String Matching

October 15, 2014

1 Introduction

In many task as

- Search in text for specific patterns.
- Pattern sequence search in DNA
- Internet Search.

2 The Problem

Assume that the text is an array $T[1 . . n]$ of length n, and the sought pattern is an array $P[1 . . m]$ with $m \leq n$. The characters in the text and the pattern are drawn from a finite alphabet Σ. The arrays are often called strings of characters.

Now, we will say that P occurs with a valid shift s if for $0 \leq s \leq n-m$ and $T[s+1 . . s+m]==$ $P[1 . . m]$.

Figure 1: Valid Shift
Otherwise, it is an invalid shift. Thus, the string-matching problem is the problem of of finding all valid shifts given a patten P on a text T.

3 Notation

First, we have Σ^{*} as the set of all finite-length strings formed using characters from the alphabet Σ. In addition, we have the following definitions:

- The concatenation of two strings x and y is denoted by $x y$.
- A string w is a prefix of a string x, denoted $w \sqsubset x$, if $x=w y$ for some string $y \in \Sigma^{*}$.
- A string w is a suffix of a string x, denoted $w \sqsupset x$, if $x=y w$ for some string $y \in \Sigma^{*}$.

This notation give rise to the Overlapping-suffix lemma
Lemma. Suppose that x, y, and z are strings such that $x \sqsupset z$ and $y \sqsupset z$.

- If $|x| \leq|y|$, then $x \sqsupset y$.
- If $|y| \leq|x|$, then $y \sqsupset x$.
- If $|x|=|y|$, then $x=y$.

4 The naive string-matching algorithm

The naive solution uses two inner loops

```
Algorithm 1 Naive Algorithm
    Naive-String-Matcher \((T, P)\)
    \(1 n=\) T.length
    \(2 m=P\).length
    3 for \(s=0\) to \(n-m\)
    4 if \(P[1 \ldots m]==T[s+1 \ldots s+m]\)
    5
    print "Pattern occurs with shift" \(s\)
```

The complexity is then $\Theta((n-m+1) m)$ which is $\Theta\left(n^{2}\right)$ if $m=\left\lfloor\frac{n}{2}\right\rfloor$. We need something better.

5 The Rabin-Karp algorithm

First, for explanatory purposes, assume $\Sigma=\{0,1,2, \ldots, 9\}$. Thus, each string of k consecutive characters is a k-length decimal number. Thus.

- p correspond the decimal number for pattern $P[1 . . m]$.
- t_{s} denote decimal value of m-length substring $T[s+1 . . s+m]$ for $s=0,1, \ldots, n-m$.

Clearly $t_{s}=p$ if and only if $T[s+1 . . s+m]=P[1 . . m]$, thus s is a valid shift. Now, think about this:

- If we can compute p in $\Theta(m)$.
- If we can compute all the t_{s} in $\Theta(n-m+1)$.

We have that $\Theta(m)+\Theta(n-m+1)=\Theta(n)$.
For p, we can use Horner's rule

$$
p=P[m]+10(P[m-1]+10(P[m-2]+\ldots+10(P[2]+10 P[1]) \ldots))
$$

Now, the first t_{0} in time $\Theta(m)$.c:

$$
t_{s+1}=10\left(t_{s}-10^{m-1} T[s+1]\right)+T[s+m+1] .
$$

This makes the following:

- Subtracting from it $10^{m-1} T[s+1]$ removes the high-order digit from t_{s}.
- Multiplying the result by 10 shifts the number left by one digit position.
- Adding $T[s+m+1]$ brings in the appropriate low-order digit.

What happens when the numbers are quite large? We can use our friend module to handle the situation i.e.

- Compute p and t_{s} values modulo a suitable modulus q.

It is possible to compute $p \bmod q$ in $\Theta(m)$ time and all the $t_{s} \bmod q$ in $\Theta(n-m+1)$ time. It is more, if we select q as a prime such that $10 q$ fits in a computer word. In general, for a d-ary alphabet, we choose q such that $d q$ fits within a computer word. Thus:

$$
t_{s+1}=\left(d\left(t_{s}-T[s+1] h\right)+T[s+m+1]\right) \quad \bmod q
$$

where $h \equiv d^{m-1}(\bmod q)$ is the value of the digit " 1 " in the high-order position of an m-digit text window.

Although the solution is not perfect:

- If $t_{s} \equiv p(\bmod q)$ does not mean that $t_{s}=p$.
- If $t_{s} \neq p(\bmod q)$, we have that $t_{s} \neq p$.

To fix this problem we simply test to see if the hit is not spurious. The final algorithm can be seen in (Algorithm 2). The complexity is:

1. The algorithm takes $\Theta(m)$ preprocessing time.
2. Matching time is $\Theta((n-m+1) m)$ in the worst case.

We will not prove the complexity, but the expected matching time by Rabin-Karp algorithm is

$$
O(n)+O\left(m\left(v+\frac{n}{q}\right)\right)
$$

where v is the number of valid shifts, and since there are $O(n)$ positions at which the test of line 10 fails and we spend $O(m)$ time for each hit.

If $v=O(1)$ (Number of valid shifts small) and choose $q \geq m$ such that $\frac{n}{q}=O(1)$ (q to larger enough than the pattern's length), then the algorithm takes $O(m+n)$ for finding the matches. Finally, because $m \leq n$, thus the expected time is $O(n)$.

```
Algorithm 2 Rabin-Karp Algorithm
    Rabin-Karp-Matcher \((T, P, d, q)\)
    \(n=\) T.length
    \(m=P\).length
    \(h=d^{m-1} \bmod q\)
    \(p=0\)
    \(t_{0}=0\)
    for \(i=1\) to \(m \quad / /\) preprocessing
        \(p=(d p+P[i]) \bmod q\)
        \(t_{0}=\left(d t_{0}+T[i]\right) \bmod q\)
    for \(s=0\) to \(n-m \quad / /\) matching
        if \(p=t_{s}\)
            if \(P[1 \ldots m]==T[s+1 \ldots s+m]\)
                print "Pattern occurs with shift" \(s\)
            if \(s<n-m\)
            \(t_{s+1}=\left(d\left(t_{s}-T[s+1] h\right)+T[s+m+1]\right) \bmod q\)
```

