Analysis of Algorithms

Maximum Flow

Andres Mendez-Vazquez

November 22, 2019

1/107

Qutline

Introduction
@ A Little History About War

Flow Networks

@ Definition

@ Flow Properties

@ Net Flow and Value of a Flow f
@ Maximum Flow Problem

e The Ford-Fulkerson Method
@ Introduction
@ Defining Residual Networks
@ Augmentation
@ Augmentation Lemma
@ Augmenting Paths
@ Ford-Fulkerson Process
@ Minimal Cut
@ Proving that Min-Cut works
@ Meaning of All This
@ Ford-Fulkerson Algorithm
@ Example
@ Complexity
@ A Problem with This Solution

e Solving the Problem with Edmond-Karp Algorithm
@ Introduction
@ Complexity

e Applications
@ The Maximum-Bipartite-Matching Problem
@ Corresponding Flow Network
@ Complexity

e Exercises
2 /107

@ Some exercises you can try

Cinvestav

Qutline

Introduction
@ A Little History About War

&)

Cinvestav

3/107

History of Max Flow

Long Ago in the Faraway Cold War

@ It was first described by T. E. Harris (At RAND Corporation) as a
simplified model of the Soviet traffic flow.

Figure: Railway network of the Western Soviet Union

4
-~
Cinvestav

4 /107

Outline

Flow Networks
@ Definition

&)

Cinvestav

5/107

Flow Networks

o A flow network G = (V, E) is a directed graph, where each edge
(u,v) € E has a non-negative capacity ¢ (u,v) > 0.

&)

Cinvestav

6 /107

Flow Networks

o A flow network G = (V, E) is a directed graph, where each edge
(u,v) € E has a non-negative capacity ¢ (u,v) > 0.

@ In addition if E contains an edge (u,v), it does not contain the edge
(v,u) (Reverse Direction).

&)

Cinvestav

6 /107

Flow Networks

Definition

o A flow network G = (V, E) is a directed graph, where each edge
(u,v) € E has a non-negative capacity ¢ (u,v) > 0.

@ In addition if E contains an edge (u,v), it does not contain the edge
(v,u) (Reverse Direction).

Constraints

o If (u,v) ¢ E we assume that ¢ (u,v) = 0.

&)

Cinvestav

6 /107

Flow Networks

Definition

o A flow network G = (V, E) is a directed graph, where each edge
(u,v) € E has a non-negative capacity ¢ (u,v) > 0.

@ In addition if E contains an edge (u,v), it does not contain the edge
(v,u) (Reverse Direction).

o If (u,v) ¢ E we assume that ¢ (u,v) = 0.

@ (G has two vertices known as source s and sink .

&)

Cinvestav

6 /107

Example that does not work

A Graph not Satisfying The Definition

Figure: A simple example

o’

Cinvestav

7 /107

Fixing the Example

Do not worry, we can transform it into...

Figure: A simple example

y
-~ v
Cinvestav

8 /107

Another Possible Problem

What if we have multiple sources and sinks?

Figure: Ok no so simple!!!

V.

&2

Cinvestav

9 /107

Another Possible Problem

Use a Single Sink and Source

Figure: Ok!!l No so simple!!!

Cinvestav

10 /107

Outline

9 Flow Networks

@ Flow Properties

&)

Cinvestav

11/107

Flow Properties

Definition

A flow in G = (V, E) is a real valued function f : V' x V — R satisfying

the following properties:

A C 4

Cinvestav

12 /107

Flow Properties

Definition

A flow in G = (V, E) is a real valued function f : V' x V — R satisfying
the following properties:

e Capacity Constraint: For all u,v € V'

V.

N\ O

Cinvestav

12 /107

Flow Properties

Definition

A flow in G = (V, E) is a real valued function f : V' x V — R satisfying
the following properties:

e Capacity Constraint: For all u,v € V'

0< f(u,v) <c(u,v).

V.

N\ O

Cinvestav

12 /107

Flow Properties

Definition

A flow in G = (V, E) is a real valued function f : V' x V — R satisfying
the following properties:

e Capacity Constraint: For all u,v € V'

0< f(u,v) <c(u,v).

e Flow conservation: For all w € V — {s,t}, we have that

V.

N\ O

Cinvestav

12 /107

Flow Properties

Definition

A flow in G = (V, E) is a real valued function f : V' x V — R satisfying
the following properties:

Properties

e Capacity Constraint: For all u,v € V'

0< f(u,v) <c(u,v).

e Flow conservation: For all w € V — {s,t}, we have that

Zf(vvu): Zf(u,'u)

veV veV

V.

N\ O

Cinvestav

12 /107

Outline

9 Flow Networks

@ Net Flow and Value of a Flow f

&)

Cinvestav

13 /107

Thus

We need to describe the concept of flow able to leave the source
1= aer f6:0) = Tuey £ 09 1= Doy £60) - Doy £ 69)

N
z

000 — 5

f\/'(/ \

&)

Cinvestav

14 /107

Net Flow and Value of a Flow f

Definition of net flow

@ The value of a net flow is defined as

&)

Cinvestav

15 /107

Net Flow and Value of a Flow f

Definition of net flow

@ The value of a net flow is defined as

|f|:Zf(va)_Zf(vvs)

veV veV

&)

Cinvestav

15 /107

Net Flow and Value of a Flow f

Definition of net flow

@ The value of a net flow is defined as

|f|:Zf(va)_Zf(vvs)

veV veV

@ The total flow from source s to any other vertices.

&)

Cinvestav

15 /107

Net Flow and Value of a Flow f

Definition of net flow

@ The value of a net flow is defined as

|f|:Zf(va)_Zf(vvs)

veV veV

This can bee seen as

@ The total flow from source s to any other vertices.

@ Which is the same as the total flow from any vertices to the sink ¢.

&)

Cinvestav

15 /107

Example

We have the following graph

Figure: A flow f in G with net flow value |f| =7

16 /107

Outline

9 Flow Networks

@ Maximum Flow Problem

&)

Cinvestav

17 /107

Maximum Flow Problem

Definition

Given a flow network G with source s and sink ¢, it is necessary to find a
flow of maximum value from s to t.

&)

Cinvestav

18 /107

Maximum Flow Problem

Definition

Given a flow network G with source s and sink ¢, it is necessary to find a
flow of maximum value from s to t.

How we solve this in an efficient manner? \

&)

Cinvestav

18 /107

Outline

e The Ford-Fulkerson Method
@ Introduction

Cinvestav

19/ 107

The Ford-Fulkerson Method

@ Not exactly an algorithm, but several implementations with different
running times.

&

Cinvestav

20 /107

The Ford-Fulkerson Method

@ Not exactly an algorithm, but several implementations with different
running times.

@ It depends on three fundamental ideas: Residual Networks,
Augmenting Paths and Cuts.

&

Cinvestav

20 /107

The Ford-Fulkerson Method

@ Not exactly an algorithm, but several implementations with different
running times.

@ It depends on three fundamental ideas: Residual Networks,
Augmenting Paths and Cuts.

| \

Pseudo-Code
Ford-Fulkerson-Method(G, s, t)
Q@ Initialize flow f to 0

@ while there exists an augmenting path p in the residual network G's

(3) augment flow f along p
Q@ return f

4

&

Cinvestav

20 /107

Outline

9 The Ford-Fulkerson Method

@ Defining Residual Networks

Cinvestav

21 /107

First, the Intuition

@ The residual network Gt consists of edges with capacities
representing the change in the flow on edges of G.

&)

Cinvestav

22 /107

First, the Intuition

@ The residual network Gt consists of edges with capacities
representing the change in the flow on edges of G.

@ An edge of the flow network can admit an amount of additional flow
equal to the edge’s capacity minus the flow on that edge.

cf (u,v) = c(u,v) — f (u,v) Residual Capacity

&)

Cinvestav

22 /107

Case |

The edges of G that are in Gy are those that can admit more flow

o i.e. c(u,v) — f(u,v) >0

&)

Cinvestav

23 /107

Case |

The edges of G that are in Gy are those that can admit more flow

o i.e. c(u,v) — f(u,v) >0

When you can add more flow to GG

o Then ¢y (u,v) = c(u,v) — f(u,v)

&)

Cinvestav

23 /107

Case Il

If they have that ¢ (u,v) — f (u,v) =0

e Then ¢y (u,v) = 0.

&)

Cinvestav

24 /107

Case Il

If they have that ¢ (u,v) — f (u,v) =0

e Then ¢y (u,v) = 0.

Basically
e Remove the edge in G given no more flow can be added to it!!!

&)

Cinvestav

24 /107

Case Il

First, the Intuition

@ As an algorithm manipulates the flow to increase its total value, it
might need to decrease the flow on a particular edge.

&)

Cinvestav

25 /107

Case Il

First, the Intuition

@ As an algorithm manipulates the flow to increase its total value, it
might need to decrease the flow on a particular edge.

To represent a possible decrease of a positive flow f (u,v)

@ We place an edge (v, u) in G with residual capacity

cr (v,u) = f(u,v).

Cinvestav

25 /107

Comments

This is an edge that can admit flow in the opposite direction to (u,v)

@ At most canceling out the flow on (u,v).

&)

Cinvestav

26 /107

Comments

This is an edge that can admit flow in the opposite direction to (u,v)

@ At most canceling out the flow on (u,v).

These reverse edges in the residual network allow
@ An algorithm to send back flow it has sent along an edge.

&)

Cinvestav

26 /107

Residual Capacity

Given a flow network and a flow J

@ The residual network consists of edges that can admit more net flow.

&)

Cinvestav

27 /107

Residual Capacity

Given a flow network and a flow
@ The residual network consists of edges that can admit more net flow.

It is based in the residual capacity function

if (u,v)€eE
if (v,u)€eE

otherwise

V.

&)

Cinvestav

27 /107

Residual Capacity

Given a flow network and a flow
@ The residual network consists of edges that can admit more net flow.

It is based in the residual capacity function

c(u,v) — f(u,v) if (u,v) € E
cr (u,v) = f(v,u) if (v,u)eE
0 otherwise

IMPORTANT: Because of our initial assumption if (u,v) € E implies that
(v,u) ¢ E, thus only one case applies.

4

&)

Cinvestav

27 /107

Residual Edges

Definition

Given a flow f, the residual network of G induced by f is G = (V, Ef)
where the set of residual edges E; is defined as

A O

Cinvestav

28 /107

Residual Edges

Definition

Given a flow f, the residual network of G induced by f is G = (V, Ef)
where the set of residual edges E; is defined as

E¢ = {(u,v) € V x Vl]ey (u,v) > 0}

A C 4

Cinvestav

28 /107

Residual Edges

Definition

Given a flow f, the residual network of G induced by f is G = (V, Ef)
where the set of residual edges E is defined as

E¢ = {(u,v) € V x Vl]ey (u,v) > 0}

Note: |Ef| < 2|FE| This is clear because the definition of capacity.

A C 4

Cinvestav

28 /107

Residual Edges

Definition

Given a flow f, the residual network of G induced by f is G = (V, Ef)
where the set of residual edges E; is defined as

E¢ = {(u,v) € V x Vl]ey (u,v) > 0}

Note: |Ef| < 2|FE| This is clear because the definition of capacity.

Observations

| N

@ The residual network is not a flow network because there may contain
both edges (u,v) and (v,u).

V.
Cinvestav

28 /107

Residual Edges

Definition

Given a flow f, the residual network of G induced by f is G = (V, Ef)
where the set of residual edges E; is defined as

E¢ = {(u,v) € V x Vl]ey (u,v) > 0}

Note: |Ef| < 2|FE| This is clear because the definition of capacity.

Observations

| \

@ The residual network is not a flow network because there may contain
both edges (u,v) and (v,u).

@ Other than that it has the same properties: Capacity Constraint and
Flow Conservation

y
Cinvestav

28 /107

Example

Graph with FLOW/CAPACITY

29 /107

Example

Its Residual Graph

vvvvvvvvv

Outline

e The Ford-Fulkerson Method

@ Augmentation

Cinvestav

31/107

Residual Networks: Augmentation

Defining the residual flow allows to define augmentation.

32 /107

Residual Networks: Augmentation

Observation
Defining the residual flow allows to define augmentation.

Augmentation

If fis a flow in G and f’ is a flow in the corresponding residual network,
we define the augmentation of a flow f by f as

32 /107

Residual Networks: Augmentation

Observation
Defining the residual flow allows to define augmentation.

Augmentation

If fis a flow in G and f’ is a flow in the corresponding residual network,
we define the augmentation of a flow f by f as

(f 1 £) (w,0) = {g<u7v> +f/(wv) = f (w,u) i (wv) € E

otherwise

32 /107

Residual Networks: Augmentation

Observation
Defining the residual flow allows to define augmentation.

Augmentation

If fis a flow in G and f’ is a flow in the corresponding residual network,
we define the augmentation of a flow f by f as

f(u7v)+f,(u7v)_f/(vau) if (U,U)GE
0 otherwise

(f 1) (u,0) ={

| \

The Idea Behind Augmenting

@ You can imagine augmentation as increase in the flow in a certain
edge minus the reversal possible flow in the same edge.

32 /107

Residual Networks: Augmentation

Observation
Defining the residual flow allows to define augmentation.

Augmentation

If fis a flow in G and f’ is a flow in the corresponding residual network,
we define the augmentation of a flow f by f as

f(u7v)+f,(u7v)_f/(v7u) if (U,U)GE
0 otherwise

(f 1) (u,0) :{

| \

The Idea Behind Augmenting

@ You can imagine augmentation as increase in the flow in a certain
edge minus the reversal possible flow in the same edge.

@ Looks like a cancellation of some sort!!!

32 /107

Residual Networks: Augmentation

Observation

Defining the residual flow allows to define augmentation.

Augmentation

If fis a flow in G and f’ is a flow in the corresponding residual network,
we define the augmentation of a flow f by f as

0 otherwise

(F11) (w0) = {f<u7v> +f (w0) = f 0w i (w0) € B

The Idea Behind Augmenting

@ You can imagine augmentation as increase in the flow in a certain
edge minus the reversal possible flow in the same edge.

| \

@ Looks like a cancellation of some sort!!!

@ Actual pushing flow on the reverse edge in the residual network is also
known as cancellation.

32/102

Outline

9 The Ford-Fulkerson Method

@ Augmentation
@ Augmentation Lemma

Cinvestav

33 /107

Augmentation Lemma

Let G = (V. E) be a flow network with source s and sink ¢, and let f be a
flow in G. Let G¢ be the residual network of G induced by f , and let f
be a flow in G. Then the function f 1 f’is a flow in G with value
717 =171+ 1.

&)

Cinvestav

34 /107

Proof:

First, we verify that f 1 f’ obeys

© The capacity constraint for each edge in E.

@ Flow conservation at each vertex in V' — {s,t} .

&)

Cinvestav

35/107

Proof:

First, we verify that f 1 f’ obeys

© The capacity constraint for each edge in E.

@ Flow conservation at each vertex in V' — {s,t} .

The capacity constraint for each edge in E.

@ Forallu,v e V=0<(f1f)(u,v) <c(u,v).

&)

Cinvestav

35/107

Proof:

First, we verify that f 1 f’ obeys

© The capacity constraint for each edge in E.

@ Flow conservation at each vertex in V' — {s,t} .

The capacity constraint for each edge in E.

@ Forallu,v e V=0<(f1f)(u,v) <c(u,v).

Flow conservation at each vertex in V' — {s,t}

o Forallu eV —{s,t} = X ey (f T f) (v,u) = X,ev (f T) (u,0).

&)

Cinvestav

35/107

Proof:

Capacity Constraint
Q If (u,v) € E then ¢y (v,u) = f (u,v).

&)

Cinvestav

36 /107

Proof:

Capacity Constraint
Q If (u,v) € E then ¢y (v,u) = f (u,v).
Q Therefore f/ (v,u) < ¢ (v,u) = f (u,v).

&)

Cinvestav

36 /107

Proof:

Capacity Constraint

Q If (u,v) € E then ¢y (v,u) = f (u,v).
Q Therefore f/ (v,u) < ¢ (v,u) = f (u,v).

(fo/) (u,v) :f(u7v)+fl(uvv)_f/(v7u)

36 /107

Proof:

Capacity Constraint

Q If (u,v) € E then ¢y (v,u) = f (u,v).
Q Therefore f/ (v,u) < ¢ (v,u) = f (u,v).

(fo/) (u,v) :f(u7v)+fl(uvv)_f/(v7u)
> f(u,v)—i—f’(u,v)—f(u,v)

36 /107

Proof:

Capacity Constraint
Q If (u,v) € E then ¢y (v,u) = f (u,v).
Q Therefore f/ (v,u) < ¢ (v,u) = f (u,v).

(fo/) (u,v) :f(u7v)+fl(uvv)_f/(v7u)
> f(u,v)—i—f’(u,v)—f(u,v)
:fl(u7v)

>0

Cinvestav

36 /107

Proof

(fol) (’LL,U) :f(u,v)—i—f’(u,v)—f’(v,u)

Cinvestav

37 /107

Proof

Second

(fol) (’LL,U) :f(u,v)—i—f’(u,v)—f’(v,u)
< fluv)+ f

—

5
&4

~—

Cinvestav

37 /107

Proof

Cinvestav

37 /107

Proof

o
=
(o}
[}
(5

wn

f(u,v)—i—f’(u,fu)—f'(v,u)

(f 1 f) (u,v)

=

S

N~—

S—
U./ U7 \U)
/.U\ ~— u./
. ~
- 5o
+ + +
e s e
ISR SRS
S S S
~— ~— ~—
= e e
VI VI VI

37 /107

Proof

o
=
(o}
[}
(5

wn

—i—f’(u,v)—f’(v,u)

—~

U, U

—~

—

—~

~— — ~— ~—

f

(f 1 f) (u,0)

—~

~—

(]
>
=
=

37 /107

Proof

o
=
(o}
[}
(5

wn

—i—f’(u,v)—f’(v,u)

—~

U, U

—~

—

—~

~— — ~— ~—

f

(f 1 f) (u,0)

—~

~—

(]
>
=
=

0<(f1f)(u,v) <e(u,v)

37 /107

Now, We prove the Flow Conservation

Yo ())= [(w0) + f (u0) = f (v,u)]

veV veV

38 /107

Now, We prove the Flow Conservation

Therefore

Y (F) () =0 [f (ww) + f (u,0) = f (v,u)]

veV veV

= Zf(U,v)—l- Zf’(u,v)— Zf’(v,u)

veV veV veV

38 /107

Now, We prove the Flow Conservation

Y (F) () =0 [f (ww) + f (u,0) = f (v,u)]

veV veV
= Z [(u,v) + Z I (u,v) — Z f' (v,)
veV veV veV

= Zf(”7“)+ Zf/(?hu)— Zf’(u,v)

vev veV veV

38 /107

Now, We prove the Flow Conservation

Yo ())= [(w0) + f (u0) = f (v,u)]

veV veV
= Z f(u,v) + Z I (u,v) — Z f' (v,)
veV veV veV
= Z f(v,u) + Z I (v,u) — Z f (u,v)
vev veV veV

=" [f wu) + ' (v,u) = f (u,0)]

veV

38 /107

Now, We prove the Flow Conservation

Therefore

Y (F) () =0 [f (ww) + f (u,0) = f (v,u)]

veV veV

= Z [(u,v) + Z I (u,v) — Z f' (v,)
veV veV veV

= Z f(v,u) + Z I (v,u) — Z f (u,v)
'UEV UGV UGV

=" [f (w,w) + f (v, u) = £ (u,v)]
veV

=> (/1) w,u)
veV

@ where the third line follows from the second by flow conservation in f
and f'.

38 /107

Now, we need to prove that |f 1 f'| = |f| + |f'].

o We disallow anti-parallel edges in G, but not in G/.

» For each vertex v € V, we know that there can an edge (s, v) or (v, s)
but never both.

&)

Cinvestav

39 /107

Now, we need to prove that |f 1 f'| = |f| + |f'].

Recall

o We disallow anti-parallel edges in G, but not in G/.

» For each vertex v € V, we know that there can an edge (s,v) or (v, s)
but never both.

v

Now, we define with respect to the source

o Vi ={v|(s,v) € E}
o Vo ={v|(v,s) € E}

&)

Cinvestav

39 /107

Remember the definition of Net Flow

Definition of net flow

@ The value of a net flow is defined as

|f|:Zf(Sav)_Zf(Uas)

veV veV

&)

Cinvestav

40 /107

Now

We have the following properties

e VUV CV.
e V1 NV, = () given not anti-parallel edges.

&8

Cinvestav

41 /107

Now

We have the following properties

e VUV CV.
e V1 NV, = () given not anti-parallel edges.

| A\

We can compute then

FAFI=3 (F1) (s0) =D (F1F)(vs)

veV veV
=Y (frf)(s0)= > (1) (v,s)
veVy veV:

e Given that (f 1 f') (s,v) =0if (s,v) ¢ E

Then

Reordering some of the terms, we have

FA =0 1 (5,0) + f (s,0) = f (v,9)]

veV;

—Z (v,8) + [/ (v,s) — f' (s,0)]

veVs

Then

Reordering some of the terms, we have

=D I (s0)+ f (5,0) = f (v,9)]

veEV]

— S F,8) + £ (0,8) — £ (5,0)]
veVs

= Z f(s,v)—i— Z f/(S,’U) - Z f’(U,S)
veEVL veVy veV]

- Z f(v,s) - Z f/(v78)+ Z fl(s,’l})
veEV2 vEVs vEVs)

Then, we have that

After some Reordering

|fo/|: Zf(s7v)_ Zf(ﬂ,s)-i— Zf/<57v)+ Zf/(‘g?v)

veEVR vEVL veEV] vEV>
- Z f’(v,s) - Z f/(U,S)
veEV] vEVa

Then, we have that

|fo/|: Zf(s7v)_ Zf(ﬂ,s)-i— Zf/<57v)+ Zf/(‘g?v)

veVy veVs veVy veEVL

e IRACDEDIP RO

veV] veEV2

B ST T B SR Tl ST B S
veV; veVs veVIUV, veVIUV,

Then, we have that

After some Reordering

|fo/|: Zf(s7v)_ Zf(ﬂ,s)-i— Zf/<57v)+ Zf/(‘g?v)

veVy veVs veVy veVa
- Z f’(v,s) - Z f/(U,S)
veV] veEV2
:Zf(sav)_Zf(vaS)+ Z fl(svv)_ Z f/(U,S)
veV; veVs veVIUV, veVIUV,
= Zf(svv)_ Zf(vas)+ Zf'(s,v) - Zf/(vas)
veV veV veV veV
= fl+1f]

Outline

e The Ford-Fulkerson Method

@ Augmenting Paths

Cinvestav

44 /107

Augmenting Paths

Augmenting Path

@ An augmenting path p is a simple path from s to t in the residual
graph G.

&)

Cinvestav

45 /107

Augmenting Paths

Augmenting Path

@ An augmenting path p is a simple path from s to t in the residual
graph G.

Residual Capacity

@ Residual capacity is the maximum amount by which we can increase
the flow without violating capacity

&)

Cinvestav

45 /107

Augmenting Paths

Augmenting Path

@ An augmenting path p is a simple path from s to t in the residual
graph G.

Residual Capacity

@ Residual capacity is the maximum amount by which we can increase
the flow without violating capacity

¢y (p) = min {cy (u,v) | (u,v) is on p}.

&)

Cinvestav

45 /107

Example

Example of an augmented path (Shaded) given a flow graph G and

flow f

Graph G and flow f Graph Gy and augmented path p
12/12

11/14

Figure: Residual Capacity of shaded path is 5

Cinvestav

46 /107

The new flow Graph

Here, we have

New Flow Graph G and flow f

Figure: Result after Augmentation

&)

Cinvestav

47 /107

Lemma 26.2

Lemma 26.2

o Let G = (V, E) be a flow network, let f be a flow in G, and let p be
an augmenting path in Gy . Define a function f, : V x V — R by

&)

Cinvestav

48 /107

Lemma 26.2

Lemma 26.2

o Let G = (V, E) be a flow network, let f be a flow in G, and let p be
an augmenting path in Gy . Define a function f, : V x V — R by

cr(p) if (u,v) ison p,
£y (u,0) = r (p) (_)
0 otherwise

&)

Cinvestav

48 /107

Lemma 26.2

Lemma 26.2

o Let G = (V, E) be a flow network, let f be a flow in G, and let p be
an augmenting path in Gy . Define a function f, : V x V — R by

cr(p) if (u,v) ison p,
£y (u,0) = r (p) (_)
0 otherwise

@ Then f, is a flow in Gy with value |f,| = ¢f (p) > 0.

&)

Cinvestav

48 /107

Proof:

First, we verify that f, obeys

@ The capacity constraint for each edge in E.

@ Flow conservation at each vertex in V — {s,t} .

&)

Cinvestav

49 /107

Proof:

First, we verify that f, obeys

@ The capacity constraint for each edge in E.

@ Flow conservation at each vertex in V — {s,t} .

The capacity constraint for each edge in E.

o Forallu,v e V = 0< f,(u,v) < c(u,v).

&)

Cinvestav

49 /107

Proof:

First, we verify that f, obeys

@ The capacity constraint for each edge in E.

@ Flow conservation at each vertex in V — {s,t} .

The capacity constraint for each edge in E.

e Forallu,veV = 0< f,(u,v) <c(u,v).

Flow conservation at each vertex in V' — {s,t}

o ForallueV —{s,t} = > cv f(v,u) =X cv f (u,v).

&)

Cinvestav

49 /107

Proof

The capacity constraints

o It follows from the definition...

~

Cinvestav

50 /107

Proof

The capacity constraints
@ It follows from the definition...

The flow conservation, for all u € V' — {s,t}

Yo fwuw)= > @+ DY, 0

veV veV,(v,u)€p veV,(v,u)¢p

V.
~

Cinvestav

50 /107

Proof

The capacity constraints

o It follows from the definition...

The flow conservation, for all u € V' — {s,t}

Shww= 3 @+ > 0

veV veV,(v,u)€p veV,(v,u)¢p

=cr (p) + Z 0

veV,(v,u)gp

V.
~

Cinvestav

50 /107

Proof

The capacity constraints
@ It follows from the definition...

The flow conservation, for all u € V' — {s,t}

pr(v,u): Z cr (p) + Z 0
veV veV,(v,u)Ep veV,(v,u)¢p
=cs(p)+ Y 0
veV,(v,u)Ep
= X g@+ > 0
veV,(u,v)Ep veV,(v,u)¢p
= Z fp (U, /U)
veV

4
~

Cinvestav

50 /107

Remember the definition of Net Flow

Given the definition

[fl=2"Ffls,0) =Y flv,s)=cs () —0=c;(p) >0

veV veV

51 /107

Finally

Corollary 26.3

o Let G = (V, E) be a flow network, let f be a flow in G, and let p be
an augmenting path in Gy . Suppose that we augment f by f,. Then
the function f 1 f, is a flow in G with value |f 1 f,| = |f]| + | fp|>f]-

&)

Cinvestav

52 /107

Finally

Corollary 26.3

o Let G = (V, E) be a flow network, let f be a flow in G, and let p be
an augmenting path in Gy . Suppose that we augment f by f,. Then
the function f 1 f, is a flow in G with value |f 1 f,| = |f]| + | fp|>f]-

Proof Immediate from previous lemmas.

&)

Cinvestav

52 /107

Outline

e The Ford-Fulkerson Method

@ Ford-Fulkerson Process

Cinvestav

53 /107

Ford-Fulkerson

Basic Process
Augment repeatedly the flow along augmenting paths

54 /107

Ford-Fulkerson

Basic Process
Augment repeatedly the flow along augmenting paths

How do we stop?

Ah!! Here, we will use the concept of cut.

54 /107

Ford-Fulkerson

Basic Process

Augment repeatedly the flow along augmenting paths

How do we stop?

Ah!! Here, we will use the concept of cut.

A cut (S, T) of flow network G = (V, E) is a partition of V into S and
T=V —SsuchthatseSandteT.

54 /107

Ford-Fulkerson

Basic Process

Augment repeatedly the flow along augmenting paths

How do we stop?

Ah!! Here, we will use the concept of cut.

A cut (S,T) of flow network G = (V, E) is a partition of V' into S and
T=V —SsuchthatseSandteT.

If f is flow, then a net flow is defined as

f(SvT): ZZf(uaU)_ZZf(v7u)

ueS veT ueSveT

54 /107

Outline

e The Ford-Fulkerson Method

@ Minimal Cut

&)

Cinvestav

55 /107

Minimum Cut

The net flow across the cut f(S5,7) = 19 and the capacity is
c(S,T) = 26

J

N4

Cinvestav

56 /107

Minimum Cut

The net flow across the cut f(S5,7) = 19 and the capacity is
c(S,T) = 26

Therefore

A minimum cut of a network is a cut whose capacity is minimum over all
cuts of the network.

<

N4

Cinvestav

56 /107

Important

The asymmetry between the definitions of flow and capacity of a cut is
intentional and important.

&)

Cinvestav

57 /107

Important

The asymmetry between the definitions of flow and capacity of a cut is
intentional and important.

© For capacity, we count only the capacities of edges going from S to T’
, ignoring edges in the reverse direction.

&)

Cinvestav

57 /107

Important

The asymmetry between the definitions of flow and capacity of a cut is
intentional and important.

© For capacity, we count only the capacities of edges going from S to T’
, ignoring edges in the reverse direction.

@ For flow, we consider the flow going from S to 1" minus the flow
going in the reverse direction from 7" to S.

&)

Cinvestav

57 /107

Example

(Webave |

11/16

8/13

58 /107

Outline

e The Ford-Fulkerson Method

@ Proving that Min-Cut works

Cinvestav

59 /107

The Net Flow across any cut is the same

Lemma 26.4

Let f be a flow in a flow network G with source s and sink ¢, and let
(S,T) be any cut of G. Then the net flow across (S,T") is f (S,T) = | f|.

&)

Cinvestav

60 /107

The Net Flow across any cut is the same

Lemma 26.4

Let f be a flow in a flow network G with source s and sink ¢, and let
(S,T) be any cut of G. Then the net flow across (S,T") is f (S,T) = | f|.

@ We have from flow-conservation

Zf(u,v)—Zf(v,u)zO

veV veV

&)

Cinvestav

60 /107

Now

Knowing that || = >,cv £(5,v) — Sucy f (0,5)

=S o) -3 fos+ 3 (zm,v)— zf<v,u>)

veV veV ueS—{s} \weV veV

Cinvestav

61 /107

Now

KnOWing that ’f‘ — Z’UE‘WV f(5~ /U) — Z'UE" f (U? 5)

=S o) -3 fos+ 3 (zm,v)— zf<v,u>)

veV veV ueS—{s} \weV veV

| A\

Regrouping Terms

|f\=2(f(syv)— > f(uvv))—Z(f(v,S)Jr > f(v,U))

veV ueS—{s} veV ueS—{s}

Finally, we have

The following equation

‘f|:ZZf(uaU)_ZZf(U7u)

veEV ueSs veEV ueSs

&)

Cinvestav

62 /107

Finally, we have

The following equation

‘f|:ZZf(uaU)_ZZf(U7u)

veEV ueSs veEV ueSs

Because V=SUT and SNT =0

|f|:ZZ.}C(U7U>+ZZf(u7v)_zZf(vvu)_zz.f(vvu)

vES UES vES uET vES uET vES UES

Therefore

|f|::§: E:.f(u7v)_'§: E:(f(vau)::f(sajj

veS ueT veESUET

Cinvestav

63 /107

Bounding the value of a flow.

Corollary 26.5

@ The value of any flow f in a flow network G is bounded from above
by the capacity of any cut of G.

&)

Cinvestav

64 /107

Proof

Let (S,T) any cut of G and f be any flow

[fl=f(5,T)

v

&)

Cinvestav

65 /107

Proof

Let (S,T) any cut of G and f be any flow

[fl=f(5,T)

= 2: E:.f(uvv)_'E: 2:.f(vvu)

veS ueT

vES UET

v

&)

Cinvestav

65 /107

Proof

Let (S,T) any cut of G and f be any flow

[fl=£(S,T)
:ZZf(u,’U)—ZZf(’U,’U,)
veS ueT veS ueT
<> fluw)
veS ueT

Cinvestav

65 /107

Proof

Let (S,T) any cut of G and f be any flow

[fl=f(5T)
= 2: E:.f(uvv)_'E: 2:.f(vvu)

vES UET vES UET

<N flu,w)

vES UET

< Z Zc(u,v) =C(5,T)

vES UET

Cinvestav

65 /107

The value of a maximum flow is in fact equal to the
capacity of a minimum cut

Theorem 26.6 (Max-Flow Min-Cut Theorem) - Stopping Condition

If fis a flow in a flow network G = (V, E) with source s and sink ¢, then
the following conditions are equivalent:

&)

Cinvestav

66 /107

The value of a maximum flow is in fact equal to the
capacity of a minimum cut

Theorem 26.6 (Max-Flow Min-Cut Theorem) - Stopping Condition

If fis a flow in a flow network G = (V, E) with source s and sink ¢, then
the following conditions are equivalent:

© f is a maximum flow in G.

&)

Cinvestav

66 /107

The value of a maximum flow is in fact equal to the
capacity of a minimum cut

Theorem 26.6 (Max-Flow Min-Cut Theorem) - Stopping Condition

If fis a flow in a flow network G = (V, E) with source s and sink ¢, then
the following conditions are equivalent:

© f is a maximum flow in G.

@ The residual network Gy contains no augmenting paths.

&)

Cinvestav

66 /107

The value of a maximum flow is in fact equal to the
capacity of a minimum cut

Theorem 26.6 (Max-Flow Min-Cut Theorem) - Stopping Condition

If fis a flow in a flow network G = (V, E) with source s and sink ¢, then
the following conditions are equivalent:

© f is a maximum flow in G.

@ The residual network Gy contains no augmenting paths.
Q |f| =c(S,T) for some cut (S,T) of G.

&)

Cinvestav

66 /107

Proof

@ Assume the following for a contradiction f is a maximum flow and
Gy has an augmenting path p.

&)

Cinvestav

67 /107

Proof

(1) = (2)

@ Assume the following for a contradiction f is a maximum flow and

Gy has an augmenting path p.

Therefore, we can augment f by f,

[f T Sl > |1

Cinvestav

67 /107

Proof

(1) = (2)

@ Assume the following for a contradiction f is a maximum flow and
Gy has an augmenting path p.

Therefore, we can augment f by f,

[f T Sl > |1

Problem f 1 f, is a flow

@ Contradiction!!! Thus GGy does not contain any augmenting path.

Cinvestav

67 /107

Proof

@ Suppose that Gy does not contain augmenting path... no path from s
to .

&)

Cinvestav

68 /107

Proof

(2) = (3)
@ Suppose that Gy does not contain augmenting path... no path from s
to .

Define

| \

S{veV|dpaths~t} andT =V -8

N

&)

Cinvestav

68 /107

Proof

(2) = (3)

@ Suppose that Gy does not contain augmenting path... no path from s
to .

Define

| \

S{veV|dpaths~t} andT =V -8

N

We have s € S trivially and ¢ ¢ S given not path from s to ¢ in Gy
@ We have several cases...

&)

Cinvestav

68 /107

Therefore

e We have f (u,v) = c(u,v).

» Because in any other case (u,v) € E; which will place v € S.

&)

Cinvestav

69 /107

Therefore

e We have f (u,v) = c(u,v).
» Because in any other case (u,v) € E; which will place v € S.

e We must have f (v,u) =0

» Otherwise ¢f (u,v) = f (v,u) would be positive and we would have
(u,v) € Ey again placing v € S

&)

Cinvestav

69 /107

Finally

If neither (u,v) nor (v,u) is in E

@ Then f (u,v) = f(v,u) =0

&)

Cinvestav

70 /107

Finally

If neither (u,v) nor (v,u) is in E
@ Then f (u,v) = f(v,u) =0

(S8, T) :Z Zf(uvv)_ Z Zf(vau)

veES ueT veT ues
N LI

veS ueT veT ues
=C (Sa T)

v

&)

Cinvestav

70 /107

Finally

We have because of Lemma 26.4

|f| :f(SaT) ZC(SvT)

&)

Cinvestav

71/107

Finally

We have because of Lemma 26.4

|f| :f(SaT) =C(SvT)

e By Corollary 26.5 |f| < ¢(S,T) for all cuts (S,T)

&)

Cinvestav

71 /107

Finally

We have because of Lemma 26.4

[fl=f(5T)=c(5T)

e By Corollary 26.5 |f| < ¢(S,T) for all cuts (S,T)

Thus, the condition |f| = ¢ (S,T)

@ It implies that f is a maximum flow...

&)

Cinvestav

71 /107

Outline

9 The Ford-Fulkerson Method

@ Proving that Min-Cut works
@ Meaning of All This

Cinvestav

72 /107

Meaning of All This

Procedure

Init We start with flow f zero.

V.

&)

Cinvestav

73 /107

Meaning of All This

Procedure

Init We start with flow f zero.

© We construct the residual graph.

V.

&)

Cinvestav

73 /107

Meaning of All This

Procedure

Init We start with flow f zero.

© We construct the residual graph.
@ We find a path p between s and t in the residual Graph.

V.

&)

Cinvestav

73 /107

Meaning of All This

Procedure

Init We start with flow f zero.

© We construct the residual graph.
@ We find a path p between s and t in the residual Graph.
© If The residual network Gy contains no augmenting paths.

@ The f is the maximum flow!!! and exit

V.

&)

Cinvestav

73 /107

Meaning of All This

Procedure

Init We start with flow f zero.

© We construct the residual graph.
@ We find a path p between s and t in the residual Graph.
© If The residual network Gy contains no augmenting paths.

@ The f is the maximum flow!!! and exit

Q We find C (p)

V.

&)

Cinvestav

73 /107

Meaning of All This

Procedure

Init We start with flow f zero.

© We construct the residual graph.

@ We find a path p between s and t in the residual Graph.

© If The residual network Gy contains no augmenting paths.
@ The f is the maximum flow!!! and exit

Q We find C (p)

© We augment the flow in the original graph.

V.

&)

Cinvestav

73 /107

Meaning of All This

Procedure

Init We start with flow f zero.

© We construct the residual graph.

@ We find a path p between s and t in the residual Graph.

© If The residual network Gy contains no augmenting paths.
@ The f is the maximum flow!!! and exit

Q We find C (p)

© We augment the flow in the original graph.

Q Repeatto 1

v

&)

Cinvestav

73 /107

Outline

e The Ford-Fulkerson Method

@ Ford-Fulkerson Algorithm

Cinvestav

74 /107

Now

For the algorithm, if (u,v) € £

We make (u,v).f = (u,v).f + cf (p) because you can add flow.

&)

Cinvestav

75 /107

Now

For the algorithm, if (u,v) € F

We make (u,v).f = (u,v).f + cf (p) because you can add flow.

If (u,v) ¢ E

You have that (u,v) is a reversal in Gy, then (v,u) € E:

(u,0) .f = (u,v) .f —¢f (p)

&)

Cinvestav

75 /107

Now

For the algorithm, if (u,v) € F

We make (u,v).f = (u,v).f + cf (p) because you can add flow.

If (u,v) ¢ E

You have that (u,v) is a reversal in Gy, then (v,u) € E:

(u,0) .f = (u,v) .f —¢f (p)

Meaning
@ Do not add flow but remove to do the cancellation.

Cinvestav

75 /107

Ford-Fulkerson Algorithm

Ford-Fulkerson(G, s, t)
@ for each edge (u,v) € G.E
2] (u,v).f=0

v

&)

Cinvestav

76 /107

Ford-Fulkerson Algorithm

Ford-Fulkerson(G, s, t)
@ for each edge (u,v) € G.E
2] (u,v).f=0

© while there exists a path p form s to ¢ in the residual network G/

v

&)

Cinvestav

76 /107

Ford-Fulkerson Algorithm

Ford-Fulkerson(G, s, t)
@ for each edge (u,v) € G.E
(u,v).f=0

(2]
© while there exists a path p form s to ¢ in the residual network G/
o s (p) = min {c; (u,0) | (u,v) is in p}

v

&)

Cinvestav

76 /107

Ford-Fulkerson Algorithm

Ford-Fulkerson(G, s, t)

for each edge (u,v) € G.E
(u,v).f=0
while there exists a path p form s to t in the residual network G
¢ (p) = min {cy (u,v) | (u,v) isin p}
for each edge (u,v) in p
if (u,v) € £
(w,0) f = (w,v).f +¢; (p)
else (v,u).f = (v,u).f —cf(p)

©00000O0CO0C

v

&)

Cinvestav

76 /107

Ford-Fulkerson Algorithm

Ford-Fulkerson(G, s, t)
for each edge (u,v) € G.F
(u,v).f=0
while there exists a path p form s to t in the residual network G
¢ (p) = min {cy (u,v) | (u,v) isin p}
for each edge (u,v) in p
if (u,v) € £
(u,v) - = (u,) .f + 1 (p)
else (v,u).f = (v,u).f —cf(p)

©00000O0CO0C

v

&)

Cinvestav

76 /107

Ford-Fulkerson Algorithm

Explanation
@ Line 1-2 initialize flows to 0.

&)

Cinvestav

77 /107

Ford-Fulkerson Algorithm

Explanation
@ Line 1-2 initialize flows to 0.

@ Line 3-8 are executed as long as a path exist in Gy between s to t:

&)

Cinvestav

77 /107

Ford-Fulkerson Algorithm

Explanation

o Line 1-2 initialize flows to 0.
@ Line 3-8 are executed as long as a path exist in Gy between s to t:
» Line 4 finds the ¢f (p).

&)

Cinvestav

77 /107

Ford-Fulkerson Algorithm

OBSERVATION: Each residual edge in path p is either an edge in the

original network or the reversal

@ Thus, Line 6-8 basically are an equilibrium act:

&)

Cinvestav

78 /107

Ford-Fulkerson Algorithm

OBSERVATION: Each residual edge in path p is either an edge in the

original network or the reversal

@ Thus, Line 6-8 basically are an equilibrium act:

> If the edge exist add flow to it.

&)

Cinvestav

78 /107

Ford-Fulkerson Algorithm

OBSERVATION: Each residual edge in path p is either an edge in the

original network or the reversal

@ Thus, Line 6-8 basically are an equilibrium act:

> If the edge exist add flow to it.
> If not remove flow otherwise from the reverse edge.

&)

Cinvestav

78 /107

Outline

e The Ford-Fulkerson Method

@ Example

&)

Cinvestav

79 /107

Example of Ford-Fulkerson

First Augmentation Path

16
o .
3

1

4/12

20 4/16 ‘—’

L me s

4 13

4/14

&)

Cinvestav

80 /107

Example

Second Augmentation Path

Cinvestav

81/107

Example

Then

82/107

Example

Example

83 /107

Example

Example

84 /107

Outline

e The Ford-Fulkerson Method

@ Complexity

&)

Cinvestav

85 /107

Ford-Fulkerson Algorithm

Final Code

Ford-Fulkerson(G, s, t)
for each edge (u,v) € G.F
(u,v).f=0
while there exists a path p form s to t in the residual network Gy
¢y (p) = min {cs (u,v) | (u,v) isin p}
for each edge (u,v) in p
if (u,v) e £
(u,v) - = (u,) .f +cf (p)
else (v,u).f = (v,u).f —cs(p)

©00000O0CO0C

v

e

Cinvestav

86 /107

Complexity |

Complexity

o Note: Be careful a bad implementation will not converge
because we need to choose p.

V.

&)

Cinvestav

87 /107

Complexity |

Complexity

o Note: Be careful a bad implementation will not converge
because we need to choose p.

@ Ford-Fulkerson works for integer numbers, but rational numbers can
be transformed into integers by scaling (Real can be approximated by
rational numbers).

V.

&)

Cinvestav

87 /107

Complexity |

Complexity

o Note: Be careful a bad implementation will not converge
because we need to choose p.

@ Ford-Fulkerson works for integer numbers, but rational numbers can
be transformed into integers by scaling (Real can be approximated by
rational numbers).

@ Imagine that after that transformation, we have f* the maximum flow
of a transformed network.

V.

&)

Cinvestav

87 /107

Complexity |

Complexity

o Note: Be careful a bad implementation will not converge
because we need to choose p.

@ Ford-Fulkerson works for integer numbers, but rational numbers can
be transformed into integers by scaling (Real can be approximated by
rational numbers).

@ Imagine that after that transformation, we have f* the maximum flow
of a transformed network.

» while loop of lines 3-8 are bounded by |f*| since the flow value
increases by at least one unit at each iteration.

4

&)

Cinvestav

87 /107

Complexity Il

Using BFS or DFS

o Complexity of finding a path is O (V + E') = O (E) (Line 3 While
Loop)

&)

Cinvestav

88 /107

Complexity Il

Using BFS or DFS

o Complexity of finding a path is O (V + E') = O (E) (Line 3 While
Loop)

e Final complexity time of the Ford-Fulkerson Algorithm is O (E'|f*|)

&)

Cinvestav

88 /107

Complexity Il

Using BFS or DFS

o Complexity of finding a path is O (V + E') = O (E) (Line 3 While
Loop)

e Final complexity time of the Ford-Fulkerson Algorithm is O (E'|f*|)

What if if c¢(p) = 1 each time?

&)

Cinvestav

88 /107

Outline

9 The Ford-Fulkerson Method

@ Complexity
@ A Problem with This Solution

Cinvestav

89/107

Example where the situation is not so Good

1

a\ !
&‘?0@ P

T
Figure: An example where complexity can be a killer when selecting the central
path all the time @

Cinvestav

90 /107

Outline

o Solving the Problem with Edmond-Karp Algorithm
@ Introduction

Cinvestav

91 /107

Edmond-Karp Algorithm

Observation Edmond-Karp

@ Edmond-Karp is Ford-Fulkerson with shortest path in the residual
network, 07 (u,v), where each edge has unit distance (weight).

92 /107

Edmond-Karp Algorithm

Observation Edmond-Karp

@ Edmond-Karp is Ford-Fulkerson with shortest path in the residual
network, 07 (u,v), where each edge has unit distance (weight).

@ Basically use BFS.

92 /107

Edmond-Karp Algorithm

Observation Edmond-Karp

@ Edmond-Karp is Ford-Fulkerson with shortest path in the residual
network, 07 (u,v), where each edge has unit distance (weight).

@ Basically use BFS.

Lemma 26.7
If the Edmonds-Karp algorithm is run on a flow network G = (V, E') with
source s and sink ¢, then for all vertices v € V' — {s,t}, the shortest-path
distance 67 (u,v) in the residual network Gy increases monotonically with
each flow augmentation.

92 /107

Edmond-Karp Algorithm

Observation Edmond-Karp

@ Edmond-Karp is Ford-Fulkerson with shortest path in the residual
network, 07 (u,v), where each edge has unit distance (weight).

@ Basically use BFS.

Lemma 26.7

If the Edmonds-Karp algorithm is run on a flow network G = (V, E') with
source s and sink ¢, then for all vertices v € V' — {s,t}, the shortest-path
distance 67 (u,v) in the residual network Gy increases monotonically with
each flow augmentation.

Theorem 26.8
If the Edmonds-Karp algorithm is run on a flow network G = (V, E)) with
source s and sink ¢, then the total number of flow augmentations
performed by the algorithm is O(VE).

| \

92 /107

Outline

o Solving the Problem with Edmond-Karp Algorithm

@ Complexity

Cinvestav

93 /107

Complexity

Complexity Edmond-Karp

@ Each iteration of Ford-Fulkerson can be implemented in O(E).

&)

Cinvestav

94 /107

Complexity

Complexity Edmond-Karp
@ Each iteration of Ford-Fulkerson can be implemented in O(E).
@ The Complexity of Edmond-Karp is O(V E?).

&)

Cinvestav

94 /107

Complexity

Complexity Edmond-Karp

@ Each iteration of Ford-Fulkerson can be implemented in O(E).
@ The Complexity of Edmond-Karp is O(V E?).

Better Complexity

@ The Generic Push-Relabel by Golberg for max-flow has complexity
0 (V2E).

A

&)

Cinvestav

94 /107

Complexity

Complexity Edmond-Karp
@ Each iteration of Ford-Fulkerson can be implemented in O(E).
@ The Complexity of Edmond-Karp is O(V E?).

Better Complexity

| A\

@ The Generic Push-Relabel by Golberg for max-flow has complexity
0 (V2E).
@ Don't Panic, It is beyond this class!!!

V.

&)

Cinvestav

94 /107

Outline

e Applications

@ The Maximum-Bipartite-Matching Problem

Cinvestav

95 /107

The Maximum-Bipartite-Matching Problem

The Bipartite Graph

A graph G = (V,E), where V. = LU R s.t. LN R = (), and for every
(u,v) € E,u€ L and v € R.

&

Cinvestav

96 / 107

The Maximum-Bipartite-Matching Problem

The Bipartite Graph

A graph G = (V,E), where V. = LU R s.t. LN R = (), and for every
(u,v) € E,u€ L and v € R.

| A

Matching

Given an undirected graph G = (V, E), a matching is a subset of edges
M C FE such that for all vertices v € V, at most one edge of M is incident
on v.

&

Cinvestav

96 / 107

The Maximum-Bipartite-Matching Problem

The Bipartite Graph

A graph G = (V,E), where V. = LU R s.t. LN R = (), and for every
(u,v) € E,u€ L and v € R.

Matching

| A\

Given an undirected graph G = (V, E), a matching is a subset of edges

M C FE such that for all vertices v € V, at most one edge of M is incident
on v.

4

Maximum Matching

A maximum matching is a matching of maximum cardinality, that is, a
matching M such that for any matching M’, we have: |M'| < |M]|.

&2

Cinvestav

96 / 107

Example

Two examples of matching

v

&)

Cinvestav

97 /107

Corresponding Flow Network

A graph G’ = (V', E’) is a corresponding flow network from a bipartite
graph G:

&)

Cinvestav

98 /107

Corresponding Flow Network

A graph G’ = (V', E’) is a corresponding flow network from a bipartite
graph G:
o V' =V U{s,t}

&)

Cinvestav

98 /107

Corresponding Flow Network

A graph G’ = (V', E’) is a corresponding flow network from a bipartite
graph G:

o V' =V U{s,t}

o ' ={(s,u)|lue L} UEU{(v,t) € E'}

&)

Cinvestav

98 /107

Corresponding Flow Network

A graph G’ = (V', E’) is a corresponding flow network from a bipartite
graph G:

o V' =V U{s,t}

o F'={(s,u)|lue L}yUFEU{(v,t) € E'}

o |[E|<|E'|=I|E|+|V]|<3|E|

&)

Cinvestav

98 /107

Corresponding Flow Network

A graph G’ = (V', E’) is a corresponding flow network from a bipartite
graph G:

o V' =V U{s,t}

o F'={(s,u)|lue L}yUFEU{(v,t) € E'}

o |E| <|E'|=|E|+|V|<3|E|

° |[E'| =0 (E)

&)

Cinvestav

98 /107

Corresponding Flow Network

A graph G’ = (V', E’) is a corresponding flow network from a bipartite
graph G:

o V' =V U{s,t}

o F'={(s,u)|lue L}yUFEU{(v,t) € E'}

o |[E|<|E'|=I|E|+|V]|<3|E|

o |E'| =0 (E)

e Make for any (u,v) € E/, w (u,v) =1

&)

Cinvestav

98 /107

Example

Add new source s and sink ¢

e

v

&)

Cinvestav

99 /107

Outline

e Applications

@ The Maximum-Bipartite-Matching Problem
@ Corresponding Flow Network

Cinvestav

100/ 107

Corresponding Flow Network

@ Basically, you run Edmond-Karp on the Graph G’.

Ok, What do we do? J

&)

Cinvestav

101 /107

Corresponding Flow Network

Ok, What do we do?
@ Basically, you run Edmond-Karp on the Graph G’.

How do you see that this is correct?

e First introduce the concept: f is a flow on a flow network G = (V, E)
is integer-valued if f(u,v) is an integer for all (u,v) € V x V.

&)

Cinvestav

101 /107

Corresponding Flow Network

Ok, What do we do?
@ Basically, you run Edmond-Karp on the Graph G’.

How do you see that this is correct?

e First introduce the concept: f is a flow on a flow network G = (V, E)
is integer-valued if f(u,v) is an integer for all (u,v) € V x V.

@ Then look at the following lemma, theorem and corollary!!!

&)

Cinvestav

101 /107

Proving Correctness

Lemma 26.9

o Let G = (V, E) be a bipartite graph with vertex partition V= L U R,
and let G’ be its corresponding flow network. If M is a matching in
G, then there is an integer-valued flow f in G’ with value |f| = |M]|.
Conversely, if f is an integer-valued flow in G’ , then there is a
matching M in G with cardinality |f| = |M].

e

Cinvestav

102 /107

Proving Correctness

Lemma 26.9

o Let G = (V, E) be a bipartite graph with vertex partition V= L U R,
and let G’ be its corresponding flow network. If M is a matching in
G, then there is an integer-valued flow f in G’ with value |f| = |M]|.
Conversely, if f is an integer-valued flow in G’ , then there is a
matching M in G with cardinality |f| = |M].

Integrality Theorem

@ If the capacity function c¢ takes on only integral values, then the
maximum flow f produced by the Ford-Fulkerson method has the
property that | f| is an integer.

@ Moreover, for all vertices u and v, the value of f (u,v) is an integer.

Y

Cinvestav

102 /107

Finally

Corollary 26.11

@ The cardinality of a maximum matching M in a bipartite graph G
equals the value of a maximum flow f in its corresponding flow
network G'.

&)

Cinvestav

103 /107

Outline

e Applications

@ Complexity @

Cinvestav

104 /107

Complexity

Thus, given G, you build G’ and run Ford-Fulkerson method. Then, use
the max flow f to build the maximum matching by using:

~ -
Cinvestav

105 /107

Complexity

Thus, given G, you build G’ and run Ford-Fulkerson method. Then, use
the max flow f to build the maximum matching by using:

M = {(u,v) |u € L,v € R and f (u,v) > 0}

~ -
Cinvestav

105 /107

Complexity

Thus, given G, you build G’ and run Ford-Fulkerson method. Then, use
the max flow f to build the maximum matching by using:

M = {(u,v)|u € L,v € R and f (u,v) > 0}

V.

Complexity
@ Because we know the |M| < min{L, R} = O(V) thus the value of
the maximum flow in G’ is O(V)

v
~ -
Cinvestav

105 /107

Complexity

Thus, given G, you build G’ and run Ford-Fulkerson method. Then, use
the max flow f to build the maximum matching by using:

M = {(u,v) |u € L,v € R and f (u,v) > 0}

V.

Complexity
@ Because we know the |M| < min{L, R} = O(V) thus the value of
the maximum flow in G’ is O(V)

@ In addition every time the residual graph is build the candidate flow is
augmented in one.

v
~ -
Cinvestav

105 /107

Complexity

Thus, given G, you build G’ and run Ford-Fulkerson method. Then, use
the max flow f to build the maximum matching by using:

M = {(u,v) |u € L,v € R and f (u,v) > 0}

| \

Complexity
@ Because we know the |M| < min{L, R} = O(V) thus the value of
the maximum flow in G’ is O(V)
@ In addition every time the residual graph is build the candidate flow is
augmented in one.
o Thus, O(VE') = O(VE).

v
~ -
Cinvestav

105 /107

Outline

Cinvestav
Exercises

@ Some exercises you can try 106 / 107

Exercises

Q 26.1-2
Q 26.1-4
© 26.1-6
Q 26.2-3
Q 26.2-5
Q 26.2-8
Q@ 26.2-11

&)

Cinvestav

107 /107

	Introduction
	A Little History About War

	Flow Networks
	Definition
	Flow Properties
	Net Flow and Value of a Flow f
	Maximum Flow Problem

	The Ford-Fulkerson Method
	Introduction
	Defining Residual Networks
	Augmentation
	Augmenting Paths
	Ford-Fulkerson Process
	Minimal Cut
	Proving that Min-Cut works
	Ford-Fulkerson Algorithm
	Example
	Complexity

	Solving the Problem with Edmond-Karp Algorithm
	Introduction
	Complexity

	Applications
	The Maximum-Bipartite-Matching Problem
	Complexity

	Exercises
	Some exercises you can try

