Analysis of Algorithms
 Computational Geometry

Andres Mendez-Vazquez

November 30, 2015

Outline

(1) Introduction

- What is Computational Geometry?
(2) Representation
- Representation of Primitive Geometries
(3) Line-Segment Properties
- Using Point Representation
- Cross Product
- Turn Left or Right
- Intersection

4) Classical Problems

- Determining whether any pair of segments intersects
- Correctness of Sweeping Line Algorithm
- Finding the Convex Hull
- Graham's Scan
- Jarvis' March

Outline

(1) Introduction

- What is Computational Geometry?
(2) Representation
- Representation of Primitive Geometries
(3) Line-Segment Properties
- Using Point Representation
- Cross Product
- Turn Left or Right
- Intersection

4 Classical Problems

- Determining whether any pair of segments intersects
- Correctness of Sweeping Line Algorithm
- Finding the Convex Hull
- Graham's Scan
- Jarvis' March

Computational Geometry

Motivation

- We want to solve geometric problems!!!

Field of Application

VLSI design - Generation for Fast Voronoi Diagrams for Massive Layouts Under Strict Distances to avoid Tunneling Effects!!

Field of Application

Databases - Octrees for fast localization of information in database

 tables

Field of Application

Synthetic Biology - Geometric Algorithms to Obtain new DNA configurations for Molecular Machines

Field of Application

Computer Graphics for more engaging Virtual Environments－For example：Bump Mapping！！！

Outline

(1) Introduction

- What is Computational Geometry?
(2) Representation
- Representation of Primitive Geometries
(3) Line-Segment Properties
- Using Point Representation
- Cross Product
- Turn Left or Right
- Intersection
(4) Classical Problems
- Determining whether any pair of segments intersects
- Correctness of Sweeping Line Algorithm
- Finding the Convex Hull
- Graham's Scan
- Jarvis' March

The Plane Representation

Although 3D algorithms exist...

- We will deal only with algorithms working in the plane.

The Plane Representation

Although 3D algorithms exist...

- We will deal only with algorithms working in the plane.

Object Representation

- Each object is a set of points $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ where

The Plane Representation

Although 3D algorithms exist...

- We will deal only with algorithms working in the plane.

Object Representation

- Each object is a set of points $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ where

$$
\text { - } p_{i}=\left(x_{i}, y_{i}\right) \text { and } x_{i}, y_{i} \in \mathbb{R} .
$$

The Plane Representation

Although 3D algorithms exist...

- We will deal only with algorithms working in the plane.

Object Representation

- Each object is a set of points $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ where

$$
\text { - } p_{i}=\left(x_{i}, y_{i}\right) \text { and } x_{i}, y_{i} \in \mathbb{R} .
$$

Example

- For example an n-vertex polygon P is the following order sequence:

The Plane Representation

Although 3D algorithms exist...

- We will deal only with algorithms working in the plane.

Object Representation

- Each object is a set of points $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ where

$$
\text { - } p_{i}=\left(x_{i}, y_{i}\right) \text { and } x_{i}, y_{i} \in \mathbb{R} .
$$

Example

- For example an n-vertex polygon P is the following order sequence:
- $\left\langle p_{0}, p_{2}, \ldots, p_{n}\right\rangle$

Example

Polygon

Outline

(1) Introduction

- What is Computational Geometry?
(2) Representation
- Representation of Primitive Geometries
(3) Line-Segment Properties
- Using Point Representation
- Cross Product
- Turn Left or Right
- Intersection

4 Classical Problems

- Determining whether any pair of segments intersects
- Correctness of Sweeping Line Algorithm
- Finding the Convex Hull
- Graham's Scan
- Jarvis' March

Line-segment Properties

A convex combination

- Given two distinct points $p_{1}=\left(x_{1}, y_{1}\right)^{T}$ and $p_{2}=\left(x_{2}, y_{2}\right)^{T}$, a convex combination of $\left\{p_{1}, p_{2}\right\}$ is any point p_{3} such that:

Line-segment Properties

A convex combination

- Given two distinct points $p_{1}=\left(x_{1}, y_{1}\right)^{T}$ and $p_{2}=\left(x_{2}, y_{2}\right)^{T}$, a convex combination of $\left\{p_{1}, p_{2}\right\}$ is any point p_{3} such that:
- $p_{3}=\alpha p_{1}+(1-\alpha) p_{2}$ with $0 \leq \alpha \leq 1$.

Line-segment Properties

A convex combination

- Given two distinct points $p_{1}=\left(x_{1}, y_{1}\right)^{T}$ and $p_{2}=\left(x_{2}, y_{2}\right)^{T}$, a convex combination of $\left\{p_{1}, p_{2}\right\}$ is any point p_{3} such that:
- $p_{3}=\alpha p_{1}+(1-\alpha) p_{2}$ with $0 \leq \alpha \leq 1$.

Line Segment as Convex Combination

- Given two points p_{1} and p_{2} (Known as End Points), the line segment $\overline{p_{1} p_{2}}$ is the set of convex combinations of p_{1} and p_{2}.

Line-segment Properties

A convex combination

- Given two distinct points $p_{1}=\left(x_{1}, y_{1}\right)^{T}$ and $p_{2}=\left(x_{2}, y_{2}\right)^{T}$, a convex combination of $\left\{p_{1}, p_{2}\right\}$ is any point p_{3} such that:

$$
p_{3}=\alpha p_{1}+(1-\alpha) p_{2} \text { with } 0 \leq \alpha \leq 1 .
$$

Line Segment as Convex Combination

- Given two points p_{1} and p_{2} (Known as End Points), the line segment $\overline{p_{1} p_{2}}$ is the set of convex combinations of p_{1} and p_{2}.

Directed Segment

- Here, we care about the direction with initial point p_{1} for the directed segment $\overrightarrow{p_{1} p_{2}}$:

Line-segment Properties

A convex combination

- Given two distinct points $p_{1}=\left(x_{1}, y_{1}\right)^{T}$ and $p_{2}=\left(x_{2}, y_{2}\right)^{T}$, a convex combination of $\left\{p_{1}, p_{2}\right\}$ is any point p_{3} such that:
- $p_{3}=\alpha p_{1}+(1-\alpha) p_{2}$ with $0 \leq \alpha \leq 1$.

Line Segment as Convex Combination

- Given two points p_{1} and p_{2} (Known as End Points), the line segment $\overline{p_{1} p_{2}}$ is the set of convex combinations of p_{1} and p_{2}.

Directed Segment

- Here, we care about the direction with initial point p_{1} for the directed segment $\overrightarrow{p_{1} p_{2}}$:
- If $p_{1}=(0,0)$ then $\overrightarrow{p_{1} p_{2}}$ is the vector p_{2}.

Outline

(1) Introduction

- What is Computational Geometry?
(2) Representation
- Representation of Primitive Geometries
(3) Line-Segment Properties
- Using Point Representation
- Cross Product
- Turn Left or Right
- Intersection

4 Classical Problems

- Determining whether any pair of segments intersects
- Correctness of Sweeping Line Algorithm
- Finding the Convex Hull
- Graham's Scan
- Jarvis' March

Cross Product

Question!!!

- Given two directed segments $\overrightarrow{p_{0} p_{1}}$ and $\overrightarrow{p_{0} p_{2}}$,

Cross Product

Question!!!

- Given two directed segments $\overrightarrow{p_{0} p_{1}}$ and $\overrightarrow{p_{0} p_{2}}$,
- Is $\overrightarrow{p_{0} p_{1}}$ clockwise from $\overrightarrow{p_{0} p_{2}}$ with respect to their common endpoint p_{0} ?

Cross Product

Question!!!

- Given two directed segments $\overrightarrow{p_{0} p_{1}}$ and $\overrightarrow{p_{0} p_{2}}$,
- Is $\overrightarrow{p_{0} p_{1}}$ clockwise from $\overrightarrow{p_{0} p_{2}}$ with respect to their common endpoint p_{0} ?

Cross Product

- Cross product $p_{1} \times p_{2}$ as the signed area of the parallelogram formed by

Cross Product

A shorter representation

$$
p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
p_{1} & p_{2}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=-p_{2} \times p_{1}
$$

Cross Product

A shorter representation

$$
p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
p_{1} & p_{2}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=-p_{2} \times p_{1}
$$

Thus

- if $p_{1} \times p_{2}$ is positive, then p_{1} is clockwise from p_{2}.

Cross Product

A shorter representation

$$
p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
p_{1} & p_{2}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=-p_{2} \times p_{1}
$$

Thus

- if $p_{1} \times p_{2}$ is positive, then p_{1} is clockwise from p_{2}.
- if $p_{1} \times p_{2}$ is negative, then p_{1} is counterclockwise from p_{2}.

Regions

Clockwise and Counterclockwise Regions

Figure: Darker counterclockwise; lighter clockwise with respect to p

Outline

(1) Introduction

- What is Computational Geometry?
(2) Representation
- Representation of Primitive Geometries
(3) Line-Segment Properties
- Using Point Representation
- Cross Product
- Turn Left or Right
- Intersection

4 Classical Problems

- Determining whether any pair of segments intersects
- Correctness of Sweeping Line Algorithm
- Finding the Convex Hull
- Graham's Scan
- Jarvis' March

Turn Left or Right

Question

Given two line segments $\overrightarrow{p_{0} p_{1}}$ and $\overrightarrow{p_{1} p_{2}}$,

- if we traverse $\overrightarrow{p_{0} p_{1}}$ and then $\overrightarrow{p_{1} p_{2}}$, do we make a left turn at point p_{1} ?

Turn Left or Right

Simply use the following idea

- Compute cross product $\left(p_{2}-p_{0}\right) \times\left(p_{1}-p_{0}\right)!!!$

Turn Left or Right

Simply use the following idea

- Compute cross product $\left(p_{2}-p_{0}\right) \times\left(p_{1}-p_{0}\right)$!!!
- This translates p_{0} to the origin!!!

Turn Left or Right

Simply use the following idea

- Compute cross product $\left(p_{2}-p_{0}\right) \times\left(p_{1}-p_{0}\right)!!!$
- This translates p_{0} to the origin!!!
- What about $\left(p_{2}-p_{0}\right) \times\left(p_{1}-p_{0}\right)=0$?

Turn Left or Right

Simply use the following idea

- Compute cross product $\left(p_{2}-p_{0}\right) \times\left(p_{1}-p_{0}\right)!!!$
- This translates p_{0} to the origin!!!
- What about $\left(p_{2}-p_{0}\right) \times\left(p_{1}-p_{0}\right)=0$?

Left Turn = counterclockwise; Right Turn = clockwise

counterclockwise

$$
\left(p_{2}-p_{0}\right) \times\left(p_{1}-p_{0}\right)=\left(\begin{array}{cc}
x_{2}-x_{0} & x_{1}-x_{0} \\
y_{2}-y_{0} & y_{1}-y_{0}
\end{array}\right)<0 \quad\left(p_{2}-p_{0}\right) \times\left(p_{1}-p_{0}\right)=\left(\begin{array}{cc}
x_{2}-x_{0} & x_{1}-x_{0} \\
y_{2}-y_{0} & y_{1}-y_{0}
\end{array}\right)>0
$$

Code for this

We have the following code

Direction $\left(p_{i}, p_{j}, p_{k}\right)$
(1) return $\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)$

Outline

(1) Introduction

- What is Computational Geometry?
(2) Representation
- Representation of Primitive Geometries
(3) Line-Segment Properties
- Using Point Representation
- Cross Product
- Turn Left or Right
- Intersection

4 Classical Problems

- Determining whether any pair of segments intersects
- Correctness of Sweeping Line Algorithm
- Finding the Convex Hull
- Graham's Scan
- Jarvis' March

Intersection

Question
 Do line segments $\overrightarrow{p_{1} p_{2}}$ and $\overrightarrow{p_{3} p_{4}}$ intersect?

Intersection

Question

Do line segments $\overrightarrow{p_{1} p_{2}}$ and $\overrightarrow{p_{3} p_{4}}$ intersect?
Very Simple!!! We have two possibilities
(1) Each segment straddles the line containing the other.

Intersection

Question

Do line segments $\overrightarrow{p_{1} p_{2}}$ and $\overrightarrow{p_{3} p_{4}}$ intersect?

Very Simple!!! We have two possibilities

(1) Each segment straddles the line containing the other.
(2) An endpoint of one segment lies on the other segment.

Case I This summarize the previous two possibilities

The segments straddle each other's lines.

Figure: Using Cross Products to find intersections

Case II No intersection

The segment straddles the line, but the other does not straddle the other line

Figure: Using Cross Products to find that there is no intersection

Code

Code

Segment-Intersection $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$
(1) $d_{1}=\operatorname{Direction}\left(p_{3}, p_{4}, p_{1}\right)$
(2) $d_{2}=$ Direction $\left(p_{3}, p_{4}, p_{2}\right)$
(3) $d_{3}=$ Direction $\left(p_{1}, p_{2}, p_{3}\right)$
(4) $d_{4}=$ Direction $\left(p_{1}, p_{2}, p_{4}\right)$

Code

Code

Segment-Intersection $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$
(1) $d_{1}=\operatorname{Direction}\left(p_{3}, p_{4}, p_{1}\right)$
(2) $d_{2}=$ Direction $\left(p_{3}, p_{4}, p_{2}\right)$
(3) $d_{3}=$ Direction $\left(p_{1}, p_{2}, p_{3}\right)$
(9) $d_{4}=$ Direction $\left(p_{1}, p_{2}, p_{4}\right)$
(6) if $\left(\left(d_{1}>0\right.\right.$ and $\left.d_{2}<0\right)$ or $\left(d_{1}<0\right.$ and $\left.d_{2}>0\right)$ and
$\left(d_{3}>0\right.$ and $\left.d_{4}<0\right)$ or $\left(d_{3}<0\right.$ and $\left.\left.d_{4}>0\right)\right)$
(1) return TRUE

Figure: The Incomplete Code, You still need to test for endpoints over the segment

Outline

(1) Introduction

- What is Computational Geometry?
(2) Representation
- Representation of Primitive Geometries
(3) Line-Segment Properties
- Using Point Representation
- Cross Product
- Turn Left or Right
- Intersection
(4) Classical Problems
- Determining whether any pair of segments intersects
- Correctness of Sweeping Line Algorithm
- Finding the Convex Hull
- Graham's Scan
- Jarvis' March

Sweeping

Sweeping

Use an imaginary vertical line to pass through the n segments with events $x \in\{r, t, u\}$:

Figure: Vertical Line to Record Events

Thus

This can be used to record events given two segments s_{1} and s_{2}

- Event I: s_{1} above s_{2} at x, written $s_{1} \succcurlyeq_{x} s_{2}$.

Thus

This can be used to record events given two segments s_{1} and s_{2}

- Event I: s_{1} above s_{2} at x, written $s_{1} \succcurlyeq_{x} s_{2}$.
- This is a total preorder relation for segment intersecting the line at x.

Thus

This can be used to record events given two segments s_{1} and s_{2}

- Event I: s_{1} above s_{2} at x, written $s_{1} \succcurlyeq_{x} s_{2}$.
- This is a total preorder relation for segment intersecting the line at x.
- The relation is transitive and reflexive.

Thus

This can be used to record events given two segments s_{1} and s_{2}

- Event I: s_{1} above s_{2} at x, written $s_{1} \succcurlyeq_{x} s_{2}$.
- This is a total preorder relation for segment intersecting the line at x.
- The relation is transitive and reflexive.
- Event II: s_{1} intersect s_{2}, then neither $s_{1} \succcurlyeq_{x} s_{2}$ or $s_{2} \succcurlyeq_{x} s_{1}$, or both (if s_{1} and s_{2} intersect at x)

Example

Example：$a \succcurlyeq_{r} c a \succcurlyeq_{t} c$

Figure：Vertical Line to Record Events

Change in direction

When e and f intersect, $e \succcurlyeq_{v} f$ and $f \succcurlyeq_{w} e$. In the Shaded Region, any sweep line will have e and f as consecutive

Figure: Vertical Line to Record Events

Moving the sweep line

Something Notable

Sweeping algorithms typically manage two sets of data.

Moving the sweep line

Something Notable

Sweeping algorithms typically manage two sets of data.

Sweep-line status

The sweep-line status gives the relationships among the objects that the sweep line intersects.

Moving the sweep line

Something Notable

Sweeping algorithms typically manage two sets of data.

Sweep-line status

The sweep-line status gives the relationships among the objects that the sweep line intersects.

Event-point schedule

The event-point schedule is a sequence of points, called event points, which we order from left to right according to their x-coordinates.

- As the sweep progress from left to right, it stops and processes each event point, then resumes.

Moving the sweep line

Something Notable

Sweeping algorithms typically manage two sets of data.

Sweep-line status

The sweep-line status gives the relationships among the objects that the sweep line intersects.

Event-point schedule

The event-point schedule is a sequence of points, called event points, which we order from left to right according to their x-coordinates.

- As the sweep progress from left to right, it stops and processes each event point, then resumes.
- It is possible to use a min-priority queue to keep those event points sorted by x-coordinate.

Sweeping Process

First

- We sort the segment endpoints by increasing x-coordinate and proceed from left to right.

Sweeping Process

First

- We sort the segment endpoints by increasing x-coordinate and proceed from left to right.

However, sometimes they have the same x-coordinate (Covertical)

If two or more endpoints are covertical, we break the tie by putting all the covertical left endpoints before the covertical right endpoints.

Then

Second

Within a set of covertical left endpoints, we put those with lower y-coordinates first, and we do the same within a set of covertical right endpoints.

Then

Process

(1) When we encounter a segment's left endpoint, we insert the segment into the sweep-line status.

Then

Process

(1) When we encounter a segment's left endpoint, we insert the segment into the sweep-line status.
(2) We delete the segment from the sweep-line status upon encountering its right endpoint.

Then

Process

(1) When we encounter a segment's left endpoint, we insert the segment into the sweep-line status.
(2) We delete the segment from the sweep-line status upon encountering its right endpoint.

Thus

Whenever two segments first become consecutive in the total preorder, we check whether they intersect.

Operations

Operations to keep preorder on the events for algorithm

- INSERT (T, s) : insert segment s into T.

Operations

Operations to keep preorder on the events for algorithm

- INSERT (T, s) : insert segment s into T.
- $\operatorname{DELETE}(T, s)$: delete segment s from T.

Operations

Operations to keep preorder on the events for algorithm

- INSERT (T, s) : insert segment s into T.
- $\operatorname{DELETE}(T, s)$: delete segment s from T.
- $\operatorname{ABOVE}(T, s)$: return the segment immediately above segment s in T.

Operations

Operations to keep preorder on the events for algorithm

- INSERT (T, s) : insert segment s into T.
- $\operatorname{DELETE}(T, s)$: delete segment s from T.
- $\operatorname{ABOVE}(T, s)$: return the segment immediately above segment s in T.
- BELOW (T, s) : return the segment immediately below segment s in T.

Operations

Operations to keep preorder on the events for algorithm

- INSERT (T, s) : insert segment s into T.
- $\operatorname{DELETE}(T, s)$: delete segment s from T.
- $\operatorname{ABOVE}(T, s)$: return the segment immediately above segment s in T.
- BELOW (T, s) : return the segment immediately below segment s in T.

Note

Each operation can be performed in $O\left(\log _{2} n\right)$ using a red-black-tree by using comparisons by cross product to find the above and below.

Operations

Operations to keep preorder on the events for algorithm

- INSERT (T, s) : insert segment s into T.
- $\operatorname{DELETE}(T, s)$: delete segment s from T.
- $\operatorname{ABOVE}(T, s)$: return the segment immediately above segment s in T.
- BELOW (T, s) : return the segment immediately below segment s in T.

Note

Each operation can be performed in $O\left(\log _{2} n\right)$ using a red-black-tree by using comparisons by cross product to find the above and below.

This allows to see

The relative ordering of two segments.

What the algorithm does?

Moving the sweeping line discretely - Event-point schedule

Event-Point Schedule Implementation

For this

We can use a Priority Queue using lexicographic order

Event-Point Schedule Implementation

For this

We can use a Priority Queue using lexicographic order
The interesting part is the Sweeping-Line Satus
Because the way we build the balanced tree

Sweep-Line Status

The Above and Below relation

Sweeping Line

Sweeping Line Status Implementation

Use the following relation of order to build the binary tree

Given a segment x, then you insert y
Case I if y is counterclockwise, it is below x (Go to the left).
Case II if y is clockwise, it is above x (Go to the Right)

Sweeping Line Status Implementation

Use the following relation of order to build the binary tree

Given a segment x, then you insert y
Case I if y is counterclockwise, it is below x (Go to the left).
Case II if y is clockwise, it is above x (Go to the Right)

In addtion

If you are at a leaf do the insertion, but also insert the leaf at the left or right given the insertion.

Example

We insert th first element in the circular leaves list

Example

We insert a inner node after binary search

Below
Above

Example

Similar

Below
Above

Example

Etc....

Below
Above

Pseudo-code with complexity $O\left(n \log _{2} n\right)$
Any-Segment-Intersect(S)
(1) $T=\emptyset$

Pseudo-code with complexity $O\left(n \log _{2} n\right)$

Any-Segment-Intersect(S)
(1) $T=\emptyset$
(2) Sort the endpoints of the segments in S from left to right

Pseudo-code with complexity $O\left(n \log _{2} n\right)$

Any-Segment-Intersect(S)

(1) $T=\emptyset$
(2) Sort the endpoints of the segments in S from left to right Breaking ties by putting left endpoints before right endpoints

Pseudo-code with complexity $O\left(n \log _{2} n\right)$

Any-Segment-Intersect(S)

(1) $T=\emptyset$
(2) Sort the endpoints of the segments in S from left to right Breaking ties by putting left endpoints before right endpoints and breaking further ties by putting points with lower

Pseudo-code with complexity $O\left(n \log _{2} n\right)$

Any-Segment-Intersect(S)

(1) $T=\emptyset$
(2) Sort the endpoints of the segments in S from left to right Breaking ties by putting left endpoints before right endpoints and breaking further ties by putting points with lower y-coordinates first

Pseudo-code with complexity $O\left(n \log _{2} n\right)$

Any-Segment-Intersect(S)

(1) $T=\emptyset$
(2) Sort the endpoints of the segments in S from left to right Breaking ties by putting left endpoints before right endpoints and breaking further ties by putting points with lower y-coordinates first
(3) for each point p in the sorted list
(4) if p is the left endpoint of a segment s

Pseudo-code with complexity $O\left(n \log _{2} n\right)$

Any-Segment-Intersect(S)

(1) $T=\emptyset$
(2) Sort the endpoints of the segments in S from left to right Breaking ties by putting left endpoints before right endpoints and breaking further ties by putting points with lower y-coordinates first
(3) for each point p in the sorted list
(4) if p is the left endpoint of a segment s
$\operatorname{INSERT}(T, s)$
©
if ($\operatorname{ABOVE}(T, s)$ exists and intersect s) or (BELOW (T, s) exists and intersect s)
© return TRUE

Pseudo-code with complexity $O\left(n \log _{2} n\right)$

Any-Segment-Intersect(S)

(1) $T=\emptyset$
(2) Sort the endpoints of the segments in S from left to right

Breaking ties by putting left endpoints before right endpoints and breaking further ties by putting points with lower y-coordinates first
(3) for each point p in the sorted list
(9) if p is the left endpoint of a segment s

INSERT(T, s)
if ($\operatorname{ABOVE}(T, s)$ exists and intersect s$)$ or (BELOW (T, s) exists and intersect s) return TRUE
(8) if p is the right endpoint of a segment s

Pseudo-code with complexity $O\left(n \log _{2} n\right)$

Any-Segment-Intersect(S)

(1) $T=\emptyset$
(2) Sort the endpoints of the segments in S from left to right

Breaking ties by putting left endpoints before right endpoints and breaking further ties by putting points with lower y-coordinates first
(3) for each point p in the sorted list
(9) if p is the left endpoint of a segment s
$\operatorname{INSERT}(T, s)$
if ($\operatorname{ABOVE}(T, s)$ exists and intersect s$)$ or (BELOW (T, s) exists and intersect s) return TRUE
if p is the right endpoint of a segment s

$$
\begin{aligned}
& \text { if (both } \operatorname{ABOVE}(T, s) \text { and } \operatorname{BELOW}(T, s) \text { exist) } \\
& \quad \text { and }(\operatorname{ABOVE}(T, s) \text { intersect } \operatorname{BELOW}(T, s))
\end{aligned}
$$

return TRUE

Pseudo-code with complexity $O\left(n \log _{2} n\right)$

Any-Segment-Intersect(S)

(1) $T=\emptyset$
(2) Sort the endpoints of the segments in S from left to right

Breaking ties by putting left endpoints before right endpoints and breaking further ties by putting points with lower y-coordinates first
(3) for each point p in the sorted list
(9) if p is the left endpoint of a segment s
$\operatorname{INSERT}(T, s)$
if ($\operatorname{ABOVE}(T, s)$ exists and intersect s$)$ or (BELOW (T, s) exists and intersect s) return TRUE
if p is the right endpoint of a segment s
if (both $\operatorname{ABOVE}(T, s)$ and $\operatorname{BELOW}(T, s)$ exist) and $(\operatorname{ABOVE}(T, s)$ intersect $\operatorname{BELOW}(T, s))$ return TRUE
(1)
$\operatorname{DELETE}(T, s)$

Pseudo-code with complexity $O\left(n \log _{2} n\right)$

Any-Segment-Intersect(S)

(1) $T=\emptyset$
(2) Sort the endpoints of the segments in S from left to right Breaking ties by putting left endpoints before right endpoints and breaking further ties by putting points with lower y-coordinates first
(3) for each point p in the sorted list
(9) if p is the left endpoint of a segment s
$\operatorname{INSERT}(T, s)$
if ($\operatorname{ABOVE}(T, s)$ exists and intersect s$)$ or (BELOW (T, s) exists and intersect s) return TRUE
if p is the right endpoint of a segment s
if (both $\operatorname{ABOVE}(T, s)$ and $\operatorname{BELOW}(T, s)$ exist) and $(\operatorname{ABOVE}(T, s)$ intersect $\operatorname{BELOW}(T, s))$

return TRUE

(12) return FALSE

Outline

(1) Introduction

- What is Computational Geometry?
(2) Representation
- Representation of Primitive Geometries
(3) Line-Segment Properties
- Using Point Representation
- Cross Product
- Turn Left or Right
- Intersection
(4) Classical Problems
- Determining whether any pair of segments intersects
- Correctness of Sweeping Line Algorithm
- Finding the Convex Hull
- Graham's Scan
- Jarvis' March

Correctness

The ANY-SEGMENTS-INTERSECT returns TRUE

If it finds an intersection between two of the input segments.

Correctness

The ANY-SEGMENTS-INTERSECT returns TRUE

If it finds an intersection between two of the input segments.

Proof:

Observation: What if there is the leftmost intersection, p ?

Correctness

The ANY-SEGMENTS-INTERSECT returns TRUE

If it finds an intersection between two of the input segments.

Proof:

Observation: What if there is the leftmost intersection, p ?

- Then, let a and b be the segments to intersect at p

Correctness

The ANY-SEGMENTS-INTERSECT returns TRUE

If it finds an intersection between two of the input segments.

Proof:

Observation: What if there is the leftmost intersection, p ?

- Then, let a and b be the segments to intersect at p

Then, for a and b

- Since no intersections occur to the left of p, the order given by T (Sweeping Line Data Structure) is correct at all points to the left of p.

Correctness

The ANY-SEGMENTS-INTERSECT returns TRUE

If it finds an intersection between two of the input segments.

Proof:

Observation: What if there is the leftmost intersection, p ?

- Then, let a and b be the segments to intersect at p

Then, for a and b

- Since no intersections occur to the left of p, the order given by T (Sweeping Line Data Structure) is correct at all points to the left of p.
- Assuming that no three segments intersect at the same point, a and b become consecutive in the total preorder of some sweep line z.

Now, we have two possbibilities

Case I

Case I

Moreover

z is to the left of p or goes through p.

Case I

Moreover

z is to the left of p or goes through p.

In addition

There is a endpoint q where a and b become consecutive.

Finally

Then a and b
They become consecutive in the total pre-order of a sweep line.

Case II

We have that q is a left endpoint where a and b stop being consecutive

Correctness about the order given by T

Then, given the two following cases
(1) if p is in the sweep line $\Rightarrow p==q$.

Correctness about the order given by T

Then, given the two following cases
(1) if p is in the sweep line $\Rightarrow p==q$.
(2) If q is at the left of p, and it is the nearest left one.

Do we mantain the correct preorder?

We have that given that p is first
Then, it is processed first becacuse the lexicographic order.

Do we mantain the correct preorder?

We have that given that p is first

Then, it is processed first becacuse the lexicographic order.
Therefore, two cases can happen
(1) The point is processed - then the algorithm returns true
(2) If the event is not processed - then the algorithm must have returned true

Handling Case I

Segments a and b are already in T, and a segment between them in the total pre-order is deleted, making a and b to become consecutive

When is this detected?

In the following lines of the code
Lines 8-11 detect this case.

Handling Case II

Either a or b is inserted into T, and the other segment is above or below it in the total pre-order.

When is this detected?

In the following lines of the code
Lines 4-7 detect this case.

Finally

If event point q is not processed
It must have found an earlier intersection!!!

Finally

If event point q is not processed
It must have found an earlier intersection!!!
Therefore
If there is an intersection Any-Segment-Intersect returns true all the time

Running Time

Something Notable

(1) Line 1 takes $O(1)$ time.

Running Time

Something Notable

(1) Line 1 takes $O(1)$ time.
(2) Line 2 takes $O\left(n \log _{2} n\right)$ time, using merge or heap sort

Running Time

Something Notable

(1) Line 1 takes $O(1)$ time.
(2) Line 2 takes $O\left(n \log _{2} n\right)$ time, using merge or heap sort
(3) The for loop iterates at most $2 n$ times

Running Time

Something Notable

(1) Line 1 takes $O(1)$ time.
(2) Line 2 takes $O\left(n \log _{2} n\right)$ time, using merge or heap sort
(3) The for loop iterates at most $2 n$ times
(1) Each iteration takes $O\left(\log _{2} n\right)$ in a well balanced tree.

Running Time

Something Notable

(1) Line 1 takes $O(1)$ time.
(2) Line 2 takes $O\left(n \log _{2} n\right)$ time, using merge or heap sort
(3) The for loop iterates at most $2 n$ times
(1) Each iteration takes $O\left(\log _{2} n\right)$ in a well balanced tree.
(2) Each intersection test takes O (1)

Running Time

Something Notable

(1) Line 1 takes $O(1)$ time.
(2) Line 2 takes $O\left(n \log _{2} n\right)$ time, using merge or heap sort
(3) The for loop iterates at most $2 n$ times
(1) Each iteration takes $O\left(\log _{2} n\right)$ in a well balanced tree.
(2) Each intersection test takes O (1)

Total Time
 $O\left(n \log _{2} n\right)$

Outline

(1) Introduction

- What is Computational Geometry?
(2) Representation
- Representation of Primitive Geometries
(3) Line-Segment Properties
- Using Point Representation
- Cross Product
- Turn Left or Right
- Intersection
(4) Classical Problems
- Determining whether any pair of segments intersects
- Correctness of Sweeping Line Algorithm
- Finding the Convex Hull
- Graham's Scan
- Jarvis' March

Convex Hull

Convex Hull

- Given a set of points, Q, find the smallest convex polygon P such that $Q \subset P$. This is denoted by $\mathrm{CH}(Q)$.

Convex Hull

Convex Hull

- Given a set of points, Q, find the smallest convex polygon P such that $Q \subset P$. This is denoted by $\mathrm{CH}(Q)$.

Their Convex Hull

Convex Hull

Convex Hull

The two main Algorithms (Using the "Rotational Sweep") that we are going to explore

- Graham's Scan.
- Jarvis' March.

Convex Hull

The two main Algorithms (Using the "Rotational Sweep") that we are going to explore

- Graham's Scan.
- Jarvis' March.

Nevertheless there are other methods

- The incremental method

Convex Hull

The two main Algorithms (Using the "Rotational Sweep") that we are going to explore

- Graham's Scan.
- Jarvis' March.

Nevertheless there are other methods

- The incremental method
- Divide-and-conquer method.

Convex Hull

The two main Algorithms (Using the "Rotational Sweep") that we are going to explore

- Graham's Scan.
- Jarvis' March.

Nevertheless there are other methods

- The incremental method
- Divide-and-conquer method.
- Prune-and-search method.

Outline

(1) Introduction

- What is Computational Geometry?
(2) Representation
- Representation of Primitive Geometries
(3) Line-Segment Properties
- Using Point Representation
- Cross Product
- Turn Left or Right
- Intersection
(4) Classical Problems
- Determining whether any pair of segments intersects
- Correctness of Sweeping Line Algorithm
- Finding the Convex Hull
- Graham's Scan
- Jarvis' March

Graham's Scan

Graham's Scan Basics

- It keeps a Stack of candidate points.

Graham's Scan

Graham's Scan Basics

- It keeps a Stack of candidate points.
- It Pops elements that are not part of the $\mathbf{C H}(Q)$.

Graham's Scan

Graham's Scan Basics

- It keeps a Stack of candidate points.
- It Pops elements that are not part of the $\mathbf{C H}(Q)$.
- Whatever is left in the Stack is part of the $\mathbf{C H}(Q)$.

Graham's Scan Code

Algorithm

GRAHAM-SCAN (Q)

1. Let p_{0} be the point Q with the minimum y-coordinate or the leftmost such point in case of a tie

Graham's Scan Code

Algorithm

GRAHAM-SCAN (Q)

1. Let p_{0} be the point Q with the minimum y-coordinate or the leftmost such point in case of a tie
2. let $\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle$ be the remaining points in Q, sorted by polar angle in counter clockwise order around p_{0} (If more than one point has the same angle, remove all but one that is farthest from p_{0})

Graham's Scan Code

Algorithm

GRAHAM-SCAN (Q)

1. Let p_{0} be the point Q with the minimum y-coordinate or the leftmost such point in case of a tie
2. let $\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle$ be the remaining points in Q, sorted by polar angle in counter clockwise order around p_{0} (If more than one point has the same angle, remove all but one that is farthest from p_{0})
3. Let S be an empty stack

Graham's Scan Code

Algorithm

GRAHAM-SCAN (Q)

1. Let p_{0} be the point Q with the minimum y-coordinate or the leftmost such point in case of a tie
2. let $\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle$ be the remaining points in Q, sorted by polar angle in counter clockwise order around p_{0} (If more than one point has the same angle, remove all but one that is farthest from p_{0})
3. Let S be an empty stack
4. $\operatorname{PUSH}\left(p_{0}, S\right)$
5. $\operatorname{PUSH}\left(p_{1}, S\right)$
6. $\operatorname{PUSH}\left(p_{2}, S\right)$

Graham's Scan Code

Algorithm

GRAHAM-SCAN (Q)

1. Let p_{0} be the point Q with

$$
\text { 7. for } i=3 \text { to } n
$$ the minimum y-coordinate or the leftmost such point in case of a tie

2. let $\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle$ be the remaining points in Q, sorted by polar angle in counter clockwise order around p_{0} (If more than one point has the same angle, remove all but one that is farthest from p_{0})
3. Let S be an empty stack
4. $\operatorname{PUSH}\left(p_{0}, S\right)$
5. $\operatorname{PUSH}\left(p_{1}, S\right)$
6. $\operatorname{PUSH}\left(p_{2}, S\right)$

Graham's Scan Code

Algorithm

GRAHAM-SCAN (Q)

1. Let p_{0} be the point Q with the minimum y-coordinate or the leftmost such point in case of a tie
2. let $\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle$ be the remaining points in Q, sorted by polar angle in counter clockwise order around p_{0} (If more than one point has the same angle, remove all but one that is farthest from p_{0})
3. Let S be an empty stack
4. $\operatorname{PUSH}\left(p_{0}, S\right)$
5. $\mathrm{PUSH}\left(p_{1}, S\right)$
6. $\operatorname{PUSH}\left(p_{2}, S\right)$
7. for $i=3$ to n
8.

POP (S)

Graham's Scan Code

Algorithm

GRAHAM-SCAN (Q)

1. Let p_{0} be the point Q with the minimum y-coordinate or the leftmost such point in case of a tie

$$
\text { 7. for } i=3 \text { to } n
$$

9.
10. $\operatorname{PUSH}(S)$
11. let $\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle$ be the remaining points in Q, sorted by polar angle in counter clockwise order around p_{0} (If more than one point has the same angle, remove all but one that is farthest from p_{0})
12. Let S be an empty stack
13. $\operatorname{PUSH}\left(p_{0}, S\right)$
14. $\operatorname{PUSH}\left(p_{1}, S\right)$
15. $\operatorname{PUSH}\left(p_{2}, S\right)$

Graham's Scan Code

Algorithm

GRAHAM-SCAN (Q)

1. Let p_{0} be the point Q with the minimum y-coordinate or the leftmost such point in case of a tie
2. let $\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle$ be the remaining points in Q, sorted by polar angle in counter clockwise order around p_{0} (If more than one point has the same angle, remove all but one that is farthest from p_{0})
3. Let S be an empty stack
4. $\operatorname{PUSH}\left(p_{0}, S\right)$
5. $\operatorname{PUSH}\left(p_{1}, S\right)$
6. $\operatorname{PUSH}\left(p_{2}, S\right)$

$$
\begin{aligned}
& \text { 7. for } i=3 \text { to } n \\
& \text { 8. } \\
& \text { 9. } \\
& \text { 10. } \\
& \text { 10. } \operatorname{POW}\left(\text { next-top }(S), p_{i}, \text { top }(S)\right) \leq 0 \\
& \text { 11. return } S
\end{aligned}
$$

Graham's Scan Code

Algorithm

GRAHAM-SCAN (Q)

1. Let p_{0} be the point Q with the minimum y-coordinate or the leftmost such point in case of a tie
2. let $\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle$ be the remaining points in Q, sorted by polar angle in counter clockwise order around p_{0} (If more than one point has the same angle, remove all but one that is farthest from p_{0})
3. Let S be an empty stack
4. $\operatorname{PUSH}\left(p_{0}, S\right)$
5. $\operatorname{PUSH}\left(p_{1}, S\right)$
6. $\operatorname{PUSH}\left(p_{2}, S\right)$
7. for $i=3$ to n
8. while $\operatorname{ccw}\left(\right.$ next-top(S), p_{i}, top $\left.(S)\right) \leq 0$ 9. $\operatorname{POP}(S)$
9. $\operatorname{PUSH}(S)$
10. return S
\triangleright The clockwise and counter clockwise algorithm \triangleleft $\operatorname{ccw}\left(p_{1}, p_{2}, p_{3}\right)$
11. return $\left(p_{3}-p_{1} \times p_{2}-p_{1}\right)$

Example

Sort points using the smallest to largest polar coordinate

Cinvestav

Example

Push the first points into the stack

Example

$\operatorname{ccw}\left(p_{1}, p_{2}, p_{3}\right)>0$, do not get into the loop and push p_{3} into S

Example

$\operatorname{ccw}\left(p_{2}, p_{3}, p_{4}\right)>0$, do not get into the loop and push p_{4} into S

Example

Counterclockwise - Pop p_{4}

Example

Clockwise - Push p_{5}

Example

Counterclockwise - Pop p_{5} and push p_{6}

Example

Clockwise push p_{7}

Example

Counterclockwise pop p_{7} and push p_{8}

Example

Clockwise push p_{9}

Example

Clockwise pop p_{9} and push p_{10}

Example

Keep going until you finish

We have the following theorem for correctness of the algorithm

Theorem 33.1 (Correctness of Graham's scan)

If GRAHAM-SCAN executes on a set Q of points, where $|Q| \geq 3$, then at termination, the stack S consists of, from bottom to top, exactly the vertices of $\mathrm{CH}(Q)$ in counterclockwise order.

We have the following theorem for correctness of the algorithm

Theorem 33.1 (Correctness of Graham's scan)

If GRAHAM-SCAN executes on a set Q of points, where $|Q| \geq 3$, then at termination, the stack S consists of, from bottom to top, exactly the vertices of $\mathrm{CH}(Q)$ in counterclockwise order.

The proof is based in loop invariance
I leave this to you to read!!!

Using Aggregate Analysis to obtain the complexity

 $O\left(n \log _{2} n\right)$
Complexity

(1) Line 2 takes $O\left(n \log _{2} n\right)$ using Merge sort or Heap sort by using polar angles and cross product.

Using Aggregate Analysis to obtain the complexity

 $O\left(n \log _{2} n\right)$
Complexity

(1) Line 2 takes $O\left(n \log _{2} n\right)$ using Merge sort or Heap sort by using polar angles and cross product.
(2) Lines 3-6 take $O(1)$.

Using Aggregate Analysis to obtain the complexity

 $O\left(n \log _{2} n\right)$
Complexity

(1) Line 2 takes $O\left(n \log _{2} n\right)$ using Merge sort or Heap sort by using polar angles and cross product.
(2) Lines 3-6 take $O(1)$.

For the Lines 7-10

The for loop executes at most $n-3$ times because we have $|Q|-3$ points left

In addition

Given
PUSH takes $O(1)$ time:

- Each iteration takes $O(1)$ time not taking in account the time spent in the while loop in lines 8-9.

In addition

Given

PUSH takes $O(1)$ time:

- Each iteration takes $O(1)$ time not taking in account the time spent in the while loop in lines 8-9.

Then

The for loop take overall time $O(n)$ time

In addition

Given

PUSH takes $O(1)$ time:

- Each iteration takes $O(1)$ time not taking in account the time spent in the while loop in lines 8-9.

Then

The for loop take overall time $O(n)$ time

Here is the aggregate analysis

Here, we will prove that the overall time for all the times the while loop is touched by the for loop is going to be $O(n)$.

Aggregate Analysis

We have that

For $i=0,1, \ldots, n$, we push each point p_{i} into the stack S exactly once.

Aggregate Analysis

We have that

For $i=0,1, \ldots, n$, we push each point p_{i} into the stack S exactly once.

Remember Multipop?

We can pop at most the number of items that we push on it.

Aggregate Analysis

We have that

For $i=0,1, \ldots, n$, we push each point p_{i} into the stack S exactly once.

Remember Multipop?

We can pop at most the number of items that we push on it.

Thus

At least three points p_{0}, p_{1} and p_{m} are never popped out of the stack!!! - p_{m} is the last point being taken in consideration!!! With $m \leq n$

Aggregate Analysis

Thus

We have $m-2$ POP operations are performed in total!!! If we had pushed m elements into S.

Aggregate Analysis

Thus

We have $m-2$ POP operations are performed in total!!!! If we had pushed m elements into S.

Thus, each iteration of the while loop
It performs one POP, and there are at most $m-2$ iterations of the while loop altogether.

Aggregate Analysis

Thus

We have $m-2$ POP operations are performed in total!!! If we had pushed m elements into S.

Thus, each iteration of the while loop

It performs one POP, and there are at most $m-2$ iterations of the while loop altogether.

Now

Given that the test in line 8 takes $O(1)$ times, each call of the POP takes $O(1)$ and $m \leq n-1$.

Aggregate Analysis

We have that
The total time of the while loop is $O(n)$.

Aggregate Analysis

We have that

The total time of the while loop is $O(n)$.

Finally

The Running Time of GRAHAM - SCAN is $O\left(n \log _{2} n\right)$

Outline

(1) Introduction

- What is Computational Geometry?
(2) Representation
- Representation of Primitive Geometries
(3) Line-Segment Properties
- Using Point Representation
- Cross Product
- Turn Left or Right
- Intersection
(4) Classical Problems
- Determining whether any pair of segments intersects
- Correctness of Sweeping Line Algorithm
- Finding the Convex Hull
- Graham's Scan
- Jarvis' March

Jarvis' March

Jarvis' March Basics

- It computes CH by using

Jarvis' March

Jarvis' March Basics

- It computes CH by using
- A technique called Package Wrapping.

Jarvis' March

Jarvis' March Basics

- It computes CH by using
- A technique called Package Wrapping.
- At each point calculate the minimum polar angle.

Jarvis' March

Jarvis' March Basics

- It computes CH by using
- A technique called Package Wrapping.
- At each point calculate the minimum polar angle.
- Create a left and right chain with the convex hull points.

Formally

Jarvis's march builds a sequence
 $H=\left\langle p_{0}, p_{1}, p_{2}, \ldots, p_{h-1}\right\rangle$ of the vertices of $\mathrm{CH}(Q)$

Formally

> Jarvis's march builds a sequence
> $H=\left\langle p_{0}, p_{1}, p_{2}, \ldots, p_{h-1}\right\rangle$ of the vertices of $\mathrm{CH}(Q)$

First

We start with p_{0} the next vertex p_{1} in the convex hull has the smallest polar angle with respect to p_{0}.

Formally

> Jarvis's march builds a sequence
> $H=\left\langle p_{0}, p_{1}, p_{2}, \ldots, p_{h-1}\right\rangle$ of the vertices of $\mathrm{CH}(Q)$

First

We start with p_{0} the next vertex p_{1} in the convex hull has the smallest polar angle with respect to p_{0}.

Next

- p_{2} has the smallest polar angle with respect to p_{1}.

Now

When we reach the highest vertex, p_{k} (Breaking ties by choosing the farthest such vertex), we have constructed the right chain of $\mathrm{CH}(Q)$.

Now

Then

When we reach the highest vertex, p_{k} (Breaking ties by choosing the farthest such vertex), we have constructed the right chain of $\mathrm{CH}(Q)$.

To construct the left chain

We start at p_{k}, then we choose p_{k+1} as the point with the smallest polar angle with respect to p_{k} negative, but from the negative \boldsymbol{x}-axis.

Now

Then

When we reach the highest vertex, p_{k} (Breaking ties by choosing the farthest such vertex), we have constructed the right chain of $\mathrm{CH}(Q)$.

To construct the left chain

We start at p_{k}, then we choose p_{k+1} as the point with the smallest polar angle with respect to p_{k} negative, but from the negative \boldsymbol{x}-axis.

Next

The next point is selected in the same manner until we have reached p_{0}.

Jarvis' March

Example

Figure: Wrapping the Gift. Here the Right Chain finishes at p_{6}, then the Left Chain is started

Complexity

Something Notable

Complexity $O(h n)$

Complexity

Something Notable

Complexity $O(h n)$

- h number of points in CH .

Complexity

Something Notable

Complexity $O(h n)$

- h number of points in CH .
- $O(n)$ for finding the minimum angle and the farthest point by y-axis

Complexity

Something Notable

Complexity $O(h n)$

- h number of points in CH .
- $O(n)$ for finding the minimum angle and the farthest point by y-axis

