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Merge Problem

Problem
Suppose you have k sorted arrays, each with n elements, and you
want to combine them into a single sorted array of kn elements.

You could use the following strategy
Merge the first two arrays with extra memory, then merge in the
third, then merge in the fourth, and so on.

I What is the time complexity of this algorithm, in terms of k and n?

Then
Give a more efficient solution to this problem, using
divide-and-conquer.
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Worst Case

Problem
Show that the worst-case running time of Max-Heapify on a heap of
size n is Ω (log n).

I Hint: For a heap with n nodes, give node values that cause
Max-Heapify to be called recursively at every node on a simple path
from the root down to a leaf.
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Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] with A[i]
4 heap− size[A] = heap− size[A]− 1
5 Max-Heapify(A, 1)

Figure: Heapsort

6 / 24



Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] with A[i]
4 heap− size[A] = heap− size[A]− 1
5 Max-Heapify(A, 1)

Figure: Heapsort

6 / 24



Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] with A[i]
4 heap− size[A] = heap− size[A]− 1
5 Max-Heapify(A, 1)

Figure: Heapsort

6 / 24



Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] with A[i]
4 heap− size[A] = heap− size[A]− 1
5 Max-Heapify(A, 1)

Figure: Heapsort

6 / 24



Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] with A[i]
4 heap− size[A] = heap− size[A]− 1
5 Max-Heapify(A, 1)

Figure: Heapsort

6 / 24



Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] with A[i]
4 heap− size[A] = heap− size[A]− 1
5 Max-Heapify(A, 1)

Figure: Heapsort

6 / 24



Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] with A[i]
4 heap− size[A] = heap− size[A]− 1
5 Max-Heapify(A, 1)

Figure: Heapsort

6 / 24



Loop Invariance

Argue the correctness of HeapSort using the following loop invariant
At the start of each iteration of the for loop of lines 2–5, the subarray
A [1, ..., i] is a max-heap containing the i smallest elements of
A [1, ..., n] sorted, and also the subarray A [i + 1, ..., n] contains the
n− i largest elements of A [1, ..., n], sorted.
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Problems

Reversing Order
How would you modify QuickSort to sort into nonincreasing order?
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Quicksort Algorithm

Quicksort Algorithm
Quicksort(A, p, r)

1 if p < r

2 q = Partition (A, p, r)
3 Quicksort(A, p, q − 1)
4 Quicksort(A, q + 1, r)
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Partition Algorithm

Quicksort Partition
Partition(A, p, r)

1 x = A[r]
2 i = p− 1
3 for j = p to r − 1
4 if A[j] ≤ x

5 i = i + 1
6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r]
8 return i + 1
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Another Problem

Equal Values
What value of q does Partition return when all elements in the array
A [p, ..., r] have the same value?

Then
Modify Partition so that q =

⌊
p+r

2

⌋
when all elements in the array

A [p, ..., r] have the same value.
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Preprocessing

Describe an algorithm that, given n integers in the range 0 to k

Preprocesses its input and then answers any query about how many
of the n integers fall into a range [a, b] in O (1)

I You have O (n + k) preprocessing time.
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Induction

Problem
1 Use induction to prove that radix sort works.
2 Where does your proof need the assumption that the intermediate

sort is stable?
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How to use logs

Problem
Show how to sort n integers in the range 0 to n3 $ 1 in O (n) time.
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Bucket Sort Algorithm

Algorithm assuming
Buket-Sort(A)

1 let B [0..n− 1] be a new array
2 n = A.length

3 for i = 0 to n− 1
4 make B [i] an empty list
5 for i = 0 to n

6 insert A [i] into list B [bnA [i]c]
7 for i = 0 to n− 1
8 sort list B [i] with insertion sort
9 concatenate the list B [0], B [1], ... , B [n− 1] together in order
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Questions

We have
Explain why the worst-case running time for bucket sort is O (n)

Now
What simple change to the algorithm preserves its linear average-case
running time and makes its worst-case running time O (n log n)
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We have the following

Xk = I {the subarray A[p .. q] has exactly kelements} with
E[Xk] = 1

n
(Assuming that the elements are distinct)

T (n) ≤
n∑

k=1
Xk × (T (max(k − 1, n− k)) + O(n))

=
n∑

k=1
Xk × (T (max(k − 1, n− k)) + O(n)

Thus
Argue that the indicator random variable Xk and the value
T (max(k − 1, n− k) are independent.
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Imagine

Black-Box
Suppose that you have a “black-box” worst-case linear-time median
subroutine.

I Give a simple, linear-time algorithm that solves the selection problem
for an arbi- trary order statistic
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