
Analysis of Algorithms
NP-Completeness

Andres Mendez-Vazquez

January 12, 2021

1 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

2 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

3 / 163

Polynomial Time

Algorithms Until Now
All the algorithms, we have studied this far have been polynomial-time
algorithms.

However
There is a collection of algorithms that cannot being solved in
polynomial time!!!

Example
In the Turing’s “Halting Problem,” we cannot even say if the
algorithm is going to stop!!!

4 / 163

Polynomial Time

Algorithms Until Now
All the algorithms, we have studied this far have been polynomial-time
algorithms.

However
There is a collection of algorithms that cannot being solved in
polynomial time!!!

Example
In the Turing’s “Halting Problem,” we cannot even say if the
algorithm is going to stop!!!

4 / 163

Polynomial Time

Algorithms Until Now
All the algorithms, we have studied this far have been polynomial-time
algorithms.

However
There is a collection of algorithms that cannot being solved in
polynomial time!!!

Example
In the Turing’s “Halting Problem,” we cannot even say if the
algorithm is going to stop!!!

4 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

5 / 163

The Intuition

Class P
They are algorithms that on inputs of size n have a worst case running
time of O

(
nk
)
for some constant k.

Class NP
Informally, the Non-Polynomial (NP) time algorithms are the ones that
cannot be solved in O

(
nk
)
for any constant k.

6 / 163

The Intuition

Class P
They are algorithms that on inputs of size n have a worst case running
time of O

(
nk
)
for some constant k.

Class NP
Informally, the Non-Polynomial (NP) time algorithms are the ones that
cannot be solved in O

(
nk
)
for any constant k.

6 / 163

There are still many thing to say about NP problems

But the one that is making everybody crazy
There is a theorem that hints to a possibility of NP = P

Thus
We have the following vision of the world of problems in computer science.

7 / 163

There are still many thing to say about NP problems

But the one that is making everybody crazy
There is a theorem that hints to a possibility of NP = P

Thus
We have the following vision of the world of problems in computer science.

7 / 163

The Two Views of The World

The Paradox

In
cr

e
a
si

n
g
 C

o
m

p
le

x
it

y

NP-Hard NP-Hard

NP-Complete

NP

P

P=NP=NP-Complete

8 / 163

However, There are differences pointing to P 6= NP

Shortest Path is in P
Even with negative edge weights, we can find a shortest path for a single
source in a directed graph G = (V,E) in O (V E) time.

Longest Path is in NP
Merely determining if a graph contains a simple path with at least a given
number of edges is NP .

It is more
A simple change on a polynomial time problem can move it from P to
NP .

9 / 163

However, There are differences pointing to P 6= NP

Shortest Path is in P
Even with negative edge weights, we can find a shortest path for a single
source in a directed graph G = (V,E) in O (V E) time.

Longest Path is in NP
Merely determining if a graph contains a simple path with at least a given
number of edges is NP .

It is more
A simple change on a polynomial time problem can move it from P to
NP .

9 / 163

However, There are differences pointing to P 6= NP

Shortest Path is in P
Even with negative edge weights, we can find a shortest path for a single
source in a directed graph G = (V,E) in O (V E) time.

Longest Path is in NP
Merely determining if a graph contains a simple path with at least a given
number of edges is NP .

It is more
A simple change on a polynomial time problem can move it from P to
NP .

9 / 163

And here, a simplified classification of problems

Different Complexity Classes
Complexity Class Model of Computation Resource Constraint

P Deterministic Turing Machine Solvable using poly(n) time
NP Non-deterministic Turing Machine Verifiable in poly(n) time

PSPACE Deterministic Turing Machine Solvable using poly(n) Space
EXPTIME Deterministic Turing Machine Solvable using 2poly(n) time
EXPSPACE Deterministic Turing Machine Space 2poly(n)

NL Non-deterministic Turing Machine Space O (log n)

10 / 163

Graphically

What is contained into what

NL

P

NP

PSPACE

EXPTIME

EXSPACE

Beyond the Turing Machine

Halting Problem

11 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

12 / 163

We start by formalizing the notion of polynomial time

Polynomial Time Problems
We generally regard these problems as tractable, but for philosophical, not
mathematical, reasons.

First
It is possible to regard a problem with complexity O

(
n100) as intractable,

really few practical problems require time complexities with such high
degree polynomial.

It is more
Experience has shown that once the first polynomial-time algorithm for a
problem has been discovered, more efficient algorithms often follow.

13 / 163

We start by formalizing the notion of polynomial time

Polynomial Time Problems
We generally regard these problems as tractable, but for philosophical, not
mathematical, reasons.

First
It is possible to regard a problem with complexity O

(
n100) as intractable,

really few practical problems require time complexities with such high
degree polynomial.

It is more
Experience has shown that once the first polynomial-time algorithm for a
problem has been discovered, more efficient algorithms often follow.

13 / 163

We start by formalizing the notion of polynomial time

Polynomial Time Problems
We generally regard these problems as tractable, but for philosophical, not
mathematical, reasons.

First
It is possible to regard a problem with complexity O

(
n100) as intractable,

really few practical problems require time complexities with such high
degree polynomial.

It is more
Experience has shown that once the first polynomial-time algorithm for a
problem has been discovered, more efficient algorithms often follow.

13 / 163

Reasons

Second
For many reasonable models of computation, a problem that can be solved
in polynomial time in one model can be solved in polynomial time in
another.

Example
Problems that can be solved in polynomial time by a serial random-access
machine can be solved in a Turing Machine.

Third
The class of polynomial-time solvable problems has nice closure
properties.
Since polynomials are closed under addition, multiplication, and
composition.

14 / 163

Reasons

Second
For many reasonable models of computation, a problem that can be solved
in polynomial time in one model can be solved in polynomial time in
another.

Example
Problems that can be solved in polynomial time by a serial random-access
machine can be solved in a Turing Machine.

Third
The class of polynomial-time solvable problems has nice closure
properties.
Since polynomials are closed under addition, multiplication, and
composition.

14 / 163

Reasons

Second
For many reasonable models of computation, a problem that can be solved
in polynomial time in one model can be solved in polynomial time in
another.

Example
Problems that can be solved in polynomial time by a serial random-access
machine can be solved in a Turing Machine.

Third
The class of polynomial-time solvable problems has nice closure
properties.
Since polynomials are closed under addition, multiplication, and
composition.

14 / 163

Reasons

Why?
For example, if the output of one polynomial time algorithm is fed into the
input of another, the composite algorithm is polynomial.

15 / 163

Polynomial time

To understand a polynomial time we need to define:
What is the meaning of an abstract problem?
How to encode problems.
A formal language framework.

16 / 163

Polynomial time

To understand a polynomial time we need to define:
What is the meaning of an abstract problem?
How to encode problems.
A formal language framework.

16 / 163

Polynomial time

To understand a polynomial time we need to define:
What is the meaning of an abstract problem?
How to encode problems.
A formal language framework.

16 / 163

Polynomial time

To understand a polynomial time we need to define:
What is the meaning of an abstract problem?
How to encode problems.
A formal language framework.

16 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

17 / 163

What do we need to understand the polynomial time?

What is an abstract problem?
We define an abstract problem Q to be a binary relation on a set I of
problem instances and a set S of problem solutions:

Q : I → S, Q(i) = s (1)
Q

I S

i Q(i)=s

18 / 163

Abstract problem as decision problems

Something Notable
The formulation is too general to our purpose!!!

Thus, we do a restriction
The theory of NP-completeness restricts attention to decision problems:

Those having a YES/NO solution.

Then
We can view an abstract decision problem as a function that maps the
instance set I to the solution set {0, 1}:

Q : I → {0, 1}

19 / 163

Abstract problem as decision problems

Something Notable
The formulation is too general to our purpose!!!

Thus, we do a restriction
The theory of NP-completeness restricts attention to decision problems:

Those having a YES/NO solution.

Then
We can view an abstract decision problem as a function that maps the
instance set I to the solution set {0, 1}:

Q : I → {0, 1}

19 / 163

Abstract problem as decision problems

Something Notable
The formulation is too general to our purpose!!!

Thus, we do a restriction
The theory of NP-completeness restricts attention to decision problems:

Those having a YES/NO solution.

Then
We can view an abstract decision problem as a function that maps the
instance set I to the solution set {0, 1}:

Q : I → {0, 1}

19 / 163

Abstract problem as decision problems

Something Notable
The formulation is too general to our purpose!!!

Thus, we do a restriction
The theory of NP-completeness restricts attention to decision problems:

Those having a YES/NO solution.

Then
We can view an abstract decision problem as a function that maps the
instance set I to the solution set {0, 1}:

Q : I → {0, 1}

19 / 163

Example

Example of optimization problem: SHORTEST-PATH
The problem SHORTEST-PATH is the one that associates each graph G
and two vertices with the shortest path between them.

Problem, this is a optimization problem
We need a decision problem!!!

What do we do?
We can cast a given optimization problem as a related decision problem by
imposing a bound on the value to be optimized.

20 / 163

Example

Example of optimization problem: SHORTEST-PATH
The problem SHORTEST-PATH is the one that associates each graph G
and two vertices with the shortest path between them.

Problem, this is a optimization problem
We need a decision problem!!!

What do we do?
We can cast a given optimization problem as a related decision problem by
imposing a bound on the value to be optimized.

20 / 163

Example

Example of optimization problem: SHORTEST-PATH
The problem SHORTEST-PATH is the one that associates each graph G
and two vertices with the shortest path between them.

Problem, this is a optimization problem
We need a decision problem!!!

What do we do?
We can cast a given optimization problem as a related decision problem by
imposing a bound on the value to be optimized.

20 / 163

Thus

Example PATH Problem
Given a undirected graph G, vertices u and v, and an integer k, we need
to answer the following question:

Does a path exist from u to v consisting of at most k edges?

21 / 163

In a more formal way

We have the following optimization problem
min

t
d [t]

s.t.d[v] ≤ d[u] + w(u, v) for each edge (u, v) ∈ E
d [s] = 0

Then, we have the following decision problem
PATH = {〈G, u, v, k〉 |G = (V,E) is an undirected graph,

u, v ∈ V, k ≥ 0 is an integer and there exist a path from
u to v in G consisting of at most k edges}

22 / 163

In a more formal way

We have the following optimization problem
min

t
d [t]

s.t.d[v] ≤ d[u] + w(u, v) for each edge (u, v) ∈ E
d [s] = 0

Then, we have the following decision problem
PATH = {〈G, u, v, k〉 |G = (V,E) is an undirected graph,

u, v ∈ V, k ≥ 0 is an integer and there exist a path from
u to v in G consisting of at most k edges}

22 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

23 / 163

Why Encoding?

We need to represent our problems in a way that the Turing machine
can understand.
That is called an encoding.

Example
Given a graph G = (V,E):

We can encode each vertex {1, 2, ...} as {0, 1, 10, ...}
Then, each edge, for example {1, 2} as {0, 1}
Clearly you need to encode some kind of delimiter for each element in
the description

24 / 163

Why Encoding?

We need to represent our problems in a way that the Turing machine
can understand.
That is called an encoding.

Example
Given a graph G = (V,E):

We can encode each vertex {1, 2, ...} as {0, 1, 10, ...}
Then, each edge, for example {1, 2} as {0, 1}
Clearly you need to encode some kind of delimiter for each element in
the description

24 / 163

Why Encoding?

We need to represent our problems in a way that the Turing machine
can understand.
That is called an encoding.

Example
Given a graph G = (V,E):

We can encode each vertex {1, 2, ...} as {0, 1, 10, ...}
Then, each edge, for example {1, 2} as {0, 1}
Clearly you need to encode some kind of delimiter for each element in
the description

24 / 163

Why Encoding?

We need to represent our problems in a way that the Turing machine
can understand.
That is called an encoding.

Example
Given a graph G = (V,E):

We can encode each vertex {1, 2, ...} as {0, 1, 10, ...}
Then, each edge, for example {1, 2} as {0, 1}
Clearly you need to encode some kind of delimiter for each element in
the description

24 / 163

Why Encoding?

We need to represent our problems in a way that the Turing machine
can understand.
That is called an encoding.

Example
Given a graph G = (V,E):

We can encode each vertex {1, 2, ...} as {0, 1, 10, ...}
Then, each edge, for example {1, 2} as {0, 1}
Clearly you need to encode some kind of delimiter for each element in
the description

24 / 163

Why a Turing machine or a RAM machine?

Given an encoding...
We need a computational device to solve the encoded problem

Some facts
This means that when the device solves a problem in reality solves the
encoded version of Q.
This encoded problem is called a concrete problem.
This tells us how important encoding is!!!

25 / 163

Why a Turing machine or a RAM machine?

Given an encoding...
We need a computational device to solve the encoded problem

Some facts
This means that when the device solves a problem in reality solves the
encoded version of Q.
This encoded problem is called a concrete problem.
This tells us how important encoding is!!!

25 / 163

Why a Turing machine or a RAM machine?

Given an encoding...
We need a computational device to solve the encoded problem

Some facts
This means that when the device solves a problem in reality solves the
encoded version of Q.
This encoded problem is called a concrete problem.
This tells us how important encoding is!!!

25 / 163

Why a Turing machine or a RAM machine?

Given an encoding...
We need a computational device to solve the encoded problem

Some facts
This means that when the device solves a problem in reality solves the
encoded version of Q.
This encoded problem is called a concrete problem.
This tells us how important encoding is!!!

25 / 163

It is more!!!

We want time complexities of O (T (n))
When it is provided with a problem instance i of length |i| = n.

Then
The algorithm can produce the solution in O (T (n)).

26 / 163

It is more!!!

We want time complexities of O (T (n))
When it is provided with a problem instance i of length |i| = n.

Then
The algorithm can produce the solution in O (T (n)).

26 / 163

Using Encodings

Something Notable
Given an abstract decision problem Q mapping an instance set I to {0, 1}.

Then
An encoding e : I −→ {0, 1}∗ can induce a related concrete decision
problem, denoted as by e (Q).

IMPORTANT
If the solution to an abstract-problem instance i ∈ I is Q (i) ∈ {0, 1}.
Then the solution to the concrete-problem instance e (i) ∈ {0, 1}∗ is
also Q (i).

27 / 163

Using Encodings

Something Notable
Given an abstract decision problem Q mapping an instance set I to {0, 1}.

Then
An encoding e : I −→ {0, 1}∗ can induce a related concrete decision
problem, denoted as by e (Q).

IMPORTANT
If the solution to an abstract-problem instance i ∈ I is Q (i) ∈ {0, 1}.
Then the solution to the concrete-problem instance e (i) ∈ {0, 1}∗ is
also Q (i).

27 / 163

Using Encodings

Something Notable
Given an abstract decision problem Q mapping an instance set I to {0, 1}.

Then
An encoding e : I −→ {0, 1}∗ can induce a related concrete decision
problem, denoted as by e (Q).

IMPORTANT
If the solution to an abstract-problem instance i ∈ I is Q (i) ∈ {0, 1}.
Then the solution to the concrete-problem instance e (i) ∈ {0, 1}∗ is
also Q (i).

27 / 163

Using Encodings

Something Notable
Given an abstract decision problem Q mapping an instance set I to {0, 1}.

Then
An encoding e : I −→ {0, 1}∗ can induce a related concrete decision
problem, denoted as by e (Q).

IMPORTANT
If the solution to an abstract-problem instance i ∈ I is Q (i) ∈ {0, 1}.
Then the solution to the concrete-problem instance e (i) ∈ {0, 1}∗ is
also Q (i).

27 / 163

What do we want?

Something Notable
We would like to extend the definition of polynomial-time solvability from
concrete problems to abstract problems by using encodings as the bridge.

IMPORTANT!!!
We want the definition to be independent of any particular encoding.

In other words
The efficiency of solving a problem should not depend on how the problem
is encoded.

HOWEVER, it depends quite heavily on the encoding.

28 / 163

What do we want?

Something Notable
We would like to extend the definition of polynomial-time solvability from
concrete problems to abstract problems by using encodings as the bridge.

IMPORTANT!!!
We want the definition to be independent of any particular encoding.

In other words
The efficiency of solving a problem should not depend on how the problem
is encoded.

HOWEVER, it depends quite heavily on the encoding.

28 / 163

What do we want?

Something Notable
We would like to extend the definition of polynomial-time solvability from
concrete problems to abstract problems by using encodings as the bridge.

IMPORTANT!!!
We want the definition to be independent of any particular encoding.

In other words
The efficiency of solving a problem should not depend on how the problem
is encoded.

HOWEVER, it depends quite heavily on the encoding.

28 / 163

An example of a really BAD situation

Imagine the following
You could have an algorithm that takes k as the sole input with an
algorithm that runs in Θ(k).

Now, if the integer is provided in an unary representation (Only ones)
Quite naive!!!

Then
Running time of the algorithm is O(n) on n-length inputs, which is
polynomial.

29 / 163

An example of a really BAD situation

Imagine the following
You could have an algorithm that takes k as the sole input with an
algorithm that runs in Θ(k).

Now, if the integer is provided in an unary representation (Only ones)
Quite naive!!!

Then
Running time of the algorithm is O(n) on n-length inputs, which is
polynomial.

29 / 163

An example of a really BAD situation

Imagine the following
You could have an algorithm that takes k as the sole input with an
algorithm that runs in Θ(k).

Now, if the integer is provided in an unary representation (Only ones)
Quite naive!!!

Then
Running time of the algorithm is O(n) on n-length inputs, which is
polynomial.

29 / 163

For example

Now, use the more natural binary representation of the integer k
Now, given a binary representation:

I Thus the input length is n = blog kc+ 1→ Θ (k) = Θ (2n)

Remark
Thus, depending on the encoding, the algorithm runs in either polynomial
or superpolynomial time.

30 / 163

For example

Now, use the more natural binary representation of the integer k
Now, given a binary representation:

I Thus the input length is n = blog kc+ 1→ Θ (k) = Θ (2n)

Remark
Thus, depending on the encoding, the algorithm runs in either polynomial
or superpolynomial time.

30 / 163

For example

Now, use the more natural binary representation of the integer k
Now, given a binary representation:

I Thus the input length is n = blog kc+ 1→ Θ (k) = Θ (2n)

Remark
Thus, depending on the encoding, the algorithm runs in either polynomial
or superpolynomial time.

30 / 163

More Observations

Thus
How we encode an abstract problem matters quite a bit to how we
understand it!!!

It is more
We cannot talk about solving an abstract problem without specifying the
encoding!!!

Nevertheless
If we rule out expensive encodings such as unary ones, the actual encoding
of a problem makes little difference to whether the problem can be solved
in polynomial time.

31 / 163

More Observations

Thus
How we encode an abstract problem matters quite a bit to how we
understand it!!!

It is more
We cannot talk about solving an abstract problem without specifying the
encoding!!!

Nevertheless
If we rule out expensive encodings such as unary ones, the actual encoding
of a problem makes little difference to whether the problem can be solved
in polynomial time.

31 / 163

More Observations

Thus
How we encode an abstract problem matters quite a bit to how we
understand it!!!

It is more
We cannot talk about solving an abstract problem without specifying the
encoding!!!

Nevertheless
If we rule out expensive encodings such as unary ones, the actual encoding
of a problem makes little difference to whether the problem can be solved
in polynomial time.

31 / 163

Some properties of the polynomial encoding

First
We say that a function f : {0, 1}∗ → {0, 1}∗ is polynomial time
computable, if there exists a polynomial time algorithm A that, given any
input x ∈ {0, 1}∗, produces as output f(x).

Second
For some set I of problem instances, we say that two encodings e1 and e2
are polynomially related

if there exist two polynomial time computable functions f12 and f21
such that for any i ∈ I, we have f12 (e1(i)) = e2(i) and
f21 (e2(i)) = e1(i).

32 / 163

Some properties of the polynomial encoding

First
We say that a function f : {0, 1}∗ → {0, 1}∗ is polynomial time
computable, if there exists a polynomial time algorithm A that, given any
input x ∈ {0, 1}∗, produces as output f(x).

Second
For some set I of problem instances, we say that two encodings e1 and e2
are polynomially related

if there exist two polynomial time computable functions f12 and f21
such that for any i ∈ I, we have f12 (e1(i)) = e2(i) and
f21 (e2(i)) = e1(i).

32 / 163

Some properties of the polynomial encoding

First
We say that a function f : {0, 1}∗ → {0, 1}∗ is polynomial time
computable, if there exists a polynomial time algorithm A that, given any
input x ∈ {0, 1}∗, produces as output f(x).

Second
For some set I of problem instances, we say that two encodings e1 and e2
are polynomially related

if there exist two polynomial time computable functions f12 and f21
such that for any i ∈ I, we have f12 (e1(i)) = e2(i) and
f21 (e2(i)) = e1(i).

32 / 163

Some properties of the polynomial encoding

First
We say that a function f : {0, 1}∗ → {0, 1}∗ is polynomial time
computable, if there exists a polynomial time algorithm A that, given any
input x ∈ {0, 1}∗, produces as output f(x).

Second
For some set I of problem instances, we say that two encodings e1 and e2
are polynomially related

if there exist two polynomial time computable functions f12 and f21
such that for any i ∈ I, we have f12 (e1(i)) = e2(i) and
f21 (e2(i)) = e1(i).

32 / 163

Observation

We have that
A polynomial-time algorithm can compute the encoding e2 (i) from the
encoding e1 (i), and vice versa.

Something Notable
If two encodings e1 and e2 of an abstract problem are polynomially related

We have that if the problem is polynomial-time solvable or not is
independent of which encoding we use.

33 / 163

Observation

We have that
A polynomial-time algorithm can compute the encoding e2 (i) from the
encoding e1 (i), and vice versa.

Something Notable
If two encodings e1 and e2 of an abstract problem are polynomially related

We have that if the problem is polynomial-time solvable or not is
independent of which encoding we use.

33 / 163

Observation

We have that
A polynomial-time algorithm can compute the encoding e2 (i) from the
encoding e1 (i), and vice versa.

Something Notable
If two encodings e1 and e2 of an abstract problem are polynomially related

We have that if the problem is polynomial-time solvable or not is
independent of which encoding we use.

33 / 163

Observation

We have that
A polynomial-time algorithm can compute the encoding e2 (i) from the
encoding e1 (i), and vice versa.

Something Notable
If two encodings e1 and e2 of an abstract problem are polynomially related

We have that if the problem is polynomial-time solvable or not is
independent of which encoding we use.

33 / 163

An important lemma

Lemma 34.1
Let Q be an abstract decision problem on an instance set I, and let e1 and
e2 be polynomially related encodings on I. Then, e1(Q) ∈ P if and only if
e2(Q) ∈ P .

Proof in the board

34 / 163

An important lemma

Lemma 34.1
Let Q be an abstract decision problem on an instance set I, and let e1 and
e2 be polynomially related encodings on I. Then, e1(Q) ∈ P if and only if
e2(Q) ∈ P .

Proof in the board

34 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

35 / 163

Formal language framework to handle representation

Definitions
1 An alphabet Σ is a finite set of symbols.
2 A language L over Σ is any set of strings made up of symbols from

Σ∗.
3 The empty language is ε.
4 The language of all strings over Σ is denoted Σ∗.

36 / 163

Formal language framework to handle representation

Definitions
1 An alphabet Σ is a finite set of symbols.
2 A language L over Σ is any set of strings made up of symbols from

Σ∗.
3 The empty language is ε.
4 The language of all strings over Σ is denoted Σ∗.

36 / 163

Formal language framework to handle representation

Definitions
1 An alphabet Σ is a finite set of symbols.
2 A language L over Σ is any set of strings made up of symbols from

Σ∗.
3 The empty language is ε.
4 The language of all strings over Σ is denoted Σ∗.

36 / 163

Formal language framework to handle representation

Definitions
1 An alphabet Σ is a finite set of symbols.
2 A language L over Σ is any set of strings made up of symbols from

Σ∗.
3 The empty language is ε.
4 The language of all strings over Σ is denoted Σ∗.

36 / 163

Special languages and operations

Union, intersection and complement
L1
⋂
L2 = {x ∈ Σ∗| x ∈ L1∧x ∈ L2}

L1
⋃
L2 = {x ∈ Σ∗| x ∈ L1∨x ∈ L2}

L̄ = {x ∈ Σ∗| x 6= L}

Concatenation
L = {x1x2 | x1 ∈ L1 and x2 ∈ L2}

Kleene closure
L∗ = {ε}

⋃
L2⋃L3⋃ ...

37 / 163

Special languages and operations

Union, intersection and complement
L1
⋂
L2 = {x ∈ Σ∗| x ∈ L1∧x ∈ L2}

L1
⋃
L2 = {x ∈ Σ∗| x ∈ L1∨x ∈ L2}

L̄ = {x ∈ Σ∗| x 6= L}

Concatenation
L = {x1x2 | x1 ∈ L1 and x2 ∈ L2}

Kleene closure
L∗ = {ε}

⋃
L2⋃L3⋃ ...

37 / 163

Special languages and operations

Union, intersection and complement
L1
⋂
L2 = {x ∈ Σ∗| x ∈ L1∧x ∈ L2}

L1
⋃
L2 = {x ∈ Σ∗| x ∈ L1∨x ∈ L2}

L̄ = {x ∈ Σ∗| x 6= L}

Concatenation
L = {x1x2 | x1 ∈ L1 and x2 ∈ L2}

Kleene closure
L∗ = {ε}

⋃
L2⋃L3⋃ ...

37 / 163

Special languages and operations

Union, intersection and complement
L1
⋂
L2 = {x ∈ Σ∗| x ∈ L1∧x ∈ L2}

L1
⋃
L2 = {x ∈ Σ∗| x ∈ L1∨x ∈ L2}

L̄ = {x ∈ Σ∗| x 6= L}

Concatenation
L = {x1x2 | x1 ∈ L1 and x2 ∈ L2}

Kleene closure
L∗ = {ε}

⋃
L2⋃L3⋃ ...

37 / 163

Special languages and operations

Union, intersection and complement
L1
⋂
L2 = {x ∈ Σ∗| x ∈ L1∧x ∈ L2}

L1
⋃
L2 = {x ∈ Σ∗| x ∈ L1∨x ∈ L2}

L̄ = {x ∈ Σ∗| x 6= L}

Concatenation
L = {x1x2 | x1 ∈ L1 and x2 ∈ L2}

Kleene closure
L∗ = {ε}

⋃
L2⋃L3⋃ ...

37 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

38 / 163

Observation

We have that
From the point of view of language theory,

The set of instances for any decision problem Q is simply the set
∑∗

with
∑

= {0, 1}.

Something Notable
Q is entirely characterized by instances that produce a YES or ONE
answer.

39 / 163

Observation

We have that
From the point of view of language theory,

The set of instances for any decision problem Q is simply the set
∑∗

with
∑

= {0, 1}.

Something Notable
Q is entirely characterized by instances that produce a YES or ONE
answer.

39 / 163

Observation

We have that
From the point of view of language theory,

The set of instances for any decision problem Q is simply the set
∑∗

with
∑

= {0, 1}.

Something Notable
Q is entirely characterized by instances that produce a YES or ONE
answer.

39 / 163

This allow us to define a language that is solvable by Q

We can write it down as the language

L = {x ∈ Σ∗|Q(x) = 1} (2)

40 / 163

Thus, we can express the duality Decision
Problem-Algorithm

Important
The formal-language framework allows to express concisely the relation
between decision problems and algorithms that solve them.

I

i

Decision Problems Set of Algorithms

41 / 163

Next

Given an instance x of a problem
An algorithm A accepts a string x ∈ {0, 1}∗, if given x, the
algorithm’s output is A(x) = 1.

The language accepted by an algorithm A is the set of strings

L = {x ∈ {0, 1}∗ |A (x) = 1} . (3)

42 / 163

Next

Given an instance x of a problem
An algorithm A accepts a string x ∈ {0, 1}∗, if given x, the
algorithm’s output is A(x) = 1.

The language accepted by an algorithm A is the set of strings

L = {x ∈ {0, 1}∗ |A (x) = 1} . (3)

42 / 163

Nevertheless

We have a problem
Even if language L is accepted by an algorithm A.
The algorithm will not necessarily reject a string x /∈ L provided as input to
it.

I Example: The algorithm could loop forever.

43 / 163

Nevertheless

We have a problem
Even if language L is accepted by an algorithm A.
The algorithm will not necessarily reject a string x /∈ L provided as input to
it.

I Example: The algorithm could loop forever.

43 / 163

Nevertheless

We have a problem
Even if language L is accepted by an algorithm A.
The algorithm will not necessarily reject a string x /∈ L provided as input to
it.

I Example: The algorithm could loop forever.

43 / 163

Nevertheless

We need to be more stringent
A language L is decided by an algorithm A if every binary string in L is accepted
by A and every binary string not in L is rejected by A.

L

U
U-L

Algorithm A

0

1

44 / 163

Finally

Thus, a language L is decided by A, if
Given a string x ∈ {0, 1}∗, only one of two things can happen:

An algorithm A accepts, if given x ∈ L the algorithm outputs
A(x) = 1.
An algorithm A rejects, if if given x /∈ L the algorithm outputs
A(x) = 0.

45 / 163

Finally

Thus, a language L is decided by A, if
Given a string x ∈ {0, 1}∗, only one of two things can happen:

An algorithm A accepts, if given x ∈ L the algorithm outputs
A(x) = 1.
An algorithm A rejects, if if given x /∈ L the algorithm outputs
A(x) = 0.

45 / 163

Finally

Thus, a language L is decided by A, if
Given a string x ∈ {0, 1}∗, only one of two things can happen:

An algorithm A accepts, if given x ∈ L the algorithm outputs
A(x) = 1.
An algorithm A rejects, if if given x /∈ L the algorithm outputs
A(x) = 0.

45 / 163

Now, it is possible to define acceptance in polynomial time

We have that
A language L is accepted in polynomial time by an algorithm A, if it
is accepted by A in polynomial time:

I There exists a constant k such that for any n-length string x ∈ L ⇒
algorithm A accepts x in time O

(
nk
)
.

Thus
A language L is decided in polynomial time by an algorithm A, if
there exists a constant k such that for any n-length string x ∈ {0, 1}∗:

I The algorithm correctly decides whether x ∈ L in time O
(
nk
)
.

46 / 163

Now, it is possible to define acceptance in polynomial time

We have that
A language L is accepted in polynomial time by an algorithm A, if it
is accepted by A in polynomial time:

I There exists a constant k such that for any n-length string x ∈ L ⇒
algorithm A accepts x in time O

(
nk
)
.

Thus
A language L is decided in polynomial time by an algorithm A, if
there exists a constant k such that for any n-length string x ∈ {0, 1}∗:

I The algorithm correctly decides whether x ∈ L in time O
(
nk
)
.

46 / 163

Now, it is possible to define acceptance in polynomial time

We have that
A language L is accepted in polynomial time by an algorithm A, if it
is accepted by A in polynomial time:

I There exists a constant k such that for any n-length string x ∈ L ⇒
algorithm A accepts x in time O

(
nk
)
.

Thus
A language L is decided in polynomial time by an algorithm A, if
there exists a constant k such that for any n-length string x ∈ {0, 1}∗:

I The algorithm correctly decides whether x ∈ L in time O
(
nk
)
.

46 / 163

Now, it is possible to define acceptance in polynomial time

We have that
A language L is accepted in polynomial time by an algorithm A, if it
is accepted by A in polynomial time:

I There exists a constant k such that for any n-length string x ∈ L ⇒
algorithm A accepts x in time O

(
nk
)
.

Thus
A language L is decided in polynomial time by an algorithm A, if
there exists a constant k such that for any n-length string x ∈ {0, 1}∗:

I The algorithm correctly decides whether x ∈ L in time O
(
nk
)
.

46 / 163

Example of polynomial accepted problems

Example of polynomial accepted problem

PATH = {〈G, u, v, k〉 |G = (V,E) is an undirected graph,
u, v ∈ V, k ≥ 0 is an integer and there exist a path from
u to v in G consisting of at most k edges}

What does the polynomial times accepting algorithm do?
One polynomial-time accepting algorithm does the following

I It verifies that G encodes an undirected graph.
I It calculate the shortest path between vertices and compares the

number of edges of that path with k.
I If it finds such a path outputs ONE and halt.
I If it does not, it runs forever!!! ⇐= PROBLEM!!!

47 / 163

Example of polynomial accepted problems

Example of polynomial accepted problem

PATH = {〈G, u, v, k〉 |G = (V,E) is an undirected graph,
u, v ∈ V, k ≥ 0 is an integer and there exist a path from
u to v in G consisting of at most k edges}

What does the polynomial times accepting algorithm do?
One polynomial-time accepting algorithm does the following

I It verifies that G encodes an undirected graph.
I It calculate the shortest path between vertices and compares the

number of edges of that path with k.
I If it finds such a path outputs ONE and halt.
I If it does not, it runs forever!!! ⇐= PROBLEM!!!

47 / 163

Example of polynomial accepted problems

Example of polynomial accepted problem

PATH = {〈G, u, v, k〉 |G = (V,E) is an undirected graph,
u, v ∈ V, k ≥ 0 is an integer and there exist a path from
u to v in G consisting of at most k edges}

What does the polynomial times accepting algorithm do?
One polynomial-time accepting algorithm does the following

I It verifies that G encodes an undirected graph.
I It calculate the shortest path between vertices and compares the

number of edges of that path with k.
I If it finds such a path outputs ONE and halt.
I If it does not, it runs forever!!! ⇐= PROBLEM!!!

47 / 163

Example of polynomial accepted problems

Example of polynomial accepted problem

PATH = {〈G, u, v, k〉 |G = (V,E) is an undirected graph,
u, v ∈ V, k ≥ 0 is an integer and there exist a path from
u to v in G consisting of at most k edges}

What does the polynomial times accepting algorithm do?
One polynomial-time accepting algorithm does the following

I It verifies that G encodes an undirected graph.
I It calculate the shortest path between vertices and compares the

number of edges of that path with k.
I If it finds such a path outputs ONE and halt.
I If it does not, it runs forever!!! ⇐= PROBLEM!!!

47 / 163

Example of polynomial accepted problems

Example of polynomial accepted problem

PATH = {〈G, u, v, k〉 |G = (V,E) is an undirected graph,
u, v ∈ V, k ≥ 0 is an integer and there exist a path from
u to v in G consisting of at most k edges}

What does the polynomial times accepting algorithm do?
One polynomial-time accepting algorithm does the following

I It verifies that G encodes an undirected graph.
I It calculate the shortest path between vertices and compares the

number of edges of that path with k.
I If it finds such a path outputs ONE and halt.
I If it does not, it runs forever!!! ⇐= PROBLEM!!!

47 / 163

Example of polynomial accepted problems

Example of polynomial accepted problem

PATH = {〈G, u, v, k〉 |G = (V,E) is an undirected graph,
u, v ∈ V, k ≥ 0 is an integer and there exist a path from
u to v in G consisting of at most k edges}

What does the polynomial times accepting algorithm do?
One polynomial-time accepting algorithm does the following

I It verifies that G encodes an undirected graph.
I It calculate the shortest path between vertices and compares the

number of edges of that path with k.
I If it finds such a path outputs ONE and halt.
I If it does not, it runs forever!!! ⇐= PROBLEM!!!

47 / 163

What we will like to have...

A decision algorithm
Because we want to avoid the infinite loop, we do the following...

Steps
It verifies that G encodes an undirected graph.
It calculate the shortest path between vertices and compares the
number of edges of that path with k.
If it finds such a path outputs ONE and halt.
If it does not find such a path output ZERO and halt.

48 / 163

What we will like to have...

A decision algorithm
Because we want to avoid the infinite loop, we do the following...

Steps
It verifies that G encodes an undirected graph.
It calculate the shortest path between vertices and compares the
number of edges of that path with k.
If it finds such a path outputs ONE and halt.
If it does not find such a path output ZERO and halt.

48 / 163

What we will like to have...

A decision algorithm
Because we want to avoid the infinite loop, we do the following...

Steps
It verifies that G encodes an undirected graph.
It calculate the shortest path between vertices and compares the
number of edges of that path with k.
If it finds such a path outputs ONE and halt.
If it does not find such a path output ZERO and halt.

48 / 163

What we will like to have...

A decision algorithm
Because we want to avoid the infinite loop, we do the following...

Steps
It verifies that G encodes an undirected graph.
It calculate the shortest path between vertices and compares the
number of edges of that path with k.
If it finds such a path outputs ONE and halt.
If it does not find such a path output ZERO and halt.

48 / 163

What we will like to have...

A decision algorithm
Because we want to avoid the infinite loop, we do the following...

Steps
It verifies that G encodes an undirected graph.
It calculate the shortest path between vertices and compares the
number of edges of that path with k.
If it finds such a path outputs ONE and halt.
If it does not find such a path output ZERO and halt.

48 / 163

However
There are problems
As the Turing’s Halting Problem where:

There exists an accepting algorithm
But no decision algorithm exist

What!?
It turns out there are perfectly decent computational problems for which
no algorithms exist at all!

For example, an arithmetical version of what will talk later, the SAT
problem
Given a polynomial equation in many variables, perhaps:

x3yz + 2y4z2 − 7xy5z = 6

are there integer values of x, y, z that satisfy it?
49 / 163

However
There are problems
As the Turing’s Halting Problem where:

There exists an accepting algorithm
But no decision algorithm exist

What!?
It turns out there are perfectly decent computational problems for which
no algorithms exist at all!

For example, an arithmetical version of what will talk later, the SAT
problem
Given a polynomial equation in many variables, perhaps:

x3yz + 2y4z2 − 7xy5z = 6

are there integer values of x, y, z that satisfy it?
49 / 163

However
There are problems
As the Turing’s Halting Problem where:

There exists an accepting algorithm
But no decision algorithm exist

What!?
It turns out there are perfectly decent computational problems for which
no algorithms exist at all!

For example, an arithmetical version of what will talk later, the SAT
problem
Given a polynomial equation in many variables, perhaps:

x3yz + 2y4z2 − 7xy5z = 6

are there integer values of x, y, z that satisfy it?
49 / 163

However
There are problems
As the Turing’s Halting Problem where:

There exists an accepting algorithm
But no decision algorithm exist

What!?
It turns out there are perfectly decent computational problems for which
no algorithms exist at all!

For example, an arithmetical version of what will talk later, the SAT
problem
Given a polynomial equation in many variables, perhaps:

x3yz + 2y4z2 − 7xy5z = 6

are there integer values of x, y, z that satisfy it?
49 / 163

However
There are problems
As the Turing’s Halting Problem where:

There exists an accepting algorithm
But no decision algorithm exist

What!?
It turns out there are perfectly decent computational problems for which
no algorithms exist at all!

For example, an arithmetical version of what will talk later, the SAT
problem
Given a polynomial equation in many variables, perhaps:

x3yz + 2y4z2 − 7xy5z = 6

are there integer values of x, y, z that satisfy it?
49 / 163

Actually

Something Notable
There is no algorithm that solves this problem.
No algorithm at all, polynomial, exponential, doubly exponential, or worse!

I Such problems are called unsolvable.

This was discovered by
The first unsolvable problem was discovered in 1936 by Alan M. Turing, then a
student of mathematics at Cambridge, England.

50 / 163

Actually

Something Notable
There is no algorithm that solves this problem.
No algorithm at all, polynomial, exponential, doubly exponential, or worse!

I Such problems are called unsolvable.

This was discovered by
The first unsolvable problem was discovered in 1936 by Alan M. Turing, then a
student of mathematics at Cambridge, England.

50 / 163

Actually

Something Notable
There is no algorithm that solves this problem.
No algorithm at all, polynomial, exponential, doubly exponential, or worse!

I Such problems are called unsolvable.

This was discovered by
The first unsolvable problem was discovered in 1936 by Alan M. Turing, then a
student of mathematics at Cambridge, England.

50 / 163

Actually
Something Notable

There is no algorithm that solves this problem.
No algorithm at all, polynomial, exponential, doubly exponential, or worse!

I Such problems are called unsolvable.

This was discovered by
The first unsolvable problem was discovered in 1936 by Alan M. Turing, then a
student of mathematics at Cambridge, England.

50 / 163

What did he do?

Basic Idea
1 Suppose that given a program p and an input x.

1 There is an algorithm, called TERMINATE, that takes p and x and tell
us if p will ever terminate in x.

51 / 163

What did he do?

Basic Idea
1 Suppose that given a program p and an input x.

1 There is an algorithm, called TERMINATE, that takes p and x and tell
us if p will ever terminate in x.

51 / 163

Then
We have the following program
function PARADOX(z : file)

1 if TERMINATES(z, z) goto 1

Notice what paradox does
It terminates if and only if program z does not terminate when given its
own code as input.

What if run PARADOX(PARADOX)
Funny PARADOX!!!

1 Case I : The PARADOX terminates -> Then TERMINATE says
false!!!

2 Case II : The PARADOX never terminates -> Then TERMINATE
says true!!!

52 / 163

Then
We have the following program
function PARADOX(z : file)

1 if TERMINATES(z, z) goto 1

Notice what paradox does
It terminates if and only if program z does not terminate when given its
own code as input.

What if run PARADOX(PARADOX)
Funny PARADOX!!!

1 Case I : The PARADOX terminates -> Then TERMINATE says
false!!!

2 Case II : The PARADOX never terminates -> Then TERMINATE
says true!!!

52 / 163

Then
We have the following program
function PARADOX(z : file)

1 if TERMINATES(z, z) goto 1

Notice what paradox does
It terminates if and only if program z does not terminate when given its
own code as input.

What if run PARADOX(PARADOX)
Funny PARADOX!!!

1 Case I : The PARADOX terminates -> Then TERMINATE says
false!!!

2 Case II : The PARADOX never terminates -> Then TERMINATE
says true!!!

52 / 163

Then
We have the following program
function PARADOX(z : file)

1 if TERMINATES(z, z) goto 1

Notice what paradox does
It terminates if and only if program z does not terminate when given its
own code as input.

What if run PARADOX(PARADOX)
Funny PARADOX!!!

1 Case I : The PARADOX terminates -> Then TERMINATE says
false!!!

2 Case II : The PARADOX never terminates -> Then TERMINATE
says true!!!

52 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

53 / 163

Complexity Classes

Then
We can informally define a complexity class as a set of languages.

Now
The membership to this class is determined by a complexity measure,
such as running time, of an algorithm that determines whether a given
string x belongs to language L.

However
The actual definition of a complexity class is somewhat more technical.

54 / 163

Complexity Classes

Then
We can informally define a complexity class as a set of languages.

Now
The membership to this class is determined by a complexity measure,
such as running time, of an algorithm that determines whether a given
string x belongs to language L.

However
The actual definition of a complexity class is somewhat more technical.

54 / 163

Complexity Classes

Then
We can informally define a complexity class as a set of languages.

Now
The membership to this class is determined by a complexity measure,
such as running time, of an algorithm that determines whether a given
string x belongs to language L.

However
The actual definition of a complexity class is somewhat more technical.

54 / 163

Thus

We can use this framework to say the following
P = {L ⊆ {0, 1}∗ | There exists an algorithm A that decides L in
polynomial time}

I In fact, P is also the class of languages that can be accepted in
polynomial time

Theorem 34.2
P={L| L is accepted by a polynomial-time algorithm}

55 / 163

Thus

We can use this framework to say the following
P = {L ⊆ {0, 1}∗ | There exists an algorithm A that decides L in
polynomial time}

I In fact, P is also the class of languages that can be accepted in
polynomial time

Theorem 34.2
P={L| L is accepted by a polynomial-time algorithm}

55 / 163

Thus

We can use this framework to say the following
P = {L ⊆ {0, 1}∗ | There exists an algorithm A that decides L in
polynomial time}

I In fact, P is also the class of languages that can be accepted in
polynomial time

Theorem 34.2
P={L| L is accepted by a polynomial-time algorithm}

55 / 163

Exercises

From Cormen’s book solve
34.1-1
34.1-2
34.1-3
34.1-4
34.1-5
34.1-6

56 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

57 / 163

What is verification?

Intuitive definition
Given an instance of a decision problem:

For example 〈G, u, v, k〉 of PATH.

Then
We are given :

A path p from A to F .
Then, check if the length of p is at most k (i.e. Belongs to
PATH), then it is called a “certificate.”

58 / 163

What is verification?

Intuitive definition
Given an instance of a decision problem:

For example 〈G, u, v, k〉 of PATH.

Then
We are given :

A path p from A to F .
Then, check if the length of p is at most k (i.e. Belongs to
PATH), then it is called a “certificate.”

58 / 163

What is verification?

Intuitive definition
Given an instance of a decision problem:

For example 〈G, u, v, k〉 of PATH.

Then
We are given :

A path p from A to F .
Then, check if the length of p is at most k (i.e. Belongs to
PATH), then it is called a “certificate.”

58 / 163

What is verification?

Intuitive definition
Given an instance of a decision problem:

For example 〈G, u, v, k〉 of PATH.

Then
We are given :

A path p from A to F .
Then, check if the length of p is at most k (i.e. Belongs to
PATH), then it is called a “certificate.”

58 / 163

It is more

In fact
We would like to be able to verify in polynomial time the certificate of
certain types of problems.
For example:

I Polynomial time problems.
I Non-Polynomial time problems.

59 / 163

It is more

In fact
We would like to be able to verify in polynomial time the certificate of
certain types of problems.
For example:

I Polynomial time problems.
I Non-Polynomial time problems.

59 / 163

It is more

In fact
We would like to be able to verify in polynomial time the certificate of
certain types of problems.
For example:

I Polynomial time problems.
I Non-Polynomial time problems.

59 / 163

It is more

In fact
We would like to be able to verify in polynomial time the certificate of
certain types of problems.
For example:

I Polynomial time problems.
I Non-Polynomial time problems.

59 / 163

Example of verifiable problems

Hamiltonian cycle
A Hamiltonian cycle of an undirected graph G = (V, E) is a
simple cycle that contains each vertex in V .

60 / 163

As a formal language

Does a graph G have a Hamiltonian cycle?

HAM − CY CLES = {〈G〉 |G is a Hamiltonian graph} (4)

How do we solve this decision problem?
Can we even solve it?

61 / 163

As a formal language

Does a graph G have a Hamiltonian cycle?

HAM − CY CLES = {〈G〉 |G is a Hamiltonian graph} (4)

How do we solve this decision problem?
Can we even solve it?

61 / 163

As a formal language

Does a graph G have a Hamiltonian cycle?

HAM − CY CLES = {〈G〉 |G is a Hamiltonian graph} (4)

How do we solve this decision problem?
Can we even solve it?

61 / 163

Decision algorithm for Hamiltonian

Given an instance < G > and encode it
If we use the “reasonable” encoding of a graph as its adjacency
matrix.

1 2 3 4 5
1
2
3
4
5

0 0 0 1 0
0 0 0 1 1
0 0 0 0 1
1 1 0 0 1
0 1 1 1 0

62 / 163

Thus

We can then say the following
If the number of vertices is m = Ω (

√
n)

We have then
√

n︷ ︸︸ ︷
1 2 3 4 5

√
n

1
2
3
4
5

0 0 0 1 0
0 0 0 1 1
0 0 0 0 1
1 1 0 0 1
0 1 1 1 0

63 / 163

Thus

We can then say the following
If the number of vertices is m = Ω (

√
n)

We have then
√

n︷ ︸︸ ︷
1 2 3 4 5

√
n

1
2
3
4
5

0 0 0 1 0
0 0 0 1 1
0 0 0 0 1
1 1 0 0 1
0 1 1 1 0

63 / 163

Then

The encoding size is
√
n×
√
n = n = |〈G〉|

64 / 163

Then, I decide to go NAIVE!!!

The algorithm does the following
It lists the all permutations of the vertices of G and then checks each
permutation to see if it is a Hamiltonian path.

65 / 163

Complexity

Performance analysis on the previous algorithm
We have then m = Ω(

√
n)

Then, for our naive algorithm produce m! permutations.
Then Ω(m!) = Ω(

√
n!) = Ω(2

√
n) EXPONENTIAL TIME!!!

Something Notable
Still, with no-naive algorithm the Hamiltonian is not solvable in polynomial
time!

66 / 163

Complexity

Performance analysis on the previous algorithm
We have then m = Ω(

√
n)

Then, for our naive algorithm produce m! permutations.
Then Ω(m!) = Ω(

√
n!) = Ω(2

√
n) EXPONENTIAL TIME!!!

Something Notable
Still, with no-naive algorithm the Hamiltonian is not solvable in polynomial
time!

66 / 163

Complexity

Performance analysis on the previous algorithm
We have then m = Ω(

√
n)

Then, for our naive algorithm produce m! permutations.
Then Ω(m!) = Ω(

√
n!) = Ω(2

√
n) EXPONENTIAL TIME!!!

Something Notable
Still, with no-naive algorithm the Hamiltonian is not solvable in polynomial
time!

66 / 163

Complexity

Performance analysis on the previous algorithm
We have then m = Ω(

√
n)

Then, for our naive algorithm produce m! permutations.
Then Ω(m!) = Ω(

√
n!) = Ω(2

√
n) EXPONENTIAL TIME!!!

Something Notable
Still, with no-naive algorithm the Hamiltonian is not solvable in polynomial
time!

66 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

67 / 163

Verification Algorithms

A more formal definition in terms of formal languages
A verification algorithm is a two-argument algorithm A, where:

1 There is an input string x (Instance of the problem).
2 There is a binary string y, certificate (The possible solution).

Then, a two-argument algorithm A verifies
A verifies x by using a certificate y.
Then, it verifies x by taking y and outputting ONE i.e. A (x, y) = 1.

68 / 163

Verification Algorithms

A more formal definition in terms of formal languages
A verification algorithm is a two-argument algorithm A, where:

1 There is an input string x (Instance of the problem).
2 There is a binary string y, certificate (The possible solution).

Then, a two-argument algorithm A verifies
A verifies x by using a certificate y.
Then, it verifies x by taking y and outputting ONE i.e. A (x, y) = 1.

68 / 163

Verification Algorithms

A more formal definition in terms of formal languages
A verification algorithm is a two-argument algorithm A, where:

1 There is an input string x (Instance of the problem).
2 There is a binary string y, certificate (The possible solution).

Then, a two-argument algorithm A verifies
A verifies x by using a certificate y.
Then, it verifies x by taking y and outputting ONE i.e. A (x, y) = 1.

68 / 163

Verification Algorithms

A more formal definition in terms of formal languages
A verification algorithm is a two-argument algorithm A, where:

1 There is an input string x (Instance of the problem).
2 There is a binary string y, certificate (The possible solution).

Then, a two-argument algorithm A verifies
A verifies x by using a certificate y.
Then, it verifies x by taking y and outputting ONE i.e. A (x, y) = 1.

68 / 163

Verification Algorithms

A more formal definition in terms of formal languages
A verification algorithm is a two-argument algorithm A, where:

1 There is an input string x (Instance of the problem).
2 There is a binary string y, certificate (The possible solution).

Then, a two-argument algorithm A verifies
A verifies x by using a certificate y.
Then, it verifies x by taking y and outputting ONE i.e. A (x, y) = 1.

68 / 163

Finally we have

The language verified by a verification algorithm is
L = {x ∈ {0, 1}∗|∃y ∈ 0, 1∗such that A(x, y) = 1}

Important remark!
For any string x /∈ L there must be no certificate proving x ∈ L
(consistency is a must).

69 / 163

Finally we have

The language verified by a verification algorithm is
L = {x ∈ {0, 1}∗|∃y ∈ 0, 1∗such that A(x, y) = 1}

Important remark!
For any string x /∈ L there must be no certificate proving x ∈ L
(consistency is a must).

69 / 163

The NP class

Definition
The complexity class NP is the class of the languages that can be
verified by a polynomial time algorithm.

L = {x ∈ {0, 1}∗|∃y ∈ {0, 1}∗ with |y| = O(|x|c) such that A(x, y) = 1}

Note
We say that A verifies language L in polynomial time.
Clearly, the size of the certificate must be polynomial in size!!!

70 / 163

The NP class

Definition
The complexity class NP is the class of the languages that can be
verified by a polynomial time algorithm.

L = {x ∈ {0, 1}∗|∃y ∈ {0, 1}∗ with |y| = O(|x|c) such that A(x, y) = 1}

Note
We say that A verifies language L in polynomial time.
Clearly, the size of the certificate must be polynomial in size!!!

70 / 163

The NP class

Definition
The complexity class NP is the class of the languages that can be
verified by a polynomial time algorithm.

L = {x ∈ {0, 1}∗|∃y ∈ {0, 1}∗ with |y| = O(|x|c) such that A(x, y) = 1}

Note
We say that A verifies language L in polynomial time.
Clearly, the size of the certificate must be polynomial in size!!!

70 / 163

Observation of the class NP and co-NP

Example
HAM-CYCLE is NP, thus NP class is not empty.
Observation: L ∈ P → L ∈ NP or P ⊆ NP .

Now, Do we have P = NP?
There is evidence that P 6= NP basically because

I the existence of languages that are NP-Complete.

And actually, it is worse
We still cannot answer if L ∈ NP → L̄ ∈ NP (closure under
complement).

71 / 163

Observation of the class NP and co-NP

Example
HAM-CYCLE is NP, thus NP class is not empty.
Observation: L ∈ P → L ∈ NP or P ⊆ NP .

Now, Do we have P = NP?
There is evidence that P 6= NP basically because

I the existence of languages that are NP-Complete.

And actually, it is worse
We still cannot answer if L ∈ NP → L̄ ∈ NP (closure under
complement).

71 / 163

Observation of the class NP and co-NP

Example
HAM-CYCLE is NP, thus NP class is not empty.
Observation: L ∈ P → L ∈ NP or P ⊆ NP .

Now, Do we have P = NP?
There is evidence that P 6= NP basically because

I the existence of languages that are NP-Complete.

And actually, it is worse
We still cannot answer if L ∈ NP → L̄ ∈ NP (closure under
complement).

71 / 163

Observation of the class NP and co-NP

Example
HAM-CYCLE is NP, thus NP class is not empty.
Observation: L ∈ P → L ∈ NP or P ⊆ NP .

Now, Do we have P = NP?
There is evidence that P 6= NP basically because

I the existence of languages that are NP-Complete.

And actually, it is worse
We still cannot answer if L ∈ NP → L̄ ∈ NP (closure under
complement).

71 / 163

Observation of the class NP and co-NP

Example
HAM-CYCLE is NP, thus NP class is not empty.
Observation: L ∈ P → L ∈ NP or P ⊆ NP .

Now, Do we have P = NP?
There is evidence that P 6= NP basically because

I the existence of languages that are NP-Complete.

And actually, it is worse
We still cannot answer if L ∈ NP → L̄ ∈ NP (closure under
complement).

71 / 163

Another way to see this

The co−NP class
The class called co-NP is the set of languages L such that L̄ ∈ NP

Something Notable
We can restate the question of whether NP is closed under complement
as whether NP = co−NP

In addition because P is closed under complement
We have P ⊆ NP ∩ co−NP , however no one knows whether
P = NP ∩ co−NP .

72 / 163

Another way to see this

The co−NP class
The class called co-NP is the set of languages L such that L̄ ∈ NP

Something Notable
We can restate the question of whether NP is closed under complement
as whether NP = co−NP

In addition because P is closed under complement
We have P ⊆ NP ∩ co−NP , however no one knows whether
P = NP ∩ co−NP .

72 / 163

Another way to see this

The co−NP class
The class called co-NP is the set of languages L such that L̄ ∈ NP

Something Notable
We can restate the question of whether NP is closed under complement
as whether NP = co−NP

In addition because P is closed under complement
We have P ⊆ NP ∩ co−NP , however no one knows whether
P = NP ∩ co−NP .

72 / 163

The four possibilities between the complexity classes

We have that

73 / 163

Exercises

From Cormen’s book solve
34.2-1
34.2-2
34.2-5
34.2-6
34.2-9
34.2-10

74 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

75 / 163

Before entering reducibility

Why P 6= NP?
Existence of NP-Complete problems.
Problem!!! There is the following property:

I If any NP-Complete problem can be solved in polynomial time,
then every problem in NP has a polynomial time solution.

Not only that
The NP-Complete problems are the hardest in the NP class, and this
is related the concept of polynomial time reducibility.

76 / 163

Before entering reducibility

Why P 6= NP?
Existence of NP-Complete problems.
Problem!!! There is the following property:

I If any NP-Complete problem can be solved in polynomial time,
then every problem in NP has a polynomial time solution.

Not only that
The NP-Complete problems are the hardest in the NP class, and this
is related the concept of polynomial time reducibility.

76 / 163

Before entering reducibility

Why P 6= NP?
Existence of NP-Complete problems.
Problem!!! There is the following property:

I If any NP-Complete problem can be solved in polynomial time,
then every problem in NP has a polynomial time solution.

Not only that
The NP-Complete problems are the hardest in the NP class, and this
is related the concept of polynomial time reducibility.

76 / 163

Before entering reducibility

Why P 6= NP?
Existence of NP-Complete problems.
Problem!!! There is the following property:

I If any NP-Complete problem can be solved in polynomial time,
then every problem in NP has a polynomial time solution.

Not only that
The NP-Complete problems are the hardest in the NP class, and this
is related the concept of polynomial time reducibility.

76 / 163

Reducibility

Rough definition
A problem M can be reduced to M ′ if any instance of M can be easily
rephrased in terms of M ′.

Formal definition
A language L is polynomial time reducible to a language L′ written
L ≤p L

′ if there exist a polynomial time computable function
f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗

x ∈ L ⇐⇒ f (x) ∈ L′

77 / 163

Reducibility

Rough definition
A problem M can be reduced to M ′ if any instance of M can be easily
rephrased in terms of M ′.

Formal definition
A language L is polynomial time reducible to a language L′ written
L ≤p L

′ if there exist a polynomial time computable function
f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗

x ∈ L ⇐⇒ f (x) ∈ L′

77 / 163

Graphically

The Mapping

From the figure
Here, f is called a reduction function, and the polynomial time
algorithm F that computes f is called reduction algorithm.

78 / 163

Graphically

The Mapping

From the figure
Here, f is called a reduction function, and the polynomial time
algorithm F that computes f is called reduction algorithm.

78 / 163

Properties of f

Polynomial time reductions
Polynomial time reductions give us a powerful tool for proving that various
languages belong to P .

How?
Lemma: If L1, L2 ⊆ {0, 1}∗ are languages such that L1 ≤p L2, then

L2 ∈ P implies that L1 ∈ P .
Proof

79 / 163

Properties of f

Polynomial time reductions
Polynomial time reductions give us a powerful tool for proving that various
languages belong to P .

How?
Lemma: If L1, L2 ⊆ {0, 1}∗ are languages such that L1 ≤p L2, then

L2 ∈ P implies that L1 ∈ P .
Proof

79 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

80 / 163

NP-Completeness

Definition
A language L ⊆ {0, 1} ∗ is a NP-Complete problem (NPC) if:

1 L ∈ NP
2 L′ ≤p L for every L′ ∈ NP

Note
If a language L satisfies property 2, but not necessarily property 1, we say
that L is NP-Hard (NPH).

81 / 163

NP-Completeness

Definition
A language L ⊆ {0, 1} ∗ is a NP-Complete problem (NPC) if:

1 L ∈ NP
2 L′ ≤p L for every L′ ∈ NP

Note
If a language L satisfies property 2, but not necessarily property 1, we say
that L is NP-Hard (NPH).

81 / 163

By The Way

NP can also be defined as
The set of decision problems that can be solved in polynomial time on a
non-deterministic Turing machine.

Actually, it looks like a multi-threaded backtracking

82 / 163

By The Way

NP can also be defined as
The set of decision problems that can be solved in polynomial time on a
non-deterministic Turing machine.

Actually, it looks like a multi-threaded backtracking

82 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

83 / 163

Now, the infamous theorem

Theorem
If any NP-Complete problem is polynomial time solvable, then
P = NP . Equivalently, if any problem in NP is not polynomial
time solvable, then no NP-Complete problem is polynomial time
solvable.

Proof
Suppose that L ∈ P and also that L ∈ NPC. For any L′ ∈ NP , we have
L′ ≤p L by property 2 of the definition of NPC. Thus, by the previous
Lemma, we have that L’ ∈ P .

84 / 163

Now, the infamous theorem

Theorem
If any NP-Complete problem is polynomial time solvable, then
P = NP . Equivalently, if any problem in NP is not polynomial
time solvable, then no NP-Complete problem is polynomial time
solvable.

Proof
Suppose that L ∈ P and also that L ∈ NPC. For any L′ ∈ NP , we have
L′ ≤p L by property 2 of the definition of NPC. Thus, by the previous
Lemma, we have that L’ ∈ P .

84 / 163

However

Most Theoretical Computer Scientist have the following view

85 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

86 / 163

Our first NPC - Circuit Satisfiability

We have basic boolean combinatorial elements.

87 / 163

Basic definition

Definition
A boolean combinatorial circuit consist of one or more boolean
combinatorial elements interconnected with wires.

88 / 163

Circuit satisfiability problem

Problem
Given a boolean combinatorial circuit composed of AND, OR, and NOT
gates, Is it satisfiable? Output is ONE!!!

Formally
CIRCUIT − SAT =

{〈C〉 |C is a satisfiable boolean combinatorial circuit}

89 / 163

Circuit satisfiability problem

Problem
Given a boolean combinatorial circuit composed of AND, OR, and NOT
gates, Is it satisfiable? Output is ONE!!!

Formally
CIRCUIT − SAT =

{〈C〉 |C is a satisfiable boolean combinatorial circuit}

89 / 163

Circuit satisfiability problem

Example: An assignment that outputs ONE

90 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

91 / 163

First, It is NP-Problem

Lemma
The circuit-satisfiability belong to the class NP.

Proof
We need to give a polynomial-time algorithm A such that

1 One of the inputs to A is a boolean combinatorial circuit C.
2 The other input is a certificate corresponding to an assignment of

boolean values to the wires in C.

92 / 163

First, It is NP-Problem

Lemma
The circuit-satisfiability belong to the class NP.

Proof
We need to give a polynomial-time algorithm A such that

1 One of the inputs to A is a boolean combinatorial circuit C.
2 The other input is a certificate corresponding to an assignment of

boolean values to the wires in C.

92 / 163

First, It is NP-Problem

Lemma
The circuit-satisfiability belong to the class NP.

Proof
We need to give a polynomial-time algorithm A such that

1 One of the inputs to A is a boolean combinatorial circuit C.
2 The other input is a certificate corresponding to an assignment of

boolean values to the wires in C.

92 / 163

First, It is NP-Problem

Lemma
The circuit-satisfiability belong to the class NP.

Proof
We need to give a polynomial-time algorithm A such that

1 One of the inputs to A is a boolean combinatorial circuit C.
2 The other input is a certificate corresponding to an assignment of

boolean values to the wires in C.

92 / 163

Second, It is NP-Hard

The general idea for A is:
For each circuit gate check that the output value is correctly
computed and corresponds to the values provided by the certificate.

Then
Then if the output of the entire circuit is one, the algorithm A
outputs 1, otherwise 0.
Because the certificate is polynomial in size with respect to the circuit
C =⇒ A runs in polynomial time.

I Actually, with a good implementation, linear time is enough.

Finally
A cannot be fooled by any certificate to believe that a unsatisfiable
circuit is accepted. Then CIRCUIT-SAT ∈ NP.

93 / 163

Second, It is NP-Hard

The general idea for A is:
For each circuit gate check that the output value is correctly
computed and corresponds to the values provided by the certificate.

Then
Then if the output of the entire circuit is one, the algorithm A
outputs 1, otherwise 0.
Because the certificate is polynomial in size with respect to the circuit
C =⇒ A runs in polynomial time.

I Actually, with a good implementation, linear time is enough.

Finally
A cannot be fooled by any certificate to believe that a unsatisfiable
circuit is accepted. Then CIRCUIT-SAT ∈ NP.

93 / 163

Second, It is NP-Hard

The general idea for A is:
For each circuit gate check that the output value is correctly
computed and corresponds to the values provided by the certificate.

Then
Then if the output of the entire circuit is one, the algorithm A
outputs 1, otherwise 0.
Because the certificate is polynomial in size with respect to the circuit
C =⇒ A runs in polynomial time.

I Actually, with a good implementation, linear time is enough.

Finally
A cannot be fooled by any certificate to believe that a unsatisfiable
circuit is accepted. Then CIRCUIT-SAT ∈ NP.

93 / 163

Second, It is NP-Hard

The general idea for A is:
For each circuit gate check that the output value is correctly
computed and corresponds to the values provided by the certificate.

Then
Then if the output of the entire circuit is one, the algorithm A
outputs 1, otherwise 0.
Because the certificate is polynomial in size with respect to the circuit
C =⇒ A runs in polynomial time.

I Actually, with a good implementation, linear time is enough.

Finally
A cannot be fooled by any certificate to believe that a unsatisfiable
circuit is accepted. Then CIRCUIT-SAT ∈ NP.

93 / 163

Second, It is NP-Hard

The general idea for A is:
For each circuit gate check that the output value is correctly
computed and corresponds to the values provided by the certificate.

Then
Then if the output of the entire circuit is one, the algorithm A
outputs 1, otherwise 0.
Because the certificate is polynomial in size with respect to the circuit
C =⇒ A runs in polynomial time.

I Actually, with a good implementation, linear time is enough.

Finally
A cannot be fooled by any certificate to believe that a unsatisfiable
circuit is accepted. Then CIRCUIT-SAT ∈ NP.

93 / 163

Proving CIRCUIT-SAT is NP-Hard

Lemma
The circuit sat problem is NP-hard.

Proof:
Given a language L ∈ NP , we want a polynomial-time algorithm F that
can compute a reduction map f such that:

It maps every binary string x to a circuit C = f (x) such that x ∈ L if
and only if C ∈CIRCUIT-SAT.

94 / 163

Proving CIRCUIT-SAT is NP-Hard

Lemma
The circuit sat problem is NP-hard.

Proof:
Given a language L ∈ NP , we want a polynomial-time algorithm F that
can compute a reduction map f such that:

It maps every binary string x to a circuit C = f (x) such that x ∈ L if
and only if C ∈CIRCUIT-SAT.

94 / 163

Proving CIRCUIT-SAT is NP-Hard

Lemma
The circuit sat problem is NP-hard.

Proof:
Given a language L ∈ NP , we want a polynomial-time algorithm F that
can compute a reduction map f such that:

It maps every binary string x to a circuit C = f (x) such that x ∈ L if
and only if C ∈CIRCUIT-SAT.

94 / 163

Now

First
Given a L ∈ NP , there exists an algorithm A that verifies L in
polynomial time.
Now T (n) = O

(
nk
)
denotes the worst case time of A, and the

length of the certificate is O
(
nk
)
.

Thus
The algorithm F to be constructed will use the two input algorithm A to
compute the reduction function f .

95 / 163

Now

First
Given a L ∈ NP , there exists an algorithm A that verifies L in
polynomial time.
Now T (n) = O

(
nk
)
denotes the worst case time of A, and the

length of the certificate is O
(
nk
)
.

Thus
The algorithm F to be constructed will use the two input algorithm A to
compute the reduction function f .

95 / 163

Now

First
Given a L ∈ NP , there exists an algorithm A that verifies L in
polynomial time.
Now T (n) = O

(
nk
)
denotes the worst case time of A, and the

length of the certificate is O
(
nk
)
.

Thus
The algorithm F to be constructed will use the two input algorithm A to
compute the reduction function f .

95 / 163

Basic ideas: A Computer Program

A Program
It can be seen as a sequence of instructions!!!

Each instruction
It encodes an operation to be performed, addresses of operand in memory,
and a final address to store the result.

Each program has a counter, PC
This counter keeps tracking of the instruction to be executed.
It increments automatically upon fetching each instruction.
It can be changed by an instruction, so it can be used to implement
loops and branches.

96 / 163

Basic ideas: A Computer Program

A Program
It can be seen as a sequence of instructions!!!

Each instruction
It encodes an operation to be performed, addresses of operand in memory,
and a final address to store the result.

Each program has a counter, PC
This counter keeps tracking of the instruction to be executed.
It increments automatically upon fetching each instruction.
It can be changed by an instruction, so it can be used to implement
loops and branches.

96 / 163

Basic ideas: A Computer Program

A Program
It can be seen as a sequence of instructions!!!

Each instruction
It encodes an operation to be performed, addresses of operand in memory,
and a final address to store the result.

Each program has a counter, PC
This counter keeps tracking of the instruction to be executed.
It increments automatically upon fetching each instruction.
It can be changed by an instruction, so it can be used to implement
loops and branches.

96 / 163

Basic ideas: A Computer Program

A Program
It can be seen as a sequence of instructions!!!

Each instruction
It encodes an operation to be performed, addresses of operand in memory,
and a final address to store the result.

Each program has a counter, PC
This counter keeps tracking of the instruction to be executed.
It increments automatically upon fetching each instruction.
It can be changed by an instruction, so it can be used to implement
loops and branches.

96 / 163

Basic ideas: A Computer Program

A Program
It can be seen as a sequence of instructions!!!

Each instruction
It encodes an operation to be performed, addresses of operand in memory,
and a final address to store the result.

Each program has a counter, PC
This counter keeps tracking of the instruction to be executed.
It increments automatically upon fetching each instruction.
It can be changed by an instruction, so it can be used to implement
loops and branches.

96 / 163

Configuration

Something Notable
At any point during the execution of a program, the computer’s memory
holds the entire state of the computation.

Thus
We call any particular state of computer memory a configuration.

IMPORTANT
We can view the execution of an instruction as mapping one configuration
to another.

97 / 163

Configuration

Something Notable
At any point during the execution of a program, the computer’s memory
holds the entire state of the computation.

Thus
We call any particular state of computer memory a configuration.

IMPORTANT
We can view the execution of an instruction as mapping one configuration
to another.

97 / 163

Configuration

Something Notable
At any point during the execution of a program, the computer’s memory
holds the entire state of the computation.

Thus
We call any particular state of computer memory a configuration.

IMPORTANT
We can view the execution of an instruction as mapping one configuration
to another.

97 / 163

Thus

We have that
The computer hardware that accomplishes this mapping can be
implemented as a boolean combinational circuit.

Then
We denote this boolean circuit as M.

98 / 163

Thus

We have that
The computer hardware that accomplishes this mapping can be
implemented as a boolean combinational circuit.

Then
We denote this boolean circuit as M.

98 / 163

What we want
Let L be any language in NP
There must exist an algorithm A that verifies L in polynomial time

Thus
The algorithm F that we shall construct uses the two-input algorithm A
to compute the reduction function f .

Now
Let T (n) = O

(
nk
)
denote the worst-case running time of algorithm A on a

n-length input for some k ≥ 1.
Remember:

I The running time of A is actually a polynomial in the total input size,
which includes both an input string and a certificate.

I The certificate is polynomial in the length n of the input.
F Thus the running time is polynomial in n.

99 / 163

What we want
Let L be any language in NP
There must exist an algorithm A that verifies L in polynomial time

Thus
The algorithm F that we shall construct uses the two-input algorithm A
to compute the reduction function f .

Now
Let T (n) = O

(
nk
)
denote the worst-case running time of algorithm A on a

n-length input for some k ≥ 1.
Remember:

I The running time of A is actually a polynomial in the total input size,
which includes both an input string and a certificate.

I The certificate is polynomial in the length n of the input.
F Thus the running time is polynomial in n.

99 / 163

What we want
Let L be any language in NP
There must exist an algorithm A that verifies L in polynomial time

Thus
The algorithm F that we shall construct uses the two-input algorithm A
to compute the reduction function f .

Now
Let T (n) = O

(
nk
)
denote the worst-case running time of algorithm A on a

n-length input for some k ≥ 1.
Remember:

I The running time of A is actually a polynomial in the total input size,
which includes both an input string and a certificate.

I The certificate is polynomial in the length n of the input.
F Thus the running time is polynomial in n.

99 / 163

What we want
Let L be any language in NP
There must exist an algorithm A that verifies L in polynomial time

Thus
The algorithm F that we shall construct uses the two-input algorithm A
to compute the reduction function f .

Now
Let T (n) = O

(
nk
)
denote the worst-case running time of algorithm A on a

n-length input for some k ≥ 1.
Remember:

I The running time of A is actually a polynomial in the total input size,
which includes both an input string and a certificate.

I The certificate is polynomial in the length n of the input.
F Thus the running time is polynomial in n.

99 / 163

What we want
Let L be any language in NP
There must exist an algorithm A that verifies L in polynomial time

Thus
The algorithm F that we shall construct uses the two-input algorithm A
to compute the reduction function f .

Now
Let T (n) = O

(
nk
)
denote the worst-case running time of algorithm A on a

n-length input for some k ≥ 1.
Remember:

I The running time of A is actually a polynomial in the total input size,
which includes both an input string and a certificate.

I The certificate is polynomial in the length n of the input.
F Thus the running time is polynomial in n.

99 / 163

What we want
Let L be any language in NP
There must exist an algorithm A that verifies L in polynomial time

Thus
The algorithm F that we shall construct uses the two-input algorithm A
to compute the reduction function f .

Now
Let T (n) = O

(
nk
)
denote the worst-case running time of algorithm A on a

n-length input for some k ≥ 1.
Remember:

I The running time of A is actually a polynomial in the total input size,
which includes both an input string and a certificate.

I The certificate is polynomial in the length n of the input.
F Thus the running time is polynomial in n.

99 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

100 / 163

Basic ideas: Algorithm A representation

We can represent the computation of A as a sequence of
configurations.

Start with configuration c0, then finish with configuration cT (n).

101 / 163

Then
The idea

The Combinatorial
 Circuit

PC

PC

PC

PC

Auxiliary Machine
State

Auxiliary Machine
State

Auxiliary Machine
State

Auxiliary Machine
State

WORKING
STORAGE

WORKING
STORAGE

WORKING
STORAGE

WORKING
STORAGE

0/1 OUTPUT

102 / 163

Basic ideas: Algorithm A representation

Then, we need C = f(x)
For this, we do:

I n = |x|

Next
Then, we constructs a combinatorial circuit C ′ consisting of T (n) copies
of M

The output of the ci circuit finish as input in ci+1.

Remark
The configuration finishes as values on the wires connecting copies.

103 / 163

Basic ideas: Algorithm A representation

Then, we need C = f(x)
For this, we do:

I n = |x|

Next
Then, we constructs a combinatorial circuit C ′ consisting of T (n) copies
of M

The output of the ci circuit finish as input in ci+1.

Remark
The configuration finishes as values on the wires connecting copies.

103 / 163

Basic ideas: Algorithm A representation

Then, we need C = f(x)
For this, we do:

I n = |x|

Next
Then, we constructs a combinatorial circuit C ′ consisting of T (n) copies
of M

The output of the ci circuit finish as input in ci+1.

Remark
The configuration finishes as values on the wires connecting copies.

103 / 163

Basic ideas: Algorithm A representation

Then, we need C = f(x)
For this, we do:

I n = |x|

Next
Then, we constructs a combinatorial circuit C ′ consisting of T (n) copies
of M

The output of the ci circuit finish as input in ci+1.

Remark
The configuration finishes as values on the wires connecting copies.

103 / 163

The polynomial time algorithm

What F must do:
1 Given x it needs to compute circuit C(x) = f(x).
2 Satisfiable ⇐⇒ there exists a certificate y such that A (x, y) = 1.

104 / 163

The polynomial time algorithm

What F must do:
1 Given x it needs to compute circuit C(x) = f(x).
2 Satisfiable ⇐⇒ there exists a certificate y such that A (x, y) = 1.

104 / 163

The F process

Given x:
It first computes n = |x|.

Next
Then it computes C ′ (a combinatorial circuit) by using T (n) copies of
M .

Then
Then, the initial configuration of C ′ consists in the input A (x, y), the
output is configuration CT (n)

105 / 163

The F process

Given x:
It first computes n = |x|.

Next
Then it computes C ′ (a combinatorial circuit) by using T (n) copies of
M .

Then
Then, the initial configuration of C ′ consists in the input A (x, y), the
output is configuration CT (n)

105 / 163

The F process

Given x:
It first computes n = |x|.

Next
Then it computes C ′ (a combinatorial circuit) by using T (n) copies of
M .

Then
Then, the initial configuration of C ′ consists in the input A (x, y), the
output is configuration CT (n)

105 / 163

Finally C

We then use C ′ to construct C
First, F modifies circuit C ′ in the following way:

I It hardwires the inputs to C ′ corresponding to the program
for A:

F The initial program counter
F The input x
F The initial state of memory

106 / 163

Finally C

We then use C ′ to construct C
First, F modifies circuit C ′ in the following way:

I It hardwires the inputs to C ′ corresponding to the program
for A:

F The initial program counter
F The input x
F The initial state of memory

106 / 163

Finally C

We then use C ′ to construct C
First, F modifies circuit C ′ in the following way:

I It hardwires the inputs to C ′ corresponding to the program
for A:

F The initial program counter
F The input x
F The initial state of memory

106 / 163

Finally C

We then use C ′ to construct C
First, F modifies circuit C ′ in the following way:

I It hardwires the inputs to C ′ corresponding to the program
for A:

F The initial program counter
F The input x
F The initial state of memory

106 / 163

Finally C

We then use C ′ to construct C
First, F modifies circuit C ′ in the following way:

I It hardwires the inputs to C ′ corresponding to the program
for A:

F The initial program counter
F The input x
F The initial state of memory

106 / 163

Further

Something Notable
The only remaining inputs to the circuit correspond to the certificate y.

Then
All outputs to the circuit are ignored, except the one bit of cT (n)
corresponding to a computation on A(x, y).

Because the only free input is the certificate y
Ah!! We have that C (y) = A (x, y)!!!

107 / 163

Further

Something Notable
The only remaining inputs to the circuit correspond to the certificate y.

Then
All outputs to the circuit are ignored, except the one bit of cT (n)
corresponding to a computation on A(x, y).

Because the only free input is the certificate y
Ah!! We have that C (y) = A (x, y)!!!

107 / 163

Further

Something Notable
The only remaining inputs to the circuit correspond to the certificate y.

Then
All outputs to the circuit are ignored, except the one bit of cT (n)
corresponding to a computation on A(x, y).

Because the only free input is the certificate y
Ah!! We have that C (y) = A (x, y)!!!

107 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

108 / 163

What we need to prove

First
F correctly computes a reduction function f .

I C is satisfiable if and only if there is a certificate y such that
A(x, y) = 1.

Second
We need to show that F runs in polynomial time.

109 / 163

What we need to prove

First
F correctly computes a reduction function f .

I C is satisfiable if and only if there is a certificate y such that
A(x, y) = 1.

Second
We need to show that F runs in polynomial time.

109 / 163

First, F correctly computes a reduction function f

We do the following
To show that F correctly computes a reduction function, let us suppose
that there exists a certificate y of length O(nk) such that A(x, y) = 1.

⇐=
If we apply the bits of y to the inputs of C, the output of C is
C (y) = A (x, y) = 1. Thus, if a certificate exists, then C is
satisfiable.

=⇒
Now, suppose that C is satisfiable. Hence, there exists an input y to
C such that C (y) = 1, from which we conclude that A (x, y) = 1.

110 / 163

First, F correctly computes a reduction function f

We do the following
To show that F correctly computes a reduction function, let us suppose
that there exists a certificate y of length O(nk) such that A(x, y) = 1.

⇐=
If we apply the bits of y to the inputs of C, the output of C is
C (y) = A (x, y) = 1. Thus, if a certificate exists, then C is
satisfiable.

=⇒
Now, suppose that C is satisfiable. Hence, there exists an input y to
C such that C (y) = 1, from which we conclude that A (x, y) = 1.

110 / 163

First, F correctly computes a reduction function f

We do the following
To show that F correctly computes a reduction function, let us suppose
that there exists a certificate y of length O(nk) such that A(x, y) = 1.

⇐=
If we apply the bits of y to the inputs of C, the output of C is
C (y) = A (x, y) = 1. Thus, if a certificate exists, then C is
satisfiable.

=⇒
Now, suppose that C is satisfiable. Hence, there exists an input y to
C such that C (y) = 1, from which we conclude that A (x, y) = 1.

110 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

111 / 163

Next, we need to show that F runs in polynomial time

With respect to the polynomial reduction
The length of the input x is n, and the certificate y is O(nk).

Next
Circuit M implementing the computer hardware has polynomial size.

Properties
The circuit C consists of at most t = O

(
nk
)
copies of M .

112 / 163

Next, we need to show that F runs in polynomial time

With respect to the polynomial reduction
The length of the input x is n, and the certificate y is O(nk).

Next
Circuit M implementing the computer hardware has polynomial size.

Properties
The circuit C consists of at most t = O

(
nk
)
copies of M .

112 / 163

Next, we need to show that F runs in polynomial time

With respect to the polynomial reduction
The length of the input x is n, and the certificate y is O(nk).

Next
Circuit M implementing the computer hardware has polynomial size.

Properties
The circuit C consists of at most t = O

(
nk
)
copies of M .

112 / 163

Finally!!!

In conclusion
The language CIRCUIT-SAT is therefore at least as hard as any
language in NP, and since it belongs to NP, it is NP-complete.

Theorem
The circuit satisfiability problem is NP-Complete.

113 / 163

Finally!!!

In conclusion
The language CIRCUIT-SAT is therefore at least as hard as any
language in NP, and since it belongs to NP, it is NP-complete.

Theorem
The circuit satisfiability problem is NP-Complete.

113 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

114 / 163

Proving NP-Complete

Several theorems exist to make our life easier
We have the following

Lemma
If L is a Language such that L′ ≤P L for some L′ ∈ NPC, Then L is
NP-Hard. Moreover, if L ∈ NP , then L ∈ NPC.

115 / 163

Proving NP-Complete

Several theorems exist to make our life easier
We have the following

Lemma
If L is a Language such that L′ ≤P L for some L′ ∈ NPC, Then L is
NP-Hard. Moreover, if L ∈ NP , then L ∈ NPC.

115 / 163

So, we have the following strategy

Proceed as follows for proving that something is NP-Complete
1 Prove L ∈ NP .
2 Select a known NP-Complete language L′.
3 Describe an algorithm that computes function f mapping every

instance x ∈ {0, 1}∗ of L′ to an instance f (x) of L.
4 Prove that the function f satisfies: x ∈ L′ if and only if f (x) ∈ L L

for all x ∈ {0, 1}∗.
5 Prove the polynomial time of the algorithm.

116 / 163

So, we have the following strategy

Proceed as follows for proving that something is NP-Complete
1 Prove L ∈ NP .
2 Select a known NP-Complete language L′.
3 Describe an algorithm that computes function f mapping every

instance x ∈ {0, 1}∗ of L′ to an instance f (x) of L.
4 Prove that the function f satisfies: x ∈ L′ if and only if f (x) ∈ L L

for all x ∈ {0, 1}∗.
5 Prove the polynomial time of the algorithm.

116 / 163

So, we have the following strategy

Proceed as follows for proving that something is NP-Complete
1 Prove L ∈ NP .
2 Select a known NP-Complete language L′.
3 Describe an algorithm that computes function f mapping every

instance x ∈ {0, 1}∗ of L′ to an instance f (x) of L.
4 Prove that the function f satisfies: x ∈ L′ if and only if f (x) ∈ L L

for all x ∈ {0, 1}∗.
5 Prove the polynomial time of the algorithm.

116 / 163

So, we have the following strategy

Proceed as follows for proving that something is NP-Complete
1 Prove L ∈ NP .
2 Select a known NP-Complete language L′.
3 Describe an algorithm that computes function f mapping every

instance x ∈ {0, 1}∗ of L′ to an instance f (x) of L.
4 Prove that the function f satisfies: x ∈ L′ if and only if f (x) ∈ L L

for all x ∈ {0, 1}∗.
5 Prove the polynomial time of the algorithm.

116 / 163

So, we have the following strategy

Proceed as follows for proving that something is NP-Complete
1 Prove L ∈ NP .
2 Select a known NP-Complete language L′.
3 Describe an algorithm that computes function f mapping every

instance x ∈ {0, 1}∗ of L′ to an instance f (x) of L.
4 Prove that the function f satisfies: x ∈ L′ if and only if f (x) ∈ L L

for all x ∈ {0, 1}∗.
5 Prove the polynomial time of the algorithm.

116 / 163

Exercises

From Cormen’s book solve
34.3-1
34.3-2
34.3-5
34.3-6
34.3-7
34.3-8

117 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

118 / 163

Formula Satisfiability (SAT)

An instance of SAT is a boolean formula φ composed of
1 n boolean variables x1, x2, ..., xn.
2 m boolean connectives (∧ ,∨, ¬, →, ⇐⇒).
3 Parentheses.

A small example
φ = ((x1 → x2) ∨ ¬ ((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2

119 / 163

Formula Satisfiability (SAT)

An instance of SAT is a boolean formula φ composed of
1 n boolean variables x1, x2, ..., xn.
2 m boolean connectives (∧ ,∨, ¬, →, ⇐⇒).
3 Parentheses.

A small example
φ = ((x1 → x2) ∨ ¬ ((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2

119 / 163

Formula Satisfiability (SAT)

An instance of SAT is a boolean formula φ composed of
1 n boolean variables x1, x2, ..., xn.
2 m boolean connectives (∧ ,∨, ¬, →, ⇐⇒).
3 Parentheses.

A small example
φ = ((x1 → x2) ∨ ¬ ((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2

119 / 163

Formula Satisfiability (SAT)

An instance of SAT is a boolean formula φ composed of
1 n boolean variables x1, x2, ..., xn.
2 m boolean connectives (∧ ,∨, ¬, →, ⇐⇒).
3 Parentheses.

A small example
φ = ((x1 → x2) ∨ ¬ ((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2

119 / 163

The satisfiability problem asks whether a given boolean
formula is satisfiable

In formal-language terms

SAT = {〈φ〉 |φ is a satisfiable boolean formula}

Example: Given 〈x1 = 0, x2 = 0, x3 = 1, x4 = 1〉

φ = ((0→ 0) ∨ ¬((¬0↔ 1) ∨ 1)) ∧ ¬0
= (1 ∨ ¬ (1 ∨ 1)) ∧ 1
= (1 ∨ 0) ∧ 1
= 1

120 / 163

The satisfiability problem asks whether a given boolean
formula is satisfiable

In formal-language terms

SAT = {〈φ〉 |φ is a satisfiable boolean formula}

Example: Given 〈x1 = 0, x2 = 0, x3 = 1, x4 = 1〉

φ = ((0→ 0) ∨ ¬((¬0↔ 1) ∨ 1)) ∧ ¬0
= (1 ∨ ¬ (1 ∨ 1)) ∧ 1
= (1 ∨ 0) ∧ 1
= 1

120 / 163

The satisfiability problem asks whether a given boolean
formula is satisfiable

In formal-language terms

SAT = {〈φ〉 |φ is a satisfiable boolean formula}

Example: Given 〈x1 = 0, x2 = 0, x3 = 1, x4 = 1〉

φ = ((0→ 0) ∨ ¬((¬0↔ 1) ∨ 1)) ∧ ¬0
= (1 ∨ ¬ (1 ∨ 1)) ∧ 1
= (1 ∨ 0) ∧ 1
= 1

120 / 163

The satisfiability problem asks whether a given boolean
formula is satisfiable

In formal-language terms

SAT = {〈φ〉 |φ is a satisfiable boolean formula}

Example: Given 〈x1 = 0, x2 = 0, x3 = 1, x4 = 1〉

φ = ((0→ 0) ∨ ¬((¬0↔ 1) ∨ 1)) ∧ ¬0
= (1 ∨ ¬ (1 ∨ 1)) ∧ 1
= (1 ∨ 0) ∧ 1
= 1

120 / 163

The satisfiability problem asks whether a given boolean
formula is satisfiable

In formal-language terms

SAT = {〈φ〉 |φ is a satisfiable boolean formula}

Example: Given 〈x1 = 0, x2 = 0, x3 = 1, x4 = 1〉

φ = ((0→ 0) ∨ ¬((¬0↔ 1) ∨ 1)) ∧ ¬0
= (1 ∨ ¬ (1 ∨ 1)) ∧ 1
= (1 ∨ 0) ∧ 1
= 1

120 / 163

Formula Satisfiability

Theorem
Satisfiability of boolean formulas is NP-Complete.

Proof
1 The NP part is easy.
2 Now, the mapping from a NPC.

121 / 163

Formula Satisfiability

Theorem
Satisfiability of boolean formulas is NP-Complete.

Proof
1 The NP part is easy.
2 Now, the mapping from a NPC.

121 / 163

Formula Satisfiability

Theorem
Satisfiability of boolean formulas is NP-Complete.

Proof
1 The NP part is easy.
2 Now, the mapping from a NPC.

121 / 163

Showing that SAT belongs to NP

Certificate
It consists of a satisfying assignment for an input formula φ.

Then A does the following
The verifying algorithm simply replaces each variable in the formula with
its responding value and then evaluates the expression.

Properties
This task is easy to do in polynomial time.
If the expression evaluates to 1, then the algorithm has verified that
the formula is satisfiable.

122 / 163

Showing that SAT belongs to NP

Certificate
It consists of a satisfying assignment for an input formula φ.

Then A does the following
The verifying algorithm simply replaces each variable in the formula with
its responding value and then evaluates the expression.

Properties
This task is easy to do in polynomial time.
If the expression evaluates to 1, then the algorithm has verified that
the formula is satisfiable.

122 / 163

Showing that SAT belongs to NP

Certificate
It consists of a satisfying assignment for an input formula φ.

Then A does the following
The verifying algorithm simply replaces each variable in the formula with
its responding value and then evaluates the expression.

Properties
This task is easy to do in polynomial time.
If the expression evaluates to 1, then the algorithm has verified that
the formula is satisfiable.

122 / 163

Now, we try the mapping from CIRCUIT-SAT to SAT

Naïve algorithm
We can use induction to express any boolean combinational circuit as
a boolean formula.

Then
We simply look at the gate that produces the circuit output and
inductively express each of the gate’s inputs as formulas.

Naively
We then obtain the formula for the circuit by writing an expression
that applies the gate’s function to its inputs’ formulas.

123 / 163

Now, we try the mapping from CIRCUIT-SAT to SAT

Naïve algorithm
We can use induction to express any boolean combinational circuit as
a boolean formula.

Then
We simply look at the gate that produces the circuit output and
inductively express each of the gate’s inputs as formulas.

Naively
We then obtain the formula for the circuit by writing an expression
that applies the gate’s function to its inputs’ formulas.

123 / 163

Now, we try the mapping from CIRCUIT-SAT to SAT

Naïve algorithm
We can use induction to express any boolean combinational circuit as
a boolean formula.

Then
We simply look at the gate that produces the circuit output and
inductively express each of the gate’s inputs as formulas.

Naively
We then obtain the formula for the circuit by writing an expression
that applies the gate’s function to its inputs’ formulas.

123 / 163

Problem

PROBLEM
What happens if the circuit fan out? I.e. shared sub-formulas can make
the expression to grow exponentially!!!

1

3

N-1

N

2

Driving Gate

FAN-OUT=N

124 / 163

Instead, we use the following strategy

First
For each wire xi in the circuit C , the formula has a variable xi

Remember you need the last wire to be true!!!

Then
We can now express how each gate operates as a small formula involving
the variables of its incident wires.

Actually, we build a sequence of tautologies
x10 ←→ (x7 ∧ x8 ∧ x9)

We call each of these small formulas a clause.

125 / 163

Instead, we use the following strategy

First
For each wire xi in the circuit C , the formula has a variable xi

Remember you need the last wire to be true!!!

Then
We can now express how each gate operates as a small formula involving
the variables of its incident wires.

Actually, we build a sequence of tautologies
x10 ←→ (x7 ∧ x8 ∧ x9)

We call each of these small formulas a clause.

125 / 163

Instead, we use the following strategy

First
For each wire xi in the circuit C , the formula has a variable xi

Remember you need the last wire to be true!!!

Then
We can now express how each gate operates as a small formula involving
the variables of its incident wires.

Actually, we build a sequence of tautologies
x10 ←→ (x7 ∧ x8 ∧ x9)

We call each of these small formulas a clause.

125 / 163

Instead, we use the following strategy

First
For each wire xi in the circuit C , the formula has a variable xi

Remember you need the last wire to be true!!!

Then
We can now express how each gate operates as a small formula involving
the variables of its incident wires.

Actually, we build a sequence of tautologies
x10 ←→ (x7 ∧ x8 ∧ x9)

We call each of these small formulas a clause.

125 / 163

Use CIRCUIT-SAT

We a circuit C ∈CIRCUIT-SAT

126 / 163

Thus, we have the following clauses

The new boolean formula

φ = x10 ∧ (x4 ↔ ¬x3)
∧ (x5 ↔ (x1 ∨ x2))
∧ (x6 ↔ ¬x4)
∧ (x7 ↔ (x1 ∧ x2 ∧ x4))
∧ (x8 ↔ (x5 ∨ x6))
∧ (x9 ↔ (x6 ∨ x7))
∧ (x10 ↔ (x7 ∧ x8 ∧ x9))

127 / 163

Thus, we have the following clauses

The new boolean formula

φ = x10 ∧ (x4 ↔ ¬x3)
∧ (x5 ↔ (x1 ∨ x2))
∧ (x6 ↔ ¬x4)
∧ (x7 ↔ (x1 ∧ x2 ∧ x4))
∧ (x8 ↔ (x5 ∨ x6))
∧ (x9 ↔ (x6 ∨ x7))
∧ (x10 ↔ (x7 ∧ x8 ∧ x9))

127 / 163

Thus, we have the following clauses

The new boolean formula

φ = x10 ∧ (x4 ↔ ¬x3)
∧ (x5 ↔ (x1 ∨ x2))
∧ (x6 ↔ ¬x4)
∧ (x7 ↔ (x1 ∧ x2 ∧ x4))
∧ (x8 ↔ (x5 ∨ x6))
∧ (x9 ↔ (x6 ∨ x7))
∧ (x10 ↔ (x7 ∧ x8 ∧ x9))

127 / 163

Thus, we have the following clauses

The new boolean formula

φ = x10 ∧ (x4 ↔ ¬x3)
∧ (x5 ↔ (x1 ∨ x2))
∧ (x6 ↔ ¬x4)
∧ (x7 ↔ (x1 ∧ x2 ∧ x4))
∧ (x8 ↔ (x5 ∨ x6))
∧ (x9 ↔ (x6 ∨ x7))
∧ (x10 ↔ (x7 ∧ x8 ∧ x9))

127 / 163

Thus, we have the following clauses

The new boolean formula

φ = x10 ∧ (x4 ↔ ¬x3)
∧ (x5 ↔ (x1 ∨ x2))
∧ (x6 ↔ ¬x4)
∧ (x7 ↔ (x1 ∧ x2 ∧ x4))
∧ (x8 ↔ (x5 ∨ x6))
∧ (x9 ↔ (x6 ∨ x7))
∧ (x10 ↔ (x7 ∧ x8 ∧ x9))

127 / 163

Thus, we have the following clauses

The new boolean formula

φ = x10 ∧ (x4 ↔ ¬x3)
∧ (x5 ↔ (x1 ∨ x2))
∧ (x6 ↔ ¬x4)
∧ (x7 ↔ (x1 ∧ x2 ∧ x4))
∧ (x8 ↔ (x5 ∨ x6))
∧ (x9 ↔ (x6 ∨ x7))
∧ (x10 ↔ (x7 ∧ x8 ∧ x9))

127 / 163

Thus, we have the following clauses

The new boolean formula

φ = x10 ∧ (x4 ↔ ¬x3)
∧ (x5 ↔ (x1 ∨ x2))
∧ (x6 ↔ ¬x4)
∧ (x7 ↔ (x1 ∧ x2 ∧ x4))
∧ (x8 ↔ (x5 ∨ x6))
∧ (x9 ↔ (x6 ∨ x7))
∧ (x10 ↔ (x7 ∧ x8 ∧ x9))

127 / 163

Furthermore

Something Notable
Given that the circuit C is polynomial in size:

it is straightforward to produce such a formula φ in polynomial time.

128 / 163

What do we want to prove?

Then
We want the following

=⇒
If C has a satisfying assignment then φ is satisfiable.

⇐=
If some assignment causes φ to evaluate to 1 then C is satisfiable.

129 / 163

What do we want to prove?

Then
We want the following

=⇒
If C has a satisfying assignment then φ is satisfiable.

⇐=
If some assignment causes φ to evaluate to 1 then C is satisfiable.

129 / 163

What do we want to prove?

Then
We want the following

=⇒
If C has a satisfying assignment then φ is satisfiable.

⇐=
If some assignment causes φ to evaluate to 1 then C is satisfiable.

129 / 163

Then

Satisfiable
If C has a satisfying assignment, then each wire of the circuit has a
well-defined value, and the output of the circuit is 1.

Meaning
Therefore, when we assign wire values to variables in φ, each clause of φ
evaluates to 1, and thus the conjunction of all evaluates to 1.

Conversely
Conversely, if some assignment causes φ to evaluate to 1, the circuit C is
satisfiable by an analogous argument.

130 / 163

Then

Satisfiable
If C has a satisfying assignment, then each wire of the circuit has a
well-defined value, and the output of the circuit is 1.

Meaning
Therefore, when we assign wire values to variables in φ, each clause of φ
evaluates to 1, and thus the conjunction of all evaluates to 1.

Conversely
Conversely, if some assignment causes φ to evaluate to 1, the circuit C is
satisfiable by an analogous argument.

130 / 163

Then

Satisfiable
If C has a satisfying assignment, then each wire of the circuit has a
well-defined value, and the output of the circuit is 1.

Meaning
Therefore, when we assign wire values to variables in φ, each clause of φ
evaluates to 1, and thus the conjunction of all evaluates to 1.

Conversely
Conversely, if some assignment causes φ to evaluate to 1, the circuit C is
satisfiable by an analogous argument.

130 / 163

Then

We have proved that
CIRCUIT − SAT ≤p SAT

131 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

132 / 163

However!

However!
Problem: SAT is still too complex.
Solution: Use 3-CNF

133 / 163

However!

However!
Problem: SAT is still too complex.
Solution: Use 3-CNF

133 / 163

Definition

First
A literal in a boolean formula is an occurrence of a variable or its
negation.

Second
A boolean formula is in conjunctive normal form, or CNF, if it is
expressed as an AND of clauses, each of which is the OR of one or
more literals.

Third
A boolean formula is in 3-Conjunctive normal form, or 3-CNF, if each
clause has exactly three distinct literals.

(x1 ∨ ¬ ∨ ¬x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

134 / 163

Definition

First
A literal in a boolean formula is an occurrence of a variable or its
negation.

Second
A boolean formula is in conjunctive normal form, or CNF, if it is
expressed as an AND of clauses, each of which is the OR of one or
more literals.

Third
A boolean formula is in 3-Conjunctive normal form, or 3-CNF, if each
clause has exactly three distinct literals.

(x1 ∨ ¬ ∨ ¬x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

134 / 163

Definition

First
A literal in a boolean formula is an occurrence of a variable or its
negation.

Second
A boolean formula is in conjunctive normal form, or CNF, if it is
expressed as an AND of clauses, each of which is the OR of one or
more literals.

Third
A boolean formula is in 3-Conjunctive normal form, or 3-CNF, if each
clause has exactly three distinct literals.

(x1 ∨ ¬ ∨ ¬x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

134 / 163

3-CNF is NP-Complete

Theorem
Satisfiability of boolean formulas in 3-Conjunctive normal form is
NP-Complete.

Proof
The NP part is similar to the previous theorem.
The interesting part is proving that SAT≤p 3-CNF

135 / 163

3-CNF is NP-Complete

Theorem
Satisfiability of boolean formulas in 3-Conjunctive normal form is
NP-Complete.

Proof
The NP part is similar to the previous theorem.
The interesting part is proving that SAT≤p 3-CNF

135 / 163

3-CNF is NP-Complete

Theorem
Satisfiability of boolean formulas in 3-Conjunctive normal form is
NP-Complete.

Proof
The NP part is similar to the previous theorem.
The interesting part is proving that SAT≤p 3-CNF

135 / 163

Proof NP-Complete of 3-CNF

Parse the formula
Example: φ = ((x1 → x2) ∨ ¬ ((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2

We can use ideas from parsing to create a syntax tree

136 / 163

Proof NP-Complete of 3-CNF

Parse the formula
Example: φ = ((x1 → x2) ∨ ¬ ((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2

We can use ideas from parsing to create a syntax tree

136 / 163

Parsing allows us to parse the formula into φ′

This can be done by naming the nodes in the tree

φ′ = y1 ∧ (y1 ↔ (y2 ∧ ¬x2))
∧ (y2 ↔ (y3 ∨ y4))
∧ (y3 ↔ (x1 → x2))
∧ (y4 ↔ ¬y5)
∧ (y5 ↔ (y6 ∨ x4))
∧ (y6 ↔ (¬x1 ↔ x3))

Problem
We still not have the disjunctive parts... What can we do?

137 / 163

Parsing allows us to parse the formula into φ′

This can be done by naming the nodes in the tree

φ′ = y1 ∧ (y1 ↔ (y2 ∧ ¬x2))
∧ (y2 ↔ (y3 ∨ y4))
∧ (y3 ↔ (x1 → x2))
∧ (y4 ↔ ¬y5)
∧ (y5 ↔ (y6 ∨ x4))
∧ (y6 ↔ (¬x1 ↔ x3))

Problem
We still not have the disjunctive parts... What can we do?

137 / 163

Parsing allows us to parse the formula into φ′

This can be done by naming the nodes in the tree

φ′ = y1 ∧ (y1 ↔ (y2 ∧ ¬x2))
∧ (y2 ↔ (y3 ∨ y4))
∧ (y3 ↔ (x1 → x2))
∧ (y4 ↔ ¬y5)
∧ (y5 ↔ (y6 ∨ x4))
∧ (y6 ↔ (¬x1 ↔ x3))

Problem
We still not have the disjunctive parts... What can we do?

137 / 163

Parsing allows us to parse the formula into φ′

This can be done by naming the nodes in the tree

φ′ = y1 ∧ (y1 ↔ (y2 ∧ ¬x2))
∧ (y2 ↔ (y3 ∨ y4))
∧ (y3 ↔ (x1 → x2))
∧ (y4 ↔ ¬y5)
∧ (y5 ↔ (y6 ∨ x4))
∧ (y6 ↔ (¬x1 ↔ x3))

Problem
We still not have the disjunctive parts... What can we do?

137 / 163

Parsing allows us to parse the formula into φ′

This can be done by naming the nodes in the tree

φ′ = y1 ∧ (y1 ↔ (y2 ∧ ¬x2))
∧ (y2 ↔ (y3 ∨ y4))
∧ (y3 ↔ (x1 → x2))
∧ (y4 ↔ ¬y5)
∧ (y5 ↔ (y6 ∨ x4))
∧ (y6 ↔ (¬x1 ↔ x3))

Problem
We still not have the disjunctive parts... What can we do?

137 / 163

Parsing allows us to parse the formula into φ′

This can be done by naming the nodes in the tree

φ′ = y1 ∧ (y1 ↔ (y2 ∧ ¬x2))
∧ (y2 ↔ (y3 ∨ y4))
∧ (y3 ↔ (x1 → x2))
∧ (y4 ↔ ¬y5)
∧ (y5 ↔ (y6 ∨ x4))
∧ (y6 ↔ (¬x1 ↔ x3))

Problem
We still not have the disjunctive parts... What can we do?

137 / 163

Parsing allows us to parse the formula into φ′

This can be done by naming the nodes in the tree

φ′ = y1 ∧ (y1 ↔ (y2 ∧ ¬x2))
∧ (y2 ↔ (y3 ∨ y4))
∧ (y3 ↔ (x1 → x2))
∧ (y4 ↔ ¬y5)
∧ (y5 ↔ (y6 ∨ x4))
∧ (y6 ↔ (¬x1 ↔ x3))

Problem
We still not have the disjunctive parts... What can we do?

137 / 163

Proof

We can do the following
We can build the truth table of each clause φ′i!

For example, the truth table of φ′1 = y1 ↔ (y2 ∧ ¬x2)
y1 y2 x3

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

y1 ↔ (y2 ∧ ¬x2)
0
1
0
0
1
0
1
1

138 / 163

Proof

We can do the following
We can build the truth table of each clause φ′i!

For example, the truth table of φ′1 = y1 ↔ (y2 ∧ ¬x2)
y1 y2 x3

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

y1 ↔ (y2 ∧ ¬x2)
0
1
0
0
1
0
1
1

138 / 163

From this, we have

Disjunctive normal form (or DNF)
In each of the zeros we put a conjunction that evaluate to ONE

y1 y2 x3

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

y1 ↔ (y2 ∧ ¬x2)
0 y1 ∧ y2 ∧ x3
1 · · ·
0 y1 ∧ ¬y2 ∧ x3
0 y1 ∧ ¬y2 ∧ ¬x3
1 · · ·
0 ¬y1 ∧ y2 ∧ ¬x3
1 · · ·
1 · · ·

139 / 163

Then, we use disjunctions to put all them together
We have then an OR of AND’s

I = (y1 ∧ y2 ∧ x3) ∨ (y1 ∧ ¬y2 ∧ x3) ∨ (y1 ∧ ¬y2 ∧ ¬x3) ∨ (¬y1 ∧ y2 ∧ ¬x3)

Thus, we have that ¬I ≡ φ′1

y1 y2 x3

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

y1 ↔ (y2 ∧ ¬x2) I ¬I
0 1 0
1 0 1
0 1 0
0 1 0
1 0 1
0 1 0
1 0 1
1 0 1

140 / 163

Then, we use disjunctions to put all them together
We have then an OR of AND’s

I = (y1 ∧ y2 ∧ x3) ∨ (y1 ∧ ¬y2 ∧ x3) ∨ (y1 ∧ ¬y2 ∧ ¬x3) ∨ (¬y1 ∧ y2 ∧ ¬x3)

Thus, we have that ¬I ≡ φ′1

y1 y2 x3

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

y1 ↔ (y2 ∧ ¬x2) I ¬I
0 1 0
1 0 1
0 1 0
0 1 0
1 0 1
0 1 0
1 0 1
1 0 1

140 / 163

Using DeMorgan’s laws

We obtain
φ′′1 = (¬y1∨¬y2∨¬x2)∧(¬y1∨y2∨¬x2)∧(¬y1∨y2∨x2)∧(y1∨¬y2∨x2)

141 / 163

Now, we need to include more literals as necessary

Given Ci as a disjunctive part of the previous formula.
If Ci has 3 distinct literals, then simply include Ci as a clause of φ.

If Ci has 2 distinct literals
if Ci = (Ii ∨ I2), where I1 and I2 are literals, then include

(I1 ∨ I2 ∨ p) ∧ (I1 ∨ I2 ∨ ¬p)

as clauses of φ.
Why?

(I1 ∨ I2 ∨ p) ∧ (I1 ∨ I2 ∨ ¬p) = (I1 ∨ I2) ∨ (p ∧ ¬p) =
(I1 ∨ I2) ∨ (F) = I1 ∨ I2

142 / 163

Now, we need to include more literals as necessary

Given Ci as a disjunctive part of the previous formula.
If Ci has 3 distinct literals, then simply include Ci as a clause of φ.

If Ci has 2 distinct literals
if Ci = (Ii ∨ I2), where I1 and I2 are literals, then include

(I1 ∨ I2 ∨ p) ∧ (I1 ∨ I2 ∨ ¬p)

as clauses of φ.
Why?

(I1 ∨ I2 ∨ p) ∧ (I1 ∨ I2 ∨ ¬p) = (I1 ∨ I2) ∨ (p ∧ ¬p) =
(I1 ∨ I2) ∨ (F) = I1 ∨ I2

142 / 163

Now, we need to include more literals as necessary

Given Ci as a disjunctive part of the previous formula.
If Ci has 3 distinct literals, then simply include Ci as a clause of φ.

If Ci has 2 distinct literals
if Ci = (Ii ∨ I2), where I1 and I2 are literals, then include

(I1 ∨ I2 ∨ p) ∧ (I1 ∨ I2 ∨ ¬p)

as clauses of φ.
Why?

(I1 ∨ I2 ∨ p) ∧ (I1 ∨ I2 ∨ ¬p) = (I1 ∨ I2) ∨ (p ∧ ¬p) =
(I1 ∨ I2) ∨ (F) = I1 ∨ I2

142 / 163

Now, we need to include more literals as necessary

Given Ci as a disjunctive part of the previous formula.
If Ci has 3 distinct literals, then simply include Ci as a clause of φ.

If Ci has 2 distinct literals
if Ci = (Ii ∨ I2), where I1 and I2 are literals, then include

(I1 ∨ I2 ∨ p) ∧ (I1 ∨ I2 ∨ ¬p)

as clauses of φ.
Why?

(I1 ∨ I2 ∨ p) ∧ (I1 ∨ I2 ∨ ¬p) = (I1 ∨ I2) ∨ (p ∧ ¬p) =
(I1 ∨ I2) ∨ (F) = I1 ∨ I2

142 / 163

Now, we need to include more literals as necessary

If Ci has just 1 distinct literal I
Then include (I ∨ p ∨ q) ∧ (I ∨ p ∨ ¬q) ∧ (I ∨ ¬p ∨ q) ∧ (I ∨ ¬p ∨ ¬q)
as clauses of φ.
Why?(I ∨ p ∨ q) ∧ (I ∨ p ∨ ¬q)∧...

(I ∨ ¬p ∨ q) ∧ (I ∨ ¬p ∨ ¬q) = I ∨ [(p ∨ q) ∧ (p ∨ ¬q) ∧ . . .
(¬p ∨ q) ∧ (¬p ∨ ¬q)]

= I ∨ [p ∨ (q ∧ ¬q) ∧ . . .
(¬p ∨ (q ∧ ¬q))]

= I ∨ [(p ∨ F) ∧ (¬p ∨ F)]
= I ∨ [p ∧ ¬p]
= I ∨ F = I

143 / 163

Now, we need to include more literals as necessary

If Ci has just 1 distinct literal I
Then include (I ∨ p ∨ q) ∧ (I ∨ p ∨ ¬q) ∧ (I ∨ ¬p ∨ q) ∧ (I ∨ ¬p ∨ ¬q)
as clauses of φ.
Why?(I ∨ p ∨ q) ∧ (I ∨ p ∨ ¬q)∧...

(I ∨ ¬p ∨ q) ∧ (I ∨ ¬p ∨ ¬q) = I ∨ [(p ∨ q) ∧ (p ∨ ¬q) ∧ . . .
(¬p ∨ q) ∧ (¬p ∨ ¬q)]

= I ∨ [p ∨ (q ∧ ¬q) ∧ . . .
(¬p ∨ (q ∧ ¬q))]

= I ∨ [(p ∨ F) ∧ (¬p ∨ F)]
= I ∨ [p ∧ ¬p]
= I ∨ F = I

143 / 163

Now, we need to include more literals as necessary

If Ci has just 1 distinct literal I
Then include (I ∨ p ∨ q) ∧ (I ∨ p ∨ ¬q) ∧ (I ∨ ¬p ∨ q) ∧ (I ∨ ¬p ∨ ¬q)
as clauses of φ.
Why?(I ∨ p ∨ q) ∧ (I ∨ p ∨ ¬q)∧...

(I ∨ ¬p ∨ q) ∧ (I ∨ ¬p ∨ ¬q) = I ∨ [(p ∨ q) ∧ (p ∨ ¬q) ∧ . . .
(¬p ∨ q) ∧ (¬p ∨ ¬q)]

= I ∨ [p ∨ (q ∧ ¬q) ∧ . . .
(¬p ∨ (q ∧ ¬q))]

= I ∨ [(p ∨ F) ∧ (¬p ∨ F)]
= I ∨ [p ∧ ¬p]
= I ∨ F = I

143 / 163

Now, we need to include more literals as necessary

If Ci has just 1 distinct literal I
Then include (I ∨ p ∨ q) ∧ (I ∨ p ∨ ¬q) ∧ (I ∨ ¬p ∨ q) ∧ (I ∨ ¬p ∨ ¬q)
as clauses of φ.
Why?(I ∨ p ∨ q) ∧ (I ∨ p ∨ ¬q)∧...

(I ∨ ¬p ∨ q) ∧ (I ∨ ¬p ∨ ¬q) = I ∨ [(p ∨ q) ∧ (p ∨ ¬q) ∧ . . .
(¬p ∨ q) ∧ (¬p ∨ ¬q)]

= I ∨ [p ∨ (q ∧ ¬q) ∧ . . .
(¬p ∨ (q ∧ ¬q))]

= I ∨ [(p ∨ F) ∧ (¬p ∨ F)]
= I ∨ [p ∧ ¬p]
= I ∨ F = I

143 / 163

Now, we need to include more literals as necessary

If Ci has just 1 distinct literal I
Then include (I ∨ p ∨ q) ∧ (I ∨ p ∨ ¬q) ∧ (I ∨ ¬p ∨ q) ∧ (I ∨ ¬p ∨ ¬q)
as clauses of φ.
Why?(I ∨ p ∨ q) ∧ (I ∨ p ∨ ¬q)∧...

(I ∨ ¬p ∨ q) ∧ (I ∨ ¬p ∨ ¬q) = I ∨ [(p ∨ q) ∧ (p ∨ ¬q) ∧ . . .
(¬p ∨ q) ∧ (¬p ∨ ¬q)]

= I ∨ [p ∨ (q ∧ ¬q) ∧ . . .
(¬p ∨ (q ∧ ¬q))]

= I ∨ [(p ∨ F) ∧ (¬p ∨ F)]
= I ∨ [p ∧ ¬p]
= I ∨ F = I

143 / 163

Now, we need to include more literals as necessary

If Ci has just 1 distinct literal I
Then include (I ∨ p ∨ q) ∧ (I ∨ p ∨ ¬q) ∧ (I ∨ ¬p ∨ q) ∧ (I ∨ ¬p ∨ ¬q)
as clauses of φ.
Why?(I ∨ p ∨ q) ∧ (I ∨ p ∨ ¬q)∧...

(I ∨ ¬p ∨ q) ∧ (I ∨ ¬p ∨ ¬q) = I ∨ [(p ∨ q) ∧ (p ∨ ¬q) ∧ . . .
(¬p ∨ q) ∧ (¬p ∨ ¬q)]

= I ∨ [p ∨ (q ∧ ¬q) ∧ . . .
(¬p ∨ (q ∧ ¬q))]

= I ∨ [(p ∨ F) ∧ (¬p ∨ F)]
= I ∨ [p ∧ ¬p]
= I ∨ F = I

143 / 163

Finally, we need to prove the polynomial reduction

First
Constructing φ′ from φ introduces at most 1 variable and 1 clause per
connective in φ.

Second
Constructing φ′′ from φ′ can introduce at most 8 clauses into φ′′ for
each clause from φ′, since each clause of φ′′ has at most 3 variables,
and the truth table for each clause has at most 23 = 8 rows.

Third
The construction of φ′′′ from φ′ introduces at most 4 clauses into φ′′′
for each clause of φ′′.

144 / 163

Finally, we need to prove the polynomial reduction

First
Constructing φ′ from φ introduces at most 1 variable and 1 clause per
connective in φ.

Second
Constructing φ′′ from φ′ can introduce at most 8 clauses into φ′′ for
each clause from φ′, since each clause of φ′′ has at most 3 variables,
and the truth table for each clause has at most 23 = 8 rows.

Third
The construction of φ′′′ from φ′ introduces at most 4 clauses into φ′′′
for each clause of φ′′.

144 / 163

Finally, we need to prove the polynomial reduction

First
Constructing φ′ from φ introduces at most 1 variable and 1 clause per
connective in φ.

Second
Constructing φ′′ from φ′ can introduce at most 8 clauses into φ′′ for
each clause from φ′, since each clause of φ′′ has at most 3 variables,
and the truth table for each clause has at most 23 = 8 rows.

Third
The construction of φ′′′ from φ′ introduces at most 4 clauses into φ′′′
for each clause of φ′′.

144 / 163

Finally

Thus

SAT ≤p 3− CNF

Theorem 34.10
Satisfiability of boolean formulas in 3-conjunctive normal form is
NP-complete.

Now the next problem
The Clique Problem.

145 / 163

Finally

Thus

SAT ≤p 3− CNF

Theorem 34.10
Satisfiability of boolean formulas in 3-conjunctive normal form is
NP-complete.

Now the next problem
The Clique Problem.

145 / 163

Finally

Thus

SAT ≤p 3− CNF

Theorem 34.10
Satisfiability of boolean formulas in 3-conjunctive normal form is
NP-complete.

Now the next problem
The Clique Problem.

145 / 163

Excercises

From Cormen’s book solve
34.4-1
34.4-2
34.4-5
34.4-6
34.4-7

146 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

147 / 163

The Clique Problem

Definition
A clique in an undirected graph G = (V,E) is a subset V ′ ⊆ V of vertices,
each pair of which is connected by an edge in E.

As a decision problem
CLIQUE = {< G, k > | Gis a graph with a clique of size k}

148 / 163

The Clique Problem

Definition
A clique in an undirected graph G = (V,E) is a subset V ′ ⊆ V of vertices,
each pair of which is connected by an edge in E.

As a decision problem
CLIQUE = {< G, k > | Gis a graph with a clique of size k}

148 / 163

Example

A Clique of size k = 4

4

3 2

1

5

6

7

8 9

149 / 163

The clique problem is NP-Complete

Theorem 34.11
The clique problem is NP-Complete.

Proof
1 To show that CLIQUE ∈ NP , for a given graph G = (V,E) we use

the set V ′ ∈ V of vertices in the clique as certificate for G.

Thus
This is can be done in polynomial time because we only need to check all
possibles pairs of u, v ∈ V ′, which takes |V ′| (|V ′| − 1).

150 / 163

The clique problem is NP-Complete

Theorem 34.11
The clique problem is NP-Complete.

Proof
1 To show that CLIQUE ∈ NP , for a given graph G = (V,E) we use

the set V ′ ∈ V of vertices in the clique as certificate for G.

Thus
This is can be done in polynomial time because we only need to check all
possibles pairs of u, v ∈ V ′, which takes |V ′| (|V ′| − 1).

150 / 163

The clique problem is NP-Complete

Theorem 34.11
The clique problem is NP-Complete.

Proof
1 To show that CLIQUE ∈ NP , for a given graph G = (V,E) we use

the set V ′ ∈ V of vertices in the clique as certificate for G.

Thus
This is can be done in polynomial time because we only need to check all
possibles pairs of u, v ∈ V ′, which takes |V ′| (|V ′| − 1).

150 / 163

Proof

Now, we only need to prove that the problem is NP-Hard
Which is surprising, after all we are going from logic to graph problems!!!

Now
We start with an instance of 3-CNF-SAT

C1 ∧ C2 ∧ ... ∧ Ck a boolean 3-CNF formula with k clauses.

We know for each 1 ≤ r ≤ k

Cr = lr1 ∨ lr2 ∨ lr3

151 / 163

Proof

Now, we only need to prove that the problem is NP-Hard
Which is surprising, after all we are going from logic to graph problems!!!

Now
We start with an instance of 3-CNF-SAT

C1 ∧ C2 ∧ ... ∧ Ck a boolean 3-CNF formula with k clauses.

We know for each 1 ≤ r ≤ k

Cr = lr1 ∨ lr2 ∨ lr3

151 / 163

Proof

Now, we only need to prove that the problem is NP-Hard
Which is surprising, after all we are going from logic to graph problems!!!

Now
We start with an instance of 3-CNF-SAT

C1 ∧ C2 ∧ ... ∧ Ck a boolean 3-CNF formula with k clauses.

We know for each 1 ≤ r ≤ k

Cr = lr1 ∨ lr2 ∨ lr3

151 / 163

Then

Now, we construct the following graph G = (V,E)
We place a triple of vertices vr

1, v
r
2, v

r
3 for each Cr = lr1 ∨ lr2 ∨ lr3 .

We put an edge between two vertices vr
i and vs

j , if
vr

i and vs
j are in different triples i.e. r 6= s.

Their corresponding literals are consistent i.e. lri is not the negation
of lsj

152 / 163

Then

Now, we construct the following graph G = (V,E)
We place a triple of vertices vr

1, v
r
2, v

r
3 for each Cr = lr1 ∨ lr2 ∨ lr3 .

We put an edge between two vertices vr
i and vs

j , if
vr

i and vs
j are in different triples i.e. r 6= s.

Their corresponding literals are consistent i.e. lri is not the negation
of lsj

152 / 163

Then

Now, we construct the following graph G = (V,E)
We place a triple of vertices vr

1, v
r
2, v

r
3 for each Cr = lr1 ∨ lr2 ∨ lr3 .

We put an edge between two vertices vr
i and vs

j , if
vr

i and vs
j are in different triples i.e. r 6= s.

Their corresponding literals are consistent i.e. lri is not the negation
of lsj

152 / 163

Example

For φ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

153 / 163

Now, we show that the transformation φ into G is a
reduction

We start with the =⇒
Suppose φ has a satisfying assignment.
Thus each clause Cr contains at least one literal lri mapping to 1,
which corresponds to a vertex vr

i .

Now, we pick each of those literals
We finish with a set V ′ of such literals.

V ′ is a clique, how?
Given two vertices vr

i and vs
j ∈ V ′, with r 6= s, such that the

corresponding literals lri and lsj map to 1 by the satisfying assignment.

154 / 163

Now, we show that the transformation φ into G is a
reduction

We start with the =⇒
Suppose φ has a satisfying assignment.
Thus each clause Cr contains at least one literal lri mapping to 1,
which corresponds to a vertex vr

i .

Now, we pick each of those literals
We finish with a set V ′ of such literals.

V ′ is a clique, how?
Given two vertices vr

i and vs
j ∈ V ′, with r 6= s, such that the

corresponding literals lri and lsj map to 1 by the satisfying assignment.

154 / 163

Now, we show that the transformation φ into G is a
reduction

We start with the =⇒
Suppose φ has a satisfying assignment.
Thus each clause Cr contains at least one literal lri mapping to 1,
which corresponds to a vertex vr

i .

Now, we pick each of those literals
We finish with a set V ′ of such literals.

V ′ is a clique, how?
Given two vertices vr

i and vs
j ∈ V ′, with r 6= s, such that the

corresponding literals lri and lsj map to 1 by the satisfying assignment.

154 / 163

Now, we show that the transformation φ into G is a
reduction

We start with the =⇒
Suppose φ has a satisfying assignment.
Thus each clause Cr contains at least one literal lri mapping to 1,
which corresponds to a vertex vr

i .

Now, we pick each of those literals
We finish with a set V ′ of such literals.

V ′ is a clique, how?
Given two vertices vr

i and vs
j ∈ V ′, with r 6= s, such that the

corresponding literals lri and lsj map to 1 by the satisfying assignment.

154 / 163

Then

This two literals
They cannot be complements.

Finally
By construction of G, the edge

(
vr

i , v
s
j

)
belongs to E.

Thus
We have a clique of size k in the graph G = (V,E).

155 / 163

Then

This two literals
They cannot be complements.

Finally
By construction of G, the edge

(
vr

i , v
s
j

)
belongs to E.

Thus
We have a clique of size k in the graph G = (V,E).

155 / 163

Then

This two literals
They cannot be complements.

Finally
By construction of G, the edge

(
vr

i , v
s
j

)
belongs to E.

Thus
We have a clique of size k in the graph G = (V,E).

155 / 163

We now prove⇐=

Conversely
Suppose that G has a clique V ′ of size k.

Did you notice?
No edges in G connect vertices in the same triple, thus V ′ contains one
vertex per triple.

Now
Now, we assign 1 to each literal lri such that vr

i ∈ V ′

Notice that we cannot assign 1 to both a literal and its complement
by construction.

156 / 163

We now prove⇐=

Conversely
Suppose that G has a clique V ′ of size k.

Did you notice?
No edges in G connect vertices in the same triple, thus V ′ contains one
vertex per triple.

Now
Now, we assign 1 to each literal lri such that vr

i ∈ V ′

Notice that we cannot assign 1 to both a literal and its complement
by construction.

156 / 163

We now prove⇐=

Conversely
Suppose that G has a clique V ′ of size k.

Did you notice?
No edges in G connect vertices in the same triple, thus V ′ contains one
vertex per triple.

Now
Now, we assign 1 to each literal lri such that vr

i ∈ V ′

Notice that we cannot assign 1 to both a literal and its complement
by construction.

156 / 163

Finally

We have with that assignment
That each clause Cr is satisfied, thus φ is satisfied!!!

Note
Any variables that do not correspond to a vertex in the clique may be set
arbitrarily.

Then

3− CNF ≤p CLIQUE

157 / 163

Finally

We have with that assignment
That each clause Cr is satisfied, thus φ is satisfied!!!

Note
Any variables that do not correspond to a vertex in the clique may be set
arbitrarily.

Then

3− CNF ≤p CLIQUE

157 / 163

Finally

We have with that assignment
That each clause Cr is satisfied, thus φ is satisfied!!!

Note
Any variables that do not correspond to a vertex in the clique may be set
arbitrarily.

Then

3− CNF ≤p CLIQUE

157 / 163

Remarks

Something Notable
We have reduced an arbitrary instance of 3-CNF-SAT to an instance of
CLIQUE with a particular structure.

Thus
It is possible to think that we have shown only that CLIQUE is NP-hard in
graphs in which the vertices are restricted to occur in triples and in which
there are no edges between vertices in the same triple.

Actually this is true
But it is enough to prove that CLIQUE is NP-hard.
Why? If we had a polynomial-time algorithm that solved CLIQUE in
the general sense, we will solve in polynomial time the restricted
version.

158 / 163

Remarks

Something Notable
We have reduced an arbitrary instance of 3-CNF-SAT to an instance of
CLIQUE with a particular structure.

Thus
It is possible to think that we have shown only that CLIQUE is NP-hard in
graphs in which the vertices are restricted to occur in triples and in which
there are no edges between vertices in the same triple.

Actually this is true
But it is enough to prove that CLIQUE is NP-hard.
Why? If we had a polynomial-time algorithm that solved CLIQUE in
the general sense, we will solve in polynomial time the restricted
version.

158 / 163

Remarks

Something Notable
We have reduced an arbitrary instance of 3-CNF-SAT to an instance of
CLIQUE with a particular structure.

Thus
It is possible to think that we have shown only that CLIQUE is NP-hard in
graphs in which the vertices are restricted to occur in triples and in which
there are no edges between vertices in the same triple.

Actually this is true
But it is enough to prove that CLIQUE is NP-hard.
Why? If we had a polynomial-time algorithm that solved CLIQUE in
the general sense, we will solve in polynomial time the restricted
version.

158 / 163

Remarks

In the opposite approach
Reducing instances of 3-CNF-SAT with a special structure to general
instances of CLIQUE would not have sufficed.

Why not?
Perhaps the instances of 3-CNF-SAT that we chose to reduce from
were “easy,” not reducing an NP-Hard problem to CLIQUE.
Observe also that the reduction used the instance of 3-CNF-SAT, but
not the solution.

159 / 163

Remarks

In the opposite approach
Reducing instances of 3-CNF-SAT with a special structure to general
instances of CLIQUE would not have sufficed.

Why not?
Perhaps the instances of 3-CNF-SAT that we chose to reduce from
were “easy,” not reducing an NP-Hard problem to CLIQUE.
Observe also that the reduction used the instance of 3-CNF-SAT, but
not the solution.

159 / 163

Thus

This would have been a serious error
Remember the mapping:

160 / 163

Outline
1 Introduction

Polynomial Time
The Intuition P vs NP

2 Structure of the Polynomial Time Problems
Introduction
Abstract Problems
Encoding
Formal Language Framework
Decision Problems in The Formal Framework
Complexity Class

3 Polynomial Time Verification
Introduction
Verification Algorithms

4 Reducibility and NP-Completeness
Introduction
NP-Completeness
An Infamous Theorem

5 NP-Complete Problems
Circuit Satisfiability
How do we prove NP-Completeness?
Algorithm A representation
The Correct Reduction
The Polynomial Time

Making our life easier!!!
Formula Satisfiability
3-CNF
The Clique Problem
Family of NP-Complete Problems

161 / 163

Now, we have
Family of NP-Complete Problems

CIRCUIT-SAT

SAT

3-CNF-SAT

CLIQUE SUBSET-SUM

VERTEX-COVER

HAMILTONIAN-CYCLE

TRAVELING SALESMAN PROBLEM

162 / 163

Excercises

From Cormen’s book solve
34.5-1
34.5-2
34.5-3
34.5-4
34.5-5
34.5-7
34.5-8

163 / 163

	Introduction
	Polynomial Time
	The Intuition P vs NP

	Structure of the Polynomial Time Problems
	Introduction
	Abstract Problems
	Encoding
	Formal Language Framework
	Decision Problems in The Formal Framework
	Complexity Class

	Polynomial Time Verification
	Introduction
	Verification Algorithms

	Reducibility and NP-Completeness
	Introduction
	NP-Completeness
	An Infamous Theorem

	NP-Complete Problems
	Circuit Satisfiability
	How do we prove NP-Completeness?
	Algorithm A representation
	The Correct Reduction
	The Polynomial Time

	Making our life easier!!!
	Formula Satisfiability
	3-CNF
	The Clique Problem
	Family of NP-Complete Problems

