
Analysis of Algorithms
Computational Geometry

Andres Mendez-Vazquez

November 30, 2015

1 / 90

Outline

1 Introduction
What is Computational Geometry?

2 Representation
Representation of Primitive Geometries

3 Line-Segment Properties
Using Point Representation
Cross Product
Turn Left or Right
Intersection

4 Classical Problems
Determining whether any pair of segments intersects
Correctness of Sweeping Line Algorithm
Finding the Convex Hull

Graham’s Scan
Jarvis’ March

2 / 90

Outline

1 Introduction
What is Computational Geometry?

2 Representation
Representation of Primitive Geometries

3 Line-Segment Properties
Using Point Representation
Cross Product
Turn Left or Right
Intersection

4 Classical Problems
Determining whether any pair of segments intersects
Correctness of Sweeping Line Algorithm
Finding the Convex Hull

Graham’s Scan
Jarvis’ March

3 / 90

Computational Geometry

Motivation
We want to solve geometric problems!!!

4 / 90

Field of Application

VLSI design - Generation for Fast Voronoi Diagrams for Massive
Layouts Under Strict Distances to avoid Tunneling Effects!!

5 / 90

Field of Application

Databases - Octrees for fast localization of information in database
tables

6 / 90

Field of Application
Synthetic Biology - Geometric Algorithms to Obtain new DNA
configurations for Molecular Machines

7 / 90

Field of Application

Computer Graphics for more engaging Virtual Environments - For
example: Bump Mapping!!!

8 / 90

Outline

1 Introduction
What is Computational Geometry?

2 Representation
Representation of Primitive Geometries

3 Line-Segment Properties
Using Point Representation
Cross Product
Turn Left or Right
Intersection

4 Classical Problems
Determining whether any pair of segments intersects
Correctness of Sweeping Line Algorithm
Finding the Convex Hull

Graham’s Scan
Jarvis’ March

9 / 90

The Plane Representation

Although 3D algorithms exist...
We will deal only with algorithms working in the plane.

Object Representation
Each object is a set of points {p1, p2, ..., pn} where

I pi = (xi , yi) and xi , yi ∈ R.

Example
For example an n-vertex polygon P is the following order sequence:

I 〈p0, p2, ..., pn〉

10 / 90

The Plane Representation

Although 3D algorithms exist...
We will deal only with algorithms working in the plane.

Object Representation
Each object is a set of points {p1, p2, ..., pn} where

I pi = (xi , yi) and xi , yi ∈ R.

Example
For example an n-vertex polygon P is the following order sequence:

I 〈p0, p2, ..., pn〉

10 / 90

The Plane Representation

Although 3D algorithms exist...
We will deal only with algorithms working in the plane.

Object Representation
Each object is a set of points {p1, p2, ..., pn} where

I pi = (xi , yi) and xi , yi ∈ R.

Example
For example an n-vertex polygon P is the following order sequence:

I 〈p0, p2, ..., pn〉

10 / 90

The Plane Representation

Although 3D algorithms exist...
We will deal only with algorithms working in the plane.

Object Representation
Each object is a set of points {p1, p2, ..., pn} where

I pi = (xi , yi) and xi , yi ∈ R.

Example
For example an n-vertex polygon P is the following order sequence:

I 〈p0, p2, ..., pn〉

10 / 90

The Plane Representation

Although 3D algorithms exist...
We will deal only with algorithms working in the plane.

Object Representation
Each object is a set of points {p1, p2, ..., pn} where

I pi = (xi , yi) and xi , yi ∈ R.

Example
For example an n-vertex polygon P is the following order sequence:

I 〈p0, p2, ..., pn〉

10 / 90

Example

Polygon

11 / 90

Outline

1 Introduction
What is Computational Geometry?

2 Representation
Representation of Primitive Geometries

3 Line-Segment Properties
Using Point Representation
Cross Product
Turn Left or Right
Intersection

4 Classical Problems
Determining whether any pair of segments intersects
Correctness of Sweeping Line Algorithm
Finding the Convex Hull

Graham’s Scan
Jarvis’ March

12 / 90

Line-segment Properties

A convex combination
Given two distinct points p1 = (x1, y1)T and p2 = (x2, y2)T , a convex
combination of {p1, p2} is any point p3 such that:

I p3 = αp1 + (1− α) p2 with 0 ≤ α ≤ 1.

Line Segment as Convex Combination
Given two points p1 and p2 (Known as End Points), the line segment
p1p2 is the set of convex combinations of p1 and p2.

Directed Segment
Here, we care about the direction with initial point p1 for the directed
segment −−→p1p2:

I If p1 = (0, 0) then −−→p1p2 is the vector p2.

13 / 90

Line-segment Properties

A convex combination
Given two distinct points p1 = (x1, y1)T and p2 = (x2, y2)T , a convex
combination of {p1, p2} is any point p3 such that:

I p3 = αp1 + (1− α) p2 with 0 ≤ α ≤ 1.

Line Segment as Convex Combination
Given two points p1 and p2 (Known as End Points), the line segment
p1p2 is the set of convex combinations of p1 and p2.

Directed Segment
Here, we care about the direction with initial point p1 for the directed
segment −−→p1p2:

I If p1 = (0, 0) then −−→p1p2 is the vector p2.

13 / 90

Line-segment Properties

A convex combination
Given two distinct points p1 = (x1, y1)T and p2 = (x2, y2)T , a convex
combination of {p1, p2} is any point p3 such that:

I p3 = αp1 + (1− α) p2 with 0 ≤ α ≤ 1.

Line Segment as Convex Combination
Given two points p1 and p2 (Known as End Points), the line segment
p1p2 is the set of convex combinations of p1 and p2.

Directed Segment
Here, we care about the direction with initial point p1 for the directed
segment −−→p1p2:

I If p1 = (0, 0) then −−→p1p2 is the vector p2.

13 / 90

Line-segment Properties

A convex combination
Given two distinct points p1 = (x1, y1)T and p2 = (x2, y2)T , a convex
combination of {p1, p2} is any point p3 such that:

I p3 = αp1 + (1− α) p2 with 0 ≤ α ≤ 1.

Line Segment as Convex Combination
Given two points p1 and p2 (Known as End Points), the line segment
p1p2 is the set of convex combinations of p1 and p2.

Directed Segment
Here, we care about the direction with initial point p1 for the directed
segment −−→p1p2:

I If p1 = (0, 0) then −−→p1p2 is the vector p2.

13 / 90

Line-segment Properties

A convex combination
Given two distinct points p1 = (x1, y1)T and p2 = (x2, y2)T , a convex
combination of {p1, p2} is any point p3 such that:

I p3 = αp1 + (1− α) p2 with 0 ≤ α ≤ 1.

Line Segment as Convex Combination
Given two points p1 and p2 (Known as End Points), the line segment
p1p2 is the set of convex combinations of p1 and p2.

Directed Segment
Here, we care about the direction with initial point p1 for the directed
segment −−→p1p2:

I If p1 = (0, 0) then −−→p1p2 is the vector p2.

13 / 90

Outline

1 Introduction
What is Computational Geometry?

2 Representation
Representation of Primitive Geometries

3 Line-Segment Properties
Using Point Representation
Cross Product
Turn Left or Right
Intersection

4 Classical Problems
Determining whether any pair of segments intersects
Correctness of Sweeping Line Algorithm
Finding the Convex Hull

Graham’s Scan
Jarvis’ March

14 / 90

Cross Product

Question!!!
Given two directed segments −−→p0p1 and −−→p0p2,

I Is −−→p0p1 clockwise from −−→p0p2 with respect to their common endpoint p0?

Cross Product
Cross product p1 × p2 as the signed area of the parallelogram formed
by

15 / 90

Cross Product

Question!!!
Given two directed segments −−→p0p1 and −−→p0p2,

I Is −−→p0p1 clockwise from −−→p0p2 with respect to their common endpoint p0?

Cross Product
Cross product p1 × p2 as the signed area of the parallelogram formed
by

15 / 90

Cross Product
Question!!!

Given two directed segments −−→p0p1 and −−→p0p2,
I Is −−→p0p1 clockwise from −−→p0p2 with respect to their common endpoint p0?

Cross Product
Cross product p1 × p2 as the signed area of the parallelogram formed
by

15 / 90

Cross Product

A shorter representation

p1 × p2 = det
(

p1 p2
)
=det

(
x1 x2
y1 y2

)
= x1y2 − x2y1 = −p2 × p1

Thus
if p1 × p2 is positive, then p1 is clockwise from p2.
if p1 × p2 is negative, then p1 is counterclockwise from p2.

16 / 90

Cross Product

A shorter representation

p1 × p2 = det
(

p1 p2
)
=det

(
x1 x2
y1 y2

)
= x1y2 − x2y1 = −p2 × p1

Thus
if p1 × p2 is positive, then p1 is clockwise from p2.
if p1 × p2 is negative, then p1 is counterclockwise from p2.

16 / 90

Cross Product

A shorter representation

p1 × p2 = det
(

p1 p2
)
=det

(
x1 x2
y1 y2

)
= x1y2 − x2y1 = −p2 × p1

Thus
if p1 × p2 is positive, then p1 is clockwise from p2.
if p1 × p2 is negative, then p1 is counterclockwise from p2.

16 / 90

Regions

Clockwise and Counterclockwise Regions

Figure: Darker counterclockwise; lighter clockwise with respect to p

17 / 90

Outline

1 Introduction
What is Computational Geometry?

2 Representation
Representation of Primitive Geometries

3 Line-Segment Properties
Using Point Representation
Cross Product
Turn Left or Right
Intersection

4 Classical Problems
Determining whether any pair of segments intersects
Correctness of Sweeping Line Algorithm
Finding the Convex Hull

Graham’s Scan
Jarvis’ March

18 / 90

Turn Left or Right

Question
Given two line segments −−→p0p1 and −−→p1p2,

if we traverse −−→p0p1 and then −−→p1p2, do we make a left turn at point p1?

19 / 90

Turn Left or Right

Simply use the following idea
Compute cross product (p2 − p0)× (p1 − p0)!!!
This translates p0 to the origin!!!
What about (p2 − p0)× (p1 − p0) = 0?

Left Turn = counterclockwise; Right Turn = clockwise

20 / 90

Turn Left or Right

Simply use the following idea
Compute cross product (p2 − p0)× (p1 − p0)!!!
This translates p0 to the origin!!!
What about (p2 − p0)× (p1 − p0) = 0?

Left Turn = counterclockwise; Right Turn = clockwise

20 / 90

Turn Left or Right

Simply use the following idea
Compute cross product (p2 − p0)× (p1 − p0)!!!
This translates p0 to the origin!!!
What about (p2 − p0)× (p1 − p0) = 0?

Left Turn = counterclockwise; Right Turn = clockwise

20 / 90

Turn Left or Right
Simply use the following idea

Compute cross product (p2 − p0)× (p1 − p0)!!!
This translates p0 to the origin!!!
What about (p2 − p0)× (p1 − p0) = 0?

Left Turn = counterclockwise; Right Turn = clockwise
counterclockwise clockwise

20 / 90

Code for this

We have the following code
Direction(pi , pj , pk)

1 return (pk − pi)× (pj − pi)

21 / 90

Outline

1 Introduction
What is Computational Geometry?

2 Representation
Representation of Primitive Geometries

3 Line-Segment Properties
Using Point Representation
Cross Product
Turn Left or Right
Intersection

4 Classical Problems
Determining whether any pair of segments intersects
Correctness of Sweeping Line Algorithm
Finding the Convex Hull

Graham’s Scan
Jarvis’ March

22 / 90

Intersection

Question
Do line segments −−→p1p2 and −−→p3p4 intersect?

Very Simple!!! We have two possibilities
1 Each segment straddles the line containing the other.
2 An endpoint of one segment lies on the other segment.

23 / 90

Intersection

Question
Do line segments −−→p1p2 and −−→p3p4 intersect?

Very Simple!!! We have two possibilities
1 Each segment straddles the line containing the other.
2 An endpoint of one segment lies on the other segment.

23 / 90

Intersection

Question
Do line segments −−→p1p2 and −−→p3p4 intersect?

Very Simple!!! We have two possibilities
1 Each segment straddles the line containing the other.
2 An endpoint of one segment lies on the other segment.

23 / 90

Case I This summarize the previous two possibilities

The segments straddle each other’s lines.

Oposite Signs

Figure: Using Cross Products to find intersections

24 / 90

Case II No intersection

The segment straddles the line, but the other does not straddle the
other line

Same Signs

Figure: Using Cross Products to find that there is no intersection

25 / 90

Code

Code
Segment-Intersection(p1, p2, p3, p4)

1 d1 = Direction (p3, p4, p1)
2 d2 = Direction (p3, p4, p2)
3 d3 = Direction (p1, p2, p3)
4 d4 = Direction (p1, p2, p4)
5 if ((d1 > 0 and d2 < 0) or (d1 < 0 and d2 > 0) and
6 (d3 > 0 and d4 < 0) or (d3 < 0 and d4 > 0))
7 return TRUE

Figure: The Incomplete Code, You still need to test for endpoints over the
segment

26 / 90

Code

Code
Segment-Intersection(p1, p2, p3, p4)

1 d1 = Direction (p3, p4, p1)
2 d2 = Direction (p3, p4, p2)
3 d3 = Direction (p1, p2, p3)
4 d4 = Direction (p1, p2, p4)
5 if ((d1 > 0 and d2 < 0) or (d1 < 0 and d2 > 0) and
6 (d3 > 0 and d4 < 0) or (d3 < 0 and d4 > 0))
7 return TRUE

Figure: The Incomplete Code, You still need to test for endpoints over the
segment

26 / 90

Outline

1 Introduction
What is Computational Geometry?

2 Representation
Representation of Primitive Geometries

3 Line-Segment Properties
Using Point Representation
Cross Product
Turn Left or Right
Intersection

4 Classical Problems
Determining whether any pair of segments intersects
Correctness of Sweeping Line Algorithm
Finding the Convex Hull

Graham’s Scan
Jarvis’ March

27 / 90

Sweeping

Sweeping
Use an imaginary vertical line to pass through the n segments with events
x ∈ {r , t, u}:

Figure: Vertical Line to Record Events

28 / 90

Thus

This can be used to record events given two segments s1 and s2

Event I: s1 above s2 at x , written s1 <x s2.
I This is a total preorder relation for segment intersecting the
line at x .

I The relation is transitive and reflexive.
Event II: s1 intersect s2, then neither s1 <x s2 or s2 <x s1, or
both (if s1 and s2 intersect at x)

29 / 90

Thus

This can be used to record events given two segments s1 and s2

Event I: s1 above s2 at x , written s1 <x s2.
I This is a total preorder relation for segment intersecting the
line at x .

I The relation is transitive and reflexive.
Event II: s1 intersect s2, then neither s1 <x s2 or s2 <x s1, or
both (if s1 and s2 intersect at x)

29 / 90

Thus

This can be used to record events given two segments s1 and s2

Event I: s1 above s2 at x , written s1 <x s2.
I This is a total preorder relation for segment intersecting the
line at x .

I The relation is transitive and reflexive.
Event II: s1 intersect s2, then neither s1 <x s2 or s2 <x s1, or
both (if s1 and s2 intersect at x)

29 / 90

Thus

This can be used to record events given two segments s1 and s2

Event I: s1 above s2 at x , written s1 <x s2.
I This is a total preorder relation for segment intersecting the
line at x .

I The relation is transitive and reflexive.
Event II: s1 intersect s2, then neither s1 <x s2 or s2 <x s1, or
both (if s1 and s2 intersect at x)

29 / 90

Example

Example: a <r c a <t c

Figure: Vertical Line to Record Events

30 / 90

Change in direction
When e and f intersect, e <v f and f <w e. In the Shaded Region,
any sweep line will have e and f as consecutive

V z w

Figure: Vertical Line to Record Events

31 / 90

Moving the sweep line

Something Notable
Sweeping algorithms typically manage two sets of data.

Sweep-line status
The sweep-line status gives the relationships among the objects that the
sweep line intersects.

Event-point schedule
The event-point schedule is a sequence of points, called event points,
which we order from left to right according to their x-coordinates.

As the sweep progress from left to right, it stops and processes each
event point, then resumes.
It is possible to use a min-priority queue to keep those event points
sorted by x-coordinate.

32 / 90

Moving the sweep line

Something Notable
Sweeping algorithms typically manage two sets of data.

Sweep-line status
The sweep-line status gives the relationships among the objects that the
sweep line intersects.

Event-point schedule
The event-point schedule is a sequence of points, called event points,
which we order from left to right according to their x-coordinates.

As the sweep progress from left to right, it stops and processes each
event point, then resumes.
It is possible to use a min-priority queue to keep those event points
sorted by x-coordinate.

32 / 90

Moving the sweep line

Something Notable
Sweeping algorithms typically manage two sets of data.

Sweep-line status
The sweep-line status gives the relationships among the objects that the
sweep line intersects.

Event-point schedule
The event-point schedule is a sequence of points, called event points,
which we order from left to right according to their x-coordinates.

As the sweep progress from left to right, it stops and processes each
event point, then resumes.
It is possible to use a min-priority queue to keep those event points
sorted by x-coordinate.

32 / 90

Moving the sweep line

Something Notable
Sweeping algorithms typically manage two sets of data.

Sweep-line status
The sweep-line status gives the relationships among the objects that the
sweep line intersects.

Event-point schedule
The event-point schedule is a sequence of points, called event points,
which we order from left to right according to their x-coordinates.

As the sweep progress from left to right, it stops and processes each
event point, then resumes.
It is possible to use a min-priority queue to keep those event points
sorted by x-coordinate.

32 / 90

Sweeping Process

First
We sort the segment endpoints by increasing x-coordinate and
proceed from left to right.

However, sometimes they have the same x-coordinate (Covertical)
If two or more endpoints are covertical, we break the tie by putting all the
covertical left endpoints before the covertical right endpoints.

33 / 90

Sweeping Process
First

We sort the segment endpoints by increasing x-coordinate and
proceed from left to right.

However, sometimes they have the same x-coordinate (Covertical)
If two or more endpoints are covertical, we break the tie by putting all the
covertical left endpoints before the covertical right endpoints.

Covertical Left
End Points

Covertical Right
End Points

33 / 90

Then

Second
Within a set of covertical left endpoints, we put those with lower
y-coordinates first, and we do the same within a set of covertical right
endpoints.

Covertical Left
End Points

Covertical Right
End Points

FIRST

34 / 90

Then

Process
1 When we encounter a segment’s left endpoint, we insert the segment

into the sweep-line status.
2 We delete the segment from the sweep-line status upon encountering

its right endpoint.

Thus
Whenever two segments first become consecutive in the total preorder, we
check whether they intersect.

35 / 90

Then

Process
1 When we encounter a segment’s left endpoint, we insert the segment

into the sweep-line status.
2 We delete the segment from the sweep-line status upon encountering

its right endpoint.

Thus
Whenever two segments first become consecutive in the total preorder, we
check whether they intersect.

35 / 90

Then

Process
1 When we encounter a segment’s left endpoint, we insert the segment

into the sweep-line status.
2 We delete the segment from the sweep-line status upon encountering

its right endpoint.

Thus
Whenever two segments first become consecutive in the total preorder, we
check whether they intersect.

35 / 90

Operations

Operations to keep preorder on the events for algorithm
INSERT(T , s): insert segment s into T .
DELETE(T , s): delete segment s from T .
ABOVE(T , s): return the segment immediately above segment s in T .
BELOW(T , s): return the segment immediately below segment s in T .

Note
Each operation can be performed in O(log2 n) using a red-black-tree by
using comparisons by cross product to find the above and below.

This allows to see
The relative ordering of two segments.

36 / 90

Operations

Operations to keep preorder on the events for algorithm
INSERT(T , s): insert segment s into T .
DELETE(T , s): delete segment s from T .
ABOVE(T , s): return the segment immediately above segment s in T .
BELOW(T , s): return the segment immediately below segment s in T .

Note
Each operation can be performed in O(log2 n) using a red-black-tree by
using comparisons by cross product to find the above and below.

This allows to see
The relative ordering of two segments.

36 / 90

Operations

Operations to keep preorder on the events for algorithm
INSERT(T , s): insert segment s into T .
DELETE(T , s): delete segment s from T .
ABOVE(T , s): return the segment immediately above segment s in T .
BELOW(T , s): return the segment immediately below segment s in T .

Note
Each operation can be performed in O(log2 n) using a red-black-tree by
using comparisons by cross product to find the above and below.

This allows to see
The relative ordering of two segments.

36 / 90

Operations

Operations to keep preorder on the events for algorithm
INSERT(T , s): insert segment s into T .
DELETE(T , s): delete segment s from T .
ABOVE(T , s): return the segment immediately above segment s in T .
BELOW(T , s): return the segment immediately below segment s in T .

Note
Each operation can be performed in O(log2 n) using a red-black-tree by
using comparisons by cross product to find the above and below.

This allows to see
The relative ordering of two segments.

36 / 90

Operations

Operations to keep preorder on the events for algorithm
INSERT(T , s): insert segment s into T .
DELETE(T , s): delete segment s from T .
ABOVE(T , s): return the segment immediately above segment s in T .
BELOW(T , s): return the segment immediately below segment s in T .

Note
Each operation can be performed in O(log2 n) using a red-black-tree by
using comparisons by cross product to find the above and below.

This allows to see
The relative ordering of two segments.

36 / 90

Operations

Operations to keep preorder on the events for algorithm
INSERT(T , s): insert segment s into T .
DELETE(T , s): delete segment s from T .
ABOVE(T , s): return the segment immediately above segment s in T .
BELOW(T , s): return the segment immediately below segment s in T .

Note
Each operation can be performed in O(log2 n) using a red-black-tree by
using comparisons by cross product to find the above and below.

This allows to see
The relative ordering of two segments.

36 / 90

What the algorithm does?

Moving the sweeping line discretely - Event-point schedule
Here, moving through the x-axis

discrete events

Using the RBT

to Store the Info
about the segment

order

37 / 90

Event-Point Schedule Implementation

For this
We can use a Priority Queue using lexicographic order

The interesting part is the Sweeping-Line Satus
Because the way we build the balanced tree

38 / 90

Event-Point Schedule Implementation

For this
We can use a Priority Queue using lexicographic order

The interesting part is the Sweeping-Line Satus
Because the way we build the balanced tree

38 / 90

Sweep-Line Status
The Above and Below relation

TIME

Sweeping Line

39 / 90

Sweeping Line Status Implementation

Use the following relation of order to build the binary tree
Given a segment x, then you insert y

Case I if y is counterclockwise, it is below x (Go to the left).
Case II if y is clockwise, it is above x (Go to the Right)

In addtion
If you are at a leaf do the insertion, but also insert the leaf at the left or
right given the insertion.

40 / 90

Sweeping Line Status Implementation

Use the following relation of order to build the binary tree
Given a segment x, then you insert y

Case I if y is counterclockwise, it is below x (Go to the left).
Case II if y is clockwise, it is above x (Go to the Right)

In addtion
If you are at a leaf do the insertion, but also insert the leaf at the left or
right given the insertion.

40 / 90

Example

We insert th first element in the circular leaves list

41 / 90

Example

We insert a inner node after binary search

Below Above

42 / 90

Example

Similar

Below Above

43 / 90

Example

Etc....

Below Above

Trigger
Rebalancing
in the inner
nodes

44 / 90

Pseudo-code with complexity O (n log2 n)
Any-Segment-Intersect(S)

1 T = ∅
2 Sort the endpoints of the segments in S from left to right

Breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower
y−coordinates first

3 for each point p in the sorted list
4 if p is the left endpoint of a segment s
5 INSERT(T , s)
6 if (ABOVE(T , s) exists and intersect s)

or (BELOW(T , s) exists and intersect s)
7 return TRUE
8 if p is the right endpoint of a segment s
9 if (both ABOVE(T , s) and BELOW(T , s) exist)

and (ABOVE(T , s) intersect BELOW(T , s))
10 return TRUE
11 DELETE(T , s)
12 return FALSE 45 / 90

Pseudo-code with complexity O (n log2 n)
Any-Segment-Intersect(S)

1 T = ∅
2 Sort the endpoints of the segments in S from left to right

Breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower
y−coordinates first

3 for each point p in the sorted list
4 if p is the left endpoint of a segment s
5 INSERT(T , s)
6 if (ABOVE(T , s) exists and intersect s)

or (BELOW(T , s) exists and intersect s)
7 return TRUE
8 if p is the right endpoint of a segment s
9 if (both ABOVE(T , s) and BELOW(T , s) exist)

and (ABOVE(T , s) intersect BELOW(T , s))
10 return TRUE
11 DELETE(T , s)
12 return FALSE 45 / 90

Pseudo-code with complexity O (n log2 n)
Any-Segment-Intersect(S)

1 T = ∅
2 Sort the endpoints of the segments in S from left to right

Breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower
y−coordinates first

3 for each point p in the sorted list
4 if p is the left endpoint of a segment s
5 INSERT(T , s)
6 if (ABOVE(T , s) exists and intersect s)

or (BELOW(T , s) exists and intersect s)
7 return TRUE
8 if p is the right endpoint of a segment s
9 if (both ABOVE(T , s) and BELOW(T , s) exist)

and (ABOVE(T , s) intersect BELOW(T , s))
10 return TRUE
11 DELETE(T , s)
12 return FALSE 45 / 90

Pseudo-code with complexity O (n log2 n)
Any-Segment-Intersect(S)

1 T = ∅
2 Sort the endpoints of the segments in S from left to right

Breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower
y−coordinates first

3 for each point p in the sorted list
4 if p is the left endpoint of a segment s
5 INSERT(T , s)
6 if (ABOVE(T , s) exists and intersect s)

or (BELOW(T , s) exists and intersect s)
7 return TRUE
8 if p is the right endpoint of a segment s
9 if (both ABOVE(T , s) and BELOW(T , s) exist)

and (ABOVE(T , s) intersect BELOW(T , s))
10 return TRUE
11 DELETE(T , s)
12 return FALSE 45 / 90

Pseudo-code with complexity O (n log2 n)
Any-Segment-Intersect(S)

1 T = ∅
2 Sort the endpoints of the segments in S from left to right

Breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower
y−coordinates first

3 for each point p in the sorted list
4 if p is the left endpoint of a segment s
5 INSERT(T , s)
6 if (ABOVE(T , s) exists and intersect s)

or (BELOW(T , s) exists and intersect s)
7 return TRUE
8 if p is the right endpoint of a segment s
9 if (both ABOVE(T , s) and BELOW(T , s) exist)

and (ABOVE(T , s) intersect BELOW(T , s))
10 return TRUE
11 DELETE(T , s)
12 return FALSE 45 / 90

Pseudo-code with complexity O (n log2 n)
Any-Segment-Intersect(S)

1 T = ∅
2 Sort the endpoints of the segments in S from left to right

Breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower
y−coordinates first

3 for each point p in the sorted list
4 if p is the left endpoint of a segment s
5 INSERT(T , s)
6 if (ABOVE(T , s) exists and intersect s)

or (BELOW(T , s) exists and intersect s)
7 return TRUE
8 if p is the right endpoint of a segment s
9 if (both ABOVE(T , s) and BELOW(T , s) exist)

and (ABOVE(T , s) intersect BELOW(T , s))
10 return TRUE
11 DELETE(T , s)
12 return FALSE 45 / 90

Pseudo-code with complexity O (n log2 n)
Any-Segment-Intersect(S)

1 T = ∅
2 Sort the endpoints of the segments in S from left to right

Breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower
y−coordinates first

3 for each point p in the sorted list
4 if p is the left endpoint of a segment s
5 INSERT(T , s)
6 if (ABOVE(T , s) exists and intersect s)

or (BELOW(T , s) exists and intersect s)
7 return TRUE
8 if p is the right endpoint of a segment s
9 if (both ABOVE(T , s) and BELOW(T , s) exist)

and (ABOVE(T , s) intersect BELOW(T , s))
10 return TRUE
11 DELETE(T , s)
12 return FALSE 45 / 90

Pseudo-code with complexity O (n log2 n)
Any-Segment-Intersect(S)

1 T = ∅
2 Sort the endpoints of the segments in S from left to right

Breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower
y−coordinates first

3 for each point p in the sorted list
4 if p is the left endpoint of a segment s
5 INSERT(T , s)
6 if (ABOVE(T , s) exists and intersect s)

or (BELOW(T , s) exists and intersect s)
7 return TRUE
8 if p is the right endpoint of a segment s
9 if (both ABOVE(T , s) and BELOW(T , s) exist)

and (ABOVE(T , s) intersect BELOW(T , s))
10 return TRUE
11 DELETE(T , s)
12 return FALSE 45 / 90

Pseudo-code with complexity O (n log2 n)
Any-Segment-Intersect(S)

1 T = ∅
2 Sort the endpoints of the segments in S from left to right

Breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower
y−coordinates first

3 for each point p in the sorted list
4 if p is the left endpoint of a segment s
5 INSERT(T , s)
6 if (ABOVE(T , s) exists and intersect s)

or (BELOW(T , s) exists and intersect s)
7 return TRUE
8 if p is the right endpoint of a segment s
9 if (both ABOVE(T , s) and BELOW(T , s) exist)

and (ABOVE(T , s) intersect BELOW(T , s))
10 return TRUE
11 DELETE(T , s)
12 return FALSE 45 / 90

Pseudo-code with complexity O (n log2 n)
Any-Segment-Intersect(S)

1 T = ∅
2 Sort the endpoints of the segments in S from left to right

Breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower
y−coordinates first

3 for each point p in the sorted list
4 if p is the left endpoint of a segment s
5 INSERT(T , s)
6 if (ABOVE(T , s) exists and intersect s)

or (BELOW(T , s) exists and intersect s)
7 return TRUE
8 if p is the right endpoint of a segment s
9 if (both ABOVE(T , s) and BELOW(T , s) exist)

and (ABOVE(T , s) intersect BELOW(T , s))
10 return TRUE
11 DELETE(T , s)
12 return FALSE 45 / 90

Pseudo-code with complexity O (n log2 n)
Any-Segment-Intersect(S)

1 T = ∅
2 Sort the endpoints of the segments in S from left to right

Breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower
y−coordinates first

3 for each point p in the sorted list
4 if p is the left endpoint of a segment s
5 INSERT(T , s)
6 if (ABOVE(T , s) exists and intersect s)

or (BELOW(T , s) exists and intersect s)
7 return TRUE
8 if p is the right endpoint of a segment s
9 if (both ABOVE(T , s) and BELOW(T , s) exist)

and (ABOVE(T , s) intersect BELOW(T , s))
10 return TRUE
11 DELETE(T , s)
12 return FALSE 45 / 90

Outline

1 Introduction
What is Computational Geometry?

2 Representation
Representation of Primitive Geometries

3 Line-Segment Properties
Using Point Representation
Cross Product
Turn Left or Right
Intersection

4 Classical Problems
Determining whether any pair of segments intersects
Correctness of Sweeping Line Algorithm
Finding the Convex Hull

Graham’s Scan
Jarvis’ March

46 / 90

Correctness

The ANY-SEGMENTS-INTERSECT returns TRUE
If it finds an intersection between two of the input segments.

Proof:
Observation: What if there is the leftmost intersection, p?

Then, let a and b be the segments to intersect at p

Then, for a and b
Since no intersections occur to the left of p, the order given by T
(Sweeping Line Data Structure) is correct at all points to the left of p.
Assuming that no three segments intersect at the same point, a and b
become consecutive in the total preorder of some sweep line z.

47 / 90

Correctness

The ANY-SEGMENTS-INTERSECT returns TRUE
If it finds an intersection between two of the input segments.

Proof:
Observation: What if there is the leftmost intersection, p?

Then, let a and b be the segments to intersect at p

Then, for a and b
Since no intersections occur to the left of p, the order given by T
(Sweeping Line Data Structure) is correct at all points to the left of p.
Assuming that no three segments intersect at the same point, a and b
become consecutive in the total preorder of some sweep line z.

47 / 90

Correctness

The ANY-SEGMENTS-INTERSECT returns TRUE
If it finds an intersection between two of the input segments.

Proof:
Observation: What if there is the leftmost intersection, p?

Then, let a and b be the segments to intersect at p

Then, for a and b
Since no intersections occur to the left of p, the order given by T
(Sweeping Line Data Structure) is correct at all points to the left of p.
Assuming that no three segments intersect at the same point, a and b
become consecutive in the total preorder of some sweep line z.

47 / 90

Correctness

The ANY-SEGMENTS-INTERSECT returns TRUE
If it finds an intersection between two of the input segments.

Proof:
Observation: What if there is the leftmost intersection, p?

Then, let a and b be the segments to intersect at p

Then, for a and b
Since no intersections occur to the left of p, the order given by T
(Sweeping Line Data Structure) is correct at all points to the left of p.
Assuming that no three segments intersect at the same point, a and b
become consecutive in the total preorder of some sweep line z.

47 / 90

Correctness

The ANY-SEGMENTS-INTERSECT returns TRUE
If it finds an intersection between two of the input segments.

Proof:
Observation: What if there is the leftmost intersection, p?

Then, let a and b be the segments to intersect at p

Then, for a and b
Since no intersections occur to the left of p, the order given by T
(Sweeping Line Data Structure) is correct at all points to the left of p.
Assuming that no three segments intersect at the same point, a and b
become consecutive in the total preorder of some sweep line z.

47 / 90

Now, we have two possbibilities

Case I

a

b

p

z SWEEPING LINE

48 / 90

Case I

Moreover
z is to the left of p or goes through p.

In addition
There is a endpoint q where a and b become consecutive.

49 / 90

Case I

Moreover
z is to the left of p or goes through p.

In addition
There is a endpoint q where a and b become consecutive.

a

b

p

z

q

49 / 90

Finally

Then a and b
They become consecutive in the total pre-order of a sweep line.

50 / 90

Case II

We have that q is a left endpoint where a and b stop being
consecutive

a

b

p

z

q

51 / 90

Correctness about the order given by T

Then, given the two following cases
1 if p is in the sweep line ⇒ p == q.
2 If q is at the left of p, and it is the nearest left one.

52 / 90

Correctness about the order given by T

Then, given the two following cases
1 if p is in the sweep line ⇒ p == q.
2 If q is at the left of p, and it is the nearest left one.

52 / 90

Do we mantain the correct preorder?

We have that given that p is first
Then, it is processed first becacuse the lexicographic order.

Therefore, two cases can happen
1 The point is processed - then the algorithm returns true
2 If the event is not processed - then the algorithm must have returned

true

53 / 90

Do we mantain the correct preorder?

We have that given that p is first
Then, it is processed first becacuse the lexicographic order.

Therefore, two cases can happen
1 The point is processed - then the algorithm returns true
2 If the event is not processed - then the algorithm must have returned

true

53 / 90

Handling Case I

Segments a and b are already in T , and a segment between them in
the total pre-order is deleted, making a and b to become consecutive

a

b

p

z

qI

a
I
b

a
b

54 / 90

When is this detected?

In the following lines of the code
Lines 8–11 detect this case.

55 / 90

Handling Case II

Either a or b is inserted into T , and the other segment is above or
below it in the total pre-order.

a

b

p

z

q

56 / 90

When is this detected?

In the following lines of the code
Lines 4–7 detect this case.

57 / 90

Finally

If event point q is not processed
It must have found an earlier intersection!!!

Therefore
If there is an intersection Any-Segment-Intersect returns true all the time

58 / 90

Finally

If event point q is not processed
It must have found an earlier intersection!!!

Therefore
If there is an intersection Any-Segment-Intersect returns true all the time

58 / 90

Running Time

Something Notable
1 Line 1 takes O(1) time.
2 Line 2 takes O(n log2 n) time, using merge or heap sort
3 The for loop iterates at most 2n times

1 Each iteration takes O (log2 n) in a well balanced tree.
2 Each intersection test takes O (1)

Total Time
O (n log2 n)

59 / 90

Running Time

Something Notable
1 Line 1 takes O(1) time.
2 Line 2 takes O(n log2 n) time, using merge or heap sort
3 The for loop iterates at most 2n times

1 Each iteration takes O (log2 n) in a well balanced tree.
2 Each intersection test takes O (1)

Total Time
O (n log2 n)

59 / 90

Running Time

Something Notable
1 Line 1 takes O(1) time.
2 Line 2 takes O(n log2 n) time, using merge or heap sort
3 The for loop iterates at most 2n times

1 Each iteration takes O (log2 n) in a well balanced tree.
2 Each intersection test takes O (1)

Total Time
O (n log2 n)

59 / 90

Running Time

Something Notable
1 Line 1 takes O(1) time.
2 Line 2 takes O(n log2 n) time, using merge or heap sort
3 The for loop iterates at most 2n times

1 Each iteration takes O (log2 n) in a well balanced tree.
2 Each intersection test takes O (1)

Total Time
O (n log2 n)

59 / 90

Running Time

Something Notable
1 Line 1 takes O(1) time.
2 Line 2 takes O(n log2 n) time, using merge or heap sort
3 The for loop iterates at most 2n times

1 Each iteration takes O (log2 n) in a well balanced tree.
2 Each intersection test takes O (1)

Total Time
O (n log2 n)

59 / 90

Running Time

Something Notable
1 Line 1 takes O(1) time.
2 Line 2 takes O(n log2 n) time, using merge or heap sort
3 The for loop iterates at most 2n times

1 Each iteration takes O (log2 n) in a well balanced tree.
2 Each intersection test takes O (1)

Total Time
O (n log2 n)

59 / 90

Outline

1 Introduction
What is Computational Geometry?

2 Representation
Representation of Primitive Geometries

3 Line-Segment Properties
Using Point Representation
Cross Product
Turn Left or Right
Intersection

4 Classical Problems
Determining whether any pair of segments intersects
Correctness of Sweeping Line Algorithm
Finding the Convex Hull

Graham’s Scan
Jarvis’ March

60 / 90

Convex Hull

Convex Hull
Given a set of points, Q, find the smallest convex polygon P such
that Q ⊂ P. This is denoted by CH(Q).

Bunch of Points in 2D

61 / 90

Convex Hull

Convex Hull
Given a set of points, Q, find the smallest convex polygon P such
that Q ⊂ P. This is denoted by CH(Q).

Their Convex Hull

62 / 90

Convex Hull

The two main Algorithms (Using the “Rotational Sweep”) that we are
going to explore

Graham’s Scan.
Jarvis’ March.

Nevertheless there are other methods
The incremental method
Divide-and-conquer method.
Prune-and-search method.

63 / 90

Convex Hull

The two main Algorithms (Using the “Rotational Sweep”) that we are
going to explore

Graham’s Scan.
Jarvis’ March.

Nevertheless there are other methods
The incremental method
Divide-and-conquer method.
Prune-and-search method.

63 / 90

Convex Hull

The two main Algorithms (Using the “Rotational Sweep”) that we are
going to explore

Graham’s Scan.
Jarvis’ March.

Nevertheless there are other methods
The incremental method
Divide-and-conquer method.
Prune-and-search method.

63 / 90

Convex Hull

The two main Algorithms (Using the “Rotational Sweep”) that we are
going to explore

Graham’s Scan.
Jarvis’ March.

Nevertheless there are other methods
The incremental method
Divide-and-conquer method.
Prune-and-search method.

63 / 90

Convex Hull

The two main Algorithms (Using the “Rotational Sweep”) that we are
going to explore

Graham’s Scan.
Jarvis’ March.

Nevertheless there are other methods
The incremental method
Divide-and-conquer method.
Prune-and-search method.

63 / 90

Outline

1 Introduction
What is Computational Geometry?

2 Representation
Representation of Primitive Geometries

3 Line-Segment Properties
Using Point Representation
Cross Product
Turn Left or Right
Intersection

4 Classical Problems
Determining whether any pair of segments intersects
Correctness of Sweeping Line Algorithm
Finding the Convex Hull

Graham’s Scan
Jarvis’ March

64 / 90

Graham’s Scan

Graham’s Scan Basics

It keeps a Stack of candidate points.
It Pops elements that are not part of the CH(Q).
Whatever is left in the Stack is part of the CH(Q).

65 / 90

Graham’s Scan

Graham’s Scan Basics

It keeps a Stack of candidate points.
It Pops elements that are not part of the CH(Q).
Whatever is left in the Stack is part of the CH(Q).

65 / 90

Graham’s Scan

Graham’s Scan Basics

It keeps a Stack of candidate points.
It Pops elements that are not part of the CH(Q).
Whatever is left in the Stack is part of the CH(Q).

65 / 90

Graham’s Scan Code
Algorithm
GRAHAM-SCAN(Q)
1. Let p0 be the point Q with

the minimum y-coordinate or
the leftmost such point in
case of a tie

2. let 〈p1, p2, ..., pn〉 be the
remaining points in Q, sorted
by polar angle in counter
clockwise order around p0 (If
more than one point has the
same angle, remove all but
one that is farthest from p0)

3. Let S be an empty stack
4. PUSH(p0, S)
5. PUSH(p1, S)
6. PUSH(p2, S)

7. for i = 3 to n
8. while ccw(next-top(S), pi , top (S)) ≤ 0
9. POP(S)
10. PUSH(S)
11. return S

. The clockwise and counter clockwise algorithm/

ccw(p1, p2, p3)
1. return (p3 − p1 × p2 − p1)

66 / 90

Graham’s Scan Code
Algorithm
GRAHAM-SCAN(Q)
1. Let p0 be the point Q with

the minimum y-coordinate or
the leftmost such point in
case of a tie

2. let 〈p1, p2, ..., pn〉 be the
remaining points in Q, sorted
by polar angle in counter
clockwise order around p0 (If
more than one point has the
same angle, remove all but
one that is farthest from p0)

3. Let S be an empty stack
4. PUSH(p0, S)
5. PUSH(p1, S)
6. PUSH(p2, S)

7. for i = 3 to n
8. while ccw(next-top(S), pi , top (S)) ≤ 0
9. POP(S)
10. PUSH(S)
11. return S

. The clockwise and counter clockwise algorithm/

ccw(p1, p2, p3)
1. return (p3 − p1 × p2 − p1)

66 / 90

Graham’s Scan Code
Algorithm
GRAHAM-SCAN(Q)
1. Let p0 be the point Q with

the minimum y-coordinate or
the leftmost such point in
case of a tie

2. let 〈p1, p2, ..., pn〉 be the
remaining points in Q, sorted
by polar angle in counter
clockwise order around p0 (If
more than one point has the
same angle, remove all but
one that is farthest from p0)

3. Let S be an empty stack
4. PUSH(p0, S)
5. PUSH(p1, S)
6. PUSH(p2, S)

7. for i = 3 to n
8. while ccw(next-top(S), pi , top (S)) ≤ 0
9. POP(S)
10. PUSH(S)
11. return S

. The clockwise and counter clockwise algorithm/

ccw(p1, p2, p3)
1. return (p3 − p1 × p2 − p1)

66 / 90

Graham’s Scan Code
Algorithm
GRAHAM-SCAN(Q)
1. Let p0 be the point Q with

the minimum y-coordinate or
the leftmost such point in
case of a tie

2. let 〈p1, p2, ..., pn〉 be the
remaining points in Q, sorted
by polar angle in counter
clockwise order around p0 (If
more than one point has the
same angle, remove all but
one that is farthest from p0)

3. Let S be an empty stack
4. PUSH(p0, S)
5. PUSH(p1, S)
6. PUSH(p2, S)

7. for i = 3 to n
8. while ccw(next-top(S), pi , top (S)) ≤ 0
9. POP(S)
10. PUSH(S)
11. return S

. The clockwise and counter clockwise algorithm/

ccw(p1, p2, p3)
1. return (p3 − p1 × p2 − p1)

66 / 90

Graham’s Scan Code
Algorithm
GRAHAM-SCAN(Q)
1. Let p0 be the point Q with

the minimum y-coordinate or
the leftmost such point in
case of a tie

2. let 〈p1, p2, ..., pn〉 be the
remaining points in Q, sorted
by polar angle in counter
clockwise order around p0 (If
more than one point has the
same angle, remove all but
one that is farthest from p0)

3. Let S be an empty stack
4. PUSH(p0, S)
5. PUSH(p1, S)
6. PUSH(p2, S)

7. for i = 3 to n
8. while ccw(next-top(S), pi , top (S)) ≤ 0
9. POP(S)
10. PUSH(S)
11. return S

. The clockwise and counter clockwise algorithm/

ccw(p1, p2, p3)
1. return (p3 − p1 × p2 − p1)

66 / 90

Graham’s Scan Code
Algorithm
GRAHAM-SCAN(Q)
1. Let p0 be the point Q with

the minimum y-coordinate or
the leftmost such point in
case of a tie

2. let 〈p1, p2, ..., pn〉 be the
remaining points in Q, sorted
by polar angle in counter
clockwise order around p0 (If
more than one point has the
same angle, remove all but
one that is farthest from p0)

3. Let S be an empty stack
4. PUSH(p0, S)
5. PUSH(p1, S)
6. PUSH(p2, S)

7. for i = 3 to n
8. while ccw(next-top(S), pi , top (S)) ≤ 0
9. POP(S)
10. PUSH(S)
11. return S

. The clockwise and counter clockwise algorithm/

ccw(p1, p2, p3)
1. return (p3 − p1 × p2 − p1)

66 / 90

Graham’s Scan Code
Algorithm
GRAHAM-SCAN(Q)
1. Let p0 be the point Q with

the minimum y-coordinate or
the leftmost such point in
case of a tie

2. let 〈p1, p2, ..., pn〉 be the
remaining points in Q, sorted
by polar angle in counter
clockwise order around p0 (If
more than one point has the
same angle, remove all but
one that is farthest from p0)

3. Let S be an empty stack
4. PUSH(p0, S)
5. PUSH(p1, S)
6. PUSH(p2, S)

7. for i = 3 to n
8. while ccw(next-top(S), pi , top (S)) ≤ 0
9. POP(S)
10. PUSH(S)
11. return S

. The clockwise and counter clockwise algorithm/

ccw(p1, p2, p3)
1. return (p3 − p1 × p2 − p1)

66 / 90

Graham’s Scan Code
Algorithm
GRAHAM-SCAN(Q)
1. Let p0 be the point Q with

the minimum y-coordinate or
the leftmost such point in
case of a tie

2. let 〈p1, p2, ..., pn〉 be the
remaining points in Q, sorted
by polar angle in counter
clockwise order around p0 (If
more than one point has the
same angle, remove all but
one that is farthest from p0)

3. Let S be an empty stack
4. PUSH(p0, S)
5. PUSH(p1, S)
6. PUSH(p2, S)

7. for i = 3 to n
8. while ccw(next-top(S), pi , top (S)) ≤ 0
9. POP(S)
10. PUSH(S)
11. return S

. The clockwise and counter clockwise algorithm/

ccw(p1, p2, p3)
1. return (p3 − p1 × p2 − p1)

66 / 90

Graham’s Scan Code
Algorithm
GRAHAM-SCAN(Q)
1. Let p0 be the point Q with

the minimum y-coordinate or
the leftmost such point in
case of a tie

2. let 〈p1, p2, ..., pn〉 be the
remaining points in Q, sorted
by polar angle in counter
clockwise order around p0 (If
more than one point has the
same angle, remove all but
one that is farthest from p0)

3. Let S be an empty stack
4. PUSH(p0, S)
5. PUSH(p1, S)
6. PUSH(p2, S)

7. for i = 3 to n
8. while ccw(next-top(S), pi , top (S)) ≤ 0
9. POP(S)
10. PUSH(S)
11. return S

. The clockwise and counter clockwise algorithm/

ccw(p1, p2, p3)
1. return (p3 − p1 × p2 − p1)

66 / 90

Example

Sort points using the smallest to largest polar coordinate

67 / 90

Example

Push the first points into the stack

68 / 90

Example

ccw(p1, p2, p3) > 0, do not get into the loop and push p3 into S

clockwise

69 / 90

Example

ccw(p2, p3, p4) > 0, do not get into the loop and push p4 into S

clockwise

70 / 90

Example

Counterclockwise - Pop p4

counterclockwise

71 / 90

Example

Clockwise - Push p5

clockwise

72 / 90

Example

Counterclockwise - Pop p5 and push p6

counterclockwise

73 / 90

Example

Clockwise push p7

clockwise

74 / 90

Example

Counterclockwise pop p7 and push p8

counterclockwise

75 / 90

Example

Clockwise push p9

clockwise

76 / 90

Example

Clockwise pop p9 and push p10

counterclockwise

77 / 90

Example

Keep going until you finish

78 / 90

We have the following theorem for correctness of the
algorithm

Theorem 33.1 (Correctness of Graham’s scan)
If GRAHAM-SCAN executes on a set Q of points, where |Q| ≥ 3, then at
termination, the stack S consists of, from bottom to top, exactly the
vertices of CH(Q) in counterclockwise order.

The proof is based in loop invariance
I leave this to you to read!!!

79 / 90

We have the following theorem for correctness of the
algorithm

Theorem 33.1 (Correctness of Graham’s scan)
If GRAHAM-SCAN executes on a set Q of points, where |Q| ≥ 3, then at
termination, the stack S consists of, from bottom to top, exactly the
vertices of CH(Q) in counterclockwise order.

The proof is based in loop invariance
I leave this to you to read!!!

79 / 90

Using Aggregate Analysis to obtain the complexity
O (n log2 n)

Complexity
1 Line 2 takes O (n log2 n) using Merge sort or Heap sort by using polar

angles and cross product.
2 Lines 3-6 take O (1).

For the Lines 7-10
The for loop executes at most n − 3 times because we have |Q| − 3 points
left

80 / 90

Using Aggregate Analysis to obtain the complexity
O (n log2 n)

Complexity
1 Line 2 takes O (n log2 n) using Merge sort or Heap sort by using polar

angles and cross product.
2 Lines 3-6 take O (1).

For the Lines 7-10
The for loop executes at most n − 3 times because we have |Q| − 3 points
left

80 / 90

Using Aggregate Analysis to obtain the complexity
O (n log2 n)

Complexity
1 Line 2 takes O (n log2 n) using Merge sort or Heap sort by using polar

angles and cross product.
2 Lines 3-6 take O (1).

For the Lines 7-10
The for loop executes at most n − 3 times because we have |Q| − 3 points
left

80 / 90

In addition

Given
PUSH takes O(1) time:

Each iteration takes O (1) time not taking in account the time spent
in the while loop in lines 8-9.

Then
The for loop take overall time O(n) time

Here is the aggregate analysis
Here, we will prove that the overall time for all the times the while loop is
touched by the for loop is going to be O (n).

81 / 90

In addition

Given
PUSH takes O(1) time:

Each iteration takes O (1) time not taking in account the time spent
in the while loop in lines 8-9.

Then
The for loop take overall time O(n) time

Here is the aggregate analysis
Here, we will prove that the overall time for all the times the while loop is
touched by the for loop is going to be O (n).

81 / 90

In addition

Given
PUSH takes O(1) time:

Each iteration takes O (1) time not taking in account the time spent
in the while loop in lines 8-9.

Then
The for loop take overall time O(n) time

Here is the aggregate analysis
Here, we will prove that the overall time for all the times the while loop is
touched by the for loop is going to be O (n).

81 / 90

Aggregate Analysis

We have that
For i = 0, 1, ...,n, we push each point pi into the stack S exactly once.

Remember Multipop?
We can pop at most the number of items that we push on it.

Thus
At least three points p0, p1 and pm are never popped out of the stack!!!

pm is the last point being taken in consideration!!! With m ≤ n

82 / 90

Aggregate Analysis

We have that
For i = 0, 1, ...,n, we push each point pi into the stack S exactly once.

Remember Multipop?
We can pop at most the number of items that we push on it.

Thus
At least three points p0, p1 and pm are never popped out of the stack!!!

pm is the last point being taken in consideration!!! With m ≤ n

82 / 90

Aggregate Analysis

We have that
For i = 0, 1, ...,n, we push each point pi into the stack S exactly once.

Remember Multipop?
We can pop at most the number of items that we push on it.

Thus
At least three points p0, p1 and pm are never popped out of the stack!!!

pm is the last point being taken in consideration!!! With m ≤ n

82 / 90

Aggregate Analysis

Thus
We have m − 2 POP operations are performed in total!!! If we had pushed
m elements into S .

Thus, each iteration of the while loop
It performs one POP, and there are at most m − 2 iterations of the while
loop altogether.

Now
Given that the test in line 8 takes O(1) times, each call of the POP takes
O(1) and m ≤ n − 1.

83 / 90

Aggregate Analysis

Thus
We have m − 2 POP operations are performed in total!!! If we had pushed
m elements into S .

Thus, each iteration of the while loop
It performs one POP, and there are at most m − 2 iterations of the while
loop altogether.

Now
Given that the test in line 8 takes O(1) times, each call of the POP takes
O(1) and m ≤ n − 1.

83 / 90

Aggregate Analysis

Thus
We have m − 2 POP operations are performed in total!!! If we had pushed
m elements into S .

Thus, each iteration of the while loop
It performs one POP, and there are at most m − 2 iterations of the while
loop altogether.

Now
Given that the test in line 8 takes O(1) times, each call of the POP takes
O(1) and m ≤ n − 1.

83 / 90

Aggregate Analysis

We have that
The total time of the while loop is O (n).

Finally
The Running Time of GRAHAM − SCAN is O (n log2 n)

84 / 90

Aggregate Analysis

We have that
The total time of the while loop is O (n).

Finally
The Running Time of GRAHAM − SCAN is O (n log2 n)

84 / 90

Outline

1 Introduction
What is Computational Geometry?

2 Representation
Representation of Primitive Geometries

3 Line-Segment Properties
Using Point Representation
Cross Product
Turn Left or Right
Intersection

4 Classical Problems
Determining whether any pair of segments intersects
Correctness of Sweeping Line Algorithm
Finding the Convex Hull

Graham’s Scan
Jarvis’ March

85 / 90

Jarvis’ March

Jarvis’ March Basics
It computes CH by using

I A technique called Package Wrapping.
I At each point calculate the minimum polar angle.
I Create a left and right chain with the convex hull points.

86 / 90

Jarvis’ March

Jarvis’ March Basics
It computes CH by using

I A technique called Package Wrapping.
I At each point calculate the minimum polar angle.
I Create a left and right chain with the convex hull points.

86 / 90

Jarvis’ March

Jarvis’ March Basics
It computes CH by using

I A technique called Package Wrapping.
I At each point calculate the minimum polar angle.
I Create a left and right chain with the convex hull points.

86 / 90

Jarvis’ March

Jarvis’ March Basics
It computes CH by using

I A technique called Package Wrapping.
I At each point calculate the minimum polar angle.
I Create a left and right chain with the convex hull points.

86 / 90

Formally

Jarvis’s march builds a sequence
H = 〈p0, p1, p2, ..., ph−1〉 of the vertices of CH(Q)

First
We start with p0 the next vertex p1 in the convex hull has the smallest
polar angle with respect to p0.

Next
p2 has the smallest polar angle with respect to p1.

87 / 90

Formally

Jarvis’s march builds a sequence
H = 〈p0, p1, p2, ..., ph−1〉 of the vertices of CH(Q)

First
We start with p0 the next vertex p1 in the convex hull has the smallest
polar angle with respect to p0.

Next
p2 has the smallest polar angle with respect to p1.

87 / 90

Formally

Jarvis’s march builds a sequence
H = 〈p0, p1, p2, ..., ph−1〉 of the vertices of CH(Q)

First
We start with p0 the next vertex p1 in the convex hull has the smallest
polar angle with respect to p0.

Next
p2 has the smallest polar angle with respect to p1.

87 / 90

Now

Then
When we reach the highest vertex, pk (Breaking ties by choosing the
farthest such vertex), we have constructed the right chain of CH(Q).

To construct the left chain
We start at pk , then we choose pk+1 as the point with the smallest polar
angle with respect to pk negative , but from the negative x-axis.

Next
The next point is selected in the same manner until we have reached p0.

88 / 90

Now

Then
When we reach the highest vertex, pk (Breaking ties by choosing the
farthest such vertex), we have constructed the right chain of CH(Q).

To construct the left chain
We start at pk , then we choose pk+1 as the point with the smallest polar
angle with respect to pk negative , but from the negative x-axis.

Next
The next point is selected in the same manner until we have reached p0.

88 / 90

Now

Then
When we reach the highest vertex, pk (Breaking ties by choosing the
farthest such vertex), we have constructed the right chain of CH(Q).

To construct the left chain
We start at pk , then we choose pk+1 as the point with the smallest polar
angle with respect to pk negative , but from the negative x-axis.

Next
The next point is selected in the same manner until we have reached p0.

88 / 90

Jarvis’ March
Example

LEFT CHAIN RIGHT CHAIN

Figure: Wrapping the Gift. Here the Right Chain finishes at p6, then
the Left Chain is started

89 / 90

Complexity

Something Notable
Complexity O (hn)

h number of points in CH.
O (n) for finding the minimum angle and the farthest point by
y-axis

90 / 90

Complexity

Something Notable
Complexity O (hn)

h number of points in CH.
O (n) for finding the minimum angle and the farthest point by
y-axis

90 / 90

Complexity

Something Notable
Complexity O (hn)

h number of points in CH.
O (n) for finding the minimum angle and the farthest point by
y-axis

90 / 90

Complexity

Something Notable
Complexity O (hn)

h number of points in CH.
O (n) for finding the minimum angle and the farthest point by
y-axis

90 / 90

	Introduction
	What is Computational Geometry?

	Representation
	Representation of Primitive Geometries

	Line-Segment Properties
	Using Point Representation
	Cross Product
	Turn Left or Right
	Intersection

	Classical Problems
	Determining whether any pair of segments intersects
	Correctness of Sweeping Line Algorithm
	Finding the Convex Hull
	Graham's Scan
	Jarvis' March

