
Matrix Operations

October 18, 2014

1 Introduction
In this section, we look at some of the basic operations when looking at different
matrix operations. In specific, we are going to look at the following operations:
• The multiplications

• The inverse

2 Matrix Multiplications
In this section, we look at the cost of making a matrix multiplication.In specific,
the Strassen’s algorithm which was the first algorithm to prove that O

(
n3) is not

the best complexity for matrix multiplications. This upper bound was believe
correct for the matrix multiplication because the nature of the definition.
Definition 1. Given A, B matrices with dimensions n× n, the multiplication
is defined as:

C = AB

cij =
n∑
k=1

aikbkj

Thus the final algorithm is

Algorithm 1 Matrix multiplication

1



2.1 Strassen’s Algorithm
The Strassen’s algorithm is a divide and conquer algorithm which split the three
matrices involved in the matrix algorithm in the following way:(

r s
t u

)
=
(
a b
c d

)(
e f
g h

)
(1)

Thus, we have then the following:

r = a× e+ b× g, s = a× f + b× h

t = c× e+ d× g, u = c× f + d× h

This has the following recursion and complexity, T (n) = 8T
(
n
2
)

+ Θ
(
n2)

and T (n) = Θ
(
n3) respectively.

Basically the Strassen’s algorithms has the following steps:

Algorithm 2 Strassen’s Algorithm
1. Divide the input matrices A and B into n

2 ×
n
2 sub matrices

2. Using Θ
(
n2) scalar additions and subtractions, compute 14 matrices

A1, B1, ..., A7, B7 each of which is n
2 ×

n
2 .

3. Recursively compute the seven matrices products Pi = AiBi for i =
1, 2, 3, ..., 7.

4. Compute the desired matrix (
r s
t u

)
by adding and or subtracting various combinations of the Pi matrices,
using only Θ

(
n2) scalar additions and subtractions

At the slides you can see an attempt of how the algorithm could have been
designed.

In any case, Strassen showed that the upper bound of O
(
n3) is not the last

bound. It is more, it has been shown recently in 2012 that the possible bound
is at O

(
n2).

3 Solving systems of linear equations
In many areas of engineering and mathematics (Numerical analysis, differential
equations, etc) there is a need to develop a solution for systems of equations:

2



a11x1 + ...+ a1nxn = b1

a21x1 + ...+ a2nxn = b2
...

an1x1 + ...+ annxn = bn

For this, we can rewrite the systems of equations into a matrix-vector equa-
tion: 

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann




x1
x2
...
xn

 =


b1
b2
...
bn

 (2)

This can be solved by using the inverse matrix operation by simply looking
at the following equation:

Ax = b =⇒ x = A−1b (3)

Clearly, we are looking at the cases when the matrix A is not singular.

Definition 2. A square matrix that is not invertible is called singular or de-
generate. A square matrix is singular if and only if its determinant is 0.

Example 3. We can have systems of differential equations of first order:

a11x1 + ...+ a1nxn = dx1

dt

a21x1 + ...+ a2nxn = dx2

dt
...

an1x1 + ...+ annxn = dxn
dt

We can solve this system if we have initial conditions for the differentials.

The problem with the previous methods is the inherent instability and high
complexity of simply calculating A−1. Thus,we require something more stable
and faster.

4 LUP Decomposition
The idea behind LUP decomposition is to find three n× n matrices L, U , and
P such that

3



PA = LU (4)

Each is called

• L is a unit lower-triangular matrix.

• U is an upper-triangular matrix.

• P is a permutation matrix.

Example 4. A lower-triangular matrix look like 1 0 0
1 1 0
1 1 1


Example 5. A upper looks like 1 1 1

0 1 1
0 0 1


The final example is about the permutation matrix:

Example 6. For order three, we have something like: 0 1 0
0 0 1
1 0 0


Thus, we can solve Ax = b once we found the decomposition by using the

following substitutions:

PAx = Pb

LUx = Pb

Now by making y = Ux, we have that

Ly = Pb (5)

Which is a lower triangular system. Thus, we only need to solve the system
the solve the system y = Ux. This is called forward substitution. After that we
can solve the upper-triangular system:

Ux = y (6)

By the back-substitution method. All this is true because P is invertible,
which allows to have the following equality

4



A = P−1LU (7)

Or in other words:

Ax = P−1LUx

= P−1Ly

= P−1Pb

= b

4.1 Fordward and Backward Substitution
In order to solve the lower triangular system in Θ

(
n2), we use an algorithm

called fordward substitution. It depends on the compact representation of the
permutation P by using an array π [1...n]. Thus, each Pij is defined as follows

Pij =
{
1 if j = π [i]
0 if j 6= π [i]

(8)

Thus, PA has aπ[i],j in row i and column j, and Pb has bπ[i] as its ith element.
This allows to have the following representation:

y1 = bπ[1]
l21y1 + y2 = bπ[2]

l21y1 + l32y2 + y3 = bπ[3]
...

ln1y1 + ln2y2 + ln3y3 + · · ·+ yn = bπ[n]

Then, we have the following solution for each yi:

yi = bπ[i] −
i−1∑
j=1

lijyj (9)

In a similar way, we have that for the upper triangular system can be rewrit-
ten as:

u11x1 + u12x2 + · · ·+ u1nxn = y1
u22x2 + · · ·+ u2nxn = y2

...
un−1,n−1xn−1 + un−1,nxn = yn−1

unnxn = yn

Thus,

xi =

(
yi −

∑n
j=i+1 uijxj

)
uii

(10)

5



Then, we have the following algorithm:

Algorithm 3 LUP-Solve

5 Computing the LU decomposition
5.1 Case P = In

In this case, A = LU , a LU decomposition of A (Assuming that the matrix is
non-singular). To obtain this decomposition we use the Gaussian elimination
process:

• If n = 1, then we are done because L = I1 and U = A.

• If n > 1 then:

A =


a11 a12 · · · a1n
a22 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 =
(
a11 wT

v A′

)
(11)

This can be decomposed further:

A =
(
a11 wT

v A′

)
=
(

1 0
v
a11

In−1

)(
a11 wT

0 A′ − vwT

a11

)
(12)

where the (n− 1)× (n− 1) matrix A′ − vwT

a11
is the Schur complement of

A with respect to a11 (Called pivots), which is not singular because A is
not singular. Now recursively decompose it into:

A′ − vwT

a11
= L′U ′ (13)

Thus:

6



A =
(

1 0
v
a11

L′

)(
a11 wT

0 U ′

)
= LU (14)

Then, we have that

Algorithm 4 LU-Decomposition

5.2 General Case
In this case, we use the following idea:

• Move the largest absolute value element ak1 to the position (1,1) in the
matrix by using a permutation matrix Q to increase stability and avoid
division by zero.

This allows to have the following without a division by zero:

QA =
(
ak1 wT

v A′

)
=
(

1 0
v
a11

In−1

)(
ak1 wT

0 A′ − vwT

a11

)
(15)

And again

P ′
(
A′ − vwT

a11

)
= L′U ′ (16)

Then the permutation P can be defined as

P =
(

1 0
0 P ′

)
Q (17)

The code is at the slides.

7



6 Inverting Matrices
The LUP decomposition allows to compute the inverse by simply looking at the
following computation.

• Given AX = In, we can decompose the the LUP of A, then solve the
following system Axi = ei for all i = 1, ..., n using the LUP as follows

– PAxi = Pei =⇒ LUxi = Pei

– Use Fordward to solve L (Uxi) = Lyi = Pei

– Use Backward to solve Uxi = yi

7 Matrix Multiplication and Inversion Complex-
ities

Theorem. Multiplication no harder than inversion

Note

• If M(n) denotes the time for the multiplication of two matrices of
n× n.

• If I(n) denotes the time of inverting a non-singular matrix of n× n.

Proof. Let A and B be n×n matrices whose product is C. Define the following
matrix

D =

 In A 0
0 In B
0 0 In


with inverse

D−1 =

 In −A AB
0 In −B
0 0 In


It is possible to constructD in Θ

(
n2) time which isO(I(n))

(
I(n) = Ω

(
n2)).

Thus, inversion can be done in O (I (3n)) = O (I (n)) by regularity condition on
I (n). Then M (n) = O (I (n)).

Theorem. Inversion is no harder than multiplication.

Proof. We let this to you.

8


