
Polynomial and Non-Polynomial Time

January 12, 2021

1 Introduction
In most of the analysis of algorithms class, we have been looking and studying polynomial time
algorithms. The polynomial time algorithm class P are algorithms that on inputs of size n have a
worst case running time of O

(
nk

)
for some constant k. Thus, informally, we can say that the Non-

Polynomial (NP) time algorithms are the ones that cannot be solved in O
(
nk

)
for any constant

k.

2 The NP Problem
In Nondeterministically Polynomial NP problems, there is a theorem that allow us to ask
the question P 6= NP? Until now no polynomial-time algorithm has yet been discovered for an
NP -complete problem, nor has anyone yet been able to prove that no polynomial-time algorithm
can exist for any one of them. For this reason, we dedicate our time to these kind of problems. The
following figure explain the two possibilities.

Figure 1: Two views of the world

1

Examples of how a simple change in what we are asking to a problem can change a polynomial
time problem into a NP-problem are:

• Shortest vs. longest simple paths.

• Euler tour vs. Hamiltonian cycle. Here Euler is over the edges and Hamiltonian is over the
vertices.

• 2-CNF satisfiability vs. 3-CNF satisfiability.

3 NP-completeness
NP problems are the kind of problems that can be “verified” in polynomial time. What does
this mean? That somebody, an oracle, has given us a “certificate” of a solution, thus, we can in
polynomial time if the certificate is correct. An example would be, for the Hamiltonian cycle, a
sequence of vertices

〈
v1, v2, ..., v|V |

〉
from a graph G = (V,E). Then, we check in polynomial time

if (vi, vi+1) ∈ E for i = 1, 2, ..., |V | − 1 and that
(
v|V |, v1

)
∈ E. Using this idea, it is possible to

define informally that a NP-Complete problem is a problem that is NP and it is as “hard as any
NP”. Actually, we will define this better later.

4 Basic Notions for the NP
4.1 Decision problems vs. optimization problems
There are two main problems that we attack in computer science:

1. The optimization problems. For this problems we wish to find a desirable solution with
the best possible value. Example of this are the Dynamic Programming Problems.

2. The decision problems are the ones where it is possible to answer “yes” or “no.” For
example, Given a directed graph G, with vertices u and v, and an integer k, does a path
exist from u to v consisting of at most k edges? This is actually the framework used by the
NP-problems.

4.2 Reductions
Given A an instance of a problem that we would like to solve in polynomial time. For example, in
PATH an instance would be a a particular graph G, with vertices u and v. and integer k. Now
assume that a problem B exists that can be solved in polynomial time. In addition, theres is a
procedure that can transform α ∈ A into β ∈ B with the following characteristics:

• The transformation takes polynomial time.

• The answers are the same. That is, the answer for α is “yes” if and only if the answer for β
is also “yes.”

2

The following figure gives us a way to solve our α problem.

Algorithm 1 Polynomial time Algorithm

Or in steps:

1. Given an instance α of problem A, use a polynomial-time reduction algorithm to transform
it to an instance β of problem B.

2. Run the polynomial-time decision algorithm for B on the instance β.

3. Use the answer for β as the answer for α.

5 Polynomial Time
For the polynomial time problems is necessary to have three things:

• What is an abstract problem?

• What is an encoding?

• A formal-language framework.

5.1 Abstract Problems
Definition 1. An abstract problem Q is a binary relation

Q : I → S

I are a set of instances of the problem, and S are a set of possible solutions.
An example of this abstract definition of a problem is the decision problem where a machine

needs to say if theres is or there is not a solution. The binary relation of the decision problem can
be seen as

Q : I → {0, 1} (1)

5.2 Encoding
An encoding is necessary in order to represent our problems in a language that the computer
machine can understand in order to try to solve it. An example could be the representation of
graph G = (V,E).

Example 2. A graph G = (V,E) can be encoded as follow:

3

• Each vertex i can be encoded using a binary number. For example the set of vertices {1, 2, 3}
can be seen as the binary numbers 0, 1 and 10.

• Each edge then can be seen as a pair of binary numbers. for example (1, 2) can be seen as
{0, 1}

• An encoding for delimiters, thus you know where each definition starts and ends.

Now, using the encoding of the problem the Turing machine or whatever machine you have at
your disposal can solve the problem. This encoded version of the problem is called a concrete
problem. Thus, a concrete problem is polynomial-time solvable, if there exists an algorithm to
solve it in time O

(
nk

)
for some constant k.

It would be nice to extend the polynomial-time solvability from concrete problems to abstract
problems by using encodings. However, the definition needs to be independent of any particular
encoding, i.e. the efficiency of solving a problem should not depend on how the problem is encoded.
Unfortunately, it depends quite heavily on the encoding.

Example 3. Assume k an integer as the input of an algorithm, and the running time is Θ (k).
If k is encoded as a string of 1’s, then the running time of the algorithm is O(n) on length-n
inputs, which is polynomial time. Now, we use the binary representation of the integer k, then
n = blg kc + 1, then we have the following running time Θ (k) = Θ (2n) which is exponential in
the size of the input. Thus, depending on the encoding, the algorithm runs in either polynomial or
superpolynomial time.

Then, the way we encode the abstract problem is quite important with respect to the poly-
nomial time solvability. Nevertheless, in practice, if we rule out “expensive encodings” as the
unary encoding, the encoding of a problem makes little difference. For this, we have the following
definitions.

Definition 4. We say that a function f : {0, 1}∗ −→ {0, 1}∗ is a polynomial-time computable if
there exists a polynomial-time algorithm A, such that given any input x ∈ {0, 1}∗, it produces as
output f (x).

This allows to define a type of correlation between encodings.

Definition 5. For some set I of problem instances, we say that two encodings e1 and e2 are
polynomially related if there exist two polynomial-time computable functions f12 and f21 such that
for any i ∈ I, we have f12 (e1 (i)) = e2 (i) and f21 (e2 (i)) = e1 (i).

Using this definition, we have the following lemma.

Lemma. 34.1
Let Q be an abstract decision problem on an instance set I , and let e1 and e2 be polynomially

related encodings on I. Then, e1 (Q) ∈ P if and only if e2 (Q) ∈ P .

Proof: We are going to prove on direction, the other

4

6 The Formal Language Framework
This at the slides or your class in Automatons.

7 Using the Formal Language
We can use the formal language framework to represent our problems.

Example 6. Qis entirely characterized by instances that produce a yes answer, then

L = {x ∈ Σ∗|Q(x) = 1} .

Another example is the following one.

Example 7. An algorithm A accepts a string x ∈ {0, 1}∗if, given x, the algorithm’s output A(x)
is 1. Thus, the language accepted by an algorithm A is the set of strings:

L =
{
x ∈ {0, 1}∗ |A (x) = 1

}
.

It is important to mention, that even when an algorithm accept strings x from L, the algorithm
could not reject a string x /∈ L provided as input to it. The algorithm could loop forever. Thus,
we are more stringent: A language L is decided by an algorithm A if every binary string
in L is accepted by A and every binary string not in L is rejected by A. It is more: A
language L is accepted in polynomial time by an algorithm A if it is accepted by A
and if in addition there exists a constant k such that for any length-n string x ∈ L,
algorithm A accepts x in time O

(
nk

)
.

This formal language allows us to define a complexity class as a set of languages, membership
in which is determined by a complexity measure. This can be seen by the following theorem.

Theorem. 34.2 The class P of languages that can be accepted in polynomial time or:

P = {L|L is accepted by a polynomial-time algorithm}

5

8 More Formal definitions of NP
Finally, using this concept of “decision,” formal languages and Turing machines, we have the fol-
lowing definition:
Definition 8. A problem is said to be Nondeterministically Polynomial (NP) if we can
find a no-deterministic Turing machine that can solve the problem in a polynomial number of
nondeterministic moves.

A simpler definition is the following one.
Definition 9. A problem is said to be NP if its solution comes from a finite set of possibilities,
and it takes polynomial time to verify the correctness of a candidate solution.

A more formal definition comes from the NTIME concept.
Definition 10. Given that NTIME(f(n)) is the set of decision problems that can be solved by a
non-deterministic Turing machine i.e. the set of decision problems that can be solved by a
non-deterministic Turing machine which runs in time O(f(n)). Thus, the The complexity class NP
can be defined as follows:

NP = ∪k∈NNTIME
(
nk

)
9 Polynomial Time Verification
We have the following intuitive definition:
Example 11. Given an instance of a decision problem. For example, given 〈G,A, F, k〉 an instance
of PATH, and a possible solution a path p from A to F . Then, you need to check if the length of p
is at most k.

6

10 3-CNF is NP-Complete
A literal in a boolean formula is an occurrence of a variable or its negation. A boolean formula is
in conjunctive normal form, or CNF, if it is expressed as an AND of clauses, each of which is the
OR of one or more literals. A boolean formula is in 3-conjunctive normal form, or 3-CNF, if each
clause has exactly three distinct literals.

Theorem. 34.10 Satisfiability of boolean formulas in 3-conjunctive normal form is NP-complete.

Proof. The Part of NP uses the same idea from the SAT problem. The interesting part is SAT ≤p

3− CNF . For this, we have the following stages

1. First given an instance of SAT, for example,

Φ = ((x1 → x2) ∨ ¬ ((¬x1 ←→ x3) ∨ x4)) ∧ ¬x2

parsed into

Figure 2: Parsing of the SAT formula

Note: Should the input formula contain a clause such as the OR of several literals, we
use associativity to parenthesize the expression fully so that every internal node in the
resulting tree has 1 or 2 children. We can now think of the binary parse tree as a circuit
for computing the function.

Now, we introduce a series of variables yi and rewrite the original formula as

7

Figure 3: The Parsing into Φ’

Note: Observe that the formula thus obtained is a conjunction of clauses, each of which has
at most 3 literals. The only requirement that we might fail to meet is that each clause
has to be an OR of 3 literals.

2. Now, we rewrite each element φ′i into a conjuctive normal form. For this we construct the
trut table of each φ′i

Figure 4: The Truth Table of (y1 ←→ (y2 ∧ ¬x2))

Then, we use the zero entries to construct the Disjuntive Normal Form (DNF) -an OR of
ANDs- that is equivalent to ¬φ′1 . We then negate this formula and conver it tinto a CNF
formula φ′′1 using the Morgan’s laws.
For example, the DNF formula equivalent to ¬φ′1

(y1 ∧ y2 ∧ x2) ∨ (y1 ∧ ¬y2 ∧ x2) ∨ (y1 ∧ ¬y2 ∧ ¬x2) ∨ (¬y1 ∧ y2 ∧ ¬x2)

8

The conversion is like

φ′′1 = (¬y1 ∨ ¬y2 ∨ ¬x2) ∧ (¬y1 ∨ y2 ∨ ¬x2) ∧ (¬y1 ∨ y2 ∨ x2) ∧ (y1 ∨ ¬y2 ∨ x2)

Note Each formula has at most 3 literals.

3. To have all into 3 literals we use the following rules to include the necessary literals:
For each clause Ci of φ′′, we include the folloing clauses into φ′′′:

(a) If Ci has 3 distinct literals, then simply include Ci as a clause of φ′′′ .
(b) If Ci has 2 distinct literals, that is, if Ci = (l1 ∨ l2) , where l1 and l2 are literals, then

include(l1 ∨ l2 ∨ p) ∧ (l1 ∨ l2 ∨ ¬p) as clauses of φ′′′. The literals p and ¬p merely fulfill
the syntactic requirement that each clause of φ′′′ has exactly 3 distinct literals. Whether
p = 0 or p = 1, one of the clauses is equivalent to (l1 ∨ l2), and the other evaluates to 1,
which is the identity for AND.

(c) If Ci has just 1 distinct literal l, then include (l ∨ p ∨ q) ∧ (l ∨ p ∨ ¬q) ∧ (l ∨ ¬p ∨ q) ∧
(l ∨ ¬p ∨ ¬q) as clauses of φ′′′. Regardless of the values of p and q, one of the four clauses
is equivalent to l, and the other 3 evaluate to 1.

We can see that the 3-CNF formula φ′′′. is satisfiable if and only if is satisfiable by inspecting each of
the three steps. Like the reduction from CIRCUIT-SAT to SAT, the construction of φ′ from φ in the
first step preserves satisfiability. The second step produces a CNF formula φ′′ that is algebraically
equivalent to φ′. The third step produces a 3-CNF formula φ′′′ that is effectively equivalent to φ′′,
since any assignment to the variables p and q produces a formula that is algebraically equivalent to
φ′′.

The polynomial part in the slides.

11 Clique is NP-Complete
A clique in an undirected graph G = (V,E) is a subset V ′ ⊆ V of vertices, each pair of which is
connected by an edge in E. In other words, a clique is a complete subgraph of G. The size of
a clique is the number of vertices it contains. The clique problem is the optimization problem of
finding a clique of maximum size in a Graph. The formal definition is:

CLIQUE = {〈G, k〉 |G is a graph containing a clique of size k} .

A naive way to see if a graph has a clique of size k is to list all k-subsets of size |V | then check

if they form a clique. It has the following running time Ω
(
k2

(
|V |
2

))
.

Theorem. 34.11 The clique problem is NP-complete.

9

10

12 The vertex-cover problem
A vertex cover of an undirected graph G = (V,E) is a subset V ′ ⊆ V such that (u, v) ∈ E, then
u ∈ V ′ or v ∈ V ′ (or both). That is, each vertex “covers” its incident edges, and a vertex cover for
G is a set of vertices that covers all the edges in E. The size of a vertex cover is the number of
vertices in it.

Figure 5: Example

The vertex-cover problem is to find a vertex cover of minimum size in a given graph or in
optimization terms

V ERTEX − COV ER = {〈G, k〉 | Grapg G has a vertex cover of size k} .

Theorem. 34.12 The vertex-cover problem is NP-complete.

11

12

