Analysis of Algorithms
 Multi-threaded Algorithms

Andres Mendez-Vazquez

April 15, 2016

Outline

(1) Introduction

- Why Multi-Threaded Algorithms?
(2) Model To Be Used
- Symmetric Multiprocessor
- Operations
- Example
(3) Computation DAG
- Introduction

4) Performance Measures

- Introduction
- Running Time Classification
(5) Parallel Laws
- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue
(6) Examples
- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort
(7) Exercises
- Some Exercises you can try!!!

Outline

(1) Introduction

- Why Multi-Threaded Algorithms?
(2) Model To Be Used
- Symmetric Multiprocessor
- Operations
- Example
(3) Computation DAG
- Introduction
(4) Performance Measures
- Introduction
- Running Time Classification
(5) Parallel Laws
- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

6) Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort
(7) Exercises

Multi-Threaded Algorithms

Motivation

- Until now, our serial algorithms are quite suitable for running on a single processor system.

Multi-Threaded Algorithms

Motivation

- Until now, our serial algorithms are quite suitable for running on a single processor system.
- However, multiprocessor algorithms are ubiquitous:
- Therefore, extending our serial models to a parallel computation model is a must.

Multi-Threaded Algorithms

Motivation

- Until now, our serial algorithms are quite suitable for running on a single processor system.
- However, multiprocessor algorithms are ubiquitous:
- Therefore, extending our serial models to a parallel computation model is a must.

Computational Model

- There exist many competing models of parallel computation that are essentially different:

Multi-Threaded Algorithms

Motivation

- Until now, our serial algorithms are quite suitable for running on a single processor system.
- However, multiprocessor algorithms are ubiquitous:
- Therefore, extending our serial models to a parallel computation model is a must.

Computational Model

- There exist many competing models of parallel computation that are essentially different:
- Shared Memory

Multi-Threaded Algorithms

Motivation

- Until now, our serial algorithms are quite suitable for running on a single processor system.
- However, multiprocessor algorithms are ubiquitous:
- Therefore, extending our serial models to a parallel computation model is a must.

Computational Model

- There exist many competing models of parallel computation that are essentially different:
- Shared Memory
- Message Passing

Multi-Threaded Algorithms

Motivation

- Until now, our serial algorithms are quite suitable for running on a single processor system.
- However, multiprocessor algorithms are ubiquitous:
- Therefore, extending our serial models to a parallel computation model is a must.

Computational Model

- There exist many competing models of parallel computation that are essentially different:
- Shared Memory
- Message Passing
- Etc.

Outline

Introduction

- Why Multi-Threaded Algorithms?
(2) Model To Be Used
- Symmetric Multiprocessor
- Operations
- Example
(3. Computation DAG
- Introduction

4) Performance Measures

- Introduction
- Running Time Classification
(5) Parallel Laws
- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

6. Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort
(7) Exercises

The Model to Be Used

Symmetric Multiprocessor

The model that we will use is the Symmetric Multiprocessor (SMP) where a shared memory exists.

Dynamic Multi-Threading

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.

Dynamic Multi-Threading

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:

Dynamic Multi-Threading

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:
- Schedules

Dynamic Multi-Threading

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:
- Schedules
- Memory

Dynamic Multi-Threading

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:
- Schedules
- Memory
- Etc

Dynamic Multi-Threading

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:
- Schedules
- Memory
- Etc

Dynamic Multi-Threading

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:
- Schedules
- Memory
- Etc
- It is Called Dynamic Multi-threading.

Dynamic Multi-Threading

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:
- Schedules
- Memory
- Etc
- It is Called Dynamic Multi-threading.

Dynamic Multi-Threading Computing Operations

- Spawn

Dynamic Multi-Threading

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:
- Schedules
- Memory
- Etc
- It is Called Dynamic Multi-threading.

Dynamic Multi-Threading Computing Operations

- Spawn
- Sync

Dynamic Multi-Threading

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:
- Schedules
- Memory
- Etc
- It is Called Dynamic Multi-threading.

Dynamic Multi-Threading Computing Operations

- Spawn
- Sync
- Parallel

Outline

Introduction

- Why Multi-Threaded Algorithms?
(2) Model To Be Used
- Symmetric Multiprocessor
- Operations
- Example
(3) Computation DAG
- Introduction
(4) Performance Measures
- Introduction
- Running Time Classification
(5) Parallel Laws
- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue
(3) Examples
- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort
(7) Exercises

SPAWN

SPAWN

When called before a procedure, the parent procedure may continue to execute in parallel.

SPAWN

SPAWN

When called before a procedure, the parent procedure may continue to execute in parallel.

Note

- The keyword spawn does not say anything about concurrent execution, but it can happen.

SPAWN

SPAWN

When called before a procedure, the parent procedure may continue to execute in parallel.

Note

- The keyword spawn does not say anything about concurrent execution, but it can happen.
- The Scheduler decide which computations should run concurrently.

SYNC AND PARALLEL

SYNC

The keyword sync indicates that the procedure must wait for all its spawned children to complete.

SYNC AND PARALLEL

SYNC

The keyword sync indicates that the procedure must wait for all its spawned children to complete.

PARALLEL

This operation applies to loops, which make possible to execute the body of the loop in parallel.

Outline

Introduction
－Why Multi－Threaded Algorithms？
（2）Model To Be Used
－Symmetric Multiprocessor
－Operations
－Example
（3）Computation DAG
－Introduction
（4）Performance Measures
－Introduction
－Running Time Classification
（5）Parallel Laws
－Work and Span Laws
－Speedup and Parallelism
－Greedy Scheduler
－Scheduling Rises the Following Issue
6．Examples
－Parallel Fibonacci
－Matrix Multiplication
－Parallel Merge－Sort
7 Exercises

A Classic Parallel Piece of Code: Fibonacci Numbers

Fibonacci's Definition

- $F_{0}=0$
- $F_{1}=1$
- $F_{i}=F_{i-1}+F_{i-2}$ for $i>1$.

A Classic Parallel Piece of Code: Fibonacci Numbers

Fibonacci's Definition

- $F_{0}=0$
- $F_{1}=1$
- $F_{i}=F_{i-1}+F_{i-2}$ for $i>1$.

Naive Algorithm

Fibonacci(n)
(1) if $n \leq 1$ then
(2) return n
(3) else $x=$ Fibonacci $(n-1)$
(9) $\quad y=$ Fibonacci $(n-2)$
(6) return $x+y$

Time Complexity

Recursion and Complexity

- Recursion $T(n)=T(n-1)+T(n-2)+\Theta(1)$.

Time Complexity

Recursion and Complexity

- Recursion $T(n)=T(n-1)+T(n-2)+\Theta(1)$.
- Complexity $T(n)=\Theta\left(F_{n}\right)=\Theta\left(\phi^{n}\right), \phi=\frac{1+\sqrt{5}}{2}$.

There is a Better Way

We can order the first tree numbers in the sequence as

$$
\left(\begin{array}{ll}
F_{2} & F_{1} \\
F_{1} & F_{0}
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

There is a Better Way
We can order the first tree numbers in the sequence as

$$
\left(\begin{array}{ll}
F_{2} & F_{1} \\
F_{1} & F_{0}
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Then

$$
\begin{aligned}
\left(\begin{array}{ll}
F_{2} & F_{1} \\
F_{1} & F_{0}
\end{array}\right)\left(\begin{array}{ll}
F_{2} & F_{1} \\
F_{1} & F_{0}
\end{array}\right) & =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
F_{3} & F_{2} \\
F_{2} & F_{1}
\end{array}\right)
\end{aligned}
$$

There is a Better Way

Calculating in $O(\log n)$ when n is a power of 2

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n}=\left(\begin{array}{cc}
F(n+1) & F(n) \\
F(n) & F(n-1)
\end{array}\right)
$$

There is a Better Way

Calculating in $O(\log n)$ when n is a power of 2

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n}=\left(\begin{array}{cc}
F(n+1) & F(n) \\
F(n) & F(n-1)
\end{array}\right)
$$

Thus

$\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)^{\frac{n}{2}}\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)^{\frac{n}{2}}=\left(\begin{array}{cc}F\left(\frac{n}{2}+1\right) & F\left(\frac{n}{2}\right) \\ F\left(\frac{n}{2}\right) & F\left(\frac{n}{2}-1\right)\end{array}\right)\left(\begin{array}{cc}F\left(\frac{n}{2}+1\right) & F\left(\frac{n}{2}\right) \\ F\left(\frac{n}{2}\right) & F\left(\frac{n}{2}-1\right)\end{array}\right)$

However...
We will use the naive version to illustrate the principles of parallel programming.

The Concurrent Code

Parallel Algorithm

PFibonacci(n)
(1) if $n \leq 1$ then
c return n

The Concurrent Code

Parallel Algorithm

PFibonacci(n)
(1) if $n \leq 1$ then
(c) return n

- else $x=$ spawn Fibonacci $(n-1)$
- $y=$ Fibonacci $(n-2)$

The Concurrent Code

Parallel Algorithm

PFibonacci(n)
(1) if $n \leq 1$ then
(c) return n

- else $x=$ spawn Fibonacci $(n-1)$
- $\quad y=$ Fibonacci $(n-2)$
- sync
- return $x+y$

Outline

Introduction

- Why Multi-Threaded Algorithms?

2. Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example
(3) Computation DAG - Introduction
(4) Performance Measures
- Introduction
- Running Time Classification
(5) Parallel Laws
- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue
(3) Examples
- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort
(7) Exercises

How do we compute a complexity? Computation DAG

Definition

A directed acyclic $G=(V, E)$ graph where

How do we compute a complexity? Computation DAG

Definition

A directed acyclic $G=(V, E)$ graph where

- The vertices V are sets of instructions.

How do we compute a complexity? Computation DAG

Definition

A directed acyclic $G=(V, E)$ graph where

- The vertices V are sets of instructions.
- The edges E represent dependencies between sets of instructions i.e. (u, v) instruction u before v.

How do we compute a complexity? Computation DAG

Definition

A directed acyclic $G=(V, E)$ graph where

- The vertices V are sets of instructions.
- The edges E represent dependencies between sets of instructions i.e. (u, v) instruction u before v.

Notes

- A set of instructions without any parallel control are grouped in a strand.

How do we compute a complexity? Computation DAG

Definition

A directed acyclic $G=(V, E)$ graph where

- The vertices V are sets of instructions.
- The edges E represent dependencies between sets of instructions i.e. (u, v) instruction u before v.

Notes

- A set of instructions without any parallel control are grouped in a strand.
- Thus, V represents a set of strands and E represents dependencies between strands induced by parallel control.

How do we compute a complexity? Computation DAG

Definition

A directed acyclic $G=(V, E)$ graph where

- The vertices V are sets of instructions.
- The edges E represent dependencies between sets of instructions i.e. (u, v) instruction u before v.

Notes

- A set of instructions without any parallel control are grouped in a strand.
- Thus, V represents a set of strands and E represents dependencies between strands induced by parallel control.
- A strand of maximal length will be called a thread.

How do we compute a complexity? Computation DAG

Thus

- If there is an edge between thread u and v, then they are said to be (logically) in series.

How do we compute a complexity? Computation DAG

Thus

- If there is an edge between thread u and v, then they are said to be (logically) in series.
- If there is no edge, then they are said to be (logically) in parallel.

Example: PFibonacci(4)

Example

Edge Classification

Continuation Edge
A continuation edge (u, v) connects a thread u to its successor v within the same procedure instance.

Edge Classification

Continuation Edge

A continuation edge (u, v) connects a thread u to its successor v within the same procedure instance.

Spawned Edge

When a thread u spawns a new thread v, then (u, v) is called a spawned edge.

Edge Classification

Continuation Edge

A continuation edge (u, v) connects a thread u to its successor v within the same procedure instance.

Spawned Edge

When a thread u spawns a new thread v, then (u, v) is called a spawned edge.

Call Edges

Call edges represent normal procedure call.

Edge Classification

Continuation Edge

A continuation edge (u, v) connects a thread u to its successor v within the same procedure instance.

Spawned Edge

When a thread u spawns a new thread v, then (u, v) is called a spawned edge.

Call Edges

Call edges represent normal procedure call.

Return Edge

Return edge signals when a thread v returns to its calling procedure.

Example: PFibonacci(4)

The Different Edges

Cinvestav

Outline

Introduction
－Why Multi－Threaded Algorithms？
2．Model To Be Used
－Symmetric Multiprocessor
－Operations
－Example
（3）Computation DAG
－Introduction
4）Performance Measures
－Introduction
－Running Time Classification
（5）Parallel Laws
－Work and Span Laws
－Speedup and Parallelism
－Greedy Scheduler
－Scheduling Rises the Following Issue
6）Examples
－Parallel Fibonacci
－Matrix Multiplication
－Parallel Merge－Sort
（7）Exercises

Performance Measures

WORK

The work of a multi-threaded computation is the total time to execute the entire computation on one processor.

$$
\text { Work }=\sum_{i \in I} \text { Time }\left(\text { Thread }_{i}\right)
$$

Performance Measures

WORK

The work of a multi-threaded computation is the total time to execute the entire computation on one processor.

$$
\text { Work }=\sum_{i \in I} \text { Time }\left(\text { Thread }_{i}\right)
$$

SPAN

The span is the longest time to execute the strands along any path of the DAG.

- In a DAG which each strand takes unit time, the span equals the number of vertices on a longest or critical path in the DAG.

Example: PFibonacci(4)

Example

Example

Example

- In Fibonacci(4), we have

Example

Example

- In Fibonacci(4), we have
- 17 threads.

Example

Example

- In Fibonacci(4), we have
- 17 threads.
- 8 vertices in the longest path

Example

Example

- In Fibonacci(4), we have
- 17 threads.
- 8 vertices in the longest path

We have that

- Assuming unit time

Example

Example

- In Fibonacci(4), we have
- 17 threads.
- 8 vertices in the longest path

We have that

- Assuming unit time
- WORK=17 time units

Example

Example

- In Fibonacci(4), we have
- 17 threads.
- 8 vertices in the longest path

We have that

- Assuming unit time
- WORK=17 time units
- SPAN=8 time units

Example

Example

- In Fibonacci(4), we have
- 17 threads.
- 8 vertices in the longest path

We have that

- Assuming unit time
- WORK=17 time units
- SPAN=8 time units

Note

- Running time not only depends on work and span but

Example

Example

- In Fibonacci(4), we have
- 17 threads.
- 8 vertices in the longest path

We have that

- Assuming unit time
- WORK=17 time units
- SPAN=8 time units

Note

- Running time not only depends on work and span but
- Available Cores

Example

Example

- In Fibonacci(4), we have
- 17 threads.
- 8 vertices in the longest path

We have that

- Assuming unit time
- WORK=17 time units
- SPAN=8 time units

Note

- Running time not only depends on work and span but
- Available Cores
- Scheduler Policies

Outline

Introduction

- Why Multi-Threaded Algorithms?

2. Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example
(3) Computation DAG
- Introduction

4 Performance Measures

- Introduction
- Running Time Classification
(5) Parallel Laws
- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue
(6) Examples
- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort
(7) Exercises

Running Time Classification

Single Processor

- T_{1} running time on a single processor.

Running Time Classification

Single Processor

- T_{1} running time on a single processor.

Multiple Processors

- T_{p} running time on P processors.

Running Time Classification

Single Processor

- T_{1} running time on a single processor.

Multiple Processors

- T_{p} running time on P processors.

Unlimited Processors

- T_{∞} running time on unlimited processors, also called the span, if we run each strand on its own processor.

Outline

Introduction

- Why Multi-Threaded Algorithms?

2. Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example
(3) Computation DAG
- Introduction
(4) Performance Measures
- Introduction
- Running Time Classification

5 Parallel Laws

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

6) Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort
(7) Exercises

Work Law

Definition

- In one step, an ideal parallel computer with P processors can do:

Work Law

Definition

- In one step, an ideal parallel computer with P processors can do:
- At most P units of work.

Work Law

Definition

- In one step, an ideal parallel computer with P processors can do:
- At most P units of work.
- Thus in T_{P} time, it can perform at most $P T_{P}$ work.

Work Law

Definition

- In one step, an ideal parallel computer with P processors can do:
- At most P units of work.
- Thus in T_{P} time, it can perform at most $P T_{P}$ work.

$$
P T_{P} \geq T_{1} \Longrightarrow T_{p} \geq \frac{T_{1}}{P}
$$

Span Law

Definition

- A P-processor ideal parallel computer cannot run faster than a machine with unlimited number of processors.

Span Law

Definition

- A P-processor ideal parallel computer cannot run faster than a machine with unlimited number of processors.
- However, a computer with unlimited number of processors can emulate a P-processor machine by using simply P of its processors. Therefore,

$$
T_{P} \geq T_{\infty}
$$

Work Calculations: Serial

Serial Computations

Work Calculations: Serial

Serial Computations

Note

- Work: $T_{1}(A \cup B)=T_{1}(A)+T_{1}(B)$.

Work Calculations: Serial

Serial Computations

Note

- Work: $T_{1}(A \cup B)=T_{1}(A)+T_{1}(B)$.
- Span: $T_{\infty}(A \cup B)=T_{\infty}(A)+T_{\infty}(B)$.

Work Calculations: Parallel

Parallel Computations

Work Calculations: Parallel

Parallel Computations

Note

- Work: $T_{1}(A \cup B)=T_{1}(A)+T_{1}(B)$.

Work Calculations: Parallel

Parallel Computations

Note

- Work: $T_{1}(A \cup B)=T_{1}(A)+T_{1}(B)$.
- Span: $T_{\infty}(A \cup B)=\max \left\{T_{\infty}(A), T_{\infty}(B)\right\}$.

Outline

Introduction

- Why Multi-Threaded Algorithms?

2. Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example
(3) Computation DAG
- Introduction
(4) Performance Measures
- Introduction
- Running Time Classification
(5) Parallel Laws
- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue
(3) Examples
- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort
(7) Exercises

Speedup and Parallelism

Speed up

- The speed up of a computation on P processors is defined as $\frac{T_{1}}{T_{P}}$.

Speedup and Parallelism

Speed up

- The speed up of a computation on P processors is defined as $\frac{T_{1}}{T_{P}}$.
- Then, by work law $\frac{T_{1}}{T_{P}} \leq P$. Thus, the speedup on P processors can be at most P.

Speedup and Parallelism

Speed up

- The speed up of a computation on P processors is defined as $\frac{T_{1}}{T_{P}}$.
- Then, by work law $\frac{T_{1}}{T_{P}} \leq P$. Thus, the speedup on P processors can be at most P.

Notes

- Linear Speedup when $\frac{T_{1}}{T_{P}}=\Theta(P)$.

Speedup and Parallelism

Speed up

- The speed up of a computation on P processors is defined as $\frac{T_{1}}{T_{P}}$.
- Then, by work law $\frac{T_{1}}{T_{P}} \leq P$. Thus, the speedup on P processors can be at most P.

Notes

- Linear Speedup when $\frac{T_{1}}{T_{P}}=\Theta(P)$.
- Perfect Linear Speedup when $\frac{T_{1}}{T_{P}}=P$.

Speedup and Parallelism

Speed up

- The speed up of a computation on P processors is defined as $\frac{T_{1}}{T_{P}}$.
- Then, by work law $\frac{T_{1}}{T_{P}} \leq P$. Thus, the speedup on P processors can be at most P.

Notes

- Linear Speedup when $\frac{T_{1}}{T_{P}}=\Theta(P)$.
- Perfect Linear Speedup when $\frac{T_{1}}{T_{P}}=P$.

Parallelism

- The parallelism of a computation on P processors is defined as $\frac{T_{1}}{T_{\infty}}$.

Speedup and Parallelism

Speed up

- The speed up of a computation on P processors is defined as $\frac{T_{1}}{T_{P}}$.
- Then, by work law $\frac{T_{1}}{T_{P}} \leq P$. Thus, the speedup on P processors can be at most P.

Notes

- Linear Speedup when $\frac{T_{1}}{T_{P}}=\Theta(P)$.
- Perfect Linear Speedup when $\frac{T_{1}}{T_{P}}=P$.

Parallelism

- The parallelism of a computation on P processors is defined as $\frac{T_{1}}{T_{\infty}}$.
- In specific, we are looking to have a lot of parallelism.

Speedup and Parallelism

Speed up

- The speed up of a computation on P processors is defined as $\frac{T_{1}}{T_{P}}$.
- Then, by work law $\frac{T_{1}}{T_{P}} \leq P$. Thus, the speedup on P processors can be at most P.

Notes

- Linear Speedup when $\frac{T_{1}}{T_{P}}=\Theta(P)$.
- Perfect Linear Speedup when $\frac{T_{1}}{T_{P}}=P$.

Parallelism

- The parallelism of a computation on P processors is defined as $\frac{T_{1}}{T_{\infty}}$.
- In specific, we are looking to have a lot of parallelism.
- This changes from Algorithm to Algorithm.

Outline

Introduction
－Why Multi－Threaded Algorithms？
2．Model To Be Used
－Symmetric Multiprocessor
－Operations
－Example
（3）Computation DAG
－Introduction
4．Performance Measures
－Introduction
－Running Time Classification
（5）Parallel Laws
－Work and Span Laws
－Speedup and Parallelism
－Greedy Scheduler
－Scheduling Rises the Following Issue
6 Examples
－Parallel Fibonacci
－Matrix Multiplication
－Parallel Merge－Sort
3 Exercises

Greedy Scheduler

Definition

- A greedy scheduler assigns as many strands to processors as possible in each time step.

Greedy Scheduler

Definition

- A greedy scheduler assigns as many strands to processors as possible in each time step.

Note

- On P processors, if at least P strands are ready to execute during a time step, then we say that the step is a complete step.

Greedy Scheduler

Definition

- A greedy scheduler assigns as many strands to processors as possible in each time step.

Note

- On P processors, if at least P strands are ready to execute during a time step, then we say that the step is a complete step.
- Otherwise we say that it is an incomplete step.

Greedy Scheduler

Definition

- A greedy scheduler assigns as many strands to processors as possible in each time step.

Note

- On P processors, if at least P strands are ready to execute during a time step, then we say that the step is a complete step.
- Otherwise we say that it is an incomplete step.
- This changes from Algorithm to Algorithm.

Greedy Scheduler Theorem and Corollaries

Theorem 27.1

On an ideal parallel computer with P processors, a greedy scheduler executes a multi-threaded computation with work T_{1} and span T_{∞} in time $T_{P} \leq \frac{T_{1}}{P}+T_{\infty}$.

Greedy Scheduler Theorem and Corollaries

Theorem 27.1

On an ideal parallel computer with P processors, a greedy scheduler executes a multi-threaded computation with work T_{1} and span T_{∞} in time $T_{P} \leq \frac{T_{1}}{P}+T_{\infty}$.

Corollary 27.2

The running time T_{P} of any multi-threaded computation scheduled by a greedy scheduler on an ideal parallel computer with P processors is within a factor of 2 of optimal.

Greedy Scheduler Theorem and Corollaries

Theorem 27.1

On an ideal parallel computer with P processors, a greedy scheduler executes a multi-threaded computation with work T_{1} and span T_{∞} in time $T_{P} \leq \frac{T_{1}}{P}+T_{\infty}$.

Corollary 27.2

The running time T_{P} of any multi-threaded computation scheduled by a greedy scheduler on an ideal parallel computer with P processors is within a factor of 2 of optimal.

Corollary 27.3

Let T_{P} be the running time of a multi-threaded computation produced by a greedy scheduler on an ideal parallel computer with P processors, and let T_{1} and T_{∞} be the work and span of the computation, respectively. Then, if $P \ll \frac{T_{1}}{T_{\infty}}$ (Much Less), we have $T_{P} \approx \frac{T_{1}}{P}$, or equivalently, a speedup of approximately P.

Outline

Introduction

- Why Multi-Threaded Algorithms?

2 Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example
(3) Computation DAG
- Introduction
(4) Performance Measures
- Introduction
- Running Time Classification
(5) Parallel Laws
- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

6. Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort
(7) Exercises

Race Conditions

Determinacy Race

A determinacy race occurs when two logically parallel instructions access the same memory location and at least one of the instructions performs a write.

Race Conditions

Determinacy Race

A determinacy race occurs when two logically parallel instructions access the same memory location and at least one of the instructions performs a write.

Example
Race-Example()
(1)

$$
x=0
$$

(2)
parallel for $i=1$ to 3 do
©

$$
x=x+1
$$

(9) print x

Example

Determinacy Race Example

step	x	r_{1}	r_{2}	r_{3}
1	0			
2	0	0		
3	0	1		
4	0	1	0	
5	0	1	0	0
6	0	1	0	1
7	0	1	1	1
8	1	1	1	1
9	1	1	1	1
10	1	1	1	1

Example

NOTE

Although, this is of great importance is beyond the scope of this class:

Example

NOTE

Although, this is of great importance is beyond the scope of this class:

- For More about this topic, we have:

Example

NOTE

Although, this is of great importance is beyond the scope of this class:

- For More about this topic, we have:
- Maurice Herlihy and Nir Shavit, "The Art of Multiprocessor Programming," Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

Example

NOTE

Although, this is of great importance is beyond the scope of this class:

- For More about this topic, we have:
- Maurice Herlihy and Nir Shavit, "The Art of Multiprocessor Programming," Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.
- Andrew S. Tanenbaum, "Modern Operating Systems" (3rd ed.). Prentice Hall Press, Upper Saddle River, NJ, USA, 2007.

Outline

Introduction

- Why Multi-Threaded Algorithms?

2 Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example
(3) Computation DAG
- Introduction

4 Performance Measures

- Introduction
- Running Time Classification

5. Parallel Laws

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue
(6) Examples
- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort

7 Exercises

Example of Complexity: PFibonacci

Complexity

$$
T_{\infty}(n)=\max \left\{T_{\infty}(n-1), T_{\infty}(n-2)\right\}+\Theta(1)
$$

Example of Complexity: PFibonacci

Complexity

$$
T_{\infty}(n)=\max \left\{T_{\infty}(n-1), T_{\infty}(n-2)\right\}+\Theta(1)
$$

Finally

$$
T_{\infty}(n)=T_{\infty}(n-1)+\Theta(1)=\Theta(n)
$$

Example of Complexity: PFibonacci

Complexity

$$
T_{\infty}(n)=\max \left\{T_{\infty}(n-1), T_{\infty}(n-2)\right\}+\Theta(1)
$$

Finally

$$
T_{\infty}(n)=T_{\infty}(n-1)+\Theta(1)=\Theta(n)
$$

Parallelism

$$
\frac{T_{1}(n)}{T_{\infty}(n)}=\Theta\left(\frac{\phi^{n}}{n}\right)
$$

Outline

Introduction

- Why Multi-Threaded Algorithms?

2. Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example
(3) Computation DAG
- Introduction

4. Performance Measures

- Introduction
- Running Time Classification

5) Parallel Laws

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

6) Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort
(7) Exercises

Matrix Multiplication

Trick

To multiply two $n \times n$ matrices, we perform 8 matrix multiplications of $\frac{n}{2} \times \frac{n}{2}$ matrices and one addition $n \times n$ of matrices.

Matrix Multiplication

Trick

To multiply two $n \times n$ matrices, we perform 8 matrix multiplications of $\frac{n}{2} \times \frac{n}{2}$ matrices and one addition $n \times n$ of matrices.

Idea

$$
\begin{gathered}
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right), C=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right) \\
C=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)=\ldots \\
\left(\begin{array}{ll}
A_{11} B_{11} & A_{11} B_{12} \\
A_{21} B_{11} & A_{21} B_{12}
\end{array}\right)+\left(\begin{array}{ll}
A_{12} B_{21} & A_{12} B_{22} \\
A_{22} B_{21} & A_{22} B_{22}
\end{array}\right)
\end{gathered}
$$

Any Idea to Parallelize the Code?

What do you think?
Did you notice the multiplications of sub-matrices?

Any Idea to Parallelize the Code?

What do you think?

Did you notice the multiplications of sub-matrices?

Then What?

We have for example $A_{11} B_{11}$ and $A_{12} B_{21}$!!!

Any Idea to Parallelize the Code?

What do you think?

Did you notice the multiplications of sub-matrices?

Then What?

We have for example $A_{11} B_{11}$ and $A_{12} B_{21}!!!$

We can do the following

$$
A_{11} B_{11}+A_{12} B_{21}
$$

The use of the recursion!!!

As always our friend!!!

$$
\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)
$$

$A_{11} \times B_{11} \quad A_{12} \times B_{21} \quad A_{11} \times B_{12} \quad A_{12} \times B_{22} \quad \cdots \quad A_{22} \times B_{22}$

Pseudo-code of Matrix-Multiply

Matrix - Multiply $(C, A, B, n) / /$ The result of $A \times B$ in C with n a power of 2 for simplicity
(1) if $(n==1)$
(2) $C[1,1]=A[1,1]+B[1,1]$

Pseudo-code of Matrix-Multiply

Matrix - Multiply $(C, A, B, n) / /$ The result of $A \times B$ in C with n a power of 2 for simplicity
(1) if $(n==1)$
(2) $C[1,1]=A[1,1]+B[1,1]$
(3) elseallocate a temporary matrix $T[1 \ldots n, 1 \ldots n]$
(5) partition A, B, C, T into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices

Pseudo-code of Matrix-Multiply

Matrix - Multiply $(C, A, B, n) / /$ The result of $A \times B$ in C with n a power of 2 for simplicity

(1) if $(n==1)$
(2)
$C[1,1]=A[1,1]+B[1,1]$
(3) else
(4) allocate a temporary matrix $T[1 \ldots n, 1 \ldots n]$
(5) partition A, B, C, T into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices
(6) spawn Matrix - Multiply $\left(C_{11}, A_{11}, B_{11}, n / 2\right)$
(1)

8
spawn Matrix - Multiply $\left(C_{12}, A_{11}, B_{12}, n / 2\right)$
spawn Matrix - Multiply $\left(C_{21}, A_{21}, B_{11}, n / 2\right)$
spawn Matrix - Multiply $\left(C_{22}, A_{21}, B_{12}, n / 2\right)$
spawn Matrix - Multiply $\left(T_{11}, A_{12}, B_{21}, n / 2\right)$
spawn Matrix - Multiply $\left(T_{12}, A_{12}, B_{21}, n / 2\right)$
spawn Matrix - Multiply $\left(T_{21}, A_{22}, B_{21}, n / 2\right)$
(B) Matrix - Multiply $\left(T_{22}, A_{22}, B_{22}, n / 2\right)$

Pseudo-code of Matrix-Multiply

Matrix - Multiply $(C, A, B, n) / /$ The result of $A \times B$ in C with n a power of 2 for simplicity

(1) if $(n==1)$
(2)
$C[1,1]=A[1,1]+B[1,1]$
(3) else
(4)
allocate a temporary matrix $T[1 \ldots n, 1 \ldots n]$
(5) partition A, B, C, T into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices
(6) spawn Matrix - Multiply $\left(C_{11}, A_{11}, B_{11}, n / 2\right)$
(1)

8
spawn Matrix - Multiply $\left(C_{12}, A_{11}, B_{12}, n / 2\right)$
spawn Matrix - Multiply $\left(C_{21}, A_{21}, B_{11}, n / 2\right)$
spawn Matrix - Multiply $\left(C_{22}, A_{21}, B_{12}, n / 2\right)$
spawn Matrix - Multiply $\left(T_{11}, A_{12}, B_{21}, n / 2\right)$
spawn Matrix - Multiply $\left(T_{12}, A_{12}, B_{21}, n / 2\right)$
spawn Matrix - Multiply $\left(T_{21}, A_{22}, B_{21}, n / 2\right)$
Matrix - Multiply $\left(T_{22}, A_{22}, B_{22}, n / 2\right)$
(14) sync

Pseudo-code of Matrix-Multiply

Matrix - Multiply $(C, A, B, n) / /$ The result of $A \times B$ in C with n a power of 2 for simplicity

(1) if $(n==1)$
(2)
$C[1,1]=A[1,1]+B[1,1]$
(3) else
(4)
allocate a temporary matrix $T[1 \ldots n, 1 \ldots n]$
(5) partition A, B, C, T into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices
(6) spawn Matrix - Multiply $\left(C_{11}, A_{11}, B_{11}, n / 2\right)$
spawn Matrix - Multiply $\left(C_{12}, A_{11}, B_{12}, n / 2\right)$
spawn Matrix - Multiply $\left(C_{21}, A_{21}, B_{11}, n / 2\right)$
spawn Matrix - Multiply $\left(C_{22}, A_{21}, B_{12}, n / 2\right)$
spawn Matrix - Multiply $\left(T_{11}, A_{12}, B_{21}, n / 2\right)$
spawn Matrix - Multiply $\left(T_{12}, A_{12}, B_{21}, n / 2\right)$
spawn Matrix - Multiply $\left(T_{21}, A_{22}, B_{21}, n / 2\right)$
Matrix - Multiply $\left(T_{22}, A_{22}, B_{22}, n / 2\right)$
(14) sync
(15) Matrix $-\operatorname{Add}(C, T, n)$

Explanation

Lines 1-2
Stops the recursion once you have only two numbers to multiply

Explanation

Lines 1-2

Stops the recursion once you have only two numbers to multiply

Line 4

Extra matrix for storing the second matrix in

$$
\left(\begin{array}{ll}
A_{11} B_{11} & A_{11} B_{12} \\
A_{21} B_{11} & A_{21} B_{12}
\end{array}\right)+\underbrace{\left(\begin{array}{ll}
A_{12} B_{21} & A_{12} B_{22} \\
A_{22} B_{21} & A_{22} B_{22}
\end{array}\right)}_{T}
$$

Explanation

Lines 1-2

Stops the recursion once you have only two numbers to multiply

Line 4

Extra matrix for storing the second matrix in

$$
\left(\begin{array}{ll}
A_{11} B_{11} & A_{11} B_{12} \\
A_{21} B_{11} & A_{21} B_{12}
\end{array}\right)+\underbrace{\left(\begin{array}{ll}
A_{12} B_{21} & A_{12} B_{22} \\
A_{22} B_{21} & A_{22} B_{22}
\end{array}\right)}_{T}
$$

Line 5

Do the desired partition!!!

Explanation

Lines 6 to 13
Calculating the products in

$$
\left(\begin{array}{ll}
A_{11} B_{11} & A_{11} B_{12} \\
A_{21} B_{11} & A_{21} B_{12}
\end{array}\right)+\left(\begin{array}{ll}
A_{12} B_{21} & A_{12} B_{22} \\
A_{22} B_{21} & A_{22} B_{22}
\end{array}\right)
$$

Using Recursion and Parallel Computations

Explanation

Lines 6 to 13

Calculating the products in

$$
\left(\begin{array}{ll}
A_{11} B_{11} & A_{11} B_{12} \\
A_{21} B_{11} & A_{21} B_{12}
\end{array}\right)+\left(\begin{array}{ll}
A_{12} B_{21} & A_{12} B_{22} \\
A_{22} B_{21} & A_{22} B_{22}
\end{array}\right)
$$

Using Recursion and Parallel Computations

Line 14

A barrier to wait until all the parallel computations are done!!!

Explanation

Lines 6 to 13

Calculating the products in

$$
\left(\begin{array}{ll}
A_{11} B_{11} & A_{11} B_{12} \\
A_{21} B_{11} & A_{21} B_{12}
\end{array}\right)+\left(\begin{array}{ll}
A_{12} B_{21} & A_{12} B_{22} \\
A_{22} B_{21} & A_{22} B_{22}
\end{array}\right)
$$

Using Recursion and Parallel Computations

Line 14

A barrier to wait until all the parallel computations are done!!!

Line 15

Call Matrix - Add to add C and T.

Matrix ADD

Matrix Add Code

Matrix - $\operatorname{Add}(C, T, n)$
// Add matrices C and T in-place to produce $C=C+T$
(1) if $(n==1)$
(2) $\quad C[1,1]=C[1,1]+T[1,1]$

Matrix ADD

Matrix Add Code

Matrix - $\operatorname{Add}(C, T, n)$
// Add matrices C and T in-place to produce $C=C+T$
(1) if $(n==1)$
(2) $C[1,1]=C[1,1]+T[1,1]$
(3) else
(9) Partition C and T into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices

Matrix ADD

Matrix Add Code

Matrix - $\operatorname{Add}(C, T, n)$
// Add matrices C and T in-place to produce $C=C+T$
(1) if $(n==1)$
(2) $C[1,1]=C[1,1]+T[1,1]$
(3) else
(9) Partition C and T into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices
(5) spawn Matrix - $\operatorname{Add}\left(C_{11}, T_{11}, n / 2\right)$
(0) spawn Matrix - $\operatorname{Add}\left(C_{12}, T_{12}, n / 2\right)$
(1) spawn Matrix - $\operatorname{Add}\left(C_{21}, T_{21}, n / 2\right)$
(8) Matrix - $\operatorname{Add}\left(C_{22}, T_{22}, n / 2\right)$

Matrix ADD

Matrix Add Code

Matrix - $\operatorname{Add}(C, T, n)$
// Add matrices C and T in-place to produce $C=C+T$
(1) if $(n==1)$
(2)

$$
C[1,1]=C[1,1]+T[1,1]
$$

(3) else
(9) Partition C and T into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices
(5) spawn Matrix - $\operatorname{Add}\left(C_{11}, T_{11}, n / 2\right)$
(0) spawn Matrix - $\operatorname{Add}\left(C_{12}, T_{12}, n / 2\right)$
(1) spawn Matrix - $\operatorname{Add}\left(C_{21}, T_{21}, n / 2\right)$
(8) Matrix - $\operatorname{Add}\left(C_{22}, T_{22}, n / 2\right)$
(2) sync

Explanation

Line 1-2

Stops the recursion once you have only two numbers to multiply

Explanation

Line 1-2

Stops the recursion once you have only two numbers to multiply

Line 4

To Partition

- $C=\left(\begin{array}{ll}A_{11} B_{11} & A_{11} B_{12} \\ A_{21} B_{11} & A_{21} B_{12}\end{array}\right)$

Explanation

Line 1-2

Stops the recursion once you have only two numbers to multiply

Line 4

To Partition

- $C=\left(\begin{array}{ll}A_{11} B_{11} & A_{11} B_{12} \\ A_{21} B_{11} & A_{21} B_{12}\end{array}\right)$
- $T=\left(\begin{array}{ll}A_{12} B_{21} & A_{12} B_{22} \\ A_{22} B_{21} & A_{22} B_{22}\end{array}\right)$

Explanation

Line 1-2

Stops the recursion once you have only two numbers to multiply

Line 4

To Partition

$$
\begin{aligned}
& -C=\left(\begin{array}{ll}
A_{11} B_{11} & A_{11} B_{12} \\
A_{21} B_{11} & A_{21} B_{12}
\end{array}\right) \\
& -T=\left(\begin{array}{ll}
A_{12} B_{21} & A_{12} B_{22} \\
A_{22} B_{21} & A_{22} B_{22}
\end{array}\right)
\end{aligned}
$$

In lines 5 to 8

We do the following sum in parallel!!!

$$
\underbrace{\left(\begin{array}{ll}
A_{11} B_{11} & A_{11} B_{12} \\
A_{21} B_{11} & A_{21} B_{12}
\end{array}\right)}_{C}+\underbrace{\left(\begin{array}{ll}
A_{12} B_{21} & A_{12} B_{22} \\
A_{22} B_{21} & A_{22} B_{22}
\end{array}\right)}_{T}
$$

Calculating Complexity of Matrix Multiplication

Work of Matrix Multiplication

The work of $T_{1}(n)$ of matrix multiplication satisfies the recurrence:

$$
T_{1}(n)=\underbrace{8 T_{1}\left(\frac{n}{2}\right)}_{\text {The sequential product }}+\underbrace{\Theta\left(n^{2}\right)}_{\text {The sequential sum }}=\Theta\left(n^{3}\right) .
$$

The sequential product

Calculating Complexity of Matrix Multiplication

Calculating Complexity of Matrix Multiplication

Span of Matrix Multiplication

$$
T_{\infty}(n)=\underbrace{T_{\infty}\left(\frac{n}{2}\right)}_{\text {The parallel product }}+\underbrace{\Theta(\log n)}_{\text {The parallel sum }}=\Theta\left(\log ^{2} n\right)
$$

This is because:

- $T_{\infty}\left(\frac{n}{2}\right)$ Matrix Multiplication is taking $\frac{n}{2} \times \frac{n}{2}$ matrices at the same time because parallelism.

Calculating Complexity of Matrix Multiplication

Span of Matrix Multiplication

$$
T_{\infty}(n)=\underbrace{T_{\infty}\left(\frac{n}{2}\right)}_{\text {The parallel product }}+\underbrace{\Theta(\log n)}_{\text {The parallel sum }}=\Theta\left(\log ^{2} n\right)
$$

This is because:

- $T_{\infty}\left(\frac{n}{2}\right)$ Matrix Multiplication is taking $\frac{n}{2} \times \frac{n}{2}$ matrices at the same time because parallelism.
- $\Theta(\log n)$ is the span of the addition of the matrices (Remember, we are using unlimited processors) which has a critical path of length $\log n$.

Collapsing the sum

Parallel Sum

$$
\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)
$$

$$
A_{11} \times B_{11}+A_{12} \times B_{21} \quad A_{11} \times B_{12}+A_{12} \times B_{22} \quad \cdots \quad A_{22} \times B_{22}
$$

How much Parallelism?

The Final Parallelism in this Algorithm is

$$
\frac{T_{1}(n)}{T_{\infty}(n)}=\Theta\left(\frac{n^{3}}{\log ^{2} n}\right)
$$

Quite A Lot!!!

Outline

Introduction

- Why Multi-Threaded Algorithms?

2. Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example
(3) Computation DAG
- Introduction
(4) Performance Measures
- Introduction
- Running Time Classification

5) Parallel Laws

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue
(6) Examples
- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort
(7) Exercises

Merge-Sort : The Serial Version

We have

Merge - Sort (A, p, r)
Observation: Sort elements in $A[p \ldots r]$
(1) if $(p<r)$ then

0

$$
q=\lfloor(p+r) / 2\rfloor
$$

- \quad Merge - $\operatorname{Sort}(A, p, q)$
- \quad Merge $-\operatorname{Sort}(A, q+1, r)$
- Merge (A, p, q, r)

Merge-Sort : The Parallel Version

We have

Merge - Sort (A, p, r)
Observation: Sort elements in $A[p \ldots r]$
(1) if $(p<r)$ then
(2)
$q=\left\lfloor{ }^{(p+r)} / 2\right\rfloor$
(3)
spawn Merge $-\operatorname{Sort}(A, p, q)$
(4)

Merge - Sort $(A, q+1, r) / /$ Not necessary to spawn this
(5) sync

6
$\operatorname{Merge}(A, p, q, r)$

Calculating Complexity of This simple Parallel Merge-Sort

Work of Merge-Sort

- The work of $T_{1}(n)$ of this Parallel Merge-Sort satisfies the recurrence:

$$
T_{1}(n)=\left\{\begin{array}{ll}
\Theta(1) & \text { if } n=1 \\
2 T_{1}\left(\frac{n}{2}\right)+\Theta(n) & \text { otherwise }
\end{array}=\Theta(n \log n)\right.
$$

Because the Master Theorem Case 2.

Calculating Complexity of This simple Parallel Merge-Sort

Work of Merge-Sort

- The work of $T_{1}(n)$ of this Parallel Merge-Sort satisfies the recurrence:

$$
T_{1}(n)=\left\{\begin{array}{ll}
\Theta(1) & \text { if } n=1 \\
2 T_{1}\left(\frac{n}{2}\right)+\Theta(n) & \text { otherwise }
\end{array}=\Theta(n \log n)\right.
$$

Because the Master Theorem Case 2.

Span

$$
T_{\infty}(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ T_{\infty}\left(\frac{n}{2}\right)+\Theta(n) & \text { otherwise }\end{cases}
$$

We have then

Calculating Complexity of This simple Parallel Merge-Sort

Work of Merge-Sort

- The work of $T_{1}(n)$ of this Parallel Merge-Sort satisfies the recurrence:

$$
T_{1}(n)=\left\{\begin{array}{ll}
\Theta(1) & \text { if } n=1 \\
2 T_{1}\left(\frac{n}{2}\right)+\Theta(n) & \text { otherwise }
\end{array}=\Theta(n \log n)\right.
$$

Because the Master Theorem Case 2.

Span

$$
T_{\infty}(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ T_{\infty}\left(\frac{n}{2}\right)+\Theta(n) & \text { otherwise }\end{cases}
$$

We have then

- $T_{\infty}\left(\frac{n}{2}\right)$ sort is taking two sorts at the same time because parallelism.

Calculating Complexity of This simple Parallel Merge-Sort

Work of Merge-Sort

- The work of $T_{1}(n)$ of this Parallel Merge-Sort satisfies the recurrence:

$$
T_{1}(n)=\left\{\begin{array}{ll}
\Theta(1) & \text { if } n=1 \\
2 T_{1}\left(\frac{n}{2}\right)+\Theta(n) & \text { otherwise }
\end{array}=\Theta(n \log n)\right.
$$

Because the Master Theorem Case 2.
Span

$$
T_{\infty}(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ T_{\infty}\left(\frac{n}{2}\right)+\Theta(n) & \text { otherwise }\end{cases}
$$

We have then

- $T_{\infty}\left(\frac{n}{2}\right)$ sort is taking two sorts at the same time because parallelism.
- Then, $T_{\infty}(n)=\Theta(n)$ because the Master Theorem Case 3.

How much Parallelism?

The Final Parallelism in this Algorithm is

$$
\frac{T_{1}(n)}{T_{\infty}(n)}=\Theta(\log n)
$$

NOT NOT A Lot!!!

Can we improve this?

We have a problem

We have a bottleneck!!! Where?

Can we improve this?

We have a problem

We have a bottleneck!!! Where?
Yes in the Merge part!!!
We need to improve that bottleneck!!!

Parallel Merge

Example: Here, we use and intermediate array T

Parallel Merge

Step 1. Find $x=T\left[q_{1}\right]$ where $q_{1}=\left\lfloor\left(p_{1}+r_{1}\right) / 2\right\rfloor$ or the midpoint in $T\left[p_{1} . . r_{1}\right]$

suppose $n_{1} \geq n_{2}$

Parallel Merge

Step 2. Use Binary Search in $T\left[p_{1} . . r_{1}\right]$ to find q_{2}

Then

So that if we insert x between $T\left[q_{2}-1\right]$ and $T\left[q_{2}\right]$
 $T\left[\begin{array}{lllllll}p_{1} & \cdots & q_{2}-1 & x & q_{2} & \cdots & r_{1}\end{array}\right]$ is sorted

Binary Search

It takes a key x and a sub-array $T[p . r]$ and it does
(1) If $T[p . . r]$ is empty $r<p$, then it returns the index p.

Binary Search

It takes a key x and a sub-array $T[p . r]$ and it does
(1) If $T[p . . r]$ is empty $r<p$, then it returns the index p.
(0) if $x \leq T[p]$, then it returns p.

Binary Search

It takes a key x and a sub-array $T[p . . r]$ and it does

(1) If $T[p . . r]$ is empty $r<p$, then it returns the index p.
(2) if $x \leq T[p]$, then it returns p.
(3) if $x>T[p]$, then it returns the largest index q in the range $p<q \leq r+1$ such that $T[q-1]<x$.

Binary Search Code

BINARY-SEARCH (x, T, p, r)

(1) low $=p$
(2) high $=\max \{p, r+1\}$

Binary Search Code

BINARY-SEARCH (x, T, p, r)

(1) low $=p$
(2) high $=\max \{p, r+1\}$
(3) while low $<$ high
(4) mid $=\left\lfloor\frac{\log +\text { high }}{2}\right\rfloor$

Binary Search Code

BINARY-SEARCH (x, T, p, r)

(1) low $=p$
(2) high $=\max \{p, r+1\}$
(3) while low $<$ high
(9) mid $=\left\lfloor\frac{\log +h i g h}{2}\right\rfloor$
(6) if $x \leq T[$ mid $]$
©

$$
h i g h=m i d
$$

Binary Search Code

BINARY-SEARCH (x, T, p, r)

(1) low $=p$
(2) high $=\max \{p, r+1\}$
(3) while low $<$ high
(9) mid $=\left\lfloor\frac{\log +h i g h}{2}\right\rfloor$
(6) if $x \leq T[$ mid $]$
(6) high $=$ mid
() else $l o w=m i d+1$

Binary Search Code

BINARY-SEARCH (x, T, p, r)

(1) low $=p$
(2) high $=\max \{p, r+1\}$
(3) while low $<$ high
(9) mid $=\left\lfloor\frac{\log +h i g h}{2}\right\rfloor$
(6) if $x \leq T[$ mid $]$
(6) high $=$ mid
(1) else low $=m i d+1$
(8) return high

Parallel Merge

Step 3. Copy x in $A\left[q_{3}\right]$ where $q_{3}=p_{3}+\left(q_{1}-p_{1}\right)+\left(q_{2}-p_{2}\right)$

Parallel Merge

Step 4. Recursively merge $T\left[p_{1} . . q_{1}-1\right]$ and $T\left[p_{2} . . q_{2}-1\right]$ and place result into $A\left[p_{3} . . q_{3}-1\right]$

Parallel Merge

Step 5. Recursively merge $T\left[q_{1}+1 . . r_{1}\right]$ and $T\left[q_{2} . . r_{2}\right]$ and place result into $A\left[q_{3}+1 . . r_{3}\right]$

The Final Code for Parallel Merge

$\operatorname{Par}-\operatorname{Merge}\left(T, p_{1}, r_{1}, p_{2}, r_{2}, A, p_{3}\right)$
(1) $n_{1}=r_{1}-p_{1}+1, n_{2}=r_{2}-p_{2}+1$

The Final Code for Parallel Merge

$\operatorname{Par}-\operatorname{Merge}\left(T, p_{1}, r_{1}, p_{2}, r_{2}, A, p_{3}\right)$
(1) $n_{1}=r_{1}-p_{1}+1, n_{2}=r_{2}-p_{2}+1$
(2) if $n_{1}<n_{2}$
(3) Exchange $p_{1} \leftrightarrow p_{2}, r_{1} \leftrightarrow r_{2}, n_{1} \leftrightarrow n_{2}$

The Final Code for Parallel Merge

$\operatorname{Par}-\operatorname{Merge}\left(T, p_{1}, r_{1}, p_{2}, r_{2}, A, p_{3}\right)$
(1) $n_{1}=r_{1}-p_{1}+1, n_{2}=r_{2}-p_{2}+1$
(2) if $n_{1}<n_{2}$
(3) Exchange $p_{1} \leftrightarrow p_{2}, r_{1} \leftrightarrow r_{2}, n_{1} \leftrightarrow n_{2}$
(9) if $\left(n_{1}==0\right)$
(3) return

The Final Code for Parallel Merge

$\operatorname{Par}-\operatorname{Merge}\left(T, p_{1}, r_{1}, p_{2}, r_{2}, A, p_{3}\right)$
(1) $n_{1}=r_{1}-p_{1}+1, n_{2}=r_{2}-p_{2}+1$
(2) if $n_{1}<n_{2}$
(3) Exchange $p_{1} \leftrightarrow p_{2}, r_{1} \leftrightarrow r_{2}, n_{1} \leftrightarrow n_{2}$
(3) if $\left(n_{1}==0\right)$
(3) return
(0) else

0

$$
\begin{array}{ll}
\text { (1) } & q_{1}=\left\lfloor\left(p_{1}+r_{1}\right) / 2\right\rfloor \\
\text { (8) } & q_{2}=\text { BinarySearch }\left(T\left[q_{1}\right], T, p_{2}, r_{2}\right) \\
\text { (0 } & q_{3}=p_{3}+\left(q_{1}-p_{1}\right)+\left(q_{2}-p_{2}\right) \\
\text { (1) } & A\left[q_{3}\right]=T\left[q_{1}\right]
\end{array}
$$

The Final Code for Parallel Merge

$\operatorname{Par}-\operatorname{Merge}\left(T, p_{1}, r_{1}, p_{2}, r_{2}, A, p_{3}\right)$
(1) $n_{1}=r_{1}-p_{1}+1, n_{2}=r_{2}-p_{2}+1$
(2) if $n_{1}<n_{2}$
(3) Exchange $p_{1} \leftrightarrow p_{2}, r_{1} \leftrightarrow r_{2}, n_{1} \leftrightarrow n_{2}$
(9) if $\left(n_{1}==0\right)$
(3) return
(0) else
(7) $q_{1}=\left\lfloor\left(p_{1}+r_{1}\right) / 2\right\rfloor$
(8) $q_{2}=$ BinarySearch $\left(T\left[q_{1}\right], T, p_{2}, r_{2}\right)$
(0) $q_{3}=p_{3}+\left(q_{1}-p_{1}\right)+\left(q_{2}-p_{2}\right)$
(10) $A\left[q_{3}\right]=T\left[q_{1}\right]$
(1) spawn $\operatorname{Par}-\operatorname{Merge}\left(T, p_{1}, q_{1}-1, p_{2}, q_{2}-1, A, p_{3}\right)$
(13) $\operatorname{Par}-\operatorname{Merge}\left(T, q_{1}+1, r_{1}, q_{2}+1, r_{2}, A, q_{3}+1\right)$

The Final Code for Parallel Merge

$\operatorname{Par}-\operatorname{Merge}\left(T, p_{1}, r_{1}, p_{2}, r_{2}, A, p_{3}\right)$
(1) $n_{1}=r_{1}-p_{1}+1, n_{2}=r_{2}-p_{2}+1$
(2) if $n_{1}<n_{2}$
(3) Exchange $p_{1} \leftrightarrow p_{2}, r_{1} \leftrightarrow r_{2}, n_{1} \leftrightarrow n_{2}$
(3) if $\left(n_{1}==0\right)$
(3) return
(0) else
(9) $q_{1}=\left\lfloor\left(p_{1}+r_{1}\right) / 2\right\rfloor$
(8) $q_{2}=$ BinarySearch $\left(T\left[q_{1}\right], T, p_{2}, r_{2}\right)$
(0) $q_{3}=p_{3}+\left(q_{1}-p_{1}\right)+\left(q_{2}-p_{2}\right)$
(10) $A\left[q_{3}\right]=T\left[q_{1}\right]$
(1) spawn $\operatorname{Par}-\operatorname{Merge}\left(T, p_{1}, q_{1}-1, p_{2}, q_{2}-1, A, p_{3}\right)$
(3) $\operatorname{Par}-\operatorname{Merge}\left(T, q_{1}+1, r_{1}, q_{2}+1, r_{2}, A, q_{3}+1\right)$
(3) sync

Explanation

Line 1

Obtain the length of the two arrays to be merged

Explanation

Line 1

Obtain the length of the two arrays to be merged

Line 2: If one is larger than the other

We exchange the variables to work the largest element!!! In this case we make $n_{1} \geq n_{2}$

Explanation

Line 1

Obtain the length of the two arrays to be merged

Line 2: If one is larger than the other

We exchange the variables to work the largest element!!! In this case we make $n_{1} \geq n_{2}$

```
Line 4
if }\mp@subsup{n}{1}{}==0\mathrm{ return nothing to merge!!!
```


Explanation

Line 10

It copies $T\left[q_{1}\right]$ directly into $A\left[q_{3}\right]$

Explanation

Line 10

It copies $T\left[q_{1}\right]$ directly into $A\left[q_{3}\right]$

Line 11 and 12

They are used to recurse using nested parallelism to merge the sub-arrays less and greater than x.

Explanation

Line 10

It copies $T\left[q_{1}\right]$ directly into $A\left[q_{3}\right]$

Line 11 and 12

They are used to recurse using nested parallelism to merge the sub-arrays less and greater than x.

Line 13

The sync is used to ensure that the subproblems have completed before the procedure returns.

First the Span Complexity of Parallel Merge: $T_{\infty}(n)$

Suppositions

$$
n=n_{1}+n_{2}
$$

First the Span Complexity of Parallel Merge: $T_{\infty}(n)$

Suppositions

$$
\text { - } n=n_{1}+n_{2}
$$

What case should we study?
Remember $T_{\infty}(n)=\max \left\{T_{\infty}\left(n_{1}\right)+T_{\infty}\left(n_{2}\right)\right\}$

First the Span Complexity of Parallel Merge: $T_{\infty}(n)$

Suppositions

$$
\text { - } n=n_{1}+n_{2}
$$

What case should we study?
Remember $T_{\infty}(n)=\max \left\{T_{\infty}\left(n_{1}\right)+T_{\infty}\left(n_{2}\right)\right\}$

We notice then that

Because lines 3-6 $n_{2} \leq n_{1}$

Span Complexity of the Parallel Merge with One Processor: $T_{1}(n)$

Then

$$
2 n_{2} \leq n_{1}+n_{2}=n \Longrightarrow n_{2} \leq n / 2
$$

Span Complexity of the Parallel Merge with One Processor: $T_{1}(n)$

Then

$$
2 n_{2} \leq n_{1}+n_{2}=n \Longrightarrow n_{2} \leq n / 2
$$

Thus

In the worst case, a recursive call in lines 11 merges:

Span Complexity of the Parallel Merge with One Processor: $T_{1}(n)$

Then

$$
2 n_{2} \leq n_{1}+n_{2}=n \Longrightarrow n_{2} \leq n / 2
$$

Thus

In the worst case, a recursive call in lines 11 merges:

- 【犁 \rfloor elements of $T\left[p_{1} \ldots r_{1}\right]$ (Remember we are halving the array by mid-point).

Span Complexity of the Parallel Merge with One Processor: $T_{1}(n)$

Then

$$
2 n_{2} \leq n_{1}+n_{2}=n \Longrightarrow n_{2} \leq n / 2
$$

Thus

In the worst case, a recursive call in lines 11 merges:

- 【 $\left.\frac{n_{1}}{2}\right\rfloor$ elements of $T\left[p_{1} \ldots r_{1}\right\rfloor$ (Remember we are halving the array by mid-point).
- With all n_{2} elements of $T\left[p_{2} \ldots r_{2}\right]$.

Span Complexity of the Parallel Merge with One Processor: $T_{1}(n)$

Thus, the number of elements involved in such a call is

$$
\left\lfloor\frac{n_{1}}{2}\right\rfloor+n_{2} \leq \frac{n_{1}}{2}+\frac{n_{2}}{2}+\frac{n_{2}}{2}
$$

Span Complexity of the Parallel Merge with One Processor: $T_{1}(n)$

Thus, the number of elements involved in such a call is

$$
\begin{aligned}
\left\lfloor\frac{n_{1}}{2}\right\rfloor+n_{2} & \leq \frac{n_{1}}{2}+\frac{n_{2}}{2}+\frac{n_{2}}{2} \\
& \leq \frac{n_{1}}{2}+\frac{n_{2}}{2}+\frac{n / 2}{2}
\end{aligned}
$$

Span Complexity of the Parallel Merge with One Processor: $T_{1}(n)$

Thus, the number of elements involved in such a call is

$$
\begin{aligned}
\left\lfloor\frac{n_{1}}{2}\right\rfloor+n_{2} & \leq \frac{n_{1}}{2}+\frac{n_{2}}{2}+\frac{n_{2}}{2} \\
& \leq \frac{n_{1}}{2}+\frac{n_{2}}{2}+\frac{n / 2}{2} \\
& =\frac{n_{1}+n_{2}}{2}+\frac{n}{4}
\end{aligned}
$$

Span Complexity of the Parallel Merge with One Processor: $T_{1}(n)$

Thus, the number of elements involved in such a call is

$$
\begin{aligned}
\left\lfloor\frac{n_{1}}{2}\right\rfloor+n_{2} & \leq \frac{n_{1}}{2}+\frac{n_{2}}{2}+\frac{n_{2}}{2} \\
& \leq \frac{n_{1}}{2}+\frac{n_{2}}{2}+\frac{n / 2}{2} \\
& =\frac{n_{1}+n_{2}}{2}+\frac{n}{4} \\
& \leq \frac{n}{2}+\frac{n}{4}=\frac{3 n}{4}
\end{aligned}
$$

Span Complexity of the Parallel Merge with One Processor: $T_{1}(n)$

Knowing that the Binary Search takes

$$
\Theta(\log n)
$$

Span Complexity of the Parallel Merge with One Processor: $T_{1}(n)$

Knowing that the Binary Search takes

$$
\Theta(\log n)
$$

We get the span for parallel merge

$$
T_{\infty}(n)=T_{\infty}\left(\frac{3 n}{4}\right)+\Theta(\log n)
$$

Span Complexity of the Parallel Merge with One Processor: $T_{1}(n)$

Knowing that the Binary Search takes

$$
\Theta(\log n)
$$

We get the span for parallel merge

$$
T_{\infty}(n)=T_{\infty}\left(\frac{3 n}{4}\right)+\Theta(\log n)
$$

This can can be solved using the exercise 4.6-2 in the Cormen's Book

$$
T_{\infty}(n)=\Theta\left(\log ^{2} n\right)
$$

Calculating Work Complexity of Parallel Merge

Ok!!! We need to calculate the WORK

$$
T_{1}(n)=\Theta(\text { Something })
$$

Calculating Work Complexity of Parallel Merge

Ok!!! We need to calculate the WORK

$$
T_{1}(n)=\Theta(\text { Something })
$$

Thus

We need to calculate the upper and lower bound.

Calculating Work Complexity of Parallel Merge

Work of Parallel Merge

The work of $T_{1}(n)$ of this Parallel Merge satisfies:

Calculating Work Complexity of Parallel Merge

Work of Parallel Merge

The work of $T_{1}(n)$ of this Parallel Merge satisfies:

$$
T_{1}(n)=\Omega(n)
$$

Calculating Work Complexity of Parallel Merge

Work of Parallel Merge

The work of $T_{1}(n)$ of this Parallel Merge satisfies:

$$
T_{1}(n)=\Omega(n)
$$

Because each of the n elements must be copied from array T to array A.

Calculating Work Complexity of Parallel Merge

Work of Parallel Merge

The work of $T_{1}(n)$ of this Parallel Merge satisfies:

$$
T_{1}(n)=\Omega(n)
$$

Because each of the n elements must be copied from array T to array A.

What about the Upper Bound O ?

First notice that we can have a merge with

Calculating Work Complexity of Parallel Merge

Work of Parallel Merge

The work of $T_{1}(n)$ of this Parallel Merge satisfies:

$$
T_{1}(n)=\Omega(n)
$$

Because each of the n elements must be copied from array T to array A.

What about the Upper Bound O ?

First notice that we can have a merge with

- $\frac{n}{4}$ elements when we have we have the worst case of $\left\lfloor\frac{n_{1}}{2}\right\rfloor+n_{2}$ in the other merge.

Calculating Work Complexity of Parallel Merge

Work of Parallel Merge

The work of $T_{1}(n)$ of this Parallel Merge satisfies:

$$
T_{1}(n)=\Omega(n)
$$

Because each of the n elements must be copied from array T to array A.

What about the Upper Bound O ?

First notice that we can have a merge with

- $\frac{n}{4}$ elements when we have we have the worst case of $\left\lfloor\frac{n_{1}}{2}\right\rfloor+n_{2}$ in the other merge.
- And $\frac{3 n}{4}$ for the worst case.

Calculating Work Complexity of Parallel Merge

Work of Parallel Merge

The work of $T_{1}(n)$ of this Parallel Merge satisfies:

$$
T_{1}(n)=\Omega(n)
$$

Because each of the n elements must be copied from array T to array A.

What about the Upper Bound O ?

First notice that we can have a merge with

- $\frac{n}{4}$ elements when we have we have the worst case of $\left\lfloor\frac{n_{1}}{2}\right\rfloor+n_{2}$ in the other merge.
- And $\frac{3 n}{4}$ for the worst case.
- And the work of the Binary Search of $O(\log n)$

Calculating Work Complexity of Parallel Merge

Then

Then, for some $\alpha \in\left[\frac{1}{4}, \frac{3}{4}\right]$, then we have the following recursion for the Parallel Merge when we have one processor:

Calculating Work Complexity of Parallel Merge

Then

Then, for some $\alpha \in\left[\frac{1}{4}, \frac{3}{4}\right]$, then we have the following recursion for the Parallel Merge when we have one processor:

$$
T_{1}(n)=\underbrace{T_{1}(\alpha n)+T_{1}((1-\alpha) n)}_{\text {Merge Part }}+\underbrace{\Theta(\log n)}_{\text {Binary Search }}
$$

Calculating Work Complexity of Parallel Merge

Then

Then, for some $\alpha \in\left[\frac{1}{4}, \frac{3}{4}\right]$, then we have the following recursion for the Parallel Merge when we have one processor:

$$
T_{1}(n)=\underbrace{T_{1}(\alpha n)+T_{1}((1-\alpha) n)}_{\text {Merge Part }}+\underbrace{\Theta(\log n)}_{\text {Binary Search }}
$$

Remark: α varies at each level of the recursion!!!

Calculating Work Complexity of Parallel Merge

Then
Assume that $T_{1}(n) \leq c_{1} n-c_{2} \log n$ for positive constants c_{1} and c_{2}.

Calculating Work Complexity of Parallel Merge

Then

Assume that $T_{1}(n) \leq c_{1} n-c_{2} \log n$ for positive constants c_{1} and c_{2}.
We have then using c_{3} for $\Theta(\log n)$

$$
\begin{aligned}
T_{1}(n) & \leq T_{1}(\alpha n)+T_{1}((1-\alpha) n)+c_{3} \log n \\
& \leq c_{1} \alpha n-c_{2} \log (\alpha n)+c_{1}(1-\alpha) n-c_{2} \log ((1-\alpha) n)+c_{3} \log n
\end{aligned}
$$

Calculating Work Complexity of Parallel Merge

Then

Assume that $T_{1}(n) \leq c_{1} n-c_{2} \log n$ for positive constants c_{1} and c_{2}.
We have then using c_{3} for $\Theta(\log n)$

$$
\begin{aligned}
T_{1}(n) & \leq T_{1}(\alpha n)+T_{1}((1-\alpha) n)+c_{3} \log n \\
& \leq c_{1} \alpha n-c_{2} \log (\alpha n)+c_{1}(1-\alpha) n-c_{2} \log ((1-\alpha) n)+c_{3} \log n \\
& =c_{1} n-c_{2} \log (\alpha(1-\alpha))-2 c_{2} \log n+c_{3} \log n \text { (splitting elements) }
\end{aligned}
$$

Calculating Work Complexity of Parallel Merge

Then

Assume that $T_{1}(n) \leq c_{1} n-c_{2} \log n$ for positive constants c_{1} and c_{2}.
We have then using c_{3} for $\Theta(\log n)$

$$
\begin{aligned}
T_{1}(n) & \leq T_{1}(\alpha n)+T_{1}((1-\alpha) n)+c_{3} \log n \\
& \leq c_{1} \alpha n-c_{2} \log (\alpha n)+c_{1}(1-\alpha) n-c_{2} \log ((1-\alpha) n)+c_{3} \log n \\
& =c_{1} n-c_{2} \log (\alpha(1-\alpha))-2 c_{2} \log n+c_{3} \log n \text { (splitting elements) } \\
& =c_{1} n-c_{2}(\log n+\log (\alpha(1-\alpha)))-\left(c_{2}-c_{3}\right) \log n
\end{aligned}
$$

Calculating Work Complexity of Parallel Merge

Then

Assume that $T_{1}(n) \leq c_{1} n-c_{2} \log n$ for positive constants c_{1} and c_{2}.
We have then using c_{3} for $\Theta(\log n)$

$$
\begin{aligned}
T_{1}(n) & \leq T_{1}(\alpha n)+T_{1}((1-\alpha) n)+c_{3} \log n \\
& \leq c_{1} \alpha n-c_{2} \log (\alpha n)+c_{1}(1-\alpha) n-c_{2} \log ((1-\alpha) n)+c_{3} \log n \\
& =c_{1} n-c_{2} \log (\alpha(1-\alpha))-2 c_{2} \log n+c_{3} \log n \text { (splitting elements) } \\
& =c_{1} n-c_{2}(\log n+\log (\alpha(1-\alpha)))-\left(c_{2}-c_{3}\right) \log n \\
& \leq c_{1} n-\left(c_{2}-c_{3}\right) \log n \text { because } \log n+\log (\alpha(1-\alpha))>0
\end{aligned}
$$

Calculating Work Complexity of Parallel Merge

Now, we have that given $0<\alpha(1-\alpha)<1$
We have $\log (\alpha(1-\alpha))<0$

Calculating Work Complexity of Parallel Merge

Now, we have that given $0<\alpha(1-\alpha)<1$
We have $\log (\alpha(1-\alpha))<0$

Thus, making n large enough

$$
\begin{equation*}
\log n+\log (\alpha(1-\alpha))>0 \tag{1}
\end{equation*}
$$

Calculating Work Complexity of Parallel Merge

Now, we have that given $0<\alpha(1-\alpha)<1$
We have $\log (\alpha(1-\alpha))<0$

Thus, making n large enough

$$
\begin{equation*}
\log n+\log (\alpha(1-\alpha))>0 \tag{1}
\end{equation*}
$$

Then

$$
T_{1}(n) \leq c_{1} n-\left(c_{2}-c_{3}\right) \log n
$$

Calculating Work Complexity of Parallel Merge

Now, we choose c_{2} and c_{3} such that

$$
c_{2}-c_{3} \geq 0
$$

Calculating Work Complexity of Parallel Merge

Now, we choose c_{2} and c_{3} such that

$$
c_{2}-c_{3} \geq 0
$$

We have that

$$
T_{1}(n) \leq c_{1} n=O(n)
$$

Finally

Then

$$
T_{1}(n)=\Theta(n)
$$

Finally

Then

$$
T_{1}(n)=\Theta(n)
$$

The parallelism of Parallel Merge

$$
\frac{T_{1}(n)}{T_{\infty}(n)}=\Theta\left(\frac{n}{\log ^{2} n}\right)
$$

Then What is the Complexity of Parallel Merge-sort with Parallel Merge?
First, the new code - Input $A[p . . r]$ - Output $B[s . . s+r-p]$
Par - Merge - Sort (A, p, r, B, s)
(1) $n=r-p+1$
(2) if $(n==1)$

0

$$
B[s]=A[p]
$$

Then What is the Complexity of Parallel Merge-sort with Parallel Merge?
First, the new code - Input $A[p . . r]$ - Output $B[s . . s+r-p]$
Par - Merge - Sort (A, p, r, B, s)
(1) $n=r-p+1$
(2) if $(n==1)$
-

$$
B[s]=A[p]
$$

(0) else let $T[1 . . n]$ be a new array

Then What is the Complexity of Parallel Merge-sort with Parallel Merge?
First, the new code - Input $A[p . . r]$ - Output $B[s . . s+r-p]$
Par - Merge - Sort (A, p, r, B, s)
(1) $n=r-p+1$
(2) if $(n==1)$
-

$$
B[s]=A[p]
$$

(0) else let $T[1 . . n]$ be a new array
-

$$
\begin{array}{ll}
\text { © } & q=\lfloor(p+r) / 2\rfloor \\
\text { 0 } & q
\end{array}
$$

Then What is the Complexity of Parallel Merge-sort with Parallel Merge?

First, the new code - Input $A[p . . r]$ - Output $B[s . . s+r-p]$
Par - Merge - Sort (A, p, r, B, s)
(1) $n=r-p+1$
(2) if $(n==1)$
-

$$
B[s]=A[p]
$$

(0) else let $T[1 . . n]$ be a new array
-
$q=\lfloor(p+r) / 2\rfloor$

- $q=q-p+1$
- spawn Par - Merge - $\operatorname{Sort}(A, p, q, T, 1)$
($\operatorname{Par}-\operatorname{Merge}-\operatorname{Sort}\left(A, q+1, r, T, q^{\prime}+1\right)$

Then What is the Complexity of Parallel Merge-sort with Parallel Merge?

First, the new code - Input $A[p . . r]$ - Output $B[s . . s+r-p]$
Par - Merge - Sort (A, p, r, B, s)
(1) $n=r-p+1$
(2) if $(n==1)$
-

$$
B[s]=A[p]
$$

(0) else let $T[1 . . n]$ be a new array
-
$q=\lfloor(p+r) / 2\rfloor$
6

$$
q=q-p+1
$$

(7)

$$
\text { spawn Par - Merge }-\operatorname{Sort}(A, p, q, T, 1)
$$

(8)

Par - Merge - Sort $\left(A, q+1, r, T, q^{\prime}+1\right)$
sync

Then What is the Complexity of Parallel Merge-sort with Parallel Merge?

First, the new code - Input $A[p . r]$ - Output $B[s . . s+r-p]$ Par - Merge - Sort (A, p, r, B, s)
(1) $n=r-p+1$
(3) if $(n==1)$
-
$B[s]=A[p]$
(0) else let $T[1 . . n]$ be a new array
-
$q=\lfloor(p+r) / 2\rfloor$
6
$q=q-p+1$
(7)
spawn Par - Merge - Sort (A, p, q, T, 1)
(8)

Par - Merge - Sort $\left(A, q+1, r, T, q^{\prime}+1\right)$
(9)
sync
(1) $\operatorname{Par}-\operatorname{Merge}\left(T, 1, q^{\prime}, q^{\prime}+1, n, B, s\right)$

Then, What is the amount of Parallelism of Parallel Merge-sort with Parallel Merge?

Work

We can use the worst work in the parallel to generate the recursion:

Then, What is the amount of Parallelism of Parallel Merge-sort with Parallel Merge?

Work

We can use the worst work in the parallel to generate the recursion:

$$
T_{1}^{P M S}(n)=2 T_{1}^{P M S}\left(\frac{n}{2}\right)+T_{1}^{P M}(n)
$$

Then, What is the amount of Parallelism of Parallel Merge-sort with Parallel Merge?

Work

We can use the worst work in the parallel to generate the recursion:

$$
\begin{aligned}
T_{1}^{P M S}(n) & =2 T_{1}^{P M S}\left(\frac{n}{2}\right)+T_{1}^{P M}(n) \\
& =2 T_{1}^{P M S}\left(\frac{n}{2}\right)+\Theta(n)
\end{aligned}
$$

Then, What is the amount of Parallelism of Parallel Merge-sort with Parallel Merge?

Work

We can use the worst work in the parallel to generate the recursion:

$$
\begin{aligned}
T_{1}^{P M S}(n) & =2 T_{1}^{P M S}\left(\frac{n}{2}\right)+T_{1}^{P M}(n) \\
& =2 T_{1}^{P M S}\left(\frac{n}{2}\right)+\Theta(n) \\
& =\Theta(n \log n) \text { Case } 2 \text { of the MT }
\end{aligned}
$$

Then, What is the amount of Parallelism of Parallel Merge-sort with Parallel Merge?

Span

We get the following recursion for the span by taking in account that lines 7 and 8 of parallel merge sort run in parallel:

Then, What is the amount of Parallelism of Parallel Merge-sort with Parallel Merge?

Span

We get the following recursion for the span by taking in account that lines 7 and 8 of parallel merge sort run in parallel:

$$
T_{\infty}^{P M S}(n)=T_{\infty}^{P M S}\left(\frac{n}{2}\right)+T_{\infty}^{P M}(n)
$$

Then, What is the amount of Parallelism of Parallel Merge-sort with Parallel Merge?

Span

We get the following recursion for the span by taking in account that lines 7 and 8 of parallel merge sort run in parallel:

$$
\begin{aligned}
T_{\infty}^{P M S}(n) & =T_{\infty}^{P M S}\left(\frac{n}{2}\right)+T_{\infty}^{P M}(n) \\
& =T_{\infty}^{P M S}\left(\frac{n}{2}\right)+\Theta\left(\log ^{2} n\right)
\end{aligned}
$$

Then, What is the amount of Parallelism of Parallel Merge-sort with Parallel Merge?

Span

We get the following recursion for the span by taking in account that lines 7 and 8 of parallel merge sort run in parallel:

$$
\begin{aligned}
T_{\infty}^{P M S}(n) & =T_{\infty}^{P M S}\left(\frac{n}{2}\right)+T_{\infty}^{P M}(n) \\
& =T_{\infty}^{P M S}\left(\frac{n}{2}\right)+\Theta\left(\log ^{2} n\right) \\
& =\Theta\left(\log ^{3} n\right) \text { Exercise 4.6-2 in the Cormen's Book }
\end{aligned}
$$

Then, What is the amount of Parallelism of Parallel Merge-sort with Parallel Merge?

Parallelism

$$
\frac{T_{1}(n)}{T_{\infty}(n)}=\Theta\left(\frac{n}{\log ^{2} n}\right)
$$

Plotting both Parallelisms

We get the incredible difference between both algorithm

Plotting the T_{∞}

We get the incredible difference when running both algorithms with an infinite number of processors!!!

Outline

Introduction

- Why Multi-Threaded Algorithms?

2 Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example
(3) Computation DAG
- Introduction
(4) Performance Measures
- Introduction
- Running Time Classification

5. Parallel Laws

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue
(6) Examples
- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort
(7) Exercises
- Some Exercises you can try!!!

Exercises

- 27.1-1
- 27.1-2
- 27.1-4
- 27.1-6
- 27.1-7
- 27.2-1
- 27.2-3
- 27.2-4
- 27.2-5
- 27.3-1
- 27.3-2
- 27.3-3
- 27.3-4

