Analysis of Algorithms String matching

Andres Mendez-Vazquez

November 24, 2015

イロン イボン イヨン イヨン 三日

1/40

Outline

Naive AlgorithmUsing Brute Force

The Rabin-Karp Algorithm

- Efficiency After All
- Horner's Rule
- Generaiting Possible Matches
- The Final Algorithm
- Other Methods

Exercises

2/40

< ロ > < 回 > < 回 > < 回 > < 回 >

What is string matching?

3 / 40

3

イロト 不得 トイヨト イヨト

Where...

A Valid Shift

P occurs with a *valid shift s* if for some $0 \le s \le n - m \Longrightarrow$ T[s+1..s+m] == P[1..m].

Otherwise

it is an invalid shift.

Thus

The string-matching problem is the problem of of finding all valid shifts given a patten P on a text T.

Where...

A Valid Shift

P occurs with a *valid shift s* if for some $0 \le s \le n - m \Longrightarrow$ T[s+1..s+m] == P[1..m].

Otherwise

it is an invalid shift.

Thus

The string-matching problem is the problem of of finding all valid shifts given a patten P on a text T.

Where...

A Valid Shift

P occurs with a **valid shift** s if for some $0 \le s \le n - m \Longrightarrow$ T[s+1..s+m] == P[1..m].

Otherwise

it is an invalid shift.

Thus

The string-matching problem is the problem of of finding all valid shifts given a patten P on a text T.

4 / 40

イロン イヨン イヨン イヨン 三日

Possible Algorithms

We have the following ones

Algorithm	Preprocessing Time	Worst Case Matching Time
Naive	0	$O\left(\left(n-m+1\right)m\right)$
Rabin-Karp	$\Theta\left(m ight)$	$O\left(\left(n-m+1\right)m\right)$
Finite Automaton	$O\left(m\left \Sigma ight ight)$	$\Theta\left(n ight)$
Knuth-Morris-Pratt	$\Theta\left(m ight)$	$\Theta\left(n ight)$

5/40

э

イロト イロト イヨト イヨト

Outline

Naive AlgorithmUsing Brute Force

The Rabin-Karp Algorithm

- Efficiency After All
- Horner's Rule
- Generaiting Possible Matches
- The Final Algorithm
- Other Methods

Exercises

Definition

We denote by Σ^* (read "sigma-star") the set of all finite length strings formed using characters from the alphabet Σ .

Definition

We denote by Σ^* (read "sigma-star") the set of all finite length strings formed using characters from the alphabet Σ .

Constraint

We assume a finite length strings.

Definition

We denote by Σ^* (read "sigma-star") the set of all finite length strings formed using characters from the alphabet Σ .

Constraint

We assume a finite length strings.

Some basic concepts

• The zero **empty string**, ϵ , also belong to Σ^* .

Definition

We denote by Σ^* (read "sigma-star") the set of all finite length strings formed using characters from the alphabet Σ .

Constraint

We assume a finite length strings.

Some basic concepts

- The zero **empty string**, ϵ , also belong to Σ^* .
- The length of a string x is denoted |x|.

Cinvestary

7 / 40

< ロ > < 同 > < 回 > < 回 >

Definition

We denote by Σ^* (read "sigma-star") the set of all finite length strings formed using characters from the alphabet Σ .

Constraint

We assume a finite length strings.

Some basic concepts

- The zero **empty string**, ϵ , also belong to Σ^* .
- The length of a string x is denoted |x|.
- The concatenation of two strings x and y, denoted xy, has length |x|+|y|

Prefix

A string w is a prefix x, $w \sqsubset x$ if x = wy for some string $y \in \Sigma^*$.

8 / 40

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Prefix

A string w is a prefix x, $w \sqsubset x$ if x = wy for some string $y \in \Sigma^*$.

Suffix

A string w is a suffix x, $w \sqsupset x$ if x = yw for some string $y \in \Sigma^*$.

イロト イロト イヨト イヨト

8 / 40

Prefix

A string w is a prefix x, $w \sqsubset x$ if x = wy for some string $y \in \Sigma^*$.

Suffix

A string w is a suffix x, $w \sqsupset x$ if x = yw for some string $y \in \Sigma^*$.

Properties

• Prefix: If
$$w \sqsubset x \Rightarrow |w| \le |x|$$

The ϵ is both suffix and prefix of every string.

Prefix

A string w is a prefix x, $w \sqsubset x$ if x = wy for some string $y \in \Sigma^*$.

Suffix

A string w is a suffix x, $w \sqsupset x$ if x = yw for some string $y \in \Sigma^*$.

Properties

- Prefix: If $w \sqsubset x \Rightarrow |w| \le |x|$
- Suffix: If $w \sqsupset x \Rightarrow |w| \le |x|$

The ϵ is both suffix and prefix of every string.

Prefix

A string w is a prefix x, $w \sqsubset x$ if x = wy for some string $y \in \Sigma^*$.

Suffix

A string w is a suffix x, $w \sqsupset x$ if x = yw for some string $y \in \Sigma^*$.

Properties

- Prefix: If $w \sqsubset x \Rightarrow |w| \le |x|$
- Suffix: If $w \sqsupset x \Rightarrow |w| \le |x|$
- The ϵ is both suffix and prefix of every string.

In addition

 For any string x and y and any character a, we have w □ x if and only if aw □ ax

In addition,
and
and
are transitive relations.

In addition

- For any string x and y and any character a, we have w □ x if and only if aw □ ax
- In addition, \square and \square are transitive relations.

Outline

1 String Matching

- Introduction
- Some Notation

Naive AlgorithmUsing Brute Force

The Rabin-Karp Algorithm

- Efficiency After All
- Horner's Rule
- Generaiting Possible Matches
- The Final Algorithm
- Other Methods

Exercises

The naive string algorithm

Algorithm

NAIVE-STRING-MATCHER(T, P)

- $\bullet n = T.length$
- @ m = P.length

3 for
$$s = 0$$
 to $n - m$

• if
$$P[1..m] == T[s+1..s+m]$$

print "Pattern occurs with shift" s

Complexity

O((n-m+1)m) or $\Theta(n^2)$ if $m=\left\lfloor \frac{n}{2} \right\rfloor$

The naive string algorithm

Algorithm

$\mathsf{NAIVE}\text{-}\mathsf{STRING}\text{-}\mathsf{MATCHER}(\,T,P)$

- $\bullet n = T.length$
- $\bigcirc m = P.length$

(a) for
$$s = 0$$
 to $n - m$

• if
$$P[1..m] == T[s+1..s+m]$$

print "Pattern occurs with shift" s

Complexity

$$O((n-m+1)m)$$
 or $\Theta\left(n^2\right)$ if $m=\left\lfloor \frac{n}{2} \right\rfloor$

Outline

1 String Matching

- Introduction
- Some Notation

Naive AlgorithmUsing Brute Force

3 The Rabin-Karp Algorithm • Efficiency After All

- Horner's Rule
- Generaiting Possible Matches
- The Final Algorithm
- Other Methods

Exercises

Rabin-Karp algorithm

Lets assume that $\Sigma=\{0,1,...,9\}$ then we have the following:

Thus, each string of k consecutive characters is a k-length decimal number:

 $c_1 c_2 \cdots c_{k-1} c_k = 10^{k-1} c_1 + 10^{k-2} c_2 + \ldots + 10 c_{k-1} + c_k$

Rabin-Karp algorithm

Lets assume that $\Sigma=\{0,1,...,9\}$ then we have the following:

• Thus, each string of k consecutive characters is a k-length decimal number:

$$c_1 c_2 \cdots c_{k-1} c_k = 10^{k-1} c_1 + 10^{k-2} c_2 + \ldots + 10 c_{k-1} + c_k$$

p correspond the decimal number for pattern P [1..m].

• t_s denote decimal value of *m*-length substring T[s+1..s+m] for s = 0, 1, ..., n-m.

Rabin-Karp algorithm

Lets assume that $\Sigma=\{0,1,...,9\}$ then we have the following:

• Thus, each string of k consecutive characters is a k-length decimal number:

$$c_1 c_2 \cdots c_{k-1} c_k = 10^{k-1} c_1 + 10^{k-2} c_2 + \ldots + 10 c_{k-1} + c_k$$

Thus

• p correspond the decimal number for pattern P[1..m].

13/40

イロト イヨト イヨト

Rabin-Karp algorithm

Lets assume that $\Sigma=\{0,1,...,9\}$ then we have the following:

• Thus, each string of k consecutive characters is a k-length decimal number:

$$c_1 c_2 \cdots c_{k-1} c_k = 10^{k-1} c_1 + 10^{k-2} c_2 + \ldots + 10 c_{k-1} + c_k$$

Thus

- p correspond the decimal number for pattern P [1..m].
- t_s denote decimal value of *m*-length substring T[s+1..s+m] for s=0,1,...,n-m.

13/40

イロト イヨト イヨト

Then

Properties

Clearly $t_s == p$ if and only if T[s + 1..s + m] == P[1..m], thus s is a valid shift.

Now, think about this

What if we put everything in a single word of the machine

• If we can compute p in $\Theta(m)$.

• If we can compute all the t_s in $\Theta\left(n-m+1
ight)$.

Now, think about this

What if we put everything in a single word of the machine

- If we can compute p in $\Theta(m)$.
- If we can compute all the t_s in $\Theta(n-m+1)$.

$\Theta(m) + \Theta(n - m + 1) = \Theta(n)$

Now, think about this

What if we put everything in a single word of the machine

- If we can compute p in $\Theta(m)$.
- If we can compute all the t_s in $\Theta(n-m+1)$.

We will get

$$\Theta(m) + \Theta(n - m + 1) = \Theta(n)$$

Outline

1 String Matching

- Introduction
- Some Notation

Naive AlgorithmUsing Brute Force

3 The Rabin-Karp Algorithm

Efficiency After All

Horner's Rule

- Generaiting Possible Matches
- The Final Algorithm
- Other Methods

Exercises

16 / 40

< ロ > < 回 > < 回 > < 回 > < 回 >

Remember Horner's Rule

Consider

• We can compute, the decimal representation by the Horner's rule:

$$p = P[m] + 10(P[m-1] + 10(P[m-2] + \dots + 10(P[2] + 10P[1])\dots))$$
(1)

Thus, we can compute t_0 using this rule in

 $\Theta\left(m
ight)$

Remember Horner's Rule

Consider

• We can compute, the decimal representation by the Horner's rule:

$$p = P[m] + 10(P[m-1] + 10(P[m-2] + \dots + 10(P[2] + 10P[1])\dots))$$
(1)

Thus, we can compute t_0 using this rule in $\Theta(m)$ (2)

17 / 40

イロト イヨト イヨト イヨト

If you have the following set of digits

Using the Horner's Rule for m =

$2401 = 1 + 10 \times (0 + 10 \times (4 + 10 \times 2))$ $= 2 \times 10^3 + 4 \times 10^2 + 0 \times 10 + 1$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (C) 18 / 40

If you have the following set of digits

Using the Horner's Rule for m = 4

$$2401 = 1 + 10 \times (0 + 10 \times (4 + 10 \times 2))$$
$$= 2 \times 10^3 + 4 \times 10^2 + 0 \times 10 + 1$$

18 / 40

э

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

To compute the remaining values, we can use the previous value

$$t_{s+1} = 10 \left(t_s - 10^{m-1} T \left[s+1 \right] \right) + T \left[s+m+1 \right].$$
(3)

Notice the following

 Subtracting from it 10^{m-1} T [s + 1] removes the high-order digit from t_s.

19/40

< ロ > < 回 > < 回 > < 回 > < 回 >

To compute the remaining values, we can use the previous value

$$t_{s+1} = 10 \left(t_s - 10^{m-1} T \left[s+1 \right] \right) + T \left[s+m+1 \right].$$
(3)

Notice the following

- Subtracting from it $10^{m-1}\,T\,[s+1]$ removes the high-order digit from $t_s.$
- Multiplying the result by 10 shifts the number left by one digit position.

Adding T[s + m + 1] brings in the appropriate low-order digit.

19/40

イロト イヨト イヨト

To compute the remaining values, we can use the previous value

$$t_{s+1} = 10 \left(t_s - 10^{m-1} T \left[s+1 \right] \right) + T \left[s+m+1 \right].$$
(3)

Notice the following

- Subtracting from it $10^{m-1}\,T\,[s+1]$ removes the high-order digit from $t_s.$
- Multiplying the result by 10 shifts the number left by one digit position.
- Adding T[s+m+1] brings in the appropriate low-order digit.

19/40

A D > A D > A D > A D >

index	1	2	3	4	5	6
digit	1	0	2	4	1	0

- We have $t_0 = 1024$ then we want to calculate 0241
- Then we subtract $(10^3 \times T[1]) == 1000$ of 1024
- We get 0024
- Multiply by 10, and we get 0240
- We add T[5] == 1
- Finally, we get 0241

Imagine that you have...

index	1	2	3	4	5	6
digit	1	0	2	4	1	0

• We have $t_0 = 1024$ then we want to calculate 0241

 $igodoldsymbol{0}$ Then we subtract $(10^3 imes T[1])==1000$ of 1024

We get 0024

Multiply by 10, and we get 0240

 $\bullet \quad \text{We add} \ T[5] == 1$

Finally, we get 0241

index	1	2	3	4	5	6
digit	1	0	2	4	1	0

- **()** We have $t_0 = 1024$ then we want to calculate 0241
- 2 Then we subtract $(10^3 \times T [1]) == 1000$ of 1024
- We get 0024
- Multiply by 10, and we get 0240
-) We add T[5] == 1
- Finally, we get 0241

index	1	2	3	4	5	6
digit	1	0	2	4	1	0

- **①** We have $t_0 = 1024$ then we want to calculate 0241
- ② Then we subtract $(10^3 \times T [1]) == 1000$ of 1024
- We get 0024
- Multiply by 10, and we get 0240
 - We add T[5] == 1
 - Finally, we get 0241

index	1	2	3	4	5	6
digit	1	0	2	4	1	0

- $\bullet We have t_0 = 1024 then we want to calculate 0241$
- ② Then we subtract $(10^3 \times T [1]) == 1000$ of 1024
- We get 0024
- Multiply by 10, and we get 0240

index	1	2	3	4	5	6
digit	1	0	2	4	1	0

- $\bullet \quad We have t_0 = 1024 then we want to calculate 0241$
- 2 Then we subtract $(10^3 \times T [1]) == 1000$ of 1024
- We get 0024
- Multiply by 10, and we get 0240
- $\bullet \quad \text{We add} \ T\left[5\right] == 1$

index	1	2	3	4	5	6
digit	1	0	2	4	1	0

- **①** We have $t_0 = 1024$ then we want to calculate 0241
- 2 Then we subtract $(10^3 \times T [1]) == 1000$ of 1024
- We get 0024
- Multiply by 10, and we get 0240
- $\bullet \quad \text{We add} \ T\left[5\right] == 1$
- Finally, we get 0241

Remarks

First

We can extend this beyond the decimals to any d digit system!!!

What happens when the numbers are quite large?

We can use the module

Meaning

• Compute p and t_s values modulo a suitable modulus q.

Remarks

First

We can extend this beyond the decimals to any d digit system!!!

What happens when the numbers are quite large?

We can use the module

Meaning

• Compute p and t_s values modulo a suitable modulus q.

Remarks

First

We can extend this beyond the decimals to any d digit system!!!

What happens when the numbers are quite large?

We can use the module

Meaning

• Compute p and t_s values modulo a suitable modulus q.

21/40

イロン イロン イヨン イヨン

Outline

Introduction

Some Notation

Naive AlgorithmUsing Brute Force

The Rabin-Karp Algorithm

- Efficiency After All
- Horner's Rule

Generaliting Possible Matches

- The Final Algorithm
- Other Methods

Exercises

3

22 / 40

< ロ > < 回 > < 回 > < 回 > < 回 >

Remember Hash Functions

Yes, we are mapping the large numbers into the set

$$\{0,1,2,...,q-1\}$$

23 / 40

э

イロト イヨト イヨト イヨト

Then, to reduce the possible representation

Use the module of q

It is possible to compute $p \mod q$ in $\Theta(m)$ time and all the $t_s \mod q$ in $\Theta(n-m+1)$ time.

Something Notable

If we choose the modulus q as a prime such that 10q just fits within one computer word, then we can perform all the necessary computations with single-precision arithmetic.

Then, to reduce the possible representation

Use the module of q

It is possible to compute $p \mod q$ in $\Theta(m)$ time and all the $t_s \mod q$ in $\Theta(n-m+1)$ time.

Something Notable

If we choose the modulus q as a prime such that 10q just fits within one computer word, then we can perform all the necessary computations with single-precision arithmetic.

24 / 40

< ロ > < 同 > < 回 > < 回 >

After all

10q is the number that will subtracting for or multiplying by!!!

We use "truncated division" to implement the modulo operation

For example given two numbers a and n, we can do the following

$$q = trunc\left(\frac{a}{n}\right)$$

Then

$$r = a - nq$$

After all

10q is the number that will subtracting for or multiplying by!!!

We use "truncated division" to implement the modulo operation

For example given two numbers a and n, we can do the following

$$q = trunc\left(\frac{a}{n}\right)$$

l hen

$$r = a - nq$$

25 / 40

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

After all

10q is the number that will subtracting for or multiplying by!!!

We use "truncated division" to implement the modulo operation

For example given two numbers a and n, we can do the following

$$q = trunc\left(\frac{a}{n}\right)$$

Then

$$r = a - nq$$

25 / 40

イロト 不得 トイヨト イヨト

Thus

If q is a prime we can use this as the element of truncated division then r=a-10q.

Truncated Algorithm

```
\mathsf{Truncated}\operatorname{-Module}(a,q)
```

- $\bigcirc r = a 10q$
- \bigcirc while r > 10q

$$\bigcirc \qquad r = r - 10q$$

return r

26 / 40

イロン イヨン イヨン イヨン 三日

Thus

If q is a prime we can use this as the element of truncated division then $r=a-10\,q.$

Truncated Algorithm

 $\mathsf{Truncated}\operatorname{-Module}(a, q)$

1
$$r = a - 10q$$

2 while r > 10q

 ${ullet}$ return r

Thus

Then, we can implement this in basic arithmetic CPU operations.

Not only that

In general, for a d-ary alphabet, we choose q such that dq fits within a computer word.

Thus

Then, we can implement this in basic arithmetic CPU operations.

Not only that

In general, for a d-ary alphabet, we choose q such that dq fits within a computer word.

In general, we have

The following

$$t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \mod q$$
(4)

where $h \equiv d^{m-1} \pmod{q}$ is the value of the digit "1" in the high-order position of an *m*-digit text window.

We have a small problem!!

Question? Can we differentiate between $p \mod q$ and $t_s \mod q$?

In general, we have

The following

$$t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \mod q$$
(4)

where $h \equiv d^{m-1} \pmod{q}$ is the value of the digit "1" in the high-order position of an *m*-digit text window.

Here

We have a small problem !!!

Question

Can we differentiate between $p \mod q$ and $t_s \mod q$?

In general, we have

The following

$$t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \mod q$$
(4)

where $h \equiv d^{m-1} \pmod{q}$ is the value of the digit "1" in the high-order position of an *m*-digit text window.

Here

We have a small problem !!!

Question?

Can we differentiate between $p \mod q$ and $t_s \mod q$?

Look at this with q = 11

• 14 mod 11 == 3

But $14 \neq 25$

Look at this with q = 11

- 14 mod 11 == 3
- 25 mod 11 == 3

But $14 \neq 25$

• 11 mod 11 == 0

• 25 mod 11 == 3

We can say that $11 \neq 25!!!$

Look at this with q = 11

- 14 mod 11 == 3
- 25 mod 11 == 3

But $14 \neq 25$

• 11 mod 11 == 0

• 25 mod 11 == 3

We can say that $11 \neq 25!!!$

his means

We can use the modulo to differentiate numbers, but not to exactly to say if they are equal!!!

Look at this with q = 11

- 14 mod 11 == 3
- 25 mod 11 == 3

But $14 \neq 25$

However

• 11 mod 11 == 0

We can say that 11
eq 25!!!

his means

We can use the modulo to differentiate numbers, but not to exactly to say if they are equal!!!

Look at this with q = 11

- 14 mod 11 == 3
- 25 mod 11 == 3

But $14 \neq 25$

However

- 11 mod 11 == 0
- 25 mod 11 == 3

his means.

We can use the modulo to differentiate numbers, but not to exactly to say if they are equal!!!

Look at this with q = 11

- 14 mod 11 == 3
- 25 mod 11 == 3

But $14 \neq 25$

However

- 11 mod 11 == 0
- 25 mod 11 == 3

We can say that $11 \neq 25!!!$

We can use the modulo to differentiate numbers, but not to exactly to say if they are equal!!!

Look at this with q = 11

- 14 mod 11 == 3
- 25 mod 11 == 3

But $14 \neq 25$

However

- 11 mod 11 == 0
- 25 mod 11 == 3

We can say that $11 \neq 25!!!$

This means

We can use the modulo to differentiate numbers, but not to exactly to say if they are equal!!!

Thus

We have the following logic

• If
$$t_s \equiv p \pmod{q}$$
 does not mean that $t_s == p$.

• If $t_s \not\equiv p$ (mod q), we have that $t_s \neq j$

Thus

We have the following logic

- If $t_s \equiv p \pmod{q}$ does not mean that $t_s == p$.
- If $t_s \not\equiv p \pmod{q}$, we have that $t_s \neq p$.

To fix this problem we simply test to see if the hit is not spurious.

Thus

We have the following logic

- If $t_s \equiv p \pmod{q}$ does not mean that $t_s == p$.
- If $t_s \not\equiv p \pmod{q}$, we have that $t_s \neq p$.

Fixing the problem

To fix this problem we simply test to see if the hit is not spurious.

If q is large enough, then we can hope that spurious hits occur infrequently enough that the cost of the extra checking is low.

Thus

We have the following logic

- If $t_s \equiv p \pmod{q}$ does not mean that $t_s == p$.
- If $t_s \not\equiv p \pmod{q}$, we have that $t_s \neq p$.

Fixing the problem

To fix this problem we simply test to see if the hit is not spurious.

Note

If q is large enough, then we can hope that spurious hits occur infrequently enough that the cost of the extra checking is low.

30 / 40

Outline

1 String Matching

- Introduction
- Some Notation

Naive AlgorithmUsing Brute Force

The Rabin-Karp Algorithm

- Efficiency After All
- Horner's Rule
- Generaiting Possible Matches
- The Final Algorithm
- Other Methods

Exercises

3

Rabin-Karp-Matcher(T, P, d, q)

- 1 n = T.length
- m = P.length
- $\bullet h = d^{m-1} \mod q // \text{ Storing the reminder of the highest power}$
- 9 p = 0
- **(**) $t_0 = 0$

```
• for i = 1 to m // Preprocessing
```

```
p = (dp + P[i]) \mod q
```

```
t_0 = (dp + T[i]) \mod q
```

```
• for s = 0 to n - m
```

```
if p == t_s
```

```
if P\left[1..m
ight] == T\left[s+1..s+m
ight] // Actually a Loop
```

```
print "Pattern occurs with shift" s
```

```
if s < n - m
```

```
t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \mod q
```

Rabin-Karp-Matcher(T, P, d, q)

- 1 n = T.length
- m = P.length
- $\bullet h = d^{m-1} \mod q // \text{ Storing the reminder of the highest power}$
- 9 p = 0
- **5** $t_0 = 0$
- **()** for i = 1 to m // Preprocessing
- $\bullet \qquad t_0 = (dp + T[i]) \mod q$

• for s = 0 to n - m

if $p == t_s$ if P[1..m] == T[s+1..s+m] // Actually a Lo

rint "Pattern occurs with shift" s

- if s < n m
 - $t_{s+1} = (d(t_s T[s+1]h) + T[s+m+1]) \mod q$

$\mathsf{Rabin} ext{-}\mathsf{Karp} ext{-}\mathsf{Matcher}(\,T,P,\,d,\,q)$

- 1 n = T.length
- m = P.length
- **(3)** $h = d^{m-1} \mod q //$ Storing the reminder of the highest power
- 9 p = 0
- **5** $t_0 = 0$
- for i = 1 to m // Preprocessing
 p = (dp + P [i]) mod q
 t₀ = (dp + T [i]) mod q
 for s = 0 to n m
 if p == t_s
 if P [1..m] == T [s + 1..s + m] // Actually a Loop
 print "Pattern occurs with shift" s

Rabin-Karp-Matcher(T, P, d, q)

- 1 n = T.length
- m = P.length
- **(3)** $h = d^{m-1} \mod q //$ Storing the reminder of the highest power
- 9 p = 0
- **5** $t_0 = 0$

for
$$i = 1$$
 to m // Preprocessing
 $p = (dp + P[i]) \mod q$
 $t_0 = (dp + T[i]) \mod q$
 for $s = 0$ to $n - m$
 if $p == t_s$
 if $P[1..m] == T[s + 1..s + m]$ // Actually a Loop
 print "Pattern occurs with shift" s
 if $s < n - m$
 $t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \mod q$

Complexity

Preprocessing

- $p \mod q$ is done in $\Theta(m)$.
- 2 $t'_s s \mod q$ is done in $\Theta(n-m+1)$.

Then checking P|1.

In the worst case, $\Theta((n-m+1)m)$

Complexity

Preprocessing

•
$$p \mod q$$
 is done in $\Theta(m)$.

2
$$t'_s s \mod q$$
 is done in $\Theta(n-m+1)$.

Then checking P[1..m] == T[s+1..s+m]

In the worst case, $\Theta((n-m+1)m)$

Still we can do better!

First

The number of spurious hits is O(n/q).

Because

We can estimate the chance that an arbitrary t_s will be equivalent to $p \mod |q|$ as 1/q.

Properties

Since there are $O\left(n
ight)$ positions at which the test of line 10 fails (Thus, you have $O\left(n/q
ight)$ non valid hits) and we spend $O\left(m
ight)$ time per hit

Still we can do better!

First

The number of spurious hits is O(n/q).

Because

We can estimate the chance that an arbitrary t_s will be equivalent to $p \mod q$ as 1/q.

Since there are $O\left(n
ight)$ positions at which the test of line 10 fails (Thus, you have $O\left(n/q
ight)$ non valid hits) and we spend $O\left(m
ight)$ time per hit

34 / 40

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Still we can do better!

First

The number of spurious hits is O(n/q).

Because

We can estimate the chance that an arbitrary t_s will be equivalent to $p \mod q$ as 1/q.

Properties

Since there are O(n) positions at which the test of line 10 fails (Thus, you have O(n/q) non valid hits) and we spend O(m) time per hit

34 / 40

イロト イヨト イヨト イヨト

The expected matching time

The expected matching time by Rabin-Karp algorithm is

$$O(n) + O\left(m\left(v + \frac{n}{q}\right)\right)$$

where v is the number of valid shifts.

The expected matching time

The expected matching time by Rabin-Karp algorithm is

$$O(n) + O\left(m\left(v + \frac{n}{q}\right)\right)$$

where \boldsymbol{v} is the number of valid shifts.

If v = O(1) (Number of valid shifts small) and choose $q \ge m$ such that $\frac{n}{q} = O(1)$ (q to be larger enough than the pattern's length).

The expected matching time

The expected matching time by Rabin-Karp algorithm is

$$O(n) + O\left(m\left(v + \frac{n}{q}\right)\right)$$

where v is the number of valid shifts.

In addition

If v = O(1) (Number of valid shifts small) and choose $q \ge m$ such that $\frac{n}{q} = O(1)$ (q to be larger enough than the pattern's length).

• The algorithm takes O(m+n) for finding the matches.

Finally, because $m \leq n$, thus the expected time is O(n).

・ロン ・四マ ・ヨマ

The expected matching time

The expected matching time by Rabin-Karp algorithm is

$$O(n) + O\left(m\left(v + \frac{n}{q}\right)\right)$$

where v is the number of valid shifts.

In addition

If v = O(1) (Number of valid shifts small) and choose $q \ge m$ such that $\frac{n}{q} = O(1)$ (q to be larger enough than the pattern's length).

Then

• The algorithm takes O(m+n) for finding the matches.

The expected matching time

The expected matching time by Rabin-Karp algorithm is

$$O(n) + O\left(m\left(v + \frac{n}{q}\right)\right)$$

where v is the number of valid shifts.

In addition

If v = O(1) (Number of valid shifts small) and choose $q \ge m$ such that $\frac{n}{q} = O(1)$ (q to be larger enough than the pattern's length).

Then

- The algorithm takes O(m+n) for finding the matches.
- Finally, because $m \leq n$, thus the expected time is O(n).

Outline

1 String Matching

- Introduction
- Some Notation

Naive AlgorithmUsing Brute Force

The Rabin-Karp Algorithm

- Efficiency After All
- Horner's Rule
- Generaiting Possible Matches
- The Final Algorithm
- Other Methods

Exercises

3

We have other methods

We have the following ones

Algorithm	Preprocessing Time	Worst Case Matching Time
Rabin-Karp	$\Theta\left(m ight)$	$O\left(\left(n-m+1\right)m\right)$
Finite Automaton	$O\left(m\left \Sigma\right ight)$	$\Theta\left(n ight)$
Knuth-Morris-Pratt	$\Theta\left(m ight)$	$\Theta\left(n ight)$

37 / 40

э

イロト イヨト イヨト イヨト

Remarks about Knuth-Morris-Pratt

The Algorithm

It is quite an elegant algorithm that improves over the state machine.

How

It avoid to compute the transition function in the state machine by using the prefix function π

Remarks about Knuth-Morris-Pratt

The Algorithm

It is quite an elegant algorithm that improves over the state machine.

How?

It avoid to compute the transition function in the state machine by using the prefix function $\boldsymbol{\pi}$

 It encapsulate information how the pattern matches against shifts of itself

38 / 40

However, At the same time (Circa 1977)

Boyer-Moore string search algorithm

It was presented at the same time

It is used in the GREP function for pattern matching in UNIX

Actually is the basic algorithm to beat when doing research in this area!!!

Richard Cole (Circa 1991)

He gave a a proof of the algorithm with an upper bound of 3m comparisons in the worst case!!!

However, At the same time (Circa 1977)

Boyer-Moore string search algorithm

It was presented at the same time

It is used in the GREP function for pattern matching in $\ensuremath{\mathsf{UNIX}}$

Actually is the basic algorithm to beat when doing research in this area!!!

Richard Cole (Circa 1991)

He gave a a proof of the algorithm with an upper bound of 3m comparisons in the worst case!!!

However, At the same time (Circa 1977)

Boyer–Moore string search algorithm

It was presented at the same time

It is used in the GREP function for pattern matching in UNIX

Actually is the basic algorithm to beat when doing research in this area!!!

Richard Cole (Circa 1991)

He gave a a proof of the algorithm with an upper bound of 3m comparisons in the worst case!!!

Exercises

- 32.1-1
- 32.1-2
- 32.1-4
- 32.2-1
- 32.2-2
- 32.2-3
- 32.2-4

