
String Matching

October 15, 2014

1 Introduction
In many task as

• Search in text for specific patterns.

• Pattern sequence search in DNA

• Internet Search.

2 The Problem
Assume that the text is an array T [1..n] of length n, and the sought pattern is an array P [1..m]
with m ≤ n. The characters in the text and the pattern are drawn from a finite alphabet Σ. The
arrays are often called strings of characters.

Now, we will say that P occurs with a valid shift s if for 0 ≤ s ≤ n−m and T [s + 1..s + m] ==
P [1..m].

Figure 1: Valid Shift

Otherwise, it is an invalid shift. Thus, the string-matching problem is the problem of of finding
all valid shifts given a patten P on a text T .

3 Notation
First, we have Σ∗ as the set of all finite-length strings formed using characters from the alphabet
Σ. In addition, we have the following definitions:

• The concatenation of two strings x and y is denoted by xy.

1

• A string w is a prefix of a string x, denoted w @ x, if x = wy for some string y ∈ Σ∗.

• A string w is a suffix of a string x, denoted w A x, if x = yw for some string y ∈ Σ∗.

This notation give rise to the Overlapping-suffix lemma

Lemma. Suppose that x, y, and z are strings such that x A z and y A z.

• If |x| ≤ |y|, then x A y.

• If |y| ≤ |x|, then y A x.

• If |x| = |y|, then x=y.

4 The naive string-matching algorithm
The naive solution uses two inner loops

Algorithm 1 Naive Algorithm

The complexity is then Θ ((n−m + 1) m)which is Θ
(
n2)

if m =
⌊

n
2

⌋
. We need something

better.

5 The Rabin-Karp algorithm
First, for explanatory purposes, assume Σ = {0, 1, 2, ..., 9}. Thus, each string of k consecutive
characters is a k-length decimal number. Thus.

• p correspond the decimal number for pattern P [1..m].

• ts denote decimal value of m-length substring T [s + 1..s + m] for s = 0, 1, ..., n−m.

Clearly ts = p if and only if T [s + 1..s + m] = P [1..m], thus s is a valid shift. Now, think about
this:

• If we can compute p in Θ (m).

2

• If we can compute all the ts in Θ (n−m + 1).

We have that Θ (m) + Θ (n−m + 1) = Θ (n).
For p, we can use Horner’s rule

p = P [m] + 10 (P [m− 1] + 10 (P [m− 2] + ... + 10 (P [2] + 10P [1]) ...)) .

Now, the first t0 in time Θ (m).c:

ts+1 = 10
(
ts − 10m−1T [s + 1]

)
+ T [s + m + 1] .

This makes the following:

• Subtracting from it 10m−1T [s + 1] removes the high-order digit from ts.

• Multiplying the result by 10 shifts the number left by one digit position.

• Adding T [s + m + 1] brings in the appropriate low-order digit.

What happens when the numbers are quite large? We can use our friend module to handle the
situation i.e.

• Compute p and ts values modulo a suitable modulus q.

It is possible to compute p mod q in Θ (m) time and all the ts mod q in Θ (n−m + 1) time. It
is more, if we select q as a prime such that 10q fits in a computer word. In general, for a d-ary
alphabet, we choose q such that dq fits within a computer word. Thus:

ts+1 = (d (ts − T [s + 1] h) + T [s + m + 1]) mod q

where h ≡ dm−1(mod q) is the value of the digit “1” in the high-order position of an m-digit
text window.

Although the solution is not perfect:

• If ts ≡ p (mod q) does not mean that ts = p.

• If ts 6= p (mod q), we have that ts 6= p.

To fix this problem we simply test to see if the hit is not spurious. The final algorithm can be seen
in (Algorithm 2). The complexity is:

1. The algorithm takes Θ (m) preprocessing time.

2. Matching time is Θ ((n−m + 1) m) in the worst case.

We will not prove the complexity, but the expected matching time by Rabin-Karp algorithm is

O(n) + O

(
m

(
v + n

q

))
where v is the number of valid shifts, and since there are O(n) positions at which the test of

line 10 fails and we spend O (m) time for each hit.

3

If v = O(1) (Number of valid shifts small) and choose q ≥ m such that n
q = O(1) (q to larger

enough than the pattern’s length), then the algorithm takes O(m + n) for finding the matches.
Finally, because m ≤ n, thus the expected time is O(n).

Algorithm 2 Rabin-Karp Algorithm

4

