why and What?
- A Little Bit of History
- The Beginning
   Fields

#### 3 Vector Space

#### Introduction

- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
  - Recognizing Sub-spaces
  - Combinations

#### 4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions

#### Application in Machine Learning

- Feature Vector
- Least Squared Error



< ロ > < 同 > < 回 > < 回 >

### Outline



• Why and What?

A Little Bit of History

Fields

- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
  - Recognizing Sub-spaces
  - Combinations

- Basis
- Coordinates
- Basis and Dimensions

- Feature Vector
- Least Squared Error



< ロ > < 同 > < 回 > < 回 >

#### What is this class about?

It is clear that the use of mathematics is essential for the data mining and machine learning fields.

#### Therefore.

The understanding of Mathematical Modeling is part of the deal...

If you want to be

A Good Data Scientist!!!



#### What is this class about?

It is clear that the use of mathematics is essential for the data mining and machine learning fields.

#### Therefore...

The understanding of Mathematical Modeling is part of the deal...

#### If you want to be

A Good Data Scientist!!!



#### What is this class about?

It is clear that the use of mathematics is essential for the data mining and machine learning fields.

#### Therefore...

The understanding of Mathematical Modeling is part of the deal...

#### If you want to be

A Good Data Scientist!!!



< ロ > < 回 > < 回 > < 回 > < 回 >

### Example

### Imagine

A web surfer moves from a web page to another web page...

• Question: How do you model this?

#### You can use a graph!!



## Example

#### Imagine

A web surfer moves from a web page to another web page...

• Question: How do you model this?

#### You can use a graph!!!



### Now

### Add Some Probabilities





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Thus

### We can build a matrix

$$M = \begin{pmatrix} P_{11} & P_{12} & \cdots & P_{1N} \\ P_{21} & P_{22} & \cdots & P_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ P_{N1} & P_{N2} & \cdots & P_{NN} \end{pmatrix}$$
(1)

Thus, it is possible to obtain certain information by looking at the eigenvector and eigenvalues

These vectors  $oldsymbol{v}_\lambda s$  and values  $\lambda' s$  have the property that

$$M \boldsymbol{v}_{\lambda} = \lambda \boldsymbol{v}_{\lambda}$$



イロト イロト イヨト イヨト

## Thus

#### We can build a matrix

$$M = \begin{pmatrix} P_{11} & P_{12} & \cdots & P_{1N} \\ P_{21} & P_{22} & \cdots & P_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ P_{N1} & P_{N2} & \cdots & P_{NN} \end{pmatrix}$$
(1)

Thus, it is possible to obtain certain information by looking at the eigenvector and eigenvalues

These vectors  $oldsymbol{v}_\lambda s$  and values  $\lambda' s$  have the property that

$$M \boldsymbol{v}_{\lambda} = \lambda \boldsymbol{v}_{\lambda}$$

Cinvestav  $2 < C^2$ 7 / 59

イロト イヨト イヨト イヨト

(2)

### This is the Basis of Page Rank in Google

#### For example

• Look at this example...



## Outline

### Why Liner Algebra

• Why and What?

- A Little Bit of History
- 2 The Beginning• Fields

#### 3 Vector Space

- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
  - Recognizing Sub-spaces
  - Combinations

#### 4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions

#### Application in Machine Learning

- Feature Vector
- Least Squared Error



### About 4000 years ago

### Babylonians knew how to solve the following kind of systems

$$ax + by = c$$
$$dx + ey = f$$

#### As always the first steps in any field of knowledge tend to be slow

It is only after the death of Plato and Aristotle, that the Chinese (Nine Chapters of the Mathematical Art 200 B.C.) were able to solve  $3 \times 3$  system.

#### By working an "elimination method"

Similar to the one devised by Gauss 2000 years later for general systems.



### About 4000 years ago

#### Babylonians knew how to solve the following kind of systems

$$ax + by = c$$
$$dx + ey = f$$

### As always the first steps in any field of knowledge tend to be slow

It is only after the death of Plato and Aristotle, that the Chinese (Nine Chapters of the Mathematical Art 200 B.C.) were able to solve  $3\times3$  system.

#### By working an "elimination method"

Similar to the one devised by Gauss 2000 years later for general systems.



### About 4000 years ago

#### Babylonians knew how to solve the following kind of systems

$$ax + by = c$$
$$dx + ey = f$$

### As always the first steps in any field of knowledge tend to be slow

It is only after the death of Plato and Aristotle, that the Chinese (Nine Chapters of the Mathematical Art 200 B.C.) were able to solve  $3 \times 3$  system.

#### By working an "elimination method"

Similar to the one devised by Gauss 2000 years later for general systems.



### Not only that

#### The Matrix

Gauss defined implicitly the concept of a Matrix as linear transformations in his book "Disquisitions."

#### The Final Definition of Matrix

It was introduced by Cayley in two papers in 1850 and 1858 respectively, which allowed him to prove the important Cayley-Hamilton Theorem.

#### There is quite a lot

Kleiner, I., A History of Abstract Algebra (Birkhäuser Boston, 2007)



### Not only that

#### The Matrix

Gauss defined implicitly the concept of a Matrix as linear transformations in his book "Disquisitions."

#### The Final Definition of Matrix

It was introduced by Cayley in two papers in 1850 and 1858 respectively, which allowed him to prove the important Cayley-Hamilton Theorem.

#### There is quite a lot

Kleiner, I., A History of Abstract Algebra (Birkhäuser Boston, 2007)



### Not only that

#### The Matrix

Gauss defined implicitly the concept of a Matrix as linear transformations in his book "Disquisitions."

#### The Final Definition of Matrix

It was introduced by Cayley in two papers in 1850 and 1858 respectively, which allowed him to prove the important Cayley-Hamilton Theorem.

#### There is quite a lot

Kleiner, I., A History of Abstract Algebra (Birkhäuser Boston, 2007).



### Matrix can help to represent many things

#### They are important for many calculations as

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_2.$$

#### lt is clear

We would like to collect those linear equations in a compact structure that allows for simpler manipulation.



< ロ > < 回 > < 回 > < 回 > < 回 >

### Matrix can help to represent many things

#### They are important for many calculations as

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$
  

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2,$$
  

$$\dots$$
  

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_2.$$

#### It is clear

We would like to collect those linear equations in a compact structure that allows for simpler manipulation.



### Therefore, we have

### For example

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \text{ and } A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

#### Using a little of notation

$$Ax = b$$



### Therefore, we have

#### For example

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \text{ and } A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

### Using a little of notation

$$Ax = b$$



## Outline

#### Why Liner Algebra

• Why and What?

• A Little Bit of History

# 2 The Beginning• Fields

#### Vector Spa

- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
  - Recognizing Sub-spaces
  - Combinations

#### 4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions

#### Application in Machine Learning

- Feature Vector
- Least Squared Error



#### As always, we star with a simple fact

Everything is an element in a set.



As always, we star with a simple fact

Everything is an element in a set.

#### For example

• The set of Real Numbers  $\mathbb{R}$ .

• The set of Complex Number C.



イロト イヨト イヨト イヨト

As always, we star with a simple fact

Everything is an element in a set.

#### For example

- The set of Real Numbers  $\mathbb{R}$ .
- The set of *n*-tuples in  $\mathbb{R}^n$ .

(investav ・ロト・(型ト・ミト・ミト 王 つくで 15/59

#### As always, we star with a simple fact

Everything is an element in a set.

#### For example

- The set of Real Numbers  $\mathbb{R}$ .
- The set of *n*-tuples in  $\mathbb{R}^n$ .
- The set of Complex Number  $\mathbb{C}$ .



### Definition

# We shall say that ${\cal K}$ is a field if it satisfies the following conditions for the addition

| Property                 | Formalism                                                             |
|--------------------------|-----------------------------------------------------------------------|
| Addition is Commutative  | $x + y = y + x$ for all $x, y \in K$                                  |
| Addition is associative  | $x + (y + z) = (x + y) + z \text{ for all } x, y, z \in K$            |
| Existence of 0           | $x+0=x$ , for every $x\in K$                                          |
| Existence of the inverse | $\forall x \text{ there is } \exists -x \Longrightarrow x + (-x) = 0$ |



< ロ > < 回 > < 回 > < 回 > < 回 >

### Furthermore

#### We have the following properties for the product

| Property                                     | Formalism                                                |
|----------------------------------------------|----------------------------------------------------------|
| Product is Commutative                       | $xy = yx$ for all $x, y \in K$                           |
| Product is associative                       | $x\left(yz ight)=\left(xy ight)z$ for all $x,y,z\in K$   |
| Existence of 1                               | $1x = x1 = x$ , for every $x \in K$ .                    |
| Existence of the inverse                     | $x^{-1}$ or $\frac{1}{x}$ in K such that $xx^{-1} = 1$ . |
| Multiplication is Distributive over addition | $x\left(y+z ight)=xy+xz$ , for all $x,y,z\in K$          |



イロト イロト イヨト イヨト

### Therefore

#### Examples

 $\textbf{0} \quad \text{For example the reals } \mathbb{R} \text{ and the } \mathbb{C}.$ 

@ In addition, we have the rationals  $\mathbb Q$  too.



### Therefore

#### Examples

- $\textbf{0} \quad \text{For example the reals } \mathbb{R} \text{ and the } \mathbb{C}.$
- ${\it 2}{\it 0}$  In addition, we have the rationals  ${\Bbb Q}$  too.

#### The elements of the field will be also called numbers

Thus, we will use this ideas to define the Vector Space V over a field  $K_{\gamma\gamma}$ 



< ロ > < 回 > < 回 > < 回 > < 回 >

### Therefore

#### Examples

- $\bullet \quad \text{For example the reals } \mathbb{R} \text{ and the } \mathbb{C}.$
- ${\it @ In addition, we have the rationals $\mathbb{Q}$ too.}$

### The elements of the field will be also called numbers

Thus, we will use this ideas to define the Vector Space V over a field K.



### Then, we get a crazy moment

#### How do we relate these numbers to obtain certain properties

• We have then the vector and matrix structures for this...

$$\begin{pmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ a_{21} & \cdots & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & \cdots & a_{nn} \end{pmatrix} \text{ and } \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}$$



< ロ > < 回 > < 回 > < 回 > < 回 >

## Outline

#### Why Liner Algebra

• Why and What?

• A Little Bit of History

# 2 The Beginning• Fields

#### 3 Vector Space

#### Introduction

- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
  - Recognizing Sub-spaces
  - Combinations

#### 4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions

#### Application in Machine Learning

- Feature Vector
- Least Squared Error



Vector Space V

#### Definition

A vector space V over the field K is a set of objects which can be added and multiplied by elements of K.



# Vector Space V

### Definition

A vector space V over the field K is a set of objects which can be added and multiplied by elements of K.

## Where

• The sum of two elements of V is again an element of V.



< ロ > < 同 > < 回 > < 回 >

# Vector Space V

## Definition

A vector space V over the field K is a set of objects which can be added and multiplied by elements of K.

## Where

- The sum of two elements of V is again an element of V.
- The product of an element of V by an element of K is an element of V.



# Vector Space V

## Definition

A vector space V over the field K is a set of objects which can be added and multiplied by elements of K.

## Where

- The sum of two elements of V is again an element of V.
- The product of an element of V by an element of K is an element of V.



## We have then

 $\textbf{O} \text{ Given elements } \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \text{ of } V \text{, we have } (\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w} = \boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w}).$ 

- There is an element of V, denoted by O, such that
- O + u = u + O = u for all elements u of V.
- Given an element u of V, there exists an element -u in V such that u + (-u) = O.
- For all elements u, v of V, we have u + v = v + u.
- For all elements  $\boldsymbol{u}$  of V, we have  $1 \cdot \boldsymbol{u} = \boldsymbol{u}$ .
- If c is a number, then c(u + v) = cu + cv.
- if a, b are two numbers, then (ab) v = a (bv).
- If a, b are two numbers, then (a + b) v = av + bv.



< ロ > < 同 > < 回 > < 回 >

## We have then

- $\textbf{O} \text{ Given elements } \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \text{ of } V \text{, we have } (\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w} = \boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w}).$
- There is an element of V, denoted by O, such that O + u = u + O = u for all elements u of V.
- Given an element u of V, there exists an element -u in V such that u + (-u) = O.
- For all elements u, v of V, we have u + v = v + u.
- For all elements  $\boldsymbol{u}$  of V, we have  $1 \cdot \boldsymbol{u} = \boldsymbol{u}$ .
- If c is a number, then c(u + v) = cu + cv.
- if a, b are two numbers, then (ab) v = a (bv).
- If a, b are two numbers, then (a + b)v = av + bv.



< ロ > < 同 > < 回 > < 回 >

## We have then

- $\textbf{O} \text{ Given elements } \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \text{ of } V \text{, we have } (\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w} = \boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w}).$
- **2** There is an element of V, denoted by O, such that O + u = u + O = u for all elements u of V.
- Given an element u of V, there exists an element -u in V such that u + (-u) = O.
- For all elements u, v of V, we have u + v = v + u.
- For all elements  $\boldsymbol{u}$  of V, we have  $1 \cdot \boldsymbol{u} = \boldsymbol{u}$ .
- If c is a number, then c(u + v) = cu + cv.
- if a, b are two numbers, then (ab) v = a (bv).
- If a, b are two numbers, then (a + b) v = av + bv.



イロト イヨト イヨト イヨト

## We have then

- $\textbf{O} \text{ Given elements } \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \text{ of } V \text{, we have } (\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w} = \boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w}).$
- **2** There is an element of V, denoted by O, such that O + u = u + O = u for all elements u of V.
- Given an element u of V, there exists an element -u in V such that u + (-u) = O.
- For all elements u, v of V, we have u + v = v + u.
- $igodoldsymbol{igodoldsymbol{eta}}$  For all elements  $oldsymbol{u}$  of V, we have  $1\cdotoldsymbol{u}=oldsymbol{u}$
- If c is a number, then c(u + v) = cu + cv.
- if a, b are two numbers, then (ab) v = a (bv).
- If a, b are two numbers, then (a + b) v = av + bv.



イロト イボト イヨト イヨト

### We have then

- $\textbf{O} \text{ Given elements } \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \text{ of } V \text{, we have } (\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w} = \boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w}).$
- There is an element of V, denoted by O, such that O + u = u + O = u for all elements u of V.
- Given an element u of V, there exists an element -u in V such that u + (-u) = O.
- For all elements u, v of V, we have u + v = v + u.
- **(**) For all elements  $\boldsymbol{u}$  of V, we have  $1 \cdot \boldsymbol{u} = \boldsymbol{u}$ .

) If c is a number, then  $c\left(oldsymbol{u}+oldsymbol{v}
ight)=coldsymbol{u}+coldsymbol{v}.$ 

) if a,b are two numbers, then (ab)  $oldsymbol{v}=a\,(boldsymbol{v})$ .

If a, b are two numbers, then (a + b) v = av + bv.



イロト イヨト イヨト イヨト

### We have then

- $\textbf{O} \text{ Given elements } \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \text{ of } V \text{, we have } (\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w} = \boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w}).$
- **2** There is an element of V, denoted by O, such that O + u = u + O = u for all elements u of V.
- Given an element u of V, there exists an element -u in V such that u + (-u) = O.
- For all elements u, v of V, we have u + v = v + u.
- **(**) For all elements  $\boldsymbol{u}$  of V, we have  $1 \cdot \boldsymbol{u} = \boldsymbol{u}$ .
- **6** If c is a number, then  $c(\boldsymbol{u} + \boldsymbol{v}) = c\boldsymbol{u} + c\boldsymbol{v}$ .

If a, b are two numbers, then (a + b) v = av + bv.



イロト イヨト イヨト イヨト

## We have then

- $\textbf{O} \text{ Given elements } \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \text{ of } V \text{, we have } (\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w} = \boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w}).$
- **2** There is an element of V, denoted by O, such that O + u = u + O = u for all elements u of V.
- Given an element u of V, there exists an element -u in V such that u + (-u) = O.
- For all elements u, v of V, we have u + v = v + u.
- **(**) For all elements  $\boldsymbol{u}$  of V, we have  $1 \cdot \boldsymbol{u} = \boldsymbol{u}$ .
- If c is a number, then c(u + v) = cu + cv.
- $\mathbf{O}$  if a, b are two numbers, then  $(ab) \mathbf{v} = a (b\mathbf{v})$ .

**Cinvestav** Ξ → Q へ 22 / 59

### We have then

- $\textbf{O} \text{ Given elements } \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \text{ of } V \text{, we have } (\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w} = \boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w}).$
- **2** There is an element of V, denoted by O, such that O + u = u + O = u for all elements u of V.
- Given an element u of V, there exists an element -u in V such that u + (-u) = O.
- For all elements u, v of V, we have u + v = v + u.
- **(**) For all elements  $\boldsymbol{u}$  of V, we have  $1 \cdot \boldsymbol{u} = \boldsymbol{u}$ .
- If c is a number, then c(u + v) = cu + cv.
- if a, b are two numbers, then (ab) v = a (bv).
- If a, b are two numbers, then (a + b) v = av + bv.



# Outline

- Why Liner Algebra
  - Why and What?
  - A Little Bit of History
- 2 The Beginning• Fields

### 3 Vector Space

### Introduction

### Some Notes in Notation

- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
  - Recognizing Sub-spaces
  - Combinations

### 4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions

### Application in Machine Learning

- Feature Vector
- Least Squared Error



# Notation

First,  $oldsymbol{u}+(-oldsymbol{v})$ 

As  $\boldsymbol{u} - \boldsymbol{v}$ .

For (

We will write sometimes 0.

The elements in the field  $ar{K}$ 

They can receive the name of number or scalar.



# Notation

First,  $oldsymbol{u}+(-oldsymbol{v})$ 

As u - v.

### For O

We will write sometimes 0.

### The elements in the field K

They can receive the name of number or scalar.



# Notation

First,  $\boldsymbol{u} + (-\boldsymbol{v})$ 

As u - v.

### For O

We will write sometimes 0.

### The elements in the field K

They can receive the name of number or scalar.



# Outline

- 1) Why Liner Algebra
  - Why and What?
  - A Little Bit of History
- 2 The Beginning• Fields

### 3 Vector Space

- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
  - Recognizing Sub-spaces
  - Combinations

### 4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions

### Application in Machine Learning

- Feature Vector
- Least Squared Error



< ロ > < 同 > < 回 > < 回 >

# Many Times



### <ロト < 回 ト < 巨 ト < 巨 ト ミ の Q () 26 / 59

# Therefore

## We can represent these relations as vectors

$$\left(\begin{array}{c} \mathsf{Squared Feet} \\ \mathsf{Price} \end{array}\right) = \left\{ \left(\begin{array}{c} 2104 \\ 400 \end{array}\right), \left(\begin{array}{c} 1800 \\ 460 \end{array}\right), \left(\begin{array}{c} 1600 \\ 300 \end{array}\right), \ldots \right\}$$

### Thus, we can start using

All the tools that Linear Algebra can provide!!!



# Therefore

## We can represent these relations as vectors

$$\begin{pmatrix} \mathsf{Squared Feet} \\ \mathsf{Price} \end{pmatrix} = \left\{ \begin{pmatrix} 2104 \\ 400 \end{pmatrix}, \begin{pmatrix} 1800 \\ 460 \end{pmatrix}, \begin{pmatrix} 1600 \\ 300 \end{pmatrix}, \ldots \right\}$$

### Thus, we can start using

• All the tools that Linear Algebra can provide!!!



イロト イヨト イヨト イヨト

Thus

## We can adjust a line/hyper-plane to be able to forecast prices



### Cinvestav

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 今 Q (で 28 / 59

# Thus, Our Objective

### To find such hyper-plane

• To do forecasting on the prices of a house given its surface size!!!

### Here, where "Learning" comes around

Basically, the process defined in Machine Learning!!!



イロン イロン イヨン イヨン

# Thus, Our Objective

## To find such hyper-plane

• To do forecasting on the prices of a house given its surface size!!!

## Here, where "Learning" comes around

• Basically, the process defined in Machine Learning!!!



イロト イボト イヨト イヨト

# Outline

- - Why and What?
  - A Little Bit of History
- Fields



### Vector Space

- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...

### Sub-spaces and Linear Combinations

- Recognizing Sub-spaces
- Combinations

- Basis
- Coordinates
- Basis and Dimensions

- Feature Vector
- Least Squared Error



## Definition

Let V a vector space and  $W \subseteq V$ , thus W is a **subspace** if:

• If  $v \in W$  and  $c \in K$ , then  $cv \in W$ .

• The element  $0 \in V$  is also an element of W



イロト イロト イヨト イヨト

## Definition

Let V a vector space and  $W \subseteq V$ , thus W is a **subspace** if:

1 If 
$$\boldsymbol{v}, \boldsymbol{w} \in W$$
, then  $\boldsymbol{v} + \boldsymbol{w} \in W$ .

) If  $oldsymbol{v}\in W$  and  $c\in K$ , then  $coldsymbol{v}\in W.$ 

) The element  $0\in V$  is also an element of W



イロト イロト イヨト イヨト

## Definition

Let V a vector space and  $W \subseteq V$ , thus W is a **subspace** if:

• If 
$$\boldsymbol{v}, \boldsymbol{w} \in W$$
, then  $\boldsymbol{v} + \boldsymbol{w} \in W$ .

2) If 
$$v \in W$$
 and  $c \in K$ , then  $cv \in W$ .

The element  $0 \in V$  is also an element of W



## Definition

Let V a vector space and  $W \subseteq V$ , thus W is a **subspace** if:

① If 
$$oldsymbol{v},oldsymbol{w}\in W$$
, then  $oldsymbol{v}+oldsymbol{w}\in W$ .

2) If 
$$v \in W$$
 and  $c \in K$ , then  $cv \in W$ .

• The element  $0 \in V$  is also an element of W.

# Outline

- - Why and What?
  - A Little Bit of History
- Fields



### Vector Space

- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations Recognizing Sub-spaces
  - Combinations
- - Basis
  - Coordinates
  - Basis and Dimensions

- Feature Vector
- Least Squared Error



< ロ > < 同 > < 回 > < 回 >

# Some ways of recognizing Sub-spaces

### Theorem

A non-empty subset W of V is a subspace of V if and only if for each pair of vectors  $v, w \in W$  and each scalar  $c \in K$  the vector  $cv + w \in W$ .



# Example





# Outline

- Why Liner Algebra
  - Why and What?
  - A Little Bit of History
- 2 The Beginning• Fields



### Vector Space

- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
  - Recognizing Sub-spaces
  - Combinations

### 4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions

### Application in Machine Learning

- Feature Vector
- Least Squared Error



# Linear Combinations

## Definition

Let V an arbitrary vector space, and let  $\bm{v}_1, \bm{v}_2,..., \bm{v}_n \in V$  and  $x_1, x_2,..., x_n \in K.$  Then, an expression like

$$x_1 \boldsymbol{v}_1 + x_2 \boldsymbol{v}_2 + \ldots + x_n \boldsymbol{v}_n$$

is called a linear combination of  $v_1, v_2, ..., v_n$ .

(3)

# **Classic Examples**

## Endmember Representation in Hyperspectral Images

Look at the board

### Geometric Representation of addition of forces in Physics

Look at the board!!



# **Classic Examples**

## Endmember Representation in Hyperspectral Images

Look at the board

## Geometric Representation of addition of forces in Physics

Look at the board!!



# Properties and Definitions

### Theorem

Let V be a vector space over the field K. The intersection of any collection of sub-spaces of V is a subspace of V.





< ロ > < 回 > < 回 > < 回 > < 回 >

# Properties and Definitions

### Theorem

Let V be a vector space over the field K. The intersection of any collection of sub-spaces of V is a subspace of V.

## Definition

• Let S be a set of vectors in a vector space V.

• The **sub-space spanned** by *S* is defined as the intersection *W* of all sub-spaces of *V* which contains *S*.

• When S is a finite set of vectors,  $S = \{v_1, v_2, \dots, v_n\}$ , we shall simply call W the sub-space spanned by the vectors  $v_1, v_2, \dots$ 



< ロト < 同ト < ヨト < ヨ )

## Properties and Definitions

#### Theorem

Let V be a vector space over the field K. The intersection of any collection of sub-spaces of V is a subspace of V.

### Definition

- Let S be a set of vectors in a vector space V.
- The sub-space spanned by S is defined as the intersection W of all sub-spaces of V which contains S.



< ロト < 同ト < ヨト < ヨ )

## Properties and Definitions

#### Theorem

Let V be a vector space over the field K. The intersection of any collection of sub-spaces of V is a subspace of V.

### Definition

- Let S be a set of vectors in a vector space V.
- The sub-space spanned by S is defined as the intersection W of all sub-spaces of V which contains S.
- When S is a finite set of vectors,  $S = \{v_1, v_2, \dots, v_n\}$ , we shall simply call W the sub-space spanned by the vectors  $v_1, v_2, \dots, v_n$ .



イロト 不得 トイヨト イヨト

## We get the following Theorem

### Theorem

The subspace spanned by  $S \neq \emptyset$  is the set of all linear combinations of vectors in S.



## Outline

- 1) Why Liner Algebra
  - Why and What?
  - A Little Bit of History
- 2 The Beginning• Fields

#### 3 Vector Spa

- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
  - Recognizing Sub-spaces
  - Combinations

## Basis and DimensionsBasis

- Coordinates
- Basis and Dimensions

#### Application in Machine Learning

- Feature Vector
- Least Squared Error



イロト イヨト イヨト

## Linear Independence

### Definition

Let V be a vector space over a field K, and let  $v_1, v_2, ..., v_n \in V$ . We have that  $v_1, v_2, ..., v_n$  are linearly dependent over K if there are elements  $a_1, a_2, ..., a_n \in K$  not all equal to 0 such that

$$a_1\boldsymbol{v}_1 + a_2\boldsymbol{v}_2 + \ldots + a_n\boldsymbol{v}_n = O$$

#### Thus

Therefore, if there are not such numbers, then we say that  $m{v}_1,m{v}_2,...,m{v}_n$  are linearly independent.

#### We have the following

Example!!!



## Linear Independence

#### Definition

Let V be a vector space over a field K, and let  $v_1, v_2, ..., v_n \in V$ . We have that  $v_1, v_2, ..., v_n$  are linearly dependent over K if there are elements  $a_1, a_2, ..., a_n \in K$  not all equal to 0 such that

$$a_1\boldsymbol{v}_1 + a_2\boldsymbol{v}_2 + \ldots + a_n\boldsymbol{v}_n = O$$

### Thus

Therefore, if there are not such numbers, then we say that  $v_1, v_2, ..., v_n$  are linearly independent.

#### We have the following

Example!!!



## Linear Independence

#### Definition

Let V be a vector space over a field K, and let  $v_1, v_2, ..., v_n \in V$ . We have that  $v_1, v_2, ..., v_n$  are linearly dependent over K if there are elements  $a_1, a_2, ..., a_n \in K$  not all equal to 0 such that

$$a_1\boldsymbol{v}_1 + a_2\boldsymbol{v}_2 + \ldots + a_n\boldsymbol{v}_n = O$$

### Thus

Therefore, if there are not such numbers, then we say that  $v_1, v_2, ..., v_n$  are linearly independent.

イロト イヨト イヨト

41 / 59

### We have the following

Example!!!

## Basis

### Definition

If elements  $v_1, v_2, ..., v_n$  generate V and in addition are linearly independent, then  $\{v_1, v_2, ..., v_n\}$  is called a **basis** of V. In other words the elements  $v_1, v_2, ..., v_n$  form a basis of V.

#### Examples

The Classic Ones!!!



## Basis

### Definition

If elements  $v_1, v_2, ..., v_n$  generate V and in addition are linearly independent, then  $\{v_1, v_2, ..., v_n\}$  is called a **basis** of V. In other words the elements  $v_1, v_2, ..., v_n$  form a basis of V.

### Examples

The Classic Ones!!!



## Outline

- 1) Why Liner Algebra
  - Why and What?
  - A Little Bit of History
- 2 The Beginning• Fields

#### 3 Vector Spa

- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
  - Recognizing Sub-spaces
  - Combinations

#### 4 Basis and Dimensions

Basis

#### Coordinates

Basis and Dimensions

#### Application in Machine Learning

- Feature Vector
- Least Squared Error



イロト イヨト イヨト

### Theorem

Let V be a vector space. Let  $v_1, v_2, ..., v_n$  be linearly independent elements of V. Let  $x_1, ..., x_n$  and  $y_1, ..., y_n$  be numbers. Suppose that we have

$$x_1\boldsymbol{v}_1 + x_2\boldsymbol{v}_2 + \dots + x_n\boldsymbol{v}_n = y_1\boldsymbol{v}_1 + y_2\boldsymbol{v}_2 + \dots + y_n\boldsymbol{v}_n \tag{4}$$

Then,  $x_i = y_i$  for all  $i = 1, \ldots, n$ .



## Let V be a vector space, and let $\{\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_n\}$ be a basis of V

For all  $\boldsymbol{v} \in V$ ,  $\boldsymbol{v} = x_1 \boldsymbol{v}_1 + x_2 \boldsymbol{v}_2 + \cdots + x_n \boldsymbol{v}_n$ .

### Thus, this n-tuple is uniquely determined by $oldsymbol{v}$

We will call  $(x_1, x_2, \ldots, x_n)$  as the coordinates of v with respect to the basis.

#### The *n*-tuple $X = (x_1, x_2, \ldots, x_n)$

It is the **coordinate vector** of  $m{v}$  with respect to the basis  $\{m{v}_1,m{v}_2,...,m{v}_n\}$  .



## Let V be a vector space, and let $\{\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_n\}$ be a basis of V

For all  $\boldsymbol{v} \in V$ ,  $\boldsymbol{v} = x_1 \boldsymbol{v}_1 + x_2 \boldsymbol{v}_2 + \cdots + x_n \boldsymbol{v}_n$ .

## Thus, this n-tuple is uniquely determined by $oldsymbol{v}$

We will call  $(x_1, x_2, \ldots, x_n)$  as the coordinates of v with respect to the basis.

#### The n-tuple $X = (x_1, x_2, \ldots, x_n)$

It is the  ${f coordinate\ vector}$  of v with respect to the basis  $\{v_1,v_2,...,v_n\}$  .



## Let V be a vector space, and let $\{\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_n\}$ be a basis of V

For all  $\boldsymbol{v} \in V$ ,  $\boldsymbol{v} = x_1 \boldsymbol{v}_1 + x_2 \boldsymbol{v}_2 + \cdots + x_n \boldsymbol{v}_n$ .

### Thus, this n-tuple is uniquely determined by $oldsymbol{v}$

We will call  $(x_1, x_2, \ldots, x_n)$  as the coordinates of v with respect to the basis.

### The *n*-tuple $X = (x_1, x_2, \ldots, x_n)$

It is the coordinate vector of v with respect to the basis  $\{v_1, v_2, ..., v_n\}$  .



## Outline

- 1) Why Liner Algebra
  - Why and What?
  - A Little Bit of History
- 2 The Beginning• Fields

#### 3 Vector Spa

- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
  - Recognizing Sub-spaces
  - Combinations

#### 4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions

#### Application in Machine Learning

- Feature Vector
- Least Squared Error



イロト イヨト イヨト

## Properties of a Basis

### Theorem - (Limit in the size of the basis)

Let V be a vector space over a field K with a basis  $\{v_1, v_2, ..., v_m\}$ . Let  $w_1, w_2, ..., w_n$  be elements of V, and assume that n > m. Then  $w_1, w_2, ..., w_n$  are linearly dependent.

#### Examples

- Matrix Space
- Canonical Space vectors
- etc



## Properties of a Basis

### Theorem - (Limit in the size of the basis)

Let V be a vector space over a field K with a basis  $\{v_1, v_2, ..., v_m\}$ . Let  $w_1, w_2, ..., w_n$  be elements of V, and assume that n > m. Then  $w_1, w_2, ..., w_n$  are linearly dependent.

#### Examples

- Matrix Space
- Canonical Space vectors
- etc



## Properties of a Basis

### Theorem - (Limit in the size of the basis)

Let V be a vector space over a field K with a basis  $\{v_1, v_2, ..., v_m\}$ . Let  $w_1, w_2, ..., w_n$  be elements of V, and assume that n > m. Then  $w_1, w_2, ..., w_n$  are linearly dependent.

### Examples

- Matrix Space
- Canonical Space vectors
- etc



## Some Basic Definitions

### We will define the dimension of a vector space V over K

As the number of elements in the basis.

• Denoted by  $\dim_K V$ , or simply  $\dim V$ 

#### Therefore

A vector space with a basis consisting of a finite number of elements, or the zero vector space, is called a **finite dimensional.** 

Now

Is this number unique?



< ロ > < 同 > < 回 > < 回 >

## Some Basic Definitions

### We will define the dimension of a vector space V over K

As the number of elements in the basis.

• Denoted by  $\dim_K V$ , or simply  $\dim V$ 

### Therefore

A vector space with a basis consisting of a finite number of elements, or the zero vector space, is called a **finite dimensional.** 



## Some Basic Definitions

### We will define the dimension of a vector space V over K

As the number of elements in the basis.

• Denoted by  $\dim_K V$ , or simply  $\dim V$ 

### Therefore

A vector space with a basis consisting of a finite number of elements, or the zero vector space, is called a **finite dimensional.** 

### Now

Is this number unique?



イロン イロン イヨン イヨン

## Maximal Set of Linearly Independent Elements

#### Theorem

Let V be a vector space, and  $\{v_1, v_2, ..., v_n\}$  a maximal set of linearly independent elements of V. Then,  $\{v_1, v_2, ..., v_n\}$  is a basis of V.

#### Theorem

Let V be a vector space of dimension n, and let  $v_1, v_2, ..., v_n$  be linearly independent elements of V. Then,  $v_1, v_2, ..., v_n$  constitutes a basis of V.



## Maximal Set of Linearly Independent Elements

#### Theorem

Let V be a vector space, and  $\{v_1, v_2, ..., v_n\}$  a maximal set of linearly independent elements of V. Then,  $\{v_1, v_2, ..., v_n\}$  is a basis of V.

#### Theorem

Let V be a vector space of dimension n, and let  $v_1, v_2, ..., v_n$  be linearly independent elements of V. Then,  $v_1, v_2, ..., v_n$  constitutes a basis of V.



## Maximal Set of Linearly Independent Elements

#### Theorem

Let V be a vector space, and  $\{v_1, v_2, ..., v_n\}$  a maximal set of linearly independent elements of V. Then,  $\{v_1, v_2, ..., v_n\}$  is a basis of V.

#### Theorem

Let V be a vector space of dimension n, and let  $v_1, v_2, ..., v_n$  be linearly independent elements of V. Then,  $v_1, v_2, ..., v_n$  constitutes a basis of V.



### Corollary

Let V be a vector space and let W be a subspace. If  $\dim W = \dim V$  then V = W.

#### Proof

At the Board...

#### Corollary

Let V be a vector space of dimension n. Let r be a positive integer with r < n, and let  $v_1, v_2, ..., v_r$  be linearly independent elements of V. Then one can find elements  $v_{r+1}, v_{r+2}, ..., v_n$  such that  $\{v_1, v_2, ..., v_n\}$  is a basis of V.



### Corollary

Let V be a vector space and let W be a subspace. If  $\dim W = \dim V$  then V = W.

### Proof

### At the Board...

#### Corollar

Let V be a vector space of dimension n. Let r be a positive integer with r < n, and let  $v_1, v_2, ..., v_r$  be linearly independent elements of V. Then one can find elements  $v_{r+1}, v_{r+2}, ..., v_n$  such that  $\{v_1, v_2, ..., v_n\}$  is a basis of V.



### Corollary

Let V be a vector space and let W be a subspace. If  $\dim W = \dim V$  then V = W.

### Proof

At the Board...

### Corollary

Let V be a vector space of dimension n. Let r be a positive integer with r < n, and let  $v_1, v_2, ..., v_r$  be linearly independent elements of V. Then one can find elements  $v_{r+1}, v_{r+2}, ..., v_n$  such that  $\{v_1, v_2, ..., v_n\}$  is a basis of V.



### Corollary

Let V be a vector space and let W be a subspace. If  $\dim W = \dim V$  then V = W.

### Proof

At the Board...

### Corollary

Let V be a vector space of dimension n. Let r be a positive integer with r < n, and let  $v_1, v_2, ..., v_r$  be linearly independent elements of V. Then one can find elements  $v_{r+1}, v_{r+2}, ..., v_n$  such that  $\{v_1, v_2, ..., v_n\}$  is a basis of V.

# Proof At the Board...

## Finally

#### Theorem

Let V be a vector space having a basis consisting of n elements. Let W be a subspace which does not consist of O alone. Then W has a basis, and the dimension of W is  $\leq n$ .

#### Proof

At the Board...



## Finally

### Theorem

Let V be a vector space having a basis consisting of n elements. Let W be a subspace which does not consist of O alone. Then W has a basis, and the dimension of W is  $\leq n$ .

### Proof

At the Board...



## Outline

- 1) Why Liner Algebra
  - Why and What?
  - A Little Bit of History
- 2 The Beginning• Fields

#### 3 Vector Spa

- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
  - Recognizing Sub-spaces
  - Combinations

#### 4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions

#### Application in Machine Learning

- Feature Vector
- Least Squared Error



イロト イヨト イヨト

## Feature Vector

## Definition

A **feature vector** is a *n*-dimensional vector of numerical features that represent an object.

### Why is this important?

This allows to use linear algebra to represent basic classification algorithms because

• The tuples  $\{(x, y) | x \in K^n, y \in K\}$  can be easily used to design specific algorithms.



イロト イロト イヨト イヨト

## Feature Vector

## Definition

A **feature vector** is a *n*-dimensional vector of numerical features that represent an object.

### Why is this important?

This allows to use linear algebra to represent basic classification algorithms because

• The tuples  $\{(x, y) | x \in K^n, y \in K\}$  can be easily used to design specific algorithms.



イロト イヨト イヨト

## Outline

- 1) Why Liner Algebra
  - Why and What?
  - A Little Bit of History
- 2 The Beginning• Fields

#### 3 Vector Spa

- Introduction
- Some Notes in Notation
- Use of Linear Algebra in Regression...
- Sub-spaces and Linear Combinations
  - Recognizing Sub-spaces
  - Combinations

#### 4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions

#### Application in Machine Learning

- Feature Vector
- Least Squared Error



イロト イヨト イヨト

## Least Squared Error

### We need to fit a series of points against a certain function



#### We want

The general problem is given a set of functions  $f_1, f_2, ..., f_K$  find values of coefficients  $a_1, a_2, ..., a_k$  such that the linear combination:

$$y = a_1 f_1\left(x\right) + \dots + a_K f_K\left(x\right)$$

ク Q (? 55 / 59

< ロ > < 同 > < 回 > < 回 >

## Least Squared Error

### We need to fit a series of points against a certain function



### We want

The general problem is given a set of functions  $f_1, f_2, ..., f_K$  find values of coefficients  $a_1, a_2, ..., a_k$  such that the linear combination:

$$y = a_1 f_1(x) + \dots + a_K f_K(x)$$
(5)

イロト イヨト イヨト

55 / 59

We have that given the datasets  $\{(\boldsymbol{x}_1, y_1), ..., (\boldsymbol{x}_N, y_N)\}$ 

$$\overline{oldsymbol{x}} = rac{1}{N} \sum_{i=1}^{N} oldsymbol{x}_i.$$

#### Thus, we have the following problem

A Possible High Variance on the Data itself

#### Variance

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} \left( \boldsymbol{x}_i - \overline{\boldsymbol{x}} \right)$$



イロン イロン イヨン イヨン

(6)

We have that given the datasets  $\{(\boldsymbol{x}_1, y_1), ..., (\boldsymbol{x}_N, y_N)\}$ 

$$\overline{\boldsymbol{x}} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_i.$$

### Thus, we have the following problem

A Possible High Variance on the Data itself

#### Variance

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} \left( x_i - \overline{x} \right)$$



(6)

We have that given the datasets  $\{\left(oldsymbol{x}_{1},y_{1}
ight),...,\left(oldsymbol{x}_{N},y_{N}
ight)\}$ 

$$\overline{\boldsymbol{x}} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_i.$$

### Thus, we have the following problem

A Possible High Variance on the Data itself

### Variance

$$\sigma_{\boldsymbol{x}}^2 = \frac{1}{N} \sum_{i=1}^{N} \left( \boldsymbol{x}_i - \overline{\boldsymbol{x}} \right) \tag{7}$$



(6)

## Now

### Assume

A linear equation y = ax + b, then  $y - (ax + b) \approx 0$ .



 $\{y_1 - (ax_1 + b), ..., y_N - (ax_N + b)\}.$ 

### Then, the mean should be really small (If it is a good fit).

$$\sigma_{y-(ax+b)}^2 = \frac{1}{N} \sum_{i=1}^{N} (y_i - (ax_i + b))^2$$



イロン イロン イヨン イヨン

## Now

## Assume

A linear equation 
$$y = ax + b$$
, then  $y - (ax + b) \approx 0$ .

We get a series of errors given the following observations 
$$\{(x_1, y_1), ..., (x_N, y_N)\}$$

$$\{y_1 - (ax_1 + b), ..., y_N - (ax_N + b)\}.$$

#### Then, the mean should be really small (If it is a good fit).

$$\sigma_{y-(ax+b)}^2 = \frac{1}{N} \sum_{i=1}^N (y_i - (ax_i + b))^2$$



## Now

### Assume

A linear equation 
$$y = ax + b$$
, then  $y - (ax + b) \approx 0$ .

We get a series of errors given the following observations  $\{(x_1,y_1)\,,...,(x_N,y_N)\}$ 

$$\{y_1 - (ax_1 + b), ..., y_N - (ax_N + b)\}.$$

Then, the mean should be really small (If it is a good fit)

$$\sigma_{y-(ax+b)}^2 = \frac{1}{N} \sum_{i=1}^N \left( y_i - (ax_i + b) \right)^2 \tag{8}$$



We can define the following error  $E_i(a, b) = y - (ax + b)$ 

$$E(a,b) = \sum_{i=1}^{N} E_i(a,b) = \sum_{i=1}^{N} (y_i - (ax_i + b))$$
(9)

We want to minimize the previous equation

$$\frac{\partial E}{\partial a} = 0,$$
$$\frac{\partial E}{\partial b} = 0.$$



イロト イロト イヨト イヨト

We can define the following error  $E_i(a, b) = y - (ax + b)$ 

$$E(a,b) = \sum_{i=1}^{N} E_i(a,b) = \sum_{i=1}^{N} (y_i - (ax_i + b))$$
(9)

### We want to minimize the previous equation

$$\label{eq:eq:expansion} \begin{split} \frac{\partial E}{\partial a} &= 0, \\ \frac{\partial E}{\partial b} &= 0. \end{split}$$



イロト イロト イヨト イヨト



Look at the Board

We need to obtain the necessary equations.

