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Algorithm efficiency
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Algorithm efficiency

When measuring an algorithm efficiency we must consider:

@ Speed.
o Memory usage.
@ Scalability.

Measuring speed!

@ Speed is measured in terms of the number of operations relative to
the size of the input.
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Asymptotic bounds

Intuition J

An asymptotic bound is a curve that represents the limit of a function.
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Asymptotic bounds

An asymptotic bound is a curve that represents the limit of a function. \
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Big O (Upper bound)

o Let f(n) and g(n) be two real valued functions, lets build intuition on
the meaning of f(n) € O(g(n)).
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Big O (Upper bound)

Intuition

o Let f(n) and g(n) be two real valued functions, lets build intuition on
the meaning of f(n) € O(g(n)).

¢ g(n) ggn) fin)

Definition
e f(n) € O(g(n)) if there exists ¢,ng > 0 such that f(n) < c- g(n) for
all n > nyg.
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Big 2 (Lower bound)

o Let f(n) and g(n) be two real valued functions, lets build intuition on
the meaning of f(n) € Q(g(n)).
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Big 2 (Lower bound)

Intuition

o Let f(n) and g(n) be two real valued functions, lets build intuition on
the meaning of f(n) € Q(g(n)).

A

o f(n) € Q(g(n)) if there exists ¢, ng > 0 such that f(n) > ¢ g(n) for
all n > ng.




Big © (Expected bound)

o Let f(n) and g(n) be two real valued functions, lets build intuition on
the meaning of f(n) € ©(g(n)).
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Big © (Expected bound)

Intuition

o Let f(n) and g(n) be two real valued functions, lets build intuition on
the meaning of f(n) € ©(g(n)).
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Definition
o f(n) € O(g(n)) if there exists ¢,ng > 0 such that f(n) < c-g(n) for
all n > ng.
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Correctness of an algorithm

Loop invariant and loop conditional

@ A loop invariant is a condition that is necessarily true immediately
before and immediately after each iteration of a loop.
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Correctness of an algorithm

Loop invariant and loop conditional

@ A loop invariant is a condition that is necessarily true immediately
before and immediately after each iteration of a loop.

@ A loop conditional is a statements that controls the termination of
the loop.

@ Both loop invariant and loop conditional must be different conditions.)

@ To prove an algorithm is correct we must find a loop conditional that
ensures the algorithm terminates.

@ The loop invariant mus be true:
» Before the loop starts
» Before each iteration of the loop
» After the loop terminates

.
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Well, now you know the basics. Time to work!

From Dasgupta’s Algorithms book, exercise 0.1

Using the definition in each of the following situations indicate wether
f=0(g), or f=9Q(g), or both (in which case f = 0(g)).
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Well, now you know the basics. Time to work!

From Dasgupta’s Algorithms book, exercise 0.1

Using the definition in each of the following situations indicate wether
f=0(g), or f=9Q(g), or both (in which case f = 0(g)).

Q@ f(n) =n—100, g(n) =n — 200
Q@ f(n) =n2" g(n)=3"
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Exercise

Let's try this one!

Show that ) k_12 is bounded by a constant. (help me herel!).
k=1
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Exercise

From Cormen’s book exercise 2.3-4

We can express insertion sort as a recursive procedure as follows. In order
to sort A[l...n], we recursively sort A[l...n — 1] and then insert A [n] into
the sorted array. Write a recurrence for the running time of this recursive

version of insertion sort.
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Exercise

From Cormen’s book exercise 3.1-7

Prove that 0 (g (n)) Nw (g (n)) is the empty set.
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Proof

Remember o

o(g(n)) ={f(n)| For any ¢ > 0 there exists ng > 0
sit. 0< f(n) <cg(n) Vn > np}
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Proof

Remember o

o(g(n)) ={f(n)| For any ¢ > 0 there exists ng > 0
sit. 0< f(n) <cg(n) Vn > np}

Remember w

| A

w(g(n)) ={f(n)| For any ¢ > 0 there exists ng > 0 s.t.
0 <cg(n) < f(n) Yn > no}

cnvestay



Exercise

From Cormen’s book exercise 3.2-8

Show that kInk = © (n) implies that k = © ().
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Proof

By definition

@ Exist ¢, co and ng such that for a specific &

cn < klnk < con, n > ng
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Proof

@ Exist ¢, co and ng such that for a specific &

cn < klnk < con, n > ng

v

Then we can choose

k§n0
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Proof

By definition

@ Exist ¢, co and ng such that for a specific &

cn < klnk < con, n > ng

Then we can choose

Therefore

logk <1 = L > !
Bl logk = logn
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Exercise

From Cormen’s book exercise 4.3-1, 4.3-6
@ Show that the solution of T'(n) =T ([%]) + 1 is O (Ign).
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Exercise

From Cormen’s book exercise 4. 3—1 4.3-6
@ Show that the solution of T'(n) =T ([%]) + 1 is O (Ign).
n

2
@ Show that the solution of 7' (n) = 2T (| §]) + 1 is Q (nlgn).
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Proof

By susbstitution method 7' (n) < clgn

T (n) <2clg ({gJ) +1

<2c(lgn—1g2) +1
<2clgn —2c+1
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Proof

By susbstitution method 7" (n) < clgn

T (n) <2clg ({gJ) +1

<2c(lgn—1g2)+1
<2clgn —2c+1

v

Thus, we need to have

1
—26+1<0—>C>§
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Exercise

From Cormen’s book exercise 2.1-3

Consider the searching problem:

Input: A sequence of n numbers A = (a1, ag, ..., a,) and a value v.
Output: An index i such that v = A[i] or the special value NIL if v
does not appear in A.

Write pseudocode for linear search, which scans through the sequence,
looking for v. Using a loop invariant, prove that your algorithm is correct.
Make sure that your loop invariant fulfills the three necessary properties.
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