
Analysis of Algorithms
String matching

Andres Mendez-Vazquez

November 24, 2015

1 / 40



Outline

1 String Matching
Introduction
Some Notation

2 Naive Algorithm
Using Brute Force

3 The Rabin-Karp Algorithm
Efficiency After All
Horner’s Rule
Generaiting Possible Matches
The Final Algorithm
Other Methods

4 Exercises

2 / 40



What is string matching?

Given two sequences of characters drawn from a finite alphabet Σ,
T [1..n] and P [1..m]

a b c a b a a b c a b a c a b

a b a a

TEXT T

PATTERN P
s=3

Valid Shift
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Where...

A Valid Shift
P occurs with a valid shift s if for some 0 ≤ s ≤ n −m =⇒
T [s + 1..s + m] == P [1..m].

Otherwise
it is an invalid shift.

Thus
The string-matching problem is the problem of of finding all valid shifts
given a patten P on a text T .
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Possible Algorithms

We have the following ones
Algorithm Preprocessing Time Worst Case Matching Time
Naive 0 O ((n −m + 1) m)

Rabin-Karp Θ (m) O ((n −m + 1) m)
Finite Automaton O (m |Σ|) Θ (n)
Knuth-Morris-Pratt Θ (m) Θ (n)
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Notation and Terminology

Definition
We denote by Σ∗ (read “sigma-star”) the set of all finite length strings
formed using characters from the alphabet Σ.

Constraint
We assume a finite length strings.

Some basic concepts
The zero empty string, ε, also belong to Σ∗.
The length of a string x is denoted |x|.
The concatenation of two strings x and y, denoted xy, has length
|x|+ |y|
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Notation and Terminology

Prefix
A string w is a prefix x, w @ x if x = wy for some string y ∈ Σ∗.

Suffix
A string w is a suffix x, w A x if x = yw for some string y ∈ Σ∗.

Properties
Prefix: If w @ x ⇒ |w| ≤ |x|
Suffix: If w A x ⇒ |w| ≤ |x|
The ε is both suffix and prefix of every string.
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Notation and Terminology

In addition
For any string x and y and any character a, we have w A x if and
only if aw A ax
In addition, @ and A are transitive relations.
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The naive string algorithm

Algorithm
NAIVE-STRING-MATCHER(T ,P)

1 n = T .length
2 m = P.length
3 for s = 0 to n −m
4 if P [1..m] == T [s + 1..s + m]
5 print “Pattern occurs with shift” s

Complexity
O((n −m + 1)m) or Θ

(
n2)

if m =
⌊n

2
⌋

11 / 40



The naive string algorithm

Algorithm
NAIVE-STRING-MATCHER(T ,P)

1 n = T .length
2 m = P.length
3 for s = 0 to n −m
4 if P [1..m] == T [s + 1..s + m]
5 print “Pattern occurs with shift” s

Complexity
O((n −m + 1)m) or Θ

(
n2)

if m =
⌊n

2
⌋

11 / 40



Outline

1 String Matching
Introduction
Some Notation

2 Naive Algorithm
Using Brute Force

3 The Rabin-Karp Algorithm
Efficiency After All
Horner’s Rule
Generaiting Possible Matches
The Final Algorithm
Other Methods

4 Exercises

12 / 40



A more elaborated algorithm

Rabin-Karp algorithm
Lets assume that Σ = {0, 1, ..., 9} then we have the following:

Thus, each string of k consecutive characters is a k-length decimal
number:
c1c2 · · · ck−1ck = 10k−1c1 + 10k−2c2 + . . .+ 10ck−1 + ck

Thus
p correspond the decimal number for pattern P [1..m].
ts denote decimal value of m-length substring T [s + 1..s + m] for
s = 0, 1, ...,n −m.
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Then

Properties
Clearly ts == p if and only if T [s + 1..s + m] == P [1..m], thus s is a
valid shift.
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Now, think about this

What if we put everything in a single word of the machine
If we can compute p in Θ (m).
If we can compute all the ts in Θ (n −m + 1).

We will get
Θ (m) + Θ (n −m + 1) = Θ (n)
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Remember Horner’s Rule

Consider
We can compute, the decimal representation by the Horner’s rule:

p = P[m] + 10(P[m − 1] + 10(P[m − 2] + ... + 10(P[2] + 10P[1])...)) (1)

Thus, we can compute t0 using this rule in

Θ (m) (2)
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Example

If you have the following set of digits
2 4 0 1

Using the Horner’s Rule for m = 4

2401 = 1 + 10× (0 + 10× (4 + 10× 2))
= 2× 103 + 4× 102 + 0× 10 + 1
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Then

To compute the remaining values, we can use the previous value

ts+1 = 10
(
ts − 10m−1T [s + 1]

)
+ T [s + m + 1] . (3)

Notice the following
Subtracting from it 10m−1T [s + 1] removes the high-order digit from
ts.
Multiplying the result by 10 shifts the number left by one digit
position.
Adding T [s + m + 1] brings in the appropriate low-order digit.
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Example

Imagine that you have...
index 1 2 3 4 5 6
digit 1 0 2 4 1 0

1 We have t0 = 1024 then we want to calculate 0241
2 Then we subtract

(
103 × T [1]

)
== 1000 of 1024

3 We get 0024
4 Multiply by 10, and we get 0240
5 We add T [5] == 1
6 Finally, we get 0241
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Remarks

First
We can extend this beyond the decimals to any d digit system!!!

What happens when the numbers are quite large?
We can use the module

Meaning
Compute p and ts values modulo a suitable modulus q.
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Remember Hash Functions

Yes, we are mapping the large numbers into the set

{0, 1, 2, ..., q − 1}
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Then, to reduce the possible representation

Use the module of q
It is possible to compute p mod q in Θ (m) time and all the ts mod q in
Θ (n −m + 1) time.

Something Notable
If we choose the modulus q as a prime such that 10q just fits within one
computer word, then we can perform all the necessary computations with
single-precision arithmetic.
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Why 10q?

After all
10q is the number that will subtracting for or multiplying by!!!

We use “truncated division” to implement the modulo operation
For example given two numbers a and n, we can do the following

q = trunc
( a

n

)

Then

r = a − nq
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Why 10q?

Thus
If q is a prime we can use this as the element of truncated division then
r = a − 10q.

Truncated Algorithm
Truncated-Module(a, q)

1 r = a − 10q
2 while r > 10q
3 r = r − 10q
4 return r
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Then

Thus
Then, we can implement this in basic arithmetic CPU operations.

Not only that
In general, for a d-ary alphabet, we choose q such that dq fits within a
computer word.
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In general, we have

The following

ts+1 = (d(ts − T [s + 1]h) + T [s + m + 1]) mod q (4)

where h ≡ dm−1(mod q) is the value of the digit “1” in the high-order
position of an m-digit text window.

Here
We have a small problem!!!

Question?
Can we differentiate between p mod q and ts mod q?
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What?

Look at this with q = 11
14 mod 11 == 3
25 mod 11 == 3

But 14 6= 25

However
11 mod 11 == 0
25 mod 11 == 3

We can say that 11 6= 25!!!

This means
We can use the modulo to differentiate numbers, but not to exactly to say
if they are equal!!!
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Thus

We have the following logic
If ts ≡ p (mod q) does not mean that ts == p.
If ts 6≡ p (mod q), we have that ts 6= p.

Fixing the problem
To fix this problem we simply test to see if the hit is not spurious.

Note
If q is large enough, then we can hope that spurious hits occur infrequently
enough that the cost of the extra checking is low.
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The Final Algorithm
Rabin-Karp-Matcher(T , P, d, q)

1 n = T .length
2 m = P.length
3 h = dm−1 mod q // Storing the reminder of the highest power
4 p = 0
5 t0 = 0
6 for i = 1 to m // Preprocessing
7 p = (dp + P [i]) mod q
8 t0 = (dp + T [i]) mod q
9 for s = 0 to n −m
10 if p == ts
11 if P [1..m] == T [s + 1..s + m] // Actually a Loop
12 print “Pattern occurs with shift” s
13 if s < n −m
14 ts+1 = (d(ts − T [s + 1]h) + T [s + m + 1]) mod q
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Complexity

Preprocessing
1 p mod q is done in Θ(m).
2 t ′ss mod q is done in Θ(n −m + 1).

Then checking P[1..m] == T [s + 1..s + m]
In the worst case, Θ((n −m + 1)m)
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Still we can do better!

First
The number of spurious hits is O (n/q).

Because
We can estimate the chance that an arbitrary ts will be equivalent to p
mod q as 1/q.

Properties
Since there are O (n) positions at which the test of line 10 fails (Thus, you
have O (n/q) non valid hits) and we spend O (m) time per hit
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Finally, we have that
The expected matching time
The expected matching time by Rabin-Karp algorithm is

O(n) + O
(

m
(

v + n
q

))

where v is the number of valid shifts.

In addition
If v = O(1) (Number of valid shifts small) and choose q ≥ m such that
n
q = O(1) (q to be larger enough than the pattern’s length).

Then
The algorithm takes O(m + n) for finding the matches.
Finally, because m ≤ n, thus the expected time is O(n).
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We have other methods

We have the following ones
Algorithm Preprocessing Time Worst Case Matching Time
Rabin-Karp Θ (m) O ((n −m + 1) m)

Finite Automaton O (m |Σ|) Θ (n)
Knuth-Morris-Pratt Θ (m) Θ (n)
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Remarks about Knuth-Morris-Pratt

The Algorithm
It is quite an elegant algorithm that improves over the state machine.

How?
It avoid to compute the transition function in the state machine by using
the prefix function π

It encapsulate information how the pattern matches against shifts of
itself
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However, At the same time (Circa 1977)

Boyer–Moore string search algorithm
It was presented at the same time

It is used in the GREP function for pattern matching in UNIX
Actually is the basic algorithm to beat when doing research in this area!!!

Richard Cole (Circa 1991)
He gave a a proof of the algorithm with an upper bound of 3m
comparisons in the worst case!!!
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Exercises

32.1-1
32.1-2
32.1-4
32.2-1
32.2-2
32.2-3
32.2-4
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