Analysis of Algorithms
 Matrix algorithms

Andres Mendez-Vazquez

November 24, 2015

Outline

(1) Introduction

- Basic Definitions
- Matrix Examples
(2) Matrix Operations
- Introduction
- Matrix Multiplication
- The Inverse
- Determinants
(3) Improving the Complexity of the Matrix Multiplication
- Back to Matrix Multiplication
- Strassen's Algorithm
- The Algorithm
- How he did it?
- Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
- Computing LU decomposition
- Computing LUP decomposition
- Theorems Supporting the Algorithms
(5) Applications
- Inverting Matrices
- Least-squares Approximation
- Some Exercises You Can Try!!!

Outline

(1) Introduction

- Basic Definitions
- Matrix Examples
(2) Matrix Operations
- Introduction
- Matrix Multiplication
- The Inverse
- Determinants

3 Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
- The Algorithm
- How he did it?
- Complexity
(4) Solving Systems of Linear Equations
- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
- Computing LU decomposition
- Computing LUP decomposition
- Theorems Supporting the Algorithms
(5) Applications
- Inverting Matrices
- Least-squares Approximation

6) Exercises

- Some Exercises You Can Try!!!

Basic definitions

A matrix is a rectangular array of numbers

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

Basic definitions

A matrix is a rectangular array of numbers

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

A transpose matrix is the matrix obtained by exchanging the rows and columns

$$
A^{T}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)
$$

Outline

(1) Introduction

- Basic Definitions
- Matrix Examples
(2) Matrix Operations
- Introduction
- Matrix Multiplication
- The Inverse
- Determinants
(3) Improving the Complexity of the Matrix Multiplication
- Back to Matrix Multiplication
- Strassen's Algorithm
- The Algorithm
- How he did it?
- Complexity
(4) Solving Systems of Linear Equations
- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
- Computing LU decomposition
- Computing LUP decomposition
- Theorems Supporting the Algorithms
(5) Applications
- Inverting Matrices
- Least-squares Approximation

6) Exercises

- Some Exercises You Can Try!!!

Several cases of matrices

Zero matrix

$\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Several cases of matrices

Zero matrix

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The diagonal matrix

$$
\left(\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right)
$$

Several cases of matrices

Upper triangular matrix

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right)
$$

Outline

- Basic Definitions
- Matrix Examples

(2) Matrix Operations
 - Introduction

- Matrix Multiplication

O The Inverse

- Determinants

3 Improving the Complexity of the Matrix Multiplication

- Back to Matrix Multiplication
- Strassen's Algorithm
- The Algorithm
- How he did it?
- Complexity

4) Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
- Computing LU decomposition
- Computing LUP decomposition
- Theorems Supporting the Algorithms
(5) Applications
- Inverting Matrices
- Least-squares Approximation

Some Exercises You Can Try!!!

Operations on matrices

They Define a Vectorial Space

- Matrix addition.

Operations on matrices

They Define a Vectorial Space

- Matrix addition.
- Multiplication by scalar.

Operations on matrices

They Define a Vectorial Space

- Matrix addition.
- Multiplication by scalar.
- The existence of zero.

Outline

(1) Introduction

- Basic Definitions
- Matrix Examples

(2) Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants
(3) Improving the Complexity of the Matrix Multiplication
- Back to Matrix Multiplication
- Strassen's Algorithm
- The Algorithm
- How he did it?
- Complexity
(4) Solving Systems of Linear Equations
- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
- Computing LU decomposition
- Computing LUP decomposition
- Theorems Supporting the Algorithms
(5) Applications
- Inverting Matrices
- Least-squares Approximation

6) ExercisesSome Exercises You Can Try!!!

Matrix Multiplication

What is Matrix Multiplication?

Given A, B matrices with dimensions $n \times n$, the multiplication is defined as

$$
\begin{aligned}
C & =A B \\
c_{i j} & =\sum_{k=1}^{n} a_{i k} b_{k j}
\end{aligned}
$$

Complexity and Algorithm

Algorithm: Complexity $\Theta\left(n^{3}\right)$

Square-Matrix-Multiply (A, B)
(1) $n=A$.rows
(2) let C be a new matrix $n \times n$
(3) for $i=1$ to n
(9) for $j=1$ to n
(6) $C[i, j]=0$
© for $k=1$ to n
©

$$
C[i, j]=C[i, j]+A[i, j] * B[i, j]
$$

(8) return C

Matrix multiplication properties

Properties of the Multiplication

- The Identity exist for a matrix A of $m \times n$:

$$
I_{m} A=A I_{n}=A
$$

- The multiplication is associative:

$$
A(B C)=(A B) C
$$

Matrix multiplication properties

Properties of the Multiplication

- The Identity exist for a matrix A of $m \times n$:

$$
I_{m} A=A I_{n}=A
$$

- The multiplication is associative:

$$
A(B C)=(A B) C
$$

Matrix multiplication properties

Properties of the Multiplication

- The Identity exist for a matrix A of $m \times n$:

$$
I_{m} A=A I_{n}=A
$$

- The multiplication is associative:

$$
A(B C)=(A B) C
$$

In addition, multiplication is distibutive

- $A(B+C)=A B+A C$
- $(B+C) D=B D+C D$

In addition

Definition

The inner product between vectors is defied as

$$
x^{T} y=\sum_{i=1}^{n} x_{i} y_{i}
$$

Outline

(1) Introduction

- Basic Definitions
- Matrix Examples

(2) Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants
(3) Improving the Complexity of the Matrix Multiplication
- Back to Matrix Multiplication
- Strassen's Algorithím
- The Algorithm
- How he did it?
- Complexity
(4) Solving Systems of Linear Equations
- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
- Computing LU decomposition
- Computing LUP decomposition
- Theorems Supporting the Algorithms
(5) Applications
- Inverting Matrices
- Least-squares Approximation

Some Exercises You Can Try!!!

Matrix inverses

The inverse is defined as the vector A^{-1} such that

$$
A A^{-1}=A^{-1} A=I_{n}
$$

Matrix inverses

The inverse is defined as the vector A^{-1} such that

$$
A A^{-1}=A^{-1} A=I_{n}
$$

Example

$$
\left.\begin{array}{c}
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{-1}=\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right) \Longrightarrow\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \\
\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 \cdot 0+1 \cdot 1 & 1 \cdot 1-1 \cdot 1 \\
1 \cdot 0+1 \cdot 0 & 1 \cdot 1+0 \cdot-1
\end{array}\right)= \\
0
\end{array} 1.0\right) ~ \$
$$

Matrix inverses

The inverse is defined as the vector A^{-1} such that

$$
A A^{-1}=A^{-1} A=I_{n}
$$

Example

$$
\left.\begin{array}{c}
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{-1}=\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right) \Longrightarrow\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \\
\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 \cdot 0+1 \cdot 1 & 1 \cdot 1-1 \cdot 1 \\
1 \cdot 0+1 \cdot 0 & 1 \cdot 1+0 \cdot-1
\end{array}\right)= \\
0
\end{array} 1.0\right) ~ \$
$$

Remark

A matrix that is invertible is called non-singular.

Properties of an inverse

Some properties are

- $(B A)^{-1}=A^{-1} B^{-1}$
- $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$

The Rank of A

Rank of A

A collection of vectors is $x_{1}, x_{2}, \ldots, x_{n}$ such that $c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \neq 0$. The rank of a matrix is the number of linear independent rows.

The Rank of A

Rank of A

A collection of vectors is $x_{1}, x_{2}, \ldots, x_{n}$ such that $c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \neq 0$. The rank of a matrix is the number of linear independent rows.

Theorem 1

A square matrix has full rank if and only if it is nonsingular.

Other Theorems

A null vector x is such that $A x=0$

- Theorem 2: A matrix A has full column rank if and only if it does not have a null vector.

Other Theorems

A null vector x is such that $A x=0$

- Theorem 2: A matrix A has full column rank if and only if it does not have a null vector.

Then, for squared matrices, we have

- Corollary 3: A square matrix A is singular if and only if it has a null vector.

Outline

- Basic Definitions
- Matrix Examples

(2) Matrix Operations

- Introduction
- Matrix Multiplication
- The Inverse
- Determinants
(3) Improving the Complexity of the Matrix Multiplication
- Back to Matrix Multiplication
- Strassen's Algorithm
- The Algorithm
- How he did it?
- Complexity
(4) Solving Systems of Linear Equations
- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
- Computing LU decomposition
- Computing LUP decomposition
- Theorems Supporting the Algorithms
(5) Applications
- Inverting Matrices
- Least-squares Approximation
(6) Exercises

Some Exercises You Can Try!!!

Determinants

A determinant can be defined recursively as follows

$$
\operatorname{det}(A)= \begin{cases}a_{1} 1 & \text { if } n=1 \tag{1}\\ \sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det}\left(A_{[1 j]}\right) & \text { if } n>1\end{cases}
$$

Determinants

A determinant can be defined recursively as follows

$$
\operatorname{det}(A)= \begin{cases}a_{1} 1 & \text { if } n=1 \tag{1}\\ \sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det}\left(A_{[1 j]}\right) & \text { if } n>1\end{cases}
$$

Where $(-1)^{i+j} \operatorname{det}\left(A_{[i j]}\right)$ is called a cofactor and $A_{[1 j]}$ is the matrix formed when eliminating row 1 and column j from A

Theorems

Theorem 4(determinant properties).
The determinant of a square matrix A has the following properties:

Theorems

Theorem 4(determinant properties).
The determinant of a square matrix A has the following properties:

- If any row or any column A is zero, then $\operatorname{det}(A)=0$.

Theorems

Theorem 4(determinant properties).
The determinant of a square matrix A has the following properties:

- If any row or any column A is zero, then $\operatorname{det}(A)=0$.
- The determinant of A is multiplied by λ if the entries of any one row (or any one column) of A are all multiplied by λ.

Theorems

Theorem 4(determinant properties).

The determinant of a square matrix A has the following properties:

- If any row or any column A is zero, then $\operatorname{det}(A)=0$.
- The determinant of A is multiplied by λ if the entries of any one row (or any one column) of A are all multiplied by λ.
- The determinant of A is unchanged if the entries in one row (respectively, column) are added to those in another row (respectively, column).

Theorems

Theorem 4(determinant properties).

The determinant of a square matrix A has the following properties:

- If any row or any column A is zero, then $\operatorname{det}(A)=0$.
- The determinant of A is multiplied by λ if the entries of any one row (or any one column) of A are all multiplied by λ.
- The determinant of A is unchanged if the entries in one row (respectively, column) are added to those in another row (respectively, column).
- The determinant of A equals the determinant of A^{T}.

Theorems

Theorem 4(determinant properties).

The determinant of a square matrix A has the following properties:

- If any row or any column A is zero, then $\operatorname{det}(A)=0$.
- The determinant of A is multiplied by λ if the entries of any one row (or any one column) of A are all multiplied by λ.
- The determinant of A is unchanged if the entries in one row (respectively, column) are added to those in another row (respectively, column).
- The determinant of A equals the determinant of A^{T}.
- The determinant of A is multiplied by -1 if any two rows (or any two columns) are exchanged.

Theorems

Theorem 4(determinant properties).

The determinant of a square matrix A has the following properties:

- If any row or any column A is zero, then $\operatorname{det}(A)=0$.
- The determinant of A is multiplied by λ if the entries of any one row (or any one column) of A are all multiplied by λ.
- The determinant of A is unchanged if the entries in one row (respectively, column) are added to those in another row (respectively, column).
- The determinant of A equals the determinant of A^{T}.
- The determinant of A is multiplied by -1 if any two rows (or any two columns) are exchanged.

Theorem 5

An $n \times n$ matrix A is singular if and only if $\operatorname{det}(A)=0$.

Positive definite matrix

Definition

A positive definite matrix A is called positive definite if and only if $x^{T} A x>0$ for all $x \neq 0$

Positive definite matrix

Definition

A positive definite matrix A is called positive definite if and only if $x^{T} A x>0$ for all $x \neq 0$

Theorem 6
For any matrix A with full column rank, the matrix $A^{T} A$ is positive definite.

Outline

（1）Introduction
－Basic Definitions
－Matrix Examples
（2）Matrix Operations
－Introduction
－Matrix Multiplication
O The Inverse
－Determinants
（3）Improving the Complexity of the Matrix Multiplication
－Back to Matrix Multiplication
－Strassen＇s Algorithm
－The Algorithm
－How he did it？
－Complexity
（4）Solving Systems of Linear Equations
－Introduction
－Lower Upper Decomposition
－Forward and Back Substitution
－Obtaining the Matrices
－Computing LU decomposition
－Computing LUP decomposition
－Theorems Supporting the Algorithms
（5）Applications
－Inverting Matrices
－Least－squares Approximation
6）Exercises
Some Exercises You Can Try！！！

Matrix Multiplication

Problem description

Given $n \times n$ matrices A, B and C :

$$
\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)
$$

Matrix Multiplication

Problem description

Given $n \times n$ matrices A, B and C :

$$
\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)
$$

Thus, you could compute r, s, t and u using recursion!!!

$$
\begin{aligned}
& r=a e+b g \\
& s=a f+b h \\
& t=c e+d g \\
& u=c f+d h
\end{aligned}
$$

Problem

Complexity of previous approach

$$
T(n)=8 T\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right)
$$

Problem

Complexity of previous approach

$$
T(n)=8 T\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right)
$$

Thus

$$
T(n)=\Theta\left(n^{3}\right)
$$

Problem

Complexity of previous approach

$$
T(n)=8 T\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right)
$$

Thus

$$
T(n)=\Theta\left(n^{3}\right)
$$

Therefore

You need to use a different type of products.

Outline

(1) Introduction

- Basic Definitions
- Matrix Examples
(2) Matrix Operations
- Introduction
- Matrix Multiplication
- The Inverse
- Determinants
(3) Improving the Complexity of the Matrix Multiplication
- Back to Matrix Multiplication
- Strassen's Algorithm
- The Algorithm
- How he did it?
- Complexity
(4) Solving Systems of Linear Equations
- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
- Computing LU decomposition
- Computing LUP decomposition
- Theorems Supporting the Algorithms
(5) Applications
- Inverting Matrices
- Least-squares Approximation
(6) Exercises

Some Exercises You Can Try!!!

The Strassen's Algorithm

It is a divide and conquer algorithm

Given A, B, C matrices with dimensions $n \times n$, we recursively split the matrices such that we finish with $12 \frac{n}{2} \times \frac{n}{2}$ sub matrices

$$
\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)
$$

The Strassen's Algorithm

It is a divide and conquer algorithm

Given A, B, C matrices with dimensions $n \times n$, we recursively split the matrices such that we finish with $12 \frac{n}{2} \times \frac{n}{2}$ sub matrices

$$
\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)
$$

Remember the Gauss Trick?

Imagine the same for Matrix Multiplication.

Outline

（1）Introduction
－Basic Definitions
－Matrix Examples
（2）Matrix Operations
－Introduction
－Matrix Multiplication
－The Inverse
－Determinants
（3）Improving the Complexity of the Matrix Multiplication
－Back to Matrix Multiplication
－Strassen＇s Algorithm
－The Algorithm
－How he did it？
－Complexity
（4）Solving Systems of Linear Equations
－Introduction
－Lower Upper Decomposition
－Forward and Back Substitution
－Obtaining the Matrices
－Computing LU decomposition
－Computing LUP decomposition
－Theorems Supporting the Algorithms
（5）Applications
－Inverting Matrices
－Least－squares Approximation
6）Exercises
Some Exercises You Can Try！！！

Algorithm

Strassen's Algorithm

(1) Divide the input matrices A and B into $\frac{n}{2} \times \frac{n}{2}$ sub matrices.

Algorithm

Strassen's Algorithm

(1) Divide the input matrices A and B into $\frac{n}{2} \times \frac{n}{2}$ sub matrices.
(2) Using $\Theta\left(n^{2}\right)$ scalar additions and subtractions, compute 14 matrices $A_{1}, B_{1}, \ldots, A_{7}, B_{7}$ each of which is $\frac{n}{2} \times \frac{n}{2}$.

Algorithm

Strassen's Algorithm

(1) Divide the input matrices A and B into $\frac{n}{2} \times \frac{n}{2}$ sub matrices.
(2) Using $\Theta\left(n^{2}\right)$ scalar additions and subtractions, compute 14 matrices $A_{1}, B_{1}, \ldots, A_{7}, B_{7}$ each of which is $\frac{n}{2} \times \frac{n}{2}$.
(3) Recursively compute the seven matrices products $P_{i}=A_{i} B_{i}$ for $i=1,2,3, \ldots, 7$.

Algorithm

Strassen's Algorithm

(1) Divide the input matrices A and B into $\frac{n}{2} \times \frac{n}{2}$ sub matrices.
(2) Using $\Theta\left(n^{2}\right)$ scalar additions and subtractions, compute 14 matrices $A_{1}, B_{1}, \ldots, A_{7}, B_{7}$ each of which is $\frac{n}{2} \times \frac{n}{2}$.
(3) Recursively compute the seven matrices products $P_{i}=A_{i} B_{i}$ for $i=1,2,3, \ldots, 7$.
(9) Compute the desired matrix

$$
\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right)
$$

Algorithm

Strassen's Algorithm

(1) Divide the input matrices A and B into $\frac{n}{2} \times \frac{n}{2}$ sub matrices.
(2) Using $\Theta\left(n^{2}\right)$ scalar additions and subtractions, compute 14 matrices $A_{1}, B_{1}, \ldots, A_{7}, B_{7}$ each of which is $\frac{n}{2} \times \frac{n}{2}$.
(3) Recursively compute the seven matrices products $P_{i}=A_{i} B_{i}$ for $i=1,2,3, \ldots, 7$.
(9) Compute the desired matrix

$$
\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right)
$$

by adding and or subtracting various combinations of the P_{i} matrices, using only $\Theta\left(n^{2}\right)$ scalar additions and subtractions

Algorithm

Strassen's Algorithm

(1) Divide the input matrices A and B into $\frac{n}{2} \times \frac{n}{2}$ sub matrices.
(2) Using $\Theta\left(n^{2}\right)$ scalar additions and subtractions, compute 14 matrices $A_{1}, B_{1}, \ldots, A_{7}, B_{7}$ each of which is $\frac{n}{2} \times \frac{n}{2}$.
(3) Recursively compute the seven matrices products $P_{i}=A_{i} B_{i}$ for $i=1,2,3, \ldots, 7$.
(9) Compute the desired matrix

$$
\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right)
$$

by adding and or subtracting various combinations of the P_{i} matrices, using only $\Theta\left(n^{2}\right)$ scalar additions and subtractions

Outline

(1) Introduction

- Basic Definitions
- Matrix Examples
(2) Matrix Operations
- Introduction
- Matrix Multiplication
- The Inverse
- Determinants
(3) Improving the Complexity of the Matrix Multiplication
- Back to Matrix Multiplication
- Strassen's Algorithm

The Algorithm

- How he did it?
- Complexity
(4) Solving Systems of Linear Equations
- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
- Computing LU decomposition
- Computing LUP decomposition
- Theorems Supporting the Algorithms
(5) Applications
- Inverting Matrices
- Least-squares Approximation

6) Exercises

Some Exercises You Can Try!!!

Strassen Observed that

Trial and Error

First, he generated

$$
P_{i}=A_{i} B_{i}=\left(\alpha_{i 1} a+\alpha_{i 2} b+\alpha_{i 3} c+\alpha_{i 4} d\right) \cdot\left(\beta_{i 1} e+\beta_{i 2} f+\beta_{i 3} g+\beta_{i 4} h\right)
$$

Where $\alpha_{i j}, \beta_{i j} \in\{-1,0,1\}$

Then

4ロ • 4 岛＞4 三＞4 三＞

Then

$$
r=a e+b g=\left(\begin{array}{llll}
a & b & c & d
\end{array}\right)\left(\begin{array}{cccc}
+1 & 0 & 0 & 0 \\
0 & 0 & +1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
e \\
f \\
g \\
h
\end{array}\right)
$$

Then

$$
r=a e+b g=\left(\begin{array}{llll}
a & b & c & d
\end{array}\right)\left(\begin{array}{cccc}
+1 & 0 & 0 & 0 \\
0 & 0 & +1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
e \\
f \\
g \\
h
\end{array}\right)
$$

S

$$
s=a f+b h=\left(\begin{array}{llll}
a & b & c & d
\end{array}\right)\left(\begin{array}{cccc}
+1 & 0 & 0 & 0 \\
0 & 0 & 0 & +1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
e \\
f \\
g \\
h
\end{array}\right)
$$

Therefore

$$
r=c e+d g=\left(\begin{array}{llll}
a & b & c & d
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
+1 & 0 & 0 & 0 \\
0 & 0 & +1 & 0
\end{array}\right)\left(\begin{array}{l}
e \\
f \\
g \\
h
\end{array}\right)
$$

Therefore

$$
r=c e+d g=\left(\begin{array}{llll}
a & b & c & d
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
+1 & 0 & 0 & 0 \\
0 & 0 & +1 & 0
\end{array}\right)\left(\begin{array}{l}
e \\
f \\
g \\
h
\end{array}\right)
$$

U

$$
u=c f+d h=\left(\begin{array}{llll}
a & b & c & d
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & +1 & 0 & 0 \\
0 & 0 & 0 & +1
\end{array}\right)\left(\begin{array}{c}
e \\
f \\
g \\
h
\end{array}\right)
$$

Example Compute the s from P_{1} and P_{2} matrices

Compute

- $s=P_{1}+P_{2}$

Example Compute the s from P_{1} and P_{2} matrices

Compute

- $s=P_{1}+P_{2}$

Where P_{1}

$$
P_{1} \quad=\quad A_{1} B_{1}
$$

Example Compute the s from P_{1} and P_{2} matrices

Compute

- $s=P_{1}+P_{2}$

Where P_{1}

$$
\begin{aligned}
P_{1} & & = & A_{1} B_{1} \\
& = & & a(f-h)
\end{aligned}
$$

Example Compute the s from P_{1} and P_{2} matrices

Compute

- $s=P_{1}+P_{2}$

Where P_{1}

$$
P_{1}
$$

$$
\begin{array}{ll}
= & A_{1} B_{1} \\
= & a(f-h) \\
= & a f-a h
\end{array}
$$

Example Compute the s from P_{1} and P_{2} matrices

Compute

$$
\text { - } s=P_{1}+P_{2}
$$

Where P_{1}

$$
\begin{aligned}
& P_{1} \quad=\quad A_{1} B_{1} \\
& =\quad a(f-h) \\
& =\quad a f-a h \\
& =\left(\begin{array}{llll}
a & b & c & d
\end{array}\right)\left(\begin{array}{cccc}
0 & +1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
e \\
f \\
g \\
h
\end{array}\right)
\end{aligned}
$$

Example Compute the s from P_{1} and P_{2} matrices

Example Compute the s from P_{1} and P_{2} matrices

Where P_{2}

$$
\begin{array}{rlrl}
P_{2} & & = & \\
& & A_{2} B_{2} \\
& = & & (a+b) h
\end{array}
$$

Example Compute the s from P_{1} and P_{2} matrices

Where P_{2}

$$
\begin{array}{lll}
P_{2} & = & A_{2} B_{2} \\
& = & (a+b) h \\
& = & a h+b h
\end{array}
$$

Example Compute the s from P_{1} and P_{2} matrices

Where P_{2}

$$
\begin{aligned}
& P_{2} \\
& =\quad A_{2} B_{2} \\
& =\quad(a+b) h \\
& =\quad a h+b h \\
& =\left(\begin{array}{llll}
a & b & c & d
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 0 & +1 \\
0 & 0 & 0 & +1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
e \\
f \\
g \\
h
\end{array}\right)
\end{aligned}
$$

Outline

(1) Introduction

- Basic Definitions
- Matrix Examples
(2) Matrix Operations
- Introduction
- Matrix Multiplication
- The Inverse
- Determinants
(3) Improving the Complexity of the Matrix Multiplication
- Back to Matrix Multiplication
- Strassen's Algorithm
- The Algorithm
- How he did it?
- Complexity
(4) Solving Systems of Linear Equations
- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
- Computing LU decomposition
- Computing LUP decomposition
- Theorems Supporting the Algorithms
(5) Applications
- Inverting Matrices
- Least-squares Approximation

6) Exercises

Some Exercises You Can Try!!!

Complexity

Because we are only computing 7 matrices

- $T(n)=7 T\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right)=\Theta\left(n^{\lg 7}\right)=O\left(n^{2.81}\right)$.

Nevertheless

Nevertheless

We do not use Strassen's because

- A constant factor hidden in the running of the algorithm is larger than the constant factor of the naive $\Theta\left(n^{3}\right)$ method.
- When matrices are sparse, there are faster methods.

Nevertheless

We do not use Strassen's because

- A constant factor hidden in the running of the algorithm is larger than the constant factor of the naive $\Theta\left(n^{3}\right)$ method.
- When matrices are sparse, there are faster methods.
- Strassen's is not a numerically stable as the naive method.

Nevertheless

We do not use Strassen's because

- A constant factor hidden in the running of the algorithm is larger than the constant factor of the naive $\Theta\left(n^{3}\right)$ method.
- When matrices are sparse, there are faster methods.
- Strassen's is not a numerically stable as the naive method.
- The sub matrices formed at the levels of the recursion consume space.

The Holy Grail of Matrix Multiplications $O\left(n^{2}\right)$

In a method by Virginia Vassilevska Williams (2012) Assistant Professor at Stanford

- The computational complexity of her method is $\omega<2.3727$ or $O\left(n^{2.3727}\right)$

The Holy Grail of Matrix Multiplications $O\left(n^{2}\right)$

In a method by Virginia Vassilevska Williams (2012) Assistant Professor at Stanford

- The computational complexity of her method is $\omega<2.3727$ or $O\left(n^{2.3727}\right)$
- Better than Coppersmith and Winograd (1990) $O\left(n^{2.375477}\right)$

The Holy Grail of Matrix Multiplications $O\left(n^{2}\right)$

In a method by Virginia Vassilevska Williams (2012) Assistant Professor at Stanford

- The computational complexity of her method is $\omega<2.3727$ or $O\left(n^{2.3727}\right)$
- Better than Coppersmith and Winograd (1990) $O\left(n^{2.375477}\right)$

Many Researchers Believe that

- Coppersmith, Winograd and Cohn et al. conjecture could lead to $O\left(n^{2}\right)$, contradicting a variant of the widely believed sun flower conjecture of Erdos and Rado.

Exercises

- 28.1-3
- 28.1-5
- 28.1-8
- 28.1-9
- 28.2-2
- 28.2-5

Outline

（1）Introduction
－Basic Definitions
－Matrix Examples
（2）Matrix Operations
－Introduction
－Matrix Multiplication
O The Inverse
－Determinants
（3）Improving the Complexity of the Matrix Multiplication
－Back to Matrix Multiplication
－Strassen＇s Algorithm
－The Algorithm
－How he did it？
－Complexity
（4）Solving Systems of Linear Equations
－Introduction
－Lower Upper Decomposition
－Forward and Back Substitution
－Obtaining the Matrices
－Computing LU decomposition
－Computing LUP decomposition
－Theorems Supporting the Algorithms
（5）Applications
－Inverting Matrices
－Least－squares Approximation
6）Exercises
Some Exercises You Can Try！！！

In Many Fields

From Optimization to Control

We are required to solve systems of simultaneous equations.

In Many Fields

From Optimization to Control

We are required to solve systems of simultaneous equations.

For Example

For Polynomial Curve Fitting, we are given $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$

In Many Fields

From Optimization to Control

We are required to solve systems of simultaneous equations.

For Example

For Polynomial Curve Fitting, we are given $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$

We want

To find a polynomial of degree $n-1$ with structure

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}
$$

Thus

We can build a system of equations

$$
\begin{gathered}
a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+\ldots+a_{n-1} x_{1}^{n-1}=y_{1} \\
a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+\ldots+a_{n-1} x_{2}^{n-1}=y_{2} \\
\vdots \\
a_{0}+a_{1} x_{n}+a_{2} x_{n}^{2}+\ldots+a_{n-1} x_{n}^{n-1}=y_{n}
\end{gathered}
$$

Thus

We can build a system of equations

$$
\begin{gathered}
a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+\ldots+a_{n-1} x_{1}^{n-1}=y_{1} \\
a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+\ldots+a_{n-1} x_{2}^{n-1}=y_{2} \\
\vdots \\
a_{0}+a_{1} x_{n}+a_{2} x_{n}^{2}+\ldots+a_{n-1} x_{n}^{n-1}=y_{n}
\end{gathered}
$$

We have n unknowns

$$
a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}
$$

Solving Systems of Linear Equations

Proceed as follows

- We start with a set of linear equations with n unknowns:

Solving Systems of Linear Equations

Proceed as follows

- We start with a set of linear equations with n unknowns:

$$
x_{1}, x_{2}, \ldots, x_{n} \begin{cases}a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & =b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} & =b_{2} \\ \vdots & \vdots \\ a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n} & =b_{n}\end{cases}
$$

Solving Systems of Linear Equations

Proceed as follows

- We start with a set of linear equations with n unknowns:

$$
x_{1}, x_{2}, \ldots, x_{n} \begin{cases}a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & =b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} & =b_{2} \\ \vdots & \vdots \\ a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n} & =b_{n}\end{cases}
$$

Something Notable

- A set of values for $x_{1}, x_{2}, \ldots, x_{n}$ that satisfy all of the equations simultaneously is said to be a solution to these equations.

Solving Systems of Linear Equations

Proceed as follows

- We start with a set of linear equations with n unknowns:

$$
x_{1}, x_{2}, \ldots, x_{n} \begin{cases}a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & =b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} & =b_{2} \\ \vdots & \vdots \\ a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n} & =b_{n}\end{cases}
$$

Something Notable

- A set of values for $x_{1}, x_{2}, \ldots, x_{n}$ that satisfy all of the equations simultaneously is said to be a solution to these equations.
- In this section, we only treat the case in which there are exactly n equations in n unknowns.

Solving systems of linear equations

continuation

- We can conveniently rewrite the equations as the matrix-vector equation:

Solving systems of linear equations

continuation

- We can conveniently rewrite the equations as the matrix-vector equation:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

Solving systems of linear equations

continuation

- We can conveniently rewrite the equations as the matrix-vector equation:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

or, equivalently, letting $A=\left(a_{i j}\right), x=\left(x_{j}\right)$, and $b=\left(b_{i}\right)$, as

Solving systems of linear equations

continuation

- We can conveniently rewrite the equations as the matrix-vector equation:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

or, equivalently, letting $A=\left(a_{i j}\right), x=\left(x_{j}\right)$, and $b=\left(b_{i}\right)$, as

$$
A x=b
$$

Solving systems of linear equations

continuation

- We can conveniently rewrite the equations as the matrix-vector equation:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

or, equivalently, letting $A=\left(a_{i j}\right), x=\left(x_{j}\right)$, and $b=\left(b_{i}\right)$, as

$$
A x=b
$$

- In this section, we shall be concerned predominantly with the case of which A is nonsingular, after all we want to invert A.

Outline

(1) Introduction

- Basic Definitions
- Matrix Examples
(2) Matrix Operations
- Introduction
- Matrix Multiplication
- The Inverse
- Determinants
(3) Improving the Complexity of the Matrix Multiplication
- Back to Matrix Multiplication
- Strassen's Algorithm
- The Algorithm
- How he did it?
- Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
- Computing LU decomposition
- Computing LUP decomposition
- Theorems Supporting the Algorithms
(5) Applications
- Inverting Matrices
- Least-squares Approximation
(6) Exercises

Some Exercises You Can Try!!!

Overview of Lower Upper (LUP) Decomposition

Intuition

The idea behind LUP decomposition is to find three $n \times n$ matrices L, U, and P such that:

Overview of Lower Upper (LUP) Decomposition

Intuition

The idea behind LUP decomposition is to find three $n \times n$ matrices L, U, and P such that:

$$
P A=L U
$$

Overview of Lower Upper (LUP) Decomposition

Intuition

The idea behind LUP decomposition is to find three $n \times n$ matrices L, U, and P such that:

$$
P A=L U
$$

where:

Overview of Lower Upper (LUP) Decomposition

Intuition

The idea behind LUP decomposition is to find three $n \times n$ matrices L, U, and P such that:

$$
P A=L U
$$

where:

- L is a unit lower triangular matrix.

Overview of Lower Upper (LUP) Decomposition

Intuition

The idea behind LUP decomposition is to find three $n \times n$ matrices L, U, and P such that:

$$
P A=L U
$$

where:

- L is a unit lower triangular matrix.
- U is an upper triangular matrix.

Overview of Lower Upper (LUP) Decomposition

Intuition

The idea behind LUP decomposition is to find three $n \times n$ matrices L, U, and P such that:

$$
P A=L U
$$

where:

- L is a unit lower triangular matrix.
- U is an upper triangular matrix.
- P is a permutation matrix.

Overview of Lower Upper (LUP) Decomposition

Intuition

The idea behind LUP decomposition is to find three $n \times n$ matrices L, U, and P such that:

$$
P A=L U
$$

where:

- L is a unit lower triangular matrix.
- U is an upper triangular matrix.
- P is a permutation matrix.

Where

We call matrices L, U, and P satisfying the above equation a LUP decomposition of the matrix A.

What is a Permutation Matrix

Basically

We represent the permutation P compactly by an array $\pi[1 . . n]$. For $i=1,2, \ldots, n$, the entry $\pi[i]$ indicates that $P_{i \pi[i]}=1$ and $P_{i j}=0$ for $j \neq \pi[i]$.

What is a Permutation Matrix

Basically

We represent the permutation P compactly by an array $\pi[1 . . n]$. For $i=1,2, \ldots, n$, the entry $\pi[i]$ indicates that $P_{i \pi[i]}=1$ and $P_{i j}=0$ for $j \neq \pi[i]$.

Thus

- $P A$ has $a_{\pi[i], j}$ in row i and a column j.
- $P b$ has $b_{\pi[i]}$ as its i th element.

How can we use this in our advantage?

Lock at this

$$
\begin{equation*}
A x=b \Longrightarrow P A x=P b \tag{2}
\end{equation*}
$$

How can we use this in our advantage?

Lock at this

$$
\begin{equation*}
A x=b \Longrightarrow P A x=P b \tag{2}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
L U x=P b \tag{3}
\end{equation*}
$$

How can we use this in our advantage?

Lock at this

$$
\begin{equation*}
A x=b \Longrightarrow P A x=P b \tag{2}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
L U x=P b \tag{3}
\end{equation*}
$$

Now, if we make $U x=y$

$$
\begin{equation*}
L y=P b \tag{4}
\end{equation*}
$$

Thus

We first obtain y
Then, we obtain x.

Outline

- Basic Definitions
- Matrix Examples
(2) Matrix Operations
- Introduction
- Matrix Multiplication

O The Inverse

- Determinants
(3) Improving the Complexity of the Matrix Multiplication
- Back to Matrix Multiplication
- Strassen's Algorithm
- The Algorithm
- How he did it?
- Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
- Computing LU decomposition
- Computing LUP decomposition
- Theorems Supporting the Algorithms
(5) Applications
- Inverting Matrices
- Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

Forward and Back Substitution

Forward substitution

Forward substitution can solve the lower triangular system $L y=P b$ in $\Theta\left(n^{2}\right)$ time, given L, P and b.

Forward and Back Substitution

Forward substitution

Forward substitution can solve the lower triangular system $L y=P b$ in $\Theta\left(n^{2}\right)$ time, given L, P and b.

Then

Since L is unit lower triangular, equation $L y=P b$ can be rewritten as:

$$
\begin{aligned}
y_{1} & =b_{\pi[1]} \\
l_{21} y_{1}+y_{2} & =b_{\pi[2]} \\
l_{31} y_{1}+l_{32}+y_{3} & =b_{\pi[3]}
\end{aligned}
$$

$$
l_{n 1} y_{1}+l_{n 2} y_{2}+l_{n 3} y_{3}+\ldots+y_{n}=b_{\pi[n]}
$$

Forward and Back Substitution

Back substitution

Back substitution is similar to forward substitution. Like forward substitution, this process runs in $\Theta\left(n^{2}\right)$ time. Since U is upper-triangular, we can rewrite the system $U x=y$ as

$$
\begin{aligned}
u_{11} x_{1}+u_{12} x_{2}+\ldots+u_{1 n-2} x_{n-2}+u_{1 n-1} x_{n-1}+u_{1 n} x_{n} & =y_{1} \\
u_{22} x_{2}+\ldots+u_{2 n-2} x_{n-2}+u_{2 n-1} x_{n-1}+u_{2 n} x_{n} & =y_{2} \\
\vdots & \\
u_{n-2 n-2} x_{n-2}+u_{n-2 n-1} x_{n-1}+u_{n-2 n} x_{n} & =y_{n-2} \\
u_{n-1 n-1} x_{n-1}+u_{n-1 n} x_{n} & =y_{n-1} \\
u_{n n} x_{n} & =y_{n}
\end{aligned}
$$

Example

We have

$$
A x=\left(\begin{array}{lll}
1 & 2 & 0 \\
3 & 4 & 4 \\
5 & 6 & 3
\end{array}\right) x=\left(\begin{array}{l}
3 \\
7 \\
8
\end{array}\right)=b
$$

Example

The L, U and P matrix

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0.2 & 1 & 0 \\
0.6 & 0.5 & 1
\end{array}\right), U=\left(\begin{array}{ccc}
5 & 6 & 3 \\
0 & 0.8 & -0.6 \\
0 & 0 & 2.5
\end{array}\right), P=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Example

Using forward substitution, $L y=P b$ for y

$$
L y=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0.2 & 1 & 0 \\
0.6 & 0.5 & 1
\end{array}\right) y=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
3 \\
7 \\
8
\end{array}\right)=P b
$$

Example

Using forward substitution, we get y

$$
y=\left(\begin{array}{c}
8 \\
1.4 \\
1.5
\end{array}\right)
$$

Example

Now, we use the back substitution, $U x=y$ for x

$$
U x=\left(\begin{array}{ccc}
5 & 6 & 3 \\
0 & 0.8 & -0.6 \\
0 & 0 & 2.5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
8 \\
1.4 \\
1.5
\end{array}\right)
$$

Example

Finally, we get

$$
x=\left(\begin{array}{c}
-1.4 \\
2.2 \\
0.6
\end{array}\right)
$$

Forward and Back Substitution

Given P, L, U, and b, the procedure LUP- SOLVE solves for x by combining forward and back substitution
$\operatorname{LUP}-\operatorname{SOLVE}(L, U, \pi, b)$
(1) $n=$ L.rows
(2) Let x be a new vector of length n

Forward and Back Substitution

Given P, L, U, and b, the procedure LUP- SOLVE solves for x by combining forward and back substitution
$\operatorname{LUP}-\operatorname{SOLVE}(L, U, \pi, b)$
(1) $n=$ L.rows
(3) Let x be a new vector of length n
(0) for $i=1$ to n

- $y_{i}=b_{\pi[i]}-\sum_{j=1}^{i-1} l_{i j} y_{j}$

Forward and Back Substitution

Given P, L, U, and b, the procedure LUP- SOLVE solves for x by combining forward and back substitution
LUP-SOLVE (L, U, π, b)
(1) $n=$ L.rows
(3) Let x be a new vector of length n
(0) for $i=1$ to n

- $y_{i}=b_{\pi[i]}-\sum_{j=1}^{i-1} l_{i j} y_{j}$
(0) for $i=n$ downto 1
- $x_{i}=\frac{\left(y_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right)}{u_{i i}}$

Forward and Back Substitution

Given P, L, U, and b, the procedure LUP- SOLVE solves for x by combining forward and back substitution
$\operatorname{LUP}-\operatorname{SOLVE}(L, U, \pi, b)$
(1) $n=$ L.rows
(2) Let x be a new vector of length n
(0) $\begin{aligned} & \text { or } \\ & i=1 \\ & \text { to } \\ & n\end{aligned}$

- $y_{i}=b_{\pi[i]}-\sum_{j=1}^{i-1} l_{i j} y_{j}$
(0) for $i=n$ downto 1
- $x_{i}=\frac{\left(y_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right)}{u_{i i}}$

O return x

Complexity

The running time is $\Theta\left(n^{2}\right)$.

Outline

(1) Introduction

- Basic Definitions
- Matrix Examples
(2) Matrix Operations
- Introduction
- Matrix Multiplication
- The Inverse
- Determinants
(3) Improving the Complexity of the Matrix Multiplication
- Back to Matrix Multiplication
- Strassen's Algorithm
- The Algorithm
- How he did it?
- Complexity

4) Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
- Computing LU decomposition
- Computing LUP decomposition
- Theorems Supporting the Algorithms

5) Applications

- Inverting Matrices
- Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

Ok, if we have the L, U and $P!!!$

Thus
We need to find those matrices

Ok, if we have the L, U and $P!!!$

We need to find those matrices

How, we do it?
We are going to use something called the Gaussian Elimination.

For this

We assume that A is a $n \times n$

Such that A is not singular

For this

We assume that A is a $n \times n$

Such that A is not singular

We use a process known as Gaussian elimination to create LU decomposition

This algorithm is recursive in nature.

For this

We assume that A is a $n \times n$

Such that A is not singular
We use a process known as Gaussian elimination to create LU decomposition
This algorithm is recursive in nature.

Properties
Clearly if $n=1$, we are done for $L=I_{1}$ and $U=A$.

Outline

- Basic Definitions
- Matrix Examples
(2) Matrix Operations
- Introduction
- Matrix Multiplication

O The Inverse

- Determinants
(3) Improving the Complexity of the Matrix Multiplication
- Back to Matrix Multiplication
- Strassen's Algorithm
- The Algorithm
- How he did it?
- Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices

- Computing LU decomposition

- Computing LUP decomposition
- Theorems Supporting the Algorithms
(5) Applications
- Inverting Matrices
- Least-squares Approximation

6) Exercises

Some Exercises You Can Try!!!

Computing LU decomposition

For $n>1$, we break A into four parts

$$
A=\left(\begin{array}{c|ccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{5}\\
\hline a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)=\left(\begin{array}{cc}
a_{11} & \boldsymbol{w}^{T} \\
\boldsymbol{v} & A^{\prime}
\end{array}\right)
$$

Where

We have

- \boldsymbol{v} is a column $(n-1)$-vector.

Where

We have

- \boldsymbol{v} is a column $(n-1)$-vector.
- \boldsymbol{w}^{T} is a row $(n-1)$-vector.

Where

We have

- \boldsymbol{v} is a column $(n-1)$-vector.
- \boldsymbol{w}^{T} is a row $(n-1)$-vector.
- A^{\prime} is an $(n-1) \times(n-1)$.

Where

We have

- \boldsymbol{v} is a column $(n-1)$-vector.
- \boldsymbol{w}^{T} is a row $(n-1)$-vector.
- A^{\prime} is an $(n-1) \times(n-1)$.

Computing a LU decomposition

Thus, we can do the following

$$
A=\left(\begin{array}{cc}
a_{11} & \boldsymbol{w}^{T} \\
\boldsymbol{v} & A^{\prime}
\end{array}\right)
$$

Computing a LU decomposition

Thus, we can do the following

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
a_{11} & \boldsymbol{w}^{T} \\
\boldsymbol{v} & A^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
\frac{\boldsymbol{v}}{a_{11}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & \boldsymbol{w}^{T} \\
0 & \underbrace{A^{\prime}-\frac{\boldsymbol{v} \boldsymbol{w}^{T}}{a_{11}}}_{\text {Schur Complement }}
\end{array}\right)
\end{aligned}
$$

Computing a LU decomposition

Thus, we can do the following

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
a_{11} & \boldsymbol{w}^{T} \\
\boldsymbol{v} & A^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
\frac{\boldsymbol{v}}{a_{11}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & \boldsymbol{w}^{T} \\
0 & \underbrace{A^{\prime}-\frac{\boldsymbol{v} \boldsymbol{w}^{T}}{a_{11}}} \\
& =\left(\begin{array}{cc}
1 & 0 \\
\frac{\boldsymbol{v}}{a_{11}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & \boldsymbol{w}^{T} \\
0 & L^{\prime} U^{\prime}
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

Computing a LU decomposition

Thus, we can do the following

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
a_{11} & \boldsymbol{w}^{T} \\
\boldsymbol{v} & A^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
\frac{v}{a_{11}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & \boldsymbol{w}^{T} \\
0 & \underbrace{A^{\prime}-\frac{\boldsymbol{v} \boldsymbol{w}^{T}}{a_{11}}}_{\text {Schur Complement }}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
\frac{v}{a_{11}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & \boldsymbol{w}^{T} \\
0 & L^{\prime} U^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
\frac{v}{a_{11}} & L^{\prime}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & \boldsymbol{w}^{T} \\
0 & U^{\prime}
\end{array}\right)
\end{aligned}
$$

Computing a LU decomposition

Thus, we can do the following

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
a_{11} & \boldsymbol{w}^{T} \\
\boldsymbol{v} & A^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
\frac{\boldsymbol{v}}{a_{11}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & \boldsymbol{w}^{T} \\
0 & \underbrace{A^{\prime}-\frac{\boldsymbol{v}^{T} \boldsymbol{w}^{T}}{a_{11}}}_{\text {Schur Complement }}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
\frac{\boldsymbol{v}}{a_{11}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & \boldsymbol{w}^{T} \\
0 & L^{\prime} U^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
\frac{\boldsymbol{v}}{a_{11}} & L^{\prime}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & \boldsymbol{w}^{T} \\
0 & U^{\prime}
\end{array}\right) \\
& =L U
\end{aligned}
$$

Computing a LU decomposition

Pseudo-Code running in $\Theta\left(n^{3}\right)$
LU-Decomposition (A)
(1) $n=$ A. rows

Computing a LU decomposition

Pseudo-Code running in $\Theta\left(n^{3}\right)$
LU-Decomposition (A)
(1) $n=A$.rows
(2) Let L and U be new $n \times n$ matrices

Computing a LU decomposition

Pseudo-Code running in $\Theta\left(n^{3}\right)$

LU-Decomposition (A)

(1) $n=A$.rows
(2) Let L and U be new $n \times n$ matrices
(3) Initialize U with 0 's below the diagonal

Computing a LU decomposition

Pseudo-Code running in $\Theta\left(n^{3}\right)$

LU-Decomposition (A)
(1) $n=A$.rows
(2) Let L and U be new $n \times n$ matrices
(3) Initialize U with 0 's below the diagonal
(4) Initialize L with 1 's on the diagonal and 0 's above the diagonal.

Computing a LU decomposition

Pseudo-Code running in $\Theta\left(n^{3}\right)$

LU-Decomposition (A)
(1) $n=$ A.rows
(2) Let L and U be new $n \times n$ matrices
(3) Initialize U with 0 's below the diagonal
(4) Initialize L with 1 's on the diagonal and 0 's above the diagonal.
(5) for $k=1$ to n

Computing a LU decomposition

Pseudo-Code running in $\Theta\left(n^{3}\right)$

LU-Decomposition (A)
(1) $n=$ A.rows
(2) Let L and U be new $n \times n$ matrices
(3) Initialize U with 0 's below the diagonal
(4) Initialize L with 1 's on the diagonal and 0 's above the diagonal.
(5) for $k=1$ to n
(6) $u_{k k}=a_{k k}$

Computing a LU decomposition

Pseudo-Code running in $\Theta\left(n^{3}\right)$

LU-Decomposition (A)
(1) $n=A$.rows
(2) Let L and U be new $n \times n$ matrices
(3) Initialize U with 0 's below the diagonal
(4) Initialize L with 1 's on the diagonal and 0 's above the diagonal.
(5) for $k=1$ to n
(6) $u_{k k}=a_{k k}$
(7) for $i=k+1$ to n
(8) $l_{i k}=\frac{a_{i k}}{u_{k k}} \triangleleft l_{i k}$ holds v_{i}
(9) $\quad u_{k i}=a_{k i} \triangleleft u_{k i}$ holds w_{i}^{T}

Computing a LU decomposition

Pseudo-Code running in $\Theta\left(n^{3}\right)$

LU-Decomposition (A)
(1) $n=A$.rows
(2) Let L and U be new $n \times n$ matrices
(3) Initialize U with 0 's below the diagonal
(4) Initialize L with 1 's on the diagonal and 0 's above the diagonal.
(5) for $k=1$ to n
(6) $u_{k k}=a_{k k}$
(7) for $i=k+1$ to n
(8) $l_{i k}=\frac{a_{i k}}{u_{k k}} \triangleleft l_{i k}$ holds v_{i}
(9) $u_{k i}=a_{k i} \triangleleft u_{k i}$ holds w_{i}^{T}
(10) for $i=k+1$ to n
(1)
(12)

$$
\begin{aligned}
& \text { for } j=k+1 \text { to } n \\
& \quad a_{i j}=a_{i j}-l_{i k} u_{k j}
\end{aligned}
$$

Computing a LU decomposition

Pseudo-Code running in $\Theta\left(n^{3}\right)$

LU-Decomposition (A)
(1) $n=A$.rows
(2) Let L and U be new $n \times n$ matrices
(3) Initialize U with 0 's below the diagonal
(4) Initialize L with 1 's on the diagonal and 0 's above the diagonal.
(5) for $k=1$ to n
(6) $u_{k k}=a_{k k}$
(7) for $i=k+1$ to n
(8) $l_{i k}=\frac{a_{i k}}{u_{k k}} \triangleleft l_{i k}$ holds v_{i}
(9) $u_{k i}=a_{k i} \triangleleft u_{k i}$ holds w_{i}^{T}
(10) for $i=k+1$ to n
(11)
(12)

$$
\begin{aligned}
& \text { for } j=k+1 \text { to } n \\
& \quad a_{i j}=a_{i j}-l_{i k} u_{k j}
\end{aligned}
$$

(13) return L and U

Example

Here, we have this example

2	3	1	5
6	13	5	19
2	19	10	23
4	10	11	31

Example

Here, we have this example

$$
\begin{aligned}
& \left|\begin{array}{cccc}
2 & 3 & 1 & 5 \\
6 & 13 & 5 & 19 \\
2 & 19 & 10 & 23 \\
4 & 10 & 11 & 31
\end{array}\right| \Rightarrow\left(\begin{array}{ccc}
13 & 5 & 19 \\
19 & 10 & 23 \\
10 & 11 & 31
\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}
6 \\
2 \\
4
\end{array}\right)\left(\begin{array}{lll}
3 & 1 & 5
\end{array}\right)= \\
& \left(\begin{array}{ccc}
13 & 5 & 19 \\
19 & 10 & 23 \\
10 & 11 & 31
\end{array}\right)-\frac{1}{2}\left(\begin{array}{ccc}
18 & 6 & 30 \\
6 & 2 & 10 \\
12 & 4 & 20
\end{array}\right)
\end{aligned}
$$

Example

Here, we have this example
$\left|\begin{array}{cccc}2 & 3 & 1 & 5 \\
6 & 13 & 5 & 19 \\
2 & 19 & 10 & 23 \\
4 & 10 & 11 & 31\end{array}\right| \Rightarrow\left(\begin{array}{ccc}13 & 5 & 19 \\
19 & 10 & 23 \\
10 & 11 & 31\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}6 \\
2 \\
4\end{array}\right)\left(\begin{array}{lll}3 & 1 & 5\end{array}\right)=$
\(\left($$
\begin{array}{ccc}13 & 5 & 19 \\
19 & 10 & 23 \\
10 & 11 & 31\end{array}
$$\right)-\frac{1}{2}\left(\begin{array}{ccc}18 \& 6 \& 30

6 \& 2 \& 10

12 \& 4 \& 20\end{array}\right) \Rightarrow\)| $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{1}$ | $\mathbf{5}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{3}$ | 4 | 2 | 4 |
| $\mathbf{1}$ | 16 | 9 | $\mathbf{1 8}$ |
| $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{9}$ | |

Example

Here, we have this example

$\left|\begin{array}{cccc}2 & 3 & 1 & 5 \\
6 & 13 & 5 & 19 \\
2 & 19 & 10 & 23 \\
4 & 10 & 11 & 31\end{array}\right| \Rightarrow\left(\begin{array}{ccc}13 & 5 & 19 \\
19 & 10 & 23 \\
10 & 11 & 31\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}6 \\
2 \\
4\end{array}\right)\left(\begin{array}{lll}3 & 1 & 5\end{array}\right)=$
\(\left($$
\begin{array}{ccc}13 & 5 & 19 \\
19 & 10 & 23 \\
10 & 11 & 31\end{array}
$$\right)-\frac{1}{2}\left(\begin{array}{ccc}18 \& 6 \& 30

6 \& 2 \& 10

12 \& 4 \& 20\end{array}\right) \Rightarrow\)| $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{1}$ | $\mathbf{5}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{3}$ | 4 | 2 | 4 |
| $\mathbf{1}$ | 16 | 9 | $\mathbf{1 8}$ |
| $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{9}$ | $\mathbf{2 1}$ |

$\Rightarrow\left(\begin{array}{ll}9 & 18 \\ 9 & 11\end{array}\right)-\frac{1}{4}\binom{16}{4}\left(\begin{array}{cc}2 & 4\end{array}\right)=\left(\begin{array}{cc}9 & 18 \\ 9 & 11\end{array}\right)-\frac{1}{4}\left(\begin{array}{cc}32 & 64 \\ 8 & 16\end{array}\right)=$
$\left(\begin{array}{ll}9 & 18 \\ 9 & 11\end{array}\right)-\left(\begin{array}{cc}8 & 16 \\ 2 & 4\end{array}\right)$

Example

Here, we have this example

$\left|\begin{array}{cccc}2 & 3 & 1 & 5 \\
6 & 13 & 5 & 19 \\
2 & 19 & 10 & 23 \\
4 & 10 & 11 & 31\end{array}\right| \Rightarrow\left(\begin{array}{ccc}13 & 5 & 19 \\
19 & 10 & 23 \\
10 & 11 & 31\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}6 \\
2 \\
4\end{array}\right)\left(\begin{array}{lll}3 & 1 & 5\end{array}\right)=$
\(\left($$
\begin{array}{ccc}13 & 5 & 19 \\
19 & 10 & 23 \\
10 & 11 & 31\end{array}
$$\right)-\frac{1}{2}\left(\begin{array}{ccc}18 \& 6 \& 30

6 \& 2 \& 10

12 \& 4 \& 20\end{array}\right) \Rightarrow\)| $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{1}$ | $\mathbf{5}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{3}$ | 4 | 2 | 4 |
| $\mathbf{1}$ | 16 | 9 | $\mathbf{1 8}$ |
| $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{9}$ | $\mathbf{2 1}$ |

$\Rightarrow\left(\begin{array}{ll}9 & 18 \\ 9 & 11\end{array}\right)-\frac{1}{4}\binom{16}{4}\left(\begin{array}{cc}2 & 4\end{array}\right)=\left(\begin{array}{cc}9 & 18 \\ 9 & 11\end{array}\right)-\frac{1}{4}\left(\begin{array}{cc}32 & 64 \\ 8 & 16\end{array}\right)=$
\(\left($$
\begin{array}{cc}9 & 18 \\
9 & 11\end{array}
$$\right)-\left(\begin{array}{cc}8 \& 16

2 \& 4\end{array}\right) \Rightarrow\)| 2 | 3 | 1 | 5 |
| :---: | :---: | :---: | :---: |
| 3 | 4 | 2 | 4 |
| 1 | 4 | 1 | 2 |
| 2 | 1 | 7 | 17 |

Example

Here, we have this example

$\left|\begin{array}{cccc}2 & 3 & 1 & 5 \\
6 & 13 & 5 & 19 \\
2 & 19 & 10 & 23 \\
4 & 10 & 11 & 31\end{array}\right| \Rightarrow\left(\begin{array}{ccc}13 & 5 & 19 \\
19 & 10 & 23 \\
10 & 11 & 31\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}6 \\
2 \\
4\end{array}\right)\left(\begin{array}{lll}3 & 1 & 5\end{array}\right)=$
\(\left($$
\begin{array}{ccc}13 & 5 & 19 \\
19 & 10 & 23 \\
10 & 11 & 31\end{array}
$$\right)-\frac{1}{2}\left(\begin{array}{ccc}18 \& 6 \& 30

6 \& 2 \& 10

12 \& 4 \& 20\end{array}\right) \Rightarrow\)| $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{1}$ | $\mathbf{5}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{3}$ | 4 | 2 | 4 |
| $\mathbf{1}$ | 16 | 9 | $\mathbf{1 8}$ |
| $\mathbf{2}$ | $\mathbf{4}$ | 9 | 21 |

$\Rightarrow\left(\begin{array}{ll}9 & 18 \\ 9 & 11\end{array}\right)-\frac{1}{4}\binom{16}{4}\left(\begin{array}{cc}2 & 4\end{array}\right)=\left(\begin{array}{cc}9 & 18 \\ 9 & 11\end{array}\right)-\frac{1}{4}\left(\begin{array}{cc}32 & 64 \\ 8 & 16\end{array}\right)=$
$\left.\left(\begin{array}{ll}9 & 18 \\ 9 & 11\end{array}\right)-\left(\begin{array}{cc}8 & 16 \\ 2 & 4\end{array}\right) \Rightarrow \begin{array}{l|lll}2 & 3 & 1 & 5 \\ 3 & 4 & 2 & 4\end{array} \begin{array}{cc|ccc}2 & 3 & 1 & 5 \\ 1 & 4 & 1 & 2 \\ 2 & \mathbf{1} & 7 & \mathbf{1 7}\end{array} \Rightarrow \begin{array}{c}3 \\ 4 \\ 1\end{array}\right)$

Thus

We get the following decomposition

$$
\left(\begin{array}{cccc}
2 & 3 & 1 & 5 \\
6 & 13 & 5 & 19 \\
2 & 19 & 10 & 23 \\
4 & 10 & 11 & 31
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 \\
1 & 4 & 1 & 0 \\
2 & 1 & 7 & 1
\end{array}\right)\left(\begin{array}{llll}
2 & 3 & 1 & 5 \\
0 & 4 & 2 & 4 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

Outline

(1) Introduction

- Basic Definitions
- Matrix Examples
(2) Matrix Operations
- Introduction
- Matrix Multiplication
- The Inverse
- Determinants
(3) Improving the Complexity of the Matrix Multiplication
- Back to Matrix Multiplication
- Strassen's Algorithm
- The Algorithm
- How he did it?
- Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices

O Computing LU decomposition

- Computing LUP decomposition
- Theorems Supporting the Algorithms
(5) Applications
- Inverting Matrices
- Least-squares Approximation

6) Exercises

Some Exercises You Can Try!!!

Observations

Something Notable

- The elements by which we divide during LU decomposition are called pivots.

Observations

Something Notable

- The elements by which we divide during LU decomposition are called pivots.
- They occupy the diagonal elements of the matrix U.

Observations

Something Notable

- The elements by which we divide during LU decomposition are called pivots.
- They occupy the diagonal elements of the matrix U.

Why the permutation P

It allows us to avoid dividing by 0 .

Thus, What do we want?

We want P, L and U

$$
P A=L U
$$

Thus, What do we want?

We want P, L and U

$$
P A=L U
$$

However, we move a non-zero element, $a_{k 1}$
From somewhere in the first column to the $(1,1)$ position of the matrix.

Thus, What do we want?

We want P, L and U

$$
P A=L U
$$

However, we move a non-zero element, $a_{k 1}$
From somewhere in the first column to the $(1,1)$ position of the matrix.

In addition

$a_{k 1}$ as the element in the first column with the greatest absolute value.

Exchange Rows

Thus

We exchange row 1 with row k , or multiplying A by a permutation matrix Q on the left

$$
Q A=\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
v & A^{\prime}
\end{array}\right)
$$

Exchange Rows

Thus

We exchange row 1 with row k , or multiplying A by a permutation matrix Q on the left

$$
Q A=\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
v & A^{\prime}
\end{array}\right)
$$

With

- $v=\left(a_{21}, a_{31}, \ldots, a_{n 1}\right)^{T}$ with a_{11} replaces $a_{k 1}$.
- $w^{T}=\left(a_{k 2}, a_{k 3}, \ldots, a_{k n}\right)$.
- A^{\prime} is a $(n-1) \times(n-1)$

Now, $a_{k 1} \neq 0$

We have then

$$
Q A=\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
v & A^{\prime}
\end{array}\right)
$$

Now, $a_{k 1} \neq 0$

We have then

$$
\begin{aligned}
Q A & =\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
v & A^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
\frac{v}{a_{k 1}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & A^{\prime}-\frac{v w^{T}}{a_{k 1}}
\end{array}\right)
\end{aligned}
$$

Important

Something Notable

if A is nonsingular, then the Schur complement $A^{\prime}-\frac{v w^{T}}{a_{k 1}}$ is nonsingular, too.

Important

Something Notable

if A is nonsingular, then the Schur complement $A^{\prime}-\frac{v w^{T}}{a_{k 1}}$ is nonsingular, too.

Now, we can find recursively an LUP decomposition for it

$$
P^{\prime}\left(A^{\prime}-\frac{v w^{T}}{a_{k 1}}\right)=L^{\prime} U^{\prime}
$$

Important

Something Notable

if A is nonsingular, then the Schur complement $A^{\prime}-\frac{v w^{T}}{a_{k 1}}$ is nonsingular, too.

Now, we can find recursively an LUP decomposition for it

$$
P^{\prime}\left(A^{\prime}-\frac{v w^{T}}{a_{k 1}}\right)=L^{\prime} U^{\prime}
$$

Then, we define a new permutation matrix

$$
P=\left(\begin{array}{cc}
1 & 0 \\
0 & P^{\prime}
\end{array}\right) Q
$$

Thus

We have
$P A=\left(\begin{array}{cc}1 & 0 \\ 0 & P^{\prime}\end{array}\right) Q A$

Thus

We have

$$
\begin{aligned}
P A & =\left(\begin{array}{cc}
1 & 0 \\
0 & P^{\prime}
\end{array}\right) Q A \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & P^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{v}{a_{k 1}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & A^{\prime}-\frac{v w^{T}}{a_{k 1}}
\end{array}\right)
\end{aligned}
$$

Thus

We have

$$
\begin{aligned}
P A & =\left(\begin{array}{cc}
1 & 0 \\
0 & P^{\prime}
\end{array}\right) Q A \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & P^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{v}{a_{k 1}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & A^{\prime}-\frac{v w^{T}}{a_{k 1}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
P^{\prime} \frac{v}{a_{k 1}} & P^{\prime}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & A^{\prime}-\frac{v w^{T}}{a_{k 1}}
\end{array}\right)
\end{aligned}
$$

Thus

We have

$$
\begin{aligned}
P A & =\left(\begin{array}{cc}
1 & 0 \\
0 & P^{\prime}
\end{array}\right) Q A \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & P^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{v}{a_{k 1}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & A^{\prime}-\frac{v w^{T}}{a_{k 1}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
P^{\prime} \frac{v}{a_{k 1}} & P^{\prime}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & A^{\prime}-\frac{v w^{T}}{a_{k 1}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
P^{\prime} \frac{v}{a_{k 1}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & P^{\prime}\left(A^{\prime}-\frac{v w^{T}}{a_{k 1}}\right)
\end{array}\right)
\end{aligned}
$$

Thus

We have

$$
\begin{aligned}
P A & =\left(\begin{array}{cc}
1 & 0 \\
0 & P^{\prime}
\end{array}\right) Q A \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & P^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{v}{a_{k 1}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & A^{\prime}-\frac{v w^{T}}{a_{k 1}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
P^{\prime} \frac{v}{a_{k 1}} & P^{\prime}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & A^{\prime}-\frac{v w^{T}}{a_{k 1}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
P^{\prime} \frac{v}{a_{k 1}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & P^{\prime}\left(A^{\prime}-\frac{v w^{T}}{a_{k 1}}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
P^{\prime} \frac{v}{a_{k 1}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & L^{\prime} U^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
P^{\prime} \frac{v}{a_{k 1}} & L^{\prime}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & U^{\prime}
\end{array}\right)
\end{aligned}
$$

Thus

We have

$$
\begin{aligned}
P A & =\left(\begin{array}{cc}
1 & 0 \\
0 & P^{\prime}
\end{array}\right) Q A \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & P^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{v}{a_{k 1}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & A^{\prime}-\frac{v w^{T}}{a_{k 1}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
P^{\prime} \frac{v}{a_{k 1}} & P^{\prime}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & A^{\prime}-\frac{v w^{T}}{a_{k 1}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
P^{\prime} \frac{v}{a_{k 1}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & P^{\prime}\left(A^{\prime}-\frac{v w^{T}}{a_{k 1}}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
P^{\prime} \frac{v}{a_{k 1}} & I_{n-1}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & L^{\prime} U^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
P^{\prime} \frac{v}{a_{k 1}} & L^{\prime}
\end{array}\right)\left(\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & U^{\prime}
\end{array}\right) \\
& =L U
\end{aligned}
$$

Computing a LUP decomposition

Algorithm

LUP-Decomposition (A)

1. $n=A$.rows
2. Let $\pi[1 . . n]$ new array

Computing a LUP decomposition

Algorithm

LUP-Decomposition (A)

1. $n=A$.rows
2. Let $\pi[1 . . n]$ new array
3. for $i=1$ to n
4.

$\pi[i]=i$

Computing a LUP decomposition

Algorithm

LUP-Decomposition (A)

1. $n=A$.rows
2. Let $\pi[1 . . n]$ new array
3. for $i=1$ to n
4. $\pi[i]=i$
5. for $k=1$ to n
6. $p=0$

Computing a LUP decomposition

```
Algorithm
LUP-Decomposition( }A\mathrm{ )
    1. n=A.rows
    2. Let }\pi[1..n] new array
    3. for }i=1\mathrm{ to }
4. }\pi[i]=
5. for }k=1\mathrm{ to }
6. 
7. for i=k to n
8.
9.
p=|aik
10.
k}\mp@subsup{}{}{\prime}=
```


Computing a LUP decomposition

```
Algorithm
LUP-Decomposition(A)
    1. n=A.rows
    2. Let }\pi[1..n] new array
    3. for }i=1\mathrm{ to }
    4. }\pi[i]=
    5. for }k=1\mathrm{ to }
    6. 
    7. for i=k to n
    8. if }|\mp@subsup{a}{ik}{}|>
    9. p}=|\mp@subsup{a}{ik}{}
    10. }\mp@subsup{k}{}{\prime}=
```

11. if $p==0$
12.
13. Let $\pi[1 . . n]$ new array
14. for $i=1$ to n
15. $\quad \pi[i]=i$
16. for $k=1$ to n
17. $p=0$
18. for $i=k$ to n
19. \quad if $\left|a_{i k}\right|>p$
20. $\quad p=\left|a_{i k}\right|$
21.

$k^{\prime}=i$
error "Singular Matrix"

Computing a LUP decomposition

Computing a LUP decomposition

Example

1				
2	2	0	2	0.6
3	3	4	-2	
3	5	5	4	2
4	-1	-2	3.4	-1

Computing a LUP decomposition

Example

$$
\begin{array}{|c|cccc}
\hline 1 \\
2 \\
3 \\
4
\end{array} \begin{array}{ccc}
2 & 0 & 2 \\
3 & 3 & 4 \\
5 & 5 & 4 \\
-1 & -2 & 3.4
\end{array} \begin{gathered}
-1
\end{gathered} \Longrightarrow \begin{gathered}
3 \\
2 \\
1 \\
4
\end{gathered} \begin{array}{cccc}
5 & 5 & 4 & 2 \\
3 & 3 & 4 & -2 \\
2 & 0 & 2 & 0.6 \\
-1 & -2 & 3.4 & -1
\end{array}
$$

Computing a LUP decomposition

Example

Computing a LUP decomposition

Example

$$
\begin{array}{|c|cccc}
1 \\
2 \\
3 \\
4
\end{array} \begin{array}{ccccccc}
2 & 0 & 2 & 0.6 \\
3 & 3 & 4 & -2 \\
5 & 5 & 4 & 2 \\
-1 & -2 & 3.4 & -1
\end{array} \Longrightarrow \begin{array}{ccc}
3 \\
2 \\
1 \\
4
\end{array} \begin{array}{ccc}
5 & 5 & 4 \\
3 & 3 & 4 \\
2 & 0 & 2 \\
-1 & -2 & 3.4 \\
-1 & -1
\end{array} \Longrightarrow \begin{array}{|ccccc}
3 \\
2 \\
1 \\
4 & 5 & 4 & 2 \\
3 & 3 & 4 & -2 \\
2 & 0 & 2 & 0.6 \\
-1 & -2 & 3.4 & -1
\end{array}
$$

\Longrightarrow| 3 | 5 | | 5 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 2 | | | | |
| | 0.6 | 0 | 1.6 | -3.2 |
| 1 | 0.4 | -2 | 0.4 | -0.2 |
| 4 | -1 | -1 | 4.2 | -0.6 |

Computing a LUP decomposition

Example

$$
\begin{array}{|c|cccc}
1 \\
2 \\
3 \\
4
\end{array} \begin{array}{ccccccc}
2 & 0 & 2 & 0.6 \\
3 & 3 & 4 & -2 \\
5 & 5 & 4 & 2 \\
-1 & -2 & 3.4 & -1
\end{array} \Longrightarrow \begin{array}{ccc}
3 \\
2 \\
1 \\
4
\end{array} \begin{array}{ccc}
5 & 5 & 4 \\
3 & 3 & 4 \\
2 & 0 & 2 \\
-1 & -2 & 3.4 \\
-1 & -1
\end{array} \Longrightarrow \begin{array}{|ccccc}
3 \\
2 \\
1 \\
4 & 5 & 4 & 2 \\
3 & 3 & 4 & -2 \\
2 & 0 & 2 & 0.6 \\
-1 & -2 & 3.4 & -1
\end{array}
$$

3	5	5	4	2	3	5	5	4	2
2	0.6	0	1.6	-3.2	2	0.6	0	1.6	-3.2
1	0.4	-2	0.4	-0.2	1	0.4	-2	0.4	-0.2
4	-1	-1	4.2	-0.6	4	-1	-1	4.2	-0.6

Computing a LUP decomposition

Example

$$
\begin{array}{|c|cccc}
1 \\
2 \\
3 \\
4
\end{array} \begin{array}{ccccccc}
2 & 0 & 2 & 0.6 \\
3 & 3 & 4 & -2 \\
5 & 5 & 4 & 2 \\
-1 & -2 & 3.4 & -1
\end{array} \Longrightarrow \begin{array}{ccc}
3 \\
2 \\
1 \\
4
\end{array} \begin{array}{ccc}
5 & 5 & 4 \\
3 & 3 & 4 \\
2 & 0 & 2 \\
-1 & -2 & 3.4 \\
-1 & -1
\end{array} \Longrightarrow \begin{array}{|ccccc}
3 \\
2 \\
1 \\
4 & 5 & 4 & 2 \\
3 & 3 & 4 & -2 \\
2 & 0 & 2 & 0.6 \\
-1 & -2 & 3.4 & -1
\end{array}
$$

3	5	5	4	2		5	5	4	2	5	5	4	2
2	0.6	0	1.6	-3.2		0.6	0	1.6	-3.2	0.6	0	1.6	-3.2
1	0.4	-2	0.4	-0.2		0.4	-2	0.4	-0.2	0.4	-2	0.4	-0.2
4	-1	-1	4.2	-0.6		-1	-1	4.2	-0.6	-1	-1	4.2	-0.6

Computing a LUP decomposition

Example

1	2	0	2	0.6		5	5	4	2		5	5	4	2
2	3	3	4	-2		3	3	4	-2		3	3	4	-2
3	5	5	4	2		2	0	2	0.6		2	0	2	0.6
4	-1	-2	3.4	-1		1	-2	3.4	-1		1	-2	3.4	-1

\Longrightarrow| 3 | 5 | | 5 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.4 | -2 | 0.4 | -0.2 |
| | 0.6 | 0 | 1.6 | -3.2 |
| 4 | -1 | -1 | 4.2 | -0.6 |

Computing a LUP decomposition

Example

3	5	5	4	2		5	5	4	2		5	5	4	2
2	0.6	0	1.6	-3.2		0.6	0	1.6	-3.2		0.6	0	1.6	-3.2
1	0.4	-2	0.4	-0.2		0.4	-2	0.4	-0.2		0.4	-2	0.4	-0.2
4	-1	-1	4.2	-0.6		-1	-1	4.2	-0.6		-1	-1	4.2	-0.6

3	5	5	4	2	3	5	5	4	2
1	0.4	-2	0.4	-0.2	1	0.4	-2	0.4	-0.2
2	0.6	0	1.6	-3.2	2	0.6	0	1.6	-3.2
4	-1	-1	4.2	-0.6	4	-1	-1	4.2	-0.6

Computing a LUP decomposition

Example

3	5	5	4	2		5	5	4	2		5	5	4	2
2	0.6	0	1.6	-3.2		0.6	0	1.6	-3.2		0.6	0	1.6	-3.2
1	0.4	-2	0.4	-0.2		0.4	-2	0.4	-0.2		0.4	-2	0.4	-0.2
4	-1	-1	4.2	-0.6		-1	-1	4.2	-0.6		-1	-1	4.2	-0.6

Finally, you get

The Permutation and Decomposition

$$
\underbrace{\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)}_{P} \underbrace{\left(\begin{array}{cccc}
2 & 0 & 2 & 0.6 \\
3 & 3 & 4 & -2 \\
5 & 5 & 4 & 2 \\
-1 & -2 & 3.4 & -1
\end{array}\right)}_{A}=\ldots
$$

Outline

- Basic Definitions
- Matrix Examples
(2) Matrix Operations
- Introduction
- Matrix Multiplication

O The Inverse

- Determinants
(3) Improving the Complexity of the Matrix Multiplication
- Back to Matrix Multiplication
- Strassen's Algorithm
- The Algorithm
- How he did it?
- Complexity

4 Solving Systems of Linear Equations

- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
- Computing LU decomposition
- Computing LUP decomposition
- Theorems Supporting the Algorithms
(5) Applications
- Inverting Matrices
- Least-squares Approximation
(6) Exercises

Some Exercises You Can Try!!!

Symmetric positive-definite matrices

Lemma 28.9

Any symmetric positive-definite matrix is nonsingular.

Symmetric positive-definite matrices

Lemma 28.9

Any symmetric positive-definite matrix is nonsingular.

Lemma 28.10

If A is a symmetric positive-definite matrix, then every leading submatrix of A is symmetric and positive-definite.

Symmetric positive-definite matrices

Definition: Schur complement

Let A be a symmetric positive-definite matrix, and let A_{k} be a leading $k \times k$ submatrix of A. Partition A as:

Symmetric positive-definite matrices

Definition: Schur complement

Let A be a symmetric positive-definite matrix, and let A_{k} be a leading $k \times k$ submatrix of A. Partition A as:

$$
A=\left(\begin{array}{cc}
A_{k} & B^{T} \\
B & C
\end{array}\right)
$$

Symmetric positive-definite matrices

Definition: Schur complement

Let A be a symmetric positive-definite matrix, and let A_{k} be a leading $k \times k$ submatrix of A. Partition A as:

$$
A=\left(\begin{array}{cc}
A_{k} & B^{T} \\
B & C
\end{array}\right)
$$

Then, the Schur complement of A with respect to A_{k} is defined to be

Symmetric positive-definite matrices

Definition: Schur complement

Let A be a symmetric positive-definite matrix, and let A_{k} be a leading $k \times k$ submatrix of A. Partition A as:

$$
A=\left(\begin{array}{cc}
A_{k} & B^{T} \\
B & C
\end{array}\right)
$$

Then, the Schur complement of A with respect to A_{k} is defined to be

$$
S=C-B A_{k}^{-1} B^{T}
$$

Symmetric positive-definite matrices

Lemma 28.11 (Schur complement lemma)

If A is a symmetric positive-definite matrix and A_{k} is a leading $k \times k$ submatrix of A, then the Schur complement of A with respect to A_{k} is symmetric and positive-definite.

Symmetric positive-definite matrices

Lemma 28.11 (Schur complement lemma)

If A is a symmetric positive-definite matrix and A_{k} is a leading $k \times k$ submatrix of A, then the Schur complement of A with respect to A_{k} is symmetric and positive-definite.

Corollary 28.12
LU decomposition of a symmetric positive-definite matrix never causes a division by 0 .

Outline

- Basic Definitions
- Matrix Examples
(2) Matrix Operations
- Introduction
- Matrix Multiplication
- The Inverse
- Determinants
(3) Improving the Complexity of the Matrix Multiplication
- Back to Matrix Multiplication
- Strassen's Algorithm
- The Algorithm
- How he did it?
- Complexity
(4) Solving Systems of Linear Equations
- Introduction
- Lower Upper Decomposition
- Forward and Back Substitution
- Obtaining the Matrices
- Computing LU decomposition
- Computing LUP decomposition
- Theorems Supporting the Algorithms

(5) Applications

- Inverting Matrices
- Least-squares Approximation

6) ExercisesSome Exercises You Can Try!!!

Inverting matrices

LUP decomposition can be used to compute a matrix inverse

The computation of a matrix inverse can be speed up using techniques such as Strassen's algorithm for matrix multiplication.

Computing a matrix inverse from a LUP decomposition

Proceed as follows

- The equation $A X=I_{n}$ can be viewed as a set of n distinct equations of the form $A_{x_{i}}=e_{i}$, for $i=1, \ldots, n$.
- We have a LUP decomposition of a matrix A in the form of three matrices L, U, and P such that $P A=L U$.
- Then we use the backward-forward to solve $A X_{i}=e_{i}$.

Complexity

First

- We can compute each X_{i} in time $\Theta\left(n^{2}\right)$.
- Thus, X can be computed in time $\Theta\left(n^{3}\right)$.
- LUP decomposition is computed in time $\Theta\left(n^{3}\right)$.

Complexity

First

- We can compute each X_{i} in time $\Theta\left(n^{2}\right)$.
- Thus, X can be computed in time $\Theta\left(n^{3}\right)$.
- LUP decomposition is computed in time $\Theta\left(n^{3}\right)$.

Finally

We can compute A^{-1} of a matrix A in time $\Theta\left(n^{3}\right)$.

Matrix multiplication and matrix inversion

Theorem 28.7

If we can invert an $n \times n$ matrix in time $I(n)$, where $I(n)=\Omega\left(n^{2}\right)$ and $I(n)$ satisfies the regularity condition $I(3 n)=O(I(n))$, then we can multiply two $n \times n$ matrices in time $O(I(n))$.

Matrix multiplication and matrix inversion

Theorem 28.8

If we can multiply two $n \times n$ real matrices in time $M(n)$, where $M(n)=\Omega\left(n^{2}\right)$ and $M(n)=O(M(n+k))$ for any k in range $0 \leq k \leq n$ and $M\left(\frac{n}{2}\right) \leq c M(n)$ for some constant $c<\frac{1}{2}$. Then we can compute the inverse of any real nonsingular $n \times n$ matrix in time $O(M(n))$.

Outline

－Basic Definitions
－Matrix Examples
（2）Matrix Operations
－Introduction
－Matrix Multiplication
－The Inverse
－Determinants
（3）Improving the Complexity of the Matrix Multiplication
－Back to Matrix Multiplication
－Strassen＇s Algorithm
－The Algorithm
－How he did it？
－Complexity
（4）Solving Systems of Linear Equations
－Introduction
－Lower Upper Decomposition
－Forward and Back Substitution
－Obtaining the Matrices
－Computing LU decomposition
－Computing LUP decomposition
－Theorems Supporting the Algorithms

（5）Applications

－Inverting Matrices
－Least－squares Approximation
6 Exercises
－Some Exercises You Can Try！！！

Least-squares Approximation

Fitting curves to given sets of data points is an important application of symmetric positive-definite matrices.

Given

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)
$$

where the y_{i} are known to be subject to measurement errors. We would like to determine a function $F(x)$ such that:

$$
y_{i}=F\left(x_{i}\right)+\eta_{i}
$$

$$
\text { for } i=1,2, \ldots, m
$$

Least-squares Approximation

Continuation

The form of the function F depends on the problem at hand.

$$
F(x)=\sum_{j=1}^{n} c_{j} f_{j}(x)
$$

A common choice is $f_{j}(x)=x^{j-1}$, which means that

$$
F(x)=c_{1}+c_{2} x+c_{3} x^{2}+\ldots+c_{n} x^{n-1}
$$

is a polynomial of degree $n-1$ in x.

Least-squares Approximation

Continuation

Let

$$
A=\left(\begin{array}{cccc}
f_{1}\left(x_{1}\right) & f_{2}\left(x_{1}\right) & \ldots & f_{n}\left(x_{1}\right) \\
f_{1}\left(x_{2}\right) & f_{2}\left(x_{2}\right) & \ldots & f_{n}\left(x_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}\left(x_{m}\right) & f_{2}\left(x_{m}\right) & \ldots & f_{n}\left(x_{m}\right)
\end{array}\right)
$$

denote the matrix of values of the basis functions at the given points; that is, $a_{i j}=f_{j}\left(x_{i}\right)$. Let $c=\left(c_{k}\right)$ denote the desired size-n vector of coefficients. Then,

$$
A=\left(\begin{array}{cccc}
f_{1}\left(x_{1}\right) & f_{2}\left(x_{1}\right) & \ldots & f_{n}\left(x_{1}\right) \\
f_{1}\left(x_{2}\right) & f_{2}\left(x_{2}\right) & \ldots & f_{n}\left(x_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}\left(x_{m}\right) & f_{2}\left(x_{m}\right) & \ldots & f_{n}\left(x_{m}\right)
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
F\left(x_{1}\right) \\
F\left(x_{2}\right) \\
\vdots \\
F\left(x_{m}\right)
\end{array}\right)
$$

Least-squares Approximation

Then

Thus, $\eta=A c-y$ is the size of approximation errors. To minimize approximation errors, we choose to minimize the norm of the error vector, which gives us a least-squares solution.

$$
\|\eta\|^{2}=\|A c-y\|^{2}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} c_{j}-y_{i}\right)^{2}
$$

Least-squares Approximation

Then

Thus, $\eta=A c-y$ is the size of approximation errors. To minimize approximation errors, we choose to minimize the norm of the error vector, which gives us a least-squares solution.

$$
\|\eta\|^{2}=\|A c-y\|^{2}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} c_{j}-y_{i}\right)^{2}
$$

Thus

We can minimize $\|\eta\|$ by differentiating $\|\eta\|$ with respect to each c_{k} and then setting the result to 0 :

$$
\frac{d\|\eta\|^{2}}{d c_{k}}=\sum_{i=1}^{m} 2\left(\sum_{j=1}^{n} a_{i j} c_{j}-y_{i}\right) a_{i k}=0
$$

Least-squares Approximation

We can put all derivatives

The n equation for $k=1,2, \ldots, n$

$$
(A c-y)^{T} A=0
$$

or equivalently to

$$
A^{T}(A c-y)=0
$$

which implies

$$
A^{T} A c=A^{T} y
$$

Least-squares Approximation

Continuation

The $A^{T} A$ is symmetric:

- If A has full column rank, then $A^{T} A$ is positive- definite as well. Hence, $\left(A^{T} A\right)^{-1}$ exists, and the solution to equation $A^{T} A c=A^{T} y$ is

$$
c=\left(\left(A^{T} A\right)^{-1} A^{T}\right) y=A^{+} y
$$

where the matrix $A^{+}=\left(\left(A^{T} A\right)^{-1} A^{T}\right)$ is called the pseudoinverse of the matrix A.

Least-Square Approximation

Continuation

As an example of producing a least-squares fit, suppose that we have 5 data points $(-1,2),(1,1),(2,1),(3,0),(5,3)$, shown as black dots in following figure

Least-squares Approximation

Continuation

We start with the matrix of basis-function values

$$
A=\left(\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2} \\
1 & x_{4} & x_{4}^{2} \\
1 & x_{5} & x_{5}^{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 5 & 25
\end{array}\right)
$$

whose pseudoinverse is

$$
A^{+}=\left(\begin{array}{ccccc}
0.500 & 0.300 & 0.200 & 0.100 & -0.100 \\
-0.388 & 0.093 & 0.190 & 0.193 & -0.088 \\
0.060 & -0.036 & -0.048 & -0.036 & 0.060
\end{array}\right)
$$

Matrix multiplication and matrix inversion

Continuation

Multiplying y by A^{+}, we obtain the coefficient vector

$$
c=\left(\begin{array}{c}
1.200 \\
-0.757 \\
0.214
\end{array}\right)
$$

which corresponds to the quadratic polynomial

$$
F(x)=1.200-0.757 x+0.214 x^{2}
$$

Outline

（1）Introduction

－Basic Definitions
－Matrix Examples
（2）Matrix Operations
－Introduction
－Matrix Multiplication
O The Inverse
－Determinants
（3）Improving the Complexity of the Matrix Multiplication
－Back to Matrix Multiplication
－Strassen＇s Algorithm
－The Algorithm
－How he did it？
－Complexity
（4）Solving Systems of Linear Equations
－Introduction
－Lower Upper Decomposition
－Forward and Back Substitution
－Obtaining the Matrices
－Computing LU decomposition
－Computing LUP decomposition
－Theorems Supporting the Algorithms
（5）Applications
－Inverting Matrices
－Least－squares Approximation
（6）Exercises
－Some Exercises You Can Try！！！

Exercises

From Cormen's book solve

- 34.5-1
- 34.5-2
- 34.5-3
- 34.5-4
- 34.5-5
- 34.5-7
- 34.5-8

