Analysis of Algorithms Matrix algorithms

Andres Mendez-Vazquez

November 24, 2015

イロン イボン イヨン トヨ

1/103

Outline

Introduction

- Basic Definitions
- Matrix Examples

Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms

- Inverting Matrices
- Least-squares Approximation

イロト イヨト イヨト

Outline

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms
- 5 Application
 - Inverting Matrices
 - Least-squares Approximation

Exercises Some Exercises You Can Try!!!

イロト イヨト イヨト

Basic definitions

A matrix is a rectangular array of numbers

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

A transpose matrix is the matrix obtained by exchanging the rows and columns

$$A^T = \begin{pmatrix} 1 & 4\\ 2 & 5\\ 3 & 6 \end{pmatrix}$$

イロト イヨト イヨト イヨト

Basic definitions

A matrix is a rectangular array of numbers

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

A transpose matrix is the matrix obtained by exchanging the rows and columns

$$A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

イロト イボト イヨト イヨト

Outline

Introduction Basic Definitions Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms
- 5 Application
 - Inverting Matrices
 - Least-squares Approximation

Exercises

イロト イヨト イヨト

Several cases of matrices

Zero matrix

The diagonal matrix

Several cases of matrices

Zero matrix

The diagonal matrix

$$egin{pmatrix} a_{11} & 0 & \cdots & 0 \ 0 & a_{22} & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

э

イロン イヨン イヨン

Several cases of matrices

Upper triangular matrix

(a_{11}	14		a_{1n}	
	0		•••	a_{2n}	
	÷	÷	·	:	
	0	0	•••	a_{nn}	

イロン イ団 とく ヨン イヨン

Outline

Introduction
 Basic Definitions
 Matrix Examples

Matrix Operations

- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms
- 5 Application
 - Inverting Matrices
 - Least-squares Approximation

Exercises

Some Exercises You Can Try!!!

イロト イヨト イヨト

Operations on matrices

They Define a Vectorial Space

- Matrix addition.
- Multiplication by scalar.
- The existence of zero.

Operations on matrices

They Define a Vectorial Space

- Matrix addition.
- Multiplication by scalar.
- The existence of zero.

Operations on matrices

They Define a Vectorial Space

- Matrix addition.
- Multiplication by scalar.
- The existence of zero.

Outline

Introduction
 Basic Definitions
 Matrix Examples

2 Matrix Operations

Introduction

Matrix Multiplication

- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms
- Application
 - Inverting Matrices
 - Least-squares Approximation

Exercises

Some Exercises You Can Try!!!

イロト イヨト イヨト

Matrix Multiplication

What is Matrix Multiplication?

Given $A,\,B$ matrices with dimensions $n\times n,$ the multiplication is defined as

$$C = AB$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Complexity and Algorithm

Algorithm: Complexity $\Theta(n^3)$ Square-Matrix-Multiply(A, B) $\mathbf{0}$ n = A.rows**2** let C be a new matrix $n \times n$ **3** for i = 1 to nfor i = 1 to n4 C[i, j] = 06 6 for k = 1 to nC[i, j] = C[i, j] + A[i, j] * B[i, j]1 return C

イロト イボト イヨト イヨト

Matrix multiplication properties

Properties of the Multiplication

• The Identity exist for a matrix A of $m \times n$:

$$I_m A = A I_n = A.$$

• The multiplication is associative:

A(BC) = (AB)C.

A(B+C) = AB + AC
(B+C)D = BD + CD

Matrix multiplication properties

Properties of the Multiplication

• The Identity exist for a matrix A of $m \times n$:

$$I_m A = A I_n = A.$$

• The multiplication is associative:

A(BC) = (AB)C.

A(B+C) = AB + AC
(B+C)D = BD + CD

Matrix multiplication properties

Properties of the Multiplication

• The Identity exist for a matrix A of $m \times n$:

$$I_m A = A I_n = A.$$

• The multiplication is associative:

$$A(BC) = (AB)C.$$

In addition, multiplication is distibutive

• A(B+C) = AB + AC

•
$$(B+C)D = BD + CD$$

イロト イヨト イヨト

In addition

Definition

The inner product between vectors is defied as

$$x^T y = \sum_{i=1}^n x_i y_i$$

Outline

Introduction Basic Definitions

Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication

The Inverse

Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms
- Application
 - Inverting Matrices
 - Least-squares Approximation

Exercises

Some Exercises You Can Try!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

Matrix inverses

The inverse is defined as the vector A^{-1} such that

$$AA^{-1} = A^{-1}A = I_n$$

Example

$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \Longrightarrow \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 0 + 1 \cdot 1 & 1 \cdot 1 - 1 \cdot 1 \\ 1 \cdot 0 + 1 \cdot 0 & 1 \cdot 1 + 0 \cdot -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Remark

A matrix that is invertible is called non-singular.

イロト イヨト イヨト イヨト

Matrix inverses

The inverse is defined as the vector A^{-1} such that

$$AA^{-1} = A^{-1}A = I_n$$

Example

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \Longrightarrow \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 0 + 1 \cdot 1 & 1 \cdot 1 - 1 \cdot 1 \\ 1 \cdot 0 + 1 \cdot 0 & 1 \cdot 1 + 0 \cdot -1 \end{pmatrix} =$$
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Remark

A matrix that is invertible is called non-singular.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Matrix inverses

The inverse is defined as the vector A^{-1} such that

$$AA^{-1} = A^{-1}A = I_n$$

Example

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \Longrightarrow \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 0 + 1 \cdot 1 & 1 \cdot 1 - 1 \cdot 1 \\ 1 \cdot 0 + 1 \cdot 0 & 1 \cdot 1 + 0 \cdot -1 \end{pmatrix} =$$
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Remark

A matrix that is invertible is called non-singular.

э

イロン イロン イヨン イヨン

Properties of an inverse

Some properties are

•
$$(BA)^{-1} = A^{-1}B^{-1}$$

• $(A^{-1})^T = (A^T)^{-1}$

The Rank of \boldsymbol{A}

Rank of A

A collection of vectors is $x_1, x_2, ..., x_n$ such that $c_1x_1 + c_2x_2 + ... + c_nx_n \neq 0$. The rank of a matrix is the number of linear independent rows.

Theorem 1

A square matrix has full rank if and only if it is nonsingular.

The Rank of \boldsymbol{A}

Rank of A

A collection of vectors is $x_1, x_2, ..., x_n$ such that $c_1x_1 + c_2x_2 + ... + c_nx_n \neq 0$. The rank of a matrix is the number of linear independent rows.

Theorem 1

A square matrix has full rank if and only if it is nonsingular.

イロト イヨト イヨト イヨト

Other Theorems

A null vector x is such that Ax = 0

• Theorem 2: A matrix A has full column rank if and only if it does not have a null vector.

Then, for squared matrices, we have

 Corollary 3: A square matrix A is singular if and only if it has a null vector.

イロト イヨト イヨト イヨト

Other Theorems

A null vector x is such that Ax = 0

• Theorem 2: A matrix A has full column rank if and only if it does not have a null vector.

Then, for squared matrices, we have

• Corollary 3: A square matrix A is singular if and only if it has a null vector.

イロト イヨト イヨト

Outline

Introduction Basic Definitions

Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms
- 5 Application
 - Inverting Matrices
 - Least-squares Approximation

Exercises

Some Exercises You Can Try!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

Determinants

A determinant can be defined recursively as follows

$$det(A) = \begin{cases} a_1 1 & \text{if } n = 1\\ \sum_{j=1}^n (-1)^{1+j} a_{1j} det\left(A_{[1j]}\right) & \text{if } n > 1 \end{cases}$$
(1)

Where $(-1)^{i+j} det \left(A_{[ij]}\right)$ is called a cofactor and $A_{[1j]}$ is the matrix formed when eliminating row 1 and column j from A

Determinants

A determinant can be defined recursively as follows

$$det(A) = \begin{cases} a_1 1 & \text{if } n = 1\\ \sum_{j=1}^n (-1)^{1+j} a_{1j} det\left(A_{[1j]}\right) & \text{if } n > 1 \end{cases}$$
(1)

Where $(-1)^{i+j}det(A_{[ij]})$ is called a cofactor and $A_{[1j]}$ is the matrix formed when eliminating row 1 and column j from A

Theorem 4(determinant properties).

The determinant of a square matrix A has the following properties:

- If any row or any column A is zero, then det(A) =
- The determinant of A is multiplied by λ if the entries of any one row (or any one column) of A are all multiplied by λ.
- The determinant of A is unchanged if the entries in one row (respectively, column) are added to those in another row (respectively, column).
- The determinant of A equals the determinant of A^T .
- The determinant of A is multiplied by -1 if any two rows (or any two columns) are exchanged.

Theorem 4(determinant properties).

The determinant of a square matrix A has the following properties:

- If any row or any column A is zero, then det(A) = 0.
- The determinant of A is multiplied by λ if the entries of any one row (or any one column) of A are all multiplied by λ.
- The determinant of A is unchanged if the entries in one row (respectively, column) are added to those in another row (respectively, column).
- The determinant of A equals the determinant of A^T .
- The determinant of A is multiplied by -1 if any two rows (or any two columns) are exchanged.

Theorem 5

An $n \times n$ matrix A is singular if and only if det(A) = 0.

イロン 人間 とくほ とくほう

Theorem 4(determinant properties).

The determinant of a square matrix A has the following properties:

- If any row or any column A is zero, then det(A) = 0.
- The determinant of A is multiplied by λ if the entries of any one row (or any one column) of A are all multiplied by λ .
- The determinant of A is unchanged if the entries in one row (respectively, column) are added to those in another row (respectively, column).
- The determinant of A equals the determinant of A^T .
- The determinant of A is multiplied by -1 if any two rows (or any two columns) are exchanged.

I heorem b

An $n \times n$ matrix A is singular if and only if det(A) = 0.

イロン 人間 とくほ とくほう

Theorem 4(determinant properties).

The determinant of a square matrix A has the following properties:

- If any row or any column A is zero, then det(A) = 0.
- The determinant of A is multiplied by λ if the entries of any one row (or any one column) of A are all multiplied by λ .
- The determinant of A is unchanged if the entries in one row (respectively, column) are added to those in another row (respectively, column).
- The determinant of A equals the determinant of A^T
- The determinant of A is multiplied by -1 if any two rows (or any two columns) are exchanged.

An $n \times n$ matrix A is singular if and only if det(A) = 0.

ヘロト 人間ト ヘヨト ヘヨト

Theorems

Theorem 4(determinant properties).

The determinant of a square matrix A has the following properties:

- If any row or any column A is zero, then det(A) = 0.
- The determinant of A is multiplied by λ if the entries of any one row (or any one column) of A are all multiplied by λ .
- The determinant of A is unchanged if the entries in one row (respectively, column) are added to those in another row (respectively, column).
- The determinant of A equals the determinant of A^T .
- The determinant of A is multiplied by -1 if any two rows (or any two columns) are exchanged.

An $n \times n$ matrix A is singular if and only if det(A) = 0.

ヘロン 人間 とくほとく ほど

Theorems

Theorem 4(determinant properties).

The determinant of a square matrix A has the following properties:

- If any row or any column A is zero, then det(A) = 0.
- The determinant of A is multiplied by λ if the entries of any one row (or any one column) of A are all multiplied by λ .
- The determinant of A is unchanged if the entries in one row (respectively, column) are added to those in another row (respectively, column).
- The determinant of A equals the determinant of A^T .
- The determinant of A is multiplied by -1 if any two rows (or any two columns) are exchanged.

An $n \times n$ matrix A is singular if and only if det(A) = 0.

イロン 人間 とくほ とくほう

Theorems

Theorem 4(determinant properties).

The determinant of a square matrix A has the following properties:

- If any row or any column A is zero, then det(A) = 0.
- The determinant of A is multiplied by λ if the entries of any one row (or any one column) of A are all multiplied by λ .
- The determinant of A is unchanged if the entries in one row (respectively, column) are added to those in another row (respectively, column).
- The determinant of A equals the determinant of A^T .
- The determinant of A is multiplied by -1 if any two rows (or any two columns) are exchanged.

Theorem 5

An $n \times n$ matrix A is singular if and only if det(A) = 0.

イロト 不通 とくほ とくほう

Positive definite matrix

Definition

A positive definite matrix A is called positive definite if and only if $x^TAx>0$ for all $x\neq 0$

Theorem 6

For any matrix A with full column rank, the matrix $A^T A$ is positive definite.

< ロ > < 回 > < 回 > < 回 > < 回 >

Positive definite matrix

Definition

A positive definite matrix A is called positive definite if and only if $x^TAx>0$ for all $x\neq 0$

Theorem 6

For any matrix A with full column rank, the matrix $A^T A$ is positive definite.

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

Introduct

- Basic Definitions
- Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms
- 5 Application
 - Inverting Matrices
 - Least-squares Approximation

Exercises Some Exercises You Can Try!!!

イロト イヨト イヨト

Matrix Multiplication

Problem description

Given $n \times n$ matrices A, B and C:

$$\begin{pmatrix} r & s \\ t & u \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$

Thus, you could compute r, s, t and u using recursion!!

$$r = ae + bg$$

$$s = af + bh$$

$$t = ce + dg$$

$$u = cf + dh$$

Cinvestav Ξ ∽ ۹ (~ 25 / 103

イロン イロン イヨン イヨン

Matrix Multiplication

Problem description

Given $n \times n$ matrices A, B and C:

$$\begin{pmatrix} r & s \\ t & u \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$

Thus, you could compute r, s, t and u using recursion!!!

r = ae + bgs = af + bht = ce + dgu = cf + dh

Cinvestav ≧ ∽ ۹ (~ 25 / 103

イロト イボト イヨト イヨト

Problem

Complexity of previous approach

$$T(n) = 8T\left(\frac{n}{2}\right) + \Theta(n^2)$$

Thus

 $T(n) = \Theta(n^3)$

Therefore

You need to use a different type of products.

Problem

Complexity of previous approach

$$T(n) = 8 T\left(\frac{n}{2}\right) + \Theta(n^2)$$

Thus

$$T(n) = \Theta(n^3)$$

Therefore

You need to use a different type of products.

Problem

Complexity of previous approach

$$T(n) = 8 T\left(\frac{n}{2}\right) + \Theta(n^2)$$

Thus

$$T(n) = \Theta(n^3)$$

Therefore

You need to use a different type of products.

Outline

Introduct

- Basic Definitions
- Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

Back to Matrix Multiplication

Strassen's Algorithm

- The Algorithm
- How he did it?
- Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms
- 5 Application
 - Inverting Matrices
 - Least-squares Approximation

Exercises

Some Exercises You Can Try!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

The Strassen's Algorithm

It is a divide and conquer algorithm

Given A, B, C matrices with dimensions $n \times n$, we recursively split the matrices such that we finish with 12 $\frac{n}{2} \times \frac{n}{2}$ sub matrices

$$\left(\begin{array}{cc} r & s \\ t & u \end{array}\right) = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} e & f \\ g & h \end{array}\right)$$

Remember the Gauss Trick?

Imagine the same for Matrix Multiplication.

The Strassen's Algorithm

It is a divide and conquer algorithm

Given A, B, C matrices with dimensions $n \times n$, we recursively split the matrices such that we finish with 12 $\frac{n}{2} \times \frac{n}{2}$ sub matrices

$$\left(\begin{array}{cc} r & s \\ t & u \end{array}\right) = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} e & f \\ g & h \end{array}\right)$$

Remember the Gauss Trick?

Imagine the same for Matrix Multiplication.

Outline

Introduct

- Basic Definitions
- Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms
- Application
 - Inverting Matrices
 - Least-squares Approximation

Exercises Some Exercises You Can Try!!!

イロト イヨト イヨト イヨト

Strassen's Algorithm

- **()** Divide the input matrices A and B into $\frac{n}{2} \times \frac{n}{2}$ sub matrices.
 - Osing O (n) scalar additions and subtractions, compute 14 matrices A₁, B₁, ..., A₇, B₇ each of which is <u>n</u> × <u>n</u>/2.
 Recursively compute the seven matrices products P_i = A_iB_i for i = 1, 2, 3, ..., 7.
- Compute the desired matrix

by adding and or subtracting various combinations of the P_i matrices using only $\Theta\left(n^2
ight)$ scalar additions and subtractions

Cinvestav < ロ > < 合 > < き > < き > き の へ (> 30 / 103

CE

Strassen's Algorithm

- **(**) Divide the input matrices A and B into $\frac{n}{2} \times \frac{n}{2}$ sub matrices.
- ② Using $\Theta(n^2)$ scalar additions and subtractions, compute 14 matrices $A_1, B_1, ..., A_7, B_7$ each of which is $\frac{n}{2} \times \frac{n}{2}$.

Compute the desired matrix

by adding and or subtracting various combinations of the P_i matrices using only $\Theta\left(n^2
ight)$ scalar additions and subtractions

Cinvestav < ロ > < 合 > < き > く き > き ぐ へ へ 30 / 103

Strassen's Algorithm

- **()** Divide the input matrices A and B into $\frac{n}{2} \times \frac{n}{2}$ sub matrices.
- ② Using $\Theta(n^2)$ scalar additions and subtractions, compute 14 matrices $A_1, B_1, ..., A_7, B_7$ each of which is $\frac{n}{2} \times \frac{n}{2}$.
- 3 Recursively compute the seven matrices products $P_i = A_i B_i$ for i = 1, 2, 3, ..., 7.

by adding and or subtracting various combinations of the P_i matrices using only $\Theta\left(n^2
ight)$ scalar additions and subtractions

30 / 103

Strassen's Algorithm

- **()** Divide the input matrices A and B into $\frac{n}{2} \times \frac{n}{2}$ sub matrices.
- ② Using $\Theta(n^2)$ scalar additions and subtractions, compute 14 matrices $A_1, B_1, ..., A_7, B_7$ each of which is $\frac{n}{2} \times \frac{n}{2}$.
- **③** Recursively compute the seven matrices products $P_i = A_i B_i$ for i = 1, 2, 3, ..., 7.
- Ompute the desired matrix

$$\left(\begin{array}{cc} r & s \\ t & u \end{array}\right)$$

by adding and or subtracting various combinations of the P_i matrices using only $\Theta\left(n^2
ight)$ scalar additions and subtractions

30 / 103

イロト イヨト イヨト

Strassen's Algorithm

- **()** Divide the input matrices A and B into $\frac{n}{2} \times \frac{n}{2}$ sub matrices.
- ② Using $\Theta(n^2)$ scalar additions and subtractions, compute 14 matrices $A_1, B_1, ..., A_7, B_7$ each of which is $\frac{n}{2} \times \frac{n}{2}$.
- **③** Recursively compute the seven matrices products $P_i = A_i B_i$ for i = 1, 2, 3, ..., 7.
- Compute the desired matrix

$$\left(\begin{array}{cc} r & s \\ t & u \end{array}\right)$$

by adding and or subtracting various combinations of the P_i matrices, using only $\Theta\left(n^2\right)$ scalar additions and subtractions

30 / 103

Strassen's Algorithm

- **()** Divide the input matrices A and B into $\frac{n}{2} \times \frac{n}{2}$ sub matrices.
- ② Using $\Theta(n^2)$ scalar additions and subtractions, compute 14 matrices $A_1, B_1, ..., A_7, B_7$ each of which is $\frac{n}{2} \times \frac{n}{2}$.
- **③** Recursively compute the seven matrices products $P_i = A_i B_i$ for i = 1, 2, 3, ..., 7.
- Ompute the desired matrix

$$\left(\begin{array}{cc} r & s \\ t & u \end{array}\right)$$

by adding and or subtracting various combinations of the P_i matrices, using only $\Theta\left(n^2\right)$ scalar additions and subtractions

30 / 103

Outline

Introduct

- Basic Definitions
- Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms
- Application
 - Inverting Matrices
 - Least-squares Approximation

Exercises Some Exercises You Can Try!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

Strassen Observed that

Trial and Error

First , he generated

$$P_i = A_i B_i = (\alpha_{i1}a + \alpha_{i2}b + \alpha_{i3}c + \alpha_{i4}d) \cdot (\beta_{i1}e + \beta_{i2}f + \beta_{i3}g + \beta_{i4}h)$$

Where $\alpha_{ij}, \beta_{ij} \in \{-1, 0, 1\}$

Then

< ロ > < 回 > < 回 > < 回 > < 回 >

Then

$$r = ae + bg = \begin{pmatrix} a & b & c & d \end{pmatrix} \begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} e \\ f \\ g \\ h \end{pmatrix}$$

$$s = af + bh = \begin{pmatrix} a & b & c & d \end{pmatrix} \begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & 0 & 0 & +1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} e \\ f \\ g \\ h \end{pmatrix}$$

Then

r

$$r = ae + bg = \begin{pmatrix} a & b & c & d \end{pmatrix} \begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} e \\ f \\ g \\ h \end{pmatrix}$$

$$s = af + bh = \begin{pmatrix} a & b & c & d \end{pmatrix} \begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & 0 & 0 & +1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} e \\ f \\ g \\ h \end{pmatrix}$$

Therefore

$$u = cf + dh = \left(\begin{array}{cccc} a & b & c & d\end{array}\right) \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & +1 & 0 & 0 \\ 0 & 0 & 0 & +1\end{array}\right) \left(\begin{array}{c} e \\ f \\ g \\ h\end{array}\right)$$

イロト イロト イヨト イヨト

Therefore

u

$$u = cf + dh = \begin{pmatrix} a & b & c & d \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & +1 & 0 & 0 \\ 0 & 0 & 0 & +1 \end{pmatrix} \begin{pmatrix} e \\ f \\ g \\ h \end{pmatrix}$$

イロト イロト イヨト イヨト

35/103

э

イロト 不得 トイヨト イヨト

Compute

•
$$s = P_1 + P_2$$

э

イロト 不得 トイヨト イヨト

Compute

•
$$s = P_1 + P_2$$

Where P_1		
P_1	=	A_1B_1
	=	$a\left(f-h ight)$
	=	af-ah
= (a	b c d	$\left(\begin{array}{cccc} 0 & +1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$

э

イロト イヨト イヨト イヨト

イロト イボト イヨト イヨト

Example Compute the s from P_1 and P_2 matrices

イロト イボト イヨト イヨト

Outline

Introduct

- Basic Definitions
- Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms
- Application
 - Inverting Matrices
 - Least-squares Approximation

Exercises Some Exercises You Can Try!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

Complexity

Because we are only computing 7 matrices

•
$$T(n) = 7T\left(\frac{n}{2}\right) + \Theta\left(n^2\right) = \Theta\left(n^{\lg 7}\right) = O\left(n^{2.81}\right).$$

・ロト ・回ト ・ヨト

We do not use Strassen's because

 A constant factor hidden in the running of the algorithm is larger than the constant factor of the naive Θ (n³) method.

We do not use Strassen's because

- A constant factor hidden in the running of the algorithm is larger than the constant factor of the naive $\Theta\left(n^3\right)$ method.
- When matrices are sparse, there are faster methods.
 - Strassen's is not a numerically stable as the naive method.
- The sub matrices formed at the levels of the recursion consume space.

< ロト < 同ト < ヨト < ヨ)

We do not use Strassen's because

- A constant factor hidden in the running of the algorithm is larger than the constant factor of the naive $\Theta\left(n^3\right)$ method.
- When matrices are sparse, there are faster methods.
- Strassen's is not a numerically stable as the naive method.

< ロ > < 同 > < 三 > < 三)

We do not use Strassen's because

- A constant factor hidden in the running of the algorithm is larger than the constant factor of the naive $\Theta\left(n^3\right)$ method.
- When matrices are sparse, there are faster methods.
- Strassen's is not a numerically stable as the naive method.
- The sub matrices formed at the levels of the recursion consume space.

< ロ > < 同 > < 三 > < 三)

The Holy Grail of Matrix Multiplications $O(n^2)$

In a method by Virginia Vassilevska Williams (2012) Assistant Professor at Stanford

• The computational complexity of her method is $\omega < 2.3727$ or $O\left(n^{2.3727}\right)$

Better than Coppersmith and Winograd (1990) $O(n^{2.375477})$

< ロ > < 同 > < 回 > < 回 >

The Holy Grail of Matrix Multiplications $O(n^2)$

In a method by Virginia Vassilevska Williams (2012) Assistant Professor at Stanford

- The computational complexity of her method is $\omega < 2.3727$ or $O\left(n^{2.3727}\right)$
- Better than Coppersmith and Winograd (1990) $O\left(n^{2.375477}
 ight)$

/lany Kesearchers Believe that

Coppersmith, Winograd and Cohn et al. conjecture could lead to $O(n^2)$, contradicting a variant of the widely believed *sun flower* conjecture of Erdos and Rado.

< ロ > < 同 > < 回 > < 回 >

The Holy Grail of Matrix Multiplications $O(n^2)$

In a method by Virginia Vassilevska Williams (2012) Assistant Professor at Stanford

- The computational complexity of her method is $\omega < 2.3727$ or $O\left(n^{2.3727}\right)$
- Better than Coppersmith and Winograd (1990) $O\left(n^{2.375477}
 ight)$

Many Researchers Believe that

• Coppersmith, Winograd and Cohn et al. conjecture could lead to $O(n^2)$, contradicting a variant of the widely believed *sun flower* conjecture of Erdos and Rado.

イロト 不得 トイヨト イヨト

Exercises

- 28.1-3
- 28.1-5
- 28.1-8
- 28.1-9
- 28.2-2
- 28.2-5

Outline

Introduc

- Basic Definitions
- Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

Solving Systems of Linear Equations

- Lower Upper Decomposition
- Eower Opper Decomposition
 Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms

Application

- Inverting Matrices
- Least-squares Approximation

Exercises Some Exercises You Can Try!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

In Many Fields

From Optimization to Control

We are required to solve systems of simultaneous equations.

For Example

For Polynomial Curve Fitting, we are given $\left(x_{1},y_{1}
ight),\left(x_{2},y_{2}
ight),...,\left(x_{n},y_{n}
ight)$

We want

To find a polynomial of degree n-1 with structure

イロン イロン イヨン イヨン

In Many Fields

From Optimization to Control

We are required to solve systems of simultaneous equations.

For Example

For Polynomial Curve Fitting, we are given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

We want

To find a polynomial of degree n-1 with structure

 $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$

A D A A B A A B A A B A

In Many Fields

From Optimization to Control

We are required to solve systems of simultaneous equations.

For Example

For Polynomial Curve Fitting, we are given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

We want

To find a polynomial of degree n-1 with structure

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

イロト 不得 トイヨト イヨト

We can build a system of equations

$$a_{0} + a_{1}x_{1} + a_{2}x_{1}^{2} + \dots + a_{n-1}x_{1}^{n-1} = y_{1}$$

$$a_{0} + a_{1}x_{2} + a_{2}x_{2}^{2} + \dots + a_{n-1}x_{2}^{n-1} = y_{2}$$

$$\vdots$$

$$a_{0} + a_{1}x_{n} + a_{2}x_{n}^{2} + \dots + a_{n-1}x_{n}^{n-1} = y_{n}$$

We have n unknowns

 $a_0, a_1, a_2, \dots, a_{n-1}$

We can build a system of equations

$$a_{0} + a_{1}x_{1} + a_{2}x_{1}^{2} + \dots + a_{n-1}x_{1}^{n-1} = y_{1}$$

$$a_{0} + a_{1}x_{2} + a_{2}x_{2}^{2} + \dots + a_{n-1}x_{2}^{n-1} = y_{2}$$

$$\vdots$$

$$a_{0} + a_{1}x_{n} + a_{2}x_{n}^{2} + \dots + a_{n-1}x_{n}^{n-1} = y_{n}$$

We have n unknowns

 $a_0, a_1, a_2, \dots, a_{n-1}$

Proceed as follows

• We start with a set of linear equations with n unknowns:

 $x_{1}, x_{2}, \dots, x_{n} \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} &= b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} &= b_{2} \\ \vdots & \vdots & \vdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} &= b_{n} \end{cases}$

Cinvestav < ロ ト イ 通 ト イ ヨ ト イ ヨ ト ヨ う へ (~ 45 / 103

Proceed as follows

• We start with a set of linear equations with n unknowns:

$$x_1, x_2, \dots, x_n \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \vdots & & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &= b_n \end{cases}$$

Something Notable

- A set of values for $x_1, x_2, ..., x_n$ that satisfy all of the equations simultaneously is said to be a solution to these equations.
- In this section, we only treat the case in which there are exactly n equations in n unknowns.

Proceed as follows

• We start with a set of linear equations with n unknowns:

$$x_1, x_2, \dots, x_n \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \vdots & & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &= b_n \end{cases}$$

Something Notable

• A set of values for $x_1, x_2, ..., x_n$ that satisfy all of the equations simultaneously is said to be a solution to these equations.

< ロ > < 同 > < 回 > < 回 >

Proceed as follows

• We start with a set of linear equations with n unknowns:

$$x_{1}, x_{2}, \dots, x_{n} \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} &= b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} &= b_{2} \\ \vdots & & \vdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} &= b_{n} \end{cases}$$

Something Notable

- A set of values for $x_1, x_2, ..., x_n$ that satisfy all of the equations simultaneously is said to be a solution to these equations.
- In this section, we only treat the case in which there are exactly *n* equations in *n* unknowns.

A D > A D > A D > A D >

continuation

• We can conveniently rewrite the equations as the matrix-vector equation:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

or, equivalently, letting $A=(a_{ij}),\,x=(x_j),$ and $b=(b_i),$ as

Ax = b

continuation

• We can conveniently rewrite the equations as the matrix-vector equation:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

or, equivalently, letting $A = (a_{ij})$, $x = (x_j)$, and $b = (b_i)$, as

Ax = b

continuation

• We can conveniently rewrite the equations as the matrix-vector equation:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

or, equivalently, letting $A = (a_{ij})$, $x = (x_j)$, and $b = (b_i)$, as

Ax = b

continuation

• We can conveniently rewrite the equations as the matrix-vector equation:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

or, equivalently, letting $A = (a_{ij})$, $x = (x_j)$, and $b = (b_i)$, as

$$Ax = b$$

continuation

• We can conveniently rewrite the equations as the matrix-vector equation:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

or, equivalently, letting $A = (a_{ij})$, $x = (x_j)$, and $b = (b_i)$, as

$$Ax = b$$

Outline

Introduc

- Basic Definitions
- Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

Solving Systems of Linear Equations

Introduction

Lower Upper Decomposition

- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms

Application

- Inverting Matrices
- Least-squares Approximation

Exercises

Some Exercises You Can Try!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

Intuition

The idea behind LUP decomposition is to find three $n \times n$ matrices L, U, and P such that:

PA = LU

where:

- L is a unit lower triangular matrix.
- U is an upper triangular matrix.
- P is a permutation matrix.

Cinvestav < □ > < ⊡ > < Ξ > < Ξ > < Ξ > Ξ → へ ↔ 48 / 103

Intuition

The idea behind LUP decomposition is to find three $n \times n$ matrices L, U, and P such that:

$$PA = LU$$

where:

- L is a unit lower triangular matrix.
- U is an upper triangular matrix.
- P is a permutation matrix.

Where

We call matrices L, U, and P satisfying the above equation a LUP decomposition of the matrix A.

Cinvestav : ∽ < ↔ 48 / 103

イロト イヨト イヨト

Intuition

The idea behind LUP decomposition is to find three $n \times n$ matrices L, U, and P such that:

$$PA = LU$$

where:

• L is a unit lower triangular matrix.

U is an upper triangular matrix.

P is a permutation matrix.

Where

We call matrices L, U, and P satisfying the above equation a LUP decomposition of the matrix A.

Cinvestav

<ロト < 団ト < 国ト < 国ト < 国ト 目 の Q () 48 / 103

Intuition

The idea behind LUP decomposition is to find three $n \times n$ matrices L, U, and P such that:

$$PA = LU$$

where:

- L is a unit lower triangular matrix.
 - $\bullet U$ is an upper triangular matrix.
 - P is a permutation matrix.

We call matrices L, U, and P satisfying the above equation a LUP decomposition of the matrix A.

Cinvestav ∽ < (~ 48 / 103

イロト イボト イヨト イヨト

Intuition

The idea behind LUP decomposition is to find three $n \times n$ matrices L, U, and P such that:

$$PA = LU$$

where:

- L is a unit lower triangular matrix.
- U is an upper triangular matrix.

P is a permutation matrix

We call matrices L, U, and P satisfying the above equation a LUP decomposition of the matrix A.

Cinvestav ∽ < (~ 48 / 103

ヘロト 人間ト 人目下 人目下

Intuition

The idea behind LUP decomposition is to find three $n \times n$ matrices L, U, and P such that:

$$PA = LU$$

where:

- L is a unit lower triangular matrix.
- U is an upper triangular matrix.
- P is a permutation matrix.

We call matrices L, U, and P satisfying the above equation a LUP decomposition of the matrix A.

Cinvestav ∽ < (~ 48 / 103

< ロ > < 同 > < 回 > < 回 >

Intuition

The idea behind LUP decomposition is to find three $n \times n$ matrices L, U, and P such that:

$$PA = LU$$

where:

- L is a unit lower triangular matrix.
- U is an upper triangular matrix.
- P is a permutation matrix.

Where

We call matrices L, U, and P satisfying the above equation a LUP decomposition of the matrix A.

Cinvestav ∽ < (~ 48 / 103

< ロ > < 同 > < 回 > < 回 >

What is a Permutation Matrix

Basically

We represent the permutation P compactly by an array $\pi[1..n]$. For i = 1, 2, ..., n, the entry $\pi[i]$ indicates that $P_{i\pi[i]} = 1$ and $P_{ij} = 0$ for $j \neq \pi[i]$.

• PA has $a_{\pi[i],j}$ in row i and a column j.

• Pb has $b_{\pi[i]}$ as its *i*th element.

What is a Permutation Matrix

Basically

We represent the permutation P compactly by an array $\pi[1..n]$. For i = 1, 2, ..., n, the entry $\pi[i]$ indicates that $P_{i\pi[i]} = 1$ and $P_{ij} = 0$ for $j \neq \pi[i]$.

Thus

- *PA* has $a_{\pi[i],j}$ in row *i* and a column *j*.
- Pb has $b_{\pi[i]}$ as its *i*th element.

How can we use this in our advantage?

Lock at this

$$Ax = b \Longrightarrow PAx = Pb$$

I heretore

$$LUx = Pb$$

Now, if we make Ux = y

$$Ly = Pb$$

イロン イロン イヨン イヨン

(2)

How can we use this in our advantage?

Lock at this

$$Ax = b \Longrightarrow PAx = Pb$$

Therefore

$$LUx = Pb$$

Now, if we make Ux = y

$$Ly = Pb$$

イロン イロン イヨン イヨン

(2)

(3)

How can we use this in our advantage?

Lock at this

$$Ax = b \Longrightarrow PAx = Pb$$

Therefore

$$LUx = Pb$$

(3)

(2)

Now, if we make Ux = y

$$Ly = Pb \tag{4}$$

イロト イヨト イヨト イヨト

We first obtain y

Then, we obtain x.

Outline

Introduc

- Basic Definitions
- Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition

Forward and Back Substitution

- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms

Application

- Inverting Matrices
- Least-squares Approximation

Exercises

< ロ > < 回 > < 回 > < 回 > < 回 >

Forward substitution

Forward substitution can solve the lower triangular system Ly=Pb in $\Theta(n^2)$ time, given $L,\ P$ and b.

Since L is unit lower triangular, equation Ly = Pb can be rewritten as:

$$y_1 = b_{\pi[1]}$$

 $l_{21}y_1 + y_2 = b_{\pi[2]}$
 $l_{31}y_1 + l_{32} + y_3 = b_{\pi[3]}$

 $l_{n1}y_1 + l_{n2}y_2 + l_{n3}y_3 + \ldots + y_n = b_{\pi[n]}$

Forward substitution

Forward substitution can solve the lower triangular system Ly=Pb in $\Theta(n^2)$ time, given $L,\ P$ and b.

Then

Since L is unit lower triangular, equation Ly = Pb can be rewritten as:

$$y_1 = b_{\pi[1]}$$

$$l_{21}y_1 + y_2 = b_{\pi[2]}$$

$$l_{31}y_1 + l_{32} + y_3 = b_{\pi[3]}$$

$$\vdots$$

$$l_{n1}y_1 + l_{n2}y_2 + l_{n3}y_3 + \dots + y_n = b_{\pi[n]}$$

イロン イロン イヨン イヨン

Back substitution

Back substitution is similar to forward substitution. Like forward substitution, this process runs in $\Theta(n^2)$ time. Since U is upper-triangular, we can rewrite the system Ux=y as

$$u_{11}x_1 + u_{12}x_2 + \dots + u_{1n-2}x_{n-2} + u_{1n-1}x_{n-1} + u_{1n}x_n = y_1$$

$$u_{22}x_2 + \dots + u_{2n-2}x_{n-2} + u_{2n-1}x_{n-1} + u_{2n}x_n = y_2$$

$$\vdots$$

$$u_{n-2n-2}x_{n-2} + u_{n-2n-1}x_{n-1} + u_{n-2n}x_n = y_{n-2}$$

$$u_{n-1n-1}x_{n-1} + u_{n-1n}x_n = y_{n-1}$$

$$u_{nn}x_n = y_n$$

We have

$$Ax = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & 4 \\ 5 & 6 & 3 \end{pmatrix} x = \begin{pmatrix} 3 \\ 7 \\ 8 \end{pmatrix} = b$$

The L, U and P matrix

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 0.2 & 1 & 0 \\ 0.6 & 0.5 & 1 \end{pmatrix}, U = \begin{pmatrix} 5 & 6 & 3 \\ 0 & 0.8 & -0.6 \\ 0 & 0 & 2.5 \end{pmatrix}, P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Using forward substitution, Ly = Pb for y

$$Ly = \begin{pmatrix} 1 & 0 & 0 \\ 0.2 & 1 & 0 \\ 0.6 & 0.5 & 1 \end{pmatrix} y = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 7 \\ 8 \end{pmatrix} = Pb$$

Using forward substitution, we get y

$$y = \left(\begin{array}{c} 8\\1.4\\1.5\end{array}\right)$$

Now, we use the back substitution, Ux = y for x

$$Ux = \begin{pmatrix} 5 & 6 & 3 \\ 0 & 0.8 & -0.6 \\ 0 & 0 & 2.5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 1.4 \\ 1.5 \end{pmatrix},$$

Finally, we get

$$x = \left(\begin{array}{c} -1.4\\ 2.2\\ 0.6\end{array}\right)$$

Given P, L, U, and b, the procedure LUP- SOLVE solves for x by combining forward and back substitution

 $\mathsf{LUP}\text{-}\mathsf{SOLVE}(L,\,U,\pi,\,b)$

 $\bullet \quad n = L.rows$

2 Let x be a new vector of length n

• $y_i = b_{\pi[i]} - \sum_{j=1}^{i-1} l_{ij} y_j$ • for i = n downto 1

・ロト・日本・日本・日本・日本・日本の名(
61/103

Given P, L, U, and b, the procedure LUP- SOLVE solves for x by combining forward and back substitution

ヘロマ 人間 ア ヘヨア ヘヨア

61/103

 $\mathsf{LUP}\text{-}\mathsf{SOLVE}(L,\,U,\pi,\,b)$

$$1 n = L.rows$$

3 for
$$i = 1$$
 to n

$$\bullet y_i = b_{\pi[i]} - \sum_{j=1}^{i-1} l_{ij} y_j$$

• for i = n downto

The running time is
$$\Theta(n^2)$$

Given P, L, U, and b, the procedure LUP- SOLVE solves for x by combining forward and back substitution

 $\mathsf{LUP}\text{-}\mathsf{SOLVE}(L,\,U,\pi,\,b)$

$$1 n = L.rows$$

2 Let x be a new vector of length n

3 for
$$i = 1$$
 to n

() for
$$i = n$$
 downto 1

$$x_i = \frac{\left(y_i - \sum_{j=i+1}^n u_{ij} x_j\right)}{u_i}$$

) return x

6

Complexity

The running time is $\Theta(n^2)$

Given P, L, U, and b, the procedure LUP- SOLVE solves for x by combining forward and back substitution

 $\mathsf{LUP}\text{-}\mathsf{SOLVE}(L,\,U,\pi,\,b)$

$$1 n = L.rows$$

2 Let x be a new vector of length n

3 for
$$i = 1$$
 to n

3
$$y_i = b_{\pi[i]} - \sum_{j=1}^{i-1} l_{ij} y_j$$

3 for $i = n$ downto 1

$$x_i = \frac{\left(y_i - \sum_{j=i+1}^n u_{ij} x_j\right)}{u_{ij}}$$

m
ho return x

Complexity

6

The running time is $\Theta(n^2)$.

Outline

Introduc

- Basic Definitions
- Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution

Obtaining the Matrices

- Computing LU decomposition
- Computing LUP decomposition
- Theorems Supporting the Algorithms
- 5 Application
 - Inverting Matrices
 - Least-squares Approximation

Exercises

Some Exercises You Can Try!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

Ok, if we have the L, U and P!!!

Thus

We need to find those matrices

How, we do it

We are going to use something called the Gaussian Elimination.

Ok, if we have the L, U and P!!!

Thus

We need to find those matrices

How, we do it?

We are going to use something called the Gaussian Elimination.

For this

We assume that A is a $n \times n$

Such that \boldsymbol{A} is not singular

We use a process known as Gaussian elimination to create LU

decomposition

This algorithm is recursive in nature.

Properties

Clearly if n=1, we are done for $L=I_1$ and $U=A_2$

For this

We assume that A is a $n\times n$

Such that \boldsymbol{A} is not singular

We use a process known as Gaussian elimination to create LU decomposition

This algorithm is recursive in nature.

Properties

Clearly if n=1, we are done for $L=I_1$ and U=A.

イロト イロト イヨト イヨト

For this

We assume that A is a $n \times n$

Such that A is not singular

We use a process known as Gaussian elimination to create LU decomposition

This algorithm is recursive in nature.

Properties

Clearly if n = 1, we are done for $L = I_1$ and U = A.

イロン イロン イヨン イヨン

Outline

Introduc

- Basic Definitions
- Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution

Obtaining the Matrices

Computing LU decomposition

- Computing LUP decomposition
- Theorems Supporting the Algorithms

Application

- Inverting Matrices
- Least-squares Approximation

Exercises

Some Exercises You Can Try!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

For n > 1, we break A into four parts

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \hline a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & \boldsymbol{w}^T \\ \boldsymbol{v} & A' \end{pmatrix}$$
(5)

We have

• v is a column (n-1) -vector.

• $oldsymbol{w}^{T}$ is a row (n-1)-vector

• A' is an $(n-1) \times (n-1)$.

We have

•
$$\boldsymbol{v}$$
 is a column $(n-1)$ -vector.

•
$$oldsymbol{w}^T$$
 is a row $(n-1)-$ vector.

We have

• v is a column (n-1) -vector.

•
$$oldsymbol{w}^T$$
 is a row $(n-1)-$ vector.

• A' is an $(n-1) \times (n-1)$.

We have

• v is a column (n-1) -vector.

•
$$oldsymbol{w}^T$$
 is a row $(n-1)-$ vector.

• A' is an $(n-1) \times (n-1)$.

Thus, we can do the following

$$A = \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ \boldsymbol{v} & A' \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ a_{11} & b_{-1} \end{pmatrix} \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ 0 & A' - \frac{\boldsymbol{w}^{T}}{a_{11}} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ a_{11} & b_{-1} \end{pmatrix} \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ 0 & B' \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ a_{11} & b_{-1} \end{pmatrix} \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ 0 & B' \end{pmatrix}$$

Thus, we can do the following

$$A = \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ \boldsymbol{v} & A' \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ \frac{\boldsymbol{v}}{a_{11}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ 0 & \underline{A'} - \frac{\boldsymbol{v}\boldsymbol{w}^{T}}{a_{11}} \\ \text{Schur Complement} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ a_{11} & \underline{A'} \end{pmatrix} \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ 0 & \underline{A'} - \frac{\boldsymbol{v}\boldsymbol{w}^{T}}{a_{11}} \\ \text{Schur Complement} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ a_{11} & \underline{A'} \end{pmatrix} \begin{pmatrix} a_{11} & \underline{a'} \\ 0 & \underline{A'} \end{pmatrix}$$

э

イロン イロン イヨン イヨン

Thus, we can do the following

$$A = \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ \boldsymbol{v} & A' \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ \frac{\boldsymbol{v}}{a_{11}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ 0 & \underline{A'} - \frac{\boldsymbol{v}\boldsymbol{w}^{T}}{a_{11}} \\ \text{Schur Complement} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ \frac{\boldsymbol{v}}{a_{11}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ 0 & L'U' \end{pmatrix}$$
$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{13} & a_{13} \end{pmatrix} \begin{pmatrix} a_{12} & a_{13} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{pmatrix}$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (~ 68 / 103

Thus, we can do the following

$$A = \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ \boldsymbol{v} & A' \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ \frac{\boldsymbol{v}}{a_{11}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ 0 & \underline{A' - \frac{\boldsymbol{v}\boldsymbol{w}^{T}}{a_{11}}} \\ \text{Schur Complement} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ \frac{\boldsymbol{v}}{a_{11}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ 0 & L'U' \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ \frac{\boldsymbol{v}}{a_{11}} & L' \end{pmatrix} \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ 0 & U' \end{pmatrix}$$

э

イロン イロン イヨン イヨン

Thus, we can do the following

$$A = \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ \boldsymbol{v} & A' \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ \frac{\boldsymbol{v}}{a_{11}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ 0 & \underline{A' - \frac{\boldsymbol{v}\boldsymbol{w}^{T}}{a_{11}}} \\ \text{Schur Complement} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ \frac{\boldsymbol{v}}{a_{11}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ 0 & L'U' \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ \frac{\boldsymbol{v}}{a_{11}} & L' \end{pmatrix} \begin{pmatrix} a_{11} & \boldsymbol{w}^{T} \\ 0 & U' \end{pmatrix}$$

$$= LU$$

э

イロン イロン イヨン イヨン

Pseudo-Code running in $\Theta\left(n^3\right)$

 $\mathsf{LU-Decomposition}(A)$

1 n = A.rows

イロト 不通 とうほう イヨト

Pseudo-Code running in $\Theta(n^3)$

- $\mathsf{LU-Decomposition}(A)$
 - 1 n = A.rows
 - 2 Let L and U be new $n \times n$ matrices

```
    Initialize D with 0's below the diagonal
    Initialize L with 1's on the diagonal and 0's above the diagonal.
```

```
If or k = 1 to r
```

```
u_{kk} = a_{kk}
```

```
for i=k+1 to n
```

$$l_{ik} = rac{a_{ik}}{u_{kk}} riangleleq l_{ik}$$
 holds v_i

```
u_{ki} = a_{ki} 	ext{ d} u_{ki} holds w_i^T
```

```
for i=k+1 to n
```

```
for j = k + 1 to n
```

$$a_{ij} = a_{ij} - l_{ik} u_k$$

) return L and U

Pseudo-Code running in $\Theta(n^3)$

LU-Decomposition(A)

- 1 n = A.rows
- 2 Let L and U be new $n \times n$ matrices
- **③** Initialize U with 0's below the diagonal

Initialize *L* with I's on the diagonal and 0's above the diagonal. for k = 1 to *n* $u_{kk} = a_{kk}$ for i = k + 1 to *n* $l_{ik} = \frac{a_{ik}}{u_{kk}} \triangleleft l_{ik}$ holds v_i $u_{ki} = a_{ki} \triangleleft u_{ki}$ holds w_i^T for i = k + 1 to *n* $a_{ij} = a_{ij} - l_{ik}u_{kj}$ return *L* and *U*

イロト 不通 とうほう イヨト

Pseudo-Code running in $\Theta(n^3)$

 $\mathsf{LU-Decomposition}(A)$

- 1 n = A.rows
- 2 Let L and U be new $n \times n$ matrices
- O Initialize U with O's below the diagonal
- Initialize L with 1's on the diagonal and 0's above the diagonal.

```
u_{kk} = a_{kk}
for \ i = k + 1 \ to \ n
l_{ik} = \frac{a_{kk}}{u_{kk}} \triangleleft l_{ik} \text{ holds } v_i
u_{ki} = a_{ki} \triangleleft u_{ki} \text{ holds } w_i^T
for \ i = k + 1 \ to \ n
for \ j = k + 1 \ to \ n
a_{ij} = a_{ij} - l_{ik} u_{ki}
return \ L \text{ and } U
```

Pseudo-Code running in $\Theta(n^3)$

 $\mathsf{LU-Decomposition}(A)$

- 1 n = A.rows
- 2 Let L and U be new $n \times n$ matrices
- Initialize U with 0's below the diagonal
- Initialize L with 1's on the diagonal and 0's above the diagonal.

```
• for k = 1 to n
```

```
for i = k + 1 to n

l_{ik} = \frac{a_{ik}}{u_{kk}} \triangleleft l_{ik} holds v_i

u_{ki} = a_{ki} \triangleleft u_{ki} holds w_i^T

for i = k + 1 to n

for j = k + 1 to n

a_{ij} = a_{ij} - l_{ik}u_j

return L and U
```

Pseudo-Code running in $\Theta\left(n^3\right)$

 $\mathsf{LU-Decomposition}(A)$

- 1 n = A.rows
- 2 Let L and U be new $n \times n$ matrices
- Initialize U with 0's below the diagonal
- Initialize L with 1's on the diagonal and 0's above the diagonal.

```
() for k = 1 to n
```

6

```
u_{kk} = a_{kk}
```

```
l_{ik} = \frac{a_{ki}}{u_{kk}} \triangleleft l_{ik} \text{ holds } u_i
u_{ki} = a_{ki} \triangleleft u_{ki} \text{ holds } w_i^T
for \ i = k + 1 \text{ to } n
for \ j = k + 1 \text{ to } n
a_{ij} = a_{ij} - l_{ik}u
return \ L \text{ and } U
```

Pseudo-Code running in $\Theta\left(n^3\right)$

 $\mathsf{LU-Decomposition}(A)$

- 1 n = A.rows
- 2 Let L and U be new $n \times n$ matrices
- Initialize U with 0's below the diagonal
- Initialize L with 1's on the diagonal and 0's above the diagonal.

S for
$$k = 1$$
 to n
Use $u_{kk} = a_{kk}$
for $i = k + 1$ to n
 $u_{kk} = \frac{a_{ik}}{u_{kk}} \triangleleft l_{ik}$ holds v_i
 $u_{ki} = a_{ki} \triangleleft u_{ki}$ holds w_i^T
For the formula of t

イロト 不得 とくほと くほう

Pseudo-Code running in $\Theta\left(n^3\right)$

 $\mathsf{LU-Decomposition}(A)$

- 1 n = A.rows
- 2 Let L and U be new $n \times n$ matrices
- Initialize U with 0's below the diagonal
- Initialize L with 1's on the diagonal and 0's above the diagonal.

5 for
$$k = 1$$
 to n
6 $u_{kk} = a_{kk}$
7 for $i = k + 1$ to n
8 $l_{ik} = \frac{a_{ik}}{u_{kk}} \triangleleft l_{ik}$ holds v_i
9 $u_{ki} = a_{ki} \triangleleft u_{ki}$ holds w_i^T
10 for $i = k + 1$ to n
11 for $j = k + 1$ to n
12 $a_{ij} = a_{ij} - l_{ik}u_k$

Pseudo-Code running in $\Theta(n^3)$

 $\mathsf{LU-Decomposition}(A)$

- 1 n = A.rows
- 2 Let L and U be new $n \times n$ matrices
- **③** Initialize U with 0's below the diagonal
- Initialize L with 1's on the diagonal and 0's above the diagonal.

5 for
$$k = 1$$
 to n
6 $u_{kk} = a_{kk}$
7 for $i = k + 1$ to n
8 $l_{ik} = \frac{a_{ik}}{u_{kk}} \triangleleft l_{ik}$ holds v_i
9 $u_{ki} = a_{ki} \triangleleft u_{ki}$ holds w_i^T
10 for $i = k + 1$ to n
11 for $j = k + 1$ to n
12 $a_{ij} = a_{ij} - l_{ik}u_{kj}$
13 return L and U

イロト 不得 とくほと くほう

Here, we have this example

2	3	1	5	
6	13	5	19	
2	19	10	23	
4	10	11	31	

 $\begin{pmatrix} 13 & 5 & 19 \\ 19 & 10 & 23 \\ 10 & 11 & 31 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 18 & 6 & 30 \\ 6 & 2 & 10 \\ 12 & 4 & 20 \end{pmatrix} \Rightarrow \begin{bmatrix} 2 & 2 & 2 \\ 3 & 4 & 2 & 4 \\ 1 & 16 & 9 & 18 \\ 2 & 4 & 9 & 21 \end{bmatrix}$

$$\begin{vmatrix} 2 & 3 & 1 & 5 \\ 6 & 13 & 5 & 19 \\ 2 & 19 & 10 & 23 \\ 4 & 10 & 11 & 31 \end{vmatrix} \Rightarrow \begin{pmatrix} 13 & 5 & 19 \\ 19 & 10 & 23 \\ 10 & 11 & 31 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 6 \\ 2 \\ 4 \end{pmatrix} \begin{pmatrix} 3 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 13 & 5 & 19 \\ 19 & 10 & 23 \\ 10 & 11 & 31 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 18 & 6 & 30 \\ 6 & 2 & 10 \\ 12 & 4 & 20 \end{pmatrix}$$

$$\begin{vmatrix} 2 & 3 & 1 & 5 \\ 6 & 13 & 5 & 19 \\ 2 & 19 & 10 & 23 \\ 4 & 10 & 11 & 31 \end{vmatrix} \Rightarrow \begin{pmatrix} 13 & 5 & 19 \\ 19 & 10 & 23 \\ 10 & 11 & 31 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 6 \\ 2 \\ 4 \end{pmatrix} \begin{pmatrix} 3 & 1 & 5 \end{pmatrix} = \\ \begin{pmatrix} 13 & 5 & 19 \\ 19 & 10 & 23 \\ 10 & 11 & 31 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 18 & 6 & 30 \\ 6 & 2 & 10 \\ 12 & 4 & 20 \end{pmatrix} \Rightarrow \begin{vmatrix} 2 & 3 & 1 & 5 \\ 3 & 4 & 2 & 4 \\ 1 & 16 & 9 & 18 \\ 2 & 4 & 9 & 21 \end{vmatrix}$$

$$\begin{vmatrix} 2 & 3 & 1 & 5 \\ 6 & 13 & 5 & 19 \\ 2 & 19 & 10 & 23 \\ 4 & 10 & 11 & 31 \end{vmatrix} \Rightarrow \begin{pmatrix} 13 & 5 & 19 \\ 19 & 10 & 23 \\ 10 & 11 & 31 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 6 \\ 2 \\ 4 \end{pmatrix} \begin{pmatrix} 3 & 1 & 5 \end{pmatrix} = \\\begin{pmatrix} 13 & 5 & 19 \\ 19 & 10 & 23 \\ 10 & 11 & 31 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 18 & 6 & 30 \\ 6 & 2 & 10 \\ 12 & 4 & 20 \end{pmatrix} \Rightarrow \frac{2 \begin{vmatrix} 3 & 1 & 5 \\ 4 & 2 & 4 \\ 16 & 9 & 18 \\ 2 \begin{vmatrix} 4 & 9 & 21 \\ 4 & 9 & 21 \end{vmatrix}$$
$$\Rightarrow \begin{pmatrix} 9 & 18 \\ 9 & 11 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 16 \\ 4 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} = \begin{pmatrix} 9 & 18 \\ 9 & 11 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 32 & 64 \\ 8 & 16 \end{pmatrix} = \\\begin{pmatrix} 9 & 18 \\ 9 & 11 \end{pmatrix} - \begin{pmatrix} 8 & 16 \\ 2 & 4 \end{pmatrix}$$

$$\begin{vmatrix} 2 & 3 & 1 & 5 \\ 6 & 13 & 5 & 19 \\ 2 & 19 & 10 & 23 \\ 4 & 10 & 11 & 31 \end{vmatrix} \Rightarrow \begin{pmatrix} 13 & 5 & 19 \\ 19 & 10 & 23 \\ 10 & 11 & 31 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 6 \\ 2 \\ 4 \end{pmatrix} \begin{pmatrix} 3 & 1 & 5 \end{pmatrix} = \\\\ \begin{pmatrix} 13 & 5 & 19 \\ 19 & 10 & 23 \\ 10 & 11 & 31 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 18 & 6 & 30 \\ 6 & 2 & 10 \\ 12 & 4 & 20 \end{pmatrix} \Rightarrow \frac{2}{3} \begin{vmatrix} 3 & 1 & 5 \\ 4 & 2 & 4 \\ 1 & 16 & 9 & 18 \\ 2 & 4 & 9 & 21 \end{vmatrix}$$
$$\Rightarrow \begin{pmatrix} 9 & 18 \\ 9 & 11 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 16 \\ 4 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} = \begin{pmatrix} 9 & 18 \\ 9 & 11 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 32 & 64 \\ 8 & 16 \end{pmatrix} = \\\\ \begin{pmatrix} 9 & 18 \\ 9 & 11 \end{pmatrix} - \begin{pmatrix} 8 & 16 \\ 2 & 4 \end{pmatrix} \Rightarrow \frac{2}{3} \begin{vmatrix} 3 & 1 & 5 \\ 4 & 2 & 4 \\ 1 & 4 & 1 & 2 \\ 2 & 1 & 7 & 17 \end{vmatrix}$$

$$\begin{vmatrix} 2 & 3 & 1 & 5 \\ 6 & 13 & 5 & 19 \\ 2 & 19 & 10 & 23 \\ 4 & 10 & 11 & 31 \end{vmatrix} \Rightarrow \begin{pmatrix} 13 & 5 & 19 \\ 19 & 10 & 23 \\ 10 & 11 & 31 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 6 \\ 2 \\ 4 \end{pmatrix} \begin{pmatrix} 3 & 1 & 5 \end{pmatrix} = \\\\ \begin{pmatrix} 13 & 5 & 19 \\ 19 & 10 & 23 \\ 10 & 11 & 31 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 18 & 6 & 30 \\ 6 & 2 & 10 \\ 12 & 4 & 20 \end{pmatrix} \Rightarrow \frac{2}{3} \begin{vmatrix} 3 & 1 & 5 \\ 4 & 2 & 4 \\ 16 & 9 & 18 \\ 2 & 4 & 9 & 21 \end{vmatrix}$$
$$\Rightarrow \begin{pmatrix} 9 & 18 \\ 9 & 11 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 16 \\ 4 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} = \begin{pmatrix} 9 & 18 \\ 9 & 11 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 32 & 64 \\ 8 & 16 \end{pmatrix} = \\\\ \begin{pmatrix} 9 & 18 \\ 9 & 11 \end{pmatrix} - \begin{pmatrix} 8 & 16 \\ 2 & 4 \end{pmatrix} \Rightarrow \frac{2}{3} \begin{vmatrix} 3 & 1 & 5 \\ 4 & 2 & 4 \\ 1 & 4 & 1 & 2 \\ 2 & 1 & 7 & 17 & 2 & 1 & 7 \end{vmatrix} \begin{vmatrix} 3 & 1 & 5 \\ 4 & 2 & 4 \\ 1 & 4 & 1 & 2 \\ 2 & 1 & 7 & 17 & 2 & 1 & 7 \end{vmatrix}$$

We get the following decomposition

$$\begin{pmatrix} 2 & 3 & 1 & 5 \\ 6 & 13 & 5 & 19 \\ 2 & 19 & 10 & 23 \\ 4 & 10 & 11 & 31 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 2 & 1 & 7 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 & 5 \\ 0 & 4 & 2 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

イロト イロト イヨト イヨト

Outline

Introduc

- Basic Definitions
- Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution

Obtaining the Matrices

Computing LU decomposition

Computing LUP decomposition

Theorems Supporting the Algorithms

Applications

- Inverting Matrices
- Least-squares Approximation

Exercises

Some Exercises You Can Try!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

Observations

Something Notable

• The elements by which we divide during LU decomposition are called pivots.

They occupy the diagonal elements of the matrix U

Observations

Something Notable

- The elements by which we divide during LU decomposition are called pivots.
- $\bullet\,$ They occupy the diagonal elements of the matrix $\,U.\,$

It allows us to avoid dividing by 0.

Observations

Something Notable

- The elements by which we divide during LU decomposition are called pivots.
- They occupy the diagonal elements of the matrix U.

Why the permutation P

It allows us to avoid dividing by 0.

イロト イヨト イヨト

Thus, What do we want?

We want P, L and U

PA = LU

However, we move a non-zero element, a

From somewhere in the first column to the (1,1) position of the matrix.

In addition

 a_{k1} as the element in the first column with the greatest absolute value.

Thus, What do we want?

We want P, L and U

$$PA = LU$$

However, we move a non-zero element, a_{k1}

From somewhere in the first column to the $\left(1,1\right)$ position of the matrix.

In addition

 a_{k1} as the element in the first column with the greatest absolute value.

Thus, What do we want?

We want P, L and U

$$PA = LU$$

However, we move a non-zero element, a_{k1}

From somewhere in the first column to the $\left(1,1\right)$ position of the matrix.

In addition

 a_{k1} as the element in the first column with the greatest absolute value.

A D > A D > A D > A D >

Exchange Rows

Thus

We exchange row 1 with row k, or multiplying \boldsymbol{A} by a permutation matrix \boldsymbol{Q} on the left

$$QA = \left(\begin{array}{cc} a_{k1} & w^T \\ v & A' \end{array}\right)$$

With

- $v = (a_{21}, a_{31}, ..., a_{n1})^T$ with a_{11} replaces a_{k1} .
- $w^T = (a_{k2}, a_{k3}, ..., a_{kn}).$
- A' is a (n-1) imes (n-1)

< ロ > < 回 > < 回 > < 回 > < 回 >

Exchange Rows

Thus

We exchange row 1 with row k, or multiplying \boldsymbol{A} by a permutation matrix \boldsymbol{Q} on the left

$$QA = \left(\begin{array}{cc} a_{k1} & w^T \\ v & A' \end{array}\right)$$

With

イロト イボト イヨト イヨト

Now, $a_{k1} \neq 0$

We have then

$$QA = \begin{pmatrix} a_{k1} & w^T \\ v & A' \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ -a_{k1} & -a_{k1} \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & A' - \frac{a_{k1}}{a_{k1}} \end{pmatrix}$$

Now, $a_{k1} \neq 0$

We have then

$$QA = \begin{pmatrix} a_{k1} & w^T \\ v & A' \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ \frac{v}{a_{k1}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & A' - \frac{vw^T}{a_{k1}} \end{pmatrix}$$

Important

Something Notable

if A is nonsingular, then the Schur complement $A' - \frac{vw^T}{a_{k1}}$ is nonsingular, too.

Now, we can find recursively an LUP decomposition for it

$$\mathbf{D}'\left(A' - \frac{vw^T}{a_{k1}}\right) = L'U'$$

Then, we define a new permutation matrix

$$P = \left(\begin{array}{cc} 1 & 0\\ 0 & P' \end{array}\right) Q$$

イロン イロン イヨン イヨン

Important

Something Notable

if A is nonsingular, then the Schur complement $A' - \frac{vw^T}{a_{k1}}$ is nonsingular, too.

Now, we can find recursively an LUP decomposition for it

$$P'\left(A' - \frac{vw^T}{a_{k1}}\right) = L'U'$$

Then, we define a new permutation matrix

$$P = \left(\begin{array}{cc} 1 & 0 \\ 0 & P' \end{array}\right) Q$$

Important

Something Notable

if A is nonsingular, then the Schur complement $A' - \frac{vw^T}{a_{k1}}$ is nonsingular, too.

Now, we can find recursively an LUP decomposition for it

$$P'\left(A' - \frac{vw^T}{a_{k1}}\right) = L'U'$$

Then, we define a new permutation matrix

$$P = \left(\begin{array}{cc} 1 & 0 \\ 0 & P' \end{array}\right) Q$$

Cinvestav

イロト 不得 トイヨト イヨト

We have

$$PA = \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix} QA$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & -1$$

We have

$$PA = \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix} QA$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{v}{a_{k1}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & A' - \frac{vw^T}{a_{k1}} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & A' - \frac{vw^T}{a_{k1}} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a_{k1} & a_{k1} & w^T \\ 0 & A' - \frac{vw^T}{a_{k1}} \end{pmatrix}$$

2

ヘロン 人間 アメボマ かけて

We have

$$PA = \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix} QA$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{v}{a_{k1}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & A' - \frac{vw^T}{a_{k1}} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ P'\frac{v}{a_{k1}} & P' \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & A' - \frac{vw^T}{a_{k1}} \end{pmatrix}$$

2

ヘロン 人間 アメボマ かけて

We have

$$PA = \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix} QA$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{v}{a_{k1}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & A' - \frac{vw^T}{a_{k1}} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ P'\frac{v}{a_{k1}} & P' \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & A' - \frac{vw^T}{a_{k1}} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ P'\frac{v}{a_{k1}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & P'(A' - \frac{vw^T}{a_{k1}}) \end{pmatrix}$$

78 / 103

We have

$$PA = \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix} QA$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{v}{a_{k1}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & A' - \frac{vw^T}{a_{k1}} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ P'\frac{v}{a_{k1}} & P' \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & A' - \frac{vw^T}{a_{k1}} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ P'\frac{v}{a_{k1}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & P'(A' - \frac{vw^T}{a_{k1}}) \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ P'\frac{v}{a_{k1}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & L'U' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ P'\frac{v}{a_{k1}} & L' \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & U' \end{pmatrix}$$

We have

$$PA = \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix} QA$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{v}{a_{k1}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & A' - \frac{vw^T}{a_{k1}} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ P'\frac{v}{a_{k1}} & P' \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & A' - \frac{vw^T}{a_{k1}} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ P'\frac{v}{a_{k1}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & P'(A' - \frac{vw^T}{a_{k1}}) \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ P'\frac{v}{a_{k1}} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & L'U' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ P'\frac{v}{a_{k1}} & L' \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & U' \end{pmatrix}$$

$$= LU$$

くして ふかくがく かくして

Algorithm LUP-Decomposition(A)1. n = A.rows2. Let π [1..*n*] new array

Cinvestav • ৩৭৫ 79/103

Algorithm

LUP-D	ecomposition(A)	
1. n	a = A.rows	
2. L	et $\pi\left[1n ight]$ new array	
3. fe	or $i=1$ to n	
4.	$\pi\left[i ight]=i$	

イロン イ団 とく ヨン イヨン

Algorithm

LUP-De	composition(A)	
1 n	= A.rows	
_	t $\pi\left[1n ight]$ new array	
3. fo	$r \ i = 1$ to n	
4.	$\pi\left[i ight]=i$	
5. fo	r $k=1$ to n	
6.	p = 0	

イロン イ団 とく ヨン イヨン

Algorithm

LUP-Decomposition(A)	
1. $n = A.rows$	
2. Let $\pi [1n]$ new array	
3. for $i = 1$ to n	
4. $\pi[i] = i$	
5. for $k = 1$ to n	
$6. \qquad p=0$	
7. for $i = k$ to n	
8. if $ a_{ik} > p$	
9. $p = a_{ik} $	
10. $k' = i$	

イロン イ団 とく ヨン イヨン

Algorithm		
LUP-Decomposition(A)	11.	if $p == 0$
1. $n = A.rows$	12.	error "Singular Matrix"
2. Let $\pi [1n]$ new array		Exchange $\pi[k] \longleftrightarrow \pi[k']$
3. for $i = 1$ to n		
4. $\pi[i] = i$		
5. for $k = 1$ to n		
$6. \qquad p=0$		
7. for $i = k$ to n		
8. if $ a_{ik} > p$		
9. $p = a_{ik} $		
10. $k' = i$		107.0

Cinvestav

79/103

イロン イボン イヨン トヨ

Algorithm

LUP-Decomposition(A)	11.
1. $n = A.rows$	12.
2. Let $\pi [1n]$ new array	13.

- 3. for i = 1 to n4. $\pi[i] = i$ 5. for k = 1 to n6. p = 07. for i = k to n8. if $|a_{ik}| > p$
- 8. **if** $|a_{ik}| > p$ 9. $p = |a_{ik}|$
- 10. k' = i

if p == 0

error "Singular Matrix"

 $\mathsf{Exchange}\ \pi\left[k\right]\longleftrightarrow\pi\left[k'\right]$

Exchange $a_{ki} \longleftrightarrow a_{k'i}$

for
$$i = k + 1$$
 to n

$$a_{ik} = \frac{a_{ik}}{a_{kk}}$$

for
$$j = k + 1$$
 to n

 $a_{ij} = a_{ij} - a_{ik}a_{kj}$

イロト イヨト イヨト イヨト

Algorithm LUP-Decomposition(A)11. if p == 01. n = A.rows12 error "Singular Matrix" 2. Let π [1..*n*] new array 13. Exchange $\pi[k] \longleftrightarrow \pi[k']$ 3. for i = 1 to n14. for i = 1 to n4. $\pi[i] = i$ 15. Exchange $a_{ki} \longleftrightarrow a_{k'i}$ 5. for k = 1 to n6. p = 07. for i = k to n8. **if** $|a_{ik}| > p$ 9. $p = |a_{ik}|$ 10. k' = i

イロト イボト イヨト イヨト

11.

Algorithm

LUP-Decomposition(A)

1. n = A.rows12 2. Let π [1..*n*] new array 13. 3. for i = 1 to n14. 4. $\pi[i] = i$ 15. 5. for k = 1 to n16. 6. p = 017. 7. for i = k to n8. **if** $|a_{ik}| > p$ 9. $p = |a_{ik}|$ 10. k' = i

if p == 0error "Singular Matrix" Exchange $\pi[k] \longleftrightarrow \pi[k']$ for i = 1 to nExchange $a_{ki} \longleftrightarrow a_{k'i}$ for i = k + 1 to n $a_{ik} = \frac{a_{ik}}{a_{kk}}$

イロト イロト イヨト イヨト

11.

Algorithm

LUP-Decomposition(A)

1.	n = A.rows	12.
2.	Let $\pi \left[1n ight]$ new array	13.
3.	for $i = 1$ to n	14.
4.	$\pi\left[i ight]=i$	15.
5.	for $k=1$ to n	16.
6.	p = 0	17.
7.	for $i = k$ to n	18.
8.	$\mathbf{if} \ a_{ik} > p$	19.
9.	$p = a_{ik} $	
10.	k' = i	

if p == 0error "Singular Matrix" Exchange $\pi[k] \longleftrightarrow \pi[k']$ for i = 1 to nExchange $a_{ki} \longleftrightarrow a_{k'i}$ for i = k + 1 to n $a_{ik} = \frac{a_{ik}}{a_{kk}}$ for j = k + 1 to n $a_{ij} = a_{ij} - a_{ik}a_{kj}$

Example

1	2	0	2	0.6						
2	3	3	4	-2						
3	5	5	4 4	2						
			3.4							

80 / 103

Example 2 0 2 0.6 3 5 5 2 4 1 3 3 4 -2 2 3 3 -2 2 4 \implies 5 4 2 0 5 2 2 3 1 0.6 -1 -2 3.4 -1 4 -1 -2 3.4 -1 4

								2
								-0.2
								-3.2
								-0.5

80 / 103

Example 0 2 0.6 3 5 5 2 3 5 5 4 2 2 4 1 3 3 4 2 3 3 4 -2 2 3 -2 2 3 4 -2 \implies 54 2 0 2 0 2 5 2 1 0.6 2 3 0.6 1 -2 3.4 -1 4 -1 -2 3.4 -1 -1 -2 3.4 -1 -1 4 4

								2
								-0.2
								-3.2
								-0.5

80 / 103

Example 0.6 -2 -2 -2 0.6 0.6 -2 3.4 -1 -2 3.4 -1 -1 -2 3.4 -1 -1 -1

	3	5	5	4	2	3					
	2	0.6	0	1.6	-3.2 -0.2 -0.6						
\rightarrow	1	0.4	-2	0.4	-0.2						
	4	-1	-1	4.2	-0.6						

30 / 103

Example

	1					1				Г		1				
1	2	0	2	0.6	3	5	5	4	2		3	5	5	4	2	
2	3	3	4	0.6 -2 2 -1	2	3	3	4	-2		2	3	3	4	-2	
3	5	5	4	2		2	0	2	0.6	\Rightarrow	1	2	0	2	0.6	
4	-1	-2	3.4	-1	4	-1	-2	3.4	-1		4	-1	-2	3.4	-1	

	3	5	5	4	2	3	5	5	4	2			
	2	0.6	0	1.6	-3.2 -0.2 -0.6	2	0.6	0	1.6	-3.2			
\Rightarrow	1	0.4	-2	0.4	-0.2	1	0.4	-2	0.4	-0.2			
	4	-1	-1	4.2	-0.6	4	-1	-1	4.2	-0.6			

Example

	1					1						1				
1	2	0	2	0.6	3	5	5	4	2		3	5	5	4	2	
2	3	3	4	-2	2	3	3	4	-2		2	3	3	4	-2	
3	5	5	4	0.6 -2 2 -1	1	2	0	2	0.6	\Rightarrow	1	2	0	2	0.6	
4	-1	-2	3.4	-1	4	-1	-2	3.4	-1		4	-1	-2	3.4	-1	

	3	5	5	4	2	:	3	5	5	4	2	3	5	5	4	2
	2	0.6	0	1.6	-3.2 -0.2	:	2	0.6	0	1.6	-3.2	 2	0.6	0	1.6	-3.2
\rightarrow																
	4	-1	-1	4.2	-0.6	4	4	-1	-1	4.2	-0.6	4	-1	-1	4.2	-0.6

Example 0 2 0.6 3 5 5 2 3 5 5 4 2 2 4 1 3 3 4 2 3 3 4 -2 2 3 -2 2 3 4 -2 \implies 5 4 1 2 0 2 2 0 2 5 2 0.6 0.6 3 1 -2 3.4 -1 4 -1 -2 3.4 -1 -1 -2 3.4 -1 -1 4 4

	3	5	5	4	2	3	5	5	4	2	[3	5	5	4	2
	2	0.6	0	1.6	-3.2 -0.2 =	2	0.6	0	1.6	-3.2		2	0.6	0	1.6	-3.2
\rightarrow	1	0.4	-2	0.4	-0.2	1	0.4	-2	0.4	-0.2		1	0.4	-2	0.4	-0.2
	4	-1	-1	4.2	-0.6	4	-1	-1	4.2	-0.6		4	-1	-1	4.2	-0.6

$$\implies 3 5 5 4 2$$

$$1 0.4 -2 0.4 -0.2$$

$$2 0.6 0 1.6 -3.2$$

$$4 -1 -1 4.2 -0.6$$

80 / 103

Example 2 0 2 0.6 3 5 5 2 3 5 5 4 2 4 1 3 3 3 4 4 2 -2 3 2 3 -2 2 3 4 -2 \implies 5 4 1 2 0 2 0 2 5 2 0.6 2 0.6 3 1 -2 3.4 -1 4 -1 -2 3.4 -1 -1 -2 3.4 -1 -1 4 4

	3	5	5	4	2	_	3	5	5	4	2		3	5	5	4	2
	2	0.6	0	1.6	-3.2		2	0.6	0	1.6	-3.2 -0.2 -0.6		2	0.6	0	1.6	-3.2
\rightarrow	1	0.4	-2	0.4	-0.2	\rightarrow	1	0.4	-2	0.4	-0.2	\rightarrow	1	0.4	-2	0.4	-0.2
	4	-1	-1	4.2	-0.6		4	-1	-1	4.2	-0.6		4	-1	-1	4.2	-0.6

80 / 103

Example

3

5

-2 3.4

-1

4 -2

4 2

-1

2 3

3 5

4

5	4 4 2 3.4	2		3	5	5	
3	4	-2		2	3	3	
0	2	0.6	\Rightarrow	1	2	0	
-2	3.4	-1		4	-1	-2	

2

0.6

4

4 -2

2

3.4 -1

[3	5	5	4	2	3	5	5	4	2		3	5	5	4	2
	2	0.6	0	1.6	-3.2	2	0.6	0	1.6	-3.2 -0.2		2	0.6	0	1.6	-3.2
\rightarrow	1	0.4	-2	0.4	-0.2	1	0.4	-2	0.4	-0.2	\rightarrow	1	0.4	-2	0.4	-0.2
	4	-1	-1	4.2	-0.6	4	-1	-1	4.2	-0.6		4	-1	-1	4.2	-0.6

5

2

2 3

1

4 -1

Finally, you get

Outline

Introduc

- Basic Definitions
- Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms

Applications

- Inverting Matrices
- Least-squares Approximation

Exercises Some Exercises You Can Try!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

Lemma 28.9

Any symmetric positive-definite matrix is nonsingular.

Lemma 28.10

If A is a symmetric positive-definite matrix, then every leading submatrix of A is symmetric and positive-definite.

イロト イロト イヨト イヨト

Lemma 28.9

Any symmetric positive-definite matrix is nonsingular.

Lemma 28.10

If A is a symmetric positive-definite matrix, then every leading submatrix of A is symmetric and positive-definite.

イロト イヨト イヨト

Definition: Schur complement

Let A be a symmetric positive-definite matrix, and let A_k be a leading $k\times k$ submatrix of A. Partition A as:

Then, the Schur complement of A with respect to A_k is defined to be

 $S = C - BA_k^{-1}B^T$

くロト く伺 ト く ヨト く ヨト

Definition: Schur complement

Let A be a symmetric positive-definite matrix, and let A_k be a leading $k \times k$ submatrix of A. Partition A as:

$$A = \begin{pmatrix} A_k & B^T \\ B & C \end{pmatrix}$$

Then, the Schur complement of A with respect to A_k is defined to be

 $S = C - BA_k^{-1}B^T$

< ロト < 同ト < ヨト < ヨ)

Definition: Schur complement

Let A be a symmetric positive-definite matrix, and let A_k be a leading $k \times k$ submatrix of A. Partition A as:

$$A = \begin{pmatrix} A_k & B^T \\ B & C \end{pmatrix}$$

Then, the Schur complement of A with respect to A_k is defined to be

Definition: Schur complement

Let A be a symmetric positive-definite matrix, and let A_k be a leading $k \times k$ submatrix of A. Partition A as:

$$A = \begin{pmatrix} A_k & B^T \\ B & C \end{pmatrix}$$

Then, the Schur complement of A with respect to A_k is defined to be

$$S = C - BA_k^{-1}B^T$$

< ロ > < 同 > < 回 > < 回)

Lemma 28.11 (Schur complement lemma)

If A is a symmetric positive-definite matrix and A_k is a leading $k \times k$ submatrix of A, then the Schur complement of A with respect to A_k is symmetric and positive-definite.

Corollary 28.12

LU decomposition of a symmetric positive-definite matrix never causes a division by 0.

Lemma 28.11 (Schur complement lemma)

If A is a symmetric positive-definite matrix and A_k is a leading $k \times k$ submatrix of A, then the Schur complement of A with respect to A_k is symmetric and positive-definite.

Corollary 28.12

LU decomposition of a symmetric positive-definite matrix never causes a division by 0.

< ロ > < 同 > < 回 > < 回)

Outline

- Basic Definitions
- Matrix Examples

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms

Least-squares Approximation

Some Exercises You Can Try!!!

イロト 不得 トイヨト イヨト

Inverting matrices

LUP decomposition can be used to compute a matrix inverse

The computation of a matrix inverse can be speed up using techniques such as Strassen's algorithm for matrix multiplication.

Computing a matrix inverse from a LUP decomposition

Proceed as follows

- The equation $AX = I_n$ can be viewed as a set of n distinct equations of the form $A_{x_i} = e_i$, for i = 1, ..., n.
- We have a LUP decomposition of a matrix A in the form of three matrices L, U, and P such that PA = LU.
- Then we use the backward-forward to solve $AX_i = e_i$.

Complexity

First

- We can compute each X_i in time $\Theta(n^2)$.
- Thus, X can be computed in time $\Theta(n^3)$.
- LUP decomposition is computed in time $\Theta(n^3)$.

Finally

We can compute A^{-1} of a matrix A in time $\Theta\left(n^3
ight).$

Complexity

First

- We can compute each X_i in time $\Theta(n^2)$.
- Thus, X can be computed in time $\Theta(n^3)$.
- LUP decomposition is computed in time $\Theta(n^3)$.

Finally

We can compute A^{-1} of a matrix A in time $\Theta(n^3)$.

Matrix multiplication and matrix inversion

Theorem 28.7

If we can invert an $n \times n$ matrix in time I(n), where $I(n) = \Omega(n^2)$ and I(n) satisfies the regularity condition I(3n) = O(I(n)), then we can multiply two $n \times n$ matrices in time O(I(n)).

Matrix multiplication and matrix inversion

Theorem 28.8

If we can multiply two $n \times n$ real matrices in time M(n), where $M(n) = \Omega(n^2)$ and M(n) = O(M(n+k)) for any k in range $0 \le k \le n$ and $M(\frac{n}{2}) \le cM(n)$ for some constant $c < \frac{1}{2}$. Then we can compute the inverse of any real nonsingular $n \times n$ matrix in time O(M(n)).

Outline

Introduc

- Basic Definitions
- Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms

Applications

- Inverting Matrices
- Least-squares Approximation

イロト イヨト イヨト

Fitting curves to given sets of data points is an important application of symmetric positive-definite matrices.

Given

$$(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)$$

where the y_i are known to be subject to measurement errors. We would like to determine a function F(x) such that:

$$y_i = F(x_i) + \eta_i$$

for i = 1, 2, ..., m

イロト イヨト イヨト

Continuation

The form of the function F depends on the problem at hand.

$$F(x) = \sum_{j=1}^{n} c_j f_j(x)$$

A common choice is $f_j(x) = x^{j-1}$, which means that

$$F(x) = c_1 + c_2 x + c_3 x^2 + \dots + c_n x^{n-1}$$

is a polynomial of degree n-1 in x.

Continuation

Let

$$A = \begin{pmatrix} f_1(x_1) & f_2(x_1) & \dots & f_n(x_1) \\ f_1(x_2) & f_2(x_2) & \dots & f_n(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(x_m) & f_2(x_m) & \dots & f_n(x_m) \end{pmatrix}$$

denote the matrix of values of the basis functions at the given points; that is, $a_{ij} = f_j(x_i)$. Let $c = (c_k)$ denote the desired size-n vector of coefficients. Then,

$$A = \begin{pmatrix} f_1(x_1) & f_2(x_1) & \dots & f_n(x_1) \\ f_1(x_2) & f_2(x_2) & \dots & f_n(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(x_m) & f_2(x_m) & \dots & f_n(x_m) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} F(x_1) \\ F(x_2) \\ \vdots \\ F(x_m) \end{pmatrix}$$

Then

Thus, $\eta = Ac - y$ is the size of approximation errors. To minimize approximation errors, we choose to minimize the norm of the error vector , which gives us a least-squares solution.

$$||\eta||^2 = ||Ac - y||^2 = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}c_j - y_i\right)^2$$

Thus

We can minimize $||\eta||$ by differentiating $||\eta||$ with respect to each c_k and then setting the result to 0:

$$\frac{d||\eta||^2}{dc_k} = \sum_{i=1}^m 2\left(\sum_{j=1}^n a_{ij}c_j - y_i\right)a_{ik} = 0$$

Cinvestav

<ロト < 団ト < 臣ト < 臣ト < 臣ト 96 / 103

Then

Thus, $\eta = Ac - y$ is the size of approximation errors. To minimize approximation errors, we choose to minimize the norm of the error vector , which gives us a least-squares solution.

$$||\eta||^2 = ||Ac - y||^2 = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}c_j - y_i\right)^2$$

Thus

We can minimize $||\eta||$ by differentiating $||\eta||$ with respect to each c_k and then setting the result to 0:

$$\frac{d||\eta||^2}{dc_k} = \sum_{i=1}^m 2\left(\sum_{j=1}^n a_{ij}c_j - y_i\right)a_{ik} = 0$$

Cinvestav ∽ < (~ 96 / 103

イロト イヨト イヨト

We can put all derivatives

The n equation for k = 1, 2, ..., n

$$(Ac - y)^T A = 0$$

or equivalently to

$$A^T(Ac - y) = 0$$

which implies

$$A^T A c = A^T y$$

イロト イヨト イヨト イヨト

Continuation

The $A^T A$ is symmetric:

• If A has full column rank, then $A^T A$ is positive- definite as well. Hence, $(A^T A)^{-1}$ exists, and the solution to equation $A^T A c = A^T y$ is

$$c = ((A^T A)^{-1} A^T)y = A^+ y$$

where the matrix $A^+ = ((A^T A)^{-1} A^T)$ is called the pseudoinverse of the matrix A.

< ロ > < 同 > < 回 > < 回 >

Continuation

As an example of producing a least-squares fit, suppose that we have 5 data points (-1,2), (1,1),(2,1),(3,0),(5,3), shown as black dots in following figure

Continuation

We start with the matrix of basis-function values

$$A = \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \\ 1 & x_5 & x_5^2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 5 & 25 \end{pmatrix}$$

whose pseudoinverse is

$$A^{+} = \begin{pmatrix} 0.500 & 0.300 & 0.200 & 0.100 & -0.100 \\ -0.388 & 0.093 & 0.190 & 0.193 & -0.088 \\ 0.060 & -0.036 & -0.048 & -0.036 & 0.060 \end{pmatrix}$$

∽ < 100 / 103

イロト イボト イヨト イヨト

Matrix multiplication and matrix inversion

Continuation

Multiplying y by ${\cal A}^+$, we obtain the coefficient vector

$$c = \begin{pmatrix} 1.200 \\ -0.757 \\ 0.214 \end{pmatrix}$$

which corresponds to the quadratic polynomial

$$F(x) = 1.200 - 0.757x + 0.214x^2$$

イロト イヨト イヨト

Outline

Introduc

- Basic Definitions
- Matrix Examples

2 Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
 - The Algorithm
 - How he did it?
 - Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
 - Computing LU decomposition
 - Computing LUP decomposition
- Theorems Supporting the Algorithms
- 5 Application
 - Inverting Matrices
 - Least-squares Approximation

イロト イヨト イヨト

Exercises

From Cormen's book solve

- 34.5-1
- 34.5-2
- 34.5-3
- 34.5-4
- 34.5-5
- 34.5-7
- 34.5-8

