String Matching

October 15, 2014

1 Introduction

In many task as

- Search in text for specific patterns.
- Pattern sequence search in DNA
- Internet Search.

2 The Problem

Assume that the text is an array T[1..n] of length n, and the sought pattern is an array P[1..m] with $m \leq n$. The characters in the text and the pattern are drawn from a finite alphabet Σ . The arrays are often called strings of characters.

Now, we will say that P occurs with a *valid shift* s if for $0 \le s \le n-m$ and T[s+1..s+m] == P[1..m].

Otherwise, it is an invalid shift. Thus, the string-matching problem is the problem of of finding all valid shifts given a pattern P on a text T.

3 Notation

First, we have Σ^* as the set of all finite-length strings formed using characters from the alphabet Σ . In addition, we have the following definitions:

• The concatenation of two strings x and y is denoted by xy.

- A string w is a prefix of a string x, denoted $w \sqsubset x$, if x = wy for some string $y \in \Sigma^*$.
- A string w is a suffix of a string x, denoted $w \supseteq x$, if x = yw for some string $y \in \Sigma^*$.

This notation give rise to the Overlapping-suffix lemma

Lemma. Suppose that x, y, and z are strings such that $x \sqsupset z$ and $y \sqsupset z$.

- If $|x| \leq |y|$, then $x \Box y$.
- If $|y| \leq |x|$, then $y \supseteq x$.
- If |x| = |y|, then x=y.

4 The naive string-matching algorithm

The naive solution uses two inner loops

Algorithm 1 Naive Algorithm

NAIVE-STRING-MATCHER (T, P)1 n = T.length2 m = P.length3 for s = 0 to n - m4 if $P[1 \dots m] == T[s + 1 \dots s + m]$ 5 print "Pattern occurs with shift" s

The complexity is then $\Theta((n-m+1)m)$ which is $\Theta(n^2)$ if $m = \lfloor \frac{n}{2} \rfloor$. We need something better.

5 The Rabin-Karp algorithm

First, for explanatory purposes, assume $\Sigma = \{0, 1, 2, ..., 9\}$. Thus, each string of k consecutive characters is a k-length decimal number. Thus.

- p correspond the decimal number for pattern P[1..m].
- t_s denote decimal value of *m*-length substring T[s+1..s+m] for s=0,1,...,n-m.

Clearly $t_s = p$ if and only if T[s+1..s+m] = P[1..m], thus s is a valid shift. Now, think about this:

• If we can compute p in $\Theta(m)$.

• If we can compute all the t_s in $\Theta(n-m+1)$.

We have that $\Theta(m) + \Theta(n - m + 1) = \Theta(n)$.

For p, we can use Horner's rule

$$p = P[m] + 10 \left(P[m-1] + 10 \left(P[m-2] + \dots + 10 \left(P[2] + 10P[1] \right) \dots \right) \right).$$

Now, the first t_0 in time $\Theta(m)$.c:

$$t_{s+1} = 10 \left(t_s - 10^{m-1} T \left[s+1 \right] \right) + T \left[s+m+1 \right].$$

This makes the following:

- Subtracting from it $10^{m-1}T[s+1]$ removes the high-order digit from t_s .
- Multiplying the result by 10 shifts the number left by one digit position.
- Adding T[s+m+1] brings in the appropriate low-order digit.

What happens when the numbers are quite large? We can use our friend module to handle the situation i.e.

• Compute p and t_s values modulo a suitable modulus q.

It is possible to compute $p \mod q$ in $\Theta(m)$ time and all the $t_s \mod q$ in $\Theta(n-m+1)$ time. It is more, if we select q as a prime such that 10q fits in a computer word. In general, for a d-ary alphabet, we choose q such that dq fits within a computer word. Thus:

$$t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \mod q$$

where $h \equiv d^{m-1} \pmod{q}$ is the value of the digit "1" in the high-order position of an *m*-digit text window.

Although the solution is not perfect:

- If $t_s \equiv p \pmod{q}$ does not mean that $t_s = p$.
- If $t_s \neq p \pmod{q}$, we have that $t_s \neq p$.

To fix this problem we simply test to see if the hit is not spurious. The final algorithm can be seen in (Algorithm 2). The complexity is:

- 1. The algorithm takes $\Theta(m)$ preprocessing time.
- 2. Matching time is $\Theta((n-m+1)m)$ in the worst case.

We will not prove the complexity, but the expected matching time by Rabin-Karp algorithm is

$$O(n) + O\left(m\left(v + \frac{n}{q}\right)\right)$$

where v is the number of valid shifts, and since there are O(n) positions at which the test of line 10 fails and we spend O(m) time for each hit.

If v = O(1) (Number of valid shifts small) and choose $q \ge m$ such that $\frac{n}{q} = O(1)$ (q to larger enough than the pattern's length), then the algorithm takes O(m + n) for finding the matches. Finally, because $m \le n$, thus the expected time is O(n).

Algorithm	2	Rabin-Karp	Algorithm
-----------	----------	------------	-----------

RABIN-KARP-MATCHER (T, P, d, q)n = T.length1 m = P.length2 $h = d^{m-1} \bmod q$ 3 4 p = 05 $t_0 = 0$ 6 for i = 1 to m// preprocessing 7 $p = (dp + P[i]) \mod q$ 8 $t_0 = (dt_0 + T[i]) \mod q$ 9 for s = 0 to n - m// matching if $p == t_s$ 10 11 **if** P[1...m] == T[s + 1...s + m]print "Pattern occurs with shift" s 12 **if** s < n - m13 $t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \mod q$ 14