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Algorithm efficiency

When measuring an algorithm efficiency we must consider:
Speed.
Memory usage.
Scalability.

Measuring speed!
Speed is measured in terms of the number of operations relative to
the size of the input.
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Asymptotic bounds

Intuition
An asymptotic bound is a curve that represents the limit of a function.

For the purpose of analyzing the speed of an algorithm, tree typical
asymptotic bounds are used.

1 Big O (Upper bound)
2 Big Ω(Lower bound)
3 Big Θ(Expected bound)
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Big O (Upper bound)
Intuition

Let f(n) and g(n) be two real valued functions, lets build intuition on
the meaning of f(n) ∈ O(g(n)).

Definition
f(n) ∈ O(g(n)) if there exists c, n0 > 0 such that f(n) ≤ c · g(n) for
all n ≥ n0.
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Big Ω (Lower bound)
Intuition

Let f(n) and g(n) be two real valued functions, lets build intuition on
the meaning of f(n) ∈ Ω(g(n)).

Definition
f(n) ∈ Ω(g(n)) if there exists c, n0 > 0 such that f(n) ≥ c · g(n) for
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Big Θ (Expected bound)
Intuition

Let f(n) and g(n) be two real valued functions, lets build intuition on
the meaning of f(n) ∈ Θ(g(n)).

Definition
f(n) ∈ O(g(n)) if there exists c, n0 > 0 such that f(n) ≤ c · g(n) for
all n ≥ n0. 9 / 22
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Correctness of an algorithm

Loop invariant and loop conditional
A loop invariant is a condition that is necessarily true immediately
before and immediately after each iteration of a loop.
A loop conditional is a statements that controls the termination of
the loop.
Both loop invariant and loop conditional must be different conditions.

Facts!
To prove an algorithm is correct we must find a loop conditional that
ensures the algorithm terminates.
The loop invariant mus be true:

I Before the loop starts
I Before each iteration of the loop
I After the loop terminates
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Well, now you know the basics. Time to work!

From Dasgupta’s Algorithms book, exercise 0.1
Using the definition in each of the following situations indicate wether
f = O(g), or f = Ω(g), or both (in which case f = Θ(g)).

1 f(n) = n− 100, g(n) = n− 200
2 f(n) = n2n, g(n) = 3n
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Exercise

Let’s try this one!

Show that
n∑

k=1

1
k2 is bounded by a constant. (help me here!).

14 / 22



Exercise

From Cormen’s book exercise 2.3-4
We can express insertion sort as a recursive procedure as follows. In order
to sort A [1...n], we recursively sort A [1...n− 1] and then insert A [n] into
the sorted array. Write a recurrence for the running time of this recursive
version of insertion sort.
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Exercise

From Cormen’s book exercise 3.1-7
Prove that o (g (n)) ∩ ω (g (n)) is the empty set.
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Proof

Remember o

o(g(n)) ={f(n)| For any c > 0 there exists n0 > 0
s.t. 0 ≤ f(n) < cg(n) ∀n ≥ n0}

Remember ω

ω(g(n)) ={f(n)| For any c > 0 there exists n0 > 0 s.t.
0 ≤ cg(n) < f(n) ∀n ≥ n0}
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Exercise

From Cormen’s book exercise 3.2-8
Show that k ln k = Θ (n) implies that k = Θ

(
n

ln n

)
.
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Proof

By definition
Exist c1, c2 and n0 such that for a specific k

c1n ≤ k ln k ≤ c2n, n > n0

Then we can choose

k ≤ n0

Therefore

log k ≤ log n⇒ 1
log k

>
1

log n
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Exercise

From Cormen’s book exercise 4.3-1, 4.3-6
1 Show that the solution of T (n) = T

(⌈
n
2
⌉)

+ 1 is O (lg n).
2 Show that the solution of T (n) = 2T

(⌊
n
2
⌋)

+ 1 is Ω (n lg n).
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Proof

By susbstitution method T (n) ≤ c lg n

T (n) ≤2c lg
(⌊

n

2

⌋)
+ 1

≤2c (lg n− lg 2) + 1
≤2c lg n− 2c + 1

Thus, we need to have

−2c + 1 < 0→ c >
1
2
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Exercise

From Cormen’s book exercise 2.1-3
Consider the searching problem:

Input: A sequence of n numbers A = 〈a1, a2, ..., an〉 and a value v.
Output: An index i such that v = A[i] or the special value NIL if v

does not appear in A.
Write pseudocode for linear search, which scans through the sequence,
looking for v. Using a loop invariant, prove that your algorithm is correct.
Make sure that your loop invariant fulfills the three necessary properties.
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