
Multithreaded Algorithms

November 27, 2013

1 Introduction
In the commodity hardware of today, it is possible to find multiple cores per processor. An extension
of these types of hardware is the Symmetric Multi-Processor (SMP) systems, which are quite
popular now days in many commodity systems. Thus, it makes sense to extend our serial single
threaded algorithms to be able to handle multiple threads. In addition, the centralized nature of
the SMP’s memories can simplify a lot the design of the multithreaded algorithms.

2 Dynamic Multithreading Programming
A common way of programming multiprocessor systems is by the use of threads, in our specific
case the dynamic multithreading model. This model allows programmers to specify parallelism in
applications without worrying about handling all the resources:

• Schedules

• Memory

• Etc

3 Greedy Scheduler Theorems and Corollaries
Theorem 1. Theorem 27.1

On an ideal parallel computer with P processors, a greedy scheduler executes a multithreaded
computation with work T1 and span T∞ in time

TP ≤ T1

P
+ T∞. (1)

Proof. First, the equation (Eq. 1) correspond to two parts

• The complete steps corresponding to T1
P .

• The incomplete steps corresponding to T∞ i.e. the span because of the necessary serialization.

In addition we have that TP =# of Complete Steps+ # of Incomplete Steps.
Thus, we have:

1



Case complete steps
Imagine the number of complete steps is larger than

⌊
T1
P

⌋
. Then, the total work done by the

complete steps is

P

(⌊
T1

P

⌋
+ 1

)
= P

⌊
T1

P

⌋
+ P

= T1 − (T1 mod P ) + P

> T1

This is because (Eq. 3.8) and (Inequality 3.9). This is not possible because the complete steps
are making more work the total work required, contradiction. Thus , # of Complete Steps≤ T1

P .

Case incomplete steps

Let G the DAG representing the entire computation, and assume that each strand takes unit
time. Let G′ be the subgraph of G that has yet to be executed before an incomplete step, and let
G′′ be the subgraph remaining to be executed after the incomplete step. The strands that can be
run in the incomplete step are the ones that have an in-degree from other strand equal to zero. This
are the ones to be executed by the greedy scheduler. Then the length of the longest critical path
in G′′ must be 1 less that the length on the longest path in G′. Hence, the number of incomplete
steps is at most T∞. Thus

TP =# of Complete Steps+ # of Incomplete Steps ≤ T1
P + T∞

Corollary 2. Corollary 27.2
The running time TP of any multithreaded computation scheduled by a greedy scheduler on an

ideal parallel computer with P processors is within a factor of 2 of optimal.

Proof. Let T ∗P be the running time produced by an optimal scheduler on a machine with P proces-
sors, and let T1 and T∞ be the work and span of the computation, respectively. We have, because
the work and the span laws, max

{
T1
P , T∞

}
≤ T ∗P . Thus

TP ≤ T1

P
+ T∞

≤ 2 × max
{

T1

P
, T∞

}
≤ 2 × T ∗P

Corollary 3. Corollary 27.3
Let TP be the running time of a multithreaded computation produced by a greedy scheduler on

an ideal parallel computer with P processors, and let T1 and T∞ be the work and span of the
computation, respectively. Then, if P � T1

T∞
, we have TP ≈ T1

P , or equivalently, a speedup of
approximately P .

2



Proof. If we suppose that P � T1
T∞

, then we also have T∞ � T1
P , and hence we have that TP ≤

T1
P + T∞ ≈ T1

P . In addition, the work law says that T1
P ≤ TP , we conclude that TP ≈ T1

P or
P ≈ T1

TP

3


