Analysis of Algorithms Multi-threaded Algorithms

Andres Mendez-Vazquez

April 15, 2016

Outline

- Introduction
 - Why Multi-Threaded Algorithms?

Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example

Computation DAG

- Introduction
- 4 Performance Measures
 - Introduction
 - Running Time Classification

5 Parallel Laws

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort

Exercises

Some Exercises you can try!!!

Outline

Introduction

Why Multi-Threaded Algorithms?

2 Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example

Computation DAG

- Introduction
- 4 Performance Measures
 - Introduction
 - Running Time Classification

5 Parallel Law

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort

Exercises

• Some Exercises you can try!!!

Motivation

• Until now, our serial algorithms are quite suitable for running on a single processor system.

However, multiprocessor algorithms are ubiquitous:

Therefore, extending our serial models to a parallel computation model is a must.

Motivation

- Until now, our serial algorithms are quite suitable for running on a single processor system.
- However, multiprocessor algorithms are ubiquitous:
 - Therefore, extending our serial models to a parallel computation model is a must.

computational Mode

- There exist many competing models of parallel computation that are essentially different:
 - Shared Memory
 - Message Passing
 - Etc.

Motivation

- Until now, our serial algorithms are quite suitable for running on a single processor system.
- However, multiprocessor algorithms are ubiquitous:
 - Therefore, extending our serial models to a parallel computation model is a must.

Computational Model

- There exist many competing models of parallel computation that are essentially different:
 - Shared Memory
 - Message Passing
 - ▶ Etc.

Motivation

- Until now, our serial algorithms are quite suitable for running on a single processor system.
- However, multiprocessor algorithms are ubiquitous:
 - Therefore, extending our serial models to a parallel computation model is a must.

Computational Model

- There exist many competing models of parallel computation that are essentially different:
 - Shared Memory

Motivation

- Until now, our serial algorithms are quite suitable for running on a single processor system.
- However, multiprocessor algorithms are ubiquitous:
 - Therefore, extending our serial models to a parallel computation model is a must.

Computational Model

- There exist many competing models of parallel computation that are essentially different:
 - Shared Memory
 - Message Passing

Motivation

- Until now, our serial algorithms are quite suitable for running on a single processor system.
- However, multiprocessor algorithms are ubiquitous:
 - Therefore, extending our serial models to a parallel computation model is a must.

Computational Model

- There exist many competing models of parallel computation that are essentially different:
 - Shared Memory
 - Message Passing
 - ► Etc.

Outline

IntroductionWhy Multi-Threaded Algorithms?

Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example

B Computation DAG

- Introduction
- 4 Performance Measures
 - Introduction
 - Running Time Classification

5 Parallel Law

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

5 Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort

Exercises

• Some Exercises you can try!!!

The Model to Be Used

Symmetric Multiprocessor

The model that we will use is the Symmetric Multiprocessor (SMP) where a shared memory exists.

イロト イヨト イヨト

6/94

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:
 - Schedules
 - Memory
 - ► Etc

It is Called Dynamic Multi-threading.

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:

イロト 不得 トイヨト イヨト

3

7/94

It is Called Dynamic Multi-threading

- Spawn
- Sync
- Parallel

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:
 - Schedules

- Dynamic Multi- I hreading Computing Operations
 - Spawn
 - Sync
 - Parallel

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:

イロト 不得 トイヨト イヨト

7/94

- Schedules
- Memory

It is Called Dynamic Multi-threading

- Spawn
- Sync
- Parallel

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:
 - Schedules
 - Memory
 - Etc

It is Called Dynamic Multi-threading.

- Spawn
- Sync
- Parallel

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:
 - Schedules
 - Memory
 - Etc

• It is Called Dynamic Multi-threading.

- Spawn
- Sync
- Parallel

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:
 - Schedules
 - Memory
 - Etc

• It is Called Dynamic Multi-threading.

3

(日)

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:
 - Schedules
 - Memory
 - Etc

• It is Called Dynamic Multi-threading.

Dynamic Multi-Threading Computing Operations

- Spawn
- Sync
- Parallel

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:

э

7/94

- Schedules
- Memory
- Etc

• It is Called Dynamic Multi-threading.

Dynamic Multi-Threading Computing Operations

- Spawn
- Sync

Parallel

Dynamic Multi-Threading

- In reality it can be difficult to handle multi-threaded programs in a SMP.
- Thus, we will assume a simple concurrency platform that handles all the resources:
 - Schedules
 - Memory
 - Etc

• It is Called Dynamic Multi-threading.

Dynamic Multi-Threading Computing Operations

- Spawn
- Sync
- Parallel

-

Outline

- Introduct
 - Why Multi-Threaded Algorithms?

Model To Be Used

• Symmetric Multiprocessor

Operations

Example

B Computation DAG

- Introduction
- 4 Performance Measures
 - Introduction
 - Running Time Classification

5 Parallel Law

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

5 Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort

Exercises

• Some Exercises you can try!!!

SPAWN

When called before a procedure, the parent procedure may continue to execute in parallel.

SPAWN

When called before a procedure, the parent procedure may continue to execute in parallel.

Note

• The keyword **spawn** does not say anything about concurrent execution, but it can happen.

The Scheduler decide which computations should run concurrently

SPAWN

When called before a procedure, the parent procedure may continue to execute in parallel.

Note

- The keyword **spawn** does not say anything about concurrent execution, but it can happen.
- The Scheduler decide which computations should run concurrently.

SYNC AND PARALLEL

SYNC

The keyword sync indicates that the procedure must wait for all its spawned children to complete.

PARALLEL

This operation applies to loops, which make possible to execute the body of the loop in parallel.

SYNC AND PARALLEL

SYNC

The keyword sync indicates that the procedure must wait for all its spawned children to complete.

PARALLEL

This operation applies to loops, which make possible to execute the body of the loop in parallel.

Outline

- Introduc
 - Why Multi-Threaded Algorithms?

Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example

Computation DAG

- Introduction
- 4 Performance Measures
 - Introduction
 - Running Time Classification

5 Parallel Law

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort

Exercises

• Some Exercises you can try!!!

A Classic Parallel Piece of Code: Fibonacci Numbers

Fibonacci's Definition

•
$$F_0 = 0$$

•
$$F_1 = 1$$

•
$$F_i = F_{i-1} + F_{i-2}$$
 for $i > 1$.

Naive Algorithm

Fibonacci(n)

```
• if n \leq 1 then
```

```
e return n
```

- else x = Fibonacci(n-1)
- $\bigcirc \qquad y = Fibonacci(n-2)$
- \bullet return x + y

Cinvestav < ロ > < 合 > < き > くき > き つ Q (~ 12 / 94

A Classic Parallel Piece of Code: Fibonacci Numbers

イロト イヨト イヨト

3

12/94

Fibonacci's Definition

- $F_0 = 0$
- $F_1 = 1$
- $F_i = F_{i-1} + F_{i-2}$ for i > 1.

Naive Algorithm

Fibonacci(n)

4

- if $n \leq 1$ then
- 2 return n
- else x = Fibonacci(n-1)

$$y = Fibonacci(n-2)$$

o return x + y

Time Complexity

Recursion and Complexity

• Recursion
$$T(n) = T(n-1) + T(n-2) + \Theta(1)$$
.

イロン イロン イヨン イヨン

Time Complexity

Recursion and Complexity

• Recursion $T(n) = T(n-1) + T(n-2) + \Theta(1)$.

• Complexity
$$T(n) = \Theta(F_n) = \Theta(\phi^n)$$
, $\phi = \frac{1+\sqrt{5}}{2}$.

We can order the first tree numbers in the sequence as

$$\left(\begin{array}{cc}F_2 & F_1\\F_1 & F_0\end{array}\right) = \left(\begin{array}{cc}1 & 1\\1 & 0\end{array}\right)$$

l hen

イロン イロン イヨン イヨン

We can order the first tree numbers in the sequence as

$$\left(\begin{array}{cc}F_2 & F_1\\F_1 & F_0\end{array}\right) = \left(\begin{array}{cc}1 & 1\\1 & 0\end{array}\right)$$

Then

$$\begin{pmatrix} F_2 & F_1 \\ F_1 & F_0 \end{pmatrix} \begin{pmatrix} F_2 & F_1 \\ F_1 & F_0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} F_3 & F_2 \\ F_2 & F_1 \end{pmatrix}$$

14 / 94

Calculating in $O(\log n)$ when n is a power of 2

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right)^n = \left(\begin{array}{cc} F\left(n+1\right) & F\left(n\right) \\ F\left(n\right) & F\left(n-1\right) \end{array} \right)$$

Thus

$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{\frac{n}{2}} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{\frac{n}{2}} = \begin{pmatrix} F\left(\frac{n}{2}+1\right) & F\left(\frac{n}{2}\right) \\ F\left(\frac{n}{2}\right) & F\left(\frac{n}{2}-1\right) \end{pmatrix} \begin{pmatrix} F\left(\frac{n}{2}+1\right) & F\left(\frac{n}{2}\right) \\ F\left(\frac{n}{2}-1\right) \end{pmatrix}^{\frac{n}{2}}$

However.

We will use the naive version to illustrate the principles of parallel programming.

Calculating in $O(\log n)$ when n is a power of 2

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right)^n = \left(\begin{array}{cc} F\left(n+1\right) & F\left(n\right) \\ F\left(n\right) & F\left(n-1\right) \end{array} \right)$$

Thus

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{\frac{n}{2}} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{\frac{n}{2}} = \begin{pmatrix} F\left(\frac{n}{2}+1\right) & F\left(\frac{n}{2}\right) \\ F\left(\frac{n}{2}\right) & F\left(\frac{n}{2}-1\right) \end{pmatrix} \begin{pmatrix} F\left(\frac{n}{2}+1\right) & F\left(\frac{n}{2}\right) \\ F\left(\frac{n}{2}-1\right) \end{pmatrix}^{\frac{n}{2}}$$

However...

We will use the naive version to illustrate the principles of parallel programming.

イロン イロン イヨン イヨン
The Concurrent Code

Parallel Algorithm

- PFibonacci(n)
 - $\bullet \ \ \text{if} \ n\leq 1 \ \text{then}$
 - 2 return n
 - else x = spawn Fibonacci(n-1)
 - y = Fibonacci(n-2)
 - Sync
 - return x + y

The Concurrent Code

Parallel Algorithm

- PFibonacci(n)
 - if n < 1 then
 - return n2
 - (a) else x = spawn Fibonacci(n-1)

•
$$y = Fibonacci(n-2)$$

stav

The Concurrent Code

Parallel Algorithm

- PFibonacci(n)
 - $\bullet \ \ \text{if} \ n \leq 1 \ \text{then}$
 - 2 return n
 - else x = spawn Fibonacci(n-1)

•
$$y = Fibonacci(n-2)$$

Sync

6 return
$$x + y$$

Outline

- Introducti
 - Why Multi-Threaded Algorithms?
- 2 Model To Be Used
 - Symmetric Multiprocessor
 - Operations
 - Example

Computation DAG Introduction

- Performance Measures
 - Introduction
 - Running Time Classification

5 Parallel Law

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

5 Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort

Exercises

• Some Exercises you can try!!!

Definition

A directed acyclic G = (V, E) graph where

- The vertices V are sets of instructions.
- The edges E represent dependencies between sets of instructions i.e. (u, v) instruction u before v.

18/94

Definition

A directed acyclic G = (V, E) graph where

- The vertices V are sets of instructions.
- The edges E represent dependencies between sets of instructions i.e. (u, v) instruction u before v.

Votes

- A set of instructions without any parallel control are grouped in a strand.
- Thus, V represents a set of strands and E represents dependencies between strands induced by parallel control.
- A strand of maximal length will be called a thread.

Definition

A directed acyclic G = (V, E) graph where

- The vertices V are sets of instructions.
- The edges E represent dependencies between sets of instructions i.e. (u, v) instruction u before v.

Votes

- A set of instructions without any parallel control are grouped in a strand.
- Thus, V represents a set of strands and E represents dependencies between strands induced by parallel control.
- A strand of maximal length will be called a thread.

Definition

A directed acyclic G = (V, E) graph where

- The vertices V are sets of instructions.
- The edges E represent dependencies between sets of instructions i.e. (u, v) instruction u before v.

Notes

• A set of instructions without **any** parallel control are grouped in a **strand**.

Thus, V represents a set of strands and E represents dependencies between strands induced by parallel control.

• A strand of maximal length will be called a thread.

< ロ > < 同 > < 回 > < 回 >

Definition

A directed acyclic G = (V, E) graph where

- The vertices V are sets of instructions.
- The edges E represent dependencies between sets of instructions i.e. (u, v) instruction u before v.

Notes

- A set of instructions without **any** parallel control are grouped in a **strand**.
- Thus, V represents a set of strands and E represents dependencies between strands induced by parallel control.

Definition

A directed acyclic G = (V, E) graph where

- The vertices V are sets of instructions.
- The edges E represent dependencies between sets of instructions i.e. (u, v) instruction u before v.

Notes

- A set of instructions without **any** parallel control are grouped in a **strand**.
- Thus, V represents a set of strands and E represents dependencies between strands induced by parallel control.
- A strand of maximal length will be called a **thread**.

Thus

- If there is an edge between thread u and v, then they are said to be (logically) in series.
- If there is no edge, then they are said to be (logically) in parallel.

(日) (日) (日) (日) (日)

Thus

- If there is an edge between thread u and v, then they are said to be (logically) in series.
- If there is no edge, then they are said to be (logically) in parallel.

Example: PFibonacci(4)

Example

Continuation Edge

A continuation edge (u, v) connects a thread u to its successor v within the same procedure instance.

Spawned Edge

When a thread u spawns a new thread v, then (u,v) is called a **spawned** edge.

Call Edges

Call edges represent normal procedure call.

Return Edge

Return edge signals when a thread v returns to its calling procedure

Cinvestav ≣ ∽ ۹ (~ 21 / 94

< ロ > < 回 > < 回 > < 回 > < 回 >

Continuation Edge

A continuation edge (u, v) connects a thread u to its successor v within the same procedure instance.

Spawned Edge

When a thread \boldsymbol{u} spawns a new thread $\boldsymbol{v},$ then $(\boldsymbol{u},\boldsymbol{v})$ is called a spawned edge.

Call Edges

Call edges represent normal procedure call.

Return Edge

Return edge signals when a thread *v* returns to its calling procedure

Cinvestav ≣ ∽ ९ ↔ 21 / 94

イロン イロン イヨン イヨン

Continuation Edge

A continuation edge (u, v) connects a thread u to its successor v within the same procedure instance.

Spawned Edge

When a thread u spawns a new thread v, then (u, v) is called a **spawned** edge.

Call Edges

Call edges represent normal procedure call.

Return Edge

Return edge signals when a thread v returns to its calling procedure

Cinvestav ・ ク へ (~ 21 / 94

イロト イボト イヨト イヨト

Continuation Edge

A continuation edge (u, v) connects a thread u to its successor v within the same procedure instance.

Spawned Edge

When a thread u spawns a new thread v, then (u, v) is called a **spawned** edge.

Call Edges

Call edges represent normal procedure call.

Return Edge

Return edge signals when a thread v returns to its calling procedure.

21/94

Example: PFibonacci(4)

The Different Edges

22 / 94

Outline

- Introduct
 - Why Multi-Threaded Algorithms?

2 Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example

Computation DAG

- Introduction
- Performance Measures
 Introduction
 - Running Time Classification

5 Parallel Laws

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

5 Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort

Exercises

• Some Exercises you can try!!!

Performance Measures

WORK

The work of a multi-threaded computation is the total time to execute the entire computation on **one processor.**

$$Work = \sum_{i \in I} Time(Thread_i)$$

SPAN

The span is the longest time to execute the strands along any path of the DAG.

Performance Measures

WORK

The work of a multi-threaded computation is the total time to execute the entire computation on **one processor.**

$$Work = \sum_{i \in I} Time(Thread_i)$$

SPAN

The span is the longest time to execute the strands along any path of the DAG.

• In a DAG which each strand takes unit time, the span equals the number of vertices on a longest or **critical path** in the DAG.

Example: PFibonacci(4)

Example

- In Fibonacci(4), we have
 - 17 threads.
 - 8 vertices in the longest path

Example

- In Fibonacci(4), we have
 - ▶ 17 threads.
 - 8 vertices in the longest path

We have that

- Assuming unit time
 - WORK=17 time units
 - SPAN=8 time units

Example

- In Fibonacci(4), we have
 - 17 threads.
 - 8 vertices in the longest path

Ne have that

- Assuming unit time
 - WORK=17 time units
 - SPAN=8 time units

Note

• Running time not only depends on work and span but

- Available Cores
- Scheduler Policies

Cinvestav

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q () 26 / 94

Example

- In Fibonacci(4), we have
 - 17 threads.
 - 8 vertices in the longest path

We have that

• Assuming unit time

• Running time not only depends on work and span but

- Available Cores
- Scheduler Policies

Cinvestav

< □ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 26 / 94

Example

- In Fibonacci(4), we have
 - 17 threads.
 - 8 vertices in the longest path

We have that

- Assuming unit time
 - WORK=17 time units

- Available Cores
- Scheduler Policies

イロト 不得 トイヨト イヨト

Example

- In Fibonacci(4), we have
 - 17 threads.
 - 8 vertices in the longest path

We have that

- Assuming unit time
 - WORK=17 time units
 - SPAN=8 time units

Running time not only depends on work and span but

- Available Cores
- Scheduler Policies

3

イロト 不得 トイヨト イヨト

Example

- In Fibonacci(4), we have
 - 17 threads.
 - 8 vertices in the longest path

We have that

- Assuming unit time
 - WORK=17 time units
 - SPAN=8 time units

Note

• Running time not only depends on work and span but

Cinvestav

26 / 94

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Example

- In Fibonacci(4), we have
 - 17 threads.
 - 8 vertices in the longest path

We have that

- Assuming unit time
 - WORK=17 time units
 - SPAN=8 time units

Note

- Running time not only depends on work and span but
 - Available Cores

3

Example

- In Fibonacci(4), we have
 - 17 threads.
 - 8 vertices in the longest path

We have that

- Assuming unit time
 - WORK=17 time units
 - SPAN=8 time units

Note

- Running time not only depends on work and span but
 - Available Cores
 - Scheduler Policies

э

イロト 不得 トイヨト イヨト

Outline

- Introduct
 - Why Multi-Threaded Algorithms?

2 Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example

Computation DAG

- Introduction
- Performance Measures
 - Introduction
 - Running Time Classification

5 Parallel Lav

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

5 Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort

Exercises

• Some Exercises you can try!!!

Running Time Classification

Single Processor

• T_1 running time on a single processor.

Multiple Processors

• T_p running time on P processors.

Unlimited Processors

• T_{∞} running time on unlimited processors, also called the span, if we run each strand on its own processor.

Running Time Classification

Single Processor

• T_1 running time on a single processor.

Multiple Processors

• T_p running time on P processors.

Unlimited Processors

• T_{∞} running time on unlimited processors, also called the span, if we run each strand on its own processor.

Running Time Classification

Single Processor

• T₁ running time on a single processor.

Multiple Processors

• T_p running time on P processors.

Unlimited Processors

• T_{∞} running time on unlimited processors, also called the span, if we run each strand on its own processor.

Outline

- Introduct
 - Why Multi-Threaded Algorithms?

2 Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example

Computation DAG

- Introduction
- 4 Performance Measures
 - Introduction
 - Running Time Classification

Parallel Laws

Work and Span Laws

- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort

Exercises

• Some Exercises you can try!!!

Definition

 $\bullet\,$ In one step, an ideal parallel computer with P processors can do:

At most P units of work.

• Thus in T_P time, it can perform at most PT_P work.

$PT_P \ge T_1 \Longrightarrow T_p \ge \frac{1}{2}$

Definition

 $\bullet\,$ In one step, an ideal parallel computer with P processors can do:

- At most P units of work.
- Thus in T_P time, it can perform at most PT_P work.

Definition

 $\bullet\,$ In one step, an ideal parallel computer with P processors can do:

- At most P units of work.
- Thus in T_P time, it can perform at most PT_P work.

Definition

 $\bullet\,$ In one step, an ideal parallel computer with P processors can do:

- At most *P* units of work.
- Thus in T_P time, it can perform at most PT_P work.

$$PT_P \ge T_1 \Longrightarrow T_p \ge \frac{T_1}{P}$$

イロト イヨト イヨト

Span Law

Definition

- A *P*-processor ideal parallel computer cannot run faster than a machine with unlimited number of processors.
- However, a computer with unlimited number of processors can emulate a *P*-processor machine by using simply *P* of its processors. Therefore,

$T_P \ge T_\infty$

Span Law

Definition

- A *P*-processor ideal parallel computer cannot run faster than a machine with unlimited number of processors.
- However, a computer with unlimited number of processors can emulate a *P*-processor machine by using simply *P* of its processors. Therefore,

$$T_P \ge T_\infty$$

Work Calculations: Serial

Work Calculations: Serial

Note

• Work: $T_1(A \cup B) = T_1(A) + T_1(B)$.

Work Calculations: Serial

Note

- Work: $T_1(A \cup B) = T_1(A) + T_1(B)$.
- Span: $T_{\infty}(A \cup B) = T_{\infty}(A) + T_{\infty}(B)$.

< ロ > < 回 > < 回 > < 回 > < 回 >

Work Calculations: Parallel

Work Calculations: Parallel

Note

• Work: $T_1(A \cup B) = T_1(A) + T_1(B)$.

Cinvestav

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Work Calculations: Parallel

Note

- Work: $T_1(A \cup B) = T_1(A) + T_1(B)$.
- Span: $T_{\infty}(A \cup B) = \max \{T_{\infty}(A), T_{\infty}(B)\}.$

Cinvestav

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q () 33 / 94

Outline

- Introduct
 - Why Multi-Threaded Algorithms?
- 2 Model To Be Used
 - Symmetric Multiprocessor
 - Operations
 - Example

Computation DAG

- Introduction
- 4 Performance Measures
 - Introduction
 - Running Time Classification

5 Parallel Laws

Work and Span Laws

Speedup and Parallelism

- Greedy Scheduler
- Scheduling Rises the Following Issue

Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort

Exercises

• Some Exercises you can try!!!

イロト イヨト イヨト

Speed up

• The speed up of a computation on P processors is defined as $\frac{T_1}{T_P}$.

• Then, by work law $\frac{T_1}{T_P} \leq P$. Thus, the speedup on P processors can be at most P.

Speed up

- The speed up of a computation on P processors is defined as $\frac{T_1}{T_P}$.
- Then, by work law $\frac{T_1}{T_P} \leq P$. Thus, the speedup on P processors can be at most P.

• Linear Speedup when $\frac{T_1}{T_P} = \Theta(P)$.

Speed up

- The speed up of a computation on P processors is defined as $\frac{T_1}{T_P}$.
- Then, by work law $\frac{T_1}{T_P} \leq P$. Thus, the speedup on P processors can be at most P.

Notes

• Linear Speedup when
$$\frac{T_1}{T_P} = \Theta(P)$$
.

Perfect Linear Speedup when $\frac{T_1}{T_p} = P$

Parallelism

) The parallelism of a computation on P processors is defined as .

イロト 不得 トイヨト イヨト

35 / 94

- In specific, we are looking to have a lot of parallelism.
- This changes from Algorithm to Algorithm.

Speed up

- The speed up of a computation on P processors is defined as $\frac{T_1}{T_P}$.
- Then, by work law $\frac{T_1}{T_P} \leq P$. Thus, the speedup on P processors can be at most P.

Notes

- Linear Speedup when $\frac{T_1}{T_P} = \Theta(P)$.
- Perfect Linear Speedup when $\frac{T_1}{T_P} = P$.

Speed up

- The speed up of a computation on P processors is defined as $\frac{T_1}{T_P}$.
- Then, by work law $\frac{T_1}{T_P} \leq P$. Thus, the speedup on P processors can be at most P.

Notes

- Linear Speedup when $\frac{T_1}{T_P} = \Theta(P)$.
- Perfect Linear Speedup when $\frac{T_1}{T_P} = P$.

Parallelism

35/94

Speed up

- The speed up of a computation on P processors is defined as $\frac{T_1}{T_P}$.
- Then, by work law $\frac{T_1}{T_P} \leq P$. Thus, the speedup on P processors can be at most P.

Notes

- Linear Speedup when $\frac{T_1}{T_P} = \Theta(P)$.
- Perfect Linear Speedup when $\frac{T_1}{T_P} = P$.

Parallelism

- The parallelism of a computation on P processors is defined as $\frac{T_1}{T_{\infty}}$.
 - In specific, we are looking to have a lot of parallelism.

Speed up

- The speed up of a computation on P processors is defined as $\frac{T_1}{T_P}$.
- Then, by work law $\frac{T_1}{T_P} \leq P$. Thus, the speedup on P processors can be at most P.

Notes

- Linear Speedup when $\frac{T_1}{T_P} = \Theta(P)$.
- Perfect Linear Speedup when $\frac{T_1}{T_P} = P$.

Parallelism

- The parallelism of a computation on P processors is defined as $\frac{T_1}{T_{\infty}}$.
 - In specific, we are looking to have a lot of parallelism.
 - This changes from Algorithm to Algorithm.

3

ヘロト ヘロト ヘヨト ヘヨト

Outline

- Introduct
 - Why Multi-Threaded Algorithms?

2 Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example

Computation DAG

- Introduction
- 4 Performance Measures
 - Introduction
 - Running Time Classification

Derallel Laws

- Work and Span Laws
- Speedup and Parallelism

Greedy Scheduler

• Scheduling Rises the Following Issue

Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort

Exercises

• Some Exercises you can try!!!

イロト イヨト イヨト

Definition

• A greedy scheduler assigns as many strands to processors as possible in each time step.

Definition

• A greedy scheduler assigns as many strands to processors as possible in each time step.

Note

• On *P* processors, if at least *P* strands are ready to execute during a time step, then we say that the step is a **complete step**.

Definition

• A greedy scheduler assigns as many strands to processors as possible in each time step.

Note

- On *P* processors, if at least *P* strands are ready to execute during a time step, then we say that the step is a **complete step**.
- Otherwise we say that it is an **incomplete step**.

Definition

• A greedy scheduler assigns as many strands to processors as possible in each time step.

Note

- On *P* processors, if at least *P* strands are ready to execute during a time step, then we say that the step is a **complete step**.
- Otherwise we say that it is an incomplete step.
- This changes from Algorithm to Algorithm.

Greedy Scheduler Theorem and Corollaries

Theorem 27.1

On an ideal parallel computer with P processors, a greedy scheduler executes a multi-threaded computation with work T_1 and span T_∞ in time $T_P \leq \frac{T_1}{P} + T_\infty$.

Corollary 27.2

The running time T_P of any multi-threaded computation scheduled by a greedy scheduler on an ideal parallel computer with P processors is within a factor of 2 of optimal.

Corollary 27.3

Let T_P be the running time of a multi-threaded computation produced by a greedy scheduler on an ideal parallel computer with P processors, and let T_1 and T_∞ be the work and span of the computation, respectively. Then, if $P \ll \frac{T_1}{T_\infty}$ (Much Less), we have $T_P \approx \frac{T_1}{P}$, or equivalently, a speedup of approximately P.

Greedy Scheduler Theorem and Corollaries

Theorem 27.1

On an ideal parallel computer with P processors, a greedy scheduler executes a multi-threaded computation with work T_1 and span T_∞ in time $T_P \leq \frac{T_1}{P} + T_\infty$.

Corollary 27.2

The running time T_P of any multi-threaded computation scheduled by a greedy scheduler on an ideal parallel computer with P processors is within a factor of 2 of optimal.

Corollary 27.3

Let T_P be the running time of a multi-threaded computation produced by a greedy scheduler on an ideal parallel computer with P processors, and let T_1 and T_∞ be the work and span of the computation, respectively. Then, if $P \ll \frac{T_1}{T_\infty}$ (Much Less), we have $T_P \approx \frac{T_1}{P}$, or equivalently, a speedup of approximately P.

Greedy Scheduler Theorem and Corollaries

Theorem 27.1

On an ideal parallel computer with P processors, a greedy scheduler executes a multi-threaded computation with work T_1 and span T_∞ in time $T_P \leq \frac{T_1}{P} + T_\infty$.

Corollary 27.2

The running time T_P of any multi-threaded computation scheduled by a greedy scheduler on an ideal parallel computer with P processors is within a factor of 2 of optimal.

Corollary 27.3

Let T_P be the running time of a multi-threaded computation produced by a greedy scheduler on an ideal parallel computer with P processors, and let T_1 and T_∞ be the work and span of the computation, respectively. Then, if $P\ll \frac{T_1}{T_\infty}$ (Much Less), we have $T_P\approx \frac{T_1}{P}$, or equivalently, a speedup of approximately P.

Outline

- Introduct
 - Why Multi-Threaded Algorithms?
- 2 Model To Be Used
 - Symmetric Multiprocessor
 - Operations
 - Example

Computation DAG

- Introduction
- 4 Performance Measures
 - Introduction
 - Running Time Classification

Derallel Laws

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler

• Scheduling Rises the Following Issue

Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort

Exercises

• Some Exercises you can try!!!

イロト イヨト イヨト

Race Conditions

Determinacy Race

A determinacy race occurs when two logically parallel instructions access the same memory location and at least one of the instructions performs a write.

Example Race-Example() • x = 0• parallel for i = 1 to 3 do • x = x + 1• print x

イロト イヨト イヨト イヨト

40 / 94

Race Conditions

Determinacy Race

A determinacy race occurs when two logically parallel instructions access the same memory location and at least one of the instructions performs a write.

Examp	ple			
Race-Example()				
0	x = 0			
2	parallel for $i=1$ to 3 do			
3	x = x + 1			
4	print x			
		- Contraction (Contraction)		
		Cinvestay		

◆□ → ◆圖 → ◆臣 → ◆臣 → ○

Determinacy Race Example

step	x	r_1	r_2	r_3
1	0			
2	0	0		
3	0	1		
4	0	1	0	
5	0	1	0	0
6	0	1	0	1
7	0	1	1	1
8	1	1	1	1
9	1	1	1	1
10	1	1	1	1

イロト イロト イヨト イヨト

Cinvestav Ξ ∽ < <> 41 / 94

NOTE

Although, this is of great importance is beyond the scope of this class:

- For More about this topic, we have:
 - Maurice Herlihy and Nir Shavit, "The Art of Multiprocessor Programming," Morgan Kaufmann Publishers Inc., San Francisco, CA USA, 2008.
 - Andrew S. Tanenbaum, "Modern Operating Systems" (3rd ed.).
 Prentice Hall Press, Upper Saddle River, NJ, USA, 2007.

NOTE

Although, this is of great importance is beyond the scope of this class:

- For More about this topic, we have:
 - Maurice Herlihy and Nir Shavit, "The Art of Multiprocessor Programming," Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.
 - Andrew S. Tanenbaum, "Modern Operating Systems" (3rd ed.). Prentice Hall Press, Upper Saddle River, NJ, USA, 2007.

NOTE

Although, this is of great importance is beyond the scope of this class:

- For More about this topic, we have:
 - Maurice Herlihy and Nir Shavit, "The Art of Multiprocessor Programming," Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

Andrew S. Tanenbaum, "*Modern Operating Systems*" (3rd ed.). Prentice Hall Press, Upper Saddle River, NJ, USA, 2007.

NOTE

Although, this is of great importance is beyond the scope of this class:

- For More about this topic, we have:
 - Maurice Herlihy and Nir Shavit, "The Art of Multiprocessor Programming," Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.
 - ► Andrew S. Tanenbaum, "*Modern Operating Systems*" (3rd ed.). Prentice Hall Press, Upper Saddle River, NJ, USA, 2007.

イロト イヨト イヨト
Outline

- Introduct
 - Why Multi-Threaded Algorithms?

2 Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example

8 Computation DAG

- Introduction
- 4 Performance Measures
 - Introduction
 - Running Time Classification

5 Parallel Law

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

Examples

Parallel Fibonacci

- Matrix Multiplication
- Parallel Merge-Sort

Exercises

• Some Exercises you can try!!!

イロト イヨト イヨト

Example of Complexity: PFibonacci

Complexity

$$T_{\infty}(n) = \max \left\{ T_{\infty}(n-1), T_{\infty}(n-2) \right\} + \Theta(1)$$

Finally

$T_{\infty}(n) = T_{\infty}(n-1) + \Theta(1) = \Theta(n)$

Parallelism

イロト イロト イヨト イヨト

Example of Complexity: PFibonacci

Complexity

$$T_{\infty}\left(n\right) = \max\left\{T_{\infty}\left(n-1\right), T_{\infty}\left(n-2\right)\right\} + \Theta\left(1\right)$$

Finally

$$T_{\infty}(n) = T_{\infty}(n-1) + \Theta(1) = \Theta(n)$$

Parallelism

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Example of Complexity: PFibonacci

Complexity

$$T_{\infty}\left(n\right) = \max\left\{T_{\infty}\left(n-1\right), T_{\infty}\left(n-2\right)\right\} + \Theta\left(1\right)$$

Finally

$$T_{\infty}(n) = T_{\infty}(n-1) + \Theta(1) = \Theta(n)$$

Parallelism

$$\frac{T_{1}\left(n\right)}{T_{\infty}\left(n\right)} = \Theta\left(\frac{\phi^{n}}{n}\right)$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Outline

- Introduct
 - Why Multi-Threaded Algorithms?
- 2 Model To Be Used
 - Symmetric Multiprocessor
 - Operations
 - Example

Computation DAG

- Introduction
- 4 Performance Measures
 - Introduction
 - Running Time Classification

5 Parallel Law

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

Examples

Parallel Fibonacci

Matrix Multiplication

Parallel Merge-Sort

Exercises

• Some Exercises you can try!!!

イロト イヨト イヨト

Matrix Multiplication

Trick

To multiply two $n \times n$ matrices, we perform 8 matrix multiplications of $\frac{n}{2} \times \frac{n}{2}$ matrices and one addition $n \times n$ of matrices.

ldea

< ロ > < 同 > < 回 > < 回 >

Matrix Multiplication

Trick

To multiply two $n \times n$ matrices, we perform 8 matrix multiplications of $\frac{n}{2} \times \frac{n}{2}$ matrices and one addition $n \times n$ of matrices.

Idea

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$
$$C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \dots$$
$$\begin{pmatrix} A_{11}B_{11} & A_{11}B_{12} \\ A_{21}B_{11} & A_{21}B_{12} \end{pmatrix} + \begin{pmatrix} A_{12}B_{21} & A_{12}B_{22} \\ A_{22}B_{21} & A_{22}B_{22} \end{pmatrix}$$

イロト イヨト イヨト イヨト

Any Idea to Parallelize the Code?

What do you think?

Did you notice the multiplications of sub-matrices?

Then What?

We have for example $A_{11}B_{11}$ and $A_{12}B_{21}!!!$

We can do the following

 $A_{11}B_{11} + A_{12}B_{21}$

イロト イヨト イヨト イヨト

Any Idea to Parallelize the Code?

What do you think?

Did you notice the multiplications of sub-matrices?

Then What?

We have for example $A_{11}B_{11}$ and $A_{12}B_{21}!!!$

We can do the following

 $A_{11}B_{11} + A_{12}B_{21}$

イロン イロン イヨン イヨン

Any Idea to Parallelize the Code?

What do you think?

Did you notice the multiplications of sub-matrices?

Then What?

We have for example $A_{11}B_{11}$ and $A_{12}B_{21}!!!$

We can do the following

 $A_{11}B_{11} + A_{12}B_{21}$

イロン イロン イヨン イヨン

The use of the recursion!!!

As always our friend!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

Matrix - Multiply(C, A, B, n) // The result of $A \times B$ in C with n a power of 2 for simplicity

1 if (n == 1)

2

C[1,1] = A[1,1] + B[1,1]

Matrix - Add(C, T, n)

Matrix – J	$Multiply(C, A, B, n)$ // The result of $A \times B$ in C with n a power of 2 for simplicity	
1 if $(n == 1)$		
2	C[1,1] = A[1,1] + B[1,1]	
3 else		
4	allocate a temporary matrix $T[1n, 1n]$	
5	partition A, B, C, T into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices	
0	Matrix = Add(C, T, n)	

Matrix – 1	$Multiply(C, A, B, n)$ // The result of $A \times B$ in C with n a power of 2 for simplicity	
1 if $(n == 1)$		
2	C[1,1] = A[1,1] + B[1,1]	
3 else		
4	allocate a temporary matrix $T[1n, 1n]$	
6	partition A, B, C, T into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices	
6	spawn $Matrix - Multiply(C_{11}, A_{11}, B_{11}, n/2)$	
0	spawn $Matrix - Multiply(C_{12}, A_{11}, B_{12}, n/2)$	
8	spawn $Matrix - Multiply(C_{21}, A_{21}, B_{11}, n/2)$	
9	spawn $Matrix - Multiply(C_{22}, A_{21}, B_{12}, n/2)$	
0	spawn $Matrix - Multiply(T_{11}, A_{12}, B_{21}, n/2)$	
•	spawn $Matrix - Multiply(T_{12}, A_{12}, B_{21}, n/2)$	
0	spawn $Matrix - Multiply(T_{21}, A_{22}, B_{21}, n/2)$	
0	$Matrix - Multiply(T_{22}, A_{22}, B_{22}, n/2)$	

Matri	x - Multiply(C, A, B, n) // The result of $A imes B$ in C with n a power of 2 for simplicity	
() if $(n == 1)$		
2	C[1,1] = A[1,1] + B[1,1]	
3	else	
4	allocate a temporary matrix $T[1n, 1n]$	
6	partition A, B, C, T into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices	
6	spawn $Matrix - Multiply(C_{11}, A_{11}, B_{11}, n/2)$	
0	spawn $Matrix - Multiply (C_{12}, A_{11}, B_{12}, n/2)$	
8	spawn $Matrix - Multiply(C_{21}, A_{21}, B_{11}, n/2)$	
9	spawn $Matrix - Multiply(C_{22}, A_{21}, B_{12}, n/2)$	
0	spawn $Matrix - Multiply(T_{11}, A_{12}, B_{21}, n/2)$	
0	spawn $Matrix - Multiply(T_{12}, A_{12}, B_{21}, n/2)$	
12	spawn $Matrix - Multiply(T_{21}, A_{22}, B_{21}, n/2)$	
13	$Matrix - Multiply (T_{22}, A_{22}, B_{22}, n/2)$	
14	sync	

trix - Add(C, T, n)

Matrix -	- $Multiply(C, A, B, n)$ // The result of $A imes B$ in C with n a power of 2 for simplicity
0 if	(n == 1)
2	C[1,1] = A[1,1] + B[1,1]
3 els	e
4	allocate a temporary matrix $T\left[1n,1n ight]$
6	partition A, B, C, T into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices
6	spawn $Matrix - Multiply(C_{11}, A_{11}, B_{11}, n/2)$
0	spawn $Matrix - Multiply(C_{12}, A_{11}, B_{12}, n/2)$
8	spawn $Matrix - Multiply(C_{21}, A_{21}, B_{11}, n/2)$
9	spawn $Matrix - Multiply(C_{22}, A_{21}, B_{12}, n/2)$
•••	spawn $Matrix - Multiply(T_{11}, A_{12}, B_{21}, n/2)$
0	spawn $Matrix - Multiply(T_{12}, A_{12}, B_{21}, n/2)$
2	spawn $Matrix - Multiply(T_{21}, A_{22}, B_{21}, n/2)$
B	$Matrix - Multiply(T_{22}, A_{22}, B_{22}, n/2)$
•	sync
0	Matrix - Add(C, T, n)

Lines 1 - 2

Stops the recursion once you have only two numbers to multiply

Line 4

Extra matrix for storing the second matrix in

$$\begin{pmatrix} A_{11}B_{11} & A_{11}B_{12} \\ A_{21}B_{11} & A_{21}B_{12} \end{pmatrix} + \underbrace{\begin{pmatrix} A_{12}B_{21} & A_{12}B_{22} \\ A_{22}B_{21} & A_{22}B_{22} \\ \end{pmatrix}$$

Line 5

Do the desired partition!!!

Lines 1 - 2

Stops the recursion once you have only two numbers to multiply

Line 4

Extra matrix for storing the second matrix in

$$\begin{pmatrix} A_{11}B_{11} & A_{11}B_{12} \\ A_{21}B_{11} & A_{21}B_{12} \end{pmatrix} + \underbrace{\begin{pmatrix} A_{12}B_{21} & A_{12}B_{22} \\ A_{22}B_{21} & A_{22}B_{22} \end{pmatrix}}_{T}$$

Line 5

Do the desired partition!!!

Lines 1 - 2

Stops the recursion once you have only two numbers to multiply

Line 4

Extra matrix for storing the second matrix in

$$\begin{pmatrix} A_{11}B_{11} & A_{11}B_{12} \\ A_{21}B_{11} & A_{21}B_{12} \end{pmatrix} + \underbrace{\begin{pmatrix} A_{12}B_{21} & A_{12}B_{22} \\ A_{22}B_{21} & A_{22}B_{22} \end{pmatrix}}_{T}$$

Line 5

Do the desired partition!!!

э

イロト イボト イヨト イヨト

Lines 6 to 13

Calculating the products in

$$\left(\begin{array}{cc}A_{11}B_{11} & A_{11}B_{12}\\A_{21}B_{11} & A_{21}B_{12}\end{array}\right) + \left(\begin{array}{cc}A_{12}B_{21} & A_{12}B_{22}\\A_{22}B_{21} & A_{22}B_{22}\end{array}\right)$$

Using Recursion and Parallel Computations

A barrier to wait until all the parallel computations are done!!!

15 Line

Call Matrix - Add to add C and T.

Lines 6 to 13

Calculating the products in

$$\left(\begin{array}{cc}A_{11}B_{11} & A_{11}B_{12}\\A_{21}B_{11} & A_{21}B_{12}\end{array}\right) + \left(\begin{array}{cc}A_{12}B_{21} & A_{12}B_{22}\\A_{22}B_{21} & A_{22}B_{22}\end{array}\right)$$

Using Recursion and Parallel Computations

Line 14

A barrier to wait until all the parallel computations are done!!!

Call Matrix - Add to add C and T

Lines 6 to 13

Calculating the products in

$$\left(\begin{array}{cc}A_{11}B_{11} & A_{11}B_{12}\\A_{21}B_{11} & A_{21}B_{12}\end{array}\right) + \left(\begin{array}{cc}A_{12}B_{21} & A_{12}B_{22}\\A_{22}B_{21} & A_{22}B_{22}\end{array}\right)$$

Using Recursion and Parallel Computations

Line 14

A barrier to wait until all the parallel computations are done !!!

Line 15

Call Matrix - Add to add C and T.

イロト イボト イヨト イヨト

Matrix Add Code

Matrix - Add(C, T, n)// Add matrices C and T in-place to produce C = C + T**1** if (n == 1)C[1,1] = C[1,1] + T[1,1]2

Matrix Add Code

Matrix - Add(C, T, n)// Add matrices C and T in-place to produce C = C + T**1** if (n == 1)C[1,1] = C[1,1] + T[1,1]2 else Partition C and T into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices

> Cinvestav Ξ ∽ ۹ (~ 52 / 94

イロト イヨト イヨト

Matrix Add Code

Matrix - Add(C, T, n)// Add matrices C and T in-place to produce C = C + T**1** if (n == 1)C[1,1] = C[1,1] + T[1,1]2 else Partition C and T into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices 4 6 spawn $Matrix - Add(C_{11}, T_{11}, n/2)$ 6 spawn $Matrix - Add (C_{12}, T_{12}, n/2)$ 1 spawn $Matrix - Add(C_{21}, T_{21}, n/2)$ $Matrix - Add (C_{22}, T_{22}, n/2)$ 8

イロト イボト イヨト イヨト

52 / 94

Matrix Add Code

Matrix - Add(C, T, n)// Add matrices C and T in-place to produce C = C + T**1** if (n == 1)C[1,1] = C[1,1] + T[1,1]2 else Partition C and T into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices 4 spawn $Matrix - Add (C_{11}, T_{11}, n/2)$ 6 6 spawn $Matrix - Add (C_{12}, T_{12}, n/2)$ 7 spawn $Matrix - Add(C_{21}, T_{21}, n/2)$ $Matrix - Add (C_{22}, T_{22}, n/2)$ 8 9 sync

イロト イボト イヨト イヨト

52 / 94

Line 1 - 2

Stops the recursion once you have only two numbers to multiply

Line 1 - 2

Stops the recursion once you have only two numbers to multiply

Line 4

To Partition

•
$$C = \begin{pmatrix} A_{11}B_{11} & A_{11}B_{12} \\ A_{21}B_{11} & A_{21}B_{12} \end{pmatrix}$$

Line 1 - 2

Stops the recursion once you have only two numbers to multiply

Line 4

To Partition

•
$$C = \begin{pmatrix} A_{11}B_{11} & A_{11}B_{12} \\ A_{21}B_{11} & A_{21}B_{12} \end{pmatrix}$$

• $T = \begin{pmatrix} A_{12}B_{21} & A_{12}B_{22} \\ A_{22}B_{21} & A_{22}B_{22} \end{pmatrix}$

In lines 5 to 8 We do the following sum in parallel!!! $\left(\begin{array}{c} A_{11}B_{11} & A_{11}B_{12} \\ A_{21}B_{11} & A_{21}B_{12} \end{array}\right) + \left(\begin{array}{c} A_{12}B_{21} & A_{12}B_{22} \\ A_{22}B_{21} & A_{22}B_{22} \end{array}\right)$

Line 1 - 2

Stops the recursion once you have only two numbers to multiply

Line 4

To Partition

•
$$C = \begin{pmatrix} A_{11}B_{11} & A_{11}B_{12} \\ A_{21}B_{11} & A_{21}B_{12} \end{pmatrix}$$

• $T = \begin{pmatrix} A_{12}B_{21} & A_{12}B_{22} \\ A_{22}B_{21} & A_{22}B_{22} \end{pmatrix}$

In lines 5 to 8

We do the following sum in parallel!!!

$$\underbrace{\begin{pmatrix} A_{11}B_{11} & A_{11}B_{12} \\ A_{21}B_{11} & A_{21}B_{12} \end{pmatrix}}_{C} + \underbrace{\begin{pmatrix} A_{12}B_{21} & A_{12}B_{22} \\ A_{22}B_{21} & A_{22}B_{22} \end{pmatrix}}_{T}$$

Work of Matrix Multiplication

The work of $T_{1}\left(n\right)$ of matrix multiplication satisfies the recurrence:

$$T_{1}(n) = \underbrace{8T_{1}\left(\frac{n}{2}\right)}_{\text{The sequential product}} + \underbrace{\Theta\left(n^{2}\right)}_{\text{The sequential sum}} = \Theta\left(n^{3}\right).$$

time because parallelism.

 $\Theta(\log n)$ is the span of the addition of the matrices (Remember, we are using unlimited processors) which has a critical path of length $\log n$.

イロト イボト イヨト イヨト

This is because:

- $T_{\infty}\left(\frac{n}{2}\right)$ Matrix Multiplication is taking $\frac{n}{2} \times \frac{n}{2}$ matrices at the same time because parallelism.
- Θ (log n) is the span of the addition of the matrices (Remember, we are using unlimited processors) which has a critical path of length log n.

イロト 不得 トイヨト イヨト

Collapsing the sum

Parallel Sum

イロト イヨト イヨト

How much Parallelism?

The Final Parallelism in this Algorithm is

$$\frac{T_{1}\left(n\right)}{T_{\infty}\left(n\right)} = \Theta\left(\frac{n^{3}}{\log^{2}n}\right)$$

Quite A Lot!!!

Outline

- Introduct
 - Why Multi-Threaded Algorithms?

2 Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example

Computation DAG

- Introduction
- 4 Performance Measures
 - Introduction
 - Running Time Classification

5 Parallel Law

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort

Exercises

• Some Exercises you can try!!!

イロト イヨト イヨト

Merge-Sort : The Serial Version

We have

 $Merge-Sort\left(A,p,r
ight)$

Observation: Sort elements in A[p...r]

• if (p < r) then • $q = \lfloor (p+r)/2 \rfloor$ • Merge - Sort(A, p, q)• Merge - Sort(A, q+1, r)• Merge(A, p, q, r)

Merge-Sort : The Parallel Version

We have

Merge - Sort(A, p, r)

Observation: Sort elements in A[p...r]

Work of Merge-Sort

• The work of $T_{1}\left(n
ight)$ of this Parallel Merge-Sort satisfies the recurrence:

$$T_1(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T_1\left(\frac{n}{2}\right) + \Theta(n) & \text{otherwise} \end{cases} = \Theta(n \log n)$$

Because the Master Theorem Case 2.

Work of Merge-Sort

• The work of $T_{1}\left(n
ight)$ of this Parallel Merge-Sort satisfies the recurrence:

$$T_1\left(n\right) = \begin{cases} \Theta\left(1\right) & \text{if } n = 1\\ 2 T_1\left(\frac{n}{2}\right) + \Theta\left(n\right) & \text{otherwise} \end{cases} = \Theta\left(n \log n\right)$$

Because the Master Theorem Case 2.

Span

$$T_{\infty}\left(n\right) = \begin{cases} \Theta\left(1\right) & \text{ if } n = 1\\ T_{\infty}\left(\frac{n}{2}\right) + \Theta\left(n\right) & \text{ otherwise } \end{cases}$$

We have then

T_∞ (ⁿ/₂) sort is taking two sorts at the same time because parallelism.
 Then, T_∞ (n) = Θ(n) because the Master Theorem Case 3.

< ロ > < 同 > < 回 > < 回 >

Work of Merge-Sort

• The work of $T_{1}\left(n
ight)$ of this Parallel Merge-Sort satisfies the recurrence:

$$T_1\left(n\right) = \begin{cases} \Theta\left(1\right) & \text{ if } n = 1\\ 2 T_1\left(\frac{n}{2}\right) + \Theta\left(n\right) & \text{ otherwise } \end{cases} = \Theta\left(n\log n\right)$$

Because the Master Theorem Case 2.

Span

$$T_{\infty}\left(n\right) = \begin{cases} \Theta\left(1\right) & \text{ if } n = 1\\ T_{\infty}\left(\frac{n}{2}\right) + \Theta\left(n\right) & \text{ otherwise } \end{cases}$$

We have then

• $T_{\infty}\left(\frac{n}{2}\right)$ sort is taking two sorts at the same time because parallelism.

< ロ > < 同 > < 回 > < 回 >

Work of Merge-Sort

• The work of $T_{1}\left(n
ight)$ of this Parallel Merge-Sort satisfies the recurrence:

$$T_1\left(n\right) = \begin{cases} \Theta\left(1\right) & \text{ if } n = 1\\ 2 T_1\left(\frac{n}{2}\right) + \Theta\left(n\right) & \text{ otherwise } \end{cases} = \Theta\left(n\log n\right)$$

Because the Master Theorem Case 2.

Span

$$T_{\infty}\left(n\right) = \begin{cases} \Theta\left(1\right) & \text{ if } n = 1\\ T_{\infty}\left(\frac{n}{2}\right) + \Theta\left(n\right) & \text{ otherwise } \end{cases}$$

We have then

- $T_{\infty}\left(\frac{n}{2}\right)$ sort is taking two sorts at the same time because parallelism.
- Then, $T_{\infty}\left(n
 ight)=\Theta\left(n
 ight)$ because the Master Theorem Case 3.

How much Parallelism?

The Final Parallelism in this Algorithm is

$$\frac{T_{1}(n)}{T_{\infty}(n)} = \Theta\left(\log n\right)$$

NOT NOT A Lot!!!

Can we improve this?

We have a problem

We have a bottleneck!!! Where?

Yes in the Merge part!!

We need to improve that bottleneck!!!

Can we improve this?

We have a problem

We have a bottleneck!!! Where?

Yes in the Merge part!!!

We need to improve that bottleneck!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

Example: Here, we use and intermediate array T

64 / 94

Step 1. Find $x=T\left[q_1\right]$ where $q_1=\lfloor^{(p_1+r_1)}\!/_2\rfloor$ or the midpoint in $T\left[p_1..r_1\right]$

suppose $n_1 \ge n_2$

65 / 94

Binary Search

It takes a key x and a sub-array $\left.T\left[p..r\right]\right.$ and it does

• If T[p..r] is empty r < p, then it returns the index p.

If x ≥ T [p], then it returns p.
 If x > T [p], then it returns the largest index q in the range p < q ≤ r + 1 such that T [q − 1] < x.

Binary Search

It takes a key x and a sub-array $\left.T\left[p..r\right]\right.$ and it does

- If T[p..r] is empty r < p, then it returns the index p.
- **2** if $x \leq T[p]$, then it returns p.
 -) if x > T[p], then it returns the largest index q in the range

Binary Search

It takes a key x and a sub-array T[p..r] and it does

- If T[p..r] is empty r < p, then it returns the index p.
- **2** if $x \leq T[p]$, then it returns p.

イロト イヨト イヨト

BINARY - $\mathsf{SEARCH}(x, T, p, r)$

- $\bullet \quad low = p$
- **2** $high = \max{\{p, r+1\}}$
- while low < high• $mid = \left\lfloor \frac{log + high}{2} \right\rfloor$ • if $x \le T [mid]$ • high = mid• else low = mid + high
- return high

BINARY - $\mathsf{SEARCH}(x, T, p, r)$

1 low = p2 $high = \max \{p, r + 1\}$ 3 while low < high4 $mid = \left\lfloor \frac{log + high}{2} \right\rfloor$

BINARY - $\mathsf{SEARCH}(x, T, p, r)$

1 low = p2 $high = \max \{p, r + 1\}$ 3 while low < high4 $mid = \left\lfloor \frac{log + high}{2} \right\rfloor$ 5 if $x \le T [mid]$ 6 high = mid6 return high

BINARY - $\mathsf{SEARCH}(x, T, p, r)$

1 low = p2 $high = \max \{p, r + 1\}$ 3 while low < high4 $mid = \left\lfloor \frac{log + high}{2} \right\rfloor$ 5 if $x \le T [mid]$ 6 high = mid7 else low = mid + 1

BINARY - $\mathsf{SEARCH}(x, T, p, r)$

1 low = p2 $high = \max \{p, r + 1\}$ 3 while low < high4 $mid = \left\lfloor \frac{log + high}{2} \right\rfloor$ 5 if $x \le T [mid]$ 5 high = mid7 else low = mid + 18 return high

Step 4. Recursively merge $T\left[p_1..q_1-1\right]$ and $T\left[p_2..q_2-1\right]$ and place result into $A\left[p_3..q_3-1\right]$

71 / 94

Step 5. Recursively merge $T[q_1 + 1..r_1]$ and $T[q_2..r_2]$ and place result into $A[q_3 + 1..r_3]$

72 / 94

$$Par - Merge(T, p_1, r_1, p_2, r_2, A, p_3)$$

$$1 \quad n_1 = r_1 - p_1 + 1, \ n_2 = r_2 - p_2 + 1$$

② if $n_1 < n_2$

- $\blacksquare \qquad \qquad \mathsf{Exchange} \ p_1 \leftrightarrow p_2, r_1 \leftrightarrow r_2, n_1 \leftrightarrow n_2$
- if $(n_1 == 0)$

return

else

$$q_1 = \lfloor (p_1 + r_1)/2 \rfloor$$

 $q_{2}=BinarySearch\left(\left. T\left[q_{1}
ight] ,T,p_{2},r_{2}
ight)
ight.$

$$q_3 = p_3 + (q_1 - p_1) + (q_2 - p_2)$$

$$A\left[q_3\right] = T\left[q_1\right]$$

- spawn $Par Merge(T, p_1, q_1 1, p_2, q_2 1, A, p_3)$
 - $Par Merge(T, q_1 + 1, r_1, q_2 + 1, r_2, A, q_3 + 1)$
 - syn

Par - Merge
$$(T, p_1, r_1, p_2, r_2, A, p_3)$$

a) $n_1 = r_1 - p_1 + 1$, $n_2 = r_2 - p_2 + 1$
b) if $n_1 < n_2$
c) Exchange $p_1 \leftrightarrow p_2, r_1 \leftrightarrow r_2, n_1 \leftrightarrow n_2$
c) return
c) $n_1 = \lfloor n_1 - n_2 \rfloor$
c) $n_2 = \lfloor n_1 - n_2 \rfloor$
c) $n_1 = \lfloor n_1 - n_2 \rfloor$
c) $n_2 = \lfloor n_1 - n_2 \rfloor$
c) $n_2 = \lfloor n_1 - n_2 \rfloor$
c) $n_1 = \lfloor n_1 - n_2 \rfloor$
c) $n_2 = \lfloor n_1 - n_2 \rfloor$
c) $n_2 = \lfloor n_1 - n_2 \rfloor$
c) $n_1 = \lfloor n_1 - n_2 \rfloor$
c) $n_2 = \lfloor n_1 - n_2 \rfloor$
c) $n_1 = \lfloor n_1 - n_2 \rfloor$
c) $n_2 = \lfloor n_1 - n_2 \rfloor$
c) $n_2 = \lfloor n_1 - n_2 \rfloor$
c) $n_1 = \lfloor n_1 - n_2 \rfloor$
c) $n_2 = \lfloor n_1 - n_2 \rfloor$
c) $n_1 = \lfloor n_1 - n_2 \rfloor$
c) $n_2 = \lfloor n_1 - n_2 \rfloor$
c) $n_2 = \lfloor n_2 \rfloor$
c) $n_2 = \lfloor n_1 - n_2 \rfloor$
c) $n_2 = \lfloor n_1 - n_2 \rfloor$
c) $n_1 = \lfloor n_1 - n_2 \rfloor$
c) $n_2 = \lfloor n_2 \rfloor$
c) $n_2 = \lfloor n_2 \rfloor$
c) $n_2 = \lfloor n_2 \rfloor$
c) $n_1 = \lfloor n_2 \rfloor$
c) $n_2 \rfloor$
c) $n_2 = \lfloor n_2 \rfloor$
c) $n_2 \rfloor$
c)

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

```
Par - Merge(T, p_1, r_1, p_2, r_2, A, p_3)
  1 n_1 = r_1 - p_1 + 1, n_2 = r_2 - p_2 + 1
  2 if n_1 < n_2
               Exchange p_1 \leftrightarrow p_2, r_1 \leftrightarrow r_2, n_1 \leftrightarrow n_2
  3
  () if (n_1 == 0)
  5
               return
```


イロン イロン イヨン イヨン

Par - Merge
$$(T, p_1, r_1, p_2, r_2, A, p_3)$$

1 $n_1 = r_1 - p_1 + 1$, $n_2 = r_2 - p_2 + 1$
2 if $n_1 < n_2$
3 Exchange $p_1 \leftrightarrow p_2, r_1 \leftrightarrow r_2, n_1 \leftrightarrow n_2$
3 if $(n_1 == 0)$
3 return
3 else
7 $q_1 = \lfloor (p_1 + r_1)/2 \rfloor$
8 $q_2 = BinarySearch (T [q_1], T, p_2, r_2)$
9 $q_3 = p_3 + (q_1 - p_1) + (q_2 - p_2)$
10 $A [q_3] = T [q_1]$
11 Spawn Parce Merge (Toppen Legendre)

<ロ> <四> <ヨ> <ヨ>

ヘロト ヘロト ヘヨト ヘヨト

イロン イロン イヨン イヨン

Line 1

Obtain the length of the two arrays to be merged

Line 2: If one is larger than the other

We exchange the variables to work the largest element!!! In this case we make $n_1 \geq n_2$

Line 4

if $n_1 == 0$ return nothing to merge!!!

Line 1

Obtain the length of the two arrays to be merged

Line 2: If one is larger than the other

We exchange the variables to work the largest element!!! In this case we make $n_1 \geq n_2$

if $n_1 == 0$ return nothing to merge!!!

Line 1

Obtain the length of the two arrays to be merged

Line 2: If one is larger than the other

We exchange the variables to work the largest element!!! In this case we make $n_1 \geq n_2$

Line 4

if $n_1 == 0$ return nothing to merge!!!

イロト イヨト イヨト

Line 10

It copies $T\left[q_{1} ight]$ directly into $A\left[q_{3} ight]$

Line 11 and 12

They are used to recurse using nested parallelism to merge the sub-arrays less and greater than x.

Line 13

The sync is used to ensure that the subproblems have completed before the procedure returns.

< ロ > < 回 > < 回 > < 回 > < 回 >

Line 10

It copies $T[q_1]$ directly into $A[q_3]$

Line 11 and 12

They are used to recurse using nested parallelism to merge the sub-arrays less and greater than x.

Line 13

The sync is used to ensure that the subproblems have completed before the procedure returns.

< ロ > < 回 > < 回 > < 回 > < 回 >
Explanation

Line 10

It copies $T[q_1]$ directly into $A[q_3]$

Line 11 and 12

They are used to recurse using nested parallelism to merge the sub-arrays less and greater than x.

Line 13

The sync is used to ensure that the subproblems have completed before the procedure returns.

First the Span Complexity of **Parallel Merge**: $T_{\infty}(n)$

Suppositions

• $n = n_1 + n_2$

What case should we study?

Remember $T_{\infty}\left(n
ight)=\max\left\{ T_{\infty}\left(n_{1}
ight)+T_{\infty}\left(n_{2}
ight)
ight\}$

We notice then that

Because lines 3-6 $n_2 \leq n_1$

First the Span Complexity of **Parallel Merge**: $T_{\infty}(n)$

Suppositions

• $n = n_1 + n_2$

What case should we study?

Remember $T_{\infty}(n) = \max \{ T_{\infty}(n_1) + T_{\infty}(n_2) \}$

We notice then that

Because lines 3-6 $n_2 \leq n_1$

First the Span Complexity of **Parallel Merge**: $T_{\infty}(n)$

Suppositions

• $n = n_1 + n_2$

What case should we study?

Remember $T_{\infty}(n) = \max \{ T_{\infty}(n_1) + T_{\infty}(n_2) \}$

We notice then that

Because lines 3-6 $n_2 \leq n_1$

Then

$2n_2 \le n_1 + n_2 = n \Longrightarrow n_2 \le n/2$

$$2n_2 \le n_1 + n_2 = n \Longrightarrow n_2 \le n/2$$

Thus

Then

In the worst case, a recursive call in lines 11 merges:

[3] elements of [7] [p1...r1] (Remember we are halving the array by mid-point)
 With all re elements of [7] [p2...r2]

イロト イボト イヨト イヨト

77 / 94

Then

$$2n_2 \le n_1 + n_2 = n \Longrightarrow n_2 \le n/2$$

Thus

In the worst case, a recursive call in lines 11 merges:

• $\lfloor \frac{n_1}{2} \rfloor$ elements of $T[p_1...r_1]$ (Remember we are halving the array by mid-point).

イロト イボト イヨト イヨト

Then

$$2n_2 \le n_1 + n_2 = n \Longrightarrow n_2 \le n/2$$

Thus

In the worst case, a recursive call in lines 11 merges:

- $\lfloor \frac{n_1}{2} \rfloor$ elements of $T[p_1...r_1]$ (Remember we are halving the array by mid-point).
- With all n_2 elements of $T[p_2...r_2]$.

< ロ > < 回 > < 回 > < 回 > < 回 >

Thus, the number of elements involved in such a call is

$$\left\lfloor \frac{n_1}{2} \right\rfloor + n_2 \le \frac{n_1}{2} + \frac{n_2}{2} + \frac{n_2}{2}$$

Thus, the number of elements involved in such a call is

$$\left| \frac{n_1}{2} \right| + n_2 \le \frac{n_1}{2} + \frac{n_2}{2} + \frac{n_2}{2}$$
$$\le \frac{n_1}{2} + \frac{n_2}{2} + \frac{n/2}{2}$$

Thus, the number of elements involved in such a call is

$$\frac{n_1}{2} + n_2 \le \frac{n_1}{2} + \frac{n_2}{2} + \frac{n_2}{2}$$
$$\le \frac{n_1}{2} + \frac{n_2}{2} + \frac{n/2}{2}$$
$$= \frac{n_1 + n_2}{2} + \frac{n}{4}$$

Thus, the number of elements involved in such a call is

$$\left\lfloor \frac{n_1}{2} \right\rfloor + n_2 \le \frac{n_1}{2} + \frac{n_2}{2} + \frac{n_2}{2}$$
$$\le \frac{n_1}{2} + \frac{n_2}{2} + \frac{n/2}{2}$$
$$= \frac{n_1 + n_2}{2} + \frac{n}{4}$$
$$\le \frac{n}{2} + \frac{n}{4} = \frac{3n}{4}$$

Cinvestav 78/94

Knowing that the Binary Search takes
$\Theta\left(\log n ight)$

$$T_{\infty}(n) = T_{\infty}\left(\frac{3n}{4}\right) + \Theta(\log n)$$

can can be solved using the exercise 4.6-2 in the Cormen's Book

$$T_{\infty}\left(n\right) = \Theta\left(\log^2 n\right)$$

イロン イロン イヨン イヨン

Knowing that the Binary Search takes

 $\Theta\left(\log n\right)$

We get the span for parallel merge

$$T_{\infty}(n) = T_{\infty}\left(\frac{3n}{4}\right) + \Theta(\log n)$$

can can be solved using the exercise 4.6-2 in the Cormen's Book

$$T_{\infty}\left(n
ight) = \Theta\left(\log^2 n
ight)$$

Knowing that the Binary Search takes

$$\Theta\left(\log n\right)$$

We get the span for parallel merge

$$T_{\infty}(n) = T_{\infty}\left(\frac{3n}{4}\right) + \Theta(\log n)$$

This can can be solved using the exercise 4.6-2 in the Cormen's Book

$$T_{\infty}\left(n\right) = \Theta\left(\log^2 n\right)$$

Ok!!! We need to calculate the WORK

 $T_{1}(n) = \Theta(Something)$

Thus

We need to calculate the upper and lower bound.

Ok!!! We need to calculate the WORK

 $T_1(n) = \Theta(Something)$

Thus

We need to calculate the upper and lower bound.

Work of Parallel Merge

The work of $T_1(n)$ of this Parallel Merge satisfies:

$T_{1}\left(n\right) = \Omega\left(n\right)$

Because each of the n elements must be copied from array T to array A.

Work of Parallel Merge

The work of $T_1(n)$ of this Parallel Merge satisfies:

```
T_{1}\left(n\right) = \Omega\left(n\right)
```

Because each of the n elements must be copied from array T to array A.

What about the Upper Bound *O*?

First notice that we can have a merge with

- ⁿ/₄ elements when we have we have the worst case of [n]/₂ + n₂ in the other merge.
- And $\frac{3n}{4}$ for the worst case.
- And the work of the Binary Search of $O\left(\log n\right)$

イロト イポト イヨト イヨト

Work of Parallel Merge

The work of $T_1(n)$ of this Parallel Merge satisfies:

```
T_{1}\left(n\right) = \Omega\left(n\right)
```

Because each of the n elements must be copied from array T to array A.

What about the Upper Bound *O*?

First notice that we can have a merge with

- $\frac{n}{4}$ elements when we have we have the worst case of $\lfloor \frac{n_1}{2} \rfloor + n_2$ in the other merge.
- And $\frac{3n}{4}$ for the worst case.
- And the work of the Binary Search of $O\left(\log n\right)$

ヘロト ヘヨト ヘヨト ヘヨト

Work of Parallel Merge

The work of $T_1(n)$ of this Parallel Merge satisfies:

```
T_{1}\left(n\right) = \Omega\left(n\right)
```

Because each of the n elements must be copied from array T to array A.

イロト 不通 と イヨト イヨト

81/94

What about the Upper Bound O?

First notice that we can have a merge with

Work of Parallel Merge

The work of $T_1(n)$ of this Parallel Merge satisfies:

```
T_{1}\left(n\right) = \Omega\left(n\right)
```

Because each of the n elements must be copied from array T to array A.

What about the Upper Bound O?

First notice that we can have a merge with

• $\frac{n}{4}$ elements when we have we have the worst case of $\lfloor \frac{n_1}{2} \rfloor + n_2$ in the other merge.

And $\frac{1}{4}$ for the worst case.

And the work of the Binary Search of $O(\log n)$

イロト 不通 と イヨト イヨト

Work of Parallel Merge

The work of $T_1(n)$ of this Parallel Merge satisfies:

```
T_{1}\left(n\right) = \Omega\left(n\right)
```

Because each of the n elements must be copied from array T to array A.

What about the Upper Bound O?

First notice that we can have a merge with

- $\frac{n}{4}$ elements when we have we have the worst case of $\lfloor \frac{n_1}{2} \rfloor + n_2$ in the other merge.
- And $\frac{3n}{4}$ for the worst case.

イロン 不通 と イヨン イヨン

Work of Parallel Merge

The work of $T_1(n)$ of this Parallel Merge satisfies:

```
T_{1}\left(n\right) = \Omega\left(n\right)
```

Because each of the n elements must be copied from array T to array A.

What about the Upper Bound O?

First notice that we can have a merge with

- $\frac{n}{4}$ elements when we have we have the worst case of $\lfloor \frac{n_1}{2} \rfloor + n_2$ in the other merge.
- And $\frac{3n}{4}$ for the worst case.
- And the work of the Binary Search of $O(\log n)$

イロン 不通 と イヨン イヨン

Then

Then, for some $\alpha \in \left[\frac{1}{4}, \frac{3}{4}\right]$, then we have the following recursion for the Parallel Merge when we have one processor:

$$T_{1}(n) = \underbrace{T_{1}(\alpha n) + T_{1}((1-\alpha)n)}_{\text{Merge Part}} + \underbrace{\Theta(\log n)}_{\text{Binary Search}}$$

Remark: lpha varies at each level of the recursion!!!

Then

Then, for some $\alpha \in \left[\frac{1}{4}, \frac{3}{4}\right]$, then we have the following recursion for the Parallel Merge when we have one processor:

$$T_{1}(n) = \underbrace{T_{1}(\alpha n) + T_{1}((1-\alpha)n)}_{\text{Merge Part}} + \underbrace{\Theta(\log n)}_{\text{Binary Search}}$$

Remark: α varies at each level of the recursion!!!

Then

Then, for some $\alpha \in \left[\frac{1}{4}, \frac{3}{4}\right]$, then we have the following recursion for the Parallel Merge when we have one processor:

$$T_{1}(n) = \underbrace{T_{1}(\alpha n) + T_{1}((1-\alpha)n)}_{\text{Merge Part}} + \underbrace{\Theta(\log n)}_{\text{Binary Search}}$$

Remark: α varies at each level of the recursion!!!

Then

Assume that $T_1(n) \leq c_1 n - c_2 \log n$ for positive constants c_1 and c_2 .

We have then using c_3 for $\Theta \ (\log n)$

 $T_1(n) \le T_1(\alpha n) + T_1((1-\alpha)n) + c_3 \log n$

Then

Assume that $T_1(n) \leq c_1 n - c_2 \log n$ for positive constants c_1 and c_2 .

We have then using c_3 for $\overline{\Theta(\log n)}$

$$T_{1}(n) \leq T_{1}(\alpha n) + T_{1}((1-\alpha)n) + c_{3}\log n$$

$$\leq c_{1}\alpha n - c_{2}\log(\alpha n) + c_{1}(1-\alpha)n - c_{2}\log((1-\alpha)n) + c_{3}\log n$$

 $=c_1n-c_2\left(\log n+\log\left(lpha(1-lpha)
ight)
ight)-(c_2-c_3)\log n$

 $\leq c_1n-(c_2-c_3)\log n$ because $\log n+\log{(lpha(1-lpha))}>0$

Then

Assume that $T_1(n) \leq c_1 n - c_2 \log n$ for positive constants c_1 and c_2 .

We have then using c_3 for $\overline{\Theta(\log n)}$

$$T_1(n) \leq T_1(\alpha n) + T_1((1-\alpha)n) + c_3 \log n$$

$$\leq c_1 \alpha n - c_2 \log(\alpha n) + c_1(1-\alpha)n - c_2 \log((1-\alpha)n) + c_3 \log n$$

$$= c_1 n - c_2 \log(\alpha(1-\alpha)) - 2c_2 \log n + c_3 \log n \text{ (splitting elements)}$$

Then

Assume that $T_1(n) \leq c_1 n - c_2 \log n$ for positive constants c_1 and c_2 .

We have then using c_3 for $\Theta(\log n)$

$$T_{1}(n) \leq T_{1}(\alpha n) + T_{1}((1-\alpha)n) + c_{3}\log n$$

$$\leq c_{1}\alpha n - c_{2}\log(\alpha n) + c_{1}(1-\alpha)n - c_{2}\log((1-\alpha)n) + c_{3}\log n$$

$$= c_{1}n - c_{2}\log(\alpha(1-\alpha)) - 2c_{2}\log n + c_{3}\log n \text{ (splitting elements)}$$

$$= c_{1}n - c_{2}(\log n + \log(\alpha(1-\alpha))) - (c_{2} - c_{3})\log n$$

Then

Assume that $T_1(n) \leq c_1 n - c_2 \log n$ for positive constants c_1 and c_2 .

We have then using c_3 for $\Theta(\log n)$

$$\begin{split} T_1(n) &\leq T_1(\alpha n) + T_1((1-\alpha) n) + c_3 \log n \\ &\leq c_1 \alpha n - c_2 \log (\alpha n) + c_1 (1-\alpha) n - c_2 \log ((1-\alpha) n) + c_3 \log n \\ &= c_1 n - c_2 \log (\alpha (1-\alpha)) - 2c_2 \log n + c_3 \log n \text{ (splitting elements)} \\ &= c_1 n - c_2 (\log n + \log (\alpha (1-\alpha))) - (c_2 - c_3) \log n \\ &\leq c_1 n - (c_2 - c_3) \log n \text{ because } \log n + \log (\alpha (1-\alpha)) > 0 \end{split}$$

Now, we have that given $0 < \alpha(1-\alpha) < 1$

We have $\log\left(\alpha(1-\alpha)\right) < 0$

Thus, making *n* large enough

$$\log n + \log \left(\alpha (1 - \alpha) \right) > 0$$

Then

< ロ > < 同 > < 回 > < 回 >

Now, we have that given $0 < \alpha(1 - \alpha) < 1$

We have $\log(\alpha(1-\alpha)) < 0$

Thus, making n large enough

$$\log n + \log \left(\alpha (1 - \alpha) \right) > 0$$

(1)

Then

 $T_1(n) \le c_1 n - (c_2 - c_3) \log n$

Now, we have that given $0 < \alpha(1 - \alpha) < 1$

We have $\log(\alpha(1-\alpha)) < 0$

Thus, making n large enough

$$\log n + \log \left(\alpha (1 - \alpha) \right) > 0$$

(1)

Then

$$T_1(n) \le c_1 n - (c_2 - c_3) \log n$$

Now, we choose c_2 and c_3 such that

$$c_2 - c_3 \ge 0$$

We have that

$T_1\left(n\right) \le c_1 n = O(n)$

イロト イヨト イヨト イヨト
Calculating Work Complexity of Parallel Merge

Now, we choose c_2 and c_3 such that

$$c_2 - c_3 \ge 0$$

We have that

$$T_1(n) \le c_1 n = O(n)$$

イロト イヨト イヨト

Finally

Then

$$T_{1}\left(n\right) = \Theta\left(n\right)$$

The parallelism of Parallel Merg

$$\frac{T_{1}\left(n\right)}{T_{\infty}\left(n\right)} = \Theta\left(\frac{n}{\log^{2}n}\right)$$

Finally

Then

$$T_{1}\left(n\right) = \Theta\left(n\right)$$

The parallelism of **Parallel Merge**

$$\frac{T_{1}\left(n\right)}{T_{\infty}\left(n\right)} = \Theta\left(\frac{n}{\log^{2}n}\right)$$

メロト スピト メヨト メヨト

First, the new code - Input A[p..r] - Output B[s..s+r-p]Par - Merge - Sort(A, p, r, B, s)**1** n = r - p + 1**2** if (n == 1)B[s] = A[p]

First, the new code - Input A[p..r] - Output B[s..s+r-p]Par - Merge - Sort(A, p, r, B, s)**1** n = r - p + 1**2** if (n == 1)B[s] = A[p]3 **④ else** let T[1..n] be a new array

First, the new code - Input A[p..r] - Output B[s..s+r-p]Par - Merge - Sort(A, p, r, B, s)**1** n = r - p + 1**2** if (n == 1)B[s] = A[p]3 **④ else** let T[1..n] be a new array q = |(p+r)/2|6 6 q = q - p + 1

First, the new code - Input $A\left[pr ight]$ - Output $B\left[ss+r-p ight]$
Par - Merge - Sort(A, p, r, B, s)
$\bullet n = r - p + 1$
2 if $(n == 1)$
$\bullet \qquad B\left[s\right] = A\left[p\right]$
• else let $T[1n]$ be a new array
$\bullet \qquad q = q - p + 1$
• spawn $Par - Merge - Sort(A, p, q, T, 1)$
Par - Merge - Sort (A, q + 1, r, T, q' + 1)

First, the new code - Input
$$A[p..r]$$
 - Output $B[s..s + r - p]$
 $Par - Merge - Sort(A, p, r, B, s)$
() $n = r - p + 1$
() if $(n == 1)$
() $B[s] = A[p]$
() else let $T[1..n]$ be a new array
() $q = \lfloor (p+r)/2 \rfloor$
() $q = q - p + 1$
() spawn $Par - Merge - Sort(A, p, q, T, 1)$
() $Par - Merge - Sort(A, q + 1, r, T, q' + 1)$
() sync

First, the new code - Input
$$A[p..r]$$
 - Output $B[s..s + r - p]$
 $Par - Merge - Sort(A, p, r, B, s)$
() $n = r - p + 1$
() if $(n == 1)$
() $B[s] = A[p]$
() else let $T[1..n]$ be a new array
() $q = \lfloor (p+r)/2 \rfloor$
() $q = q - p + 1$
() $spawn Par - Merge - Sort(A, p, q, T, 1)$
() $Par - Merge - Sort(A, q + 1, r, T, q' + 1)$
() $Sync$
() $Par - Merge(T, 1, q', q' + 1, n, B, s)$

Work

We can use the worst work in the parallel to generate the recursion:

$$\begin{split} r_1^{PMS}\left(n\right) &= 2T_1^{PMS}\left(\frac{n}{2}\right) + T_1^{PM}\left(n\right) \\ &= 2T_1^{PMS}\left(\frac{n}{2}\right) + \Theta\left(n\right) \\ &= \Theta\left(n\log n\right) \text{ Case 2 of the M} \end{split}$$

Work

We can use the worst work in the parallel to generate the recursion:

$$T_1^{PMS}\left(n\right) = 2T_1^{PMS}\left(\frac{n}{2}\right) + T_1^{PM}\left(n\right)$$

イロト イボト イヨト イヨト

Work

We can use the worst work in the parallel to generate the recursion:

$$T_1^{PMS}(n) = 2T_1^{PMS}\left(\frac{n}{2}\right) + T_1^{PM}(n)$$
$$= 2T_1^{PMS}\left(\frac{n}{2}\right) + \Theta(n)$$

イロト イボト イヨト イヨト

Work

We can use the worst work in the parallel to generate the recursion:

$$\begin{split} T_1^{PMS}\left(n\right) &= 2 T_1^{PMS}\left(\frac{n}{2}\right) + T_1^{PM}\left(n\right) \\ &= 2 T_1^{PMS}\left(\frac{n}{2}\right) + \Theta\left(n\right) \\ &= \Theta\left(n\log n\right) \text{ Case 2 of the M} \end{split}$$

Span

We get the following recursion for the span by taking in account that lines 7 and 8 of parallel merge sort run in parallel:

Span

We get the following recursion for the span by taking in account that lines 7 and 8 of parallel merge sort run in parallel:

$$T_{\infty}^{PMS}\left(n\right) = T_{\infty}^{PMS}\left(\frac{n}{2}\right) + T_{\infty}^{PM}\left(n\right)$$

= $\Theta\left(\log^3 n
ight)\,$ Exercise 4.6-2 in the Cormen's Book

Span

We get the following recursion for the span by taking in account that lines 7 and 8 of parallel merge sort run in parallel:

$$T_{\infty}^{PMS}(n) = T_{\infty}^{PMS}\left(\frac{n}{2}\right) + T_{\infty}^{PM}(n)$$
$$= T_{\infty}^{PMS}\left(\frac{n}{2}\right) + \Theta\left(\log^2 n\right)$$

 $= \Theta (\log^3 n)$ Exercise 4.6-2 in the Cormen's Book

Span

We get the following recursion for the span by taking in account that lines 7 and 8 of parallel merge sort run in parallel:

$$\begin{split} T_{\infty}^{PMS}\left(n\right) &= T_{\infty}^{PMS}\left(\frac{n}{2}\right) + T_{\infty}^{PM}\left(n\right) \\ &= T_{\infty}^{PMS}\left(\frac{n}{2}\right) + \Theta\left(\log^{2}n\right) \\ &= \Theta\left(\log^{3}n\right) \text{ Exercise 4.6-2 in the Cormen's Book} \end{split}$$

Parallelism

$$\frac{T_{1}\left(n\right)}{T_{\infty}\left(n\right)} = \Theta\left(\frac{n}{\log^{2}n}\right)$$

イロト イヨト イヨト

Plotting both Parallelisms

We get the incredible difference between both algorithm

<ロ> <回> <回> <目> <目> <日> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

91/94

Plotting the T_{∞}

We get the incredible difference when running both algorithms with an infinite number of processors!!!

Outline

- Introduct
 - Why Multi-Threaded Algorithms?

2 Model To Be Used

- Symmetric Multiprocessor
- Operations
- Example

B Computation DAG

- Introduction
- 4 Performance Measures
 - Introduction
 - Running Time Classification

5 Parallel Laws

- Work and Span Laws
- Speedup and Parallelism
- Greedy Scheduler
- Scheduling Rises the Following Issue

Examples

- Parallel Fibonacci
- Matrix Multiplication
- Parallel Merge-Sort

Exercises

• Some Exercises you can try!!!

イロト イヨト イヨト

Exercises

- 27.1-1
- 27.1-2
- 27.1-4
- 27.1-6
- 27.1-7
- 27.2-1
- 27.2-3
- 27.2-4
- 27.2-5
- 27.3-1
- 27.3-2
- 27.3-3
- 27.3-4

