Analysis of Algorithms
Sorting

Andres Mendez-Vazquez

September 23, 2020

1/24



Outline

o Sorting O (nlogn)
@ Divide and Conquer

2/24



Merge Problem

Problem

@ Suppose you have k sorted arrays, each with n elements, and you
want to combine them into a single sorted array of kn elements.

cnvestay



Merge Problem

Problem

@ Suppose you have k sorted arrays, each with n elements, and you
want to combine them into a single sorted array of kn elements.

You could use the following strategy

o Merge the first two arrays with extra memory, then merge in the
third, then merge in the fourth, and so on.

» What is the time complexity of this algorithm, in terms of k and n?

cnvestay



Merge Problem

Problem

@ Suppose you have k sorted arrays, each with n elements, and you
want to combine them into a single sorted array of kn elements.

You could use the following strategy

o Merge the first two arrays with extra memory, then merge in the
third, then merge in the fourth, and so on.

» What is the time complexity of this algorithm, in terms of k and n?

@ Give a more efficient solution to this problem, using
divide-and-conquer.




Outline

o Sorting O (nlogn)

@ HeapSort

4/24



Worst Case

Problem

@ Show that the worst-case running time of Max-Heapify on a heap of
size n is Q2 (logn).
» Hint: For a heap with n nodes, give node values that cause
Max-Heapify to be called recursively at every node on a simple path
from the root down to a leaf.

cnvestay



Heap Sort: Using Max-Heapify

Heapsort Algorithm

Heapsort(A)

cnvestay



Heap Sort: Using Max-Heapify

Heapsort Algorithm

Heapsort(A)
© Build-Max-Heap(A)

cnvestay



Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)

© Build-Max-Heap(A)

@ for i = length[A] downto 2

cnvestay



Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)
© Build-Max-Heap(A)
@ for i = length[A] downto 2
(3] exchange A[1] with A[]

cnvestay



Heap Sort: Using Max-Heapify

Heapsort Algorithm

Heapsort(A)
© Build-Max-Heap(A)
@ for i = length[A] downto 2
(3] exchange A[1] with A[]
(%) heap — size[A] = heap — size[A] — 1

cnvestay



Heap Sort: Using Max-Heapify

Heapsort Algorithm

Heapsort(A)
© Build-Max-Heap(A)
@ for i = length[A] downto 2
(3] exchange A[1] with A[]
(%) heap — size[A] = heap — size[A] — 1
(5] Max-Heapify(A, 1)

cnvestay



Heap Sort: Using Max-Heapify

Heapsort Algorithm

Heapsort(A)
© Build-Max-Heap(A)
@ for i = length[A] downto 2
(3] exchange A[1] with A[]
(%) heap — size[A] = heap — size[A] — 1
(5] Max-Heapify(A, 1)

Figure: Heapsort

cnvestay



Loop Invariance

Argue the correctness of HeapSort using the following loop invariant

@ At the start of each iteration of the for loop of lines 2-5, the subarray
A[l,...,i] is a max-heap containing the i smallest elements of
AL, ...,n] sorted, and also the subarray A[i+ 1,...,n| contains the
n — i largest elements of A[l,...,n], sorted.

cnvestay



Outline

o Sorting O (nlogn)

@ QuickSort

8/24



Problems

Reversing Order
@ How would you modify QuickSort to sort into nonincreasing order?

cnvestay



Quicksort Algorithm

Quicksort Algorithm

Quicksort(A, p,r)
Qifp<r

cnvestay



Quicksort Algorithm

Quicksort Algorithm
Quicksort(A, p,r)

Qifp<r

o q = Partition (A, p,r)

cnvestay



Quicksort Algorithm

Quicksort Algorithm
Quicksort(A, p,r)
Qifp<r
o q = Partition (A, p,r)
(s} Quicksort(A4,p,q — 1)

cnvestay



Quicksort Algorithm

Quicksort Algorithm

Quicksort(A, p,r)
Qifp<r
(2] q = Partition (A, p,r)
(s} Quicksort(A4,p,q — 1)
(4] Quicksort(A4,q + 1,7r)

cnvestay



Quicksort Algorithm

Quicksort Algorithm

Quicksort(A, p,r)
Qifp<r
(2] q = Partition (A, p,r)
(s} Quicksort(A4,p,q — 1)
(4] Quicksort(A4,q + 1,7r)

cnvestay



Partition Algorithm

Quicksort Partition

Partition( A, p,r)
Q == Ar

cnvestay



Partition Algorithm

Quicksort Partition

Partition( A, p,r)
Q == Ar
Qi=p-—1

cnvestay



Partition Algorithm

Quicksort Partition

Partition( A, p,r)
Q == Ar
Q@i=p-1
Q@ forj=ptor—1

cnvestay



Partition Algorithm

Quicksort Partition

Partition( A, p,r)
Q == Ar
Q@i=p-1
Q@ forj=ptor—1
(« if Ajj] <=

cnvestay



Partition Algorithm

Quicksort Partition

Partition( A, p,r)
Q == Ar
Q@i=p-1
Q@ forj=ptor—1
(« if Ajj] <=
o t=1+1

cnvestay



Partition Algorithm

Quicksort Partition

Partition( A, p,r)
Q == Ar
Q@i=p-1
Q@ forj=ptor—1
(« if Afj] <z
o 1 =141
o exchange A[i] with A[j]

cnvestay



Partition Algorithm

Quicksort Partition

Partition( A, p,r)
Q == Ar
Q@i=p-1
Q@ forj=ptor—1
o if Ajj] <=
o t=1+1
o exchange A[i] with A[j]
@ exchange A[i + 1] with A[r]

cnvestay



Partition Algorithm

Quicksort Partition

Partition( A, p,r)
Q == Ar
Q@i=p-1
Q@ forj=ptor—1
o if Ajj] <=
o t=1+1
o exchange A[i] with A[j]
@ exchange A[i + 1] with A[r]
Q return i+ 1

cnvestay



Another Problem

Equal Values

@ What value of ¢ does Partition return when all elements in the array
Alp,...,r] have the same value?

cnvestay



Another Problem

Equal Values

@ What value of ¢ does Partition return when all elements in the array
Alp,...,r] have the same value?

Then

| A\

@ Modify Partition so that ¢ = V%J when all elements in the array
Alp,...,r] have the same value.

.

cnvestay



Outline

9 Linear Sorting
@ Counting Sort

13/24



Preprocessing

Describe an algorithm that, given n integers in the range 0 to k

@ Preprocesses its input and then answers any query about how many
of the n integers fall into a range [a, b] in O (1)

» You have O (n + k) preprocessing time.

cnvestay



Outline

9 Linear Sorting

@ Radix Sort

15/24



Induction

Problem

@ Use induction to prove that radix sort works.

@ Where does your proof need the assumption that the intermediate
sort is stable?

cnvestay



How to use logs

Problem

@ Show how to sort n integers in the range 0 to n® $ 1 in O (n) time.

cnvestay



Outline

9 Linear Sorting

@ Bucket Sort

18/24



Bucket Sort Algorithm

Algorithm assuming

Buket-Sort(A)

cnvestay



Bucket Sort Algorithm

Algorithm assuming

Buket-Sort(A)
Q let B[0..n — 1] be a new array

cnvestay



Bucket Sort Algorithm

Algorithm assuming

Buket-Sort(A)
Q let B[0..n — 1] be a new array
@ n = Alength

cnvestay



Bucket Sort Algorithm

Algorithm assuming

Buket-Sort(A)
Q let B[0..n — 1] be a new array
@ n = Alength
@ fori=0ton—1

cnvestay



Bucket Sort Algorithm

Algorithm assuming

Buket-Sort(A)
Q let B[0..n — 1] be a new array

@ n = Alength
@ fori=0ton—1
(%) make B [i] an empty list

cnvestay



Bucket Sort Algorithm

Algorithm assuming

Buket-Sort(A)
Q let B[0..n — 1] be a new array
@ n = Alength
@ fori=0ton—1
(%) make B [i] an empty list
@ fori=0ton
(6] insert A [i] into list B[|nAld]]]

cnvestay



Bucket Sort Algorithm

Algorithm assuming

Buket-Sort(A)
Q let B[0..n — 1] be a new array
@ n = Alength
@ fori=0ton—1
(%) make B [i] an empty list
@ fori=0ton
(6] insert A [i] into list B[|nAld]]]
@ fori=0ton—1

cnvestay



Bucket Sort Algorithm

Algorithm assuming

Buket-Sort(A)
Q let B[0..n — 1] be a new array

@ n = Alength

@ fori=0ton—1

(%) make B [i] an empty list

Q fori=0ton

(6] insert A [i] into list B[|nAld]]]
@ fori=0ton—1

o sort list B [i] with insertion sort

cnvestay



Bucket Sort Algorithm

Algorithm assuming

Buket-Sort(A)
Q let B[0..n — 1] be a new array
@ n = Alength
@ fori=0ton—1
(%) make B [i] an empty list
Q fori=0ton
(6] insert A [i] into list B[|nAld]]]
@ fori=0ton—1
o sort list B [i] with insertion sort
@ concatenate the list B[0], B[1], ... , B [n — 1] together in order

cnvestay



Questions

e Explain why the worst-case running time for bucket sort is O (n)

cnvestay



Questions

e Explain why the worst-case running time for bucket sort is O (n)

@ What simple change to the algorithm preserves its linear average-case
running time and makes its worst-case running time O (nlogn)

cnvestay



Outline

e Median Statistics

@ Selection in Expected Linear Time

cnvestay

21/24



We have the following

Xy = I {the subarray A[p .. q] has exactly kelements} with

E[X;] = + (Assuming that the elements are distinct)

T(n) < i

Xk x (T(max(k —1,n —k)) + O(n))

B
Il
—_

Xk x (T(max(k —1,n—k)) + O(n)

Il
M=

B
Il
—_

cnvestay



We have the following

Xy = I {the subarray A[p .. q] has exactly kelements} with

E[X;] = + (Assuming that the elements are distinct)

T(n) < i

Xk x (T(max(k —1,n —k)) + O(n))

B
Il
—_

Il
M=

X X (T'(max(k — 1,n — k)) + O(n)

B
Il
—_

@ Argue that the indicator random variable X and the value
T'(max(k — 1,n — k) are independent.

cnvestay



Outline

e Median Statistics

@ Worst Case Median Statistics

23 /24



Imagine

Black-Box

@ Suppose that you have a “black-box" worst-case linear-time median
subroutine.
» Give a simple, linear-time algorithm that solves the selection problem
for an arbi- trary order statistic

cnvestay



	Sorting O(nlogn)
	Divide and Conquer
	HeapSort
	QuickSort

	Linear Sorting
	Counting Sort
	Radix Sort
	Bucket Sort

	Median Statistics
	Selection in Expected Linear Time
	Worst Case Median Statistics


