
Analysis of Algorithms
Multi-threaded Algorithms

Andres Mendez-Vazquez

April 15, 2016

1 / 94

Outline
1 Introduction

Why Multi-Threaded Algorithms?
2 Model To Be Used

Symmetric Multiprocessor
Operations
Example

3 Computation DAG
Introduction

4 Performance Measures
Introduction
Running Time Classification

5 Parallel Laws
Work and Span Laws
Speedup and Parallelism
Greedy Scheduler
Scheduling Rises the Following Issue

6 Examples
Parallel Fibonacci
Matrix Multiplication
Parallel Merge-Sort

7 Exercises
Some Exercises you can try!!!

2 / 94

Outline
1 Introduction

Why Multi-Threaded Algorithms?
2 Model To Be Used

Symmetric Multiprocessor
Operations
Example

3 Computation DAG
Introduction

4 Performance Measures
Introduction
Running Time Classification

5 Parallel Laws
Work and Span Laws
Speedup and Parallelism
Greedy Scheduler
Scheduling Rises the Following Issue

6 Examples
Parallel Fibonacci
Matrix Multiplication
Parallel Merge-Sort

7 Exercises
Some Exercises you can try!!!

3 / 94

Multi-Threaded Algorithms

Motivation
Until now, our serial algorithms are quite suitable for running on a
single processor system.
However, multiprocessor algorithms are ubiquitous:

I Therefore, extending our serial models to a parallel computation model
is a must.

Computational Model
There exist many competing models of parallel computation that are
essentially different:

I Shared Memory
I Message Passing
I Etc.

4 / 94

Multi-Threaded Algorithms

Motivation
Until now, our serial algorithms are quite suitable for running on a
single processor system.
However, multiprocessor algorithms are ubiquitous:

I Therefore, extending our serial models to a parallel computation model
is a must.

Computational Model
There exist many competing models of parallel computation that are
essentially different:

I Shared Memory
I Message Passing
I Etc.

4 / 94

Multi-Threaded Algorithms

Motivation
Until now, our serial algorithms are quite suitable for running on a
single processor system.
However, multiprocessor algorithms are ubiquitous:

I Therefore, extending our serial models to a parallel computation model
is a must.

Computational Model
There exist many competing models of parallel computation that are
essentially different:

I Shared Memory
I Message Passing
I Etc.

4 / 94

Multi-Threaded Algorithms

Motivation
Until now, our serial algorithms are quite suitable for running on a
single processor system.
However, multiprocessor algorithms are ubiquitous:

I Therefore, extending our serial models to a parallel computation model
is a must.

Computational Model
There exist many competing models of parallel computation that are
essentially different:

I Shared Memory
I Message Passing
I Etc.

4 / 94

Multi-Threaded Algorithms

Motivation
Until now, our serial algorithms are quite suitable for running on a
single processor system.
However, multiprocessor algorithms are ubiquitous:

I Therefore, extending our serial models to a parallel computation model
is a must.

Computational Model
There exist many competing models of parallel computation that are
essentially different:

I Shared Memory
I Message Passing
I Etc.

4 / 94

Multi-Threaded Algorithms

Motivation
Until now, our serial algorithms are quite suitable for running on a
single processor system.
However, multiprocessor algorithms are ubiquitous:

I Therefore, extending our serial models to a parallel computation model
is a must.

Computational Model
There exist many competing models of parallel computation that are
essentially different:

I Shared Memory
I Message Passing
I Etc.

4 / 94

Outline
1 Introduction

Why Multi-Threaded Algorithms?
2 Model To Be Used

Symmetric Multiprocessor
Operations
Example

3 Computation DAG
Introduction

4 Performance Measures
Introduction
Running Time Classification

5 Parallel Laws
Work and Span Laws
Speedup and Parallelism
Greedy Scheduler
Scheduling Rises the Following Issue

6 Examples
Parallel Fibonacci
Matrix Multiplication
Parallel Merge-Sort

7 Exercises
Some Exercises you can try!!!

5 / 94

The Model to Be Used

Symmetric Multiprocessor
The model that we will use is the Symmetric Multiprocessor (SMP) where
a shared memory exists.

L3 Cache

L2 Cache L1i Cache

L1d Cache CPU Core 1

CPU Core 3 CPU Core 4

CPU Core 2

L1d Cache

L1d Cache

L1d Cache

L1i Cache

L1i Cache

L1i Cache

L2 Cache

L2 CacheL2 Cache

P-to-P

L3 Cache

L2 Cache L1i Cache

L1d Cache CPU Core 1

CPU Core 3 CPU Core 4

CPU Core 2

L1d Cache

L1d Cache

L1d Cache

L1i Cache

L1i Cache

L1i Cache

L2 Cache

L2 CacheL2 Cache

P-to-P

L3 Cache

L2 Cache L1i Cache

L1d Cache CPU Core 1

CPU Core 3 CPU Core 4

CPU Core 2

L1d Cache

L1d Cache

L1d Cache

L1i Cache

L1i Cache

L1i Cache

L2 Cache

L2 CacheL2 Cache

P-to-P

L3 Cache

L2 Cache L1i Cache

L1d Cache CPU Core 1

CPU Core 3 CPU Core 4

CPU Core 2

L1d Cache

L1d Cache

L1d Cache

L1i Cache

L1i Cache

L1i Cache

L2 Cache

L2 CacheL2 Cache

P-to-P

MAIN SHARED MEMORY

Processor 1 Processor 2 Processor 3 Processor 4

BUS

6 / 94

Dynamic Multi-Threading

Dynamic Multi-Threading
In reality it can be difficult to handle multi-threaded programs in a
SMP.
Thus, we will assume a simple concurrency platform that handles all
the resources:

I Schedules
I Memory
I Etc

It is Called Dynamic Multi-threading.

Dynamic Multi-Threading Computing Operations
Spawn
Sync
Parallel

7 / 94

Dynamic Multi-Threading

Dynamic Multi-Threading
In reality it can be difficult to handle multi-threaded programs in a
SMP.
Thus, we will assume a simple concurrency platform that handles all
the resources:

I Schedules
I Memory
I Etc

It is Called Dynamic Multi-threading.

Dynamic Multi-Threading Computing Operations
Spawn
Sync
Parallel

7 / 94

Dynamic Multi-Threading

Dynamic Multi-Threading
In reality it can be difficult to handle multi-threaded programs in a
SMP.
Thus, we will assume a simple concurrency platform that handles all
the resources:

I Schedules
I Memory
I Etc

It is Called Dynamic Multi-threading.

Dynamic Multi-Threading Computing Operations
Spawn
Sync
Parallel

7 / 94

Dynamic Multi-Threading

Dynamic Multi-Threading
In reality it can be difficult to handle multi-threaded programs in a
SMP.
Thus, we will assume a simple concurrency platform that handles all
the resources:

I Schedules
I Memory
I Etc

It is Called Dynamic Multi-threading.

Dynamic Multi-Threading Computing Operations
Spawn
Sync
Parallel

7 / 94

Dynamic Multi-Threading

Dynamic Multi-Threading
In reality it can be difficult to handle multi-threaded programs in a
SMP.
Thus, we will assume a simple concurrency platform that handles all
the resources:

I Schedules
I Memory
I Etc

It is Called Dynamic Multi-threading.

Dynamic Multi-Threading Computing Operations
Spawn
Sync
Parallel

7 / 94

Dynamic Multi-Threading

Dynamic Multi-Threading
In reality it can be difficult to handle multi-threaded programs in a
SMP.
Thus, we will assume a simple concurrency platform that handles all
the resources:

I Schedules
I Memory
I Etc

It is Called Dynamic Multi-threading.

Dynamic Multi-Threading Computing Operations
Spawn
Sync
Parallel

7 / 94

Dynamic Multi-Threading

Dynamic Multi-Threading
In reality it can be difficult to handle multi-threaded programs in a
SMP.
Thus, we will assume a simple concurrency platform that handles all
the resources:

I Schedules
I Memory
I Etc

It is Called Dynamic Multi-threading.

Dynamic Multi-Threading Computing Operations
Spawn
Sync
Parallel

7 / 94

Dynamic Multi-Threading

Dynamic Multi-Threading
In reality it can be difficult to handle multi-threaded programs in a
SMP.
Thus, we will assume a simple concurrency platform that handles all
the resources:

I Schedules
I Memory
I Etc

It is Called Dynamic Multi-threading.

Dynamic Multi-Threading Computing Operations
Spawn
Sync
Parallel

7 / 94

Dynamic Multi-Threading

Dynamic Multi-Threading
In reality it can be difficult to handle multi-threaded programs in a
SMP.
Thus, we will assume a simple concurrency platform that handles all
the resources:

I Schedules
I Memory
I Etc

It is Called Dynamic Multi-threading.

Dynamic Multi-Threading Computing Operations
Spawn
Sync
Parallel

7 / 94

Dynamic Multi-Threading

Dynamic Multi-Threading
In reality it can be difficult to handle multi-threaded programs in a
SMP.
Thus, we will assume a simple concurrency platform that handles all
the resources:

I Schedules
I Memory
I Etc

It is Called Dynamic Multi-threading.

Dynamic Multi-Threading Computing Operations
Spawn
Sync
Parallel

7 / 94

Outline
1 Introduction

Why Multi-Threaded Algorithms?
2 Model To Be Used

Symmetric Multiprocessor
Operations
Example

3 Computation DAG
Introduction

4 Performance Measures
Introduction
Running Time Classification

5 Parallel Laws
Work and Span Laws
Speedup and Parallelism
Greedy Scheduler
Scheduling Rises the Following Issue

6 Examples
Parallel Fibonacci
Matrix Multiplication
Parallel Merge-Sort

7 Exercises
Some Exercises you can try!!!

8 / 94

SPAWN

SPAWN
When called before a procedure, the parent procedure may continue to
execute in parallel.

Note
The keyword spawn does not say anything about concurrent
execution, but it can happen.
The Scheduler decide which computations should run concurrently.

9 / 94

SPAWN

SPAWN
When called before a procedure, the parent procedure may continue to
execute in parallel.

Note
The keyword spawn does not say anything about concurrent
execution, but it can happen.
The Scheduler decide which computations should run concurrently.

9 / 94

SPAWN

SPAWN
When called before a procedure, the parent procedure may continue to
execute in parallel.

Note
The keyword spawn does not say anything about concurrent
execution, but it can happen.
The Scheduler decide which computations should run concurrently.

9 / 94

SYNC AND PARALLEL

SYNC
The keyword sync indicates that the procedure must wait for all its
spawned children to complete.

PARALLEL
This operation applies to loops, which make possible to execute the body
of the loop in parallel.

10 / 94

SYNC AND PARALLEL

SYNC
The keyword sync indicates that the procedure must wait for all its
spawned children to complete.

PARALLEL
This operation applies to loops, which make possible to execute the body
of the loop in parallel.

10 / 94

Outline
1 Introduction

Why Multi-Threaded Algorithms?
2 Model To Be Used

Symmetric Multiprocessor
Operations
Example

3 Computation DAG
Introduction

4 Performance Measures
Introduction
Running Time Classification

5 Parallel Laws
Work and Span Laws
Speedup and Parallelism
Greedy Scheduler
Scheduling Rises the Following Issue

6 Examples
Parallel Fibonacci
Matrix Multiplication
Parallel Merge-Sort

7 Exercises
Some Exercises you can try!!!

11 / 94

A Classic Parallel Piece of Code: Fibonacci Numbers

Fibonacci’s Definition
F0 = 0
F1 = 1
Fi = Fi−1 + Fi−2 for i > 1.

Naive Algorithm
Fibonacci(n)

1 if n ≤ 1 then
2 return n
3 else x = Fibonacci(n − 1)
4 y = Fibonacci(n − 2)
5 return x + y

12 / 94

A Classic Parallel Piece of Code: Fibonacci Numbers

Fibonacci’s Definition
F0 = 0
F1 = 1
Fi = Fi−1 + Fi−2 for i > 1.

Naive Algorithm
Fibonacci(n)

1 if n ≤ 1 then
2 return n
3 else x = Fibonacci(n − 1)
4 y = Fibonacci(n − 2)
5 return x + y

12 / 94

Time Complexity

Recursion and Complexity
Recursion T (n)=T (n − 1) + T (n − 2) + Θ (1).
Complexity T (n) = Θ (Fn) = Θ (φn), φ = 1+

√
5

2 .

13 / 94

Time Complexity

Recursion and Complexity
Recursion T (n)=T (n − 1) + T (n − 2) + Θ (1).
Complexity T (n) = Θ (Fn) = Θ (φn), φ = 1+

√
5

2 .

13 / 94

There is a Better Way

We can order the first tree numbers in the sequence as(
F2 F1
F1 F0

)
=
(

1 1
1 0

)

Then
(

F2 F1
F1 F0

)(
F2 F1
F1 F0

)
=
(

1 1
1 0

)(
1 1
1 0

)

=
(

2 1
1 1

)

=
(

F3 F2
F2 F1

)

14 / 94

There is a Better Way

We can order the first tree numbers in the sequence as(
F2 F1
F1 F0

)
=
(

1 1
1 0

)

Then
(

F2 F1
F1 F0

)(
F2 F1
F1 F0

)
=
(

1 1
1 0

)(
1 1
1 0

)

=
(

2 1
1 1

)

=
(

F3 F2
F2 F1

)

14 / 94

There is a Better Way

Calculating in O(log n) when n is a power of 2(
1 1
1 0

)n
=
(

F (n + 1) F (n)
F (n) F (n − 1)

)

Thus
(

1 1
1 0

) n
2
(

1 1
1 0

) n
2

=
(

F
(

n
2 + 1

)
F
(

n
2

)
F
(

n
2

)
F
(

n
2 − 1

))(F
(

n
2 + 1

)
F
(

n
2

)
F
(

n
2

)
F
(

n
2 − 1

))

However...
We will use the naive version to illustrate the principles of parallel
programming.

15 / 94

There is a Better Way

Calculating in O(log n) when n is a power of 2(
1 1
1 0

)n
=
(

F (n + 1) F (n)
F (n) F (n − 1)

)

Thus
(

1 1
1 0

) n
2
(

1 1
1 0

) n
2

=
(

F
(

n
2 + 1

)
F
(

n
2

)
F
(

n
2

)
F
(

n
2 − 1

))(F
(

n
2 + 1

)
F
(

n
2

)
F
(

n
2

)
F
(

n
2 − 1

))

However...
We will use the naive version to illustrate the principles of parallel
programming.

15 / 94

The Concurrent Code

Parallel Algorithm
PFibonacci(n)

1 if n ≤ 1 then
2 return n
3 else x = spawn Fibonacci(n − 1)
4 y = Fibonacci(n − 2)
5 sync
6 return x + y

16 / 94

The Concurrent Code

Parallel Algorithm
PFibonacci(n)

1 if n ≤ 1 then
2 return n
3 else x = spawn Fibonacci(n − 1)
4 y = Fibonacci(n − 2)
5 sync
6 return x + y

16 / 94

The Concurrent Code

Parallel Algorithm
PFibonacci(n)

1 if n ≤ 1 then
2 return n
3 else x = spawn Fibonacci(n − 1)
4 y = Fibonacci(n − 2)
5 sync
6 return x + y

16 / 94

Outline
1 Introduction

Why Multi-Threaded Algorithms?
2 Model To Be Used

Symmetric Multiprocessor
Operations
Example

3 Computation DAG
Introduction

4 Performance Measures
Introduction
Running Time Classification

5 Parallel Laws
Work and Span Laws
Speedup and Parallelism
Greedy Scheduler
Scheduling Rises the Following Issue

6 Examples
Parallel Fibonacci
Matrix Multiplication
Parallel Merge-Sort

7 Exercises
Some Exercises you can try!!!

17 / 94

How do we compute a complexity? Computation DAG

Definition
A directed acyclic G = (V ,E) graph where

The vertices V are sets of instructions.
The edges E represent dependencies between sets of instructions i.e.
(u, v) instruction u before v.

Notes
A set of instructions without any parallel control are grouped in a
strand.
Thus, V represents a set of strands and E represents dependencies
between strands induced by parallel control.
A strand of maximal length will be called a thread.

18 / 94

How do we compute a complexity? Computation DAG

Definition
A directed acyclic G = (V ,E) graph where

The vertices V are sets of instructions.
The edges E represent dependencies between sets of instructions i.e.
(u, v) instruction u before v.

Notes
A set of instructions without any parallel control are grouped in a
strand.
Thus, V represents a set of strands and E represents dependencies
between strands induced by parallel control.
A strand of maximal length will be called a thread.

18 / 94

How do we compute a complexity? Computation DAG

Definition
A directed acyclic G = (V ,E) graph where

The vertices V are sets of instructions.
The edges E represent dependencies between sets of instructions i.e.
(u, v) instruction u before v.

Notes
A set of instructions without any parallel control are grouped in a
strand.
Thus, V represents a set of strands and E represents dependencies
between strands induced by parallel control.
A strand of maximal length will be called a thread.

18 / 94

How do we compute a complexity? Computation DAG

Definition
A directed acyclic G = (V ,E) graph where

The vertices V are sets of instructions.
The edges E represent dependencies between sets of instructions i.e.
(u, v) instruction u before v.

Notes
A set of instructions without any parallel control are grouped in a
strand.
Thus, V represents a set of strands and E represents dependencies
between strands induced by parallel control.
A strand of maximal length will be called a thread.

18 / 94

How do we compute a complexity? Computation DAG

Definition
A directed acyclic G = (V ,E) graph where

The vertices V are sets of instructions.
The edges E represent dependencies between sets of instructions i.e.
(u, v) instruction u before v.

Notes
A set of instructions without any parallel control are grouped in a
strand.
Thus, V represents a set of strands and E represents dependencies
between strands induced by parallel control.
A strand of maximal length will be called a thread.

18 / 94

How do we compute a complexity? Computation DAG

Definition
A directed acyclic G = (V ,E) graph where

The vertices V are sets of instructions.
The edges E represent dependencies between sets of instructions i.e.
(u, v) instruction u before v.

Notes
A set of instructions without any parallel control are grouped in a
strand.
Thus, V represents a set of strands and E represents dependencies
between strands induced by parallel control.
A strand of maximal length will be called a thread.

18 / 94

How do we compute a complexity? Computation DAG

Thus
If there is an edge between thread u and v, then they are said to be
(logically) in series.
If there is no edge, then they are said to be (logically) in parallel.

19 / 94

How do we compute a complexity? Computation DAG

Thus
If there is an edge between thread u and v, then they are said to be
(logically) in series.
If there is no edge, then they are said to be (logically) in parallel.

19 / 94

Example: PFibonacci(4)

Example
PFibonacci(4)

PFibonacci(3) PFibonacci(2)

PFibonacci(2)

PFibonacci(1) PFibonacci(1)

PFibonacci(1) PFibonacci(0)

PFibonacci(0)

20 / 94

Edge Classification

Continuation Edge
A continuation edge (u, v) connects a thread u to its successor v within
the same procedure instance.

Spawned Edge
When a thread u spawns a new thread v, then (u, v) is called a spawned
edge.

Call Edges
Call edges represent normal procedure call.

Return Edge
Return edge signals when a thread v returns to its calling procedure.

21 / 94

Edge Classification

Continuation Edge
A continuation edge (u, v) connects a thread u to its successor v within
the same procedure instance.

Spawned Edge
When a thread u spawns a new thread v, then (u, v) is called a spawned
edge.

Call Edges
Call edges represent normal procedure call.

Return Edge
Return edge signals when a thread v returns to its calling procedure.

21 / 94

Edge Classification

Continuation Edge
A continuation edge (u, v) connects a thread u to its successor v within
the same procedure instance.

Spawned Edge
When a thread u spawns a new thread v, then (u, v) is called a spawned
edge.

Call Edges
Call edges represent normal procedure call.

Return Edge
Return edge signals when a thread v returns to its calling procedure.

21 / 94

Edge Classification

Continuation Edge
A continuation edge (u, v) connects a thread u to its successor v within
the same procedure instance.

Spawned Edge
When a thread u spawns a new thread v, then (u, v) is called a spawned
edge.

Call Edges
Call edges represent normal procedure call.

Return Edge
Return edge signals when a thread v returns to its calling procedure.

21 / 94

Example: PFibonacci(4)

The Different Edges

PFibonacci(4)

PFibonacci(3) PFibonacci(2)

PFibonacci(2)

PFibonacci(1) PFibonacci(1)

PFibonacci(1) PFibonacci(0)

PFibonacci(0)

Init Thread

Spawn Edge

Continuation Edge

Return Edge

Final Thread

Call Edge

22 / 94

Outline
1 Introduction

Why Multi-Threaded Algorithms?
2 Model To Be Used

Symmetric Multiprocessor
Operations
Example

3 Computation DAG
Introduction

4 Performance Measures
Introduction
Running Time Classification

5 Parallel Laws
Work and Span Laws
Speedup and Parallelism
Greedy Scheduler
Scheduling Rises the Following Issue

6 Examples
Parallel Fibonacci
Matrix Multiplication
Parallel Merge-Sort

7 Exercises
Some Exercises you can try!!!

23 / 94

Performance Measures

WORK
The work of a multi-threaded computation is the total time to execute the
entire computation on one processor.

Work =
∑
i∈I

Time (Threadi)

SPAN
The span is the longest time to execute the strands along any path of the
DAG.

In a DAG which each strand takes unit time, the span equals the
number of vertices on a longest or critical path in the DAG.

24 / 94

Performance Measures

WORK
The work of a multi-threaded computation is the total time to execute the
entire computation on one processor.

Work =
∑
i∈I

Time (Threadi)

SPAN
The span is the longest time to execute the strands along any path of the
DAG.

In a DAG which each strand takes unit time, the span equals the
number of vertices on a longest or critical path in the DAG.

24 / 94

Example: PFibonacci(4)

Example

Critical Path

PFibonacci(4)

PFibonacci(3) PFibonacci(2)

PFibonacci(2)

PFibonacci(1) PFibonacci(1)

PFibonacci(1) PFibonacci(0)

PFibonacci(0)

25 / 94

Example

Example
In Fibonacci(4), we have

I 17 threads.
I 8 vertices in the longest path

We have that
Assuming unit time

I WORK=17 time units
I SPAN=8 time units

Note
Running time not only depends on work and span but

I Available Cores
I Scheduler Policies

26 / 94

Example

Example
In Fibonacci(4), we have

I 17 threads.
I 8 vertices in the longest path

We have that
Assuming unit time

I WORK=17 time units
I SPAN=8 time units

Note
Running time not only depends on work and span but

I Available Cores
I Scheduler Policies

26 / 94

Example

Example
In Fibonacci(4), we have

I 17 threads.
I 8 vertices in the longest path

We have that
Assuming unit time

I WORK=17 time units
I SPAN=8 time units

Note
Running time not only depends on work and span but

I Available Cores
I Scheduler Policies

26 / 94

Example

Example
In Fibonacci(4), we have

I 17 threads.
I 8 vertices in the longest path

We have that
Assuming unit time

I WORK=17 time units
I SPAN=8 time units

Note
Running time not only depends on work and span but

I Available Cores
I Scheduler Policies

26 / 94

Example

Example
In Fibonacci(4), we have

I 17 threads.
I 8 vertices in the longest path

We have that
Assuming unit time

I WORK=17 time units
I SPAN=8 time units

Note
Running time not only depends on work and span but

I Available Cores
I Scheduler Policies

26 / 94

Example

Example
In Fibonacci(4), we have

I 17 threads.
I 8 vertices in the longest path

We have that
Assuming unit time

I WORK=17 time units
I SPAN=8 time units

Note
Running time not only depends on work and span but

I Available Cores
I Scheduler Policies

26 / 94

Example

Example
In Fibonacci(4), we have

I 17 threads.
I 8 vertices in the longest path

We have that
Assuming unit time

I WORK=17 time units
I SPAN=8 time units

Note
Running time not only depends on work and span but

I Available Cores
I Scheduler Policies

26 / 94

Example

Example
In Fibonacci(4), we have

I 17 threads.
I 8 vertices in the longest path

We have that
Assuming unit time

I WORK=17 time units
I SPAN=8 time units

Note
Running time not only depends on work and span but

I Available Cores
I Scheduler Policies

26 / 94

Example

Example
In Fibonacci(4), we have

I 17 threads.
I 8 vertices in the longest path

We have that
Assuming unit time

I WORK=17 time units
I SPAN=8 time units

Note
Running time not only depends on work and span but

I Available Cores
I Scheduler Policies

26 / 94

Outline
1 Introduction

Why Multi-Threaded Algorithms?
2 Model To Be Used

Symmetric Multiprocessor
Operations
Example

3 Computation DAG
Introduction

4 Performance Measures
Introduction
Running Time Classification

5 Parallel Laws
Work and Span Laws
Speedup and Parallelism
Greedy Scheduler
Scheduling Rises the Following Issue

6 Examples
Parallel Fibonacci
Matrix Multiplication
Parallel Merge-Sort

7 Exercises
Some Exercises you can try!!!

27 / 94

Running Time Classification

Single Processor
T1 running time on a single processor.

Multiple Processors
Tp running time on P processors.

Unlimited Processors
T∞ running time on unlimited processors, also called the span, if we
run each strand on its own processor.

28 / 94

Running Time Classification

Single Processor
T1 running time on a single processor.

Multiple Processors
Tp running time on P processors.

Unlimited Processors
T∞ running time on unlimited processors, also called the span, if we
run each strand on its own processor.

28 / 94

Running Time Classification

Single Processor
T1 running time on a single processor.

Multiple Processors
Tp running time on P processors.

Unlimited Processors
T∞ running time on unlimited processors, also called the span, if we
run each strand on its own processor.

28 / 94

Outline
1 Introduction

Why Multi-Threaded Algorithms?
2 Model To Be Used

Symmetric Multiprocessor
Operations
Example

3 Computation DAG
Introduction

4 Performance Measures
Introduction
Running Time Classification

5 Parallel Laws
Work and Span Laws
Speedup and Parallelism
Greedy Scheduler
Scheduling Rises the Following Issue

6 Examples
Parallel Fibonacci
Matrix Multiplication
Parallel Merge-Sort

7 Exercises
Some Exercises you can try!!!

29 / 94

Work Law

Definition
In one step, an ideal parallel computer with P processors can do:

I At most P units of work.
I Thus in TP time, it can perform at most PTP work.

PTP ≥ T1 =⇒ Tp ≥
T1

P

30 / 94

Work Law

Definition
In one step, an ideal parallel computer with P processors can do:

I At most P units of work.
I Thus in TP time, it can perform at most PTP work.

PTP ≥ T1 =⇒ Tp ≥
T1

P

30 / 94

Work Law

Definition
In one step, an ideal parallel computer with P processors can do:

I At most P units of work.
I Thus in TP time, it can perform at most PTP work.

PTP ≥ T1 =⇒ Tp ≥
T1

P

30 / 94

Work Law

Definition
In one step, an ideal parallel computer with P processors can do:

I At most P units of work.
I Thus in TP time, it can perform at most PTP work.

PTP ≥ T1 =⇒ Tp ≥
T1

P

30 / 94

Span Law

Definition
A P-processor ideal parallel computer cannot run faster than a
machine with unlimited number of processors.
However, a computer with unlimited number of processors can
emulate a P-processor machine by using simply P of its processors.
Therefore,

TP ≥ T∞

31 / 94

Span Law

Definition
A P-processor ideal parallel computer cannot run faster than a
machine with unlimited number of processors.
However, a computer with unlimited number of processors can
emulate a P-processor machine by using simply P of its processors.
Therefore,

TP ≥ T∞

31 / 94

Work Calculations: Serial

Serial Computations

A B

Note
Work: T1 (A ∪ B) = T1 (A) + T1 (B).
Span: T∞ (A ∪ B) = T∞ (A) + T∞ (B).

32 / 94

Work Calculations: Serial

Serial Computations

A B

Note
Work: T1 (A ∪ B) = T1 (A) + T1 (B).
Span: T∞ (A ∪ B) = T∞ (A) + T∞ (B).

32 / 94

Work Calculations: Serial

Serial Computations

A B

Note
Work: T1 (A ∪ B) = T1 (A) + T1 (B).
Span: T∞ (A ∪ B) = T∞ (A) + T∞ (B).

32 / 94

Work Calculations: Parallel

Parallel Computations

A

B

Note
Work: T1 (A ∪ B) = T1 (A) + T1 (B).
Span: T∞ (A ∪ B) = max {T∞ (A) ,T∞ (B)}.

33 / 94

Work Calculations: Parallel

Parallel Computations

A

B

Note
Work: T1 (A ∪ B) = T1 (A) + T1 (B).
Span: T∞ (A ∪ B) = max {T∞ (A) ,T∞ (B)}.

33 / 94

Work Calculations: Parallel

Parallel Computations

A

B

Note
Work: T1 (A ∪ B) = T1 (A) + T1 (B).
Span: T∞ (A ∪ B) = max {T∞ (A) ,T∞ (B)}.

33 / 94

Outline
1 Introduction

Why Multi-Threaded Algorithms?
2 Model To Be Used

Symmetric Multiprocessor
Operations
Example

3 Computation DAG
Introduction

4 Performance Measures
Introduction
Running Time Classification

5 Parallel Laws
Work and Span Laws
Speedup and Parallelism
Greedy Scheduler
Scheduling Rises the Following Issue

6 Examples
Parallel Fibonacci
Matrix Multiplication
Parallel Merge-Sort

7 Exercises
Some Exercises you can try!!!

34 / 94

Speedup and Parallelism

Speed up
The speed up of a computation on P processors is defined as T1

TP
.

Then, by work law T1
TP
≤ P. Thus, the speedup on P processors can

be at most P.

Notes
Linear Speedup when T1

TP
= Θ (P).

Perfect Linear Speedup when T1
TP

= P.

Parallelism
The parallelism of a computation on P processors is defined as T1

T∞
.

I In specific, we are looking to have a lot of parallelism.
I This changes from Algorithm to Algorithm.

35 / 94

Speedup and Parallelism

Speed up
The speed up of a computation on P processors is defined as T1

TP
.

Then, by work law T1
TP
≤ P. Thus, the speedup on P processors can

be at most P.

Notes
Linear Speedup when T1

TP
= Θ (P).

Perfect Linear Speedup when T1
TP

= P.

Parallelism
The parallelism of a computation on P processors is defined as T1

T∞
.

I In specific, we are looking to have a lot of parallelism.
I This changes from Algorithm to Algorithm.

35 / 94

Speedup and Parallelism

Speed up
The speed up of a computation on P processors is defined as T1

TP
.

Then, by work law T1
TP
≤ P. Thus, the speedup on P processors can

be at most P.

Notes
Linear Speedup when T1

TP
= Θ (P).

Perfect Linear Speedup when T1
TP

= P.

Parallelism
The parallelism of a computation on P processors is defined as T1

T∞
.

I In specific, we are looking to have a lot of parallelism.
I This changes from Algorithm to Algorithm.

35 / 94

Speedup and Parallelism

Speed up
The speed up of a computation on P processors is defined as T1

TP
.

Then, by work law T1
TP
≤ P. Thus, the speedup on P processors can

be at most P.

Notes
Linear Speedup when T1

TP
= Θ (P).

Perfect Linear Speedup when T1
TP

= P.

Parallelism
The parallelism of a computation on P processors is defined as T1

T∞
.

I In specific, we are looking to have a lot of parallelism.
I This changes from Algorithm to Algorithm.

35 / 94

Speedup and Parallelism

Speed up
The speed up of a computation on P processors is defined as T1

TP
.

Then, by work law T1
TP
≤ P. Thus, the speedup on P processors can

be at most P.

Notes
Linear Speedup when T1

TP
= Θ (P).

Perfect Linear Speedup when T1
TP

= P.

Parallelism
The parallelism of a computation on P processors is defined as T1

T∞
.

I In specific, we are looking to have a lot of parallelism.
I This changes from Algorithm to Algorithm.

35 / 94

Speedup and Parallelism

Speed up
The speed up of a computation on P processors is defined as T1

TP
.

Then, by work law T1
TP
≤ P. Thus, the speedup on P processors can

be at most P.

Notes
Linear Speedup when T1

TP
= Θ (P).

Perfect Linear Speedup when T1
TP

= P.

Parallelism
The parallelism of a computation on P processors is defined as T1

T∞
.

I In specific, we are looking to have a lot of parallelism.
I This changes from Algorithm to Algorithm.

35 / 94

Speedup and Parallelism

Speed up
The speed up of a computation on P processors is defined as T1

TP
.

Then, by work law T1
TP
≤ P. Thus, the speedup on P processors can

be at most P.

Notes
Linear Speedup when T1

TP
= Θ (P).

Perfect Linear Speedup when T1
TP

= P.

Parallelism
The parallelism of a computation on P processors is defined as T1

T∞
.

I In specific, we are looking to have a lot of parallelism.
I This changes from Algorithm to Algorithm.

35 / 94

Outline
1 Introduction

Why Multi-Threaded Algorithms?
2 Model To Be Used

Symmetric Multiprocessor
Operations
Example

3 Computation DAG
Introduction

4 Performance Measures
Introduction
Running Time Classification

5 Parallel Laws
Work and Span Laws
Speedup and Parallelism
Greedy Scheduler
Scheduling Rises the Following Issue

6 Examples
Parallel Fibonacci
Matrix Multiplication
Parallel Merge-Sort

7 Exercises
Some Exercises you can try!!!

36 / 94

Greedy Scheduler

Definition
A greedy scheduler assigns as many strands to processors as
possible in each time step.

Note
On P processors, if at least P strands are ready to execute during a
time step, then we say that the step is a complete step.
Otherwise we say that it is an incomplete step.
This changes from Algorithm to Algorithm.

37 / 94

Greedy Scheduler

Definition
A greedy scheduler assigns as many strands to processors as
possible in each time step.

Note
On P processors, if at least P strands are ready to execute during a
time step, then we say that the step is a complete step.
Otherwise we say that it is an incomplete step.
This changes from Algorithm to Algorithm.

37 / 94

Greedy Scheduler

Definition
A greedy scheduler assigns as many strands to processors as
possible in each time step.

Note
On P processors, if at least P strands are ready to execute during a
time step, then we say that the step is a complete step.
Otherwise we say that it is an incomplete step.
This changes from Algorithm to Algorithm.

37 / 94

Greedy Scheduler

Definition
A greedy scheduler assigns as many strands to processors as
possible in each time step.

Note
On P processors, if at least P strands are ready to execute during a
time step, then we say that the step is a complete step.
Otherwise we say that it is an incomplete step.
This changes from Algorithm to Algorithm.

37 / 94

Greedy Scheduler Theorem and Corollaries
Theorem 27.1
On an ideal parallel computer with P processors, a greedy scheduler
executes a multi-threaded computation with work T1 and span T∞ in time
TP ≤ T1

P + T∞.

Corollary 27.2
The running time TP of any multi-threaded computation scheduled by a
greedy scheduler on an ideal parallel computer with P processors is within
a factor of 2 of optimal.

Corollary 27.3
Let TP be the running time of a multi-threaded computation produced by
a greedy scheduler on an ideal parallel computer with P processors, and let
T1 and T∞ be the work and span of the computation, respectively. Then,
if P � T1

T∞
(Much Less), we have TP ≈ T1

P , or equivalently, a speedup of
approximately P .

38 / 94

Greedy Scheduler Theorem and Corollaries
Theorem 27.1
On an ideal parallel computer with P processors, a greedy scheduler
executes a multi-threaded computation with work T1 and span T∞ in time
TP ≤ T1

P + T∞.

Corollary 27.2
The running time TP of any multi-threaded computation scheduled by a
greedy scheduler on an ideal parallel computer with P processors is within
a factor of 2 of optimal.

Corollary 27.3
Let TP be the running time of a multi-threaded computation produced by
a greedy scheduler on an ideal parallel computer with P processors, and let
T1 and T∞ be the work and span of the computation, respectively. Then,
if P � T1

T∞
(Much Less), we have TP ≈ T1

P , or equivalently, a speedup of
approximately P .

38 / 94

Greedy Scheduler Theorem and Corollaries
Theorem 27.1
On an ideal parallel computer with P processors, a greedy scheduler
executes a multi-threaded computation with work T1 and span T∞ in time
TP ≤ T1

P + T∞.

Corollary 27.2
The running time TP of any multi-threaded computation scheduled by a
greedy scheduler on an ideal parallel computer with P processors is within
a factor of 2 of optimal.

Corollary 27.3
Let TP be the running time of a multi-threaded computation produced by
a greedy scheduler on an ideal parallel computer with P processors, and let
T1 and T∞ be the work and span of the computation, respectively. Then,
if P � T1

T∞
(Much Less), we have TP ≈ T1

P , or equivalently, a speedup of
approximately P .

38 / 94

Outline
1 Introduction

Why Multi-Threaded Algorithms?
2 Model To Be Used

Symmetric Multiprocessor
Operations
Example

3 Computation DAG
Introduction

4 Performance Measures
Introduction
Running Time Classification

5 Parallel Laws
Work and Span Laws
Speedup and Parallelism
Greedy Scheduler
Scheduling Rises the Following Issue

6 Examples
Parallel Fibonacci
Matrix Multiplication
Parallel Merge-Sort

7 Exercises
Some Exercises you can try!!!

39 / 94

Race Conditions

Determinacy Race
A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a
write.

Example
Race-Example()

1 x = 0
2 parallel for i = 1 to 3 do
3 x = x + 1
4 print x

40 / 94

Race Conditions

Determinacy Race
A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a
write.

Example
Race-Example()

1 x = 0
2 parallel for i = 1 to 3 do
3 x = x + 1
4 print x

40 / 94

Example

Determinacy Race Example

1

2

3

4 5

67

8 910

11

step x r1 r2 r3

1 0
2 0 0
3 0 1
4 0 1 0
5 0 1 0 0
6 0 1 0 1
7 0 1 1 1
8 1 1 1 1
9 1 1 1 1
10 1 1 1 1

41 / 94

Example

NOTE
Although, this is of great importance is beyond the scope of this class:

For More about this topic, we have:
I Maurice Herlihy and Nir Shavit, “The Art of Multiprocessor

Programming,” Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008.

I Andrew S. Tanenbaum, “Modern Operating Systems” (3rd ed.).
Prentice Hall Press, Upper Saddle River, NJ, USA, 2007.

42 / 94

Example

NOTE
Although, this is of great importance is beyond the scope of this class:

For More about this topic, we have:
I Maurice Herlihy and Nir Shavit, “The Art of Multiprocessor

Programming,” Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008.

I Andrew S. Tanenbaum, “Modern Operating Systems” (3rd ed.).
Prentice Hall Press, Upper Saddle River, NJ, USA, 2007.

42 / 94

Example

NOTE
Although, this is of great importance is beyond the scope of this class:

For More about this topic, we have:
I Maurice Herlihy and Nir Shavit, “The Art of Multiprocessor

Programming,” Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008.

I Andrew S. Tanenbaum, “Modern Operating Systems” (3rd ed.).
Prentice Hall Press, Upper Saddle River, NJ, USA, 2007.

42 / 94

Example

NOTE
Although, this is of great importance is beyond the scope of this class:

For More about this topic, we have:
I Maurice Herlihy and Nir Shavit, “The Art of Multiprocessor

Programming,” Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008.

I Andrew S. Tanenbaum, “Modern Operating Systems” (3rd ed.).
Prentice Hall Press, Upper Saddle River, NJ, USA, 2007.

42 / 94

Outline
1 Introduction

Why Multi-Threaded Algorithms?
2 Model To Be Used

Symmetric Multiprocessor
Operations
Example

3 Computation DAG
Introduction

4 Performance Measures
Introduction
Running Time Classification

5 Parallel Laws
Work and Span Laws
Speedup and Parallelism
Greedy Scheduler
Scheduling Rises the Following Issue

6 Examples
Parallel Fibonacci
Matrix Multiplication
Parallel Merge-Sort

7 Exercises
Some Exercises you can try!!!

43 / 94

Example of Complexity: PFibonacci

Complexity

T∞ (n) = max {T∞ (n − 1) ,T∞ (n − 2)}+ Θ (1)

Finally

T∞ (n) = T∞ (n − 1) + Θ (1) = Θ (n)

Parallelism
T1 (n)
T∞ (n) = Θ

(
φn

n

)

44 / 94

Example of Complexity: PFibonacci

Complexity

T∞ (n) = max {T∞ (n − 1) ,T∞ (n − 2)}+ Θ (1)

Finally

T∞ (n) = T∞ (n − 1) + Θ (1) = Θ (n)

Parallelism
T1 (n)
T∞ (n) = Θ

(
φn

n

)

44 / 94

Example of Complexity: PFibonacci

Complexity

T∞ (n) = max {T∞ (n − 1) ,T∞ (n − 2)}+ Θ (1)

Finally

T∞ (n) = T∞ (n − 1) + Θ (1) = Θ (n)

Parallelism
T1 (n)
T∞ (n) = Θ

(
φn

n

)

44 / 94

Outline
1 Introduction

Why Multi-Threaded Algorithms?
2 Model To Be Used

Symmetric Multiprocessor
Operations
Example

3 Computation DAG
Introduction

4 Performance Measures
Introduction
Running Time Classification

5 Parallel Laws
Work and Span Laws
Speedup and Parallelism
Greedy Scheduler
Scheduling Rises the Following Issue

6 Examples
Parallel Fibonacci
Matrix Multiplication
Parallel Merge-Sort

7 Exercises
Some Exercises you can try!!!

45 / 94

Matrix Multiplication

Trick
To multiply two n × n matrices, we perform 8 matrix multiplications of
n
2 ×

n
2 matrices and one addition n × n of matrices.

Idea

A=
(

A11 A12
A21 A22

)
,B =

(
B11 B12
B21 B22

)
, C =

(
C11 C12
C21 C22

)
C =

(
C11 C12
C21 C22

)
=
(

A11 A12
A21 A22

)(
B11 B12
B21 B22

)
= ...

(
A11B11 A11B12
A21B11 A21B12

)
+
(

A12B21 A12B22
A22B21 A22B22

)

46 / 94

Matrix Multiplication

Trick
To multiply two n × n matrices, we perform 8 matrix multiplications of
n
2 ×

n
2 matrices and one addition n × n of matrices.

Idea

A=
(

A11 A12
A21 A22

)
,B =

(
B11 B12
B21 B22

)
, C =

(
C11 C12
C21 C22

)
C =

(
C11 C12
C21 C22

)
=
(

A11 A12
A21 A22

)(
B11 B12
B21 B22

)
= ...

(
A11B11 A11B12
A21B11 A21B12

)
+
(

A12B21 A12B22
A22B21 A22B22

)

46 / 94

Any Idea to Parallelize the Code?

What do you think?
Did you notice the multiplications of sub-matrices?

Then What?
We have for example A11B11 and A12B21!!!

We can do the following

A11B11 + A12B21

47 / 94

Any Idea to Parallelize the Code?

What do you think?
Did you notice the multiplications of sub-matrices?

Then What?
We have for example A11B11 and A12B21!!!

We can do the following

A11B11 + A12B21

47 / 94

Any Idea to Parallelize the Code?

What do you think?
Did you notice the multiplications of sub-matrices?

Then What?
We have for example A11B11 and A12B21!!!

We can do the following

A11B11 + A12B21

47 / 94

The use of the recursion!!!

As always our friend!!!

48 / 94

Pseudo-code of Matrix-Multiply
Matrix −Multiply(C , A, B, n) // The result of A×B in C with n a power of 2 for simplicity

1 if (n == 1)

2 C [1, 1] = A [1, 1] + B [1, 1]
3 else
4 allocate a temporary matrix T [1...n, 1...n]

5 partition A, B, C , T into n
2 ×

n
2 sub-matrices

6 spawn Matrix −Multiply (C11, A11, B11, n/2)
7 spawn Matrix −Multiply (C12, A11, B12, n/2)
8 spawn Matrix −Multiply (C21, A21, B11, n/2)
9 spawn Matrix −Multiply (C22, A21, B12, n/2)
10 spawn Matrix −Multiply (T11, A12, B21, n/2)
11 spawn Matrix −Multiply (T12, A12, B21, n/2)
12 spawn Matrix −Multiply (T21, A22, B21, n/2)

13 Matrix −Multiply (T22, A22, B22, n/2)

14 sync
15 Matrix −Add(C , T , n)

49 / 94

Pseudo-code of Matrix-Multiply
Matrix −Multiply(C , A, B, n) // The result of A×B in C with n a power of 2 for simplicity

1 if (n == 1)

2 C [1, 1] = A [1, 1] + B [1, 1]
3 else
4 allocate a temporary matrix T [1...n, 1...n]

5 partition A, B, C , T into n
2 ×

n
2 sub-matrices

6 spawn Matrix −Multiply (C11, A11, B11, n/2)
7 spawn Matrix −Multiply (C12, A11, B12, n/2)
8 spawn Matrix −Multiply (C21, A21, B11, n/2)
9 spawn Matrix −Multiply (C22, A21, B12, n/2)
10 spawn Matrix −Multiply (T11, A12, B21, n/2)
11 spawn Matrix −Multiply (T12, A12, B21, n/2)
12 spawn Matrix −Multiply (T21, A22, B21, n/2)

13 Matrix −Multiply (T22, A22, B22, n/2)

14 sync
15 Matrix −Add(C , T , n)

49 / 94

Pseudo-code of Matrix-Multiply
Matrix −Multiply(C , A, B, n) // The result of A×B in C with n a power of 2 for simplicity

1 if (n == 1)

2 C [1, 1] = A [1, 1] + B [1, 1]
3 else
4 allocate a temporary matrix T [1...n, 1...n]

5 partition A, B, C , T into n
2 ×

n
2 sub-matrices

6 spawn Matrix −Multiply (C11, A11, B11, n/2)
7 spawn Matrix −Multiply (C12, A11, B12, n/2)
8 spawn Matrix −Multiply (C21, A21, B11, n/2)
9 spawn Matrix −Multiply (C22, A21, B12, n/2)
10 spawn Matrix −Multiply (T11, A12, B21, n/2)
11 spawn Matrix −Multiply (T12, A12, B21, n/2)
12 spawn Matrix −Multiply (T21, A22, B21, n/2)

13 Matrix −Multiply (T22, A22, B22, n/2)

14 sync
15 Matrix −Add(C , T , n)

49 / 94

Pseudo-code of Matrix-Multiply
Matrix −Multiply(C , A, B, n) // The result of A×B in C with n a power of 2 for simplicity

1 if (n == 1)

2 C [1, 1] = A [1, 1] + B [1, 1]
3 else
4 allocate a temporary matrix T [1...n, 1...n]

5 partition A, B, C , T into n
2 ×

n
2 sub-matrices

6 spawn Matrix −Multiply (C11, A11, B11, n/2)
7 spawn Matrix −Multiply (C12, A11, B12, n/2)
8 spawn Matrix −Multiply (C21, A21, B11, n/2)
9 spawn Matrix −Multiply (C22, A21, B12, n/2)
10 spawn Matrix −Multiply (T11, A12, B21, n/2)
11 spawn Matrix −Multiply (T12, A12, B21, n/2)
12 spawn Matrix −Multiply (T21, A22, B21, n/2)

13 Matrix −Multiply (T22, A22, B22, n/2)

14 sync
15 Matrix −Add(C , T , n)

49 / 94

Pseudo-code of Matrix-Multiply
Matrix −Multiply(C , A, B, n) // The result of A×B in C with n a power of 2 for simplicity

1 if (n == 1)

2 C [1, 1] = A [1, 1] + B [1, 1]
3 else
4 allocate a temporary matrix T [1...n, 1...n]

5 partition A, B, C , T into n
2 ×

n
2 sub-matrices

6 spawn Matrix −Multiply (C11, A11, B11, n/2)
7 spawn Matrix −Multiply (C12, A11, B12, n/2)
8 spawn Matrix −Multiply (C21, A21, B11, n/2)
9 spawn Matrix −Multiply (C22, A21, B12, n/2)
10 spawn Matrix −Multiply (T11, A12, B21, n/2)
11 spawn Matrix −Multiply (T12, A12, B21, n/2)
12 spawn Matrix −Multiply (T21, A22, B21, n/2)

13 Matrix −Multiply (T22, A22, B22, n/2)

14 sync
15 Matrix −Add(C , T , n)

49 / 94

Explanation

Lines 1 - 2
Stops the recursion once you have only two numbers to multiply

Line 4
Extra matrix for storing the second matrix in(

A11B11 A11B12
A21B11 A21B12

)
+
(

A12B21 A12B22
A22B21 A22B22

)
︸ ︷︷ ︸

T

Line 5
Do the desired partition!!!

50 / 94

Explanation

Lines 1 - 2
Stops the recursion once you have only two numbers to multiply

Line 4
Extra matrix for storing the second matrix in(

A11B11 A11B12
A21B11 A21B12

)
+
(

A12B21 A12B22
A22B21 A22B22

)
︸ ︷︷ ︸

T

Line 5
Do the desired partition!!!

50 / 94

Explanation

Lines 1 - 2
Stops the recursion once you have only two numbers to multiply

Line 4
Extra matrix for storing the second matrix in(

A11B11 A11B12
A21B11 A21B12

)
+
(

A12B21 A12B22
A22B21 A22B22

)
︸ ︷︷ ︸

T

Line 5
Do the desired partition!!!

50 / 94

Explanation

Lines 6 to 13
Calculating the products in(

A11B11 A11B12
A21B11 A21B12

)
+
(

A12B21 A12B22
A22B21 A22B22

)
Using Recursion and Parallel Computations

Line 14
A barrier to wait until all the parallel computations are done!!!

Line 15
Call Matrix −Add to add C and T .

51 / 94

Explanation

Lines 6 to 13
Calculating the products in(

A11B11 A11B12
A21B11 A21B12

)
+
(

A12B21 A12B22
A22B21 A22B22

)
Using Recursion and Parallel Computations

Line 14
A barrier to wait until all the parallel computations are done!!!

Line 15
Call Matrix −Add to add C and T .

51 / 94

Explanation

Lines 6 to 13
Calculating the products in(

A11B11 A11B12
A21B11 A21B12

)
+
(

A12B21 A12B22
A22B21 A22B22

)
Using Recursion and Parallel Computations

Line 14
A barrier to wait until all the parallel computations are done!!!

Line 15
Call Matrix −Add to add C and T .

51 / 94

Matrix ADD

Matrix Add Code
Matrix −Add(C ,T ,n)
// Add matrices C and T in-place to produce C = C + T

1 if (n == 1)
2 C [1, 1] = C [1, 1] + T [1, 1]
3 else
4 Partition C and T into n

2 ×
n
2 sub-matrices

5 spawn Matrix −Add (C11,T11, n/2)
6 spawn Matrix −Add (C12,T12, n/2)
7 spawn Matrix −Add (C21,T21, n/2)
8 Matrix −Add (C22,T22, n/2)
9 sync

52 / 94

Matrix ADD

Matrix Add Code
Matrix −Add(C ,T ,n)
// Add matrices C and T in-place to produce C = C + T

1 if (n == 1)
2 C [1, 1] = C [1, 1] + T [1, 1]
3 else
4 Partition C and T into n

2 ×
n
2 sub-matrices

5 spawn Matrix −Add (C11,T11, n/2)
6 spawn Matrix −Add (C12,T12, n/2)
7 spawn Matrix −Add (C21,T21, n/2)
8 Matrix −Add (C22,T22, n/2)
9 sync

52 / 94

Matrix ADD

Matrix Add Code
Matrix −Add(C ,T ,n)
// Add matrices C and T in-place to produce C = C + T

1 if (n == 1)
2 C [1, 1] = C [1, 1] + T [1, 1]
3 else
4 Partition C and T into n

2 ×
n
2 sub-matrices

5 spawn Matrix −Add (C11,T11, n/2)
6 spawn Matrix −Add (C12,T12, n/2)
7 spawn Matrix −Add (C21,T21, n/2)
8 Matrix −Add (C22,T22, n/2)
9 sync

52 / 94

Matrix ADD

Matrix Add Code
Matrix −Add(C ,T ,n)
// Add matrices C and T in-place to produce C = C + T

1 if (n == 1)
2 C [1, 1] = C [1, 1] + T [1, 1]
3 else
4 Partition C and T into n

2 ×
n
2 sub-matrices

5 spawn Matrix −Add (C11,T11, n/2)
6 spawn Matrix −Add (C12,T12, n/2)
7 spawn Matrix −Add (C21,T21, n/2)
8 Matrix −Add (C22,T22, n/2)
9 sync

52 / 94

Explanation
Line 1 - 2
Stops the recursion once you have only two numbers to multiply

Line 4
To Partition

C =
(

A11B11 A11B12
A21B11 A21B12

)

T =
(

A12B21 A12B22
A22B21 A22B22

)

In lines 5 to 8
We do the following sum in parallel!!!(

A11B11 A11B12
A21B11 A21B12

)
︸ ︷︷ ︸

C

+
(

A12B21 A12B22
A22B21 A22B22

)
︸ ︷︷ ︸

T
53 / 94

Explanation
Line 1 - 2
Stops the recursion once you have only two numbers to multiply

Line 4
To Partition

C =
(

A11B11 A11B12
A21B11 A21B12

)

T =
(

A12B21 A12B22
A22B21 A22B22

)

In lines 5 to 8
We do the following sum in parallel!!!(

A11B11 A11B12
A21B11 A21B12

)
︸ ︷︷ ︸

C

+
(

A12B21 A12B22
A22B21 A22B22

)
︸ ︷︷ ︸

T
53 / 94

Explanation
Line 1 - 2
Stops the recursion once you have only two numbers to multiply

Line 4
To Partition

C =
(

A11B11 A11B12
A21B11 A21B12

)

T =
(

A12B21 A12B22
A22B21 A22B22

)

In lines 5 to 8
We do the following sum in parallel!!!(

A11B11 A11B12
A21B11 A21B12

)
︸ ︷︷ ︸

C

+
(

A12B21 A12B22
A22B21 A22B22

)
︸ ︷︷ ︸

T
53 / 94

Explanation
Line 1 - 2
Stops the recursion once you have only two numbers to multiply

Line 4
To Partition

C =
(

A11B11 A11B12
A21B11 A21B12

)

T =
(

A12B21 A12B22
A22B21 A22B22

)

In lines 5 to 8
We do the following sum in parallel!!!(

A11B11 A11B12
A21B11 A21B12

)
︸ ︷︷ ︸

C

+
(

A12B21 A12B22
A22B21 A22B22

)
︸ ︷︷ ︸

T
53 / 94

Calculating Complexity of Matrix Multiplication

Work of Matrix Multiplication
The work of T1 (n) of matrix multiplication satisfies the recurrence:

T1 (n) = 8T1

(n
2

)
︸ ︷︷ ︸

The sequential product

+ Θ
(
n2
)

︸ ︷︷ ︸
The sequential sum

= Θ
(
n3
)
.

54 / 94

Calculating Complexity of Matrix Multiplication

Span of Matrix Multiplication

T∞ (n) = T∞
(n

2

)
︸ ︷︷ ︸

The parallel product

+ Θ (log n)︸ ︷︷ ︸
The parallel sum

= Θ
(
log2 n

)

This is because:
T∞

(n
2
)
Matrix Multiplication is taking n

2 ×
n
2 matrices at the same

time because parallelism.
Θ (log n) is the span of the addition of the matrices (Remember, we
are using unlimited processors) which has a critical path of length
log n.

55 / 94

Calculating Complexity of Matrix Multiplication

Span of Matrix Multiplication

T∞ (n) = T∞
(n

2

)
︸ ︷︷ ︸

The parallel product

+ Θ (log n)︸ ︷︷ ︸
The parallel sum

= Θ
(
log2 n

)

This is because:
T∞

(n
2
)
Matrix Multiplication is taking n

2 ×
n
2 matrices at the same

time because parallelism.
Θ (log n) is the span of the addition of the matrices (Remember, we
are using unlimited processors) which has a critical path of length
log n.

55 / 94

Calculating Complexity of Matrix Multiplication

Span of Matrix Multiplication

T∞ (n) = T∞
(n

2

)
︸ ︷︷ ︸

The parallel product

+ Θ (log n)︸ ︷︷ ︸
The parallel sum

= Θ
(
log2 n

)

This is because:
T∞

(n
2
)
Matrix Multiplication is taking n

2 ×
n
2 matrices at the same

time because parallelism.
Θ (log n) is the span of the addition of the matrices (Remember, we
are using unlimited processors) which has a critical path of length
log n.

55 / 94

Collapsing the sum

Parallel Sum

+ +

56 / 94

How much Parallelism?

The Final Parallelism in this Algorithm is
T1 (n)
T∞ (n) = Θ

(
n3

log2 n

)
Quite A Lot!!!

57 / 94

Outline
1 Introduction

Why Multi-Threaded Algorithms?
2 Model To Be Used

Symmetric Multiprocessor
Operations
Example

3 Computation DAG
Introduction

4 Performance Measures
Introduction
Running Time Classification

5 Parallel Laws
Work and Span Laws
Speedup and Parallelism
Greedy Scheduler
Scheduling Rises the Following Issue

6 Examples
Parallel Fibonacci
Matrix Multiplication
Parallel Merge-Sort

7 Exercises
Some Exercises you can try!!!

58 / 94

Merge-Sort : The Serial Version

We have
Merge − Sort (A, p, r)
Observation: Sort elements in A [p...r]

1 if (p < r) then
2 q = b(p+r)/2c
3 Merge − Sort (A, p, q)
4 Merge − Sort (A, q + 1, r)
5 Merge (A, p, q, r)

59 / 94

Merge-Sort : The Parallel Version

We have
Merge − Sort (A, p, r)
Observation: Sort elements in A [p...r]

1 if (p < r) then
2 q = b(p+r)/2c
3 spawn Merge − Sort (A, p, q)
4 Merge − Sort (A, q + 1, r) // Not necessary to spawn this
5 sync
6 Merge (A, p, q, r)

60 / 94

Calculating Complexity of This simple Parallel Merge-Sort

Work of Merge-Sort
The work of T1 (n) of this Parallel Merge-Sort satisfies the recurrence:

T1 (n) =
{

Θ (1) if n = 1
2T1

(n
2
)

+ Θ (n) otherwise
= Θ (n log n)

Because the Master Theorem Case 2.

Span

T∞ (n) =
{

Θ (1) if n = 1
T∞

(n
2
)

+ Θ (n) otherwise

We have then
T∞

(n
2
)
sort is taking two sorts at the same time because parallelism.

Then, T∞ (n) = Θ (n) because the Master Theorem Case 3.

61 / 94

Calculating Complexity of This simple Parallel Merge-Sort

Work of Merge-Sort
The work of T1 (n) of this Parallel Merge-Sort satisfies the recurrence:

T1 (n) =
{

Θ (1) if n = 1
2T1

(n
2
)

+ Θ (n) otherwise
= Θ (n log n)

Because the Master Theorem Case 2.

Span

T∞ (n) =
{

Θ (1) if n = 1
T∞

(n
2
)

+ Θ (n) otherwise

We have then
T∞

(n
2
)
sort is taking two sorts at the same time because parallelism.

Then, T∞ (n) = Θ (n) because the Master Theorem Case 3.

61 / 94

Calculating Complexity of This simple Parallel Merge-Sort

Work of Merge-Sort
The work of T1 (n) of this Parallel Merge-Sort satisfies the recurrence:

T1 (n) =
{

Θ (1) if n = 1
2T1

(n
2
)

+ Θ (n) otherwise
= Θ (n log n)

Because the Master Theorem Case 2.

Span

T∞ (n) =
{

Θ (1) if n = 1
T∞

(n
2
)

+ Θ (n) otherwise

We have then
T∞

(n
2
)
sort is taking two sorts at the same time because parallelism.

Then, T∞ (n) = Θ (n) because the Master Theorem Case 3.

61 / 94

Calculating Complexity of This simple Parallel Merge-Sort

Work of Merge-Sort
The work of T1 (n) of this Parallel Merge-Sort satisfies the recurrence:

T1 (n) =
{

Θ (1) if n = 1
2T1

(n
2
)

+ Θ (n) otherwise
= Θ (n log n)

Because the Master Theorem Case 2.

Span

T∞ (n) =
{

Θ (1) if n = 1
T∞

(n
2
)

+ Θ (n) otherwise

We have then
T∞

(n
2
)
sort is taking two sorts at the same time because parallelism.

Then, T∞ (n) = Θ (n) because the Master Theorem Case 3.

61 / 94

How much Parallelism?

The Final Parallelism in this Algorithm is
T1 (n)
T∞ (n) = Θ (log n)

NOT NOT A Lot!!!

62 / 94

Can we improve this?

We have a problem
We have a bottleneck!!! Where?

Yes in the Merge part!!!
We need to improve that bottleneck!!!

63 / 94

Can we improve this?

We have a problem
We have a bottleneck!!! Where?

Yes in the Merge part!!!
We need to improve that bottleneck!!!

63 / 94

Parallel Merge

Example: Here, we use and intermediate array T

64 / 94

Parallel Merge

Step 1. Find x = T [q1] where q1 = b(p1+r1)/2c or the midpoint in
T [p1..r1]

65 / 94

Parallel Merge

Step 2. Use Binary Search in T [p1..r1] to find q2

66 / 94

Then

So that if we insert x between T [q2 − 1] and T [q2]

T
[

p1 · · · q2 − 1 x q2 · · · r1
]
is sorted

67 / 94

Binary Search

It takes a key x and a sub-array T [p..r] and it does
1 If T [p..r] is empty r < p, then it returns the index p.
2 if x ≤ T [p], then it returns p.
3 if x > T [p], then it returns the largest index q in the range

p < q ≤ r + 1 such that T [q − 1] < x.

68 / 94

Binary Search

It takes a key x and a sub-array T [p..r] and it does
1 If T [p..r] is empty r < p, then it returns the index p.
2 if x ≤ T [p], then it returns p.
3 if x > T [p], then it returns the largest index q in the range

p < q ≤ r + 1 such that T [q − 1] < x.

68 / 94

Binary Search

It takes a key x and a sub-array T [p..r] and it does
1 If T [p..r] is empty r < p, then it returns the index p.
2 if x ≤ T [p], then it returns p.
3 if x > T [p], then it returns the largest index q in the range

p < q ≤ r + 1 such that T [q − 1] < x.

68 / 94

Binary Search Code

BINARY-SEARCH(x ,T , p, r)
1 low = p
2 high = max {p, r + 1}
3 while low < high
4 mid =

⌊
log+high

2

⌋
5 if x ≤ T [mid]
6 high = mid
7 else low = mid + 1
8 return high

69 / 94

Binary Search Code

BINARY-SEARCH(x ,T , p, r)
1 low = p
2 high = max {p, r + 1}
3 while low < high
4 mid =

⌊
log+high

2

⌋
5 if x ≤ T [mid]
6 high = mid
7 else low = mid + 1
8 return high

69 / 94

Binary Search Code

BINARY-SEARCH(x ,T , p, r)
1 low = p
2 high = max {p, r + 1}
3 while low < high
4 mid =

⌊
log+high

2

⌋
5 if x ≤ T [mid]
6 high = mid
7 else low = mid + 1
8 return high

69 / 94

Binary Search Code

BINARY-SEARCH(x ,T , p, r)
1 low = p
2 high = max {p, r + 1}
3 while low < high
4 mid =

⌊
log+high

2

⌋
5 if x ≤ T [mid]
6 high = mid
7 else low = mid + 1
8 return high

69 / 94

Binary Search Code

BINARY-SEARCH(x ,T , p, r)
1 low = p
2 high = max {p, r + 1}
3 while low < high
4 mid =

⌊
log+high

2

⌋
5 if x ≤ T [mid]
6 high = mid
7 else low = mid + 1
8 return high

69 / 94

Parallel Merge

Step 3. Copy x in A [q3] where q3 = p3 + (q1 − p1) + (q2 − p2)

70 / 94

Parallel Merge

Step 4. Recursively merge T [p1..q1 − 1] and T [p2..q2 − 1] and place
result into A [p3..q3 − 1]

71 / 94

Parallel Merge

Step 5. Recursively merge T [q1 + 1..r1] and T [q2..r2] and place
result into A [q3 + 1..r3]

72 / 94

The Final Code for Parallel Merge
Par −Merge (T , p1, r1, p2, r2,A, p3)

1 n1 = r1 − p1 + 1, n2 = r2 − p2 + 1
2 if n1 < n2
3 Exchange p1 ↔ p2, r1 ↔ r2,n1 ↔ n2
4 if (n1 == 0)
5 return
6 else
7 q1 = b(p1+r1)/2c
8 q2 = BinarySearch (T [q1] ,T , p2, r2)
9 q3 = p3 + (q1 − p1) + (q2 − p2)
10 A [q3] = T [q1]
11 spawn Par −Merge (T , p1, q1 − 1, p2, q2 − 1,A, p3)
12 Par −Merge (T , q1 + 1, r1, q2 + 1, r2,A, q3 + 1)
13 sync

73 / 94

The Final Code for Parallel Merge
Par −Merge (T , p1, r1, p2, r2,A, p3)

1 n1 = r1 − p1 + 1, n2 = r2 − p2 + 1
2 if n1 < n2
3 Exchange p1 ↔ p2, r1 ↔ r2,n1 ↔ n2
4 if (n1 == 0)
5 return
6 else
7 q1 = b(p1+r1)/2c
8 q2 = BinarySearch (T [q1] ,T , p2, r2)
9 q3 = p3 + (q1 − p1) + (q2 − p2)
10 A [q3] = T [q1]
11 spawn Par −Merge (T , p1, q1 − 1, p2, q2 − 1,A, p3)
12 Par −Merge (T , q1 + 1, r1, q2 + 1, r2,A, q3 + 1)
13 sync

73 / 94

The Final Code for Parallel Merge
Par −Merge (T , p1, r1, p2, r2,A, p3)

1 n1 = r1 − p1 + 1, n2 = r2 − p2 + 1
2 if n1 < n2
3 Exchange p1 ↔ p2, r1 ↔ r2,n1 ↔ n2
4 if (n1 == 0)
5 return
6 else
7 q1 = b(p1+r1)/2c
8 q2 = BinarySearch (T [q1] ,T , p2, r2)
9 q3 = p3 + (q1 − p1) + (q2 − p2)
10 A [q3] = T [q1]
11 spawn Par −Merge (T , p1, q1 − 1, p2, q2 − 1,A, p3)
12 Par −Merge (T , q1 + 1, r1, q2 + 1, r2,A, q3 + 1)
13 sync

73 / 94

The Final Code for Parallel Merge
Par −Merge (T , p1, r1, p2, r2,A, p3)

1 n1 = r1 − p1 + 1, n2 = r2 − p2 + 1
2 if n1 < n2
3 Exchange p1 ↔ p2, r1 ↔ r2,n1 ↔ n2
4 if (n1 == 0)
5 return
6 else
7 q1 = b(p1+r1)/2c
8 q2 = BinarySearch (T [q1] ,T , p2, r2)
9 q3 = p3 + (q1 − p1) + (q2 − p2)
10 A [q3] = T [q1]
11 spawn Par −Merge (T , p1, q1 − 1, p2, q2 − 1,A, p3)
12 Par −Merge (T , q1 + 1, r1, q2 + 1, r2,A, q3 + 1)
13 sync

73 / 94

The Final Code for Parallel Merge
Par −Merge (T , p1, r1, p2, r2,A, p3)

1 n1 = r1 − p1 + 1, n2 = r2 − p2 + 1
2 if n1 < n2
3 Exchange p1 ↔ p2, r1 ↔ r2,n1 ↔ n2
4 if (n1 == 0)
5 return
6 else
7 q1 = b(p1+r1)/2c
8 q2 = BinarySearch (T [q1] ,T , p2, r2)
9 q3 = p3 + (q1 − p1) + (q2 − p2)
10 A [q3] = T [q1]
11 spawn Par −Merge (T , p1, q1 − 1, p2, q2 − 1,A, p3)
12 Par −Merge (T , q1 + 1, r1, q2 + 1, r2,A, q3 + 1)
13 sync

73 / 94

The Final Code for Parallel Merge
Par −Merge (T , p1, r1, p2, r2,A, p3)

1 n1 = r1 − p1 + 1, n2 = r2 − p2 + 1
2 if n1 < n2
3 Exchange p1 ↔ p2, r1 ↔ r2,n1 ↔ n2
4 if (n1 == 0)
5 return
6 else
7 q1 = b(p1+r1)/2c
8 q2 = BinarySearch (T [q1] ,T , p2, r2)
9 q3 = p3 + (q1 − p1) + (q2 − p2)
10 A [q3] = T [q1]
11 spawn Par −Merge (T , p1, q1 − 1, p2, q2 − 1,A, p3)
12 Par −Merge (T , q1 + 1, r1, q2 + 1, r2,A, q3 + 1)
13 sync

73 / 94

Explanation

Line 1
Obtain the length of the two arrays to be merged

Line 2: If one is larger than the other
We exchange the variables to work the largest element!!! In this case we
make n1 ≥ n2

Line 4
if n1 == 0 return nothing to merge!!!

74 / 94

Explanation

Line 1
Obtain the length of the two arrays to be merged

Line 2: If one is larger than the other
We exchange the variables to work the largest element!!! In this case we
make n1 ≥ n2

Line 4
if n1 == 0 return nothing to merge!!!

74 / 94

Explanation

Line 1
Obtain the length of the two arrays to be merged

Line 2: If one is larger than the other
We exchange the variables to work the largest element!!! In this case we
make n1 ≥ n2

Line 4
if n1 == 0 return nothing to merge!!!

74 / 94

Explanation

Line 10
It copies T [q1] directly into A [q3]

Line 11 and 12
They are used to recurse using nested parallelism to merge the sub-arrays
less and greater than x.

Line 13
The sync is used to ensure that the subproblems have completed before
the procedure returns.

75 / 94

Explanation

Line 10
It copies T [q1] directly into A [q3]

Line 11 and 12
They are used to recurse using nested parallelism to merge the sub-arrays
less and greater than x.

Line 13
The sync is used to ensure that the subproblems have completed before
the procedure returns.

75 / 94

Explanation

Line 10
It copies T [q1] directly into A [q3]

Line 11 and 12
They are used to recurse using nested parallelism to merge the sub-arrays
less and greater than x.

Line 13
The sync is used to ensure that the subproblems have completed before
the procedure returns.

75 / 94

First the Span Complexity of Parallel Merge: T∞ (n)

Suppositions
n = n1 + n2

What case should we study?
Remember T∞ (n) = max {T∞ (n1) + T∞ (n2)}

We notice then that
Because lines 3-6 n2 ≤ n1

76 / 94

First the Span Complexity of Parallel Merge: T∞ (n)

Suppositions
n = n1 + n2

What case should we study?
Remember T∞ (n) = max {T∞ (n1) + T∞ (n2)}

We notice then that
Because lines 3-6 n2 ≤ n1

76 / 94

First the Span Complexity of Parallel Merge: T∞ (n)

Suppositions
n = n1 + n2

What case should we study?
Remember T∞ (n) = max {T∞ (n1) + T∞ (n2)}

We notice then that
Because lines 3-6 n2 ≤ n1

76 / 94

Span Complexity of the Parallel Merge with One
Processor: T1 (n)

Then

2n2 ≤ n1 + n2 = n =⇒ n2 ≤ n/2

Thus
In the worst case, a recursive call in lines 11 merges:⌊n1

2
⌋
elements of T [p1...r1] (Remember we are halving the array by

mid-point).
With all n2 elements of T [p2...r2].

77 / 94

Span Complexity of the Parallel Merge with One
Processor: T1 (n)

Then

2n2 ≤ n1 + n2 = n =⇒ n2 ≤ n/2

Thus
In the worst case, a recursive call in lines 11 merges:⌊n1

2
⌋
elements of T [p1...r1] (Remember we are halving the array by

mid-point).
With all n2 elements of T [p2...r2].

77 / 94

Span Complexity of the Parallel Merge with One
Processor: T1 (n)

Then

2n2 ≤ n1 + n2 = n =⇒ n2 ≤ n/2

Thus
In the worst case, a recursive call in lines 11 merges:⌊n1

2
⌋
elements of T [p1...r1] (Remember we are halving the array by

mid-point).
With all n2 elements of T [p2...r2].

77 / 94

Span Complexity of the Parallel Merge with One
Processor: T1 (n)

Then

2n2 ≤ n1 + n2 = n =⇒ n2 ≤ n/2

Thus
In the worst case, a recursive call in lines 11 merges:⌊n1

2
⌋
elements of T [p1...r1] (Remember we are halving the array by

mid-point).
With all n2 elements of T [p2...r2].

77 / 94

Span Complexity of the Parallel Merge with One
Processor: T1 (n)

Thus, the number of elements involved in such a call is
⌊n1

2

⌋
+ n2 ≤

n1
2 + n2

2 + n2
2

≤ n1
2 + n2

2 +
n/2

2
= n1 + n2

2 + n
4

≤ n
2 + n

4 = 3n
4

78 / 94

Span Complexity of the Parallel Merge with One
Processor: T1 (n)

Thus, the number of elements involved in such a call is
⌊n1

2

⌋
+ n2 ≤

n1
2 + n2

2 + n2
2

≤ n1
2 + n2

2 +
n/2

2
= n1 + n2

2 + n
4

≤ n
2 + n

4 = 3n
4

78 / 94

Span Complexity of the Parallel Merge with One
Processor: T1 (n)

Thus, the number of elements involved in such a call is
⌊n1

2

⌋
+ n2 ≤

n1
2 + n2

2 + n2
2

≤ n1
2 + n2

2 +
n/2

2
= n1 + n2

2 + n
4

≤ n
2 + n

4 = 3n
4

78 / 94

Span Complexity of the Parallel Merge with One
Processor: T1 (n)

Thus, the number of elements involved in such a call is
⌊n1

2

⌋
+ n2 ≤

n1
2 + n2

2 + n2
2

≤ n1
2 + n2

2 +
n/2

2
= n1 + n2

2 + n
4

≤ n
2 + n

4 = 3n
4

78 / 94

Span Complexity of the Parallel Merge with One
Processor: T1 (n)

Knowing that the Binary Search takes

Θ (log n)

We get the span for parallel merge

T∞ (n) = T∞
(3n

4

)
+ Θ (log n)

This can can be solved using the exercise 4.6-2 in the Cormen’s Book

T∞ (n) = Θ
(
log2 n

)

79 / 94

Span Complexity of the Parallel Merge with One
Processor: T1 (n)

Knowing that the Binary Search takes

Θ (log n)

We get the span for parallel merge

T∞ (n) = T∞
(3n

4

)
+ Θ (log n)

This can can be solved using the exercise 4.6-2 in the Cormen’s Book

T∞ (n) = Θ
(
log2 n

)

79 / 94

Span Complexity of the Parallel Merge with One
Processor: T1 (n)

Knowing that the Binary Search takes

Θ (log n)

We get the span for parallel merge

T∞ (n) = T∞
(3n

4

)
+ Θ (log n)

This can can be solved using the exercise 4.6-2 in the Cormen’s Book

T∞ (n) = Θ
(
log2 n

)

79 / 94

Calculating Work Complexity of Parallel Merge

Ok!!! We need to calculate the WORK

T1 (n) = Θ (Something)

Thus
We need to calculate the upper and lower bound.

80 / 94

Calculating Work Complexity of Parallel Merge

Ok!!! We need to calculate the WORK

T1 (n) = Θ (Something)

Thus
We need to calculate the upper and lower bound.

80 / 94

Calculating Work Complexity of Parallel Merge
Work of Parallel Merge
The work of T1 (n) of this Parallel Merge satisfies:

T1 (n) = Ω (n)

Because each of the n elements must be copied from array T to array
A.

What about the Upper Bound O?
First notice that we can have a merge with

n
4 elements when we have we have the worst case of

⌊n1
2
⌋

+ n2 in the
other merge.
And 3n

4 for the worst case.
And the work of the Binary Search of O (log n)

81 / 94

Calculating Work Complexity of Parallel Merge
Work of Parallel Merge
The work of T1 (n) of this Parallel Merge satisfies:

T1 (n) = Ω (n)

Because each of the n elements must be copied from array T to array
A.

What about the Upper Bound O?
First notice that we can have a merge with

n
4 elements when we have we have the worst case of

⌊n1
2
⌋

+ n2 in the
other merge.
And 3n

4 for the worst case.
And the work of the Binary Search of O (log n)

81 / 94

Calculating Work Complexity of Parallel Merge
Work of Parallel Merge
The work of T1 (n) of this Parallel Merge satisfies:

T1 (n) = Ω (n)

Because each of the n elements must be copied from array T to array
A.

What about the Upper Bound O?
First notice that we can have a merge with

n
4 elements when we have we have the worst case of

⌊n1
2
⌋

+ n2 in the
other merge.
And 3n

4 for the worst case.
And the work of the Binary Search of O (log n)

81 / 94

Calculating Work Complexity of Parallel Merge
Work of Parallel Merge
The work of T1 (n) of this Parallel Merge satisfies:

T1 (n) = Ω (n)

Because each of the n elements must be copied from array T to array
A.

What about the Upper Bound O?
First notice that we can have a merge with

n
4 elements when we have we have the worst case of

⌊n1
2
⌋

+ n2 in the
other merge.
And 3n

4 for the worst case.
And the work of the Binary Search of O (log n)

81 / 94

Calculating Work Complexity of Parallel Merge
Work of Parallel Merge
The work of T1 (n) of this Parallel Merge satisfies:

T1 (n) = Ω (n)

Because each of the n elements must be copied from array T to array
A.

What about the Upper Bound O?
First notice that we can have a merge with

n
4 elements when we have we have the worst case of

⌊n1
2
⌋

+ n2 in the
other merge.
And 3n

4 for the worst case.
And the work of the Binary Search of O (log n)

81 / 94

Calculating Work Complexity of Parallel Merge
Work of Parallel Merge
The work of T1 (n) of this Parallel Merge satisfies:

T1 (n) = Ω (n)

Because each of the n elements must be copied from array T to array
A.

What about the Upper Bound O?
First notice that we can have a merge with

n
4 elements when we have we have the worst case of

⌊n1
2
⌋

+ n2 in the
other merge.
And 3n

4 for the worst case.
And the work of the Binary Search of O (log n)

81 / 94

Calculating Work Complexity of Parallel Merge
Work of Parallel Merge
The work of T1 (n) of this Parallel Merge satisfies:

T1 (n) = Ω (n)

Because each of the n elements must be copied from array T to array
A.

What about the Upper Bound O?
First notice that we can have a merge with

n
4 elements when we have we have the worst case of

⌊n1
2
⌋

+ n2 in the
other merge.
And 3n

4 for the worst case.
And the work of the Binary Search of O (log n)

81 / 94

Calculating Work Complexity of Parallel Merge

Then
Then, for some α ∈

[
1
4 ,

3
4

]
, then we have the following recursion for the

Parallel Merge when we have one processor:

T1 (n) = T1 (αn) + T1 ((1− α) n)︸ ︷︷ ︸
Merge Part

+ Θ (log n)︸ ︷︷ ︸
Binary Search

Remark: α varies at each level of the recursion!!!

82 / 94

Calculating Work Complexity of Parallel Merge

Then
Then, for some α ∈

[
1
4 ,

3
4

]
, then we have the following recursion for the

Parallel Merge when we have one processor:

T1 (n) = T1 (αn) + T1 ((1− α) n)︸ ︷︷ ︸
Merge Part

+ Θ (log n)︸ ︷︷ ︸
Binary Search

Remark: α varies at each level of the recursion!!!

82 / 94

Calculating Work Complexity of Parallel Merge

Then
Then, for some α ∈

[
1
4 ,

3
4

]
, then we have the following recursion for the

Parallel Merge when we have one processor:

T1 (n) = T1 (αn) + T1 ((1− α) n)︸ ︷︷ ︸
Merge Part

+ Θ (log n)︸ ︷︷ ︸
Binary Search

Remark: α varies at each level of the recursion!!!

82 / 94

Calculating Work Complexity of Parallel Merge

Then
Assume that T1 (n) ≤ c1n − c2 log n for positive constants c1 and c2.

We have then using c3 for Θ (log n)

T1 (n) ≤ T1 (αn) + T1 ((1− α) n) + c3 log n
≤ c1αn − c2 log (αn) + c1 (1− α) n − c2 log ((1− α) n) + c3 log n
= c1n − c2 log (α(1− α))− 2c2 log n + c3 log n (splitting elements)
= c1n − c2 (log n + log (α(1− α)))− (c2 − c3) log n
≤ c1n − (c2 − c3) log n because log n + log (α(1− α)) > 0

83 / 94

Calculating Work Complexity of Parallel Merge

Then
Assume that T1 (n) ≤ c1n − c2 log n for positive constants c1 and c2.

We have then using c3 for Θ (log n)

T1 (n) ≤ T1 (αn) + T1 ((1− α) n) + c3 log n
≤ c1αn − c2 log (αn) + c1 (1− α) n − c2 log ((1− α) n) + c3 log n
= c1n − c2 log (α(1− α))− 2c2 log n + c3 log n (splitting elements)
= c1n − c2 (log n + log (α(1− α)))− (c2 − c3) log n
≤ c1n − (c2 − c3) log n because log n + log (α(1− α)) > 0

83 / 94

Calculating Work Complexity of Parallel Merge

Then
Assume that T1 (n) ≤ c1n − c2 log n for positive constants c1 and c2.

We have then using c3 for Θ (log n)

T1 (n) ≤ T1 (αn) + T1 ((1− α) n) + c3 log n
≤ c1αn − c2 log (αn) + c1 (1− α) n − c2 log ((1− α) n) + c3 log n
= c1n − c2 log (α(1− α))− 2c2 log n + c3 log n (splitting elements)
= c1n − c2 (log n + log (α(1− α)))− (c2 − c3) log n
≤ c1n − (c2 − c3) log n because log n + log (α(1− α)) > 0

83 / 94

Calculating Work Complexity of Parallel Merge

Then
Assume that T1 (n) ≤ c1n − c2 log n for positive constants c1 and c2.

We have then using c3 for Θ (log n)

T1 (n) ≤ T1 (αn) + T1 ((1− α) n) + c3 log n
≤ c1αn − c2 log (αn) + c1 (1− α) n − c2 log ((1− α) n) + c3 log n
= c1n − c2 log (α(1− α))− 2c2 log n + c3 log n (splitting elements)
= c1n − c2 (log n + log (α(1− α)))− (c2 − c3) log n
≤ c1n − (c2 − c3) log n because log n + log (α(1− α)) > 0

83 / 94

Calculating Work Complexity of Parallel Merge

Then
Assume that T1 (n) ≤ c1n − c2 log n for positive constants c1 and c2.

We have then using c3 for Θ (log n)

T1 (n) ≤ T1 (αn) + T1 ((1− α) n) + c3 log n
≤ c1αn − c2 log (αn) + c1 (1− α) n − c2 log ((1− α) n) + c3 log n
= c1n − c2 log (α(1− α))− 2c2 log n + c3 log n (splitting elements)
= c1n − c2 (log n + log (α(1− α)))− (c2 − c3) log n
≤ c1n − (c2 − c3) log n because log n + log (α(1− α)) > 0

83 / 94

Calculating Work Complexity of Parallel Merge

Now, we have that given 0 < α(1− α) < 1
We have log (α(1− α)) < 0

Thus, making n large enough

log n + log (α(1− α)) > 0 (1)

Then

T1 (n) ≤ c1n − (c2 − c3) log n

84 / 94

Calculating Work Complexity of Parallel Merge

Now, we have that given 0 < α(1− α) < 1
We have log (α(1− α)) < 0

Thus, making n large enough

log n + log (α(1− α)) > 0 (1)

Then

T1 (n) ≤ c1n − (c2 − c3) log n

84 / 94

Calculating Work Complexity of Parallel Merge

Now, we have that given 0 < α(1− α) < 1
We have log (α(1− α)) < 0

Thus, making n large enough

log n + log (α(1− α)) > 0 (1)

Then

T1 (n) ≤ c1n − (c2 − c3) log n

84 / 94

Calculating Work Complexity of Parallel Merge

Now, we choose c2 and c3 such that

c2 − c3 ≥ 0

We have that

T1 (n) ≤ c1n = O(n)

85 / 94

Calculating Work Complexity of Parallel Merge

Now, we choose c2 and c3 such that

c2 − c3 ≥ 0

We have that

T1 (n) ≤ c1n = O(n)

85 / 94

Finally

Then

T1 (n) = Θ (n)

The parallelism of Parallel Merge
T1 (n)
T∞ (n) = Θ

(n
log2 n

)

86 / 94

Finally

Then

T1 (n) = Θ (n)

The parallelism of Parallel Merge
T1 (n)
T∞ (n) = Θ

(n
log2 n

)

86 / 94

Then What is the Complexity of Parallel Merge-sort with
Parallel Merge?
First, the new code - Input A [p..r] - Output B [s..s + r − p]
Par −Merge − Sort (A, p, r ,B, s)

1 n = r − p + 1
2 if (n == 1)
3 B [s] = A [p]
4 else let T [1..n] be a new array
5 q = b(p+r)/2c
6 q = q − p + 1
7 spawn Par −Merge − Sort (A, p, q,T , 1)
8 Par −Merge − Sort (A, q + 1, r ,T , q ′ + 1)
9 sync
10 Par −Merge (T , 1, q ′, q ′ + 1, n,B, s)

87 / 94

Then What is the Complexity of Parallel Merge-sort with
Parallel Merge?
First, the new code - Input A [p..r] - Output B [s..s + r − p]
Par −Merge − Sort (A, p, r ,B, s)

1 n = r − p + 1
2 if (n == 1)
3 B [s] = A [p]
4 else let T [1..n] be a new array
5 q = b(p+r)/2c
6 q = q − p + 1
7 spawn Par −Merge − Sort (A, p, q,T , 1)
8 Par −Merge − Sort (A, q + 1, r ,T , q ′ + 1)
9 sync
10 Par −Merge (T , 1, q ′, q ′ + 1, n,B, s)

87 / 94

Then What is the Complexity of Parallel Merge-sort with
Parallel Merge?
First, the new code - Input A [p..r] - Output B [s..s + r − p]
Par −Merge − Sort (A, p, r ,B, s)

1 n = r − p + 1
2 if (n == 1)
3 B [s] = A [p]
4 else let T [1..n] be a new array
5 q = b(p+r)/2c
6 q = q − p + 1
7 spawn Par −Merge − Sort (A, p, q,T , 1)
8 Par −Merge − Sort (A, q + 1, r ,T , q ′ + 1)
9 sync
10 Par −Merge (T , 1, q ′, q ′ + 1, n,B, s)

87 / 94

Then What is the Complexity of Parallel Merge-sort with
Parallel Merge?
First, the new code - Input A [p..r] - Output B [s..s + r − p]
Par −Merge − Sort (A, p, r ,B, s)

1 n = r − p + 1
2 if (n == 1)
3 B [s] = A [p]
4 else let T [1..n] be a new array
5 q = b(p+r)/2c
6 q = q − p + 1
7 spawn Par −Merge − Sort (A, p, q,T , 1)
8 Par −Merge − Sort (A, q + 1, r ,T , q ′ + 1)
9 sync
10 Par −Merge (T , 1, q ′, q ′ + 1, n,B, s)

87 / 94

Then What is the Complexity of Parallel Merge-sort with
Parallel Merge?
First, the new code - Input A [p..r] - Output B [s..s + r − p]
Par −Merge − Sort (A, p, r ,B, s)

1 n = r − p + 1
2 if (n == 1)
3 B [s] = A [p]
4 else let T [1..n] be a new array
5 q = b(p+r)/2c
6 q = q − p + 1
7 spawn Par −Merge − Sort (A, p, q,T , 1)
8 Par −Merge − Sort (A, q + 1, r ,T , q ′ + 1)
9 sync
10 Par −Merge (T , 1, q ′, q ′ + 1, n,B, s)

87 / 94

Then What is the Complexity of Parallel Merge-sort with
Parallel Merge?
First, the new code - Input A [p..r] - Output B [s..s + r − p]
Par −Merge − Sort (A, p, r ,B, s)

1 n = r − p + 1
2 if (n == 1)
3 B [s] = A [p]
4 else let T [1..n] be a new array
5 q = b(p+r)/2c
6 q = q − p + 1
7 spawn Par −Merge − Sort (A, p, q,T , 1)
8 Par −Merge − Sort (A, q + 1, r ,T , q ′ + 1)
9 sync
10 Par −Merge (T , 1, q ′, q ′ + 1, n,B, s)

87 / 94

Then, What is the amount of Parallelism of Parallel
Merge-sort with Parallel Merge?

Work
We can use the worst work in the parallel to generate the recursion:

TPMS
1 (n) = 2TPMS

1

(n
2

)
+ TPM

1 (n)

= 2TPMS
1

(n
2

)
+ Θ (n)

= Θ (n log n) Case 2 of the MT

88 / 94

Then, What is the amount of Parallelism of Parallel
Merge-sort with Parallel Merge?

Work
We can use the worst work in the parallel to generate the recursion:

TPMS
1 (n) = 2TPMS

1

(n
2

)
+ TPM

1 (n)

= 2TPMS
1

(n
2

)
+ Θ (n)

= Θ (n log n) Case 2 of the MT

88 / 94

Then, What is the amount of Parallelism of Parallel
Merge-sort with Parallel Merge?

Work
We can use the worst work in the parallel to generate the recursion:

TPMS
1 (n) = 2TPMS

1

(n
2

)
+ TPM

1 (n)

= 2TPMS
1

(n
2

)
+ Θ (n)

= Θ (n log n) Case 2 of the MT

88 / 94

Then, What is the amount of Parallelism of Parallel
Merge-sort with Parallel Merge?

Work
We can use the worst work in the parallel to generate the recursion:

TPMS
1 (n) = 2TPMS

1

(n
2

)
+ TPM

1 (n)

= 2TPMS
1

(n
2

)
+ Θ (n)

= Θ (n log n) Case 2 of the MT

88 / 94

Then, What is the amount of Parallelism of Parallel
Merge-sort with Parallel Merge?

Span
We get the following recursion for the span by taking in account that lines
7 and 8 of parallel merge sort run in parallel:

TPMS
∞ (n) = TPMS

∞

(n
2

)
+ TPM

∞ (n)

= TPMS
∞

(n
2

)
+ Θ

(
log2 n

)
= Θ

(
log3 n

)
Exercise 4.6-2 in the Cormen’s Book

89 / 94

Then, What is the amount of Parallelism of Parallel
Merge-sort with Parallel Merge?

Span
We get the following recursion for the span by taking in account that lines
7 and 8 of parallel merge sort run in parallel:

TPMS
∞ (n) = TPMS

∞

(n
2

)
+ TPM

∞ (n)

= TPMS
∞

(n
2

)
+ Θ

(
log2 n

)
= Θ

(
log3 n

)
Exercise 4.6-2 in the Cormen’s Book

89 / 94

Then, What is the amount of Parallelism of Parallel
Merge-sort with Parallel Merge?

Span
We get the following recursion for the span by taking in account that lines
7 and 8 of parallel merge sort run in parallel:

TPMS
∞ (n) = TPMS

∞

(n
2

)
+ TPM

∞ (n)

= TPMS
∞

(n
2

)
+ Θ

(
log2 n

)
= Θ

(
log3 n

)
Exercise 4.6-2 in the Cormen’s Book

89 / 94

Then, What is the amount of Parallelism of Parallel
Merge-sort with Parallel Merge?

Span
We get the following recursion for the span by taking in account that lines
7 and 8 of parallel merge sort run in parallel:

TPMS
∞ (n) = TPMS

∞

(n
2

)
+ TPM

∞ (n)

= TPMS
∞

(n
2

)
+ Θ

(
log2 n

)
= Θ

(
log3 n

)
Exercise 4.6-2 in the Cormen’s Book

89 / 94

Then, What is the amount of Parallelism of Parallel
Merge-sort with Parallel Merge?

Parallelism
T1 (n)
T∞ (n) = Θ

(n
log2 n

)

90 / 94

Plotting both Parallelisms
We get the incredible difference between both algorithm

91 / 94

Plotting the T∞
We get the incredible difference when running both algorithms with
an infinite number of processors!!!

92 / 94

Outline
1 Introduction

Why Multi-Threaded Algorithms?
2 Model To Be Used

Symmetric Multiprocessor
Operations
Example

3 Computation DAG
Introduction

4 Performance Measures
Introduction
Running Time Classification

5 Parallel Laws
Work and Span Laws
Speedup and Parallelism
Greedy Scheduler
Scheduling Rises the Following Issue

6 Examples
Parallel Fibonacci
Matrix Multiplication
Parallel Merge-Sort

7 Exercises
Some Exercises you can try!!!

93 / 94

Exercises

27.1-1
27.1-2
27.1-4
27.1-6
27.1-7
27.2-1
27.2-3
27.2-4
27.2-5
27.3-1
27.3-2
27.3-3
27.3-4

94 / 94

	Introduction
	Why Multi-Threaded Algorithms?

	Model To Be Used
	Symmetric Multiprocessor
	Operations
	Example

	Computation DAG
	Introduction

	Performance Measures
	Introduction
	Running Time Classification

	Parallel Laws
	Work and Span Laws
	Speedup and Parallelism
	Greedy Scheduler
	Scheduling Rises the Following Issue

	Examples
	Parallel Fibonacci
	Matrix Multiplication
	Parallel Merge-Sort

	Exercises
	Some Exercises you can try!!!

