
Analysis of Algorithms
Matrix algorithms

Andres Mendez-Vazquez

November 24, 2015

1 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

2 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

3 / 103

Basic definitions

A matrix is a rectangular array of numbers

A =
(

a11 a12 a13
a21 a22 a23

)
=
(

1 2 3
4 5 6

)

A transpose matrix is the matrix obtained by exchanging the rows and
columns

AT =

1 4
2 5
3 6

4 / 103

Basic definitions

A matrix is a rectangular array of numbers

A =
(

a11 a12 a13
a21 a22 a23

)
=
(

1 2 3
4 5 6

)

A transpose matrix is the matrix obtained by exchanging the rows and
columns

AT =

1 4
2 5
3 6

4 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

5 / 103

Several cases of matrices

Zero matrix
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

The diagonal matrix

a11 0 · · · 0
0 a22 · · · 0
...

...
0 0 · · · ann

6 / 103

Several cases of matrices

Zero matrix
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

The diagonal matrix

a11 0 · · · 0
0 a22 · · · 0
...

...
0 0 · · · ann

6 / 103

Several cases of matrices

Upper triangular matrix
a11 a12 · · · a1n
0 a22 · · · a2n
...

...
0 0 · · · ann

7 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

8 / 103

Operations on matrices

They Define a Vectorial Space
Matrix addition.
Multiplication by scalar.
The existence of zero.

9 / 103

Operations on matrices

They Define a Vectorial Space
Matrix addition.
Multiplication by scalar.
The existence of zero.

9 / 103

Operations on matrices

They Define a Vectorial Space
Matrix addition.
Multiplication by scalar.
The existence of zero.

9 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

10 / 103

Matrix Multiplication

What is Matrix Multiplication?
Given A, B matrices with dimensions n×n, the multiplication is defined as

C = AB

cij =
n∑

k=1
aikbkj

11 / 103

Complexity and Algorithm

Algorithm: Complexity Θ (n3)
Square-Matrix-Multiply(A,B)

1 n = A.rows
2 let C be a new matrix n × n
3 for i = 1 to n
4 for j = 1 to n
5 C [i, j] = 0
6 for k = 1 to n
7 C [i, j] = C [i, j] + A [i, j] ∗ B [i, j]
8 return C

12 / 103

Matrix multiplication properties

Properties of the Multiplication
The Identity exist for a matrix A of m × n:

ImA = AIn = A.

The multiplication is associative:

A(BC) = (AB)C .

In addition, multiplication is distibutive
A(B + C) = AB + AC
(B + C)D = BD + CD

13 / 103

Matrix multiplication properties

Properties of the Multiplication
The Identity exist for a matrix A of m × n:

ImA = AIn = A.

The multiplication is associative:

A(BC) = (AB)C .

In addition, multiplication is distibutive
A(B + C) = AB + AC
(B + C)D = BD + CD

13 / 103

Matrix multiplication properties

Properties of the Multiplication
The Identity exist for a matrix A of m × n:

ImA = AIn = A.

The multiplication is associative:

A(BC) = (AB)C .

In addition, multiplication is distibutive
A(B + C) = AB + AC
(B + C)D = BD + CD

13 / 103

In addition

Definition
The inner product between vectors is defied as

xT y =
n∑

i=1
xiyi

14 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

15 / 103

Matrix inverses

The inverse is defined as the vector A−1 such that

AA−1 = A−1A = In

Example(
1 1
1 0

)−1
=
(

0 1
1 −1

)
=⇒

(
1 1
1 0

)(
0 1
1 −1

)
=
(

1 · 0 + 1 · 1 1 · 1− 1 · 1
1 · 0 + 1 · 0 1 · 1 + 0 · −1

)
=(

1 0
0 1

)
Remark
A matrix that is invertible is called non-singular.

16 / 103

Matrix inverses

The inverse is defined as the vector A−1 such that

AA−1 = A−1A = In

Example(
1 1
1 0

)−1
=
(

0 1
1 −1

)
=⇒

(
1 1
1 0

)(
0 1
1 −1

)
=
(

1 · 0 + 1 · 1 1 · 1− 1 · 1
1 · 0 + 1 · 0 1 · 1 + 0 · −1

)
=(

1 0
0 1

)
Remark
A matrix that is invertible is called non-singular.

16 / 103

Matrix inverses

The inverse is defined as the vector A−1 such that

AA−1 = A−1A = In

Example(
1 1
1 0

)−1
=
(

0 1
1 −1

)
=⇒

(
1 1
1 0

)(
0 1
1 −1

)
=
(

1 · 0 + 1 · 1 1 · 1− 1 · 1
1 · 0 + 1 · 0 1 · 1 + 0 · −1

)
=(

1 0
0 1

)
Remark
A matrix that is invertible is called non-singular.

16 / 103

Properties of an inverse

Some properties are
(BA)−1 = A−1B−1(
A−1)T =

(
AT
)
−1

17 / 103

The Rank of A

Rank of A
A collection of vectors is x1, x2, ..., xn such that
c1x1 + c2x2 + ...+ cnxn 6= 0. The rank of a matrix is the number of linear
independent rows.

Theorem 1
A square matrix has full rank if and only if it is nonsingular.

18 / 103

The Rank of A

Rank of A
A collection of vectors is x1, x2, ..., xn such that
c1x1 + c2x2 + ...+ cnxn 6= 0. The rank of a matrix is the number of linear
independent rows.

Theorem 1
A square matrix has full rank if and only if it is nonsingular.

18 / 103

Other Theorems

A null vector x is such that Ax = 0
Theorem 2: A matrix A has full column rank if and only if it does not
have a null vector.

Then, for squared matrices, we have
Corollary 3: A square matrix A is singular if and only if it has a null
vector.

19 / 103

Other Theorems

A null vector x is such that Ax = 0
Theorem 2: A matrix A has full column rank if and only if it does not
have a null vector.

Then, for squared matrices, we have
Corollary 3: A square matrix A is singular if and only if it has a null
vector.

19 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

20 / 103

Determinants

A determinant can be defined recursively as follows

det(A) =

a11 if n = 1
n∑

j=1
(−1)1+ja1jdet

(
A[1j]

)
if n > 1 (1)

Where (−1)i+jdet
(
A[ij]

)
is called a cofactor and A[1j] is the matrix

formed when eliminating row 1 and column j from A

21 / 103

Determinants

A determinant can be defined recursively as follows

det(A) =

a11 if n = 1
n∑

j=1
(−1)1+ja1jdet

(
A[1j]

)
if n > 1 (1)

Where (−1)i+jdet
(
A[ij]

)
is called a cofactor and A[1j] is the matrix

formed when eliminating row 1 and column j from A

21 / 103

Theorems
Theorem 4(determinant properties).
The determinant of a square matrix A has the following properties:

If any row or any column A is zero, then det(A) = 0.
The determinant of A is multiplied by λ if the entries of any one row
(or any one column) of A are all multiplied by λ.
The determinant of A is unchanged if the entries in one row
(respectively, column) are added to those in another row (respectively,
column).
The determinant of A equals the determinant of AT .
The determinant of A is multiplied by −1 if any two rows (or any two
columns) are exchanged.

Theorem 5
An n × n matrix A is singular if and only if det(A) = 0.

22 / 103

Theorems
Theorem 4(determinant properties).
The determinant of a square matrix A has the following properties:

If any row or any column A is zero, then det(A) = 0.
The determinant of A is multiplied by λ if the entries of any one row
(or any one column) of A are all multiplied by λ.
The determinant of A is unchanged if the entries in one row
(respectively, column) are added to those in another row (respectively,
column).
The determinant of A equals the determinant of AT .
The determinant of A is multiplied by −1 if any two rows (or any two
columns) are exchanged.

Theorem 5
An n × n matrix A is singular if and only if det(A) = 0.

22 / 103

Theorems
Theorem 4(determinant properties).
The determinant of a square matrix A has the following properties:

If any row or any column A is zero, then det(A) = 0.
The determinant of A is multiplied by λ if the entries of any one row
(or any one column) of A are all multiplied by λ.
The determinant of A is unchanged if the entries in one row
(respectively, column) are added to those in another row (respectively,
column).
The determinant of A equals the determinant of AT .
The determinant of A is multiplied by −1 if any two rows (or any two
columns) are exchanged.

Theorem 5
An n × n matrix A is singular if and only if det(A) = 0.

22 / 103

Theorems
Theorem 4(determinant properties).
The determinant of a square matrix A has the following properties:

If any row or any column A is zero, then det(A) = 0.
The determinant of A is multiplied by λ if the entries of any one row
(or any one column) of A are all multiplied by λ.
The determinant of A is unchanged if the entries in one row
(respectively, column) are added to those in another row (respectively,
column).
The determinant of A equals the determinant of AT .
The determinant of A is multiplied by −1 if any two rows (or any two
columns) are exchanged.

Theorem 5
An n × n matrix A is singular if and only if det(A) = 0.

22 / 103

Theorems
Theorem 4(determinant properties).
The determinant of a square matrix A has the following properties:

If any row or any column A is zero, then det(A) = 0.
The determinant of A is multiplied by λ if the entries of any one row
(or any one column) of A are all multiplied by λ.
The determinant of A is unchanged if the entries in one row
(respectively, column) are added to those in another row (respectively,
column).
The determinant of A equals the determinant of AT .
The determinant of A is multiplied by −1 if any two rows (or any two
columns) are exchanged.

Theorem 5
An n × n matrix A is singular if and only if det(A) = 0.

22 / 103

Theorems
Theorem 4(determinant properties).
The determinant of a square matrix A has the following properties:

If any row or any column A is zero, then det(A) = 0.
The determinant of A is multiplied by λ if the entries of any one row
(or any one column) of A are all multiplied by λ.
The determinant of A is unchanged if the entries in one row
(respectively, column) are added to those in another row (respectively,
column).
The determinant of A equals the determinant of AT .
The determinant of A is multiplied by −1 if any two rows (or any two
columns) are exchanged.

Theorem 5
An n × n matrix A is singular if and only if det(A) = 0.

22 / 103

Theorems
Theorem 4(determinant properties).
The determinant of a square matrix A has the following properties:

If any row or any column A is zero, then det(A) = 0.
The determinant of A is multiplied by λ if the entries of any one row
(or any one column) of A are all multiplied by λ.
The determinant of A is unchanged if the entries in one row
(respectively, column) are added to those in another row (respectively,
column).
The determinant of A equals the determinant of AT .
The determinant of A is multiplied by −1 if any two rows (or any two
columns) are exchanged.

Theorem 5
An n × n matrix A is singular if and only if det(A) = 0.

22 / 103

Positive definite matrix

Definition
A positive definite matrix A is called positive definite if and only if
xT Ax > 0 for all x 6= 0

Theorem 6
For any matrix A with full column rank, the matrix AT A is positive
definite.

23 / 103

Positive definite matrix

Definition
A positive definite matrix A is called positive definite if and only if
xT Ax > 0 for all x 6= 0

Theorem 6
For any matrix A with full column rank, the matrix AT A is positive
definite.

23 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

24 / 103

Matrix Multiplication

Problem description
Given n × n matrices A,B and C :(

r s
t u

)
=
(

a b
c d

)(
e f
g h

)

Thus, you could compute r , s, t and u using recursion!!!
r = ae + bg

s = af + bh

t = ce + dg

u = cf + dh

25 / 103

Matrix Multiplication

Problem description
Given n × n matrices A,B and C :(

r s
t u

)
=
(

a b
c d

)(
e f
g h

)

Thus, you could compute r , s, t and u using recursion!!!
r = ae + bg

s = af + bh

t = ce + dg

u = cf + dh

25 / 103

Problem

Complexity of previous approach

T (n) = 8T
(n

2

)
+ Θ(n2)

Thus

T (n) = Θ(n3)

Therefore
You need to use a different type of products.

26 / 103

Problem

Complexity of previous approach

T (n) = 8T
(n

2

)
+ Θ(n2)

Thus

T (n) = Θ(n3)

Therefore
You need to use a different type of products.

26 / 103

Problem

Complexity of previous approach

T (n) = 8T
(n

2

)
+ Θ(n2)

Thus

T (n) = Θ(n3)

Therefore
You need to use a different type of products.

26 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

27 / 103

The Strassen’s Algorithm

It is a divide and conquer algorithm
Given A, B, C matrices with dimensions n × n, we recursively split the
matrices such that we finish with 12 n

2 ×
n
2 sub matrices(

r s
t u

)
=
(

a b
c d

)(
e f
g h

)

Remember the Gauss Trick?
Imagine the same for Matrix Multiplication.

28 / 103

The Strassen’s Algorithm

It is a divide and conquer algorithm
Given A, B, C matrices with dimensions n × n, we recursively split the
matrices such that we finish with 12 n

2 ×
n
2 sub matrices(

r s
t u

)
=
(

a b
c d

)(
e f
g h

)

Remember the Gauss Trick?
Imagine the same for Matrix Multiplication.

28 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

29 / 103

Algorithm

Strassen’s Algorithm
1 Divide the input matrices A and B into n

2 ×
n
2 sub matrices.

2 Using Θ
(
n2) scalar additions and subtractions, compute 14 matrices

A1,B1, ...,A7,B7 each of which is n
2 ×

n
2 .

3 Recursively compute the seven matrices products Pi = AiBi for
i = 1, 2, 3, ..., 7.

4 Compute the desired matrix (
r s
t u

)

by adding and or subtracting various combinations of the Pi matrices,
using only Θ

(
n2) scalar additions and subtractions

30 / 103

Algorithm

Strassen’s Algorithm
1 Divide the input matrices A and B into n

2 ×
n
2 sub matrices.

2 Using Θ
(
n2) scalar additions and subtractions, compute 14 matrices

A1,B1, ...,A7,B7 each of which is n
2 ×

n
2 .

3 Recursively compute the seven matrices products Pi = AiBi for
i = 1, 2, 3, ..., 7.

4 Compute the desired matrix (
r s
t u

)

by adding and or subtracting various combinations of the Pi matrices,
using only Θ

(
n2) scalar additions and subtractions

30 / 103

Algorithm

Strassen’s Algorithm
1 Divide the input matrices A and B into n

2 ×
n
2 sub matrices.

2 Using Θ
(
n2) scalar additions and subtractions, compute 14 matrices

A1,B1, ...,A7,B7 each of which is n
2 ×

n
2 .

3 Recursively compute the seven matrices products Pi = AiBi for
i = 1, 2, 3, ..., 7.

4 Compute the desired matrix (
r s
t u

)

by adding and or subtracting various combinations of the Pi matrices,
using only Θ

(
n2) scalar additions and subtractions

30 / 103

Algorithm

Strassen’s Algorithm
1 Divide the input matrices A and B into n

2 ×
n
2 sub matrices.

2 Using Θ
(
n2) scalar additions and subtractions, compute 14 matrices

A1,B1, ...,A7,B7 each of which is n
2 ×

n
2 .

3 Recursively compute the seven matrices products Pi = AiBi for
i = 1, 2, 3, ..., 7.

4 Compute the desired matrix (
r s
t u

)

by adding and or subtracting various combinations of the Pi matrices,
using only Θ

(
n2) scalar additions and subtractions

30 / 103

Algorithm

Strassen’s Algorithm
1 Divide the input matrices A and B into n

2 ×
n
2 sub matrices.

2 Using Θ
(
n2) scalar additions and subtractions, compute 14 matrices

A1,B1, ...,A7,B7 each of which is n
2 ×

n
2 .

3 Recursively compute the seven matrices products Pi = AiBi for
i = 1, 2, 3, ..., 7.

4 Compute the desired matrix (
r s
t u

)

by adding and or subtracting various combinations of the Pi matrices,
using only Θ

(
n2) scalar additions and subtractions

30 / 103

Algorithm

Strassen’s Algorithm
1 Divide the input matrices A and B into n

2 ×
n
2 sub matrices.

2 Using Θ
(
n2) scalar additions and subtractions, compute 14 matrices

A1,B1, ...,A7,B7 each of which is n
2 ×

n
2 .

3 Recursively compute the seven matrices products Pi = AiBi for
i = 1, 2, 3, ..., 7.

4 Compute the desired matrix (
r s
t u

)

by adding and or subtracting various combinations of the Pi matrices,
using only Θ

(
n2) scalar additions and subtractions

30 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

31 / 103

Strassen Observed that

Trial and Error
First , he generated

Pi = AiBi = (αi1a + αi2b + αi3c + αi4d) · (βi1e + βi2f + βi3g + βi4h)

Where αij , βij ∈ {−1, 0, 1}

32 / 103

Then

r

r = ae + bg =
(

a b c d
)

+1 0 0 0
0 0 +1 0
0 0 0 0
0 0 0 0

e
f
g
h

s

s = af + bh =
(

a b c d
)

+1 0 0 0
0 0 0 +1
0 0 0 0
0 0 0 0

e
f
g
h

33 / 103

Then

r

r = ae + bg =
(

a b c d
)

+1 0 0 0
0 0 +1 0
0 0 0 0
0 0 0 0

e
f
g
h

s

s = af + bh =
(

a b c d
)

+1 0 0 0
0 0 0 +1
0 0 0 0
0 0 0 0

e
f
g
h

33 / 103

Then

r

r = ae + bg =
(

a b c d
)

+1 0 0 0
0 0 +1 0
0 0 0 0
0 0 0 0

e
f
g
h

s

s = af + bh =
(

a b c d
)

+1 0 0 0
0 0 0 +1
0 0 0 0
0 0 0 0

e
f
g
h

33 / 103

Therefore

t

r = ce + dg =
(

a b c d
)

0 0 0 0
0 0 0 0

+1 0 0 0
0 0 +1 0

e
f
g
h

u

u = cf + dh =
(

a b c d
)

0 0 0 0
0 0 0 0
0 +1 0 0
0 0 0 +1

e
f
g
h

34 / 103

Therefore

t

r = ce + dg =
(

a b c d
)

0 0 0 0
0 0 0 0

+1 0 0 0
0 0 +1 0

e
f
g
h

u

u = cf + dh =
(

a b c d
)

0 0 0 0
0 0 0 0
0 +1 0 0
0 0 0 +1

e
f
g
h

34 / 103

Example Compute the s from P1 and P2 matrices

Compute
s = P1 + P2

Where P1

P1 = A1B1

= a (f − h)
= af − ah

=
(

a b c d
)

0 +1 0 −1
0 0 0 0
0 0 0 0
0 0 0 0

e
f
g
h

35 / 103

Example Compute the s from P1 and P2 matrices

Compute
s = P1 + P2

Where P1

P1 = A1B1

= a (f − h)
= af − ah

=
(

a b c d
)

0 +1 0 −1
0 0 0 0
0 0 0 0
0 0 0 0

e
f
g
h

35 / 103

Example Compute the s from P1 and P2 matrices

Compute
s = P1 + P2

Where P1

P1 = A1B1

= a (f − h)
= af − ah

=
(

a b c d
)

0 +1 0 −1
0 0 0 0
0 0 0 0
0 0 0 0

e
f
g
h

35 / 103

Example Compute the s from P1 and P2 matrices

Compute
s = P1 + P2

Where P1

P1 = A1B1

= a (f − h)
= af − ah

=
(

a b c d
)

0 +1 0 −1
0 0 0 0
0 0 0 0
0 0 0 0

e
f
g
h

35 / 103

Example Compute the s from P1 and P2 matrices

Compute
s = P1 + P2

Where P1

P1 = A1B1

= a (f − h)
= af − ah

=
(

a b c d
)

0 +1 0 −1
0 0 0 0
0 0 0 0
0 0 0 0

e
f
g
h

35 / 103

Example Compute the s from P1 and P2 matrices

Where P2

P2 = A2B2

= (a + b) h
= ah + bh

=
(

a b c d
)

0 0 0 +1
0 0 0 +1
0 0 0 0
0 0 0 0

e
f
g
h

36 / 103

Example Compute the s from P1 and P2 matrices

Where P2

P2 = A2B2

= (a + b) h
= ah + bh

=
(

a b c d
)

0 0 0 +1
0 0 0 +1
0 0 0 0
0 0 0 0

e
f
g
h

36 / 103

Example Compute the s from P1 and P2 matrices

Where P2

P2 = A2B2

= (a + b) h
= ah + bh

=
(

a b c d
)

0 0 0 +1
0 0 0 +1
0 0 0 0
0 0 0 0

e
f
g
h

36 / 103

Example Compute the s from P1 and P2 matrices

Where P2

P2 = A2B2

= (a + b) h
= ah + bh

=
(

a b c d
)

0 0 0 +1
0 0 0 +1
0 0 0 0
0 0 0 0

e
f
g
h

36 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

37 / 103

Complexity

Because we are only computing 7 matrices
T (n) = 7T

(n
2
)

+ Θ
(
n2) = Θ

(
nlg 7

)
= O

(
n2.81).

38 / 103

Nevertheless

We do not use Strassen’s because
A constant factor hidden in the running of the algorithm is larger than
the constant factor of the naive Θ

(
n3) method.

When matrices are sparse, there are faster methods.
Strassen’s is not a numerically stable as the naive method.
The sub matrices formed at the levels of the recursion consume space.

39 / 103

Nevertheless

We do not use Strassen’s because
A constant factor hidden in the running of the algorithm is larger than
the constant factor of the naive Θ

(
n3) method.

When matrices are sparse, there are faster methods.
Strassen’s is not a numerically stable as the naive method.
The sub matrices formed at the levels of the recursion consume space.

39 / 103

Nevertheless

We do not use Strassen’s because
A constant factor hidden in the running of the algorithm is larger than
the constant factor of the naive Θ

(
n3) method.

When matrices are sparse, there are faster methods.
Strassen’s is not a numerically stable as the naive method.
The sub matrices formed at the levels of the recursion consume space.

39 / 103

Nevertheless

We do not use Strassen’s because
A constant factor hidden in the running of the algorithm is larger than
the constant factor of the naive Θ

(
n3) method.

When matrices are sparse, there are faster methods.
Strassen’s is not a numerically stable as the naive method.
The sub matrices formed at the levels of the recursion consume space.

39 / 103

The Holy Grail of Matrix Multiplications O (n2)

In a method by Virginia Vassilevska Williams (2012) Assistant
Professor at Stanford

The computational complexity of her method is ω < 2.3727 or
O
(
n2.3727)

Better than Coppersmith and Winograd (1990) O
(
n2.375477)

Many Researchers Believe that
Coppersmith, Winograd and Cohn et al. conjecture could lead to
O
(
n2), contradicting a variant of the widely believed sun flower

conjecture of Erdos and Rado.

40 / 103

The Holy Grail of Matrix Multiplications O (n2)

In a method by Virginia Vassilevska Williams (2012) Assistant
Professor at Stanford

The computational complexity of her method is ω < 2.3727 or
O
(
n2.3727)

Better than Coppersmith and Winograd (1990) O
(
n2.375477)

Many Researchers Believe that
Coppersmith, Winograd and Cohn et al. conjecture could lead to
O
(
n2), contradicting a variant of the widely believed sun flower

conjecture of Erdos and Rado.

40 / 103

The Holy Grail of Matrix Multiplications O (n2)

In a method by Virginia Vassilevska Williams (2012) Assistant
Professor at Stanford

The computational complexity of her method is ω < 2.3727 or
O
(
n2.3727)

Better than Coppersmith and Winograd (1990) O
(
n2.375477)

Many Researchers Believe that
Coppersmith, Winograd and Cohn et al. conjecture could lead to
O
(
n2), contradicting a variant of the widely believed sun flower

conjecture of Erdos and Rado.

40 / 103

Exercises

28.1-3
28.1-5
28.1-8
28.1-9
28.2-2
28.2-5

41 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

42 / 103

In Many Fields

From Optimization to Control
We are required to solve systems of simultaneous equations.

For Example
For Polynomial Curve Fitting, we are given (x1, y1) , (x2, y2) , ..., (xn , yn)

We want
To find a polynomial of degree n − 1 with structure

p (x) = a0 + a1x + a2x2 + ...+ an−1xn−1

43 / 103

In Many Fields

From Optimization to Control
We are required to solve systems of simultaneous equations.

For Example
For Polynomial Curve Fitting, we are given (x1, y1) , (x2, y2) , ..., (xn , yn)

We want
To find a polynomial of degree n − 1 with structure

p (x) = a0 + a1x + a2x2 + ...+ an−1xn−1

43 / 103

In Many Fields

From Optimization to Control
We are required to solve systems of simultaneous equations.

For Example
For Polynomial Curve Fitting, we are given (x1, y1) , (x2, y2) , ..., (xn , yn)

We want
To find a polynomial of degree n − 1 with structure

p (x) = a0 + a1x + a2x2 + ...+ an−1xn−1

43 / 103

Thus

We can build a system of equations

a0 + a1x1 + a2x2
1 + ...+ an−1xn−1

1 = y1

a0 + a1x2 + a2x2
2 + ...+ an−1xn−1

2 = y2
...

a0 + a1xn + a2x2
n + ...+ an−1xn−1

n = yn

We have n unknowns

a0, a1, a2, ..., an−1

44 / 103

Thus

We can build a system of equations

a0 + a1x1 + a2x2
1 + ...+ an−1xn−1

1 = y1

a0 + a1x2 + a2x2
2 + ...+ an−1xn−1

2 = y2
...

a0 + a1xn + a2x2
n + ...+ an−1xn−1

n = yn

We have n unknowns

a0, a1, a2, ..., an−1

44 / 103

Solving Systems of Linear Equations

Proceed as follows
We start with a set of linear equations with n unknowns:

x1, x2, ..., xn

a11x1 + a12x2 + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2nxn = b2
...

...
an1x1 + an2x2 + ...+ annxn = bn

Something Notable
A set of values for x1, x2, ..., xn that satisfy all of the equations
simultaneously is said to be a solution to these equations.
In this section, we only treat the case in which there are exactly n
equations in n unknowns.

45 / 103

Solving Systems of Linear Equations

Proceed as follows
We start with a set of linear equations with n unknowns:

x1, x2, ..., xn

a11x1 + a12x2 + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2nxn = b2
...

...
an1x1 + an2x2 + ...+ annxn = bn

Something Notable
A set of values for x1, x2, ..., xn that satisfy all of the equations
simultaneously is said to be a solution to these equations.
In this section, we only treat the case in which there are exactly n
equations in n unknowns.

45 / 103

Solving Systems of Linear Equations

Proceed as follows
We start with a set of linear equations with n unknowns:

x1, x2, ..., xn

a11x1 + a12x2 + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2nxn = b2
...

...
an1x1 + an2x2 + ...+ annxn = bn

Something Notable
A set of values for x1, x2, ..., xn that satisfy all of the equations
simultaneously is said to be a solution to these equations.
In this section, we only treat the case in which there are exactly n
equations in n unknowns.

45 / 103

Solving Systems of Linear Equations

Proceed as follows
We start with a set of linear equations with n unknowns:

x1, x2, ..., xn

a11x1 + a12x2 + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2nxn = b2
...

...
an1x1 + an2x2 + ...+ annxn = bn

Something Notable
A set of values for x1, x2, ..., xn that satisfy all of the equations
simultaneously is said to be a solution to these equations.
In this section, we only treat the case in which there are exactly n
equations in n unknowns.

45 / 103

Solving systems of linear equations

continuation
We can conveniently rewrite the equations as the matrix-vector
equation:

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
an1 an2 . . . ann

x1
x2
...

xn

 =

b1
b2
...

bn

or, equivalently, letting A = (aij), x = (xj), and b = (bi), as

Ax = b

In this section, we shall be concerned predominantly with the case of
which A is nonsingular, after all we want to invert A.

46 / 103

Solving systems of linear equations

continuation
We can conveniently rewrite the equations as the matrix-vector
equation:

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
an1 an2 . . . ann

x1
x2
...

xn

 =

b1
b2
...

bn

or, equivalently, letting A = (aij), x = (xj), and b = (bi), as

Ax = b

In this section, we shall be concerned predominantly with the case of
which A is nonsingular, after all we want to invert A.

46 / 103

Solving systems of linear equations

continuation
We can conveniently rewrite the equations as the matrix-vector
equation:

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
an1 an2 . . . ann

x1
x2
...

xn

 =

b1
b2
...

bn

or, equivalently, letting A = (aij), x = (xj), and b = (bi), as

Ax = b

In this section, we shall be concerned predominantly with the case of
which A is nonsingular, after all we want to invert A.

46 / 103

Solving systems of linear equations

continuation
We can conveniently rewrite the equations as the matrix-vector
equation:

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
an1 an2 . . . ann

x1
x2
...

xn

 =

b1
b2
...

bn

or, equivalently, letting A = (aij), x = (xj), and b = (bi), as

Ax = b

In this section, we shall be concerned predominantly with the case of
which A is nonsingular, after all we want to invert A.

46 / 103

Solving systems of linear equations

continuation
We can conveniently rewrite the equations as the matrix-vector
equation:

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
an1 an2 . . . ann

x1
x2
...

xn

 =

b1
b2
...

bn

or, equivalently, letting A = (aij), x = (xj), and b = (bi), as

Ax = b

In this section, we shall be concerned predominantly with the case of
which A is nonsingular, after all we want to invert A.

46 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

47 / 103

Overview of Lower Upper (LUP) Decomposition

Intuition
The idea behind LUP decomposition is to find three n × n matrices L,U ,
and P such that:

PA = LU

where:
L is a unit lower triangular matrix.
U is an upper triangular matrix.
P is a permutation matrix.

Where
We call matrices L,U , and P satisfying the above equation a LUP
decomposition of the matrix A.

48 / 103

Overview of Lower Upper (LUP) Decomposition

Intuition
The idea behind LUP decomposition is to find three n × n matrices L,U ,
and P such that:

PA = LU

where:
L is a unit lower triangular matrix.
U is an upper triangular matrix.
P is a permutation matrix.

Where
We call matrices L,U , and P satisfying the above equation a LUP
decomposition of the matrix A.

48 / 103

Overview of Lower Upper (LUP) Decomposition

Intuition
The idea behind LUP decomposition is to find three n × n matrices L,U ,
and P such that:

PA = LU

where:
L is a unit lower triangular matrix.
U is an upper triangular matrix.
P is a permutation matrix.

Where
We call matrices L,U , and P satisfying the above equation a LUP
decomposition of the matrix A.

48 / 103

Overview of Lower Upper (LUP) Decomposition

Intuition
The idea behind LUP decomposition is to find three n × n matrices L,U ,
and P such that:

PA = LU

where:
L is a unit lower triangular matrix.
U is an upper triangular matrix.
P is a permutation matrix.

Where
We call matrices L,U , and P satisfying the above equation a LUP
decomposition of the matrix A.

48 / 103

Overview of Lower Upper (LUP) Decomposition

Intuition
The idea behind LUP decomposition is to find three n × n matrices L,U ,
and P such that:

PA = LU

where:
L is a unit lower triangular matrix.
U is an upper triangular matrix.
P is a permutation matrix.

Where
We call matrices L,U , and P satisfying the above equation a LUP
decomposition of the matrix A.

48 / 103

Overview of Lower Upper (LUP) Decomposition

Intuition
The idea behind LUP decomposition is to find three n × n matrices L,U ,
and P such that:

PA = LU

where:
L is a unit lower triangular matrix.
U is an upper triangular matrix.
P is a permutation matrix.

Where
We call matrices L,U , and P satisfying the above equation a LUP
decomposition of the matrix A.

48 / 103

Overview of Lower Upper (LUP) Decomposition

Intuition
The idea behind LUP decomposition is to find three n × n matrices L,U ,
and P such that:

PA = LU

where:
L is a unit lower triangular matrix.
U is an upper triangular matrix.
P is a permutation matrix.

Where
We call matrices L,U , and P satisfying the above equation a LUP
decomposition of the matrix A.

48 / 103

What is a Permutation Matrix

Basically
We represent the permutation P compactly by an array π[1..n]. For
i = 1, 2, ...,n, the entry π[i] indicates that Piπ[i] = 1 and Pij = 0 for
j 6= π[i].

Thus
PA has aπ[i],j in row i and a column j.
Pb has bπ[i] as its ith element.

49 / 103

What is a Permutation Matrix

Basically
We represent the permutation P compactly by an array π[1..n]. For
i = 1, 2, ...,n, the entry π[i] indicates that Piπ[i] = 1 and Pij = 0 for
j 6= π[i].

Thus
PA has aπ[i],j in row i and a column j.
Pb has bπ[i] as its ith element.

49 / 103

How can we use this in our advantage?

Lock at this

Ax = b =⇒ PAx = Pb (2)

Therefore

LUx = Pb (3)

Now, if we make Ux = y

Ly = Pb (4)

50 / 103

How can we use this in our advantage?

Lock at this

Ax = b =⇒ PAx = Pb (2)

Therefore

LUx = Pb (3)

Now, if we make Ux = y

Ly = Pb (4)

50 / 103

How can we use this in our advantage?

Lock at this

Ax = b =⇒ PAx = Pb (2)

Therefore

LUx = Pb (3)

Now, if we make Ux = y

Ly = Pb (4)

50 / 103

Thus

We first obtain y
Then, we obtain x.

51 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

52 / 103

Forward and Back Substitution

Forward substitution
Forward substitution can solve the lower triangular system Ly = Pb in
Θ(n2) time, given L, P and b.

Then
Since L is unit lower triangular, equation Ly = Pb can be rewritten as:

y1 = bπ[1]

l21y1 + y2 = bπ[2]

l31y1 + l32 + y3 = bπ[3]
...

ln1y1 + ln2y2 + ln3y3 + ...+ yn = bπ[n]

53 / 103

Forward and Back Substitution

Forward substitution
Forward substitution can solve the lower triangular system Ly = Pb in
Θ(n2) time, given L, P and b.

Then
Since L is unit lower triangular, equation Ly = Pb can be rewritten as:

y1 = bπ[1]

l21y1 + y2 = bπ[2]

l31y1 + l32 + y3 = bπ[3]
...

ln1y1 + ln2y2 + ln3y3 + ...+ yn = bπ[n]

53 / 103

Forward and Back Substitution

Back substitution
Back substitution is similar to forward substitution. Like forward
substitution, this process runs in Θ(n2) time. Since U is upper-triangular,
we can rewrite the system Ux = y as

u11x1 + u12x2 + ...+ u1n−2xn−2 + u1n−1xn−1 + u1nxn = y1

u22x2 + ...+ u2n−2xn−2 + u2n−1xn−1 + u2nxn = y2
...

un−2n−2xn−2 + un−2n−1xn−1 + un−2nxn = yn−2

un−1n−1xn−1 + un−1nxn = yn−1

unnxn = yn

54 / 103

Example

We have

Ax =

 1 2 0
3 4 4
5 6 3

 x =

 3
7
8

 = b

55 / 103

Example

The L, U and P matrix

L =

 1 0 0
0.2 1 0
0.6 0.5 1

 ,U =

 5 6 3
0 0.8 −0.6
0 0 2.5

 ,P =

 0 0 1
1 0 0
0 1 0

56 / 103

Example

Using forward substitution, Ly = Pb for y

Ly =

 1 0 0
0.2 1 0
0.6 0.5 1

 y =

 0 0 1
1 0 0
0 1 0

 3

7
8

 = Pb

57 / 103

Example

Using forward substitution, we get y

y =

 8
1.4
1.5

58 / 103

Example

Now, we use the back substitution, Ux = y for x

Ux =

 5 6 3
0 0.8 −0.6
0 0 2.5

 x1

x2
x3

 =

 8
1.4
1.5

 ,

59 / 103

Example

Finally, we get

x =

 −1.4
2.2
0.6

60 / 103

Forward and Back Substitution
Given P, L, U , and b, the procedure LUP- SOLVE solves for x by
combining forward and back substitution
LUP-SOLVE(L,U , π, b)

1 n = L.rows
2 Let x be a new vector of length n
3 for i = 1 to n
4 yi = bπ[i] −

∑i−1
j=1 lijyj

5 for i = n downto 1

6 xi =

(
yi−
∑n

j=i+1 uijxj

)
uii

7 return x

Complexity
The running time is Θ(n2).

61 / 103

Forward and Back Substitution
Given P, L, U , and b, the procedure LUP- SOLVE solves for x by
combining forward and back substitution
LUP-SOLVE(L,U , π, b)

1 n = L.rows
2 Let x be a new vector of length n
3 for i = 1 to n
4 yi = bπ[i] −

∑i−1
j=1 lijyj

5 for i = n downto 1

6 xi =

(
yi−
∑n

j=i+1 uijxj

)
uii

7 return x

Complexity
The running time is Θ(n2).

61 / 103

Forward and Back Substitution
Given P, L, U , and b, the procedure LUP- SOLVE solves for x by
combining forward and back substitution
LUP-SOLVE(L,U , π, b)

1 n = L.rows
2 Let x be a new vector of length n
3 for i = 1 to n
4 yi = bπ[i] −

∑i−1
j=1 lijyj

5 for i = n downto 1

6 xi =

(
yi−
∑n

j=i+1 uijxj

)
uii

7 return x

Complexity
The running time is Θ(n2).

61 / 103

Forward and Back Substitution
Given P, L, U , and b, the procedure LUP- SOLVE solves for x by
combining forward and back substitution
LUP-SOLVE(L,U , π, b)

1 n = L.rows
2 Let x be a new vector of length n
3 for i = 1 to n
4 yi = bπ[i] −

∑i−1
j=1 lijyj

5 for i = n downto 1

6 xi =

(
yi−
∑n

j=i+1 uijxj

)
uii

7 return x

Complexity
The running time is Θ(n2).

61 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

62 / 103

Ok, if we have the L,U and P!!!

Thus
We need to find those matrices

How, we do it?
We are going to use something called the Gaussian Elimination.

63 / 103

Ok, if we have the L,U and P!!!

Thus
We need to find those matrices

How, we do it?
We are going to use something called the Gaussian Elimination.

63 / 103

For this

We assume that A is a n × n
Such that A is not singular

We use a process known as Gaussian elimination to create LU
decomposition
This algorithm is recursive in nature.

Properties
Clearly if n = 1, we are done for L = I1 and U = A.

64 / 103

For this

We assume that A is a n × n
Such that A is not singular

We use a process known as Gaussian elimination to create LU
decomposition
This algorithm is recursive in nature.

Properties
Clearly if n = 1, we are done for L = I1 and U = A.

64 / 103

For this

We assume that A is a n × n
Such that A is not singular

We use a process known as Gaussian elimination to create LU
decomposition
This algorithm is recursive in nature.

Properties
Clearly if n = 1, we are done for L = I1 and U = A.

64 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

65 / 103

Computing LU decomposition

For n > 1, we break A into four parts

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
an1 an2 · · · ann

 =

 a11 wT

v A′

 (5)

66 / 103

Where

We have
v is a column (n − 1)−vector.
wT is a row (n − 1)−vector.
A′ is an (n − 1)× (n − 1).

67 / 103

Where

We have
v is a column (n − 1)−vector.
wT is a row (n − 1)−vector.
A′ is an (n − 1)× (n − 1).

67 / 103

Where

We have
v is a column (n − 1)−vector.
wT is a row (n − 1)−vector.
A′ is an (n − 1)× (n − 1).

67 / 103

Where

We have
v is a column (n − 1)−vector.
wT is a row (n − 1)−vector.
A′ is an (n − 1)× (n − 1).

67 / 103

Computing a LU decomposition

Thus, we can do the following

A =
(

a11 wT

v A′

)

=
(

1 0
v

a11
In−1

)
a11 wT

0 A′ − vwT

a11︸ ︷︷ ︸
Schur Complement

=
(

1 0
v

a11
In−1

)(
a11 wT

0 L′U ′

)

=
(

1 0
v

a11
L′

)(
a11 wT

0 U ′

)
= LU

68 / 103

Computing a LU decomposition

Thus, we can do the following

A =
(

a11 wT

v A′

)

=
(

1 0
v

a11
In−1

)
a11 wT

0 A′ − vwT

a11︸ ︷︷ ︸
Schur Complement

=
(

1 0
v

a11
In−1

)(
a11 wT

0 L′U ′

)

=
(

1 0
v

a11
L′

)(
a11 wT

0 U ′

)
= LU

68 / 103

Computing a LU decomposition

Thus, we can do the following

A =
(

a11 wT

v A′

)

=
(

1 0
v

a11
In−1

)
a11 wT

0 A′ − vwT

a11︸ ︷︷ ︸
Schur Complement

=
(

1 0
v

a11
In−1

)(
a11 wT

0 L′U ′

)

=
(

1 0
v

a11
L′

)(
a11 wT

0 U ′

)
= LU

68 / 103

Computing a LU decomposition

Thus, we can do the following

A =
(

a11 wT

v A′

)

=
(

1 0
v

a11
In−1

)
a11 wT

0 A′ − vwT

a11︸ ︷︷ ︸
Schur Complement

=
(

1 0
v

a11
In−1

)(
a11 wT

0 L′U ′

)

=
(

1 0
v

a11
L′

)(
a11 wT

0 U ′

)
= LU

68 / 103

Computing a LU decomposition

Thus, we can do the following

A =
(

a11 wT

v A′

)

=
(

1 0
v

a11
In−1

)
a11 wT

0 A′ − vwT

a11︸ ︷︷ ︸
Schur Complement

=
(

1 0
v

a11
In−1

)(
a11 wT

0 L′U ′

)

=
(

1 0
v

a11
L′

)(
a11 wT

0 U ′

)
= LU

68 / 103

Computing a LU decomposition
Pseudo-Code running in Θ (n3)
LU-Decomposition(A)

1 n = A.rows
2 Let L and U be new n × n matrices
3 Initialize U with 0’s below the diagonal
4 Initialize L with 1’s on the diagonal and 0’s above the diagonal.
5 for k = 1 to n
6 ukk = akk

7 for i = k + 1 to n
8 lik = aik

ukk
/ lik holds vi

9 uki = aki / uki holds wT
i

10 for i = k + 1 to n
11 for j = k + 1 to n
12 aij = aij − likukj

13 return L and U

69 / 103

Computing a LU decomposition
Pseudo-Code running in Θ (n3)
LU-Decomposition(A)

1 n = A.rows
2 Let L and U be new n × n matrices
3 Initialize U with 0’s below the diagonal
4 Initialize L with 1’s on the diagonal and 0’s above the diagonal.
5 for k = 1 to n
6 ukk = akk

7 for i = k + 1 to n
8 lik = aik

ukk
/ lik holds vi

9 uki = aki / uki holds wT
i

10 for i = k + 1 to n
11 for j = k + 1 to n
12 aij = aij − likukj

13 return L and U

69 / 103

Computing a LU decomposition
Pseudo-Code running in Θ (n3)
LU-Decomposition(A)

1 n = A.rows
2 Let L and U be new n × n matrices
3 Initialize U with 0’s below the diagonal
4 Initialize L with 1’s on the diagonal and 0’s above the diagonal.
5 for k = 1 to n
6 ukk = akk

7 for i = k + 1 to n
8 lik = aik

ukk
/ lik holds vi

9 uki = aki / uki holds wT
i

10 for i = k + 1 to n
11 for j = k + 1 to n
12 aij = aij − likukj

13 return L and U

69 / 103

Computing a LU decomposition
Pseudo-Code running in Θ (n3)
LU-Decomposition(A)

1 n = A.rows
2 Let L and U be new n × n matrices
3 Initialize U with 0’s below the diagonal
4 Initialize L with 1’s on the diagonal and 0’s above the diagonal.
5 for k = 1 to n
6 ukk = akk

7 for i = k + 1 to n
8 lik = aik

ukk
/ lik holds vi

9 uki = aki / uki holds wT
i

10 for i = k + 1 to n
11 for j = k + 1 to n
12 aij = aij − likukj

13 return L and U

69 / 103

Computing a LU decomposition
Pseudo-Code running in Θ (n3)
LU-Decomposition(A)

1 n = A.rows
2 Let L and U be new n × n matrices
3 Initialize U with 0’s below the diagonal
4 Initialize L with 1’s on the diagonal and 0’s above the diagonal.
5 for k = 1 to n
6 ukk = akk

7 for i = k + 1 to n
8 lik = aik

ukk
/ lik holds vi

9 uki = aki / uki holds wT
i

10 for i = k + 1 to n
11 for j = k + 1 to n
12 aij = aij − likukj

13 return L and U

69 / 103

Computing a LU decomposition
Pseudo-Code running in Θ (n3)
LU-Decomposition(A)

1 n = A.rows
2 Let L and U be new n × n matrices
3 Initialize U with 0’s below the diagonal
4 Initialize L with 1’s on the diagonal and 0’s above the diagonal.
5 for k = 1 to n
6 ukk = akk

7 for i = k + 1 to n
8 lik = aik

ukk
/ lik holds vi

9 uki = aki / uki holds wT
i

10 for i = k + 1 to n
11 for j = k + 1 to n
12 aij = aij − likukj

13 return L and U

69 / 103

Computing a LU decomposition
Pseudo-Code running in Θ (n3)
LU-Decomposition(A)

1 n = A.rows
2 Let L and U be new n × n matrices
3 Initialize U with 0’s below the diagonal
4 Initialize L with 1’s on the diagonal and 0’s above the diagonal.
5 for k = 1 to n
6 ukk = akk

7 for i = k + 1 to n
8 lik = aik

ukk
/ lik holds vi

9 uki = aki / uki holds wT
i

10 for i = k + 1 to n
11 for j = k + 1 to n
12 aij = aij − likukj

13 return L and U

69 / 103

Computing a LU decomposition
Pseudo-Code running in Θ (n3)
LU-Decomposition(A)

1 n = A.rows
2 Let L and U be new n × n matrices
3 Initialize U with 0’s below the diagonal
4 Initialize L with 1’s on the diagonal and 0’s above the diagonal.
5 for k = 1 to n
6 ukk = akk

7 for i = k + 1 to n
8 lik = aik

ukk
/ lik holds vi

9 uki = aki / uki holds wT
i

10 for i = k + 1 to n
11 for j = k + 1 to n
12 aij = aij − likukj

13 return L and U

69 / 103

Computing a LU decomposition
Pseudo-Code running in Θ (n3)
LU-Decomposition(A)

1 n = A.rows
2 Let L and U be new n × n matrices
3 Initialize U with 0’s below the diagonal
4 Initialize L with 1’s on the diagonal and 0’s above the diagonal.
5 for k = 1 to n
6 ukk = akk

7 for i = k + 1 to n
8 lik = aik

ukk
/ lik holds vi

9 uki = aki / uki holds wT
i

10 for i = k + 1 to n
11 for j = k + 1 to n
12 aij = aij − likukj

13 return L and U

69 / 103

Example
Here, we have this example
2 3 1 5
6 13 5 19
2 19 10 23
4 10 11 31

⇒

(13 5 19
19 10 23
10 11 31

)
− 1

2

(6
2
4

)(
3 1 5

)
=

(13 5 19
19 10 23
10 11 31

)
− 1

2

(18 6 30
6 2 10
12 4 20

)
⇒

2 3 1 5
3 4 2 4
1 16 9 18
2 4 9 21

⇒
(

9 18
9 11

)
− 1

4

(
16
4

)(
2 4

)
=
(

9 18
9 11

)
− 1

4

(
32 64
8 16

)
=

(
9 18
9 11

)
−
(

8 16
2 4

)
⇒

2 3 1 5
3 4 2 4
1 4 1 2
2 1 7 17

⇒

2 3 1 5
3 4 2 4
1 4 1 2
2 1 7 3

70 / 103

Example
Here, we have this example
2 3 1 5
6 13 5 19
2 19 10 23
4 10 11 31

⇒

(13 5 19
19 10 23
10 11 31

)
− 1

2

(6
2
4

)(
3 1 5

)
=

(13 5 19
19 10 23
10 11 31

)
− 1

2

(18 6 30
6 2 10
12 4 20

)
⇒

2 3 1 5
3 4 2 4
1 16 9 18
2 4 9 21

⇒
(

9 18
9 11

)
− 1

4

(
16
4

)(
2 4

)
=
(

9 18
9 11

)
− 1

4

(
32 64
8 16

)
=

(
9 18
9 11

)
−
(

8 16
2 4

)
⇒

2 3 1 5
3 4 2 4
1 4 1 2
2 1 7 17

⇒

2 3 1 5
3 4 2 4
1 4 1 2
2 1 7 3

70 / 103

Example
Here, we have this example
2 3 1 5
6 13 5 19
2 19 10 23
4 10 11 31

⇒

(13 5 19
19 10 23
10 11 31

)
− 1

2

(6
2
4

)(
3 1 5

)
=

(13 5 19
19 10 23
10 11 31

)
− 1

2

(18 6 30
6 2 10
12 4 20

)
⇒

2 3 1 5
3 4 2 4
1 16 9 18
2 4 9 21

⇒
(

9 18
9 11

)
− 1

4

(
16
4

)(
2 4

)
=
(

9 18
9 11

)
− 1

4

(
32 64
8 16

)
=

(
9 18
9 11

)
−
(

8 16
2 4

)
⇒

2 3 1 5
3 4 2 4
1 4 1 2
2 1 7 17

⇒

2 3 1 5
3 4 2 4
1 4 1 2
2 1 7 3

70 / 103

Example
Here, we have this example
2 3 1 5
6 13 5 19
2 19 10 23
4 10 11 31

⇒

(13 5 19
19 10 23
10 11 31

)
− 1

2

(6
2
4

)(
3 1 5

)
=

(13 5 19
19 10 23
10 11 31

)
− 1

2

(18 6 30
6 2 10
12 4 20

)
⇒

2 3 1 5
3 4 2 4
1 16 9 18
2 4 9 21

⇒
(

9 18
9 11

)
− 1

4

(
16
4

)(
2 4

)
=
(

9 18
9 11

)
− 1

4

(
32 64
8 16

)
=

(
9 18
9 11

)
−
(

8 16
2 4

)
⇒

2 3 1 5
3 4 2 4
1 4 1 2
2 1 7 17

⇒

2 3 1 5
3 4 2 4
1 4 1 2
2 1 7 3

70 / 103

Example
Here, we have this example
2 3 1 5
6 13 5 19
2 19 10 23
4 10 11 31

⇒

(13 5 19
19 10 23
10 11 31

)
− 1

2

(6
2
4

)(
3 1 5

)
=

(13 5 19
19 10 23
10 11 31

)
− 1

2

(18 6 30
6 2 10
12 4 20

)
⇒

2 3 1 5
3 4 2 4
1 16 9 18
2 4 9 21

⇒
(

9 18
9 11

)
− 1

4

(
16
4

)(
2 4

)
=
(

9 18
9 11

)
− 1

4

(
32 64
8 16

)
=

(
9 18
9 11

)
−
(

8 16
2 4

)
⇒

2 3 1 5
3 4 2 4
1 4 1 2
2 1 7 17

⇒

2 3 1 5
3 4 2 4
1 4 1 2
2 1 7 3

70 / 103

Example
Here, we have this example
2 3 1 5
6 13 5 19
2 19 10 23
4 10 11 31

⇒

(13 5 19
19 10 23
10 11 31

)
− 1

2

(6
2
4

)(
3 1 5

)
=

(13 5 19
19 10 23
10 11 31

)
− 1

2

(18 6 30
6 2 10
12 4 20

)
⇒

2 3 1 5
3 4 2 4
1 16 9 18
2 4 9 21

⇒
(

9 18
9 11

)
− 1

4

(
16
4

)(
2 4

)
=
(

9 18
9 11

)
− 1

4

(
32 64
8 16

)
=

(
9 18
9 11

)
−
(

8 16
2 4

)
⇒

2 3 1 5
3 4 2 4
1 4 1 2
2 1 7 17

⇒

2 3 1 5
3 4 2 4
1 4 1 2
2 1 7 3

70 / 103

Thus

We get the following decomposition
2 3 1 5
6 13 5 19
2 19 10 23
4 10 11 31

 =

1 0 0 0
3 1 0 0
1 4 1 0
2 1 7 1

2 3 1 5
0 4 2 4
0 0 1 2
0 0 0 3

71 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

72 / 103

Observations

Something Notable
The elements by which we divide during LU decomposition are called
pivots.
They occupy the diagonal elements of the matrix U .

Why the permutation P
It allows us to avoid dividing by 0.

73 / 103

Observations

Something Notable
The elements by which we divide during LU decomposition are called
pivots.
They occupy the diagonal elements of the matrix U .

Why the permutation P
It allows us to avoid dividing by 0.

73 / 103

Observations

Something Notable
The elements by which we divide during LU decomposition are called
pivots.
They occupy the diagonal elements of the matrix U .

Why the permutation P
It allows us to avoid dividing by 0.

73 / 103

Thus, What do we want?

We want P, L and U

PA = LU

However, we move a non-zero element, ak1

From somewhere in the first column to the (1, 1) position of the matrix.

In addition
ak1 as the element in the first column with the greatest absolute value.

74 / 103

Thus, What do we want?

We want P, L and U

PA = LU

However, we move a non-zero element, ak1

From somewhere in the first column to the (1, 1) position of the matrix.

In addition
ak1 as the element in the first column with the greatest absolute value.

74 / 103

Thus, What do we want?

We want P, L and U

PA = LU

However, we move a non-zero element, ak1

From somewhere in the first column to the (1, 1) position of the matrix.

In addition
ak1 as the element in the first column with the greatest absolute value.

74 / 103

Exchange Rows

Thus
We exchange row 1 with row k, or multiplying A by a permutation matrix
Q on the left

QA =
(

ak1 wT

v A′

)

With
v = (a21, a31, ..., an1)T with a11 replaces ak1.
wT = (ak2, ak3, ..., akn).
A′ is a (n − 1)× (n − 1)

75 / 103

Exchange Rows

Thus
We exchange row 1 with row k, or multiplying A by a permutation matrix
Q on the left

QA =
(

ak1 wT

v A′

)

With
v = (a21, a31, ..., an1)T with a11 replaces ak1.
wT = (ak2, ak3, ..., akn).
A′ is a (n − 1)× (n − 1)

75 / 103

Now, ak1 6= 0

We have then

QA =
(

ak1 wT

v A′

)

=
(

1 0
v

ak1
In−1

)(
ak1 wT

0 A′ − vwT

ak1

)

76 / 103

Now, ak1 6= 0

We have then

QA =
(

ak1 wT

v A′

)

=
(

1 0
v

ak1
In−1

)(
ak1 wT

0 A′ − vwT

ak1

)

76 / 103

Important

Something Notable
if A is nonsingular, then the Schur complement A′ − vwT

ak1
is nonsingular,

too.

Now, we can find recursively an LUP decomposition for it

P ′
(

A′ − vwT

ak1

)
= L′U ′

Then, we define a new permutation matrix

P =
(

1 0
0 P ′

)
Q

77 / 103

Important

Something Notable
if A is nonsingular, then the Schur complement A′ − vwT

ak1
is nonsingular,

too.

Now, we can find recursively an LUP decomposition for it

P ′
(

A′ − vwT

ak1

)
= L′U ′

Then, we define a new permutation matrix

P =
(

1 0
0 P ′

)
Q

77 / 103

Important

Something Notable
if A is nonsingular, then the Schur complement A′ − vwT

ak1
is nonsingular,

too.

Now, we can find recursively an LUP decomposition for it

P ′
(

A′ − vwT

ak1

)
= L′U ′

Then, we define a new permutation matrix

P =
(

1 0
0 P ′

)
Q

77 / 103

Thus
We have

PA =
(

1 0
0 P ′

)
QA

=
(

1 0
0 P ′

)(
1 0
v

ak1
In−1

)(
ak1 wT

0 A′ − vwT

ak1

)

=
(

1 0
P ′ v

ak1
P ′

)(
ak1 wT

0 A′ − vwT

ak1

)

=
(

1 0
P ′ v

ak1
In−1

)(
ak1 wT

0 P ′
(
A′ − vwT

ak1

))

=
(

1 0
P ′ v

ak1
In−1

)(
ak1 wT

0 L′U ′

)
=
(

1 0
P ′ v

ak1
L′

)(
ak1 wT

0 U ′

)
= LU

78 / 103

Thus
We have

PA =
(

1 0
0 P ′

)
QA

=
(

1 0
0 P ′

)(
1 0
v

ak1
In−1

)(
ak1 wT

0 A′ − vwT

ak1

)

=
(

1 0
P ′ v

ak1
P ′

)(
ak1 wT

0 A′ − vwT

ak1

)

=
(

1 0
P ′ v

ak1
In−1

)(
ak1 wT

0 P ′
(
A′ − vwT

ak1

))

=
(

1 0
P ′ v

ak1
In−1

)(
ak1 wT

0 L′U ′

)
=
(

1 0
P ′ v

ak1
L′

)(
ak1 wT

0 U ′

)
= LU

78 / 103

Thus
We have

PA =
(

1 0
0 P ′

)
QA

=
(

1 0
0 P ′

)(
1 0
v

ak1
In−1

)(
ak1 wT

0 A′ − vwT

ak1

)

=
(

1 0
P ′ v

ak1
P ′

)(
ak1 wT

0 A′ − vwT

ak1

)

=
(

1 0
P ′ v

ak1
In−1

)(
ak1 wT

0 P ′
(
A′ − vwT

ak1

))

=
(

1 0
P ′ v

ak1
In−1

)(
ak1 wT

0 L′U ′

)
=
(

1 0
P ′ v

ak1
L′

)(
ak1 wT

0 U ′

)
= LU

78 / 103

Thus
We have

PA =
(

1 0
0 P ′

)
QA

=
(

1 0
0 P ′

)(
1 0
v

ak1
In−1

)(
ak1 wT

0 A′ − vwT

ak1

)

=
(

1 0
P ′ v

ak1
P ′

)(
ak1 wT

0 A′ − vwT

ak1

)

=
(

1 0
P ′ v

ak1
In−1

)(
ak1 wT

0 P ′
(
A′ − vwT

ak1

))

=
(

1 0
P ′ v

ak1
In−1

)(
ak1 wT

0 L′U ′

)
=
(

1 0
P ′ v

ak1
L′

)(
ak1 wT

0 U ′

)
= LU

78 / 103

Thus
We have

PA =
(

1 0
0 P ′

)
QA

=
(

1 0
0 P ′

)(
1 0
v

ak1
In−1

)(
ak1 wT

0 A′ − vwT

ak1

)

=
(

1 0
P ′ v

ak1
P ′

)(
ak1 wT

0 A′ − vwT

ak1

)

=
(

1 0
P ′ v

ak1
In−1

)(
ak1 wT

0 P ′
(
A′ − vwT

ak1

))

=
(

1 0
P ′ v

ak1
In−1

)(
ak1 wT

0 L′U ′

)
=
(

1 0
P ′ v

ak1
L′

)(
ak1 wT

0 U ′

)
= LU

78 / 103

Thus
We have

PA =
(

1 0
0 P ′

)
QA

=
(

1 0
0 P ′

)(
1 0
v

ak1
In−1

)(
ak1 wT

0 A′ − vwT

ak1

)

=
(

1 0
P ′ v

ak1
P ′

)(
ak1 wT

0 A′ − vwT

ak1

)

=
(

1 0
P ′ v

ak1
In−1

)(
ak1 wT

0 P ′
(
A′ − vwT

ak1

))

=
(

1 0
P ′ v

ak1
In−1

)(
ak1 wT

0 L′U ′

)
=
(

1 0
P ′ v

ak1
L′

)(
ak1 wT

0 U ′

)
= LU

78 / 103

Computing a LUP decomposition

Algorithm
LUP-Decomposition(A)

1. n = A.rows

2. Let π [1..n] new array
3. for i = 1 to n
4. π [i] = i
5. for k = 1 to n
6. p = 0
7. for i = k to n
8. if |aik | > p
9. p = |aik |
10. k′ = i

11. if p == 0
12. error “Singular Matrix”
13. Exchange π [k]←→ π [k′]
14. for i = 1 to n
15. Exchange aki ←→ ak′i

16. for i = k + 1 to n
17. aik = aik

akk

18. for j = k + 1 to n
19. aij = aij − aikakj

79 / 103

Computing a LUP decomposition

Algorithm
LUP-Decomposition(A)

1. n = A.rows

2. Let π [1..n] new array
3. for i = 1 to n
4. π [i] = i
5. for k = 1 to n
6. p = 0
7. for i = k to n
8. if |aik | > p
9. p = |aik |
10. k′ = i

11. if p == 0
12. error “Singular Matrix”
13. Exchange π [k]←→ π [k′]
14. for i = 1 to n
15. Exchange aki ←→ ak′i

16. for i = k + 1 to n
17. aik = aik

akk

18. for j = k + 1 to n
19. aij = aij − aikakj

79 / 103

Computing a LUP decomposition

Algorithm
LUP-Decomposition(A)

1. n = A.rows

2. Let π [1..n] new array
3. for i = 1 to n
4. π [i] = i
5. for k = 1 to n
6. p = 0
7. for i = k to n
8. if |aik | > p
9. p = |aik |
10. k′ = i

11. if p == 0
12. error “Singular Matrix”
13. Exchange π [k]←→ π [k′]
14. for i = 1 to n
15. Exchange aki ←→ ak′i

16. for i = k + 1 to n
17. aik = aik

akk

18. for j = k + 1 to n
19. aij = aij − aikakj

79 / 103

Computing a LUP decomposition

Algorithm
LUP-Decomposition(A)

1. n = A.rows

2. Let π [1..n] new array
3. for i = 1 to n
4. π [i] = i
5. for k = 1 to n
6. p = 0
7. for i = k to n
8. if |aik | > p
9. p = |aik |
10. k′ = i

11. if p == 0
12. error “Singular Matrix”
13. Exchange π [k]←→ π [k′]
14. for i = 1 to n
15. Exchange aki ←→ ak′i

16. for i = k + 1 to n
17. aik = aik

akk

18. for j = k + 1 to n
19. aij = aij − aikakj

79 / 103

Computing a LUP decomposition

Algorithm
LUP-Decomposition(A)

1. n = A.rows

2. Let π [1..n] new array
3. for i = 1 to n
4. π [i] = i
5. for k = 1 to n
6. p = 0
7. for i = k to n
8. if |aik | > p
9. p = |aik |
10. k′ = i

11. if p == 0
12. error “Singular Matrix”
13. Exchange π [k]←→ π [k′]
14. for i = 1 to n
15. Exchange aki ←→ ak′i

16. for i = k + 1 to n
17. aik = aik

akk

18. for j = k + 1 to n
19. aij = aij − aikakj

79 / 103

Computing a LUP decomposition

Algorithm
LUP-Decomposition(A)

1. n = A.rows

2. Let π [1..n] new array
3. for i = 1 to n
4. π [i] = i
5. for k = 1 to n
6. p = 0
7. for i = k to n
8. if |aik | > p
9. p = |aik |
10. k′ = i

11. if p == 0
12. error “Singular Matrix”
13. Exchange π [k]←→ π [k′]
14. for i = 1 to n
15. Exchange aki ←→ ak′i

16. for i = k + 1 to n
17. aik = aik

akk

18. for j = k + 1 to n
19. aij = aij − aikakj

79 / 103

Computing a LUP decomposition

Algorithm
LUP-Decomposition(A)

1. n = A.rows

2. Let π [1..n] new array
3. for i = 1 to n
4. π [i] = i
5. for k = 1 to n
6. p = 0
7. for i = k to n
8. if |aik | > p
9. p = |aik |
10. k′ = i

11. if p == 0
12. error “Singular Matrix”
13. Exchange π [k]←→ π [k′]
14. for i = 1 to n
15. Exchange aki ←→ ak′i

16. for i = k + 1 to n
17. aik = aik

akk

18. for j = k + 1 to n
19. aij = aij − aikakj

79 / 103

Computing a LUP decomposition

Algorithm
LUP-Decomposition(A)

1. n = A.rows

2. Let π [1..n] new array
3. for i = 1 to n
4. π [i] = i
5. for k = 1 to n
6. p = 0
7. for i = k to n
8. if |aik | > p
9. p = |aik |
10. k′ = i

11. if p == 0
12. error “Singular Matrix”
13. Exchange π [k]←→ π [k′]
14. for i = 1 to n
15. Exchange aki ←→ ak′i

16. for i = k + 1 to n
17. aik = aik

akk

18. for j = k + 1 to n
19. aij = aij − aikakj

79 / 103

Computing a LUP decomposition

Algorithm
LUP-Decomposition(A)

1. n = A.rows

2. Let π [1..n] new array
3. for i = 1 to n
4. π [i] = i
5. for k = 1 to n
6. p = 0
7. for i = k to n
8. if |aik | > p
9. p = |aik |
10. k′ = i

11. if p == 0
12. error “Singular Matrix”
13. Exchange π [k]←→ π [k′]
14. for i = 1 to n
15. Exchange aki ←→ ak′i

16. for i = k + 1 to n
17. aik = aik

akk

18. for j = k + 1 to n
19. aij = aij − aikakj

79 / 103

Computing a LUP decomposition
Example

1 2 0 2 0.6

2 3 3 4 -2

3 5 5 4 2

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 0.5 4 -0.5
80 / 103

Computing a LUP decomposition
Example

1 2 0 2 0.6

2 3 3 4 -2

3 5 5 4 2

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 0.5 4 -0.5
80 / 103

Computing a LUP decomposition
Example

1 2 0 2 0.6

2 3 3 4 -2

3 5 5 4 2

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 0.5 4 -0.5
80 / 103

Computing a LUP decomposition
Example

1 2 0 2 0.6

2 3 3 4 -2

3 5 5 4 2

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 0.5 4 -0.5
80 / 103

Computing a LUP decomposition
Example

1 2 0 2 0.6

2 3 3 4 -2

3 5 5 4 2

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 0.5 4 -0.5
80 / 103

Computing a LUP decomposition
Example

1 2 0 2 0.6

2 3 3 4 -2

3 5 5 4 2

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 0.5 4 -0.5
80 / 103

Computing a LUP decomposition
Example

1 2 0 2 0.6

2 3 3 4 -2

3 5 5 4 2

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 0.5 4 -0.5
80 / 103

Computing a LUP decomposition
Example

1 2 0 2 0.6

2 3 3 4 -2

3 5 5 4 2

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 0.5 4 -0.5
80 / 103

Computing a LUP decomposition
Example

1 2 0 2 0.6

2 3 3 4 -2

3 5 5 4 2

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 3 3 4 -2

1 2 0 2 0.6

4 -1 -2 3.4 -1

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

2 0.6 0 1.6 -3.2

1 0.4 -2 0.4 -0.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 -1 4.2 -0.6

=⇒

3 5 5 4 2

1 0.4 -2 0.4 -0.2

2 0.6 0 1.6 -3.2

4 -1 0.5 4 -0.5
80 / 103

Finally, you get

The Permutation and Decomposition
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

︸ ︷︷ ︸

P

2 0 2 0.6
3 3 4 −2
5 5 4 2
−1 −2 3.4 −1

︸ ︷︷ ︸

A

= ...

1 0 0 0

0.4 1 0 0
−0.2 0.5 1 0
0.6 0 0.4 1

︸ ︷︷ ︸

L

5 5 4 2
0 −2 0.4 −0.2
0 0 4 −0.5
0 0 0 −3

︸ ︷︷ ︸

U

81 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

82 / 103

Symmetric positive-definite matrices

Lemma 28.9
Any symmetric positive-definite matrix is nonsingular.

Lemma 28.10
If A is a symmetric positive-definite matrix, then every leading submatrix
of A is symmetric and positive-definite.

83 / 103

Symmetric positive-definite matrices

Lemma 28.9
Any symmetric positive-definite matrix is nonsingular.

Lemma 28.10
If A is a symmetric positive-definite matrix, then every leading submatrix
of A is symmetric and positive-definite.

83 / 103

Symmetric positive-definite matrices

Definition: Schur complement
Let A be a symmetric positive-definite matrix, and let Ak be a leading
k × k submatrix of A. Partition A as:

A =
(

Ak BT

B C

)

Then, the Schur complement of A with respect to Ak is defined to be

S = C − BA−1
k BT

84 / 103

Symmetric positive-definite matrices

Definition: Schur complement
Let A be a symmetric positive-definite matrix, and let Ak be a leading
k × k submatrix of A. Partition A as:

A =
(

Ak BT

B C

)

Then, the Schur complement of A with respect to Ak is defined to be

S = C − BA−1
k BT

84 / 103

Symmetric positive-definite matrices

Definition: Schur complement
Let A be a symmetric positive-definite matrix, and let Ak be a leading
k × k submatrix of A. Partition A as:

A =
(

Ak BT

B C

)

Then, the Schur complement of A with respect to Ak is defined to be

S = C − BA−1
k BT

84 / 103

Symmetric positive-definite matrices

Definition: Schur complement
Let A be a symmetric positive-definite matrix, and let Ak be a leading
k × k submatrix of A. Partition A as:

A =
(

Ak BT

B C

)

Then, the Schur complement of A with respect to Ak is defined to be

S = C − BA−1
k BT

84 / 103

Symmetric positive-definite matrices

Lemma 28.11 (Schur complement lemma)
If A is a symmetric positive-definite matrix and Ak is a leading k × k
submatrix of A, then the Schur complement of A with respect to Ak is
symmetric and positive-definite.

Corollary 28.12
LU decomposition of a symmetric positive-definite matrix never causes a
division by 0.

85 / 103

Symmetric positive-definite matrices

Lemma 28.11 (Schur complement lemma)
If A is a symmetric positive-definite matrix and Ak is a leading k × k
submatrix of A, then the Schur complement of A with respect to Ak is
symmetric and positive-definite.

Corollary 28.12
LU decomposition of a symmetric positive-definite matrix never causes a
division by 0.

85 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

86 / 103

Inverting matrices

LUP decomposition can be used to compute a matrix inverse
The computation of a matrix inverse can be speed up using techniques
such as Strassen’s algorithm for matrix multiplication.

87 / 103

Computing a matrix inverse from a LUP decomposition

Proceed as follows
The equation AX = In can be viewed as a set of n distinct equations
of the form Axi = ei , for i = 1, ...,n.
We have a LUP decomposition of a matrix A in the form of three
matrices L,U , and P such that PA = LU .
Then we use the backward-forward to solve AXi = ei .

88 / 103

Complexity

First
We can compute each Xi in time Θ

(
n2).

Thus, X can be computed in time Θ
(
n3).

LUP decomposition is computed in time Θ
(
n3).

Finally
We can compute A−1 of a matrix A in time Θ

(
n3).

89 / 103

Complexity

First
We can compute each Xi in time Θ

(
n2).

Thus, X can be computed in time Θ
(
n3).

LUP decomposition is computed in time Θ
(
n3).

Finally
We can compute A−1 of a matrix A in time Θ

(
n3).

89 / 103

Matrix multiplication and matrix inversion

Theorem 28.7
If we can invert an n × n matrix in time I (n), where I (n) = Ω(n2) and
I (n) satisfies the regularity condition I (3n) = O(I (n)), then we can
multiply two n × n matrices in time O(I (n)).

90 / 103

Matrix multiplication and matrix inversion

Theorem 28.8
If we can multiply two n × n real matrices in time M (n), where
M (n) = Ω(n2) and M (n) = O(M (n + k)) for any k in range 0 ≤ k ≤ n
and M (n

2) ≤ cM (n) for some constant c < 1
2 . Then we can compute the

inverse of any real nonsingular n × n matrix in time O(M (n)).

91 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

92 / 103

Least-squares Approximation

Fitting curves to given sets of data points is an important application
of symmetric positive-definite matrices.
Given

(x1, y1), (x2, y2), ..., (xm , ym)

where the yi are known to be subject to measurement errors. We would
like to determine a function F(x) such that:

yi = F(xi) + ηi

for i = 1, 2, ...,m

93 / 103

Least-squares Approximation

Continuation
The form of the function F depends on the problem at hand.

F(x) =
n∑

j=1
cj fj(x)

A common choice is fj(x) = x j−1, which means that

F(x) = c1 + c2x + c3x2 + ...+ cnxn−1

is a polynomial of degree n − 1 in x.

94 / 103

Least-squares Approximation
Continuation
Let

A =

f1(x1) f2(x1) . . . fn(x1)
f1(x2) f2(x2) . . . fn(x2)

...
...

f1(xm) f2(xm) . . . fn(xm)

denote the matrix of values of the basis functions at the given points; that
is, aij = fj(xi). Let c = (ck) denote the desired size-n vector of
coefficients. Then,

A =

f1(x1) f2(x1) . . . fn(x1)
f1(x2) f2(x2) . . . fn(x2)

...
...

f1(xm) f2(xm) . . . fn(xm)

c1
c2
...

cn

 =

F(x1)
F(x2)

...
F(xm)

95 / 103

Least-squares Approximation

Then
Thus, η = Ac − y is the size of approximation errors. To minimize
approximation errors, we choose to minimize the norm of the error vector ,
which gives us a least-squares solution.

||η||2 = ||Ac − y||2 =
m∑

i=1

(
n∑

j=1
aijcj − yi

)2

Thus
We can minimize ||η|| by differentiating ||η|| with respect to each ck and
then setting the result to 0:

d||η||2
dck

=
m∑

i=1
2
(

n∑
j=1

aijcj − yi

)
aik = 0

96 / 103

Least-squares Approximation

Then
Thus, η = Ac − y is the size of approximation errors. To minimize
approximation errors, we choose to minimize the norm of the error vector ,
which gives us a least-squares solution.

||η||2 = ||Ac − y||2 =
m∑

i=1

(
n∑

j=1
aijcj − yi

)2

Thus
We can minimize ||η|| by differentiating ||η|| with respect to each ck and
then setting the result to 0:

d||η||2
dck

=
m∑

i=1
2
(

n∑
j=1

aijcj − yi

)
aik = 0

96 / 103

Least-squares Approximation

We can put all derivatives
The n equation for k = 1, 2, ...,n

(Ac − y)T A = 0

or equivalently to

AT (Ac − y) = 0

which implies

AT Ac = AT y

97 / 103

Least-squares Approximation

Continuation
The AT A is symmetric:

If A has full column rank, then AT A is positive- definite as well.
Hence, (AT A)−1 exists, and the solution to equation AT Ac = AT y is

c = ((AT A)−1AT)y = A+y

where the matrix A+ = ((AT A)−1AT) is called the pseudoinverse of the
matrix A.

98 / 103

Least-Square Approximation
Continuation
As an example of producing a least-squares fit, suppose that we have 5
data points (-1,2), (1,1),(2,1),(3,0),(5,3), shown as black dots in following
figure

99 / 103

Least-squares Approximation

Continuation
We start with the matrix of basis-function values

A =

1 x1 x2

1
1 x2 x2

2
1 x3 x2

3
1 x4 x2

4
1 x5 x2

5

 =

1 −1 1
1 1 1
1 2 4
1 3 9
1 5 25

whose pseudoinverse is

A+ =

 0.500 0.300 0.200 0.100 −0.100
−0.388 0.093 0.190 0.193 −0.088
0.060 −0.036 −0.048 −0.036 0.060

100 / 103

Matrix multiplication and matrix inversion

Continuation
Multiplying y by A+ , we obtain the coefficient vector

c =

 1.200
−0.757
0.214

which corresponds to the quadratic polynomial

F(x) = 1.200− 0.757x + 0.214x2

101 / 103

Outline
1 Introduction

Basic Definitions
Matrix Examples

2 Matrix Operations
Introduction
Matrix Multiplication
The Inverse
Determinants

3 Improving the Complexity of the Matrix Multiplication
Back to Matrix Multiplication
Strassen’s Algorithm
The Algorithm
How he did it?
Complexity

4 Solving Systems of Linear Equations
Introduction
Lower Upper Decomposition
Forward and Back Substitution
Obtaining the Matrices
Computing LU decomposition
Computing LUP decomposition

Theorems Supporting the Algorithms

5 Applications
Inverting Matrices
Least-squares Approximation

6 Exercises
Some Exercises You Can Try!!!

102 / 103

Exercises

From Cormen’s book solve
34.5-1
34.5-2
34.5-3
34.5-4
34.5-5
34.5-7
34.5-8

103 / 103

	Introduction
	Basic Definitions
	Matrix Examples

	Matrix Operations
	Introduction
	Matrix Multiplication
	The Inverse
	Determinants

	Improving the Complexity of the Matrix Multiplication
	Back to Matrix Multiplication
	Strassen's Algorithm
	The Algorithm
	How he did it?
	Complexity

	Solving Systems of Linear Equations
	Introduction
	Lower Upper Decomposition
	Forward and Back Substitution
	Obtaining the Matrices
	Computing LU decomposition
	Computing LUP decomposition

	Theorems Supporting the Algorithms

	Applications
	Inverting Matrices
	Least-squares Approximation

	Exercises
	Some Exercises You Can Try!!!

