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History of Max Flow

Long Ago in the Faraway Cold War
It was first described by T. E. Harris (At RAND Corporation) as a
simplified model of the Soviet traffic flow.

Figure: Railway network of the Western Soviet Union
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Flow Networks

Definition
A flow network G = (V,E) is a directed graph, where each edge
(u, v) ∈ E has a non-negative capacity c (u, v) ≥ 0.
In addition if E contains an edge (u, v), it does not contain the edge
(v, u) (Reverse Direction).

Constraints
If (u, v) /∈ E we assume that c (u, v) = 0.
G has two vertices known as source s and sink t.
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Example that does not work

A Graph not Satisfying The Definition
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Figure: A simple example
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Fixing the Example

Do not worry, we can transform it into...
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Another Possible Problem

What if we have multiple sources and sinks?
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Figure: Ok no so simple!!!
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Another Possible Problem

Use a Single Sink and Source
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Flow Properties

Definition
A flow in G = (V,E) is a real valued function f : V × V → R satisfying
the following properties:

Properties
Capacity Constraint: For all u, v ∈ V

0 ≤ f (u, v) ≤ c (u, v) .

Flow conservation: For all u ∈ V − {s, t}, we have that∑
v∈V

f (v, u) =
∑
v∈V

f (u, v) .
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Thus

We need to describe the concept of flow able to leave the source
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Net Flow and Value of a Flow f

Definition of net flow
The value of a net flow is defined as

|f | =
∑
v∈V

f(s, v)−
∑
v∈V

f (v, s)

This can bee seen as
The total flow from source s to any other vertices.
Which is the same as the total flow from any vertices to the sink t.
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Example
We have the following graph
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Figure: A flow f in G with net flow value |f | = 7
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Maximum Flow Problem

Definition
Given a flow network G with source s and sink t, it is necessary to find a
flow of maximum value from s to t.

Question
How we solve this in an efficient manner?
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The Ford-Fulkerson Method

Observations
Not exactly an algorithm, but several implementations with different
running times.
It depends on three fundamental ideas: Residual Networks,
Augmenting Paths and Cuts.

Pseudo-Code
Ford-Fulkerson-Method(G, s, t)

1 Initialize flow f to 0
2 while there exists an augmenting path p in the residual network Gf

3 augment flow f along p
4 return f
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First, the Intuition

First
The residual network Gf consists of edges with capacities
representing the change in the flow on edges of G.

Thus
An edge of the flow network can admit an amount of additional flow
equal to the edge’s capacity minus the flow on that edge.

cf (u, v) = c (u, v)− f (u, v) Residual Capacity
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Case I

The edges of G that are in Gf are those that can admit more flow
i.e. c(u, v)− f(u, v) > 0

When you can add more flow to G

Then cf (u, v) = c(u, v)− f(u, v)
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Case II

If they have that c (u, v)− f (u, v) = 0
Then cf (u, v) = 0.

Basically
Remove the edge in Gf given no more flow can be added to it!!!
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Case III

First, the Intuition
As an algorithm manipulates the flow to increase its total value, it
might need to decrease the flow on a particular edge.

To represent a possible decrease of a positive flow f (u, v)
We place an edge (v, u) in Gf with residual capacity
cf (v, u) = f (u, v).
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Comments

This is an edge that can admit flow in the opposite direction to (u, v)
At most canceling out the flow on (u, v).

These reverse edges in the residual network allow
An algorithm to send back flow it has sent along an edge.
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Residual Capacity

Given a flow network and a flow
The residual network consists of edges that can admit more net flow.

It is based in the residual capacity function

cf (u, v) =


c(u, v)− f(u, v) if (u, v) ∈ E
f(v, u) if (v, u) ∈ E
0 otherwise

IMPORTANT: Because of our initial assumption if (u, v) ∈ E implies that
(v, u) /∈ E, thus only one case applies.
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Residual Edges

Definition
Given a flow f , the residual network of G induced by f is Gf = (V,Ef )
where the set of residual edges Ef is defined as

Ef = {(u, v) ∈ V × V |cf (u, v) > 0}

Note: |Ef | ≤ 2 |E| This is clear because the definition of capacity.

Observations
The residual network is not a flow network because there may contain
both edges (u, v) and (v, u).
Other than that it has the same properties: Capacity Constraint and
Flow Conservation
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Example

Graph with FLOW/CAPACITY
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Example

Its Residual Graph
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Residual Networks: Augmentation
Observation
Defining the residual flow allows to define augmentation.

Augmentation
If f is a flow in G and f ′ is a flow in the corresponding residual network,
we define the augmentation of a flow f by f ′ as

(
f ↑ f ′

)
(u, v) =

{
f (u, v) + f ′ (u, v)− f ′ (v, u) if (u, v) ∈ E
0 otherwise

The Idea Behind Augmenting
You can imagine augmentation as increase in the flow in a certain
edge minus the reversal possible flow in the same edge.
Looks like a cancellation of some sort!!!
Actual pushing flow on the reverse edge in the residual network is also
known as cancellation. 32 / 107
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Augmentation Lemma

Lemma 26.1
Let G = (V,E) be a flow network with source s and sink t, and let f be a
flow in G. Let Gf be the residual network of G induced by f , and let f ′
be a flow in Gf . Then the function f ↑ f ′ is a flow in G with value
|f ↑ f ′| = |f |+ |f ′|.
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Proof:

First, we verify that f ↑ f ′ obeys
1 The capacity constraint for each edge in E.
2 Flow conservation at each vertex in V − {s, t} .

The capacity constraint for each edge in E.
For all u, v ∈ V ⇒ 0 ≤ (f ↑ f ′) (u, v) ≤ c (u, v).

Flow conservation at each vertex in V − {s, t}
For all u ∈ V − {s, t} ⇒

∑
v∈V (f ↑ f ′) (v, u) =

∑
v∈V (f ↑ f ′) (u, v).
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For all u, v ∈ V ⇒ 0 ≤ (f ↑ f ′) (u, v) ≤ c (u, v).

Flow conservation at each vertex in V − {s, t}
For all u ∈ V − {s, t} ⇒

∑
v∈V (f ↑ f ′) (v, u) =

∑
v∈V (f ↑ f ′) (u, v).
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Proof:

Capacity Constraint
1 If (u, v) ∈ E then cf (v, u) = f (u, v).
2 Therefore f ′ (v, u) ≤ cf (v, u) = f (u, v).

Hence (
f ↑ f ′

)
(u, v) = f (u, v) + f ′ (u, v)− f ′ (v, u)

≥ f (u, v) + f ′ (u, v)− f (u, v)
= f ′ (u, v)
≥ 0
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Proof

Second

(
f ↑ f ′

)
(u, v) = f (u, v) + f ′ (u, v)− f ′ (v, u)

≤ f (u, v) + f ′ (u, v)
≤ f (u, v) + cf (u, v)
≤ f (u, v) + c (u, v)− f (u, v)
= c (u, v)

Thus

0 ≤
(
f ↑ f ′

)
(u, v) ≤ c (u, v)
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Now, We prove the Flow Conservation
Therefore

∑
v∈V

(
f ↑ f ′

)
(u, v) =

∑
v∈V

[
f (u, v) + f ′ (u, v)− f ′ (v, u)

]
=
∑
v∈V

f (u, v) +
∑
v∈V

f ′ (u, v)−
∑
v∈V

f ′ (v, u)

=
∑
v∈V

f (v, u) +
∑
v∈V

f ′ (v, u)−
∑
v∈V

f ′ (u, v)

=
∑
v∈V

[
f (v, u) + f ′ (v, u)− f ′ (u, v)

]
=
∑
v∈V

(
f ↑ f ′

)
(v, u)

where the third line follows from the second by flow conservation in f
and f ′.
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Now, we need to prove that |f ↑ f ′| = |f |+ |f ′|.

Recall
We disallow anti-parallel edges in G, but not in Gf .

I For each vertex v ∈ V , we know that there can an edge (s, v) or (v, s)
but never both.

Now, we define with respect to the source
V1 = {v| (s, v) ∈ E}
V2 = {v| (v, s) ∈ E}
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Remember the definition of Net Flow

Definition of net flow
The value of a net flow is defined as

|f | =
∑
v∈V

f(s, v)−
∑
v∈V

f (v, s)
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Now

We have the following properties
V1 ∪ V2 ⊆ V .
V1 ∩ V2 = ∅ given not anti-parallel edges.

We can compute then

∣∣f ↑ f ′∣∣ =
∑
v∈V

(
f ↑ f ′

)
(s, v)−

∑
v∈V

(
f ↑ f ′

)
(v, s)

=
∑

v∈V1

(
f ↑ f ′

)
(s, v)−

∑
v∈V1

(
f ↑ f ′

)
(v, s)

Given that (f ↑ f ′) (s, v) = 0 if (s, v) /∈ E
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Then

Reordering some of the terms, we have

|f ↑ f ′| =
∑
v∈V1

[f (s, v) + f ′ (s, v)− f ′ (v, s)]

−
∑
v∈V2

[f (v, s) + f ′ (v, s)− f ′ (s, v)]

=
∑
v∈V1

f (s, v) +
∑
v∈V1

f ′ (s, v)−
∑
v∈V1

f ′ (v, s)

−
∑
v∈V2

f (v, s)−
∑
v∈V2

f ′ (v, s) +
∑
v∈V2

f ′ (s, v)
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Then, we have that

After some Reordering

|f ↑ f ′| =
∑
v∈V1

f (s, v)−
∑
v∈V2

f (v, s) +
∑
v∈V1

f ′ (s, v) +
∑
v∈V2

f ′ (s, v)

−
∑
v∈V1

f ′ (v, s)−
∑
v∈V2

f ′ (v, s)

=
∑
v∈V1

f (s, v)−
∑
v∈V2

f (v, s) +
∑

v∈V1∪V2

f ′ (s, v)−
∑

v∈V1∪V2

f ′ (v, s)

=
∑
v∈V

f (s, v)−
∑
v∈V

f (v, s) +
∑
v∈V

f ′ (s, v)−
∑
v∈V

f ′ (v, s)

= |f |+ |f ′|
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Augmenting Paths

Augmenting Path
An augmenting path p is a simple path from s to t in the residual
graph Gf .

Residual Capacity
Residual capacity is the maximum amount by which we can increase
the flow without violating capacity

cf (p) = min {cf (u, v) | (u, v) is on p} .
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Example

Example of an augmented path (Shaded) given a flow graph G and
flow f
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8/13 

1/4 4/9 

11/14 

7/7 

4/4
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Figure: Residual Capacity of shaded path is 5
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The new flow Graph

Here, we have

11/16 
12/12 

19/20 

12/13 

1/4 /9 

11/14 

7/7 

4/4

Figure: Result after Augmentation
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Lemma 26.2

Lemma 26.2
Let G = (V,E) be a flow network, let f be a flow in G, and let p be
an augmenting path in Gf . Define a function fp : V × V → R by

fp (u, v) =
{
cf (p) if (u, v) is on p,
0 otherwise

Then fp is a flow in Gf with value |fp| = cf (p) > 0.
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Proof:

First, we verify that fp obeys
1 The capacity constraint for each edge in E.
2 Flow conservation at each vertex in V − {s, t} .

The capacity constraint for each edge in E.
For all u, v ∈ V ⇒ 0 ≤ fp (u, v) ≤ c (u, v).

Flow conservation at each vertex in V − {s, t}
For all u ∈ V − {s, t} ⇒

∑
v∈V f (v, u) =

∑
v∈V f (u, v).
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Proof

The capacity constraints
It follows from the definition...

The flow conservation, for all u ∈ V − {s, t}

∑
v∈V

fp (v, u) =
∑

v∈V,(v,u)∈p

cf (p) +
∑

v∈V,(v,u)/∈p

0

=cf (p) +
∑

v∈V,(v,u)/∈p

0

=
∑

v∈V,(u,v)∈p

cf (p) +
∑

v∈V,(v,u)/∈p

0

=
∑
v∈V

fp (u, v)
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Remember the definition of Net Flow

Given the definition

|f | =
∑
v∈V

f(s, v)−
∑
v∈V

f (v, s) = cf (p)− 0 = cf (p) > 0
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Finally

Corollary 26.3
Let G = (V,E) be a flow network, let f be a flow in G, and let p be
an augmenting path in Gf . Suppose that we augment f by fp. Then
the function f ↑ fp is a flow in G with value |f ↑ fp| = |f |+ |fp|>|f |.

Proof Immediate from previous lemmas.
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Ford-Fulkerson
Basic Process
Augment repeatedly the flow along augmenting paths

How do we stop?
Ah!! Here, we will use the concept of cut.

A cut (S, T )
A cut (S, T ) of flow network G = (V,E) is a partition of V into S and
T = V − S such that s ∈ S and t ∈ T .

Net flow f (S, T )
If f is flow, then a net flow is defined as

f (S, T ) =
∑
u∈S

∑
v∈T

f(u, v)−
∑
u∈S

∑
v∈T

f(v, u).
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Minimum Cut

The net flow across the cut f (S, T ) = 19 and the capacity is
c (S, T ) = 26

11/16 
12/12 

15/20 

8/13 

1/4 4/9 

11/14 

7/7 

4/4

Therefore
A minimum cut of a network is a cut whose capacity is minimum over all
cuts of the network.
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Important

First
The asymmetry between the definitions of flow and capacity of a cut is
intentional and important.

Why?
1 For capacity, we count only the capacities of edges going from S to T

, ignoring edges in the reverse direction.
2 For flow, we consider the flow going from S to T minus the flow

going in the reverse direction from T to S.

57 / 107



Important

First
The asymmetry between the definitions of flow and capacity of a cut is
intentional and important.

Why?
1 For capacity, we count only the capacities of edges going from S to T

, ignoring edges in the reverse direction.
2 For flow, we consider the flow going from S to T minus the flow

going in the reverse direction from T to S.

57 / 107



Important

First
The asymmetry between the definitions of flow and capacity of a cut is
intentional and important.

Why?
1 For capacity, we count only the capacities of edges going from S to T

, ignoring edges in the reverse direction.
2 For flow, we consider the flow going from S to T minus the flow

going in the reverse direction from T to S.

57 / 107



Example

We have
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The Net Flow across any cut is the same

Lemma 26.4
Let f be a flow in a flow network G with source s and sink t, and let
(S, T ) be any cut of G. Then the net flow across (S, T ) is f (S, T ) = |f |.

Proof
We have from flow-conservation∑

v∈V

f (u, v)−
∑
v∈V

f (v, u) = 0
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Now

Knowing that |f | = ∑
v∈V f(s, v)−∑v∈V f (v, s)

|f | =
∑
v∈V

f(s, v)−
∑
v∈V

f (v, s) +
∑

u∈S−{s}

(∑
v∈V

f (u, v)−
∑
v∈V

f (v, u)
)

Regrouping Terms

|f | =
∑
v∈V

f(s, v)−
∑

u∈S−{s}
f (u, v)

−∑
v∈V

f (v, s) +
∑

u∈S−{s}
f (v, u)



61 / 107



Now

Knowing that |f | = ∑
v∈V f(s, v)−∑v∈V f (v, s)

|f | =
∑
v∈V

f(s, v)−
∑
v∈V

f (v, s) +
∑

u∈S−{s}

(∑
v∈V

f (u, v)−
∑
v∈V

f (v, u)
)

Regrouping Terms

|f | =
∑
v∈V

f(s, v)−
∑

u∈S−{s}
f (u, v)

−∑
v∈V

f (v, s) +
∑

u∈S−{s}
f (v, u)



61 / 107



Finally, we have

The following equation

|f | =
∑
v∈V

∑
u∈S

f (u, v)−
∑
v∈V

∑
u∈S

f (v, u)

Because V = S ∪ T and S ∩ T = ∅

|f | =
∑
v∈S

∑
u∈S

f (u, v) +
∑
v∈S

∑
u∈T

f (u, v)−
∑
v∈S

∑
u∈T

f (v, u)−
∑
v∈S

∑
u∈S

f (v, u)
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Therefore

We have

|f | =
∑
v∈S

∑
u∈T

f (u, v)−
∑
v∈S

∑
u∈T

f (v, u) = f (S, T )
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Bounding the value of a flow.

Corollary 26.5
The value of any flow f in a flow network G is bounded from above
by the capacity of any cut of G.
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Proof

Let (S, T ) any cut of G and f be any flow

|f | = f (S, T )
=
∑
v∈S

∑
u∈T

f (u, v)−
∑
v∈S

∑
u∈T

f (v, u)

≤
∑
v∈S

∑
u∈T

f (u, v)

≤
∑
v∈S

∑
u∈T

c (u, v) = C (S, T )
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The value of a maximum flow is in fact equal to the
capacity of a minimum cut

Theorem 26.6 (Max-Flow Min-Cut Theorem) - Stopping Condition
If f is a flow in a flow network G = (V,E) with source s and sink t, then
the following conditions are equivalent:

1 f is a maximum flow in G.
2 The residual network Gf contains no augmenting paths.
3 |f | = c (S, T ) for some cut (S, T ) of G.
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Proof

(1) =⇒ (2)
Assume the following for a contradiction f is a maximum flow and
Gf has an augmenting path p.

Therefore, we can augment f by fp

|f ↑ fp| > |f |

Problem f ↑ fp is a flow
Contradiction!!! Thus Gf does not contain any augmenting path.
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Proof

(2) =⇒ (3)
Suppose that Gf does not contain augmenting path... no path from s
to t.

Define

S {v ∈ V |∃ path s t} and T = V − S

We have s ∈ S trivially and t /∈ S given not path from s to t in Gf

We have several cases...
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Therefore

If (u, v) ∈ E

We have f (u, v) = c (u, v).
I Because in any other case (u, v) ∈ Ef which will place v ∈ S.

If (v, u) ∈ E

We must have f (v, u) = 0
I Otherwise cf (u, v) = f (v, u) would be positive and we would have

(u, v) ∈ Ef again placing v ∈ S
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Finally

If neither (u, v) nor (v, u) is in E

Then f (u, v) = f (v, u) = 0

We have then

f (S, T ) =
∑
v∈S

∑
u∈T

f (u, v)−
∑
v∈T

∑
u∈S

f (v, u)

=
∑
v∈S

∑
u∈T

c (u, v)−
∑
v∈T

∑
u∈S

0

=c (S, T )
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Finally

We have because of Lemma 26.4

|f | = f (S, T ) = c (S, T )

.

Now from (3) =⇒ (2)
By Corollary 26.5 |f | ≤ c (S, T ) for all cuts (S, T )

Thus, the condition |f | = c (S, T )
It implies that f is a maximum flow...

71 / 107



Finally

We have because of Lemma 26.4

|f | = f (S, T ) = c (S, T )

.

Now from (3) =⇒ (2)
By Corollary 26.5 |f | ≤ c (S, T ) for all cuts (S, T )

Thus, the condition |f | = c (S, T )
It implies that f is a maximum flow...

71 / 107



Finally

We have because of Lemma 26.4

|f | = f (S, T ) = c (S, T )

.

Now from (3) =⇒ (2)
By Corollary 26.5 |f | ≤ c (S, T ) for all cuts (S, T )

Thus, the condition |f | = c (S, T )
It implies that f is a maximum flow...

71 / 107



Outline
1 Introduction

A Little History About War

2 Flow Networks
Definition
Flow Properties
Net Flow and Value of a Flow f
Maximum Flow Problem

3 The Ford-Fulkerson Method
Introduction
Defining Residual Networks
Augmentation
Augmentation Lemma

Augmenting Paths
Ford-Fulkerson Process
Minimal Cut
Proving that Min-Cut works
Meaning of All This

Ford-Fulkerson Algorithm
Example
Complexity
A Problem with This Solution

4 Solving the Problem with Edmond-Karp Algorithm
Introduction
Complexity

5 Applications
The Maximum-Bipartite-Matching Problem
Corresponding Flow Network

Complexity

6 Exercises
Some exercises you can try 72 / 107



Meaning of All This

Procedure
Init We start with flow f zero.

1 We construct the residual graph.
2 We find a path p between s and t in the residual Graph.
3 If The residual network Gf contains no augmenting paths.

1 The f is the maximum flow!!! and exit
4 We find Cf (p)
5 We augment the flow in the original graph.
6 Repeat to 1
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Now

For the algorithm, if (u, v) ∈ E

We make (u, v) .f = (u, v) .f + cf (p) because you can add flow.

If (u, v) 6/∈ E

You have that (u, v) is a reversal in Gf , then (v, u) ∈ E:

(u, v) .f = (u, v) .f − cf (p)

Meaning
Do not add flow but remove to do the cancellation.
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Ford-Fulkerson Algorithm

Ford-Fulkerson(G, s, t)
1 for each edge (u, v) ∈ G.E
2 (u, v) .f=0
3 while there exists a path p form s to t in the residual network Gf

4 cf (p) = min {cf (u, v) | (u, v) is in p}
5 for each edge (u, v) in p
6 if (u, v) ∈ E
7 (u, v) .f = (u, v) .f + cf (p)
8 else (v, u) .f = (v, u) .f − cf (p)
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Ford-Fulkerson Algorithm

Explanation
Line 1-2 initialize flows to 0.
Line 3-8 are executed as long as a path exist in Gf between s to t:

I Line 4 finds the cf (p).
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Ford-Fulkerson Algorithm

OBSERVATION: Each residual edge in path p is either an edge in the
original network or the reversal

Thus, Line 6-8 basically are an equilibrium act:
I If the edge exist add flow to it.
I If not remove flow otherwise from the reverse edge.
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Example of Ford-Fulkerson

First Augmentation Path
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Second Augmentation Path
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Ford-Fulkerson Algorithm

Final Code
Ford-Fulkerson(G, s, t)

1 for each edge (u, v) ∈ G.E
2 (u, v) .f=0
3 while there exists a path p form s to t in the residual network Gf

4 cf (p) = min {cf (u, v) | (u, v) is in p}
5 for each edge (u, v) in p
6 if (u, v) ∈ E
7 (u, v) .f = (u, v) .f + cf (p)
8 else (v, u) .f = (v, u) .f − cf (p)
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Complexity I

Complexity
Note: Be careful a bad implementation will not converge
because we need to choose p.
Ford-Fulkerson works for integer numbers, but rational numbers can
be transformed into integers by scaling (Real can be approximated by
rational numbers).
Imagine that after that transformation, we have f∗ the maximum flow
of a transformed network.

I while loop of lines 3-8 are bounded by |f∗| since the flow value
increases by at least one unit at each iteration.
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Complexity II

Using BFS or DFS
Complexity of finding a path is O (V + E′) = O (E) (Line 3 While
Loop)
Final complexity time of the Ford-Fulkerson Algorithm is O (E |f∗|)

Now
What if if cf (p) = 1 each time?
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Example where the situation is not so Good
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Figure: An example where complexity can be a killer when selecting the central
path all the time
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Edmond-Karp Algorithm
Observation Edmond-Karp

Edmond-Karp is Ford-Fulkerson with shortest path in the residual
network, δf (u, v), where each edge has unit distance (weight).
Basically use BFS.

Lemma 26.7
If the Edmonds-Karp algorithm is run on a flow network G = (V,E) with
source s and sink t, then for all vertices v ∈ V − {s, t}, the shortest-path
distance δf (u, v) in the residual network Gf increases monotonically with
each flow augmentation.

Theorem 26.8
If the Edmonds-Karp algorithm is run on a flow network G = (V,E) with
source s and sink t, then the total number of flow augmentations
performed by the algorithm is O(V E).
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Complexity

Complexity Edmond-Karp
Each iteration of Ford-Fulkerson can be implemented in O(E).
The Complexity of Edmond-Karp is O(V E2).

Better Complexity
The Generic Push-Relabel by Golberg for max-flow has complexity
O
(
V 2E

)
.

Don’t Panic, It is beyond this class!!!
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The Maximum-Bipartite-Matching Problem

The Bipartite Graph
A graph G = (V,E), where V = L ∪R s.t. L ∩R = ∅, and for every
(u, v) ∈ E, u ∈ L and v ∈ R.

Matching
Given an undirected graph G = (V,E), a matching is a subset of edges
M ⊆ E such that for all vertices v ∈ V , at most one edge of M is incident
on v.

Maximum Matching
A maximum matching is a matching of maximum cardinality, that is, a
matching M such that for any matching M ’, we have: |M ′| ≤ |M |.
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Example

Two examples of matching

L R L R
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Corresponding Flow Network

Build
A graph G′ = (V ′, E′) is a corresponding flow network from a bipartite
graph G:

V ′ = V ∪ {s, t}
E′ = {(s, u) |u ∈ L} ∪ E ∪ {(v, t) ∈ E′}
|E| ≤ |E′| = |E|+ |V | ≤ 3 |E|
|E′| = Θ (E)
Make for any (u, v) ∈ E′, w (u, v) = 1
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Example

Add new source s and sink t
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Corresponding Flow Network

Ok, What do we do?
Basically, you run Edmond-Karp on the Graph G′.

How do you see that this is correct?
First introduce the concept: f is a flow on a flow network G = (V,E)
is integer-valued if f(u, v) is an integer for all (u, v) ∈ V × V .
Then look at the following lemma, theorem and corollary!!!
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Proving Correctness

Lemma 26.9
Let G = (V,E) be a bipartite graph with vertex partition V = L ∪R,
and let G′ be its corresponding flow network. If M is a matching in
G, then there is an integer-valued flow f in G′ with value |f | = |M |.
Conversely, if f is an integer-valued flow in G′ , then there is a
matching M in G with cardinality |f | = |M |.

Integrality Theorem
If the capacity function c takes on only integral values, then the
maximum flow f produced by the Ford-Fulkerson method has the
property that |f | is an integer.
Moreover, for all vertices u and v, the value of f (u, v) is an integer.
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Finally

Corollary 26.11
The cardinality of a maximum matching M in a bipartite graph G
equals the value of a maximum flow f in its corresponding flow
network G′.
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Complexity

Using G′

Thus, given G, you build G′ and run Ford-Fulkerson method. Then, use
the max flow f to build the maximum matching by using:

M = {(u, v) |u ∈ L, v ∈ R and f (u, v) > 0}

Complexity
Because we know the |M | ≤ min {L,R} = O(V ) thus the value of
the maximum flow in G′ is O(V )
In addition every time the residual graph is build the candidate flow is
augmented in one.
Thus, O(V E′) = O(V E).
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Exercises

1 26.1-2
2 26.1-4
3 26.1-6
4 26.2-3
5 26.2-5
6 26.2-8
7 26.2-11
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