Analysis of Algorithms Maximum Flow

Andres Mendez-Vazquez

November 22, 2019

1/107

Outline

Introduction
 A Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

The Ford-Fulkerson Method

Introduction

3

4

5

6

- Defining Residual Networks
- Augmentation
 - Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 - Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercises Some exercises you can try

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
- Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

History of Max Flow

Long Ago in the Faraway Cold War

• It was first described by T. E. Harris (At RAND Corporation) as a simplified model of the Soviet traffic flow.

Figure: Railway network of the Western Soviet Union

Outline

Introduction A Little History About War

Flow Networks

2

Definition

- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
 Augmentation Lemma
- Augmenting Paths
- Augmenting Paths
 Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

Definition

• A flow network G = (V, E) is a directed graph, where each edge $(u, v) \in E$ has a non-negative capacity $c(u, v) \ge 0$.

G has two vertices known as source a and sink t

< ロ > < 回 > < 回 > < 回 > < 回 >

Definition

- A flow network G = (V, E) is a directed graph, where each edge $(u, v) \in E$ has a non-negative capacity $c(u, v) \ge 0$.
- In addition if E contains an edge (u, v), it does not contain the edge (v, u) (Reverse Direction).

Lonstraints

- If $(u,v) \notin E$ we assume that c(u,v) = 0.
- G has two vertices known as source s and sink t.

イロン イロン イヨン イヨン

Definition

- A flow network G = (V, E) is a directed graph, where each edge $(u, v) \in E$ has a non-negative capacity $c(u, v) \ge 0$.
- In addition if E contains an edge (u, v), it does not contain the edge (v, u) (Reverse Direction).

Constraints

• If $(u, v) \notin E$ we assume that c(u, v) = 0.

ullet G has two vertices known as source s and sink t.

Definition

- A flow network G = (V, E) is a directed graph, where each edge $(u, v) \in E$ has a non-negative capacity $c(u, v) \ge 0$.
- In addition if E contains an edge (u, v), it does not contain the edge (v, u) (Reverse Direction).

Constraints

- If $(u, v) \notin E$ we assume that c(u, v) = 0.
- G has two vertices known as source s and sink t.

Example that does not work

Cinvestav ∽ < (~ 7 / 107

Fixing the Example

Do not worry, we can transform it into...

Another Possible Problem

What if we have multiple sources and sinks?

Figure: Ok no so simple!!!

Another Possible Problem

Use a Single Sink and Source

Figure: Ok!!! No so simple!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

Introduction A Little History About War

Flow Networks

Definition

2

Flow Properties

- Net Flow and Value of a Flow f
- Maximum Flow Problem

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
 Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

Definition

A flow in G=(V,E) is a real valued function $f:V\times V\to \mathbb{R}$ satisfying the following properties:

Definition

A flow in G=(V,E) is a real valued function $f:V\times V\to \mathbb{R}$ satisfying the following properties:

Properties

• Capacity Constraint: For all $u, v \in V$

$0 \le f(u, v) \le c(u, v).$

• Flow conservation: For all $u \in V - \{s, t\}$, we have that

$\sum_{v \in V} f\left(v, u\right) = \sum_{v \in V} f\left(u, v\right).$

Definition

A flow in G=(V,E) is a real valued function $f:V\times V\to \mathbb{R}$ satisfying the following properties:

Properties

• Capacity Constraint: For all $u, v \in V$

$$0\leq f\left(u,v\right) \leq c\left(u,v\right) .$$

• Flow conservation: For all $u \in V - \{s, t\}$, we have that

$\sum_{v \in V} f\left(v, u\right) = \sum_{v \in V} f\left(u, v\right).$

Definition

A flow in G = (V, E) is a real valued function $f : V \times V \to \mathbb{R}$ satisfying the following properties:

Properties

• Capacity Constraint: For all $u, v \in V$

$$0\leq f\left(u,v\right) \leq c\left(u,v\right) .$$

• Flow conservation: For all $u \in V - \{s, t\}$, we have that

Cinvesta ペロト (四)・(注)・(注)・(注)・(注)・(12/107 12/107

Definition

A flow in G = (V, E) is a real valued function $f : V \times V \to \mathbb{R}$ satisfying the following properties:

Properties

• Capacity Constraint: For all $u, v \in V$

$$0 \le f(u, v) \le c(u, v).$$

• Flow conservation: For all $u \in V - \{s, t\}$, we have that

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v).$$

12/107

Outline

Introduction A Little History About War

Flow Networks

Definition

2

Flow Properties

Net Flow and Value of a Flow f

Maximum Flow Problem

The Ford-Fulkerson Meth

- Introduction
- Defining Residual Networks
- Augmentation
 Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercises

Some exercises you can try

Thus

イロト イヨト イヨト イヨト

Definition of **net flow**

• The value of a **net flow** is defined as

イロト イヨト イヨト イヨト

Definition of **net flow**

• The value of a net flow is defined as

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

lhis can bee seen as

- The total flow from source s to any other vertices
- Which is the same as the total flow from any vertices to the sink t.

Definition of net flow

• The value of a net flow is defined as

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

This can bee seen as

• The total flow from **source** s to any other vertices.

Definition of net flow

• The value of a net flow is defined as

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

This can bee seen as

- The total flow from **source** s to any other vertices.
- Which is the same as the total flow from any vertices to the sink t.

Example

We have the following graph

16/107

イロン イヨン イヨン イヨン

Outline

Introduction A Little History About War

Flow Networks

Definition

2

- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
 Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

Maximum Flow Problem

Definition

Given a flow network G with source s and sink t, it is necessary to find a flow of maximum value from s to t.

Question

How we solve this in an efficient manner?

Maximum Flow Problem

Definition

Given a flow network G with source s and sink t, it is necessary to find a flow of maximum value from s to t.

Question

How we solve this in an efficient manner?

Outline

IntroductionA Little History About War

Flow Networks

Definition

3

- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

The Ford-Fulkerson Method Introduction

- Defining Residual Networks
- Augmentation
 - Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

The Ford-Fulkerson Method

Observations

• Not exactly an algorithm, but several implementations with different running times.

It depends on three fundamental ideas: Residual Networks, Augmenting Paths and Cuts.

The Ford-Fulkerson Method

Observations

- Not exactly an algorithm, but several implementations with different running times.
- It depends on three fundamental ideas: **Residual Networks**, **Augmenting Paths and Cuts**.

Pseudo-Code Ford-Fulkerson-Method(G, s, t) Initialize flow f to 0 while there exists an augmenting path p in the residual network Gf augment flow f along p return f

イロト イヨト イヨト

20/107

The Ford-Fulkerson Method

Observations

- Not exactly an algorithm, but several implementations with different running times.
- It depends on three fundamental ideas: **Residual Networks**, **Augmenting Paths and Cuts**.

Pseudo-Code

 $\mathsf{Ford} ext{-}\mathsf{Fulkerson} ext{-}\mathsf{Method}(G,s,t)$

- Initialize flow f to 0
- **2** while there exists an augmenting path p in the residual network G_f

イロト イヨト イヨト

augment flow f along p

return f

3

Outline

Introduction A Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

Introduction

Defining Residual Networks

- Augmentation
 - Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

First, the Intuition

First

• The residual network G_f consists of edges with capacities representing the change in the flow on edges of G.

Thus

• An edge of the flow network can admit an amount of additional flow equal to the edge's capacity minus the flow on that edge.

 $c_{f}\left(u,v
ight)=c\left(u,v
ight)-f\left(u,v
ight)$ Residual Capacity

First, the Intuition

First

• The residual network G_f consists of edges with capacities representing the change in the flow on edges of G.

Thus

• An edge of the flow network can admit an amount of additional flow equal to the edge's capacity minus the flow on that edge.

 $c_{f}\left(u,v\right)=c\left(u,v\right)-f\left(u,v\right)$ Residual Capacity

The edges of G that are in G_f are those that can admit more flow

• i.e.
$$c(u, v) - f(u, v) > 0$$

When you can add more flow to (

• Then $c_f(u, v) = c(u, v) - f(u, v)$

The edges of G that are in G_f are those that can admit more flow

• i.e.
$$c(u, v) - f(u, v) > 0$$

When you can add more flow to ${\boldsymbol{G}}$

• Then
$$c_f(u, v) = c(u, v) - f(u, v)$$

• • • • • • • • • • •

If they have that c(u, v) - f(u, v) = 0

• Then $c_f(u, v) = 0$.

Basically

Remove the edge in G_f given no more flow can be added to it!!!

イロト イロト イヨト イヨト

If they have that c(u, v) - f(u, v) = 0

• Then $c_f(u, v) = 0$.

Basically

• Remove the edge in G_f given no more flow can be added to it!!!

First, the Intuition

• As an algorithm manipulates the flow to increase its total value, it might need to decrease the flow on a particular edge.

Case III

First, the Intuition

• As an algorithm manipulates the flow to increase its total value, it might need to decrease the flow on a particular edge.

To represent a possible decrease of a positive flow $f\left(u,v\right)$

• We place an edge (v,u) in G_{f} with residual capacity $c_{f}\left(v,u\right)=f\left(u,v\right).$

イロト イボト イヨト イヨト

Comments

This is an edge that can admit flow in the opposite direction to $\left(u,v\right)^{-1}$

• At most canceling out the flow on (u, v).

These reverse edges in the residual network allow

An algorithm to send back flow it has sent along an edge.

イロト イヨト イヨト イヨト

Comments

This is an edge that can admit flow in the opposite direction to (u, v)

• At most canceling out the flow on (u, v).

These reverse edges in the residual network allow

• An algorithm to send back flow it has sent along an edge.

Residual Capacity

Given a flow network and a flow

• The residual network consists of edges that can admit more net flow.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Residual Capacity

Given a flow network and a flow

• The residual network consists of edges that can admit more net flow.

It is based in the residual capacity function

$$c_{f}\left(u,v\right) = \begin{cases} c(u,v) - f(u,v) & \text{ if } (u,v) \in E\\ f(v,u) & \text{ if } (v,u) \in E\\ 0 & \text{ otherwise} \end{cases}$$

IMPORTANT: Because of our initial assumption if $(u, v) \in E$ implies that $(v, u) \notin E$, thus only one case applies.

イロト イヨト イヨト

Residual Capacity

Given a flow network and a flow

• The residual network consists of edges that can admit more net flow.

It is based in the residual capacity function

$$c_{f}\left(u,v\right) = \begin{cases} c(u,v) - f(u,v) & \text{ if } (u,v) \in E\\ f(v,u) & \text{ if } (v,u) \in E\\ 0 & \text{ otherwise} \end{cases}$$

 $\label{eq:integral} \begin{array}{ll} \mathsf{IMPORTANT:} \ \ \mathsf{Because} \ \ \mathsf{of} \ \mathsf{our} \ \mathsf{initial} \ \mathsf{assumption} \ \mathsf{if} \ (u,v) \in E \ \mathsf{implies} \ \mathsf{that} \\ (v,u) \notin E, \ \mathsf{thus} \ \mathsf{only} \ \mathsf{one} \ \mathsf{case} \ \mathsf{applies}. \end{array}$

イロト イヨト イヨト

Definition

Given a flow f, the residual network of G induced by f is $G_f = (V, E_f)$ where the set of residual edges E_f is defined as

Note: $|E_f| \leq 2\,|E|$ This is clear because the definition of capacity

Definition

Given a flow f, the residual network of G induced by f is $G_f = (V, E_f)$ where the set of residual edges E_f is defined as

$$E_{f} = \{(u, v) \in V \times V | c_{f}(u, v) > 0\}$$

Note: $|E_f| \leq 2 |E|$ This is clear because the definition of capacity

Observations

- The residual network is not a flow network because there may contain both edges (u, v) and (v, u).
- Other than that it has the same properties: Capacity Constraint and Flow Conservation

Definition

Given a flow f, the residual network of G induced by f is $G_f = (V, E_f)$ where the set of residual edges E_f is defined as

$$E_{f} = \{(u, v) \in V \times V | c_{f}(u, v) > 0\}$$

Note: $|E_f| \leq 2 |E|$ This is clear because the definition of capacity.

Observations.

- The residual network is not a flow network because there may contain both edges (u, v) and (v, u).
- Other than that it has the same properties: Capacity Constraint and Flow Conservation

Definition

Given a flow f, the residual network of G induced by f is $G_f = (V, E_f)$ where the set of residual edges E_f is defined as

$$E_f = \{(u, v) \in V \times V | c_f(u, v) > 0\}$$

Note: $|E_f| \leq 2 |E|$ This is clear because the definition of capacity.

Observations

• The residual network is not a flow network because there may contain both edges (u, v) and (v, u).

 Other than that it has the same properties: Capacity Constraint and Flow Conservation

28 / 107

Definition

Given a flow f, the residual network of G induced by f is $G_f = (V, E_f)$ where the set of residual edges E_f is defined as

$$E_f = \{(u, v) \in V \times V | c_f(u, v) > 0\}$$

Note: $|E_f| \leq 2 |E|$ This is clear because the definition of capacity.

Observations

- The residual network is not a flow network because there may contain both edges (u,v) and (v,u).
- Other than that it has the same properties: Capacity Constraint and Flow Conservation

A D > A D > A D > A D >

28 / 107

Example

Graph with FLOW/CAPACITY

29/107

Example

Its Residual Graph

Cinvestav ∽ < (~ 30 / 107

2

イロン イロン イヨン イヨン

Outline

IntroductionA Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

The Ford-Fulkerson Method

Introduction

3

Defining Residual Networks

Augmentation

- Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

イロト イヨト イヨト

Observation

Defining the residual flow allows to define augmentation.

Observation

Defining the residual flow allows to define augmentation.

Augmentation

If f is a flow in G and f' is a flow in the corresponding residual network, we define the augmentation of a flow f by f' as

Observation

Defining the residual flow allows to define augmentation.

Augmentation

If f is a flow in G and f' is a flow in the corresponding residual network, we define the augmentation of a flow f by f' as

$$\left(f\uparrow f'\right)(u,v) = \begin{cases} f\left(u,v\right) + f'\left(u,v\right) - f'\left(v,u\right) & \text{ if } (u,v) \in E\\ 0 & \text{ otherwise} \end{cases}$$

The Idea Behind Augmenting

- You can imagine augmentation as increase in the flow in a certain edge minus the reversal possible flow in the same edge.
- Looks like a cancellation of some sort!!
- Actual pushing flow on the reverse edge in the residual network is also known as cancellation.

Observation

Defining the residual flow allows to define augmentation.

Augmentation

If f is a flow in G and f' is a flow in the corresponding residual network, we define the augmentation of a flow f by f' as

$$\left(f\uparrow f'\right)(u,v) = \begin{cases} f\left(u,v\right) + f'\left(u,v\right) - f'\left(v,u\right) & \text{ if } \left(u,v\right) \in E\\ 0 & \text{ otherwise} \end{cases}$$

The Idea Behind Augmenting

• You can imagine augmentation as increase in the flow in a certain edge minus the reversal possible flow in the same edge.

Observation

Defining the residual flow allows to define augmentation.

Augmentation

If f is a flow in G and f' is a flow in the corresponding residual network, we define the augmentation of a flow f by f' as

$$\left(f\uparrow f'\right)(u,v) = \begin{cases} f\left(u,v\right) + f'\left(u,v\right) - f'\left(v,u\right) & \text{ if } \left(u,v\right) \in E\\ 0 & \text{ otherwise} \end{cases}$$

The Idea Behind Augmenting

- You can imagine augmentation as increase in the flow in a certain edge minus the reversal possible flow in the same edge.
- Looks like a cancellation of some sort!!!

Observation

Defining the residual flow allows to define augmentation.

Augmentation

If f is a flow in G and f' is a flow in the corresponding residual network, we define the augmentation of a flow f by f' as

$$\left(f\uparrow f'\right)(u,v) = \begin{cases} f\left(u,v\right) + f'\left(u,v\right) - f'\left(v,u\right) & \text{ if } \left(u,v\right) \in E\\ 0 & \text{ otherwise} \end{cases}$$

The Idea Behind Augmenting

- You can imagine augmentation as increase in the flow in a certain edge minus the reversal possible flow in the same edge.
- Looks like a cancellation of some sort!!!
- Actual pushing flow on the reverse edge in the residual network is also known as cancellation.

Outline

Introduction A Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

3 The Ford-Fulkerson Method

Introduction

Defining Residual Networks

Augmentation Augmentation Lemma

- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

イロト イヨト イヨト

Augmentation Lemma

Lemma 26.1

Let G = (V, E) be a flow network with source s and sink t, and let f be a flow in G. Let G_f be the residual network of G induced by f, and let f' be a flow in G_f . Then the function $f \uparrow f'$ is a flow in G with value $|f \uparrow f'| = |f| + |f'|$.

First, we verify that $f \uparrow f'$ obeys

- The capacity constraint for each edge in E.
- 2 Flow conservation at each vertex in $V \{s, t\}$.

The capacity constraint for each edge in $ar{B}$

• For all $u, v \in V \Rightarrow 0 \le (f \uparrow f')(u, v) \le c(u, v)$.

Flow conservation at each vertex in $V = \{s, t\}$

• For all $u \in V - \{s, t\} \Rightarrow \sum_{v \in V} (f \uparrow f') (v, u) = \sum_{v \in V} (f \uparrow f') (u, v).$

イロト イヨト イヨト イヨト

First, we verify that $f \uparrow f'$ obeys

- The capacity constraint for each edge in *E*.
- 2 Flow conservation at each vertex in $V \{s, t\}$.

The capacity constraint for each edge in E.

• For all $u, v \in V \Rightarrow 0 \le (f \uparrow f')(u, v) \le c(u, v)$.

Flow conservation at each vertex in

• For all $u \in V - \{s, t\} \Rightarrow \sum_{v \in V} (f \uparrow f') (v, u) = \sum_{v \in V} (f \uparrow f') (u, v).$

イロト イボト イヨト イヨト

First, we verify that $f \uparrow f'$ obeys

- The capacity constraint for each edge in E.
- 2 Flow conservation at each vertex in $V \{s, t\}$.

The capacity constraint for each edge in E.

• For all $u, v \in V \Rightarrow 0 \le (f \uparrow f')(u, v) \le c(u, v)$.

Flow conservation at each vertex in $V - \{s, t\}$

• For all $u \in V - \{s, t\} \Rightarrow \sum_{v \in V} (f \uparrow f') (v, u) = \sum_{v \in V} (f \uparrow f') (u, v).$

Capacity Constraint

• If
$$(u, v) \in E$$
 then $c_f(v, u) = f(u, v)$.

Capacity Constraint

$$If (u,v) \in E then c_f(v,u) = f(u,v).$$

2 Therefore
$$f'(v, u) \leq c_f(v, u) = f(u, v)$$
.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Capacity Constraint

• If
$$(u, v) \in E$$
 then $c_f(v, u) = f(u, v)$.

Therefore
$$f'(v, u) \leq c_f(v, u) = f(u, v)$$
.

Hence

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Capacity Constraint

• If
$$(u, v) \in E$$
 then $c_f(v, u) = f(u, v)$.

Therefore
$$f'(v, u) \leq c_f(v, u) = f(u, v)$$
.

Hence

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$$

$$\geq f(u, v) + f'(u, v) - f(u, v)$$

ヘロト ヘロト ヘヨト ヘヨト

Capacity Constraint

• If
$$(u, v) \in E$$
 then $c_f(v, u) = f(u, v)$.

Therefore
$$f'(v, u) \leq c_f(v, u) = f(u, v)$$
.

Hence

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$$

$$\geq f(u, v) + f'(u, v) - f(u, v)$$

$$= f'(u, v)$$

$$\geq 0$$

Second

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$$

Second

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$$

$$\leq f(u, v) + f'(u, v)$$

37/107

Second

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$$

$$\leq f(u, v) + f'(u, v)$$

$$\leq f(u, v) + c_f(u, v)$$

Second

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$$

$$\leq f(u, v) + f'(u, v)$$

$$\leq f(u, v) + c_f(u, v)$$

$$\leq f(u, v) + c(u, v) - f(u, v)$$

Second

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$$

$$\leq f(u, v) + f'(u, v)$$

$$\leq f(u, v) + c_f(u, v)$$

$$\leq f(u, v) + c(u, v) - f(u, v)$$

$$= c(u, v)$$

Thus

 $0 \le \left(f \uparrow f'\right)(u, v) \le c\left(u, v\right)$

2

・ロン ・四 と ・ ヨ と ・

Second

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$$

$$\leq f(u, v) + f'(u, v)$$

$$\leq f(u, v) + c_f(u, v)$$

$$\leq f(u, v) + c(u, v) - f(u, v)$$

$$= c(u, v)$$

Thus

$$0 \le \left(f \uparrow f'\right)(u, v) \le c\left(u, v\right)$$

・ロン ・四 と ・ ヨ と ・ ヨ

Therefore

$$\sum_{v \in V} (f \uparrow f') (u, v) = \sum_{v \in V} [f(u, v) + f'(u, v) - f'(v, u)]$$

$$= \sum_{v \in V} f(u, v) - \sum_{v \in V} f(u, v) - \sum_{v \in V} f(u, v)$$

$$= \sum_{v \in V} [f(v, u) - \sum_{v \in V} f(u, v)]$$

Therefore

$$\sum_{v \in V} (f \uparrow f') (u, v) = \sum_{v \in V} [f(u, v) + f'(u, v) - f'(v, u)]$$

= $\sum_{v \in V} f(u, v) + \sum_{v \in V} f'(u, v) - \sum_{v \in V} f'(v, u)$
= $\sum_{v \in V} f(u, v) + \sum_{v \in V} f'(u, v) - \sum_{v \in V} f'(v, u)$

Therefore

$$\sum_{v \in V} (f \uparrow f') (u, v) = \sum_{v \in V} [f(u, v) + f'(u, v) - f'(v, u)]$$

= $\sum_{v \in V} f(u, v) + \sum_{v \in V} f'(u, v) - \sum_{v \in V} f'(v, u)$
= $\sum_{v \in V} f(v, u) + \sum_{v \in V} f'(v, u) - \sum_{v \in V} f'(u, v)$

Therefore

$$\sum_{v \in V} (f \uparrow f')(u, v) = \sum_{v \in V} [f(u, v) + f'(u, v) - f'(v, u)]$$

=
$$\sum_{v \in V} f(u, v) + \sum_{v \in V} f'(u, v) - \sum_{v \in V} f'(v, u)$$

=
$$\sum_{v \in V} f(v, u) + \sum_{v \in V} f'(v, u) - \sum_{v \in V} f'(u, v)$$

=
$$\sum_{v \in V} [f(v, u) + f'(v, u) - f'(u, v)]$$

Therefore

$$\begin{split} \sum_{v \in V} \left(f \uparrow f' \right) (u, v) &= \sum_{v \in V} \left[f\left(u, v \right) + f'\left(u, v \right) - f'\left(v, u \right) \right] \\ &= \sum_{v \in V} f\left(u, v \right) + \sum_{v \in V} f'\left(u, v \right) - \sum_{v \in V} f'\left(v, u \right) \\ &= \sum_{v \in V} f\left(v, u \right) + \sum_{v \in V} f'\left(v, u \right) - \sum_{v \in V} f'\left(u, v \right) \\ &= \sum_{v \in V} \left[f\left(v, u \right) + f'\left(v, u \right) - f'\left(u, v \right) \right] \\ &= \sum_{v \in V} \left(f \uparrow f' \right) (v, u) \end{split}$$

Now, we need to prove that $|f \uparrow f'| = |f| + |f'|$.

Recall

- We disallow anti-parallel edges in G, but not in G_f .
 - For each vertex $v \in V$, we know that there can an edge (s, v) or (v, s) but never both.

< ロ > < 回 > < 回 > < 回 > < 回 >

39 / 107

Now, we define with respect to the sourcee

• $V_1 = \{v | (s, v) \in E\}$ • $V_2 = \{v | (v, s) \in E\}$ Now, we need to prove that $|f \uparrow f'| = |f| + |f'|$.

Recall

• We disallow anti-parallel edges in G, but not in G_f .

For each vertex $v \in V$, we know that there can an edge (s, v) or (v, s) but never both.

Now, we define with respect to the source

•
$$V_1 = \{ v | (s, v) \in E \}$$

•
$$V_2 = \{ v | (v, s) \in E \}$$

Remember the definition of Net Flow

Definition of **net flow**

• The value of a **net flow** is defined as

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

Now

We have the following properties

- $V_1 \cup V_2 \subseteq V$.
- $V_1 \cap V_2 = \emptyset$ given not anti-parallel edges.

We can compute ther

$$\begin{aligned} |f \uparrow f'| &= \sum_{v \in V} \left(f \uparrow f' \right) (s, v) - \sum_{v \in V} \left(f \uparrow f' \right) (v, s) \\ &= \sum_{v \in V_1} \left(f \uparrow f' \right) (s, v) - \sum_{v \in V_1} \left(f \uparrow f' \right) (v, s) \end{aligned}$$

• Given that $\left(f\uparrow f'
ight)(s,v)=0$ if $(s,v)\notin E$

Now

We have the following properties

- $V_1 \cup V_2 \subseteq V$.
- $V_1 \cap V_2 = \emptyset$ given not anti-parallel edges.

We can compute then

$$\begin{aligned} |f \uparrow f'| &= \sum_{v \in V} \left(f \uparrow f' \right) (s, v) - \sum_{v \in V} \left(f \uparrow f' \right) (v, s) \\ &= \sum_{v \in V_1} \left(f \uparrow f' \right) (s, v) - \sum_{v \in V_1} \left(f \uparrow f' \right) (v, s) \end{aligned}$$

• Given that $(f \uparrow f')(s, v) = 0$ if $(s, v) \notin E$

Then

Reordering some of the terms, we have

1J

$$f^{*} \uparrow f'| = \sum_{v \in V_{1}} [f(s,v) + f'(s,v) - f'(v,s)] - \sum_{v \in V_{2}} [f(v,s) + f'(v,s) - f'(s,v)]$$

イロン イロン イヨン イヨン

Then

Reordering some of the terms, we have

$$\begin{split} |f \uparrow f'| &= \sum_{v \in V_1} \left[f\left(s, v\right) + f'\left(s, v\right) - f'\left(v, s\right) \right] \\ &- \sum_{v \in V_2} \left[f\left(v, s\right) + f'\left(v, s\right) - f'\left(s, v\right) \right] \\ &= \sum_{v \in V_1} f\left(s, v\right) + \sum_{v \in V_1} f'\left(s, v\right) - \sum_{v \in V_1} f'\left(v, s\right) \\ &- \sum_{v \in V_2} f\left(v, s\right) - \sum_{v \in V_2} f'\left(v, s\right) + \sum_{v \in V_2} f'\left(s, v\right) \end{split}$$

Then, we have that

After some Reordering

$$|f \uparrow f'| = \sum_{v \in V_1} f(s, v) - \sum_{v \in V_2} f(v, s) + \sum_{v \in V_1} f'(s, v) + \sum_{v \in V_2} f'(s, v) - \sum_{v \in V_1} f'(v, s) - \sum_{v \in V_2} f'(v, s)$$

2

イロト イロト イヨト イヨト

Then, we have that

After some Reordering

$$\begin{aligned} |f \uparrow f'| &= \sum_{v \in V_1} f(s, v) - \sum_{v \in V_2} f(v, s) + \sum_{v \in V_1} f'(s, v) + \sum_{v \in V_2} f'(s, v) \\ &- \sum_{v \in V_1} f'(v, s) - \sum_{v \in V_2} f'(v, s) \\ &= \sum_{v \in V_1} f(s, v) - \sum_{v \in V_2} f(v, s) + \sum_{v \in V_1 \cup V_2} f'(s, v) - \sum_{v \in V_1 \cup V_2} f'(v, s) \end{aligned}$$

2

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Then, we have that

After some Reordering

$$\begin{split} |f \uparrow f'| &= \sum_{v \in V_1} f\left(s, v\right) - \sum_{v \in V_2} f\left(v, s\right) + \sum_{v \in V_1} f'\left(s, v\right) + \sum_{v \in V_2} f'\left(s, v\right) \\ &- \sum_{v \in V_1} f'\left(v, s\right) - \sum_{v \in V_2} f'\left(v, s\right) \\ &= \sum_{v \in V_1} f\left(s, v\right) - \sum_{v \in V_2} f\left(v, s\right) + \sum_{v \in V_1 \cup V_2} f'\left(s, v\right) - \sum_{v \in V_1 \cup V_2} f'\left(v, s\right) \\ &= \sum_{v \in V} f\left(s, v\right) - \sum_{v \in V} f\left(v, s\right) + \sum_{v \in V} f'\left(s, v\right) - \sum_{v \in V} f'\left(v, s\right) \\ &= |f| + |f'| \end{split}$$

イロト イロト イヨト イヨト

Outline

IntroductionA Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

3

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
 Augmentation Lemma

Augmenting Paths

- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

イロト イヨト イヨト

Augmenting Paths

Augmenting Path

• An augmenting path p is a simple path from s to t in the residual graph $G_f.$

Augmenting Paths

Augmenting Path

• An augmenting path p is a simple path from s to t in the residual graph $G_f.$

Residual Capacity

• Residual capacity is the maximum amount by which we can increase the flow without violating capacity

 $c_{f}\left(p
ight)=\min\left\{c_{f}\left(u,v
ight)\left|\left(u,v
ight)
ight.$ is on $p
ight\}$.

< ロ > < 回 > < 回 > < 回 > < 回 >

Augmenting Paths

Augmenting Path

• An augmenting path p is a simple path from s to t in the residual graph $G_f.$

Residual Capacity

• Residual capacity is the maximum amount by which we can increase the flow without violating capacity

 $c_{f}\left(p\right) = \min\left\{c_{f}\left(u,v\right) \mid \left(u,v\right) \text{ is on } p\right\}.$

Example

Example of an augmented path (Shaded) given a flow graph ${\cal G}$ and flow f

Figure: Residual Capacity of shaded path is 5

The new flow Graph

Here, we have

Lemma 26.2

Lemma 26.2

• Let G = (V, E) be a flow network, let f be a flow in G, and let p be an augmenting path in G_f . Define a function $f_p: V \times V \to \mathbb{R}$ by

Lemma 26.2

Lemma 26.2

• Let G = (V, E) be a flow network, let f be a flow in G, and let p be an augmenting path in G_f . Define a function $f_p: V \times V \to \mathbb{R}$ by

$$f_{p}\left(u,v\right) = \begin{cases} c_{f}\left(p\right) & \text{ if } \left(u,v\right) \text{ is on } p, \\ 0 & \text{ otherwise} \end{cases}$$

• Then f_p is a flow in G_f with value $|f_p| = c_f(p) > 0$

Lemma 26.2

Lemma 26.2

• Let G = (V, E) be a flow network, let f be a flow in G, and let p be an augmenting path in G_f . Define a function $f_p: V \times V \to \mathbb{R}$ by

$$f_{p}\left(u,v\right) = \begin{cases} c_{f}\left(p\right) & \text{ if } \left(u,v\right) \text{ is on } p, \\ 0 & \text{ otherwise} \end{cases}$$

• Then f_p is a flow in G_f with value $|f_p| = c_f(p) > 0$.

First, we verify that f_p obeys

- The capacity constraint for each edge in *E*.
- 2 Flow conservation at each vertex in $V \{s, t\}$.

The capacity constraint for each edge in *E*

• For all $u, v \in V \Rightarrow 0 \leq f_p(u, v) \leq c(u, v)$.

Flow conservation at each vertex in $V = \{s, t\}$

• For all $u \in V - \{s, t\} \Rightarrow \sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v).$

イロト イヨト イヨト イヨト

First, we verify that f_p obeys

- The capacity constraint for each edge in *E*.
- 2 Flow conservation at each vertex in $V \{s, t\}$.

The capacity constraint for each edge in E.

• For all $u, v \in V \Rightarrow 0 \leq f_p(u, v) \leq c(u, v)$.

Flow conservation at each vertex in V –

• For all $u \in V - \{s, t\} \Rightarrow \sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$.

First, we verify that f_p obeys

- The capacity constraint for each edge in *E*.
- 2 Flow conservation at each vertex in $V \{s, t\}$.

The capacity constraint for each edge in E.

• For all $u, v \in V \Rightarrow 0 \leq f_p(u, v) \leq c(u, v)$.

Flow conservation at each vertex in $V - \{s, t\}$

• For all
$$u \in V - \{s, t\} \Rightarrow \sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v).$$

ヘロト ヘロト ヘヨト ヘヨト

The capacity constraints

• It follows from the definition...

The flow conservation, for all $u \in V$ —

The capacity constraints

• It follows from the definition...

The flow conservation, for all $u \in V - \{s, t\}$

$$\sum_{v \in V} f_p(v, u) = \sum_{v \in V, (v, u) \in p} c_f(p) + \sum_{v \in V, (v, u) \notin p} 0$$

Cinvestav イロト イヨト イミト イミト ミークへで 50/107

The capacity constraints

• It follows from the definition...

The flow conservation, for all $u \in V - \{s, t\}$

$$\sum_{v \in V} f_p(v, u) = \sum_{v \in V, (v, u) \in p} c_f(p) + \sum_{v \in V, (v, u) \notin p} 0$$
$$= c_f(p) + \sum_{v \in V, (v, u) \notin p} 0$$

Cinvestav

∃ ∽ Q ⊂ 50 / 107

ヘロト ヘロト ヘヨト ヘヨト

The capacity constraints

• It follows from the definition...

The flow conservation, for all $u \in V - \{s, t\}$

$$\sum_{v \in V} f_p(v, u) = \sum_{v \in V, (v, u) \in p} c_f(p) + \sum_{v \in V, (v, u) \notin p} 0$$

= $c_f(p) + \sum_{v \in V, (v, u) \notin p} 0$
= $\sum_{v \in V, (u, v) \in p} c_f(p) + \sum_{v \in V, (v, u) \notin p} 0$
= $\sum_{v \in V} f_p(u, v)$

Cinvestav ∽ < (~ 50 / 107

э

ヘロト ヘロト ヘヨト ヘヨト
Remember the definition of Net Flow

Given the definition

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) = c_f(p) - 0 = c_f(p) > 0$$

Finally

Corollary 26.3

• Let G = (V, E) be a flow network, let f be a flow in G, and let p be an augmenting path in G_f . Suppose that we augment f by f_p . Then the function $f \uparrow f_p$ is a flow in G with value $|f \uparrow f_p| = |f| + |f_p| > |f|$.

Finally

Corollary 26.3

• Let G = (V, E) be a flow network, let f be a flow in G, and let p be an augmenting path in G_f . Suppose that we augment f by f_p . Then the function $f \uparrow f_p$ is a flow in G with value $|f \uparrow f_p| = |f| + |f_p| > |f|$. Proof Immediate from previous lemmas.

Outline

IntroductionA Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

3

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
 - Augmentation Lemma
- Augmenting Paths

Ford-Fulkerson Process

- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

イロト イヨト イヨト

Basic Process

Augment repeatedly the flow along augmenting paths

How do we stop?

Ah!! Here, we will use the concept of cut.

A cut (S,T)

A cut (S,T) of flow network G = (V,E) is a partition of V into S and T = V - S such that $s \in S$ and $t \in T$.

Net flow f(S,T)

$$f\left(S,T\right) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u).$$

Basic Process

Augment repeatedly the flow along augmenting paths

How do we stop?

Ah!! Here, we will use the concept of cut.

A cut (S,T) of flow network G = (V,E) is a partition of V into S and T = V - S such that $s \in S$ and $t \in T$.

Net flow f(S,T)

Basic Process

Augment repeatedly the flow along augmenting paths

How do we stop?

Ah!! Here, we will use the concept of cut.

A cut (S,T)

A cut (S,T) of flow network G = (V,E) is a partition of V into S and T = V - S such that $s \in S$ and $t \in T$.

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u).$$

Basic Process

Augment repeatedly the flow along augmenting paths

How do we stop?

Ah!! Here, we will use the concept of cut.

A cut (S,T)

A cut (S,T) of flow network G = (V,E) is a partition of V into S and T = V - S such that $s \in S$ and $t \in T$.

Net flow f(S,T)

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u).$$

Outline

Introduction A Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

3

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
 Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process

Minimal Cut

- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

イロト イヨト イヨト

Minimum Cut

The net flow across the cut $f\left(S,T\right)=19$ and the capacity is $c\left(S,T\right)=26$

Therefore

A **minimum cut** of a network is a cut whose capacity is minimum over all cuts of the network.

Minimum Cut

The net flow across the cut $f\left(S,T\right)=19$ and the capacity is $c\left(S,T\right)=26$

Therefore

A **minimum cut** of a network is a cut whose capacity is minimum over all cuts of the network.

CE

56 / 107

イロト イヨト イヨト

Important

First

The asymmetry between the definitions of flow and capacity of a cut is intentional and important.

Important

First

The asymmetry between the definitions of flow and capacity of a cut is intentional and important.

Why?

For flow, we consider the flow going from S to T minus the flow going in the reverse direction from T to S.

< ロ > < 同 > < 回 > < 回)

Important

First

The asymmetry between the definitions of flow and capacity of a cut is intentional and important.

Why?

- ${\small \bigcirc}$ For capacity, we count only the capacities of edges going from S to T , ignoring edges in the reverse direction.
- 2 For flow, we consider the flow going from S to T minus the flow going in the reverse direction from T to S.

Example

Outline

A Little History About War

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

3

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut

Proving that Min-Cut works

- Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

- Introduction
- Complexity

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Some exercises you can try

イロト イヨト イヨト

The Net Flow across any cut is the same

Lemma 26.4

Let f be a flow in a flow network G with source s and sink t, and let (S,T) be any cut of G. Then the net flow across (S,T) is f(S,T) = |f|.

Proof

• We have from flow-conservation

イロン イロン イヨン イヨン

The Net Flow across any cut is the same

Lemma 26.4

Let f be a flow in a flow network G with source s and sink t, and let (S,T) be any cut of G. Then the net flow across (S,T) is f(S,T) = |f|.

Proof

• We have from flow-conservation

$$\sum_{v \in V} f\left(u, v\right) - \sum_{v \in V} f\left(v, u\right) = 0$$

Now

Knowing that $|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$

Regrouping Terms

$$|f| = \sum_{v \in V} \left(f(s,v) - \sum_{u \in S - \{s\}} f(u,v) \right) - \sum_{v \in V} \left(f(v,s) + \sum_{u \in S - \{s\}} f(v,u) \right)$$

Now

Knowing that $|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$

Regrouping Terms

$$|f| = \sum_{v \in V} \left(f(s,v) - \sum_{u \in S - \{s\}} f\left(u,v\right) \right) - \sum_{v \in V} \left(f\left(v,s\right) + \sum_{u \in S - \{s\}} f\left(v,u\right) \right)$$

ヘロト ヘロト ヘヨト ヘヨト

Finally, we have

The following equation

$$\left|f\right| = \sum_{v \in V} \sum_{u \in S} f\left(u, v\right) - \sum_{v \in V} \sum_{u \in S} f\left(v, u\right)$$

Because $V = S \cup T$ and $S \cap T = 0$

$|f| = \sum_{v \in S} \sum_{u \in S} f\left(u, v\right) + \sum_{v \in S} \sum_{u \in T} f\left(u, v\right) - \sum_{v \in S} \sum_{u \in T} f\left(v, u\right) - \sum_{v \in S} \sum_{u \in S} f\left(v, u\right)$

Finally, we have

The following equation

$$|f| = \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u)$$

Because
$$V = S \cup T$$
 and $S \cap T = \emptyset$

$$|f| = \sum_{v \in S} \sum_{u \in S} f\left(u, v\right) + \sum_{v \in S} \sum_{u \in T} f\left(u, v\right) - \sum_{v \in S} \sum_{u \in T} f\left(v, u\right) - \sum_{v \in S} \sum_{u \in S} f\left(v, u\right)$$

Therefore

We have

$$|f| = \sum_{v \in S} \sum_{u \in T} f(u, v) - \sum_{v \in S} \sum_{u \in T} f(v, u) = f(S, T)$$

Bounding the value of a flow.

Corollary 26.5

• The value of any flow f in a flow network G is bounded from above by the **capacity of any cut** of G.

Let (S,T) any cut of G and f be any flow

```
\left|f\right|=f\left(S,T\right)
```

$= \sum_{v \in S} \sum_{u \in T} f(u, v) - \sum_{v \in S} \sum_{u \in T} f(v, v)$ $\leq \sum_{v \in S} \sum_{u \in T} f(u, v)$ $\leq \sum_{v \in S} \sum_{u \in T} c(u, v) = C(S, T)$

イロト イヨト イヨト イヨト

Let (S,T) any cut of G and f be any flow

$$f| = f(S,T)$$

= $\sum_{v \in S} \sum_{u \in T} f(u,v) - \sum_{v \in S} \sum_{u \in T} f(v,u)$

$$\geq \sum_{v \in S} \sum_{u \in T} f(u, v)$$
$$\leq \sum_{v \in S} \sum_{u \in T} c(u, v) = C(S, T)$$

Let (S,T) any cut of G and f be any flow

$$\begin{aligned} |f| &= f\left(S,T\right) \\ &= \sum_{v \in S} \sum_{u \in T} f\left(u,v\right) - \sum_{v \in S} \sum_{u \in T} f\left(v,u\right) \\ &\leq \sum_{v \in S} \sum_{u \in T} f\left(u,v\right) \end{aligned}$$

Let (S,T) any cut of G and f be any flow

$$\begin{split} |f| &= f\left(S,T\right) \\ &= \sum_{v \in S} \sum_{u \in T} f\left(u,v\right) - \sum_{v \in S} \sum_{u \in T} f\left(v,u\right) \\ &\leq \sum_{v \in S} \sum_{u \in T} f\left(u,v\right) \\ &\leq \sum_{v \in S} \sum_{u \in T} c\left(u,v\right) = C\left(S,T\right) \end{split}$$

Theorem 26.6 (Max-Flow Min-Cut Theorem) - Stopping Condition

If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

The residual network G_f contains no augmenting paths.
 |f| = c (S, T) for some cut (S, T) of G.

< ロ > < 同 > < 回 > < 回 >

Theorem 26.6 (Max-Flow Min-Cut Theorem) - Stopping Condition

If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

• f is a maximum flow in G.

) The residual network G_f contains no augmenting paths.

|f| = c(S,T) for some cut (S,T) of G.

< ロ > < 同 > < 回 > < 回)

Theorem 26.6 (Max-Flow Min-Cut Theorem) - Stopping Condition

If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- f is a maximum flow in G.
- **2** The residual network G_f contains no augmenting paths.

Theorem 26.6 (Max-Flow Min-Cut Theorem) - Stopping Condition

If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- f is a maximum flow in G.
- **2** The residual network G_f contains no augmenting paths.
- $(\mathbf{S}, T) \text{ for some cut } (S, T) \text{ of } G.$

$(1) \Longrightarrow (2)$

• Assume the following for a contradiction f is a maximum flow and G_f has an augmenting path p.

Therefore, we can augment f by

$|f \uparrow f_p| > |f|$

Problem $f \uparrow f_{\theta}$ is a flow

Contradiction!!! Thus G_f does not contain any augmenting path.

$(1) \Longrightarrow (2)$

• Assume the following for a contradiction f is a maximum flow and G_f has an augmenting path p.

Therefore, we can augment f by f_p

 $|f \uparrow f_p| > |f|$

Problem $f \uparrow f_p$ is a flow

Contradiction!!! Thus G_f does not contain any augmenting path.

$(1) \Longrightarrow (2)$

• Assume the following for a contradiction f is a maximum flow and G_f has an augmenting path p.

Therefore, we can augment f by f_p

$$|f\uparrow f_p| > |f|$$

Problem $f \uparrow f_p$ is a flow

• Contradiction!!! Thus G_f does not contain any augmenting path.

$(2) \Longrightarrow (3)$

• Suppose that G_f does not contain augmenting path... no path from s to t.

Define

$S\left\{ v\in V| \exists \text{ path }s\leadsto t ight\}$ and T=V-S

We have $s \in S$ trivially and $t \notin S$ given not path from s to t in G_f

• We have several cases...

Proof

$(2) \Longrightarrow (3)$

• Suppose that G_f does not contain augmenting path... no path from s to t.

Define

$$S\left\{ v\in V| \exists \text{ path }s \rightsquigarrow t \right\} \text{ and }T=V-S$$

We have $s \in S$ trivially and $t \notin S$ given not path from s to t in G_T

We have several cases...

イロト イロト イヨト イヨト

Proof

$(2) \Longrightarrow (3)$

• Suppose that G_f does not contain augmenting path... no path from s to t.

Define

$$S\left\{ v\in V| \exists \text{ path }s\rightsquigarrow t\right\} \text{ and }T=V-S$$

We have $s \in S$ trivially and $t \notin S$ given not path from s to t in G_f

• We have several cases...

イロト イヨト イヨト イヨト

Therefore

If $(u, v) \in E$

• We have f(u, v) = c(u, v).

• Because in any other case $(u, v) \in E_f$ which will place $v \in S$.

• We must have f(v, u) = 0

Otherwise c_f (u, v) = f (v, u) would be positive and we would have (u, v) ∈ E_f again placing v ∈ S

Therefore

If $(u,v) \in E$

• We have
$$f(u, v) = c(u, v)$$
.

• Because in any other case $(u, v) \in E_f$ which will place $v \in S$.

If $(v, u) \in E$

- We must have f(v, u) = 0
 - ▶ Otherwise $c_f(u, v) = f(v, u)$ would be positive and we would have $(u, v) \in E_f$ again placing $v \in S$

イロト イロト イヨト イヨト

Finally

If neither (u, v) nor (v, u) is in E

• Then
$$f(u, v) = f(v, u) = 0$$

We have then

$$f(S,T) = \sum_{v \in S} \sum_{u \in T} f(u,v) - \sum_{v \in T} \sum_{u \in S} f(v,u)$$
$$= \sum_{v \in S} \sum_{u \in T} c(u,v) - \sum_{v \in T} \sum_{u \in S} 0$$
$$= c(S,T)$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Finally

If neither (u, v) nor (v, u) is in E

• Then f(u,v) = f(v,u) = 0

We have then

$$f(S,T) = \sum_{v \in S} \sum_{u \in T} f(u,v) - \sum_{v \in T} \sum_{u \in S} f(v,u)$$
$$= \sum_{v \in S} \sum_{u \in T} c(u,v) - \sum_{v \in T} \sum_{u \in S} 0$$
$$= c(S,T)$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

We have because of Lemma 26.4

$$\left|f\right| = f\left(S,T\right) = c\left(S,T\right)$$

Now from $(3) \Longrightarrow (2)$.

• By Corollary 26.5 $|f| \leq c(S,T)$ for all cuts (S,T)

Thus, the condition |f| = c(S,T)

• It implies that f is a maximum flow...

We have because of Lemma 26.4

$$\left|f\right|=f\left(S,T\right)=c\left(S,T\right)$$

Now from $(3) \Longrightarrow (2)$

• By Corollary 26.5 $\left|f\right| \leq c\left(S,T\right)$ for all cuts $\left(S,T\right)$

Thus, the condition 17

It implies that f is a maximum flow...

イロト イロト イヨト イヨト

We have because of Lemma 26.4

$$\left|f\right|=f\left(S,T\right)=c\left(S,T\right)$$

Now from $(3) \Longrightarrow (2)$

• By Corollary 26.5 $\left|f\right| \leq c\left(S,T\right)$ for all cuts $\left(S,T\right)$

Thus, the condition |f| = c(S,T)

• It implies that f is a maximum flow...

イロト イボト イヨト イヨト

Outline

Introduction A Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

3

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
- Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut

Proving that Min-Cut works Meaning of All This

- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

Procedure

Init We start with flow f zero.

- We construct the residual graph.
- \bigcirc We find a path p between s and t in the residual Graph.
- If The residual network G_f contains no augmenting paths
 - The f is the maximum flow!!! and exit
- We find $C_{f}(p)$
- We augment the flow in the original graph.
- Repeat to 1

Procedure

Init We start with flow f zero.

- We construct the residual graph.
- ullet We find a path p between s and t in the residual Graph.
- If The residual network G_f contains no augmenting paths.
 - The f is the maximum flow!!! and exit
- We find $C_f(p)$
- We augment the flow in the original graph.
- Repeat to 1

Procedure

Init We start with flow f zero.

- We construct the residual graph.
- 2 We find a path p between s and t in the residual Graph.
 -) If The residual network G_f contains no augmenting paths.
 - The f is the maximum flow!!! and exit
- We find $C_f(p)$
- We augment the flow in the original graph.
- Repeat to 1

イロト イヨト イヨト イヨト

Procedure

Init We start with flow f zero.

- We construct the residual graph.
- 2 We find a path p between s and t in the residual Graph.
- **③** If The residual network G_f contains no augmenting paths.
 - $\bullet \quad The \ f \ is the \ maximum \ flow!!! \ and \ exit$

• We find $C_f(p)$

- We augment the flow in the original graph.
- Repeat to 1

Procedure

Init We start with flow f zero.

- We construct the residual graph.
- **②** We find a path p between s and t in the residual Graph.
- **③** If The residual network G_f contains no augmenting paths.
 - $\bullet \quad The \ f \ is the \ maximum \ flow!!! \ and \ exit$
- We find $C_f(p)$
 - We augment the flow in the original graph.
 - Repeat to 1

Procedure

Init We start with flow f zero.

- We construct the residual graph.
- **②** We find a path p between s and t in the residual Graph.
- **③** If The residual network G_f contains no augmenting paths.

 $\bullet \quad The \ f \ is the \ maximum \ flow!!! \ and \ exit$

- We find $C_f(p)$
- We augment the flow in the original graph.

Procedure

Init We start with flow f zero.

- We construct the residual graph.
- **②** We find a path p between s and t in the residual Graph.
- **③** If The residual network G_f contains no augmenting paths.

 $\bullet \quad \text{The } f \text{ is the maximum flow} \ref{eq: for the set of the$

- We find $C_f(p)$
- We augment the flow in the original graph.
- 6 Repeat to 1

Outline

IntroductionA Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

3

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
 - Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 - Meaning of All This

Ford-Fulkerson Algorithm

- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

• The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

Now

For the algorithm, if $(u, v) \in E$

We make $(u, v) \cdot f = (u, v) \cdot f + c_f(p)$ because you can add flow.

You have that (u,v) is a reversal in G_f , then $(v,u)\in E$:

$$(u, v) . f = (u, v) . f - c_f(p)$$

Meaning

Do not add flow but remove to do the cancellation.

Now

For the algorithm, if $(u, v) \in E$

We make $(u, v) \cdot f = (u, v) \cdot f + c_f(p)$ because you can add flow.

$\mathsf{If}\;(u,v) \notin E$

You have that (u, v) is a reversal in G_f , then $(v, u) \in E$:

$$(u,v).f = (u,v).f - c_f(p)$$

Meaning

Do not add flow but remove to do the cancellation.

Now

For the algorithm, if $(u, v) \in E$

We make $(u, v) \cdot f = (u, v) \cdot f + c_f(p)$ because you can add flow.

$\mathsf{lf}\;(u,v) \notin E$

You have that (u, v) is a reversal in G_f , then $(v, u) \in E$:

$$(u,v).f = (u,v).f - c_f(p)$$

Meaning

Do not add flow but remove to do the cancellation.

Ford-Fulkerson(G, s, t)

for each edge $(u, v) \in G.E$ $(u, v) \cdot f = 0$ while there exists a path p form a to f in the residual network G_{f} $(f) = \min \{c_{f}(u, v) \mid (u, v) \mid (u, v) \}$ is in pfor each edge (u, v) in p $(u, v) \cdot f = (u, v) \cdot f + c_{f}(p)$ else $(u, u) \cdot f = (u, v) \cdot f - c_{f}(p)$

< ロ > < 同 > < 回 > < 回 >

Ford-Fulkerson $(\overline{G, s, t})$

1	for each edge $(u,v) \in G.E$
2	(u,v) . $f=$ 0
3	while there exists a path p form s to t in the residual network G_f
	else $(v, u) . f = (v, u) . f - c_f(p)$

イロト イヨト イヨト イヨト

Ford-Fulkerson(G, s, t)

for each edge (u, v) ∈ G.E
(u, v).f=0
while there exists a path p form s to t in the residual network G_f
c_f (p) = min {c_f (u, v) | (u, v) is in p}

イロト イボト イヨト イヨト

Ford-Fulkerson(G, s, t)

1	for each edge $(u,v) \in G.E$
2	(u,v). $f=$ 0
3	while there exists a path p form \boldsymbol{s} to \boldsymbol{t} in the residual network G_f
4	$c_{f}\left(p\right) = \min\left\{c_{f}\left(u,v\right) \left(u,v\right) \text{ is in } p\right\}$
5	for each edge (u, v) in p
6	$if\;(u,v)\in E$
0	$(u, v) \cdot f = (u, v) \cdot f + c_f(p)$
8	else $(v, u) . f = (v, u) . f - c_f(p)$

イロト イロト イヨト イヨト

Ford-Fulkerson(G, s, t)

1	for each edge $(u, v) \in G.E$
2	(u,v). $f=$ 0
3	while there exists a path p form s to t in the residual network ${\cal G}_f$
4	$c_{f}\left(p\right) = \min\left\{c_{f}\left(u,v\right) \left(u,v\right) \text{ is in } p\right\}$
6	for each edge (u, v) in p
6	$if\;(u,v)\in E$
0	$(u, v) \cdot f = (u, v) \cdot f + c_f(p)$
8	else $(v, u) . f = (v, u) . f - c_f (p)$

イロン イ団 とく ヨン イヨン

Explanation

• Line 1-2 initialize flows to 0.

- Line 3-8 are executed as long as a path exist in G_f between s to t:
 - Line 4 finds the $c_f(p)$.

Explanation

- Line 1-2 initialize flows to 0.
- Line 3-8 are executed as long as a path exist in G_f between s to t:

Explanation

- Line 1-2 initialize flows to 0.
- Line 3-8 are executed as long as a path exist in G_f between s to t:
 - Line 4 finds the $c_f(p)$.

OBSERVATION: Each residual edge in path p is either an edge in the original network or the reversal

- Thus, Line 6-8 basically are an equilibrium act:
 - If the edge exist add flow to it.
 - If not remove flow otherwise from the reverse edge.

< ロ > < 同 > < 回 > < 回 >

OBSERVATION: Each residual edge in path p is either an edge in the original network or the reversal

- Thus, Line 6-8 basically are an equilibrium act:
 - If the edge exist add flow to it.
 - If not remove flow otherwise from the reverse edge.

< ロ > < 同 > < 回 > < 回 >

OBSERVATION: Each residual edge in path p is either an edge in the original network or the reversal

- Thus, Line 6-8 basically are an equilibrium act:
 - If the edge exist add flow to it.
 - ► If not remove flow otherwise from the reverse edge.

Outline

Introduction A Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

3

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
 - Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm

Example

Complexity
 A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

Example of Ford-Fulkerson

First Augmentation Path

Example

Second Augmentation Path

< ロ > < 回 > < 回 > < 回 > < 回 >

Example

イロト イヨト イヨト イヨト
Example

Example

イロト イヨト イヨト イヨト

Example

Outline

A Little History About War

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

3

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
 - Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 - Meaning of All This
- Ford-Fulkerson Algorithm
- Example

Complexity

A Problem with This Solution

- Introduction
- Complexity

The Maximum-Bipartite-Matching Problem Corresponding Flow Network

- Complexity

Some exercises you can try

Ford-Fulkerson Algorithm

Final Code

Ford-Fulkerson(G, s, t)for each edge $(u, v) \in G.E$ 2 $(u, v) \cdot f = 0$ while there exists a path p form s to t in the residual network G_f 3 4 $c_f(p) = \min \{ c_f(u, v) | (u, v) \text{ is in } p \}$ 6 for each edge (u, v) in p if $(u, v) \in E$ 6 7 $(u, v) \cdot f = (u, v) \cdot f + c_f(p)$ else $(v, u) \cdot f = (v, u) \cdot f - c_f(p)$ 8

(日) (日) (日) (日) (日)

Complexity

- Note: Be careful a bad implementation will not converge because we need to choose *p*.
 - Ford-Fulkerson works for integer numbers, but rational numbers can be transformed into integers by scaling (Real can be approximated by rational numbers).
- Imagine that after that transformation, we have f* the maximum flow of a transformed network.
 - while loop of lines 3-8 are bounded by |f*| since the flow value increases by at least one unit at each iteration.

< ロ > < 同 > < 回 > < 回 >

Complexity

- Note: Be careful a bad implementation will not converge because we need to choose *p*.
- Ford-Fulkerson works for integer numbers, but rational numbers can be transformed into integers by scaling (Real can be approximated by rational numbers).
 - Imagine that after that transformation, we have f^* the maximum flow of a transformed network.
 - while loop of lines 3-8 are bounded by |f*| since the flow value increases by at least one unit at each iteration.

< ロ > < 同 > < 回 > < 回 >

Complexity

- Note: Be careful a bad implementation will not converge because we need to choose *p*.
- Ford-Fulkerson works for integer numbers, but rational numbers can be transformed into integers by scaling (Real can be approximated by rational numbers).
- Imagine that after that transformation, we have f^* the maximum flow of a transformed network.

while loop of lines 3-8 are bounded by |*f**| since the flow value increases by at least one unit at each iteration.

Complexity

- Note: Be careful a bad implementation will not converge because we need to choose *p*.
- Ford-Fulkerson works for integer numbers, but rational numbers can be transformed into integers by scaling (Real can be approximated by rational numbers).
- Imagine that after that transformation, we have f^* the maximum flow of a transformed network.
 - ▶ while loop of lines 3-8 are bounded by |f*| since the flow value increases by at least one unit at each iteration.

Using BFS or DFS

- Complexity of finding a path is $O\left(V+E'\right)=O\left(E\right)$ (Line 3 While Loop)
 - Final complexity time of the Ford-Fulkerson Algorithm is $O\left(E\left|f^*\right|\right)$

Using BFS or DFS

- Complexity of finding a path is O(V + E') = O(E) (Line 3 While Loop)
- Final complexity time of the Ford-Fulkerson Algorithm is $O\left(E\left|f^*\right|\right)$

イロト イボト イヨト イヨト

Using BFS or DFS

- Complexity of finding a path is O(V + E') = O(E) (Line 3 While Loop)
- Final complexity time of the Ford-Fulkerson Algorithm is $O\left(E\left|f^*\right|\right)$

Now

What if if $c_f(p) = 1$ each time?

Outline

IntroductionA Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

3

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
 - Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
- Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

Example where the situation is not so Good

Figure: An example where complexity can be a killer when selecting the central path all the time

90 / 107

Outline

IntroductionA Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
- Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example

4

- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm • Introduction

Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

Observation Edmond-Karp

• Edmond-Karp is Ford-Fulkerson with shortest path in the residual network, $\delta_f(u, v)$, where each edge has unit distance (weight).

Observation Edmond-Karp

- Edmond-Karp is Ford-Fulkerson with shortest path in the residual network, $\delta_f(u,v)$, where each edge has unit distance (weight).
- Basically use BFS.

_emma 26.7

If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and sink t, then for all vertices $v \in V - \{s, t\}$, the shortest-path distance $\delta_f(u, v)$ in the residual network G_f increases monotonically with each flow augmentation.

Fheorem 26.8

If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and sink t, then the total number of flow augmentations performed by the algorithm is O(VE).

Observation Edmond-Karp

- Edmond-Karp is Ford-Fulkerson with shortest path in the residual network, $\delta_f(u, v)$, where each edge has unit distance (weight).
- Basically use BFS.

Lemma 26.7

If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and sink t, then for all vertices $v \in V - \{s, t\}$, the shortest-path distance $\delta_f(u, v)$ in the residual network G_f increases monotonically with each flow augmentation.

Theorem 26.8

If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and sink t, then the total number of flow augmentations performed by the algorithm is O(VE).

Observation Edmond-Karp

- Edmond-Karp is Ford-Fulkerson with shortest path in the residual network, $\delta_f(u, v)$, where each edge has unit distance (weight).
- Basically use BFS.

Lemma 26.7

If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and sink t, then for all vertices $v \in V - \{s, t\}$, the shortest-path distance $\delta_f(u, v)$ in the residual network G_f increases monotonically with each flow augmentation.

Theorem 26.8

If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and sink t, then the total number of flow augmentations performed by the algorithm is O(VE).

Outline

IntroductionA Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
- Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example

4

- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

Exercise

Some exercises you can try

Complexity Edmond-Karp

• Each iteration of Ford-Fulkerson can be implemented in O(E).

The Complexity of Edmond-Karp is O(V1

Complexity Edmond-Karp

- Each iteration of Ford-Fulkerson can be implemented in O(E).
- The Complexity of Edmond-Karp is $O(VE^2)$.

Better Complexity

- The Generic Push-Relabel by Golberg for max-flow has complexity O (V²E).
- Don't Panic, It is beyond this class!!!

Complexity Edmond-Karp

- Each iteration of Ford-Fulkerson can be implemented in O(E).
- The Complexity of Edmond-Karp is $O(VE^2)$.

Better Complexity

- The Generic Push-Relabel by Golberg for max-flow has complexity $O\left(V^2E\right).$
- Don't Panic, It is beyond this class!!!

Complexity Edmond-Karp

- Each iteration of Ford-Fulkerson can be implemented in O(E).
- The Complexity of Edmond-Karp is $O(VE^2)$.

Better Complexity

- The Generic Push-Relabel by Golberg for max-flow has complexity $O\left(V^2E\right)$.
- Don't Panic, It is beyond this class!!!

Outline

IntroductionA Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
- Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

olving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

5

The Maximum-Bipartite-Matching Problem

- Corresponding Flow Network
- Complexity

The Maximum-Bipartite-Matching Problem

The Bipartite Graph

A graph G = (V, E), where $V = L \cup R$ s.t. $L \cap R = \emptyset$, and for every $(u, v) \in E$, $u \in L$ and $v \in R$.

Matching

Given an undirected graph G = (V, E), a matching is a subset of edges $M \subseteq E$ such that for all vertices $v \in V$, at most one edge of M is incident on v.

Maximum Matching

A maximum matching is a matching of maximum cardinality, that is, a matching M such that for any matching M', we have: $|M'| \leq |M|$.

The Maximum-Bipartite-Matching Problem

The Bipartite Graph

A graph G = (V, E), where $V = L \cup R$ s.t. $L \cap R = \emptyset$, and for every $(u, v) \in E$, $u \in L$ and $v \in R$.

Matching

Given an undirected graph G = (V, E), a matching is a subset of edges $M \subseteq E$ such that for all vertices $v \in V$, at most one edge of M is incident on v.

Maximum Matching

A maximum matching is a matching of maximum cardinality, that is, a matching M such that for any matching M', we have: $|M'| \leq |M|$.

The Maximum-Bipartite-Matching Problem

The Bipartite Graph

A graph G = (V, E), where $V = L \cup R$ s.t. $L \cap R = \emptyset$, and for every $(u, v) \in E$, $u \in L$ and $v \in R$.

Matching

Given an undirected graph G = (V, E), a matching is a subset of edges $M \subseteq E$ such that for all vertices $v \in V$, at most one edge of M is incident on v.

Maximum Matching

A maximum matching is a matching of maximum cardinality, that is, a matching M such that for any matching M', we have: $|M'| \leq |M|$.

Example

Two examples of matching

2

イロン イロン イヨン イヨン

Build

A graph G' = (V', E') is a corresponding flow network from a bipartite graph G:

- $E' = \{(s, u) | u \in L\} \cup E \cup \{(v, t) \in E'\}$ • $|E| \le |E'| = |E| + |V| \le 3 |E|$ • $|E'| = \Theta(E)$
 - Make for any $(u,v)\in E'$, $w\left(u,v
 ight)=1$

Build

A graph $G^\prime = (V^\prime, E^\prime)$ is a corresponding flow network from a bipartite graph G:

•
$$V' = V \cup \{s, t\}$$

- $E' = \{(s, u) | u \in L\} \cup E \cup \{(v, t) \in E'\}$
- $|E| \le |E'| = |E| + |V| \le 3|E|$
- $|E'| = \Theta(E)$
- Make for any $(u,v)\in E'$, $w\left(u,v
 ight)=1$

Build

A graph $G^\prime = (V^\prime, E^\prime)$ is a corresponding flow network from a bipartite graph G:

•
$$V' = V \cup \{s, t\}$$

•
$$E' = \{(s, u) | u \in L\} \cup E \cup \{(v, t) \in E'\}$$

 $|E| \le |E'| = |E| + |V| \le 3|E|$

 $|E'| = \Theta(E)$

ullet Make for any $(u,v)\in E'$, $w\left(u,v
ight)=1$

Build

A graph $G^\prime = (V^\prime, E^\prime)$ is a corresponding flow network from a bipartite graph G:

•
$$V' = V \cup \{s, t\}$$

•
$$E' = \{(s, u) | u \in L\} \cup E \cup \{(v, t) \in E'\}$$

•
$$|E| \le |E'| = |E| + |V| \le 3 |E|$$

Make for any $(u,v)\in E'$, $w\left(u,v
ight)=0$

イロト イロト イヨト イヨト

Build

A graph $G^\prime = (V^\prime, E^\prime)$ is a corresponding flow network from a bipartite graph G:

•
$$V' = V \cup \{s, t\}$$

•
$$E' = \{(s, u) | u \in L\} \cup E \cup \{(v, t) \in E'\}$$

•
$$|E| \le |E'| = |E| + |V| \le 3|E|$$

•
$$|E'| = \Theta(E)$$

) Make for any $(u,v)\in E'$, $w\left(u,v
ight)=1$

Build

A graph G' = (V', E') is a corresponding flow network from a bipartite graph G:

•
$$V' = V \cup \{s, t\}$$

•
$$E' = \{(s, u) | u \in L\} \cup E \cup \{(v, t) \in E'\}$$

•
$$|E| \le |E'| = |E| + |V| \le 3|E|$$

•
$$|E'| = \Theta(E)$$

• Make for any $(u,v)\in E'$, $w\left(u,v\right)=1$

Example

Add new source s and sink t

イロン イロン イヨン イヨン

Outline

IntroductionA Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
 - Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

5

The Maximum-Bipartite-Matching Problem
 Corresponding Flow Network

Complexity

Exercises Some exercises you can try

Corresponding Flow Network

Ok, What do we do?

• Basically, you run Edmond-Karp on the Graph G'.

Corresponding Flow Network

Ok, What do we do?

• Basically, you run Edmond-Karp on the Graph G'.

How do you see that this is correct?

• First introduce the concept: f is a flow on a flow network G = (V, E) is integer-valued if f(u, v) is an integer for all $(u, v) \in V \times V$.

Corresponding Flow Network

Ok, What do we do?

• Basically, you run Edmond-Karp on the Graph G'.

How do you see that this is correct?

- First introduce the concept: f is a flow on a flow network G = (V, E) is integer-valued if f(u, v) is an integer for all $(u, v) \in V \times V$.
- Then look at the following lemma, theorem and corollary!!!

Proving Correctness

Lemma 26.9

• Let G = (V, E) be a bipartite graph with vertex partition $V = L \cup R$, and let G' be its corresponding flow network. If M is a matching in G, then there is an integer-valued flow f in G' with value |f| = |M|. Conversely, if f is an integer-valued flow in G', then there is a matching M in G with cardinality |f| = |M|.

Integrality I heorem

- If the capacity function c takes on only integral values, then the maximum flow f produced by the Ford-Fulkerson method has the property that |f| is an integer.
- Moreover, for all vertices u and v, the value of f (u, v) is an integer.

Proving Correctness

Lemma 26.9

• Let G = (V, E) be a bipartite graph with vertex partition $V = L \cup R$, and let G' be its corresponding flow network. If M is a matching in G, then there is an integer-valued flow f in G' with value |f| = |M|. Conversely, if f is an integer-valued flow in G', then there is a matching M in G with cardinality |f| = |M|.

Integrality Theorem

- If the capacity function c takes on only integral values, then the maximum flow f produced by the Ford-Fulkerson method has the property that |f| is an integer.
- Moreover, for all vertices u and v, the value of f(u, v) is an integer.

A D > A D > A D > A D >

Finally

Corollary 26.11

• The cardinality of a maximum matching M in a bipartite graph G equals the value of a maximum flow f in its corresponding flow network G'.

Outline

IntroductionA Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
 - Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

5

The Maximum-Bipartite-Matching Problem
 Corresponding Flow Network

Complexity

Exercises

Some exercises you can try

$\mathsf{Using}\ G'$

Thus, given G, you build G' and run Ford-Fulkerson method. Then, use the max flow f to build the maximum matching by using:

Cinvestav

105 / 107

イロト 不得 トイヨト イヨト

$\mathsf{Using}\ G'$

Thus, given G, you build G' and run Ford-Fulkerson method. Then, use the max flow f to build the maximum matching by using:

$$M = \{(u, v) | u \in L, v \in R \text{ and } f(u, v) > 0\}$$

Complexity

- Because we know the |M| ≤ min {L, R} = O(V) thus the value of the maximum flow in G' is O(V)
- In addition every time the residual graph is build the candidate flow is augmented in one.

< ロ > < 同 > < 回 > < 回 >

105 / 107

• Thus, O(VE') = O(VE).

Using G'

Thus, given G, you build G' and run Ford-Fulkerson method. Then, use the max flow f to build the maximum matching by using:

$$M = \{(u, v) | u \in L, v \in R \text{ and } f(u, v) > 0\}$$

Complexity

- $\bullet\,$ Because we know the $|M| \leq \min{\{L,R\}} = O(V)$ thus the value of the maximum flow in G' is O(V)
- In addition every time the residual graph is build the candidate flow is augmented in one.
- Thus, O(VE') = O(VE)

Using G'

Thus, given G, you build G' and run Ford-Fulkerson method. Then, use the max flow f to build the maximum matching by using:

$$M = \{(u, v) | u \in L, v \in R \text{ and } f(u, v) > 0\}$$

Complexity

- $\bullet\,$ Because we know the $|M| \leq \min{\{L,R\}} = O(V)$ thus the value of the maximum flow in G' is O(V)
- In addition every time the residual graph is build the candidate flow is augmented in one.

イロト イヨト イヨト

105 / 107

• Thus, O(VE') = O(VE)

Using G'

Thus, given G, you build G' and run Ford-Fulkerson method. Then, use the max flow f to build the maximum matching by using:

$$M = \{(u, v) | u \in L, v \in R \text{ and } f(u, v) > 0\}$$

Complexity

- $\bullet\,$ Because we know the $|M| \leq \min{\{L,R\}} = O(V)$ thus the value of the maximum flow in G' is O(V)
- In addition every time the residual graph is build the candidate flow is augmented in one.

イロト イヨト イヨト

105 / 107

• Thus, O(VE') = O(VE).

Outline

IntroductionA Little History About War

Flow Networks

- Definition
- Flow Properties
- Net Flow and Value of a Flow f
- Maximum Flow Problem

The Ford-Fulkerson Method

- Introduction
- Defining Residual Networks
- Augmentation
 - Augmentation Lemma
- Augmenting Paths
- Ford-Fulkerson Process
- Minimal Cut
- Proving that Min-Cut works
 Meaning of All This
- Ford-Fulkerson Algorithm
- Example
- Complexity
 - A Problem with This Solution

Solving the Problem with Edmond-Karp Algorithm

- Introduction
- Complexity

Applications

The Maximum-Bipartite-Matching Problem
 Corresponding Flow Network

- Corresponding Flow IN
- Complexity

6

Exercises Some exercises you can try

Exercises

- 26.1-2
- 26.1-4
- 3 26.1-6
- 3 26.2-3
- 26.2-5
- 26.2-8
- 26.2-11

