Matrix Operations

October 18, 2014

1 Introduction

In this section, we look at some of the basic operations when looking at different matrix operations. In specific, we are going to look at the following operations:

- The multiplications
- The inverse

2 Matrix Multiplications

In this section, we look at the cost of making a matrix multiplication.In specific, the Strassen's algorithm which was the first algorithm to prove that $O\left(n^{3}\right)$ is not the best complexity for matrix multiplications. This upper bound was believe correct for the matrix multiplication because the nature of the definition.
Definition 1. Given A, B matrices with dimensions $n \times n$, the multiplication is defined as:

$$
\begin{aligned}
C & =A B \\
c_{i j} & =\sum_{k=1}^{n} a_{i k} b_{k j}
\end{aligned}
$$

Thus the final algorithm is

```
Algorithm 1 Matrix multiplication
    Square-Matrix-Multiply (A,B)
    \(\mathrm{n}=\mathrm{A}\). rows
    let \(C\) be a new matrix of \(n x n\)
    for \(\mathrm{i}=1\) to n
        for \(\mathrm{j}=1\) to n
                            \(\mathrm{C}[\mathrm{i}, \mathrm{j}]=0\)
                        for \(\mathrm{k}=1\) to n
                        \(\mathrm{C}[\mathrm{i}, \mathrm{j}]=\mathrm{C}[\mathrm{i}, \mathrm{j}]+\mathrm{A}[\mathrm{i}, \mathrm{j}] * \mathrm{~B}[\mathrm{i}, \mathrm{j}]\)
    return C
```


2.1 Strassen's Algorithm

The Strassen's algorithm is a divide and conquer algorithm which split the three matrices involved in the matrix algorithm in the following way:

$$
\left(\begin{array}{ll}
r & s \tag{1}\\
t & u
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)
$$

Thus, we have then the following:

$$
\begin{aligned}
& r=a \times e+b \times g, s=a \times f+b \times h \\
& t=c \times e+d \times g, u=c \times f+d \times h
\end{aligned}
$$

This has the following recursion and complexity, $T(n)=8 T\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right)$ and $T(n)=\Theta\left(n^{3}\right)$ respectively.

Basically the Strassen's algorithms has the following steps:

> Algorithm 2 Strassen's Algorithm
> 1. Divide the input matrices A and B into $\frac{n}{2} \times \frac{n}{2}$ sub matrices
> 2. Using $\Theta\left(n^{2}\right)$ scalar additions and subtractions, compute 14 matrices $A_{1}, B_{1}, \ldots, A_{7}, B_{7}$ each of which is $\frac{n}{2} \times \frac{n}{2}$.
3. Recursively compute the seven matrices products $P_{i}=A_{i} B_{i}$ for $i=$ $1,2,3, \ldots, 7$.
4. Compute the desired matrix

$$
\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right)
$$

by adding and or subtracting various combinations of the P_{i} matrices, using only $\Theta\left(n^{2}\right)$ scalar additions and subtractions

At the slides you can see an attempt of how the algorithm could have been designed.

In any case, Strassen showed that the upper bound of $O\left(n^{3}\right)$ is not the last bound. It is more, it has been shown recently in 2012 that the possible bound is at $O\left(n^{2}\right)$.

3 Solving systems of linear equations

In many areas of engineering and mathematics (Numerical analysis, differential equations, etc) there is a need to develop a solution for systems of equations:

$$
\begin{aligned}
a_{11} x_{1}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+\ldots+a_{2 n} x_{n} & =b_{2} \\
& \vdots \\
& \\
a_{n 1} x_{1}+\ldots+a_{n n} x_{n} & =b_{n}
\end{aligned}
$$

For this, we can rewrite the systems of equations into a matrix-vector equation:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{2}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

This can be solved by using the inverse matrix operation by simply looking at the following equation:

$$
\begin{equation*}
A x=b \Longrightarrow x=A^{-1} b \tag{3}
\end{equation*}
$$

Clearly, we are looking at the cases when the matrix A is not singular.
Definition 2. A square matrix that is not invertible is called singular or degenerate. A square matrix is singular if and only if its determinant is 0 .

Example 3. We can have systems of differential equations of first order:

$$
\begin{aligned}
a_{11} x_{1}+\ldots+a_{1 n} x_{n} & =\frac{d x_{1}}{d t} \\
a_{21} x_{1}+\ldots+a_{2 n} x_{n} & =\frac{d x_{2}}{d t} \\
& \vdots \\
a_{n 1} x_{1}+\ldots+a_{n n} x_{n} & =\frac{d x_{n}}{d t}
\end{aligned}
$$

We can solve this system if we have initial conditions for the differentials.
The problem with the previous methods is the inherent instability and high complexity of simply calculating A^{-1}. Thus, we require something more stable and faster.

4 LUP Decomposition

The idea behind LUP decomposition is to find three $n \times n$ matrices L, U, and P such that

$$
\begin{equation*}
P A=L U \tag{4}
\end{equation*}
$$

Each is called

- L is a unit lower-triangular matrix.
- U is an upper-triangular matrix.
- P is a permutation matrix.

Example 4. A lower-triangular matrix look like

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

Example 5. A upper looks like

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

The final example is about the permutation matrix:
Example 6. For order three, we have something like:

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Thus, we can solve $A x=b$ once we found the decomposition by using the following substitutions:

$$
\begin{aligned}
P A x & =P b \\
L U x & =P b
\end{aligned}
$$

Now by making $y=U x$, we have that

$$
\begin{equation*}
L y=P b \tag{5}
\end{equation*}
$$

Which is a lower triangular system. Thus, we only need to solve the system the solve the system $y=U x$. This is called forward substitution. After that we can solve the upper-triangular system:

$$
\begin{equation*}
U x=y \tag{6}
\end{equation*}
$$

By the back-substitution method. All this is true because P is invertible, which allows to have the following equality

$$
\begin{equation*}
A=P^{-1} L U \tag{7}
\end{equation*}
$$

Or in other words:

$$
\begin{aligned}
A x & =P^{-1} L U x \\
& =P^{-1} L y \\
& =P^{-1} P b \\
& =b
\end{aligned}
$$

4.1 Fordward and Backward Substitution

In order to solve the lower triangular system in $\Theta\left(n^{2}\right)$, we use an algorithm called fordward substitution. It depends on the compact representation of the permutation P by using an array $\pi[1 \ldots n]$. Thus, each $P_{i j}$ is defined as follows

$$
P_{i j}= \begin{cases}1 & \text { if } j=\pi[i] \tag{8}\\ 0 & \text { if } j \neq \pi[i]\end{cases}
$$

Thus, $P A$ has $a_{\pi[i], j}$ in row i and column j, and $P b$ has $b_{\pi[i]}$ as its i th element. This allows to have the following representation:

$$
\begin{array}{ccc}
y_{1} & =b_{\pi[1]} \\
l_{21} y_{1}+y_{2} & & b_{\pi[2]} \\
l_{21} y_{1}+l_{32} y_{2}+y_{3} & & =b_{\pi[3]} \\
& \vdots & \\
l_{n 1} y_{1}+l_{n 2} y_{2}+l_{n 3} y_{3}+\cdots+y_{n} & =b_{\pi[n]}
\end{array}
$$

Then, we have the following solution for each y_{i} :

$$
\begin{equation*}
y_{i}=b_{\pi[i]}-\sum_{j=1}^{i-1} l_{i j} y_{j} \tag{9}
\end{equation*}
$$

In a similar way, we have that for the upper triangular system can be rewritten as:

$$
\begin{array}{ccc}
u_{11} x_{1}+u_{12} x_{2}+\cdots+u_{1 n} x_{n} & = & y_{1} \\
u_{22} x_{2}+\cdots+u_{2 n} x_{n} & = & y_{2} \\
& \vdots & \\
& = & y_{n-1} \\
u_{n-1, n-1} x_{n-1}+u_{n-1, n} x_{n} & = & y_{n} \\
u_{n n} x_{n} &
\end{array}
$$

Thus,

$$
\begin{equation*}
x_{i}=\frac{\left(y_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right)}{u_{i i}} \tag{10}
\end{equation*}
$$

Then, we have the following algorithm:

```
Algorithm 3 LUP-Solve
    LUP-Solve \((L, U, \pi, b)\)
        \(n=\) L.rows
        let \(x\) be a new vector of length \(n\)
        for \(i=1\) to \(n\)
            \(y_{i}=b_{\pi[i]}-\sum_{j=1}^{i-1} l_{i j} y_{j}\)
        for \(i=n\) downto 1
            \(x_{i}=\left(y_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}\)
        return \(x\)
```


5 Computing the LU decomposition

5.1 Case $P=I_{n}$

In this case, $A=L U$, a $L U$ decomposition of A (Assuming that the matrix is non-singular). To obtain this decomposition we use the Gaussian elimination process:

- If $n=1$, then we are done because $L=I_{1}$ and $U=A$.
- If $n>1$ then:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{11}\\
a_{22} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)=\left(\begin{array}{cc}
a_{11} & w^{T} \\
v & A^{\prime}
\end{array}\right)
$$

This can be decomposed further:

$$
A=\left(\begin{array}{cc}
a_{11} & w^{T} \tag{12}\\
v & A^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
\frac{v}{a_{11}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & w^{T} \\
0 & A^{\prime}-\frac{v w^{T}}{a_{11}}
\end{array}\right)
$$

where the $(n-1) \times(n-1)$ matrix $A^{\prime}-\frac{v w^{T}}{a_{11}}$ is the Schur complement of A with respect to a_{11} (Called pivots), which is not singular because A is not singular. Now recursively decompose it into:

$$
\begin{equation*}
A^{\prime}-\frac{v w^{T}}{a_{11}}=L^{\prime} U^{\prime} \tag{13}
\end{equation*}
$$

Thus:

$$
A=\left(\begin{array}{cc}
1 & 0 \tag{14}\\
\frac{v}{a_{11}} & L^{\prime}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & w^{T} \\
0 & U^{\prime}
\end{array}\right)=L U
$$

Then, we have that

```
Algorithm 4 LU-Decomposition
    LU-DECOMPOSITION \((A)\)
        \(n=A\). rows
    let \(L\) and \(U\) be new \(n \times n\) matrices
    initialize \(U\) with 0 s below the diagonal
    initialize \(L\) with 1 s on the diagonal and 0 s above the diagonal
    for \(k=1\) to \(n\)
        \(u_{k k}=a_{k k}\)
        for \(i=k+1\) to \(n\)
        \(l_{i k}=a_{i k} / u_{k k} \quad / / l_{i k}\) holds \(v_{i}\)
        \(u_{k i}=a_{k i} \quad / / u_{k i}\) holds \(w_{i}^{\mathrm{T}}\)
    for \(i=k+1\) to \(n\)
        for \(j=k+1\) to \(n\)
            \(a_{i j}=a_{i j}-l_{i k} u_{k j}\)
return \(L\) and \(U\)
```


5.2 General Case

In this case, we use the following idea:

- Move the largest absolute value element $a_{k 1}$ to the position $(1,1)$ in the matrix by using a permutation matrix Q to increase stability and avoid division by zero.

This allows to have the following without a division by zero:

$$
Q A=\left(\begin{array}{cc}
a_{k 1} & w^{T} \tag{15}\\
v & A^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
\frac{v}{a_{11}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & A^{\prime}-\frac{v w^{T}}{a_{11}}
\end{array}\right)
$$

And again

$$
\begin{equation*}
P^{\prime}\left(A^{\prime}-\frac{v w^{T}}{a_{11}}\right)=L^{\prime} U^{\prime} \tag{16}
\end{equation*}
$$

Then the permutation P can be defined as

$$
P=\left(\begin{array}{cc}
1 & 0 \tag{17}\\
0 & P^{\prime}
\end{array}\right) Q
$$

The code is at the slides.

6 Inverting Matrices

The LUP decomposition allows to compute the inverse by simply looking at the following computation.

- Given $A X=I_{n}$, we can decompose the the LUP of A, then solve the following system $A x_{i}=e_{i}$ for all $i=1, \ldots, n$ using the LUP as follows
$-P A x_{i}=P e_{i} \Longrightarrow L U x_{i}=P e_{i}$
- Use Fordward to solve $L\left(U x_{i}\right)=L y_{i}=P e_{i}$
- Use Backward to solve $U x_{i}=y_{i}$

7 Matrix Multiplication and Inversion Complexities

Theorem. Multiplication no harder than inversion

Note

- If $M(n)$ denotes the time for the multiplication of two matrices of $n \times n$.
- If $I(n)$ denotes the time of inverting a non-singular matrix of $n \times n$.

Proof. Let A and B be $n \times n$ matrices whose product is C. Define the following matrix

$$
D=\left(\begin{array}{ccc}
I_{n} & A & 0 \\
0 & I_{n} & B \\
0 & 0 & I_{n}
\end{array}\right)
$$

with inverse

$$
D^{-1}=\left(\begin{array}{ccc}
I_{n} & -A & A B \\
0 & I_{n} & -B \\
0 & 0 & I_{n}
\end{array}\right)
$$

It is possible to construct D in $\Theta\left(n^{2}\right)$ time which is $O(I(n))\left(I(n)=\Omega\left(n^{2}\right)\right)$. Thus, inversion can be done in $O(I(3 n))=O(I(n))$ by regularity condition on $I(n)$. Then $M(n)=O(I(n))$.

Theorem. Inversion is no harder than multiplication.
Proof. We let this to you.

